
NEXUS: Towards Accurate and Scalable Mapping
between Vulnerabilities and Attack Techniques

Ehsan Khodayarseresht Suryadipta Majumdar Serguei Mokhov Mourad Debbabi
Security Research Centre (SRC), Gina Cody School of Engineering and Computer Science, Concordia University

{ehsan.khodayarseresht, suryadipta.majumdar, serguei.mokhov, mourad.debbabi}@concordia.ca

Abstract—The Common Vulnerabilities and Exposures (CVE) 
program each year records thousands of known vulnerabilities 
without actionable context about how these vulnerabilities might 
be exploited by attackers. On the other hand, the MITRE 
ATT&CK framework outlines attack tactics, techniques, and pro-
cedures (TTPs) without linking them to specific vulnerabilities. 
While enabling automatic mapping of CVE descriptions to TTPs 
can allow more accurate and more efficient threat detection and 
mitigation, existing efforts face several challenges: (i) the lack of 
large-scale, high-quality datasets linking CVEs to TTPs; (ii) the 
presence of uneven data distributions and missing key TTPs in the 
existing datasets; (iii) the difficulty of accurately extracting 
adversarial behaviors from unstructured CVE descriptions; and
(iv) the lack of adaptive learning mechanisms for continuously 
correcting the mappings. This paper addresses those challenges 
with NEXUS, a framework to automatically map CVEs to TTPs. 
Our evaluation (on a newly built dataset, covering 208 TTPs 
and 92K+ CVEs, along with other public datasets) shows that 
NEXUS achieves a maximum F1-score of 97.94% in CVE-to-
TTP mapping, with the capability to work on new CVE entries, 
compared to existing works that achieve a maximum of 67.68%.

I. INTRODUCTION

links, or contextual associations. However, both supervised
and unsupervised methods struggle with accurate CVE-to-TTP
mapping. Low accuracy remains a key issue: supervised mod-
els fail to generalize beyond training data, while unsupervised
methods often misread context, producing high false positive
and false negative rates. Limited TTP coverage further reduces
effectiveness, as supervised models depend on labeled data
availability and unsupervised methods lose accuracy when
covering a broader set of TTPs. We further illustrate these
limitations as follows.

Motivation. Figure 1 highlights two major limitations of
existing solutions, along with the key challenges that must
be addressed to overcome them. Specifically:
Challenge 1: No Large-Scale Labeled Datasets. Developing
large-scale annotated datasets mapping CVEs to ATT&CK
TTPs is challenging [14] due to vague and ambiguous CVE
descriptions, requiring expert annotators for precise alignment.
Existing datasets [4]–[8], [15], [16] remain limited, typically
covering fewer than 8K of over 276K CVEs and fewer than
52 of 656 enterprise techniques [17], leading to poor model
generalization. Expanding these datasets with accuracy and
consistency is crucial for improving models.
Challenge 2: Difficulty in Accurately Mapping CVEs to TTPs.
Extracting attack behaviors from CVE descriptions and map-
ping them to TTPs remains difficult for both supervised and
unsupervised methods [3], [10]. CVEs often contain irrelevant
information (such as version histories, patch notes, or meta-
data) that obscures exploitation details, reduces model effec-
tiveness [18]–[20], and hinders detection of attack patterns [3],
[9], [11], [21]. Variability in CVE length, structure, and
extraneous content also consumes model capacity, especially
for LLMs with token limits, lowering accuracy and efficiency.
Challenge 3: Data Imbalance and Limited TTP Cover-
age in Dataset. Data imbalance in datasets leads to over-
representation of certain TTPs, causing supervised models
to favor common techniques and miss rare or emerging
ones [14] (e.g., ENISA dataset [15], [16] has 2,699 CVEs
for T1027 vs. 427 for T1190), especially in multi-label cases
where CVEs map to multiple TTPs [22]. Additionally, many
datasets (e.g., [3], [4], [16]) omit critical TTPs used in real
attacks [23]–[26]; for example, T1059 (Command Execution
Attacks) is missing from ENISA [16] despite frequent CVE
mentions [23], [24]. This limits the effectiveness of models
[18]–[20] and affects both supervised and unsupervised ap-

There are thousands of new vulnerabilities (e.g., 12,009 
vulnerabilities in Q1 of 2025 [1]) reported every year through 
the Common Vulnerabilities and Exposures (CVE) program. 
However, those CVE descriptions do not include much details 
on how those vulnerabilities can be exploited. In contrast, 
MITRE ATT&CK framework [2] defines various attack tactics, 
techniques, and procedures (TTP), but does not link them to 
specific vulnerabilities. Bridging this gap by automatically 
mapping CVEs to TTPs can significantly help both in detecting 
and mitigating security threats [3], [4].

Existing efforts to map CVE descriptions to TTPs fall into 
two categories. Supervised approaches (e.g., [5]–[8]) map CVE 
descriptions to TTPs by training classification models on 
labeled datasets to predict TTPs for new sam-ples. 
Unsupervised approaches use language models (e.g.,[3], [9], 
[10]) and graph-based methods (e.g., [11]–[13]) to infer 
relationships between CVEs (or other threat reports) and TTP 
definitions based on semantic similarity, structural

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.242926
www.ndss-symposium.org



C
ha

lle
ng

es
O

ur
 Id

ea
s

CVEs

CWEs
Capecs

TTPs New
Dataset

>92K CVEs
141 TTPs

Predicted
TTPs

CVE

Analyst

NEXUS FPs FNs
Feedback

Start
Fixes FPs and
FNs for future
similar CVEs

T1027: 2,699 CVEsImbalance

Important
Missed
TTPs

E.g., Top 10 TTPs
in 2022 and 2024

T1190: 427 CVEs

Original
Dataset

Label
Adjustment

Data
Augmentation

Important Missed TTPs
Less

Imbalanced
and Supports
67 more TTPs

New
Dataset

Generate Large-
Scale Dataset

Extract TTP Details More
Accurately Enhance Dataset Utilize Analyst Feedback

Limited Availability of 
Large-Scale Datasets

1
Difficulty in Accurately Mapping 

CVE Details to TTPs

2
Data Imbalance and Limited

TTP Coverage in Dataset

3
Lack of Adaptive Learning for

Continuous Improvement

4

CVE
Description LLM

CVE-specific
attack patterns

3000
samples

Irrelevant
Information

Attack
Patterns

Limitations of Existing Solutions
Low Accuracy in Mapping CVEs to TTPs Low TTP Coverage

<~8K CVEs
<52 TTPs Not CVE Specific

Limited Entities
Predefined Keywords Unable to fix

wrong
predictions

[4]–[8],
[15], [16]

[3],
[9]–[11],
[13]

[16]
[23],
[24]

[3], [5]–[9],
[11]–[13],
[28], [29]

Fig. 1: Motivation and our ideas.

proaches in capturing the full threat landscape.
Challenge 4: Lack of Adaptive Learning for Continuous Im-
provement. The lack of adaptive learning limits models’ ability
to improve over time based on new data or feedback [27].
In CVE-to-TTP mapping, this means models cannot update
predictions in response to emerging threats or analyst input.
Once trained, they require manual intervention or retraining to
correct errors or adapt to new attack techniques.
Our Ideas. To tackle these challenges, we introduce
NEXUS, an automated CVE-to-TTP mapping tool. Specifi-
cally, to address Challenge 1, we automate the CVE-to-TTP
annotation process to minimize reliance on expert annota-
tors while maintaining accuracy and consistency. Using four
structured, expert-curated sources, CVE [30], CWE [31],
CAPEC [32], and MITRE ATT&CK [2], NEXUS generates
mappings without manual input, producing an initial dataset
linking over 92K CVEs to 141 ATT&CK techniques, thereby
enabling broader TTP coverage. To address Challenge 2,
NEXUS handles unstructured, human-written security text
by fully automating pre-processing and pattern extraction.
It uses a Semantic Role Labeling (SRL) model [33], [34]
to parse CVE descriptions and fine-tunes a cybersecurity-
focused language model [19] on a CVE-specific dataset to
extract attack patterns without predefined rules. The pipeline
from cleaning to extraction requires no manual intervention
and scales effectively to diverse, real-world CVE reports.
To address Challenge 3, NEXUS leverages Llama-3.1-8B [35]
to automatically generate 117,725 paraphrased CVE descrip-
tions, augmenting the original 92,632 samples and enhancing
dataset diversity. To expand TTP coverage, 67 additional
techniques identified from real-world reports [23]–[26] are
automatically mapped to CVEs using GPT-4o-mini [36], with-
out manual annotation. This fully automated pipeline reduces
expert dependence and ensures scalable, reproducible label
generation. To address Challenge 4, NEXUS integrates an op-
tional adaptive learning mechanism that refines predictions
using analyst feedback. While corrections (e.g., false posi-
tives/negatives) can improve future precision, high mapping
accuracy is achieved even without intervention. Thus, feedback
serves as an enhancement, not a reliance on expert input. The
main contributions of this paper are as follows:

• We introduce NEXUS, a framework to automatically map
CVE descriptions to MITRE ATT&CK techniques. Un-
like previous works [3], [6], [9], [11], [37], our framework

enables fully automated enrichment, coverage expansion
for important missing TTPs, label correction using LLMs,
and an adaptive feedback mechanism, which all of them
are validated across diverse, real-world security datasets
(e.g., [3], [38]) at a scale not previously attempted.

• We build the first large-scale CVE-to-TTP dataset
by mapping 92K CVEs to 141 TTPs through the
CVE–CWE–CAPEC–TTP chain. To improve coverage,
we generate 117K+ augmented CVEs and recover 67
missing TTPs from real-world reports [23]–[26], assign-
ing them to attack patterns using GPT-4o-mini [36].
The final dataset spans 210K+ CVEs and 208 TTPs,
substantially exceeding prior work [3], [6], [11], [16].

• We implement NEXUS and evaluate it using five distinct
datasets, including three variants of our dataset along
with two publicly available benchmarks, i.e., SMET [3]
and MITRE ATT&CK APT and threat reports [38]. Our
experiments show that NEXUS achieves an F1-score of
up to 97.94%, compared to existing solutions [3], [6], [9],
[11], [16], [37], which achieve a maximum of 67.68%.

II. SCOPE AND ASSUMPTIONS

This work primarily focuses on finding MITRE ATT&CK
TTPs from a CVE description. Our focus is on predicting
the potential TTPs that could be associated with a given
vulnerability, based on its description, rather than detecting
an exploit. We assume the initial ground truth, including
CVE–CWE–CAPEC–TTP mappings, is sufficiently accurate
for training, and that meaningful attack patterns can be reliably
extracted from CVE descriptions. We also assume that human
analysts can correctly flag false positives and false negatives
during feedback collection [39].

The mappings of CVE-to-TTP can be utilized in several
security applications [3], [4], [10], [11], [13], [40], including
threat intelligence, cyber operations, and risk assessment.
For those applications, we assume attackers use existing
attack techniques from the MITRE ATT&CK framework [2]
to exploit vulnerabilities documented in the NVD knowl-
edge base [30]. To demonstrate the practical applicability
of NEXUS, Section VI presents three complementary case
studies, an end-to-end operational scenario, an analysis of am-
biguous CVE descriptions, and an evaluation on unstructured
non-CVE threat-intelligence inputs, followed by additional
possible uses of NEXUS. Collectively, these examples illustrate
how NEXUS integrates into analyst workflows, enriches TTP
coverage under diverse input conditions, and helps bridge the
gap between low-level system evidence and high-level security
intelligence.

III. METHODOLOGY

A. Overview

NEXUS (Figure 2) uses a modular hybrid framework com-
bining fine-tuned transformers (BERT [41], RoBERTa [42],
SecureBERT [43]) with LLMs (GPT-4o-mini [36], Llama-3.1-
8B [35]). LLMs handle label adjustment, data augmentation,
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Fig. 2: The system overview of NEXUS.

and feedback adaptation, while supervised models provide effi-
cient, interpretable, and scalable multi-label TTP classification.
As shown in Section IV-C, comparisons with generative-only
approaches [37] demonstrate the benefits of this hybrid design.

NEXUS comprises five main steps (Figure 2). (1) Ground
Truth Building (Section III-B) tackles Challenge 1 by auto-
matically mapping CVEs to TTPs using four CTI knowledge
bases (CVE, CWE, CAPEC, ATT&CK). (2) Attack Pattern
Extraction (Section III-C) addresses Challenge 2 by extracting
attack patterns [3], [10], [32] from CVE text via SRL [33] and
binary classification. (3) Dataset Enhancement (Section III-D)
addresses Challenge 3 by adding missing TTPs and reducing
TTP imbalance. (4) Model Building (Section III-E) fine-tunes
BERT-based models [18], [20], [43] to predict TTPs for unseen
CVEs. (5) Prediction and Adaptation (Section III-F) addresses
Challenge 4 by predicting TTPs for new CVEs and refining
results with analyst feedback, without retraining.

B. Ground Truth Building
We construct the initial CVE-to-TTP mapping by leveraging

the structured CVE–CWE–CAPEC–TTP relationships pro-
vided in the NIST [44] and MITRE [2] knowledge bases. Each
CVE is first linked to its corresponding CWE entries, which
describe the vulnerability type. These CWEs are then mapped
to CAPEC attack patterns, which in turn are associated with
MITRE ATT&CK TTPs [2]. When a CAPEC lacks a direct
TTP link, we inherit TTPs from its parent CAPECs to maintain
coverage. All data is collected from the NVD, CWE, CAPEC,
and ATT&CK repositories [45]–[48] and standardized into
CSV, JSON, and STIX formats for integration. This entire
mapping workflow runs automatically without any manual an-
notation. To further improve TTP coverage, we apply the label-
adjustment sub-step using generative models (Section III-D1),
which corrects errors and recovers missing techniques.

Figure 3a and 3b show CVE and TTP distributions across 13
ATT&CK tactics, with Defense Evasion most common (31.6%
of CVEs, 25.1% of TTPs), followed by Persistence, Privilege

(a) Distribution of 92,632 CVEs
across 13 enterprise tactics.

(b) Distribution of 141 TTPs
across 13 enterprise tactics.

(c) Total supported CVEs per knowledge base by CVE publication
year (Jan 1999–May 2024).

Fig. 3: Summary of our initial labelled dataset.

Escalation, Credential Access, and Discovery. Many CVEs
and TTPs span multiple tactics, reflecting their interconnected
nature. Figure 3c shows that newer CVEs map to more TTPs
due to additional CWE and CAPEC associations.

Example 1. Figure 4 shows the mapping of
CVE-2024-4985 by matching the corresponding IDs:
the CVE description indicates the related CWE, CWE-303
(authentication bypass), the CWE description indicates the
related CAPEC, CAPEC-114 (authentication abuse), and
the CAPEC points to the TTP T1548 (Abuse Elevation
Control Mechanism). This mapping reflects the nature of the
vulnerability itself: an authentication flaw enables privilege
escalation, which logically aligns with the corresponding
TTP.
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C. Attack Pattern Extraction
We extract TTP-relevant information from CVE descrip-

tions. Existing extraction approaches (e.g., [3], [9]–[11], [13])
suffer from various limitations: keyword-based and rule-based
filtering may miss important attack details, fine-tuned NER
models often fail to generalize across different cybersecurity
contexts, and predefined entity lists may overlook critical
CVE-specific information, leading to high false positive and
false negative rates. We mitigate these issues through two key
sub-steps detailed below.

1) Data Preprocessing: This step normalizes CVE descrip-
tions into canonical sentences for attack-pattern analysis. The
text is first cleaned with regular expressions to remove whites-
pace, special characters, and citations, then segmented using
the NLTK Punkt tokenizer [49]. Following prior work [3],
[10], [21], [50], sentences are further split into sub-sentences
via Semantic Role Labeling (SRL) [33], which identifies
predicates and their roles (who did what to whom). Verbs
serve as anchors, and arguments are classified as agents and
patients [3], [10], [50], ensuring each sub-sentence contains at
least one object. A directed graph is then built: nodes are sub-
sentences, and edges capture dependencies, if sub-sentence
A shares verbs with B and B has more verbs, A becomes
a child of B. This structure helps NEXUS associate TTPs
with attack patterns through parent–child relationships, as in
Section III-D1. This step is further detailed in Algorithm 1 in
Appendix A.

Example 2. Figure 5 shows NEXUS ’s preprocessing for
CVE-2024-4985. After cleaning and tokenizing the text,
NEXUS extracts five sentences and focuses on Sentence 2 for
its sequential actions. SRL identifies three main verbs (“al-
lowed,” “forge,” “gain”) and their ARG0/ARG1 roles; although
“provision” is missed, the key action remains captured through
“gain.” From these verbs, NEXUS forms three sub-sentences
by linking each verb to its object (and subject when present),
since verb–object pairs best capture malicious behavior. As
shown in Figure 6, dependency analysis assigns Sub-sentence
1 (“allowed/forge”) as the parent and Sub-sentences 2–3
(“forge,” “gain”) as children, clarifying the attack sequence
and enabling multi-pattern analysis in later steps.

Semantic Role Labeling
E.g., Sentence 2

This vulnerability allowed an attacker to forge a SAML response to
provision and/or gain access to a user with site administrator privileges.

VARG0 ARG1
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provision and/or gain access to a user with site administrator privileges.
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provision and/or gain access to a user with site administrator privileges.
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Fig. 5: An example of data processing.
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(Inherits "gain")
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(Inherits "gain" and "forge")

1 2 3

Fig. 6: An example of extracting hierarchical dependencies.

2) Attack Pattern Classification: This step identifies sub-
sentences containing attack patterns using the Attack Pattern
Detector (APD), a binary classifier built by fine-tuning Secure-
BERT [19]. The APD is trained on 3,000 manually labeled
sub-sentences, distinguishing positives (containing attack pat-
terns) from negatives. Following prior work [3], [9], [10], [32],
attack patterns are defined as action sequences reflecting an
attacker’s methods and intentions. To improve accuracy, each
sub-sentence is paired with its original sentence as context
using the [SEP] token (a separator between segments in input
sequences used in BERT) during training and prediction. This
context helps the APD model capture semantic nuances and
improve precision [10]. Identified attack patterns are either
added to the training dataset or proceed through prediction.

Example 3. Figure 7 illustrates the Attack Pattern Clas-
sification sub-step, with two flows: training and prediction.
During training (left), an annotated dataset of 3,000 manually
labeled sub-sentences is used to fine-tune the APD model,
achieving about 95% accuracy. In the prediction flow (right),
extracted sub-sentences from CVE-2024-4985 are classified.
“An attacker gain access to a user with site administrator
privileges” (Sub-sentence 3) is identified as an attack pattern,
while “this vulnerability reported via the GitHub Bug Bounty
program” is classified as a non-attack pattern.

D. Dataset Enhancement
We augment the training set to reduce TTP imbalance and

improve coverage of underrepresented techniques. GPT-4o-
mini is used for large-scale verification and correction of TTP
labels while Llama-3.1-8B supports efficient paraphrasing for

4



Training
ID >3K Sub-sentences

1 A crafted payload inserted into the Search box

2 Users advised to upgrade

n ...
Analyze

Analyst

Annotate

AP

...

Fine-tune

I

II

APD Model
~95%

accuracy

Attack Pattens 
(APs)

Prediction
CVE-2024-4985

APD Model

This vulnerability reported
via the GitHub Bug Bounty

program

Two of Sub-sentences

+ Main Sentence 
as Context

An attacker gain access to
a user with site

administrator privileges
+ Main Sentence 

as Context

Attack Pattern Classification

Fig. 7: An example of attack pattern classification.

augmentation. As shown in Section IV-C and Appendix C,
fully generative LLMs perform well on clean samples but
degrade on large or noisy data, motivating our hybrid design.
This step is performed as follows.

1) Label Adjustment: The goal of this sub-step is to
enhance the dataset by automatically adding relevant TTPs
missing from the original ground truth. First, we identify
67 crucial TTPs (27 main techniques and 40 associated
sub-techniques) that are frequently referenced by adversaries
across documented cybersecurity campaigns (e.g., [23]–[26])
but were not included in the initial dataset described in
Section III-B. Second, we construct an extended candidate set
for each CVE by merging its previously assigned TTPs with
these newly identified ones as follows:

ZCV Ei = Tassigned(CV Ei) → Tmissed (1)

where Tassigned is the set of TTPs already linked to CV Ei,
and Tmissed is the group of 67 newly discovered critical TTPs
missing from the original dataset. ZCV Ei denotes the full
candidate TTP set associated with that CVE.

Third, we use GPT-4o-mini to automatically check whether
each missing TTP in ZCV Ei is consistent with the CVE
description or the extracted attack pattern. As in Appendix
C and prior work [28], [37], GPT-4o-mini achieves strong
precision and recall, especially with constrained candidate sets.
Each candidate TTP description is paired with the CVE or
pattern text, and the model is prompted to judge its exploit
relevance. To ensure consistency, responses are restricted to
deterministic “Yes”/“No” outputs using temperature 0.2 and
top-p 0.9. To ensure label quality and fairness, we verify
both new and existing TTPs per CVE. This avoids preserving
prior errors, leverages GPT-4o-mini’s high recall (Appendix C)
and supports NEXUS’s feedback loop (Section III-F), enabling
consistent TTP assignment and improved label recovery.

Finally, we refine assigned labels by enforcing consistency
within the attack pattern dependency graph, ensuring child
nodes inherit a subset or equivalent set of TTPs from their par-
ents. This prevents more specific patterns from being assigned
broader or unrelated TTPs, preserving contextual coherence.
This step is further outlined in Algo. 2 in Appendix A.

Example 4. Figure 8 shows the label adjustment process for
Attack Pattern 3, extracted from CVE-2024-4985.
GPT-4o-mini evaluates T1548, T1606, and T1566 as can-
didate TTPs based on the description. Although T1566

(Phishing) is initially considered relevant due to the

Label Adjustment

T1548 (Abuse Elevation Control Mechanism) T1606 (Forge Web Credentials) T1566 (Phishing)
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Response Label Verification Adjusted

T1548
T1606
...

Attack Pattern

T1548
T1606
T1566... 3

1 2 T1548
T1606
T1566...

Direct Parents
an attacker gain access to a user
with site administrator privileges

3

Fig. 8: An example of the Label Adjustment process.
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Fig. 9: An example of the CVE Sample Augmentation process.

limited context of Attack Pattern 3, which loosely sug-
gests user interaction, the label verification step cross-checks it
against the direct Parent Attack Patterns 1 and 2. Since
both parents strictly describe privilege escalation through
forged SAML responses—without any phishing or social
engineering context—T1566 is removed as unsupported. As
a result, only the contextually consistent labels T1548 and
T1606 are retained for Attack Pattern 3.

2) CVE Sample Augmentation: To address TTP imbalance,
we augment CVE samples through paraphrasing with Llama-
3.1-8B, selected for quality, open-source availability, and effi-
cient local use. Augmentation increases data diversity without
collecting new samples [51]–[55]. Step 1: For each sample Si

in Z (CVE text + attack pattern), if any TTP in its label set L
has support ! < T , the sample is marked for augmentation.
Step 2: Llama-3.1-8B generates one paraphrase ” using
temperature 0.6 and top-p 0.9 to balance fidelity and variation.
Step 3: If ”j(Si) is unique in Z, it is added as a new sample
with the same attack pattern and labels, and support counts
are updated. The process repeats N times per eligible sample.
Augmentation parameters (T , N ) are selected empirically
based on TTP classifier performance (Section IV-D3). The
formulation is:

Z ↑ Z →
∑

Si→Z

N∑

j=1

{
!j(Si)

∣∣∣ ↓ TTP ↔ L(Si), ”(TTP) ↗ T,

!j(Si) /↔ Z, Update(”, L(Si))
}

(2)

Example 5. Figure 9 shows if CVE-2024-4985 maps to under-
supported TTPs, its description is paraphrased using Llama-
3.1-8B. Semantically consistent, novel samples are added to
the dataset with preserved TTPs and updated support counts.

E. TTP Classifier Model Building
We fine-tune a BERT-based model [18] for multi-label

CVE-to-TTP classification after addressing Challenges [19],
[22] and tokenized. The model was trained on 75% of the
data, while the remaining 25% was evenly divided between
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Embedding
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Embedding
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Embedding
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+
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...

True
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pare
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Fig. 10: An example of fine-tuning the TTP Classifier Model.

Fig. 11: An example of TTP clustering via Prediction step.

validation and test sets. Moreover, it uses a frozen encoder
and a sigmoid-activated classification head trained via binary
cross-entropy. We evaluate six BERT variants (e.g., BERT-
Base, SecureBERT [19], [20]) and select the best-performing
model as the final classifier for NEXUS.

Example 6. Figure 10 shows an example of the TTP Classifier
Model Building step during fine-tuning. Here, Attack Pattern 3
from CVE-2024-4985 is paired with its CVE description
using the [SEP] token. The sequence is tokenized, embedded
(token, segment, position), and passed through a frozen BERT
encoder. The [CLS] output feeds into the classification head,
producing multi-label probability scores (e.g., 0.23 for T1606,
0.95 for T1566, 0.87 for T1548). Predictions are compared
to ground truth using binary cross-entropy loss. Only the
classification head is updated during backpropagation.

F. Prediction and Adaptation

This step builds upon the fine-tuned TTP classifier model
described in Section III-E to predict TTPs for previously un-
seen CVEs and to improve prediction accuracy through analyst
feedback. It consists of two main sub-steps: TTP Prediction
(Section III-F1) and Model Adaptation (Section III-F2).

1) TTP Prediction: This sub-step first predicts TTPs for
unseen CVEs, refines them through Model Adaptation, and
then receives analyst feedback. First, the TTP Prediction sub-
step processes attack patterns extracted from a CVE, each with
its context, and applies the fine-tuned TTP classifier. Initial
predictions are refined by the Model Adaptation sub-step (Sec-
tion III-F2) using prior feedback, and the final adapted TTPs
are returned. Second, analysts review predictions and provide
structured feedback by marking each TTP as true positive,
false positive, or false negative. For each TTP Ti, feedback
can target specific attack patterns {AP1, AP2, . . . , APk} or
apply using a wildcard (*), as follows:

TTP Prediction and Feedback Collection
AP Extraction TTP Prediction Revision Feedback

False Negative: 
T1606.002

for AP1-3 from
Sentence 2

Model Adaptation DB Update

C
VE

-2
02

4-
49

85

Feedback
Database

Analyst 47c1e5c...

Exact-Match
Signatures

Behavioral
Signatures

C1, C5, ...
Hash Values
(SHA-256)

Cluster Distance
(0.1)

e.g., e.g.,

<CONTEXT>

Sent. APs
1 AP1
2 AP1, AP2, AP3
3 AP1, AP2

T1548: Abuse Elevation Control Mechanism T1606: Forge Web Credentials T1606.002: Forge Web Credentials: SAML Tokens

Sent.

3

AP TTPs

T1606, ...1

.........

......... 2

.........

2 T1548, ...

Refined by Model
Adaptation

Fig. 12: An example of predicting TTPs.

Feedback(Ti) =
k⋃

j=1

Map(APj), where Map(APj) ↔ {APj , *} (3)

Third, the TTP Prediction sub-step stores feedback using
two mechanisms: Exact-Match and Behavioral signatures. For
Exact-Match, it concatenates the attack pattern and CVE
description with a <CONTEXT> delimiter and applies SHA-
256 to create a stable identifier for deterministic lookup. For
Behavioral Signatures, it records the predicted TTP set as a
behavioral fingerprint to generalize feedback across similar
patterns. However, small contextual differences (e.g., [T1, T2]
versus [T1, T2, T7] hinder exact matching and inflate the
database. To mitigate this, the sub-step abstracts these sets by
clustering correlated TTPs, computing a Pearson correlation
matrix Cij over the multi-label CVE–TTP dataset (Equa-
tion 4).

Cij =
Cov(Li, Lj)

ωLiωLj

(4)

and defines a pairwise distance as presented in Equation 5:

d(Li, Lj) = 1 ↘ Cij (5)

Using these distances, hierarchical agglomerative clustering
with average linkage is performed, and the dendrogram is cut
at a threshold X to form N clusters as denoted in Equation 6:

D = {Li ≃ ClusterID(Li) | i = 1, 2, . . . ,M} (6)

By clustering correlated TTPs, the system reuses behavioral
feedback across semantically similar patterns despite minor
prediction differences. Figure 11 illustrates how varying dis-
tance thresholds merge TTPs into broader clusters, trading
specificity for generalization. For each pattern with feedback,
the TTP Prediction sub-step then maps its predicted TTPs to
cluster IDs to form the Behavioral Signature:

APclusters =

APTTPs⋃

t=1

{ClusterID(CPt)} (7)

This cluster-level signature enables NEXUS to reuse analyst
feedback during future prediction processes, applying it to both
identical and behaviorally similar attack patterns.

Example 7. Figure 12 illustrates TTP prediction and ana-
lyst feedback. For CVE-2024-4985, NEXUS extracts multiple
attack patterns (e.g., AP1–AP3 from the second sentence).
The TTP Prediction sub-step generates initial TTPs, which
are refined via Model Adaptation (Section III-F2). During
revision, an analyst identifies a false negative—T1606.002
(“Forge Web Credentials: SAML Tokens”)—missing from
AP1–AP3 and adds it to all three. The system encodes this
feedback using two signatures per pattern: an Exact-Match
Signature (SHA-256 hash of the pattern and CVE context) and
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Fig. 13: An example of refining initial predicted TTPs.

a Behavioral Signature (clustered TTP IDs at a 0.1 threshold).
Signatures, feedback type, and TTP, are stored for future
refinement.

2) Model Adaptation: The Model Adaptation sub-step
(evaluated in Section IV-F) aligns the output of the TTP Pre-
diction sub-step with historical analyst feedback by reusing the
Exact-Match Signatures and Behavioral Signatures introduced
earlier. These signatures serve as retrieval keys for matching
current attack patterns with previously recorded feedback,
either through exact context matching or behavioral similarity.

First, for each attack pattern, the Model Adaptation sub-step
checks the feedback database for an Exact-Match Signature
and, if found, directly inherits all linked feedback (TPs, FPs,
FNs). Second, to compare against stored Behavioral Signa-
tures, it computes a cluster-coverage score S: letting Tclusters
be the current pattern’s Behavioral Signature and B the set of
stored Behavioral Signatures (Equation 8).

B = DB(1)
clusters, DB(2)

clusters, . . . , DB(n)
clusters (8)

For each DB(i)
clusters → B, the coverage score is calculated via

Equation 9:

S(DB(i)
clusters, Tclusters) =

|DB(i)
clusters ⇐ Tclusters|

|DB(i)
clusters|

⇒ 100 (9)

If the score exceeds threshold ω , the feedback linked to
DB(i)

clusters is selected. The sub-step then integrates this feedback
in two stages: (i) all candidate entries are tentatively applied
to the current attack pattern, and (ii) each feedback TTP is
verified with Llama-3.1-8B using the same Yes/No prompting
strategy as in Label Adjustment. A “Yes” keeps true positives
or false negatives, while a “No” removes false positives.
This verification step ensures accurate behaviorally adapted
feedback. Fourth, the final adapted prediction is constructed
by combining the initial TTP predictions with the corrections
derived from both signature types. Feedback obtained from
Exact-Match Signatures is applied directly, while feedback
from Behavioral Signatures is incorporated following model-
based verification. False positive TTPs are removed, false
negative TTPs are added, and true positive TTPs are reinforced
according to the verified feedback outcomes. The step is
further summarized in Algo. 3 in Appendix A.

Example 8. Figure 13 illustrates the Model Adaptation
process. NEXUS analyzes two similar CVEs, CVE-2024-
4985 and CVE-2024-45409, both missing TTP T1606.002.
For CVE-2024-4985, feedback with an Exact-Match Signature
(47c1...) and a Behavioral Signature (C1,C5,C7...)
exists in the database. For CVE-2024-45409, no exact match
is found, so the system retrieves feedback using Behavioral
Signature matching (X = 0.1, ω = 0.4). Exact-Match
feedback is directly applied, while Behavioral feedback is
verified via Llama-3.1-8B. If confirmed, TTP T1606.002 is
added to the prediction.

IV. EVALUATION

This section first describes the experiment setup, and then
evaluate NEXUS across several aspects.

A. Experiment Setup

Implementation. NEXUS is implemented in Python 3.10. Ex-
periments are conducted on HPC clusters, with nodes featuring
over 128 CPU cores (AMD EPYC 7763), 250GB RAM, and
multiple NVIDIA A100 GPUs (20GB/80GB). Model fine-
tuning uses the Flair framework [59] and Adam optimizer [60].
Six BERT variants are employed for CVE-to-TTP map-
ping: BERT-Base-Uncased [41], BERT-Large-Uncased [56],
RoBERTa-Base [42], RoBERTa-Large [57], SecureBERT [19],
[43], and SecureBERT-Plus [58]. OpenAI models (e.g., GPT-
4o-mini) are accessed via the OpenAI Python library [61], and
Llama models via Transformers and HuggingFace Hub [62].
Additional core libraries include Torch [63] and NumPy [64].
Datasets. The evaluation uses five datasets (D1–D5), among
them the publicly available SMET CVE-to-TTP dataset [3]
and MITRE ATT&CK APT and threat reports [38]. The
primary dataset, the NEXUS Attack-Pattern Dataset (D1), is
generated and refined through the NEXUS methodology. It
includes 711,969 attack pattern–CVE pairs, 92,632 unique
CVEs, and 117,725 augmented CVEs, covering 208 TTPs.
D1 serves as the main resource for training, validation, and
testing. We use four additional datasets for evaluation. The
10k-Minimal-Overlap Dataset (D2) contains 10,000 CVEs
from D1’s test set across 208 TTPs, with overlap minimized
for fair comparison: 34% (3,381 CVEs) have no training
overlap, and only 12% of training samples share minimal
context. The 3.3k-Fully-Unseen Dataset (D3) consists of these
3,381 non-overlapping CVEs, covering 192 TTPs, and is
used to assess generalization under fully unseen conditions.
The MITRE-APT Dataset (D4) [38] contains ten annotated
MITRE ATT&CK reports covering groups such as APT1 [65],
APT3 [66]–[71], APT38 [72]–[74], and others, spanning 128
TTPs. These reports are far longer and richer than CVE
descriptions. The SMET Dataset (D5) [75] contains 303 CVEs
mapped to 41 TTPs, produced by SMET [3].
Evaluation Strategies. Fine-tuning uses a learning rate of
1e-5, batch size four, and up to 15 epochs. The NEXUS
Attack-Pattern Dataset (D1) is split 75/25 with stratification
to preserve all 208 TTP labels. We evaluate NEXUS against
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Model Micro Average Macro Average TP FP FNPrecision Recall F1-score Precision Recall F1-score
BERT-Base-Uncased [41] 96.82% 97.00% 96.91% 97.29% 97.80% 97.54% 2,168,243 71,153 67,031
BERT-Large-Uncased [56] 97.76% 97.92% 97.84% 98.15% 98.61% 98.38% 2,188,745 50,237 46,529

RoBERTa-Base [42] 96.66% 96.84% 96.75% 97.07% 97.65% 97.36% 2,164,530 74,760 70,744
RoBERTa-Large [57] 97.85% 98.02% 97.94% 98.25% 98.65% 98.45% 2,191,089 48,170 44,185

SecureBERT [43] 96.66% 96.70% 96.68% 96.98% 97.42% 97.20% 2,161,568 74,757 73,706
SecureBERT-Plus [58] 95.06% 94.22% 94.64% 95.17% 94.85% 95.01% 2,106,071 109,548 129,203

TABLE I: CVE-to-TTP mapping accuracy of fine-tuned LLMs on D1 dataset.

three baseline groups. CVEMap, a supervised baseline, uses
the ENISA dataset [16] (8,077 CVEs, 52 TTPs), expanded
to 92,632 CVEs and 141 TTPs using our Ground Truth
Building step; SecureBERT [43] is fine-tuned on this expanded
dataset, improving on earlier LabelPowerset approaches [6].
Unsupervised baselines include SMET [3], [75], Ladder [9],
[76], and AttacKG [11], [77]; SMET targets 185 TTPs, while
Ladder and AttacKG handle broader threat-report mappings
with unrestricted and 178 TTPs. Generative baselines—Llama-
3.1-8B [35] and GPT-4o-mini [36]—are prompted (per Attack-
SeqBench [37]) to score CVE-to-TTP relevance without task-
specific training or coverage limits. All models are evaluated
on D2–D5, using only TTPs supported by both the model and
ground truth. We report micro/macro Precision, Recall, and
F1, monitor loss curves for convergence, and analyze FP/FN
rates for error profiling.

B. CVE-to-TTP Mapping Accuracy

This section evaluates NEXUS for CVE-to-TTP mapping
with all training steps active: Ground Truth Building, Attack
Pattern Extraction, Dataset Enhancement, and TTP Classifier
Model Building. Fine-tuning is performed on D1 (NEXUS
Attack-Pattern Dataset) with pre-trained LLMs. Table I sum-
marizes the results using micro- and macro-averaged Preci-
sion, Recall, F1-score, and counts of true positives (TP), false
positives (FP), and false negatives (FN). Precision measures
correct predicted TTPs, Recall measures coverage of actual
TTPs, and F1-score balances both. Micro- and macro-averages
capture overall performance and class imbalance.

As shown in Table I, all fine-tuned LLMs achieve high
accuracy, with micro-averaged F1-scores exceeding 94%.
RoBERTa-Large performs best, achieving a micro-averaged
F1-score of 97.94% and a macro-averaged F1-score of
98.45%. SecureBERT shows competitive performance, while
SecureBERT-Plus has the weakest results. These findings
demonstrate that NEXUS training, combined with fine-tuning
on the enriched D1 dataset, enables strong generalization
across 208 TTPs despite class imbalance.

Figure 14 shows RoBERTa-Large fine-tuning on D1. Train-
ing and validation losses (Figure 14a) steadily decrease and
stabilize over 15 epochs, indicating effective convergence. Val-
idation Precision, Recall, and F1-score (Figure 14b) improve
and plateau after 10 epochs. Figure 14c and 14d show low
FPR and a slight FNR increase for higher-support TTPs due
to semantic diversity. Overall, RoBERTa-Large achieves strong
generalization across rare and frequent TTPs.

(a) Training and validation loss
curves over epochs.

(b) Validation Precision, Recall,
and F1-score over epochs.

(c) FPR and FNR across TTP
support groups.

(d) Precision, Recall, and F1-
score across TTP support groups.

Fig. 14: Fine-tuning dynamics and evaluation of RoBERTa-
Large on the D1 dataset.

Solution TTP Cov. Precision Recall F1-score
NEXUS 100% 94.71% 84.49% 89.31%

CVEMap [6], [16] 67.78% 47.27% 92.20% 62.50%
SMET [3] 40.86% 37.71% 7.85% 12.99%
Ladder [9] 100% 32.67% 3.09% 5.65%

AttacKG [11] 40.86% 30.53% 11.48% 16.69%
AttackSeqBench [35], [37]

(with Llama-3.1-8B) 100% 19.50% 58.74% 29.28%

AttackSeqBench [36], [37]
(with GPT-4o-mini) 100% 51.15% 100% 67.68%

TABLE II: Comparison of NEXUS and baselines on D2 in
terms of TTP Coverage, Precision, Recall, and F1-score.

C. Comparison with State-of-the-Art Solutions

To evaluate generalization, we compare NEXUS with super-
vised, unsupervised, and generative baselines on four datasets
(D2–D5), reporting Precision, Recall, F1, TPR, FPR, and
FNR. Metrics are computed only over TTPs supported by both
the model and ground truth. For D4 and D5, we also report
results with Model Adaptation (Section IV-F).

Table II shows CVE-to-TTP mapping results on D2. NEXUS
achieves the highest F1-score (89.31%) with full TTP cover-
age (100%), high Precision (94.71%), and Recall (84.49%).
Other solutions have lower F1-scores and either limited TTP
coverage (CVEMap: 67.78%, SMET: 40.86%) or lower Pre-
cision/Recall despite full coverage(Ladder, AttackSeqBench
with Llama-3.1-8B, and AttackSeqBench with GPT-4o-mini).
AttackSeqBench with GPT-4o-mini achieves 100% Recall due
to its role in Label Adjustment but lower Precision. Figure 15a
shows NEXUS maintains high TPR with low FPR/FNR, while
others show higher error rates.
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(a) Detection metrics for D2 (b) Detection metrics for D3 (c) Detection metrics for D4 (d) Detection metrics for D5

Fig. 15: Comparison of TPR, FPR, and FNR across evaluation datasets (D2–D5).

Solution TTP Cov. Precision Recall F1-score
NEXUS 100% 79.32% 63.41% 70.48%

CVEMap [6], [16] 65.10% 41.11% 95.90% 57.55%
SMET [3] 41.14% 29.63% 8.44% 13.13%
Ladder [9] 100% 30.64% 2.09% 3.92%

AttacKG [11] 41.14% 26.62% 9.33% 13.82%
AttackSeqBench [35], [37]

(with Llama-3.1-8B) 100% 15.03% 61.30% 24.15%

AttackSeqBench [36], [37]
(with GPT-4o-mini) 100% 44.35% 100.00% 61.45%

TABLE III: Comparison of NEXUS and baselines on D3 with
stricter evaluation of unseen attack patterns.

Solution TTP Cov. Precision Recall F1-score
NEXUS 64.06% 47.15% 96.81% 63.41%

CVEMap [6], [16] 32.81% 33.77% 65.38% 44.54%
SMET [3] 36.71% 44.12% 17.24% 24.79%
Ladder [9] 100% 34.76% 75.10% 47.52%

AttacKG [11] 36.71% 27.36% 66.67% 38.80%
AttackSeqBench [35], [37]

(with Llama-3.1-8B) 100% 24.32% 79.12% 37.20%

AttackSeqBench [36], [37]
(with GPT-4o-mini) 100% 41.18% 67.47% 51.14%

TABLE IV: Performance on the D4 APT report dataset [38],
showing NEXUS’s generalization beyond CVEs.

Table III reports results for D3, which tests generalization
on CVEs without overlap with the training set. Compared
to D2, D3 is more challenging. NEXUS achieves the highest
F1-score (70.48%) with full TTP coverage. CVEMap shows
higher Recall (95.90%) but lower Precision (41.11%) and TTP
coverage (65.10%), resulting in a lower F1. AttackSeqBench
with GPT-4o-mini achieves 100% Recall but lower Precision
than NEXUS. Figure 15b shows NEXUS maintains high TPR
with low FPR/FNR, while CVEMap and AttackSeqBench with
GPT-4o-mini have slightly higher FPRs.

Table IV presents results on the D4 dataset of annotated
APT reports. Although NEXUS is primarily designed for CVE-
to-TTP mapping, it achieves the highest F1-score (63.41%),
demonstrating moderate TTP extraction capabilities on broader
threat intelligence inputs. Figure 15c shows TPR, FPR, and
FNR, where NEXUS maintains a balanced profile with high
TPR and relatively low FPR and FNR, outperforming other
solutions in handling detailed APT reports.

Table V shows results on D5, focused on initial exploitation.
NEXUS’s broader mapping scope explains its lower precision,
as some false positives are valid under its policy. Nonetheless,
NEXUS achieves the highest F1-score, demonstrating strong
generalization. Figure 15d shows NEXUS maintains balanced

Solution TTP Cov. Precision Recall F1-score
NEXUS 65.85% 53.80% 89.86% 67.30%

CVEMap [6], [16] 46.34% 12.32% 18.84% 14.90%
SMET [3] 97.56% 34.97% 65.62% 45.63%
Ladder [9] 100% 36.42% 12.33% 18.43%

AttacKG [11] 97.56% 9.36% 32.81% 14.56%
AttackSeqBench [35], [37]

(with Llama-3.1-8B) 100% 15.89% 80.94% 26.56%

AttackSeqBench [36], [37]
(with GPT-4o-mini) 100% 16.57% 92.38% 28.09%

TABLE V: Performance comparison on D5, SMET [75].

TPR, FPR, and FNR.
Even though, in Tables II-V generative AI-based works

achieve high recall, they show substantially lower precision,
and F1-score compared to NEXUS. This observation is persis-
tent or even worse with the increase size of the dataset. This
is why we deliberately design NEXUS as a hybrid solution
utilizing both traditional NLP and generative-based models.

D. Ablation Study

To systematically evaluate the contribution of each core
NEXUS design, we conduct an ablation study on the D1
dataset in which NEXUS’s steps are progressively enabled and
the CVE-to-TTP mapping accuracy is measured after each
addition. Specifically, we assess the impact of Ground Truth
Building, Attack Pattern Extraction, and Dataset Enhancement
steps. This ablation demonstrates that each step provides
measurable improvements in mapping accuracy and coverage
(in Table VI), validating each design choice quantitatively. The
Model Adaptation sub-step is also evaluated in Section IV-F.

Table VI shows RoBERTa-Large fine-tuning results after
each step. Ground Truth Building achieves 79.38% micro F1
over 92,632 CVEs and 141 TTPs. Attack Pattern Extraction
boosts it to 98.42%. Label Adjustment slightly lowers F1
to 92.63% but expands TTPs to 208, increasing precision
with finer-grained assignments. CVE Sample Augmentation
improves generalization, raising F1 to 97.94% and doubling
CVE coverage to 210,357 without changing the TTP set.

Figure 16 shows fine-tuning dynamics for NEXUS steps
using RoBERTa-Large. For the Ground Truth Building (Fig-
ure 16a–16b), validation loss rises and metrics plateau early
due to limited data quality. For Attack Pattern Extraction
(Figure 16c–16d), pattern extraction enables faster conver-
gence and better validation. Label Adjustment (Figure 16e–
16f) shows smoother convergence but slower gains due to
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Step
(or Sub-steps)

Micro Average Macro Average CVE
Coverage

TTP
CoveragePrecision Recall F1-score Precision Recall F1-score

Ground Truth Building 80.33% 78.46% 79.38% 66.96% 62.48% 64.64% 92,632 141
Attack Pattern Extraction 98.47% 98.38% 98.42% 97.68% 97.24% 97.46% 92,632 141

Label Adjustment 92.70% 92.56% 92.63% 90.43% 89.37% 89.90% 92,632 208
CVE Sample Augmentation 97.85% 98.02% 97.94% 98.25% 98.65% 98.45% 210,357 208

TABLE VI: Impact of training-flow steps and sub-steps on mapping performance and coverage.

(a) Training and validation loss
for Ground Truth Building.

(b) Ground Truth Building: Preci-
sion, Recall, and F1-score.

(c) Training and validation loss
for Attack Pattern Extraction.

(d) Attack Pattern Extraction: Pre-
cision, Recall, and F1-score.

(e) Training and validation loss
for Label Adjustment.

(f) Label Adjustment: Precision,
Recall, and F1-score.

Fig. 16: Fine-tuning dynamics of RoBERTa-Large after apply-
ing different training-flow steps.

(a) Training and validation loss
over epochs.

(b) Validation Precision, Recall,
and F1-score over epochs.

(c) TP, FP, and FN rates for pos-
itive and negative classes.

(d) Precision, Recall and F1-score
for positive and negative classes.

Fig. 17: Training dynamics and evaluation metrics of the
SecureBERT-based APD model.

finer-grained assignments. CVE Sample Augmentation results
are shown in Figure 14a–14b.

1) Attack Pattern Extraction Analysis: To evaluate the
effectiveness of the Attack Pattern Detector (APD) model, we
fine-tune six LLM variants on a labeled dataset of 3,000 sam-

Model Precision Recall F1-score
BERT-Base-Uncased [41] 93.07% 93.07% 93.07%
BERT-Large-Uncased [56] 92.51% 92.27% 92.39%

RoBERTa-Base [42] 94.92% 94.67% 94.79%
RoBERTa-Large [57] 95.20% 95.20% 95.20%

SecureBERT [43] 95.99% 95.73% 95.86%
SecureBERT-Plus [58] 94.13% 94.13% 94.13%

TABLE VII: Performance comparison of different LLMs fine-
tuned for attack pattern detection.

(a) TTP coverage before and after
label adjustment.

(b) CVE coverage before and af-
ter augmentation.

Fig. 18: Enhanced CVE and TTP coverage achieved through
the application of the Dataset Enhancement step.

ples containing both positive and negative instances. Table VII
presents the results. All models achieve high performance,
with SecureBERT attaining the highest F1-score (95.86%). As
APD is a binary classifier, most models report similar precision
and recall, with slight differences arising when a model misses
a label. These results suggest that using cybersecurity-adapted
models improves attack pattern detection accuracy.

Figure 17 summarizes the SecureBERT-based APD model.
Figure 17a and 17b show decreasing losses and improving
validation metrics, confirming stable fine-tuning. Figure 17c
and 17d report high TPRs (95%+) and low FPR/FNR; despite
slightly lower negative precision, the model reliably detects
attack patterns. Additional epoch results are in Appendix B.

2) Label Adjustment Analysis: Figure 18a shows TTP cov-
erage improvements across MITRE ATT&CK Tactics after
Label Adjustment. Initially, 13 of 14 tactics were supported;
Exfiltration was later added via one relevant TTP. The to-
tal TTP count rose from 141 to 208, with some mapped
to multiple tactics, explaining higher bar totals. Green bars
highlight gains, especially in Execution, Defense Evasion,
and Command and Control (C&C). Further generative model
evaluation details are in Appendix C.
Cost Requirement. This process requires ↑6.9M GPT calls
(↑3.66B tokens; $607 total (in USD); ↑530 tokens per re-
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(a) Precision, Recall, and F1-
score before/after augmentation.

(b) FPR and FNR before and after
augmentation.

Fig. 19: Model performance across TTP support groups before
and after CVE sample augmentation.

quest; ↑ $8.8↓ 10↘5 per CVE–TTP pair) for 92,632 CVEs.
Comparable results can be achieved using open-weight models
(e.g., Llama-3.1-8B in Figure 26-28 in Appendix C).

3) CVE Sample Augmentation Analysis: To configure CVE
Sample Augmentation, we examine pre-augmentation perfor-
mance and find that TTPs with fewer than 20,000 CVEs gener-
ally have F1 below 90%. Thus, we set the eligibility threshold
T=20,000. For the repetition parameter, tests show little added
diversity beyond N>5, so we use N=5 to balance diversity
and redundancy. Figure 19 shows evaluation results before
and after augmentation using RoBERTa-Large. Figure 19a
shows consistent improvements in Precision, Recall, and F1-
score, especially for low-support TTPs. Figure 19b shows FPR
and FNR trends, highlighting that augmentation reduces FNR
while maintaining or slightly lowering FPR, improving model
robustness. Figure 18b shows improved CVE coverage across
ATT&CK Tactics after CVE Sample Augmentation. Green
bars indicate paraphrased samples for underrepresented TTPs.
Overlaps across tactics explain broader coverage gains. A total
of 117,725 augmented CVEs are added to 92,632 originals,
with higher per-tactic counts due to multiple pattern pairings.

E. Manual Validation of Our Dataset

We perform a small manual validation (using ten CVEs)
to support our ground-truth construction, summarized in Ta-
ble VIII. The parentheses under TP, FP, and FN show how
many additional true positives, false positives, and false neg-
atives were introduced by the adjustment step relative to the
initial dataset. For FN, we evaluate only the 67 additional TTPs
introduced during label adjustment, since these are directly
affected by the adjustment logic. The 141 linkage-derived
TTPs are not counted as false negatives unless the adjustment
step explicitly removed one of their valid assignments. Thus,
the FN values in parentheses reflect only cases where the ad-
justment step incorrectly dropped a linkage-derived technique.

Overall, the table shows that the fully automatic adjust-
ment procedure greatly improves TTP coverage—often adding
many correct mappings (e.g., CVE-2022-27805, CVE-2023-
28705)—while keeping false positives low. Despite requir-
ing no human input, it consistently yields reliable preci-
sion (69.23–94.74%), recall (63.64–100%), and F1-scores
(68.29–92.31%) across varied platforms and vulnerability
types. The operational impact of NEXUS false positives and
negatives is discussed in Section VI-A.

F. Impact of Model Adaptation on Mapping Accuracy
To evaluate Model Adaptation, we use two public datasets:

D4 (MITRE-curated APT reports [38]) and D5 (SMET
CVE–TTP mappings [3], [75]). As D4–D5 follow different
annotation strategies, NEXUS starts with weaker baseline per-
formance than on D1–D3. We tune two parameters: clustering
distance X and coverage threshold ω . Initial tests show X=0.0
yields overly fine clusters, while X=0.2 overgeneralizes; thus
X=0.1 is used. We evaluate ω=40 and ω=80 to test robustness
under different feedback-matching strictness.

Table IX summarizes D4 adaptation results, where each
review cycle corrects false positives and negatives using author
feedback. Across both ω thresholds, Precision improves from
28.57% to 46.81% (ω = 40) and 47.15% (ω = 80), while
F1-score rises from 43.17% to 62.41% and 63.41%. Recall
remains consistently high. These results show that NEXUS
effectively refines predictions through cumulative feedback,
even from a weaker baseline on narrative-heavy APT reports.

Table X shows D5 adaptation results, with 50 CVEs cor-
rected per cycle. Adaptation has a strong effect: Precision
increases from 12.83% to 53.80% (ω=40) and 47.63% (ω=80),
while F1 improves from 21.05% to 67.30% and 62.52%
after three cycles (recall also rises steadily). Table XI further
shows the benefit of using Llama-3.1-8B during adaptation: F1
improves from 46.87% to 63.41% on D4 and from 26.15%
to 67.30% on D5, confirming that model-based verification
reduces erroneous feedback and enhances adaptation accuracy.
Feedback Efficiency. As shown in Table IX (D4) and Table X
(D5), NEXUS stabilizes after only a few revision cycles. For
D4 (MITRE-APT reports, one report per cycle), the F1-score
increases from 43.17% to 56.15% in three cycles, then slows,
reaching 62.41% by cycle six. For D5 (SMET CVEs, 50
CVEs per cycle), the F1-score jumps from 21.05% to 67.30%
within three cycles. On average, D5 gains about 15% F1 per
cycle, while later D4 cycles (4–6) add only ↑ 2%, indicating
convergence after 2–3 cycles. Even in the worst case (APT-
style text in D4), stable accuracy emerges after 5–6 cycles,
requiring only moderate analyst effort (↔ 150 CVEs or ↗ six
APT reports) to reach consistent mapping quality.

V. INFERENCE COST

We evaluate the computational efficiency of NEXUS in
terms of fine-tuning time, prediction latency, memory usage,
and CPU utilization. As shown in Figure 20, NEXUS demon-
strates linear scalability, low resource usage, and practical
runtime for large-scale deployments. Figure 20a reports the
fine-tuning time of the TTP Classifier Model Building step
after preparing datasets from the Ground Truth Building,
Attack Pattern Extraction, Label Adjustment, and CVE Sample
Augmentation steps. Although CVE Sample Augmentation
generates the largest dataset, its fine-tuning time is shorter
due to a more powerful HPC cluster (128 CPU cores, 100GB
memory, one NVIDIA A100 20GB GPU). Other steps used
smaller or similar datasets with varying hardware, causing
minor timing differences. A batch size of 4 was used con-
sistently for uniformity, though a batch size of 16 could have
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ID Vulnerability Type Platform Precision Recall F1-score TP FP FN
CVE-2017-5219 Path Traversal, Arbitrary File Write, Unrestricted File Upload Web Server 84.78% 72.22% 78% 39 (+38) 7 (+7) 15 (0)
CVE-2018-15462 Denial of Service Network Security Appliance 72.73% 100% 84.21% 8 (+2) 3 (+3) 0 (0)
CVE-2022-0902 Path Traversal, Command Injection Industrial Control Devices 73.68% 63.64% 68.29% 28 (+27) 10 (+10) 16 (0)
CVE-2022-27805 Authentication Bypass, Remote Command Execution IoT Device 70.21% 98.51% 81.99% 66 (+43) 28 (+14) 1 (0)
CVE-2023-0213 Privilege Escalation via DLL Hijacking Windows desktop 94.74% 73.47% 82.76% 36 (+31) 2 (+2) 13 (0)
CVE-2023-28705 Cross-Site Scripting Web Application 94.12% 71.64% 81.36% 48 (+44) 3 (+3) 19 (0)
CVE-2023-28847 Authentication Weakness, Brute-force Protection Bypass Web Application 85.71% 100% 92.31% 6 (+5) 1 (0) 0 (0)
CVE-2024-1073 Cross-Site Scripting Web Application 69.23% 72.97% 71.05% 27 (+23) 12 (+12) 11 (+2)
CVE-2024-1343 Insecure File Permissions Windows desktop 71.01% 72.06% 71.53% 49 (+25) 20 (+7) 19 (+6)
CVE-2024-1603 Arbitrary file read, Information Disclosure Machine Learning Framework 69.70% 85.19% 76.67% 23 (+21) 10 (+8) 4 (0)

TABLE VIII: Manual validation results after the label adjustment step for ten diverse CVEs.

Review
Cycle

ε= 40 ε= 80
Precision Recall F1-score Precision Recall F1-score

0 28.57% 88.30% 43.17% 28.57% 88.30% 43.17%
1 34.54% 86.17% 49.32% 33.27% 88.83% 48.41%
2 37.61% 88.83% 52.85% 36.42% 92.02% 52.19%
3 40.82% 89.89% 56.15% 39.37% 92.55% 55.24%
4 41.22% 93.62% 57.24% 40.95% 96.28% 57.46%
5 43.80% 95.74% 60.10% 43.63% 98.40% 60.46%
6 46.81% 93.62% 62.41% 47.15% 96.81% 63.41%

TABLE IX: Model Adaptation across revision cycles on D4.

Review
Cycle

ε= 40 ε= 80
Precision Recall F1-score Precision Recall F1-score

0 12.83% 58.70% 21.05% 12.83% 58.70% 21.05%
1 28.48% 79.35% 41.91% 27.10% 77.17% 40.11%
2 38.42% 84.78% 52.88% 39.83% 85.87% 54.42%
3 53.80% 89.86% 67.30% 47.63% 90.94% 62.52%

TABLE X: Model Adaptation across revision cycles on D5.

(a) Fine-tuning time. (b) Prediction runtime.

(c) Memory usage. (d) CPU utilization.

Fig. 20: Computational efficiency of NEXUS across fine-tuning
and runtime workflows.

halved training time. Figures 20b, 20c, and 20d present the
runtime, memory usage, and CPU utilization during prediction.
Runtime grows nearly linearly with the number of CVEs
without multi-threading. Memory usage remains stable (2.85
GB) and CPU utilization stays low (<15%), confirming that
NEXUS operates efficiently at scale.

VI. CASE STUDIES

A. Case Study I: End-to-End Operational Scenario
To demonstrate NEXUS’s practicality, we conduct a separate

case study using a real attack scenario based on public disclo-
sures and PoC scripts [78], [79] for CVE-2020-5752 [80]. The
attacker exploits the default RPC port (127.0.0.1:6064)

Dataset Llama Deactivate Llama Active
Precision Recall F1-score Precision Recall F1-score

D4 (ε= 80) 37.04% 63.83% 46.87% 47.15% 96.81% 63.41%
D5 (ε= 40) 19.92% 38.04% 26.15% 53.80% 89.86% 67.30%

TABLE XI: Effect of Llama verification on Model Adaptation.

Deriving Detection Rules
With NEXUS

...
detection:
  selection:
    ParentCommandLine|contains: 
      - 'druva.exe'   - 'powershell.exe'   - 'cmd.exe'
    CommandLine|contains:
      - '127.0.0.1:6064'
      - 'Druva\\inSync4\\..\\..\\..\\Windows\\System32\\
         cmd.exe /c'
  condition: selection
tags:
  - attack.t1059   - attack.t1203
...

Without NEXUS
...
detection:
  selection:
    ParentCommandLine|contains: 
      - 'druva.exe'
    CommandLine|contains:
      - 'cmd.exe'
  condition: selection
tags: -
...

Problem
Inaccurate/incomplete rules and empty fields

Benefit
More accurate/complete rules and less empty fields

Fig. 21: Analyst’s detection rule before and after refinement
with NEXUS’s suggestions.

via crafted PowerShell commands, creating an unauthorized
administrator account.
Step 1: CVE Detection and Attack Execution. The attacker
logs in as a standard user and runs a PowerShell script adapted
from the public PoC [78], [79], which sends a malicious
request to the Druva inSync service. The request triggers a
path traversal, causing Druva to spawn a SYSTEM-level child
process that executes attacker-controlled commands (creating
an admin user via cmd.exe). All relevant process, command-
line, and PowerShell logs are sent to Elasticsearch for analysis.
Step 2: Deriving Detection Rules (Sigma Rule Generation).
Figure 21 compares two approaches for deriving detection
rules:
Without NEXUS: The analyst drafts a Sigma rule for the
observed chain (druva.exe → cmd.exe), but it lacks
context: it omits path-traversal indicators (e.g., ..\..\..
in arguments), misses alternate vectors such as PowerShell,
and excludes relevant ATT&CK tags (e.g., T1059 and T1203),
leaving detection and mitigation fields incomplete.
With NEXUS: The analyst uses NEXUS to retrieve relevant
TTPs (e.g., T1059 and T1203) and example Sigma rules [81]–
[83]. These outputs highlight the need to monitor path-
traversal patterns (..\..\..) in Druva arguments and to
include PowerShell as an additional vector. The refined Sigma
rule covers both cmd.exe and powershell.exe, matches
suspicious command-line content, and incorporates ATT&CK
tags plus relevant detection and mitigation references.
Step 3: Alert Generation and Investigation. Figure 22 shows
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Investigating Alerts

Alert Report (Excerpt)
----------------------
Rule: Suspicious druva.exe spawning cmd.exe

Findings:
- Process chain detected: druva.exe -> cmd.exe

- Related logs: [Generic process creation]

- No further context (possible false positive: could be
  admin tool usage)

- Attack Techniques: [Not specified]

- Detection: [Not specified]

- Mitigation: [Not specified]

Without NEXUS
Alert Report (Excerpt)
----------------------
Rule: Exploitation of Druva inSync CVE-2020-5752 via 
          path traversal
Findings:
- Process chain: 
     PowerShell à connects to 127.0.0.1:6064 à triggers
     Druva inSync path traversal to execute cmd.exe
- Related logs: (highlight key event)
   * "Execute a Remote Command" via PowerShell
   * cmd.exe run via path traversal: Druva\inSync4\..\..\..\
      Windows\System32\cmd.exe /c net user pwnd /add
   * cmd.exe adds localgroup Administrators
- Attack Techniques: T1059 (Command & Scripting Interpreter),
           T1203 (Exploitation for Client Execution), ...
- Detection: [Link to ATT&CK Detection DS0017, DS0015, ...]
- Mitigation: [Link to ATT&CK Mitigation M1038, M1048, ...]

With NEXUS

Problem
Inaccurate/incomplete incident report

Benefit
More accurate/complete incident report

Fig. 22: Alert report excerpts with/without NEXUS.

Metrics TTPs Sigma Rules Feedback
TP, FP, FN, TN (#) 36, 2, 4, 5 671, 61, 34, 49 OffPrec, Rec, F1 (%) 94.74, 90, 92.31 91.67, 95.18, 93.39
TP, FP, FN, TN (#) 37, 1, 3, 6 681, 48, 24, 62 V1Prec, Rec, F1 (%) 97.37, 92.50, 94.87 93.42, 96.60, 94.98
TP, FP, FN, TN (#) 39, 1, 1, 6 705, 48, 0, 62 V2Prec, Rec, F1 (%) 97.50, 97.50, 97.50 93.63, 100, 96.71
TP, FP, FN, TN (#) 40, 0, 0, 6 705, 0, 0, 62 V3Prec, Rec, F1 (%) 100, 100, 100 100, 100, 100

TABLE XII: Impact of NEXUS FP/FN on the accuracy of
Sigma rules and improvement by NEXUS feedback step.

Elastic SIEM applying the respective rules to the event logs
and generates alerts for investigation:
Without NEXUS: The analyst’s incident report is based on the
limited scope of the original rule, typically documenting only
that druva.exe spawned cmd.exe. Lacking TTP context,
detection, or mitigation fields, the report is incomplete and
more susceptible to false positives.
With NEXUS: The NEXUS-enriched rule generates a targeted
alert when PowerShell connects to 127.0.0.1:6064 and
triggers Druva to execute path traversal exploitation. The alert
automatically reports links to the relevant TTPs, highlights
the exact suspicious log events (including the crafted com-
mand and account creation), and references MITRE ATT&CK
detection and mitigation techniques. As a result, the analyst
receives a comprehensive, actionable incident report.
FP and FN Impact on Rule Authoring and Triage. To assess
the impact of an FP or FN from NEXUS, we reviewed 47
TTPs associated with CVE-2020-5752. An FP (T1548.002)
could trigger unnecessary User Account Control related Sigma
rules and extra triage, while an FN (T1562.003) could
omit detection for PowerShell or command-history tamper-
ing. Still, related defense-evasion TTPs predicted by NEXUS
(T1070.001) provide partial coverage. Even if analysts
deployed all Sigma rules for all predicted TTPs, the deviation
from ideal coverage remains small, indicating NEXUS’s strong
operational accuracy despite occasional errors. Table XII (first
row) shows that NEXUS performs well even without model
adaptation, achieving 95% precision and 90% recall. Exam-
ining the 815 generated Sigma rules, most are correct (671),
with few false alarms (61) or misses (34). Rule-level accuracy
remains high (91–95%), indicating that most automatically
generated rules are useful, with only minor redundancy/gaps.

T1505.003 (Web Shell)
T1102 (Web Service)
T1071.001 (Web Protocols)
T1518 (Software Discovery)
T1119 (Automated Collection)
T1195 (Supply Chain Compromise)
T1020 (Automated Exfiltration)
T1489 (Service Stop)
...

Available Linkages
Missing Linkages

Description: Vulnerability in the Oracle Concurrent
Processing product of Oracle E-Business Suite (component:
BI Publisher Integration). Supported versions that are
affected are 12.2.3-12.2.14. Easily exploitable vulnerability
allows unauthenticated attacker with network access via
HTTP to compromise Oracle Concurrent Processing.
Successful attacks of this vulnerability can result in takeover
of Oracle Concurrent Processing.  CVSS 3.1 Base Score 9.8
(Confidentiality, Integrity and Availability impacts). CVSS
Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H).

Discovery of Missing TTP LinkagesRemoval of Ambiguous Descriptions

Ambiguous Descriptions in CVE-2025-61882
- Existence of non-actionable (or non-AP) phrases. E.g.,
     - Vulnerability in the Oracle ... (component: BI Publisher Integration). à Irrelevant to TTPs
     - CVSS 3.1 Base Score ... à Irrelevant to TTPs
- Lack of vulnerability class / attack steps definition. E.g.,
     - "Easily exploitable vulnerability ..." à What kind of flaw? (RCE, improper authentication, etc.)
     - "... attacker with network access via HTTP ..." à How? (crafted HTTP request, payload, file, etc.)

Fig. 23: An example of NEXUS processing ambiguous CVE
descriptions and missing links.

Feedback Impact on Rule Authoring and Triage. Table XII
(last three rows) shows that three rounds (V1-V3) of feed-
back steadily improve both TTP prediction and Sigma-rule
accuracy. V1: Using the existing feedback database (Sec-
tion IV-F), NEXUS fixes one FP (T1059.007) and one FN
(T1012), raising TTP accuracy to 97.37/92.50/94.87% and
Sigma accuracy to 93.42/96.60/94.98%. V2: Adding feedback
from a similar CVE (CVE-2022-42470) corrects remaining
errors, reaching 97.50/97.50/97.50% at the TTP level and
93.63/100/96.71% for Sigma rules. V3: Providing the last
CVE-2020-5752–specific FP/FN cases enables exact-match
reuse and removes all remaining errors, achieving 100%
precision, recall, and F1 for both TTPs and Sigma rules.
Overall, NEXUS requires only minimal, targeted feedback to
reach high-quality predictions for a given CVE.

B. Case Study II: Ambiguous Descriptions and Missing Links

This case study (Figure 23) shows how NEXUS handles am-
biguous CVE descriptions and restores important TTPs [23]–
[26] missing from default CVE-to-TTP links [45]–[48]. The
chosen CVE, CVE-2025-61882 (Base Score 9.8 / Critical),
contains vague, non-actionable text (“Vulnerability in the Or-
acle . . . ”, “CVSS 3.1 Base Score . . . ”) and no clear indication
of flaw type or exploitation steps (“Easily exploitable . . . ”,
“attacker with network access via HTTP . . . ”). To address
this ambiguity, NEXUS applies the attack-pattern extraction
step from Section III-C, discarding irrelevant phrases (red
in Figure 23) and retaining only clauses with actual attack
semantics (green).

Next, to predict and refine TTPs, NEXUS applies the
steps in Section III-F to the green-highlighted clauses. From
these, it infers network-centric TTPs such as T1102 (Web
Service) and T1071.001 (Web Protocols), along with plau-
sible follow-on behaviors like T1518 (Software Discov-
ery), T1020 (Automated Exfiltration), and T1489 (Service
Stop), reflecting potential post-compromise actions implied
in the text. We then compare these predictions with de-
fault CVE–CWE–CAPEC–TTP mappings: green entries (e.g.,
T1505.003) mark existing public linkages, while red entries
show additional TTPs discovered by NEXUS.
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Report Excerpt: APT42 TTP Linkages

T1547 (Boot or Logon Auto.)
T1112 (Modify Registry)D

NEXUS MITRE MANDIANT
& Others

T1589 (Gather Victim Iden.)
T1119 (Automated Collection)C

MANDIANT
& OthersNEXUS MITRE

T1105 (Ingress Tool Transfer)
T1518 (Software Discovery)B

MANDIANT
& OthersNEXUS MITRE

T1070 (Indicator Removal)
T1056 (Input Capture)A

NEXUS MITRE MANDIANT
& Others

Summary of Findings

A{... Clearing Google Chrome browser history after [T1070]
... APT42 uses custom malware capable of logging keystrokes

[T1056] and} ... B{include shell command execution, ..., file
transfer [T1105], ... leverages Windows Management

Instrumentation (WMI) to query anti-virus products [T1518]} ...
C{obtaining sensitive information on targets, including movement,

contacts and personal information [T1589] ... APT42 also uses
malware capable of taking screenshots and collecting system and
network information [T1119]} ... D{To maintain their presence in a

victim’s environment, APT42 relies on custom malware using
scheduled tasks or Windows registry modifications for persistence

[T1547, T1112]} ...

According to MITRE Only:
   TPs: 20     Precision:  16.53%
   FPs: 101   Recall:       83.33%
   FNs: 4       F1-score:   27.59%

Total Length: ~81 Pages

After Manual Validation:
   TPs: 75     Precision:  61.98%
   FPs: 46     Recall:       94.94%
   FNs: 4       F1-score: ~75%

Fig. 24: An example of NEXUS processing a non-CVE input.

C. Case Study III: Non-CVE Inputs

This case study (Figure 24) demonstrates TTP extraction
from non-CVE sources (APT42 threat reports [84]–[86])
showing how NEXUS handles long narrative intelligence rather
than short CVE texts. The yellow box summarizes represen-
tative excerpts (four parts), while the right panel compares
NEXUS-derived TTPs with the MITRE ATT&CK ground
truth [87] and vendor reports [84]–[86]. This is necessary
because MITRE’s APT42 mappings are derived directly from
these reports, which together form the most complete ground
truth.

Boxes A–D summarize the comparison: (A) TTPs found
by all sources; (B) TTPs predicted by NEXUS and present in
Mandiant & Others but missing from MITRE (initial FPs);
(C) TTPs detected only by NEXUS (also initial FPs); and (D)
TTPs in MITRE and Mandiant & Others but not predicted by
NEXUS (FNs). These discrepancies stem from MITRE provid-
ing only finalized TTP assignments, vendor reports offering
richer descriptions, and NEXUS extracting TTPs directly from
text, meaning each source can miss items others capture.

To refine the evaluation, we manually review all initial
FPs and FNs in B–D by re-checking the cited threat reports.
Cases where MITRE or Mandiant & Others do not tag a
TTP but describe the same behavior are reclassified as true
positives, while four TTPs present in both sources remain
genuine FNs of NEXUS. In total, NEXUS recover 51 TTPs
missing from MITRE, many initially marked as FPs. After
adjustment, NEXUS reaches around 62% precision, 95% recall,
and 75% F1, matching the APT-report results in Table IV.
NEXUS predicts across all 208 supported TTPs, ignoring seven
unsupported ones in MITRE. Enabling model adaptation (Sec-
tion IV-F) (without APT42-specific feedback) yields modest
gains (precision +1.08%, recall +4.17%, F1 +1.74%). Overall,
NEXUS effectively processes non-CVE threat reports, though
using multiple reference sources improves completeness.

D. Possible Uses

1. Sufficiently Good Uses: NEXUS outputs can be integrated
into threat-intelligence platforms (e.g., OpenCTI), ATT&CK
coverage tools (e.g., MITRE Navigator), and vulnerability-
management systems (e.g., Qualys VMDR). These use cases
benefit from its stable, scalable CVE–TTP mappings (more
details in Table XIV in Appendix D).

2. Uses Requiring Analyst Verification/Adjustment: The appli-
cations in security design (e.g., rule derivation), threat-report
analysis (e.g., APT reports), and case enrichment (e.g., SOC
triage) require analyst supervision before applying NEXUS
(more details in Table XV in Appendix D).
3. Less Useful Uses: The security operation level applications,
such as runtime intrusion detection and automated log-to-
TTP correlation, requires more careful review before applying
NEXUS, as it requires dynamic telemetry analysis rather
than static textual inference (more details in Table XVI in
Appendix D).

In contrast to NEXUS applications, the existing
CVE–CWE–CAPEC–TTP mapping (covering 141 TTPs) is
useful only when it already captures the relevant behavior and
the CVE is not exploitable via any other TTPs. This applies
to cases with a few high-impact vulnerabilities, limited
TTP-coverage needs, clear CERT advisory links, or when
expert judgment is more reliable than automated inference.

VII. DISCUSSION AND LIMITATIONS

Model Selection and Pipeline Flexibility. Preliminary ex-
periments showed that larger models (e.g., GPT-4o, Llama-
3.1-70B) offered negligible performance gains for CVE-to-
TTP mapping and augmentation, while incurring signifi-
cantly higher costs. We thus adopt GPT-4o-mini and Llama-
3.1-8B for efficiency. The NEXUS pipeline remains model-
agnostic—substitutions with future LLMs require no archi-
tectural changes. Our ablation study (Section IV-C) further
confirms each step’s contribution to system performance and
coverage.
Analyst-Aided CVE Exploitation Detection. While NEXUS
effectively surfaces relevant TTPs and provides Sigma rule
exemplars, our Case Study 1 (Sec.. VI-A) reveals key lim-
itations. It does not automate CVE exploitation detection
but acts as an analyst aid, offering actionable insights and
contextual guidance. Detecting complex exploits still demands
human expertise to interpret system-specific behaviors, adapt
rules, and ensure accuracy. Thus, NEXUS enhances analyst
workflows, but detection efficacy ultimately depends on expert
refinement.
Hierarchical and Multi-View Modeling. We adopt hier-
archical and multi-view learning to capture the structured,
interdependent nature of TTPs and attack patterns, which
flat classification overlooks. By modeling label dependencies
through graphs and hierarchical propagation, our approach
aligns with analyst workflows and enables more accurate,
context-aware predictions.
Hierarchical vs. Flat Classification. We compared hierar-
chical modeling with flat classification, which treats TTPs as
independent labels. For complex CVEs with interdependent
TTPs, the flat model shows higher false positives and misses
contextually linked TTPs (Section IV-C). Hierarchical mod-
eling enables contextual label propagation and verification,
reducing errors and annotation noise (Section IV-D and IV-F),
and better reflects real-world analyst decision-making.
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Generalizing beyond Our Dataset. We evaluate NEXUS
on five datasets, including two public benchmarks—MITRE-
APT [38] and SMET [3] (Section IV-B and IV-C). Our evalua-
tion accounts for real-world vulnerability and attack diversity.
As shown in Figure 18 and Tab. VI, NEXUS improves TTP
and CVE coverage across all ATT&CK tactics and consistently
boosts mapping accuracy, demonstrating strong generalization
beyond our own dataset.
High-Quality CVE-TTP Labels. We evaluated the LLM-
based annotator+verifier (GPT-4o-mini and Llama-3.1-8B) on
two public benchmarks [3], [38], showing high robustness and
strong agreement with ground-truth labels (Appendix C). On
a 15K-sample subset of our dataset, the pipeline achieved
100% precision and 93.68% recall, closely matching LLM
judgment. Additional noise injection and candidate verification
tests further validate the accuracy and reliability of our label
assignment strategy.

VIII. RELATED WORK

TTP Recognition from Structured Data. Recent work
identifies TTPs using structured system-level data such as
system calls and provenance graphs, but these approaches
do not apply to CVE-to-TTP mapping, which depends only
on unstructured text. TREC [88] uses few-shot learning on
provenance graphs to detect APT tactics and techniques, and
HOLMES [89] correlates audit-log flows to recognize TTPs
in real time; however, both require detailed runtime activity
that CVE descriptions do not provide.
Supervised CVE-to-TTP Solutions. These studies use su-
pervised models to map CVEs to ATT&CK techniques. Prior
works [5]–[8] train classifiers on small annotated datasets, but
their performance is constrained by static labels that do not
adapt to evolving threats. Ampel et al. [7] rely on traditional
models (random forests, SVMs), which struggle to capture the
complex semantics needed for CVE-to-TTP mapping. Haddad
et al. [90] use transformers for CWE prediction, but the
method does not scale to the broader ATT&CK framework.
Unsupervised CVE-to-TTP Solutions. The unsupervised
studies that map cybersecurity reports, including CVEs, to
TTPs without annotated datasets. Some solutions [9], [11],
[12] infer TTPs from attack patterns or entities, but CVE
descriptions often lack detail, lowering accuracy. AttacKG [11]
uses character similarity and entity recognition but struggles
semantically. Extractor [21] builds attack graphs without link-
ing to TTPs. SMET [3] fine-tunes SBERT [29] but faces
extraction errors and lacks CVE-to-TTP priors. IntelEX [28]
uses generative models for TTP extraction with moderate
results (72% F1) on limited datasets, but misses emerging or
nuanced threats. HMCAT [91] leverages data augmentation
and hierarchical classification but relies heavily on IOCs.

IX. CONCLUSION

This work introduced a scalable framework for automated
CVE-to-TTP mapping that addresses key challenges including
dataset scarcity, data imbalance, incomplete TTP coverage,

unstructured input, and lack of adaptivity. By combining large-
scale dataset construction, augmentation via paraphrasing and
TTP expansion, and adaptive refinement through LLMs. While
effective, future work must address limitations in model fi-
delity, incomplete CVE context, scalable feedback integration,
and adaptation to emerging TTPs.
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APPENDIX A
ALGORITHMS

The corresponding algorithms to the Data Preprocessing,
Label Adjustment, and Model Adaptation sub-steps are pre-
sented in Algorithms 1, 2, and 3, respectively.

APPENDIX B
APD MODEL WITH ADDITIONAL EPOCHS

To validate APD model robustness, we fine-tune Secure-
BERT [43] for 15 epochs. As shown in Table XIII and
Figure 25, training loss decreases, but validation loss rises
after 5 epochs, indicating overfitting. Precision, Recall, and

Algorithm 1: Data Preprocessing Sub-step
Input: cve text, srl model
Output: sub sentences dic list

1 tokenized_sentences ↑ Clean and tokenize cve_text
2 foreach sentence in tokenized_sentences do
3 sentence_srl_tags ↑ Get SRL tags;
4 if SRL tags exist then
5 Extract verbs_list and words;
6 foreach verb in verbs_list do
7 Collect non-empty tag indexes;
8 if tags contain ARG1-ARG5 then
9 Formulate sub_sentence and append to list;

10 if sub_sentence_list not empty then
11 Create directed graph;
12 foreach sub-sentence pair (A, B) do
13 if A’s verbs ⇑ B’s verbs and B has more verbs then
14 A ≃ child of B;

15 else if B’s verbs ⇑ A’s verbs and A has more verbs then
16 A ≃ parent of B;

17 Append to sub_sentences_dic_list;

18 return sub_sentences_dic_list

Algorithm 2: Label Adjustment Sub-step
Input: CVEs with attack patterns and missing TTPs ZCV Ei
Output: Updated TTP labels per attack pattern

1 foreach CVE in dataset do
2 Get description, patterns, and ZCV Ei ;
3 foreach pattern in CVE do
4 foreach TTP in ZCV Ei do
5 Ask GPT-4o-mini if TTP is relevant;
6 if “Yes” then
7 Assign TTP to pattern;

8 Label verification with dependency graph;
9 foreach node in graph do

10 foreach direct child do
11 if child TTPs ⇓⇔ parent TTPs then
12 Remove extra TTPs from child;

13 return Updated labels;

Algorithm 3: Model Adaptation Sub-step
Input: AP, Pred(AP), Feedback DB, Cluster Dictionary, LLM
Output: AdaptedPred(AP)

1 exact sig ↑ SHA-256(AP + <CONTEXT> + CVE);
2 behav sig ↑ ClusterIDs(Pred(AP), Cluster Dictionary);
3 Retrieve exact and behavioral feedback from DB using exact sig and

behav sig (with coverage S and threshold ε );
4 Apply exact feedback and tentatively apply behavioral feedback to Pred(AP);
5 if LLM enabled then
6 foreach TTP in behavioral feedback do
7 Prompt LLM with (AP, TTP description);
8 if (TP or FN and LLM = ‘‘Yes’’) or (FP and LLM = ‘‘No’’)

then
9 Update Pred(AP);

10 return AdaptedPred(AP)

Model Epochs Precision Recall F1-score
SecureBERT [43] 5 95.99% 95.73% 95.86%
SecureBERT [43] 15 93.60% 93.60% 93.60%

TABLE XIII: Impact of extending SecureBERT [43] fine-
tuning from 5 to 15 epochs on APD model performance.

F1-score drop, confirming that 5 epochs are sufficient for this
dataset.
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(a) Training and validation loss
over epochs.

(b) Validation Precision, Recall,
and F1-score over epochs.

(c) TPR, FPR and FNR for posi-
tive and negative classes.

(d) Precision, Recall and F1-score
for positive and negative classes.

Fig. 25: Training and evaluation dynamics of the SecureBERT-
based APD model over 15 epochs.

(a) Performance on the 200 aggre-
gated ATT&CK dataset [2].

(b) Performance on the D5
dataset.

Fig. 26: Labeling performance of LLMs [35], [36] and Lad-
der [9].

APPENDIX C
ASSESSMENT OF LABEL ADJUSTMENT WITH LLMS

To evaluate generative models for refining CVE-to-TTP
mappings, we experiment on two datasets: (1) 200 aggregated
ATT&CK procedures [2] and (2) the D5 dataset [3], [75], a
human-annotated CVE-to-TTP set. This analysis shows how
models like GPT-4o-mini accurately verify and assign TTPs
under our prompting framework. Figure 26 presents initial re-
sults by applying generative models [35], [36] and Ladder [9]
to two datasets. Each model annotates samples by comparing
them against the full candidate TTP set. Generative models
like GPT-4o-mini and Llama-3.1-8B achieve high recall but
lower precision, reflecting overprediction with unrestricted
TTP comparisons. In contrast, Ladder shows lower recall and
precision overall, consistent with its non-fine-tuned BERT-
based approach.

To further evaluate our annotation policy, we conduct an
experiment where generative models validate ground-truth
labels under a controlled setup. Instead of comparing against
all TTPs, models verify only existing labels, with controlled
noise (0–10) introduced by randomly removing correct TTPs
and injecting wrong ones. Models must validate both original
and removed labels. This setup shows that focusing on specific
candidate sets improves the balance between precision and
recall, supporting our strategy for missed TTP recovery.

Figure 27 shows that on 200 aggregated ATT&CK proce-
dures, GPT-4o-mini and Llama-3.1-8B achieve higher preci-

(a) Precision across
noise levels.

(b) Recall across
noise levels.

(c) F1-score across
noise levels.

Fig. 27: Precision, Recall, and F1-score of GPT-4o-mini,
Llama-3.1-8B, and Ladder on the 200 aggregated ATT&CK
procedures under increasing noise levels.

(a) Precision across
noise levels.

(b) Recall across
noise levels.

(c) F1-score across
noise levels.

Fig. 28: Precision, Recall, and F1-score of GPT-4o-mini,
Llama-3.1-8B, and Ladder on D5 across noise levels.

Use Cases Tools Why NEXUS Fits?
Automated enrichment
of threat-intelligence

MISP, OpenCTI,
STIX/TAXII feeds

Allows automated enrichment of CVE records in
threat-intelligence platforms with related TTPs.

Coverage visualization
and reporting

ATT&CK Navigator,
DeTT&CT

Enables accurate visualization of an organization’s
exposure to specific threats based on discovered TTPs.

Vuln. management
and exposure analytics

Qualys VMDR, Tenable
Nessus, Rapid7 InsightVM

Enables reliable estimation of attacker actions and
improved vulnerability prioritization.

TABLE XIV: NEXUS in sufficiently good use cases.

Use Cases Tools Why Analyst Oversight Helps?
Detection-rule deri-

vation and SIEM corr.
SigmaHQ, Splunk ESCU,

Elastic Security
Analysts should verify and adjust rule boundaries

and parameters before operational deployment.
Threat-campaign and
APT report analysis

ATT&CK Workbench,
Mandiant Advantage

NEXUS may lose accuracy on long APT reports,
that are contextually different than CVEs.

SOC triage and inci-
dent enrichment

TheHive, Cortex, Palo Alto
XSOAR, Microsoft Sentinel

Analyst validation ensures the inferred behaviors
align with real log evidence and system conditions.

TABLE XV: NEXUS in use cases that requires analyst over-
sight and caution.

Use Cases Tools Why Less Useful?
Runtime exploit or
intrusion detection

Suricata, Snort, Zeek,
Sysmon, OSQuery

NEXUS cannot correlate runtime events or temporal
indicators needed for exploit or intrusion detection.

Automated log-to-
TTP correlation TREC [88] NEXUS cannot analyze log-based or

provenance-based correlation.

Zero-day ExploitDB (PoCs without
vulnerability descriptions) NEXUS depends on descriptive text to infer TTPs.

TABLE XVI: NEXUS in less useful use cases.

sion and F1-scores at 0 noise, with stable recall highlighting
our annotation strategy’s precision boost. As noise increases,
LLMs better correct false positives and recover missing labels,
while Ladder underperforms. Figure 28 shows similar trends
on D5, confirming their robustness to corrupted ground truth.

To validate newly assigned and existing TTPs, we run
an experiment on a 15K-sample subset of D1. GPT-4o-mini
verifies only ground-truth TTPs without comparing unrelated
candidates. Accordingly, it achieves 100% precision, 93.68%
recall, and a 96.74% F1-score, confirming its ability to pre-
serve original mappings and minimize false negatives during
label adjustment.

APPENDIX D
LISTS OF NEXUS POSSIBLE USES

Tables XIV-XVI summarize the possible applications of
NEXUS discussed in Section VI-D.
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