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Abstract—Link Following (LF) attacks in the Windows file sys-
tem allow adversaries to stealthily redirect benign file operations
to protected files by abusing crafted combinations of symbolic
links (link chains), thereby enabling arbitrary manipulation of
protected files. Such attacks typically manifest as either single-
step attacks or multi-step attacks, depending on the sequencing
of the constructed link chain. Existing countermeasures against
LF attacks either rely on heavyweight modeling or suffer from
poor compatibility and limited applicability, and none provide
comprehensive protection across different types of LF attacks.

In this paper, we present LinkGuard, a lightweight state-
aware runtime guard against LF attacks targeting Windows
systems. The novelty of LinkGuard lies in its two-stage design:
The first stage aims to improve defense efficiency by performing
dynamic subject filtering, which monitors only file operations
and associated subjects involved in the creation and following of
link chains; The second stage applies FSM-based rule matching
to precisely defend LF attacks, ensuring effective and accurate
defense. We evaluate LinkGuard’s prototype across five represen-
tative Windows systems to validate its compatibility. On a dataset
of 70 real-world vulnerabilities, LinkGuard successfully mitigates
all single-step attacks and 95.45% of multi-step attacks, with zero
false positives on benign operations. On average, LinkGuard only
incurs 1% overhead in microbenchmarks and 3.4% overhead in
real-world application workloads, while adding a negligible 5 ms
latency on benign file operations.

I. INTRODUCTION

File systems constitute an indispensable pillar of contempo-
rary operating systems. Unfortunately, the prevailing lack of
system-wide sanity checks on symbolic links [1] has fostered a
fertile ground for Link Following attacks (LF attacks). In such
attacks, adversaries abuse crafted constructed combinations of
symbolic links (referred to in this paper as link chains) to
redirect otherwise benign file operations in programs toward
protected system files, thereby achieving local privilege esca-
lation (LPE) [2], sensitive information disclosure [3], and per-
manent denial of service (DoS) [4]. Additionally, LF attacks
can be categorized into single-step and multi-step attacks,
depending on the sequencing of the constructed link chain.

The threat is especially acute in the Windows ecosystem:
given its market share of more than 70% of all end-user
terminals [5], virtually every Windows-based application that
relies on the file system is susceptible to LF attacks. As of
August 2025, over 1,000 vulnerabilities associated with LF
attacks on Windows have been assigned CVE identifiers [6],
underscoring the pervasiveness and the severity of this attack
surface in Windows file systems.

The few existing studies are predominantly Linux-centric
and lack practical applicability to Windows. They either fail
to achieve complete protection, rely on heavyweight modeling,
or depend on Linux-specific system assumptions that hinder
portability. For instance, Chari et al. [7] proposed a path-
safety predicate enforced on individual file operations, which
cannot capture inter-operation context and thus fails against
multi-step LF attacks. Seaborn [8] introduced a heavyweight
sandbox mechanism that incurs substantial overhead and relies
on deep Linux kernel integration, making it impractical to port.
Currently, there is no practical and comprehensive defense
against LF attacks on Windows systems.

To address this gap, we are highly motivated to design an
effective and efficient defense approach against LF attacks
in the Windows file system. We begin with an empirical
study of existing countermeasures in practice, which reveals
that prior defenses either require substantial manual modeling
effort or lack compatibility across Windows versions. More
critically, none can simultaneously defend against both single-
step and multi-step attacks. Our study further yields two key
observations that guide the design of our approach. First, in
all observed LF attacks, the link chain is created and later
followed by different subjects (i.e., users). Second, despite the
complexity of involved operations, LF attacks consistently fol-
low traceable file-state transitions with recognizable patterns.

Based on the empirical study, we present LinkGuard, a
lightweight state-aware runtime guard against LF attacks in the
Windows file system. LinkGuard is designed with two primary
goals: (G1) Practicality, ensuring minimal performance over-
head for both the system and running applications; and (G2)
Effectiveness and Extensibility, meaning it can robustly defend
against both single-step and multi-step attacks, while remain-
ing adaptable to previously unknown LF attacks. Achieving
these goals poses two major challenges:
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• Challenge 1: How to efficiently filter the vast number of
file operations unrelated to LF attacks? Monitoring all
system-wide file operations incurs an obviously prohibitive
overhead. However, due to the lack of systematic insights
in prior work, we still lack an efficient method to filter
out irrelevant file operations and retain only those malicious
operations introduced by LF attacks.

• Challenge 2: How to effectively mitigate both types of
LF attacks in real time? The diverse and complex file
operation sequences in LF attacks render per-case model-
ing impractical. Consequently, we lack a battle-tested and
reusable strategy that can effectively mitigate LF attacks in
real time without relying on extensive manual modeling.
At a high level, two insights derived from observations

directly inform the design of LinkGuard. First, since the file
operations involved in creation and following of link chains
in LF attacks are initiated by different subjects (e.g., attackers
construct the link chain, while victim programs subsequently
perform file operations that follow it), LinkGuard narrows
its monitoring scope to only those operations related to link
chains, thus avoiding costly system-wide monitoring. Second,
despite the complexity of file operation sequences during LF
attacks, there exists a traceable minimal subset of operations
that constitutes the core of such attacks. LinkGuard encodes
these state transition rules of such operations into parallel
finite-state machines (FSMs), enabling efficient detection and
mitigation of both single-step and multi-step attacks.

Concretely, LinkGuard operates in two coordinated stages
to achieve real-time defense. In the first stage (i.e., dynamic
subject filtering), LinkGuard monitors I/O Request Packets
(IRPs) [9], which are data structures used by Windows to
facilitate communication between user-mode applications and
kernel-mode drivers, focusing on those related to link chain
creation and following. For each such request, it identifies
the associated subject. If the subjects involved in link chain
creation and following differ, LinkGuard records all cross-
subject file operations along with their subjects. These records
are then forwarded to the second stage for further analysis. In
the second stage (i.e., real-time attack detection), the collected
operations are dynamically transformed into a Cross-Subject
Chain Graph (CSCG), a directed graph that captures the
dependencies between involved subjects, their file operations,
and the evolving file states during the creation and following
of the link chain, with edges reflecting the temporal order
of operations. Based on this, LinkGuard performs state-aware
detection by parallel matching each path in CSCG against a
set of predefined FSMs. Specifically, if the FSM transitions
into an attackable state along any path, the corresponding IRP
request is immediately terminated to prevent the LF attack.

For compatibility considerations, we implemented a proto-
type of LinkGuard based on MiniFilter [10]. To further assess
portability and adaptability, we deployed the prototype on five
representative Windows versions using a quad-core Intel i7-
1165G7 CPU and 16 GB RAM. Based on a systematically
curated dataset from our empirical study, we constructed an
evaluation set that contains 70 real-world vulnerabilities in 55

distinct programs. Our evaluation results show that LinkGuard
successfully defends against all of single-step attacks (26/26)
and 95.45% (42/44) of multi-step attacks, with zero false
positives on benign file operations. In terms of performance,
LinkGuard introduces an average of 1% overhead in mi-
crobenchmarks and 3.4% in real-world application workloads,
while adding a negligible 5 ms latency on benign file opera-
tions, which is negligible in practice.

The contributions of this paper are summarized as follows:
• We conduct the first systematic empirical study of existing

countermeasures against LF attacks in practice, and for the
first time, categorize and reveal six classes of defenses. Our
analysis provides their fundamental weaknesses that prevent
them from effectively mitigating. In addition, we provide
key observations and novel insights that lay the foundation
for designing a more principled and practical defense.

• Building on these insights, we propose LinkGuard, a
lightweight, state-aware runtime guard against LF attacks
in the Windows file system. To the best of our knowledge,
LinkGuard is the first approach that achieves effective
protection against LF attacks in Windows while maintaining
compatibility and deployability.

• We evaluate the prototype of LinkGuard on five representa-
tive Windows versions. On a dataset of 70 real-world vul-
nerabilities, LinkGuard mitigates all single-step attacks and
95.45% of multi-step attacks, with zero false positives on
benign file operations. In terms of performance, it introduces
an average of 1% overhead in microbenchmarks and 3.4%
overhead in real-world application workloads, while adding
only 5 ms latency on benign file operations.

II. BACKGROUND

A. Symbolic Links and File Opportunistic Locks.

Symbolic Links. To facilitate flexible file access and compat-
ibility, Windows provides several types of links, among which
three forms of symbolic links are commonly used in practice.
1) NTFS Symbolic Links [1] are similar to those in Unix-like
systems and can point to arbitrary files or directories using
absolute or relative paths. 2) NTFS Junctions [11] operate
similarly to symbolic links but are restricted to directories.
In other words, a junction is a directory-only mount point
that supports linking directories located on different local vol-
umes. In contrast to symbolic links, junctions can be created
without administrator privileges, provided that the user has
write permissions to the target directory. 3) Object Symbolic
Links (ObjSymlinks) [12] are a distinct type of symbolic
link that operates on Windows object namespaces [13]. As
a result, their scope is confined to the specific object directory
in which they reside. For example, a link under the \RPC
Control namespace is only effective when accessed through
this particular namespace. Some namespaces are writable [14],
enabling ObjSymlink creation by unprivileged users.

File Opportunistic Locks. Opportunistic locks [15] are a
synchronization mechanism in Windows that allow a process
to temporarily control access to a file in order to prevent
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Fig. 1: Two Types of Link Following Attacks

concurrent modifications by other users or processes. When a
process acquires an opportunistic lock with write permissions,
subsequent conflicting operations from other processes are
blocked until the lock is released.

B. Link Following Attacks

Link Following attacks (LF attacks) can be categorized into
single-step and multi-step types. At the core of these types lies
the Link Chain, a critical attack vector that combines discrete
junctions with ObjSymlinks. It achieves the same level of
symbolic redirection as NTFS symbolic links, providing a fully
functional and unrestricted symbolic link capability within the
Windows file system. In Figure 1, assume that the writable file
(vulnerable) is C:\Temp\writable.txt, and the protected
file is C:\protected.txt.

The construction sequence of the link chain determines
the type of LF attacks. In a single-step attack, as illus-
trated in Figure 1a, which typically involves a direct redi-
rection within a single file operation (e.g., directly deleting
a file), ① the attacker first constructs the link chain, which
consists of a junction from C:\Temp to \RPC Control,
and an ObjSymlink from \RPC Control\writable.txt
to C:\protected.txt. ② When the program per-
forms file operations on the writable file, it first tra-
verses the junction, which redirects operations to the \RPC
Control namespace. Then follows the ObjSymlink created at
\RPC Control\writable.txt, ultimately resolving to

C:\protected.txt. As a result, any file operations on the
writable file are redirected to the protected file.

Multi-step attacks are often used in scenarios where winning
a race condition is essential, such as in TOCTOU-based [16]
LF attacks, to maximize the adversary’s chance of success.
As illustrated in Figure 1b, ① the attacker first places an
opportunistic lock on the writable file; ② any file operations
on the locked file are suspended; ③ the attacker then creates
the link chain pointing to the protected file; ④ once the
link chain is constructed, the attacker releases the lock; and
⑤ the previously blocked operation resumes and targets the
protected file. Overall, multi-step attacks involve complex file
manipulations. Moreover, the file operations of the attacker
and the program are non-orthogonal; in other words, their
operations are interleaved and coupled, which substantially
increases the difficulty of detection.

C. Threat Model and Scope

In our threat model, we assume that the attacker has
obtained the identity of a standard user account [17] within a
multi-user Windows system, with regular user privileges that
are strictly constrained and limited file operation capabilities.
Attackers can achieve such security consequences through
LF attacks: (1) Denial of Service (DoS) [4], for instance,
by deleting critical protected configuration files; (2) Privilege
Escalation [2], where vulnerable program, either those owned
by other users or those running with elevated privileges, are
abused via LF attacks to access, modify, or overwrite unau-
thorized files, enabling both horizontal and vertical privilege
gains; and (3) Sensitive Information Disclosure, where attack-
ers perform LF attacks to redirect benign file manipulations
from programs to sensitive files (e.g., password stores or user
data), causing unintended leakage of confidential information.

This work focuses on detecting and defending against both
known types of LF attacks, namely the single-step and multi-
step attacks. Unlike prior work [18] [19] [20] [21] on such
vulnerability detection, which focuses solely on privileged
programs, our approach targets all running programs in the
system. This broader scope is essential, as non-privileged
programs can also be victims of LF attacks, particularly in
horizontal privilege escalation scenarios. However, achieving
comprehensive coverage introduces additional challenges to
the performance and efficiency of LinkGuard. To address this,
LinkGuard is automatically deployed with elevated privileges
during system initialization, ensuring reliable and consistent
monitoring across the entire system.

D. Prior Works

To the best of our knowledge, no prior work has systemati-
cally examined existing countermeasures against LF attacks
in the Windows file system, let alone developed efficient
mechanisms for defense. In this section, we first review prior
defense mechanisms, all of which are designed for Linux
systems, and then analyze their fundamental limitations in
mitigating LF attacks, which highlight why directly adapting
such approaches to the Windows file system is ineffective.
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Prior related works. In the Linux kernel, the
protected_symlinks flag [22] enforces identity-
based access control between the creator and accessor of
a symbolic link to prevent unauthorized traversal. Among
existing defenses against LF attacks, Basu et al. [23]
proposed recording whether a resource is system-protected or
application-protected, as a basis for implementing a defense
strategy that integrates security enforcement directly within
the kernel by leveraging its path resolution subsystem to
prevent LF attacks. Building on a different perspective, Chari
et al. [7] chose not to focus on access checks but instead
applied a “path safety” check to each path element to prevent
programs from following unsafe paths. Alternatively, Seaborn
et al. [8] proposed a sandbox system that intercepts file
operations via a fixed-privilege user-level process, enforcing
confinement by replacing the C library [24].
Drawbacks of prior works. First, all existing defense efforts
related to LF attacks are designed specifically for Linux-
based systems. Due to fundamental differences between the
two file systems [25], particularly Windows’s descriptor-based
access control model [26] and its more complex file operation
interfaces, these approaches are inherently non-transferable.
For example, porting the protected_symlinks mech-
anism to Windows would conflict with its access control
design and risk functional inconsistencies. Even if ported, they
remain ineffective in practice. For example, the work by Chari
et al. [7] introduced the safe-open tool to prevent link
following in open system calls. However, in the presence
of multi-step attacks described in Section II-B, this approach
fails. In these cases, opportunistic locks ensure that the file
path appears benign at the time of the open call, while
the attacker creates the link chain afterward and releases the
lock to redirect the access, thereby bypassing the defense.
As a result, such approaches are fundamentally incapable of
mitigating multi-step attacks on Windows. Second, approaches
that monitor the global path resolution process in Linux via
hooking (e.g., Basu et al. [23]) require extensive compatibility
adaptations and incur substantial performance overheads [27],
making them impractical for both users and developers.

III. EMPIRICAL STUDY

In this section, we conduct an empirical study of real-
world LF attacks and their corresponding countermeasures to
systematically summarize the defense adopted by developers
in practice, along with their inherent weaknesses. Our analysis
is guided by the following research questions: ❶ What are
the most commonly adopted countermeasures in practice by
developers? (in Section III-B) ❷ What are the weaknesses
of these countermeasures? (in Section III-C) ❸ What key
observations emerge from this study? (in Section III-D)

A. Study Methodology

In this study, we adopt a vulnerability-driven methodol-
ogy to systematically collect and analyze real-world coun-
termeasures against LF attacks. The insight underlying this
approach is that developers tend to directly encode their

defense countermeasures in the patches applied to mitigate
these vulnerabilities. Therefore, we identify confirmed LF
attack cases from the past five years by querying the National
Vulnerability Database (NVD) [28] using a combination of
relevant keywords and CWE identifier, particularly CWE-{59,
63, 64} [29] [30] [31]. For each retrieved case, we examine
its associated references and advisory materials to extract and
classify the corresponding mitigation adopted in practice.

Notably, explicit descriptions of patching strategies are often
absent from public advisories. In such cases, we perform
manual analysis by downloading and setting up both the
vulnerable and patched versions of the affected software. For
CVEs with available attack scripts or detailed descriptions, we
attempt to reproduce them and use tools like Procmon [32] to
trace the invocation stack of file operations, thereby locating
the fix implementation in the updated version. For cases lack-
ing sufficient exploit detail, we perform binary differencing
between the two versions, focusing primarily on additions or
removals of file operations pseudocode. During this process,
we rely on IDA [33] and BinDiff [34] for disassembly and
differential analysis. The entire analysis was conducted in
parallel by three authors. In cases of disagreement over the
interpretation of a countermeasure, discussion was held to
reach a consensus; if disagreement remained unresolved, we
consulted upstream developers or vendors. When no definitive
conclusion could be reached, the case was discarded.

In total, we analyzed all countermeasures of 152 CVEs over
a period of six weeks. Despite the substantial time investment,
we believe that the findings of this study not only offer
valuable insights to the community and help raise broader
awareness of defenses against LF attacks, but also provide
key guidance that informed the design of LinkGuard.

B. Types of Countermeasures

Corresponding to the attack scenario depicted in Figure 1,
countermeasures fall into three complementary dimensions:
protecting files (C1, C2), restricting link chain construction
(C3, C4), and limiting excessive privilege usage (C5, C6).
The total percentage can exceed 100% since individual cases
may employ multiple countermeasures. In this paper, we use
the term countermeasure in a broad sense, referring to both
post-exploitation mitigation measures and proactive designs
or implementations intended to prevent such attacks.
(C1) File ACL Hardening. (67/152, 44.08%) This type
of countermeasure protects files by enforcing strict access
control lists (ACLs) [35] on file resources throughout program
execution. It prevents unnecessary users from obtaining ex-
cessive permissions to manipulate files or directories, thereby
indirectly preventing the files handled by the program from
being exposed to attacks. In practice, developers commonly
remove all permissions for regular users or grant only read
access, thereby ensuring that attackers cannot modify or mis-
use these files. Appendix A illustrates how developers applied
ACL hardening in the case of CVE-2024-21835 [36]. Due
to its simplicity, straightforward deployment, and immediate
effectiveness, this is the most widely adopted countermeasure.
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(C2) Secure Path Binding. (12/152, 7.89%) This counter-
measure aims to bind temporary and user-specific directories
involved during program execution to trusted secure file paths,
thereby preventing attackers from manipulating files within
them. In Windows, developers typically use environment vari-
ables [37] (e.g., %ProgramData%) to access these directories
for storing intermediate or user-specific data. However, some
of these directories are often configured with overly permissive
access controls and lack proper restriction mechanisms [38],
allowing attackers to manipulate files and perform LF attacks.
Binding these directories to controlled secure paths effectively
mitigates the risk and ensures that the program operates only
on trusted file locations.

1

2

3

4

5

6

7

int __stdcall WinMain() {

    wchar_t * path = GetEnv(ProgramData, ···);    

    wchar_t * path = GetEnv(SYSTEM_APPDATA, ···);

    wchar_t * file = StrCat(path, "VBoxSDS.log");

    …
    DeleteFile(file);

}

-

+

Fig. 2: The Secure Path Binding Countermeasure Analysis in
CVE-2024-21111

Take CVE-2024-21111 [39] as an example. As shown
in Figure 2, the LF attack arises because the directory is
resolved by the environment variable ProgramData (Line 2).
Since ProgramData points to an attacker-controllable path, the
attacker can construct a link chain to the file VBoxSDS.log
(Line 6) to enable the LF attack. To mitigate this risk, the
developer rebinds the path to a protected directory resolved by
the environment variable SYSTEM APPDATA (Line 3), which
is inaccessible to regular users.
(C3) Redirection Guard. (18/152, 11.84%) This countermea-
sure implemented by Microsoft [40] restricts the construction
of link chains by allowing file operations to follow only
trusted symbolic links (i.e., created by administrators), while
intercepting and blocking untrusted ones. Appendix B shows a
practical example of enabling Redirection Guard at the process
level. Interestingly, we found that among the 18 CVE cases
analyzed, 17 instances of this countermeasure appeared in
Microsoft-developed software, highlighting its near absence in
third-party applications. This phenomenon can be attributed to
two main reasons. First, this countermeasure imposes stringent
requirements on the Windows system version (requiring Win-
dows 11 22H2 or later). Second, it adopts a single, rigid trust
policy in which only symbolic links created by administra-
tors are deemed trustworthy, which can easily compromise
the usability of the program. Consequently, for third-party
applications vendors who need to maintain compatibility with
a wide range of Windows versions and prioritize application
usability, this countermeasure is not acceptable in practice.
(C4) File Name Randomization. (8/152, 5.26%) This coun-
termeasure aims to restrict the construction of a link chain

by randomizing the file name. As discussed in Section II-B,
an essential prerequisite for creating a link chain is that
the attacker must know the name of a writable file. By
introducing name randomization, such as using universally
unique identifier (i.e., UUID) or random string, developers
prevent attackers from accurately identifying or predicting
the file name, thereby effectively thwarting LF attacks. As
shown in Figure 10 in Appendix C, the countermeasure for
CVE-2025-3617 [41] mitigates potential LF attacks during
log file creation by placing the log in a directory with an
automatically generated eight-character random name (e.g.,
unui3bp.5ks), making the path unpredictable for attackers,
thereby significantly hindering the construction of a usable link
chain.
(C5) Program Least Privilege. (15/152, 9.87%) This type of
countermeasure mitigates LF attacks that lead to DoS or ver-
tical privilege escalation by restricting unnecessary privilege
usage in privileged programs, thereby preventing unauthorized
file manipulation as described in Section II-C. To counter this
threat and enforce the principle of least privilege [42], devel-
opers implement this countermeasure primarily by adopting
two strategies: ① employing the Windows-specific mechanism
called Impersonation [43], where programs temporarily adopts
the identity of a low-privilege user during certain operations,
rather than executing them with elevated privileges; and ②
directly dropping unnecessary privileges, ensuring the program
no longer runs with elevated privileges. For instance, the
countermeasure for CVE-2024-44193 [44] directly reduces
the program’s privilege level from SYSTEM [45] to LOCAL
SERVICE [46] to minimize its file operation scope.
(C6) File Path Validation. (39/152, 25.66%) This counter-
measure enforces strict path validation prior to file operations,
thereby ensuring that programs execute only correct and safe
operations. In other words, it aims to prevent misuse of file
operations and thus reduce the risk of exposure to LF attacks.

In practice, developers typically validate the file
path before performing any operation by checking
whether the path is a symbolic link (e.g., via
GetFileInformationByHandle API [47]) or by
verifying that the resolved final path obtained from the file
handle (e.g., via GetFinalPathNameByHandle API [48])
matches the original intended path. As shown in Figure 11 in
Appendix D, the developer introduced explicit path validation
by adding the function IsPathALink (Line 3) to mitigate
LF attacks. The implementation details are illustrated in
Figure 11b: specifically, the program retrieves file metadata
using GetFileInformationByHandle (Line 3) and
then checks whether the number of symbolic links associated
with the file handle exceeds one (Line 4), thereby validating
that the path does not resolve to any link.

C. Weaknesses of Countermeasures

This subsection summarizes the fundamental weaknesses
and why they fall short of providing complete protection.

First, modeling-based countermeasures are inherently de-
manding (C1, C4, C6), as they require extensive identifica-
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tion and instrumentation of relevant file operations, imposing
substantial implementation and maintenance burdens on devel-
opers. For example, enforcing path validation (C6) demands
developers to instrument every file operation throughout the
codebase, while ACL hardening (C1) and name randomization
(C4) require exhaustive enumeration of all security-sensitive
files. Such thorough modeling is time-consuming and error-
prone in practice, often relying on ad hoc heuristics.

Next, countermeasures suffer from poor compatibility and
limited applicability (C2, C5), which means they can only
mitigate LF attacks for a subset of programs or file resources
rather than providing comprehensive coverage. For instance,
secure path binding (C2) protects only temporary files or files
whose paths are resolved via environment variables, while
least privilege (C5) is feasible only for programs that do not
genuinely require elevated privileges to function correctly.

Finally, and more critically, the countermeasures lack effec-
tiveness in fully defending against LF attacks (C3), meaning
that they can still be bypassed by attackers under certain
conditions. For example, even with Redirection Guard, if the
file path remains attacker-controlled, specially crafted UNC
paths [49] can circumvent this protection. Similarly, due to
the inherent time gap between path validation and subsequent
file operations, a window for race conditions exists, thus
allowing attackers to exploit the multi-step attack described
in Section II-B to bypass file path validation.

D. Key Observations

In this part, we present two key observations distilled from
our analysis of these 152 real-world attack cases. Moreover,
we will explain in Section IV-B how these observations
directly inform the design of LinkGuard.
Observation#1: There is always a link chain construction
and a link-following file operation, both of which inevitably
occur as part of the complete attack process. Of particular
importance, these two operations are cross-subject by nature
(fully defined in Section IV-C): attackers typically initiate the
creation of the link chain, while the victim program follows
the link and performs dangerous file operations. Together,
these cross-subject operations, i.e., link chain construction (by
attackers) and link-following file operations (by programs),
constitute the key signature of LF attacks.
Observation#2: LF attacks often appear as complex and
unordered sequences of file operations, but they in fact re-
flect specific file operation states and observable transitions
between them. Regardless of the number or types of operations
involved, each attack inherently follows a specific state tran-
sition pattern. Let us revisit Figure 1. In single-step attacks,
the transition proceeds from an initial state where the link
chain is fully constructed to a final state where the program
follows the link to access a protected target. In multi-step
attacks, the process extends from the program encountering an
opportunistic lock to the attacker constructing and finalizing
the link chain while the program is blocked, and finally to
the program resuming execution and following the link. These

Stage 1: Dynamic Subject Filtering

Process Link Chain Analysis

+

Subjects

Extract

Stage 2: Real-Time Attack Detection
CSCG BuildFSM Matching

FSM FSM

FSM + Traverse

Fig. 3: Design Overview of LinkGuard

structured and correlated transitions highlight the feasibility of
applying state-aware modeling in our system design.

IV. SYSTEM DESIGN

A. Design Goals and Challenges

We aim to achieve two key design goals when protecting
against LF attacks in the Windows file system at runtime.
G1: Practicality. LinkGuard should accurately detect and
mitigate LF attacks with low runtime overhead, minimal
runtime latency, and high compatibility, thereby ensuring its
practicality for real-world deployment.
G2: Effectiveness and Extensibility. LinkGuard should ef-
fectively mitigate both known types of LF attacks, namely,
single-step and multi-step attacks. Moreover, the design should
facilitate ease of extension, allowing rapid adaptation to miti-
gate newly identified LF attacks, that is, by incorporating their
characteristic behaviors into FSM rules for timely defense.

Building on the design goals and weaknesses of both
prior works in Section II-D and existing countermeasures in
Section III-C, providing a more robust defense against LF
attacks requires tackling two key challenges in mitigation:
(1) How to efficiently filter the vast number of file operations
unrelated to LF attacks? Considering that the Windows file
system involves a massive and diverse range of file oper-
ations, exhaustively monitoring every single file operation
would significantly increase performance overhead (as further
discussed in Section VI-F) and simultaneously capture a large
volume of “link-following-unrelated” operations, which could
interfere with the mitigation of comparatively scarce attacks
and ultimately hinder LinkGuard from achieving G1.
(2) How to effectively mitigate both types of LF attacks in
real time? We require a battle-tested yet reusable approach
capable of mitigating two types of LF attacks. To achieve
G2, our approach should not only detect both single-step and
multi-step attacks that involve diverse types of file operations
and complex operation sequences, but also avoid the well-
known heavy modeling burden inherent in traditional defenses,
ensuring it can be easily adapted with minimal manual effort.

B. Overview and Insights

In this subsection, as illustrated in Figure 3, we present
the overview of LinkGuard, a lightweight state-aware run-
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time guard against link-following attacks in the Windows file
system. We further elaborate on how the key observations in
Section III-D inspire the key insights that address two primary
challenges and ultimately fulfill our two design goals.
Insight-1 & Solution-1. (Stage 1) Based on Observation#1,
our key insight is that since LF attacks are inherently cross-
subject, it is unnecessary to monitor all file operations system-
wide. Instead, we focus solely on whether the construction
and following operations of the link chain are performed by
different subjects (e.g., different user identities). Accordingly,
the first stage of LinkGuard performs an efficient dynamic
subject filtering. This involves selectively monitoring and
recording file operations related to link chain creation and
following at runtime, and analyzing whether they originate
from distinct subjects. If so, LinkGuard extracts the involved
subjects along with their corresponding link-related file opera-
tions for further detection. In this way, LinkGuard significantly
reduces monitoring overhead by filtering out a large volume of
operations irrelevant to link-following, thereby achieving G1.
Insight-2 & Solution-2. (Stage 2) Based on Observation#2,
our key insight is that LF attacks inherently involve observ-
able transitions between file operation states, which enables
us to design a set of lightweight and parallelizable finite-
state machines (FSMs) that monitor whether these transitions
reach attackable terminal states and thereby intercept both
single-step and multi-step attacks concurrently. Specifically,
since these transitions span across subjects, LinkGuard first
consolidates the subjects and their associated file operations
(Extracted during Stage 1) into a Cross-Subject Chain Graph
(CSCG), a directed graph that reflects the temporal and
dependency relationships among file operations initiated by
different subjects. Each path in the CSCG is then concurrently
propagated to FSM instances specialized for detecting different
types of LF attack, which independently evaluate whether a
stateful attack condition is satisfied. By encoding only a small
number of transition rules into parallel FSMs, LinkGuard en-
ables effective detection of both known attack types. Moreover,
it remains easily extensible to previously unknown LF attacks
by incrementally adding corresponding rule combinations into
FSMs. Therefore, we can successfully achieve G2.

C. Dynamic Subject Filtering

This subsection details how LinkGuard dynamically iden-
tifies and then filters cross-subject relationships and extracts
subjects within their all file operations involving the link chain,
including both creation and subsequent following.

LinkGuard first focuses on monitoring primary file opera-
tions based on whether they participate in link chain construc-
tion and following. In Windows, file operations are reflected
in the kernel layer as IRP (I/O Request Packet) requests [9].
Therefore, instead of monitoring a wide range of high-level
APIs in user space, LinkGuard directly inspects IRP requests
corresponding to relevant operations in the kernel. This design
significantly reduces overhead and improves monitoring effi-
ciency. Table I illustrates the classification of these operations
together with their associated IRP request types. It is worth

emphasizing that we regard both Create/Open and Lock
operations as being involved in both link chain construction
and link following. The former is because both constructing
and following a link chain rely on file handles, while the latter
is particularly relevant in multi-step attacks: after an oppor-
tunistic lock is acquired, the attacker typically performs link
chain construction, and once the lock is released, the victim
program proceeds with link-following operations. Based on
this classification, LinkGuard selectively monitors only these
essential operations, thereby significantly improving efficiency
by avoiding the need for global analysis of all file API calls.
Subsequently, LinkGuard performs subject identification for
each monitored file operation.
Definition-1 (Subject). Let op be a file operation executed by
a thread T in the Windows system. We define the subject of
op, denoted by Sub(op), as follows:

Sub(op) =

{
Token(T ) if op succeeds
Group(f, p) if op fails during execution

(1)

where Token(T ) denotes the effective access token [58] used
by thread T at the time of executing op, and Group(f, p)
denotes the set of users who belong to a group with specific
permission p (i.e., FULL_ACCESS) on the target file f .

To accommodate the complexity of Windows permission
management model, particularly the use of impersonation [59]
and token substitution [60], the definition in Equation (1)
performs identification at the granularity of individual threads.
Specifically, when a file operation op succeeds, we define
Sub(op) as the user associated with the effective access
token used by the executing thread. For example, if a priv-
ileged process (e.g., running as the SYSTEM user) employs
impersonation to create a file on behalf of a regular user
(e.g., Alice), the actual subject of the operation is the
impersonated user Alice, rather than the original privileged
context SYSTEM. In contrast, when op fails, we adopt the
conservative principle, defining the subject as the set of users
belonging to the group that holds the permission on the target
file. This conservative strategy is motivated by the observation
that users with FULL_ACCESS constitute the minimal set of
principals capable of executing the intended operation, and
thus serve as a conservative lower bound for the actual subject
set. Ultimately, LinkGuard ensures that every file operation
can be consistently associated with a subject, or occasionally
with a set of subjects, which is crucial for accurate real-time
detection and mitigation of LF attacks in subsequent stages.
Extract. LinkGuard leverages the MiniFilter [10] framework
to register callback functions both before (pre-operation [61])
and after (post-operation [62]) each file operation. Specifically,
it monitors and analyzes both the construction of the link
chain and the subsequent file-following operations. If both
operations are performed by the same subject, LinkGuard
considers the symbolic link traverse to be benign and takes
no further action, a pattern frequently observed in legitimate
use cases, such as when users access files through desktop
shortcuts [63]. In contrast, when these operations are carried
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TABLE I: Monitored file operations and corresponding IRP requests in link chain construction and following. LinkGuard
tracks selected file operations at the IRP level during link chain creation and following to determine whether they are
performed by different subjects.

Primary Operation Corresponding IRP requests/flags link chain construction link chain following

Create/Open IRP_MJ_CREATE [50] ✓ ✓
Write IRP_MJ_WRITE [51] ✗ ✓
Rename FileRenameInformation [52] ✗ ✓
Delete IRP_MJ_SET_INFORMATION [53], FILE_FLAG_DELETE_ON_CLOSE [54] ✗ ✓
Set DACL IRP_MJ_SET_SECURITY [55] ✗ ✓
Symbolic Link Create IRP_MJ_FILE_SYSTEM_CONTROL [56] ✓ ✗
Lock FSCTL_REQUEST_OPLOCK [57] ✓ ✓

✓/✗: involved / not involved

out by different subjects, such cross-subject behavior is re-
garded as potentially malicious by LinkGuard. For example, as
illustrated in Figure 1a, the link chain is created by the attacker,
while the actual file operation that follows the symbolic link
is performed by the victim program. Clearly, these operations
are initiated by distinct subjects (recall that, under our threat
model, the attacker and the victim program do not share
the same subject identity). In such cases, LinkGuard extracts
all file operations involving distinct subjects during the link
chain construction and following. Along with each operation,
it also records the associated operation metadata, including the
identified subject, execution timestamp, status, and target file,
to facilitate precise graph construction.

D. Real-Time Attack Detection

In this subsection, we detail the second stage of LinkGuard,
which focuses on the runtime defense of LF attacks. This
stage consists of two core components: the construction of
the Cross-Subject Chain Graph (CSCG) and the FSM-based
rule matching for attack detection across subjects.
CSCG Building. To uncover potential attacks, LinkGuard
integrates file operations across different subjects into a unified
structure. This cross-subject perspective is essential: only
by correlating operations that are otherwise isolated within
individual subjects can we detect coordinated behaviors in-
dicative of LF attacks. More importantly, the transitions toward
attackable states, central to the detection logic of FSMs, span
multiple subjects, making it necessary to capture such inter-
subject dependencies for effective detection.
Definition-2 (Cross-Subject Chain Graph). Let O =
{op1, op2, . . . , opn} be the set of link-related file operations
extracted from Stage 1 of LinkGuard, each associated with
subject. We define the Cross-Subject Chain Graph (CSCG) as
a directed graph G = (V,E), where:
• V = O, i.e., each node represents a file operation opi;
• Each opi is a tuple (fi, si, ti, ri), where fi is the target file,
si is the subject, ti is the execution timestamp, and ri is the
result status (e.g., STATUS SUCCESS);

• E is a set of directed edges representing the temporal order
between operations across different subjects. Formally, for
any path (opi1 , opi2 , . . . , opik) in G, it holds that ti1 ≤
ti2 ≤ · · · ≤ tik , ensuring that execution flows logically
and chronologically from earlier to later actions. Moreover,

each adjacent pair (opi, opj) on a path must satisfy a file
dependency condition: their target files fi and fj must either
refer to the same file, reside in a parent-child directory
relationship, or share a common directory (e.g., the files
C:\dir\a and C:\dir\b share the directory C:\dir).
LinkGuard incrementally constructs the CSCG by contin-

uously monitoring file operations at runtime. This dynamic
construction ensures that the graph evolves in real time to
incorporate the most recent file operation sequences, which
is essential for the timely detection of LF attacks. Although
the CSCG dynamically expands during execution, its growth
is strictly bounded in our design. Each graph is released
after completing FSM-based matching, and a size threshold
is enforced to prevent uncontrolled expansion and to maintain
stable memory usage over time. Specifically, during the con-
struction of the CSCG, LinkGuard adds a directed edge from
node va to node vb if the operation represented by va precedes
that of vb, and the target files fa and fb satisfy the dependency
relation defined earlier (i.e., identical paths, parent-child direc-
tories, or shared directories). During construction, LinkGuard
applies several practical pruning strategies. In particular, if a
node has neither valid predecessors nor successors under the
dependency rule, it is discarded, as such isolated operations
cannot contribute to any valid state transition in the FSM.
Likewise, when the target file path resides in a protected direc-
tory (e.g., C:\Windows\system32), LinkGuard terminates
further construction since such paths are inherently beyond
the attacker’s control. Notably, when the number of nodes
in a CSCG exceeds a predefined threshold and new nodes
are added, LinkGuard removes the earliest recorded nodes
to keep the graph size bounded. Of greater significance, the
compactness of the resulting CSCG stems from the design of
Stage 1, which filters and retains only file operations related
to the construction and following of link chains. This selec-
tive inclusion fundamentally determines the maintainability of
CSCG, as further demonstrated in Section VI-F, laying the
groundwork for fast graph traversal and lightweight FSM-
based rule matching.
FSM-based Rule Matching. LinkGuard traverses the CSCG
using depth-first search [64] (DFS) to enumerate all time-
ordered paths across subjects. Each path is treated as an inde-
pendent execution trace and is fed into every FSM instance in
parallel for rule-based matching. After completing the traversal
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and all FSM-based rule matching, the corresponding CSCG is
released, ensuring that memory consumption remains stable
and preventing any risk of self-induced resource exhaustion.
Here, the FSM transition rules are distilled from Observa-
tion#2 and encode the minimal state sequences necessary to
characterize LF attacks. As illustrated in Figure 4, the figure
depicts how different FSMs concurrently detect single-step
and multi-step attacks. These FSMs are lightweight by design
and operate in parallel. Here, parallelism does not refer to
technical concurrency, but rather to LinkGuard’s capability to
simultaneously support rule checking for both single-step and
multi-step attacks.

For each enumerated path in CSCG, LinkGuard initiates the
matching process from the initial states of multiple FSMs in
parallel. Note that a state transition occurs when a node along
the path v satisfies a predefined rule-based transition condition.
Such a condition typically corresponds to a semantically
critical operation (e.g., link chain creation) that represents an
inherent and indispensable step in an LF attack. The FSM
advances through states until it reaches a terminal “attackable”
state, which represents a confirmed exploit condition. Upon
reaching such a state, LinkGuard immediately terminates the
execution of the corresponding operation. This is ensured by
the fact that, at the moment the FSM completes its matching
and enters an attackable state, the operation is still within
its pre-operation phase. Leveraging this timing, LinkGuard
performs two actions in sequence to prevent the operation
from being carried out: (1) setting operation’s return status
to ACCESS_DENIED, and (2) suppressing the dispatch of
the operation request to the kernel execution layer (i.e.,
NTFS.sys [65]).

It is worth noting that although the computational com-
plexity of LinkGuard ’s defense process is O(n3), it remains
acceptable in practice. This is because CSCG growth is
bounded by design through size threshold control and graph
release after FSM-based matching, and its size under real
workloads is inherently small (as discussed in Section VI-D).
Considering the reset conditions of FSMs, each FSM instance
is reset to its initial state either upon reaching an attackable
state and completing its handling or after the full traversal of
the given path. This ensures that LinkGuard can continuously
detect and intercept both single-step and multi-step LF attacks
in progress, without interference across independent execution

FSMa
FSMb

FSMc

FSM1
FSM2

FSM3

Single-Step Multi-Step

Traverse

CSCG FSM-based Rule Matching

Fig. 4: The second stage: LinkGuard conducts parallel FSM
matching over the CSCG to detect coexisting single-step
and multi-step LF attacks

traces. As illustrated in Figure 4, nodes in CSCG that satisfy
transition rules for single-step attack are marked in blue,
while those satisfying multi-step attack rules are marked in
green. Traversing the CSCG yields multiple execution paths
that reflect cross-subject interactions. Among them, the path
P1 = {v1, v3, v4, v6} corresponds to a single-step attack,
while the path P2 = {v1, v2, v4, . . . , v5, v7} spans multiple
operations and ultimately triggers a multi-step attack. During
real-time detection, each FSM (FSMi) operates in parallel and
starts from its initial state s0. For single-step FSM, a transition
occurs when the matched path satisfies the corresponding rule
conditions (i.e., v1 and v6 in P1), eventually reaching an
attackable state s2. Similarly, the multi-step FSM transitions
through s0 → s1 → s2 → s3 upon matching rule conditions
(v2, v4, and v7 in P2). It is worth emphasizing that each
FSM defines only a small number of rule-based transitions
over the CSCG. This bounded and rule-driven structure en-
ables lightweight and parallel matching, which is critical for
achieving timely and effective detection in real-world runtime
environments.

V. IMPLEMENTATION

To ensure broad compatibility across Windows platforms,
we implement LinkGuard as a kernel-mode system driver.
As summarized in Table II, this design choice aligns with
Microsoft’s official driver architecture [66] and guarantees
seamless integration with both desktop and server editions
across architectures (x86 & x64). Notably, ARM64 support
is only available on Windows 10 version 1903 and Server
2022 or later, due to platform-level restrictions on kernel-mode
driver deployment. This limitation originates from Windows
OS itself rather than from LinkGuard ’s design.

TABLE II: Platform compatibility of LinkGuard across
architectures and Windows versions.

Windows Version Range Supported Architectures

Windows 7–8.1 (Desktop) x86 / x64
Windows 10–11 (Desktop) x86 / x64 / ARM64*
Server 2008 R2–2019 x64
Server 2022–2025 x64 / ARM64

* ARM64 support requires Windows 10 version 1903+

To monitor file operations, LinkGuard leverages pre-
operation [61] and post-operation [62] callbacks registered
via the MiniFilter framework [10], which provides a standard
mechanism for intercepting and filtering I/O requests. Pre-
callbacks allow malicious actions to be intercepted before
execution, while post-callbacks ensure access to complete
operation metadata, including outcome status that is only
available after execution. LinkGuard is implemented in C/C++
with about 3.9K lines of code. Specifically, it includes about
2.9K lines for the core implementation (1.3K for Stage 1
and 1.6K for Stage 2), 0.8K lines for header files, and 0.2K
lines for CMake build and configuration scripts. We share our
artifact 1 to facilitate future research.

1https://doi.org/10.5281/zenodo.17481221
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VI. EVALUATION

In this section, we evaluate the prototype of LinkGuard in
terms of its security, defense effectiveness, and performance,
with the aim of answering the following questions:
• RQ1: Does LinkGuard pose any security risks that introduce

new potential LF attacks or permit evasion of its mitigation
mechanisms? (in Section VI-B)

• RQ2: How effective is LinkGuard in mitigating LF attacks?
(in Section VI-C)

• RQ3: Does LinkGuard introduce false positives or interfere
with benign file operations? (in Section VI-D)

• RQ4: What is the overhead introduced by LinkGuard in
terms of system and application performance? (in Sec-
tion VI-E)

• RQ5: Does the first stage of LinkGuard contribute to
CSCG maintainability and the overall defense efficiency?
(in Section VI-F)

A. Experimental Setup

1) Experimental Environment: To comprehensively assess
the compatibility of LinkGuard across a wide range of deploy-
ment scenarios, we conduct all experiments on five represen-
tative Windows environments: Windows 7 SP1, Windows 10
(22H2), Windows 11 (24H2), Windows Server 2008 SP2, and
Windows Server 2025 (24H2). These platforms span the earli-
est, latest, and intermediate versions supported by LinkGuard.
All systems are configured with a 4-core Intel Core i7-1165G7
CPU and 16 GB RAM, and run on bare-metal hardware to
ensure accurate measurement of kernel-level performance. All
experiments are conducted on hard disk drives (HDDs) to
simulate real-world deployment scenarios. Unless otherwise
noted, all evaluations are executed concurrently across these
systems to validate the robustness and version portability of
our prototype implementation.

2) Dataset: No single dataset can fully capture both the
effectiveness and performance of LinkGuard. To this end, we
design three complementary datasets, each targeting a specific
aspect of the prototype’s evaluation:
• Dataset-α (Vulnerable Applications): This dataset is de-

rived from the vulnerability set in Section III-A, and is
used to thoroughly assess the effectiveness of LinkGuard
in defending against LF attacks. Specifically, from our set
of 152 vulnerabilities, we select a subset of cases that meet
the following criteria: (i) the vulnerable software package
is publicly available, and (ii) either detailed reproduction
instructions or exploit scripts are provided. Based on these
criteria, the final dataset consists of 70 CVEs across 55
applications from diverse functional domains. A detailed
breakdown of included and excluded cases in this dataset
is provided in Appendix E.

• Dataset-β (Microbenchmarks): This dataset is used to con-
duct microbenchmarks that evaluate the performance over-
head introduced by LinkGuard under I/O-intensive work-
loads, with a particular focus on file system behavior. Given
that LinkGuard primarily monitors file system operations

(rather than network or UI-related behaviors), we focus on
I/O-intensive workloads that place significant pressure on
the underlying file system. The selected programs include
well-known I/O benchmark tools such as IOzone [67] and
DiskSpd [68], which are widely used in measuring file
system performance under stress.

• Dataset-γ (Real-world Applications): This dataset is used
to evaluate the runtime performance of LinkGuard on repre-
sentative real-world applications and its false positive rate on
benign file operations. It includes widely used, production-
grade applications that span diverse application domains,
such as web servers (e.g., Apache [69]), relational databases
(e.g., Microsoft SQL Server (MSSQL) [70]), file transfer
utilities (e.g., WinSCP [71]), and compression tools (e.g., 7-
Zip [72]), reflecting typical workloads encountered in both
desktop and server environments.

B. RQ1: Security Analysis

1) Security Analysis for Possible Attacks: We have verified
that LinkGuard does not introduce any new LF attack surfaces.
At runtime, it passively monitors and conditionally blocks file
operations without generating auxiliary file activities, thereby
avoiding any exploitable side effects. In addition, LinkGuard
operates entirely within the kernel and is securely deployed in
protected directories to prevent unauthorized modification. We
further examined the prototype using well-established static
analysis tools, including Cppcheck [73] and Flawfinder [74],
to ensure the absence of typical memory vulnerabilities.

2) Security Analysis for Potential Evasion: Under our threat
model, we also consider adversaries attempting to infer or
evade LinkGuard’s FSM-based mitigation. However, such ef-
forts are impractical, as attackers lack privileged access and
cannot bypass kernel-level monitoring. In addition, LinkGuard
exposes no user-space interfaces (e.g., IOCTL [75] and
RPC [76]), thus preventing direct inspection. Indirect inference
through behavioral probing is also infeasible due to the vast
space of possible file operation sequences and the minimal
nature of FSM transitions, which capture only essential steps
required for real attacks. Any attempt to evade detection would
break these steps, rendering the attack ineffective.

C. RQ2: Defense Effectiveness

Table III presents the defense effectiveness of LinkGuard
on dataset-α, which includes 70 real-world vulnerabilities.
We categorize the evaluated vulnerabilities based on the
types of file operations involved in the LF attacks and their
corresponding security impacts. Specifically, DoS attacks are
primarily associated with file creation, overwrite, and deletion
operations; sensitive information disclosure often arises from
permission assignment and file relocation (moving and copy-
ing), where protected files are exposed to unauthorized users;
and privilege escalation typically involves file relocation or
deletion, allowing attackers to gain system-level privileges by
deleting files [77] or access files belonging to other users.

Overall, LinkGuard successfully mitigates 97.1% (68/70) of
LF attacks in our evaluation, including all single-step attacks
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TABLE III: LinkGuard’s effectiveness for mitigating real-
world LF attacks in dataset-α

Operation Category Impact Attack Type

S M

File Creation
and Overwriting Denial of Service 15 / 15 4 / 4

File Move
and Copy Information Disclosure 1 / 1 8 / 8

File Permission
Assignment

Information Disclosure 7 / 7 2 / 2Privilege Escalation

File Deletion Denial of Service 3 / 3 28 / 30Privilege Escalation

Overall – 26 / 26 42 / 44
Proportion – 100% 95.45%

S: Single-step attacks. M: Multi-step attacks.

(26/26) and 95.45% (42/44) of multi-step attacks. This high
defense coverage is consistent with our design expectations.
Since LinkGuard triggers block only when the FSM reaches an
attackable state, signaling that the critical file operation of the
LF attack is about to be performed, it does not produce false
negatives for exploitable vulnerabilities. Meanwhile, we ob-
serve no false positives on benign file operations, with detailed
results presented in Section VI-D. In addition, LinkGuard can
be easily adapted to defend against potential new or previously
unknown LF attacks, requiring only minimal engineering effort
to extend the FSM transition rules accordingly.

Attacks Mitigation. LinkGuard successfully mitigates all
single-step LF attacks and 42 out of 44 multi-step LF at-
tacks (95.45%) within dataset-α. As part of the mitigation
of single-step attacks, let us consider CVE-2023-2939 [78]
as an illustrative example. The privileged Chrome in-
staller [79] writes crash report files to an unprotected direc-
tory (C:\Windows\Temp\Crashpad\) without verifying
the file path. From the viewpoint of LinkGuard’s defense
logic, the attack involves a transition from a link chain
created by a non-privileged subject to a privileged program
performing a follow-up write operation. This behavior is
naturally captured by the FSM, allowing the FSM to nat-
urally reach the attackable state just before the file write
occurs, at which point LinkGuard enforces a timely de-
nial of the operation. Similarly, in the mitigation of multi-
step attacks, CVE-2024-44193 [80] serves as a represen-
tative example. The installation of iTunes [81] registers a
privileged service named AppleMobileDeviceService,
which first checks for the existence of files in an unpro-
tected directory (C:\ProgramData\Apple\Lockdown\)
and then deletes them without verifying whether they are
symbolic links. LinkGuard effectively mitigates this attack
by capturing a structurally predictable ”locked-then-triggered”
sequence, where the attacker sets an opportunistic lock that is
subsequently hit by the victim program, and then constructs
the link chain before the operation is triggered upon lock
release. This recurring transition pattern is reliably recognized

by the FSM, enabling timely and precise mitigation.
Insufficient Mitigation. We identify two vulnerabilities that

LinkGuard fails to fully mitigate, both stemming from a shared
root cause. Taking CVE-2025-21373 [82] as an example,
the attack uses an NTFS-formatted removable media (e.g.,
USB) on which attackers can pre-construct a malicious link
chain in an isolated environment where LinkGuard is not de-
ployed. When the device is subsequently connected to a system
protected by LinkGuard, the creation of link chain is no longer
observable for LinkGuard, rendering the defense ineffective.
However, since this class of attacks requires physical access
to target machines, a condition that lies outside the scope of
our threat model, we consider the insufficient mitigation under
such extreme conditions to be acceptable.

D. RQ3: False Positive Evaluation

While our effectiveness evaluation on dataset-α did not
reveal any false positives, we further assessed this aspect using
dataset-γ to more comprehensively answer RQ3. This dataset
reflects realistic production environments involving multiple
interacting subjects. It includes widely used applications such
as Apache and MSSQL, thereby covering representative multi-
component workloads. Such diversity enables us to evaluate
LinkGuard under environments with frequent cross-subject
interactions, ensuring that it operates correctly without disrupt-
ing benign file activities. To evaluate this aspect, we deploy
LinkGuard across the five Windows environments discussed
earlier and configure it with dataset-γ. Each environment is
equipped with production-relevant applications and operated
continuously for 72 hours under normal usage.

TABLE IV: False positive evaluation across different envi-
ronments in dataset-γ

Env. Operation Category Cross-Subj Ops CSCG N/E FP
FC FM FD FPA

Win7 3M 420 1.2k 108 35k 34k/34k 0
Win10 792k 9.4k 2.6k 336 4.7k 1.7k/1.8k 0
Win11 20M 3.9k 503k 2.9k 11.9k 3.1k/ 3.4k 0
Srv 2008 1.2M 15k 6.9k 48 1.8k 0.2k/0.2k 0
Srv 2025 2.8M 160 1.8k 768 11.4k 10.5k/10.8k 0

Avg. 5.56M 5.8k 103k 0.8k 12.8k 12.4k/12.5k 0

FC/FM/FD/FPA denote four categories of file operations: File Creation and
Overwriting, File Move and Copy, File Deletion, and File Permission
Assignment, respectively. Cross-Subj Ops refers to the number of valid
cross-subject file operations. CSCG N/E indicates the average CSCG size in
nodes and edges, and FP represents the number of false positives.

As shown in Table IV, while per-environment file activity
is high (e.g., file creation averages 5.56M events), only about
12.8k operations involve cross-subject interactions. Further-
more, the CSCGs constructed from these interactions remain
compact, with an average of approximately 12.4k nodes and
12.5k edges, representing a highly compressed value com-
pared to the overall volume of file operations in this multi-
component workload. This contrast indicates that even under
multi-component workloads, the CSCG remains compact and
manageable in practice. The relatively small size of the CSCG
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Fig. 5: Execution time of standard file operations across five Windows versions. Std.Dev. below 8.0%

Fig. 6: Impact of LinkGuard on average CPU usage under
varying IOPS for read and write. Std.Dev. below 0.5%

can be attributed to two factors: first, symbolic link creation
and follow behaviors are inherently rare in Windows systems,
and cross-subject occurrences of such operations are even
less frequent; second, LinkGuard applies practical pruning
strategies during CSCG construction (in Section IV-D) to ex-
clude those CSCGs with minimal relevance to potential attack
behaviors. Finally, LinkGuard did not incorrectly intercept any
of these benign operations, resulting in zero false positives.
This outcome meets our expectations, as the FSM transition
rules in LinkGuard are strictly derived from the lower bound
of file operation sequences necessary to trigger LF attack
sequences that are characteristic of malicious behavior and
rarely observed in benign workflows.

E. RQ4: Performance Evaluation

In this part, we evaluate the performance impact of
LinkGuard to answer RQ4. Specifically, we use dataset-β
to assess system-level microbenchmark overhead introduced
by LinkGuard, and dataset-γ to evaluate performance on
real-world application workloads. All experiments are also
executed concurrently across the five Windows environments
described earlier, implicitly reinforcing the compatibility of
our prototype throughout the evaluation process.

1) Microbenchmarks: We conduct microbenchmark exper-
iments using dataset-β to evaluate the execution time overhead
introduced by LinkGuard for standard file operations, as well
as its broader impact on system-level performance.

Operation Execution Time: Figure 5 presents the measured
execution time for six representative file operations. The
colored bars represent the performance of the baseline system,

Fig. 7: Normalized overhead of different Windows common
applications. (Avg. Increase: ∼3.4%, Std. Dev.: < 2.4%)

Fig. 8: Runtime latency under defense scenarios (dataset-α)
and benign deployment in real-world applications (dataset-γ).

while the yellow bars with black stripes indicate the additional
execution overhead introduced by LinkGuard. Specifically,
LinkGuard increases the execution time by an average of
10.6% across all tested environments. In particular, Windows
10 and 11 exhibit higher overheads compared to other systems,
with execution time increases for standard file operations
ranging approximately from 12.2% to 35%. In contrast, other
environments incur relatively minimal overhead (0.5%–8.3%).
In terms of standard file operations, LinkGuard results in
an average execution time increase of 10.8%. Among these,
write operations exhibit the most noticeable variance, with
execution time increasing by approximately 4.4% to 34.8%,
while other operations show only modest increases.

CPU Overhead: We further evaluate the system-level per-
formance overhead introduced by LinkGuard during read and
write operations, specifically targeting I/O-intensive work-
loads. Figure 6 illustrates the average CPU usage under in-
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creasing IOPS, with cubic spline regression applied to smooth
the observed trends. For read operations, the additional CPU
overhead introduced by LinkGuard diminishes progressively as
IOPS increases, with the usage curves for the LinkGuard and
baseline systems eventually converging. This suggests that the
marginal cost of monitoring read becomes negligible under
high I/O loads. In contrast, for write operations, the average
CPU usage shows a small but consistent increase, stabilizing
around a 1% overhead even at higher IOPS levels. These trends
indicate that LinkGuard imposes only minimal and statistically
stable performance overheads, which are acceptable for prac-
tical deployment.

2) Overhead on Real-world Application workloads: Along
with the microbenchmarks, we also assess the runtime over-
head introduced by LinkGuard on real-world application work-
loads. To this end, we conduct performance analysis using
dataset-γ, which includes representative production-grade pro-
grams such as Apache [69], MSSQL [70], WinSCP [71],
and 7-Zip [72]. Figure 7 shows the overall overhead of each
application compared to the native system, with an average
increase of approximately 3.4% across all applications.
Apache [69] serves a 64 KB file in response to 1,000 re-
quests issued by the ApacheBench [83]. Overall, deploying
LinkGuard introduces an average performance overhead of
approximately 6.4%, which has no substantive impact on
Apache’s performance when compared to typical network
conditions, such as transient congestion or latency fluctuations.
MSSQL [70] is evaluated using the HammerDB [84] bench-
mark, where each SQL query internally triggers read or
write operations. Deploying LinkGuard results in only a
0.2% performance overhead, yielding performance that is
virtually identical to that of the native system.
WinSCP [71] transfers a 1 GB file from a local network
host. During the download, a write operation is issued
every 32 KB of received data, resulting in over 5,500 write
operations to complete the transfer. With LinkGuard deployed,
the overall performance overhead increases by 4.4%, which is
consistent with the microbenchmark results for write.
7-Zip [72] decompresses a 1.5 GB source archive (i.e., Linux
kernel 6.15.6 source archive). During this process, 7-Zip opens
each file, reads its contents through in-memory buffers, and
writes the extracted data to disk. The observed performance
overhead closely aligns with the microbenchmark results for
the open, read, and write operations presented in Figure 5.
Runtime Latency: We further evaluate the latency introduced
by LinkGuard. As shown in the left box plot of Figure 8, on 20
randomly selected vulnerable applications from dataset-α, the
average and P95 (i.e., the 95th percentile) latency increased
∼30 ms after LinkGuard was deployed to mitigate corre-
sponding LF attacks. In contrast, the right plot shows that for
benign file operations in real-world applications from dataset-
γ, both metrics increased by only ∼5 ms. This difference is
expected, as malicious operations typically trigger more FSM
transitions, leading to higher processing costs, and we consider
the additional latency introduced during LF attack mitigation
to be acceptable for real-time protection.

F. RQ5: Ablation Studies

In this subsection, we systematically evaluate the contribu-
tion of the first stage of LinkGuard to both the maintainability
of CSCG and the overall performance. Specifically, we isolate
Stage 1, namely, efficient subject filtering, to examine how it
reduces unnecessary monitoring of irrelevant subjects and op-
erations, thereby improving detection precision and preserving
the structural clarity of CSCG for long-running defense.

TABLE V: Comparison of LinkGuard and LinkGuardNF in
CSCG maintainability and performance metrics

Baseline Nodes Edges Latency (ms) CPU (%)

LinkGuard 53 71 128.8 6.41
LinkGuardNF 4919.5 1351 1611.1 14.46

Avg. Increase 9197.2% 1802.8% 1150.8% 125.6%

Accordingly, we compare LinkGuard with the variant
LinkGuardNF in which the first stage is replaced by system-
wide file operation monitoring, in order to assess its impact
during the defense. Table V presents the performance metrics
when defending against LF attacks by LinkGuard and its
variant LinkGuardNF, which omits efficient subject filtering.

From the perspective of CSCG maintainability, LinkGuard
produces substantially smaller graphs than LinkGuardNF,
demonstrating that most concurrent file operations are ir-
relevant to LF attack mitigation. The first stage effectively
filters out such noise, keeping CSCG construction lightweight
and traversal overhead negligible. This compact design also
enables efficient graph-based reasoning across file operations.
In terms of performance, LinkGuardNF incurs about 1,150

VII. DISCUSSION

Compatibility. While our evaluation focuses on five represen-
tative versions of the Windows operating system, LinkGuard
is designed to be broadly compatible with a wide range of
real-world Windows environments, as discussed in Section V.
Moreover, since LF attacks are fundamentally characterized
by the cross-subject creation and traversal of link chains, we
believe that the underlying principles of our prototype can
be readily adapted to other platforms where such attacks are
feasible, such as MacOS, Linux, and Android, provided that
similar file system semantics exist.
Self-Security. To the best of our knowledge, LinkGuard does
not introduce any known vulnerabilities, including LF attacks,
and operates entirely within the kernel space. In addition, we
also examined the prototype to verify the absence of typical
memory safety issues. While an attacker may theoretically
terminate the process of LinkGuard to compromise its de-
fense by using advanced techniques such as Bring Your Own
Vulnerable Driver (BYOVD) [85] or other undisclosed kernel-
level exploits, such capabilities fall outside our assumed threat
model. We consider this class of adversaries overly powerful
for the scope of this work. Defending against BYOVD-based
attacks aimed at disabling arbitrary security mechanisms is an
orthogonal research problem and remains out of scope.
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VIII. RELATED WORK

LF Vulnerabilities Detection. In recent years, a growing
body of research has focused on the analysis and detection
of LF vulnerabilities. Pak et al. [86] and Zhao et al. [87]
analyzed several real-world CVEs and their corresponding
patches, primarily focusing on elucidating the typical exploita-
tion process of LF attacks and summarizing the associated
code-level fixes. While Lee and Lu et al. [19], [21] employed
static code analysis to identify potential LF vulnerabilities in
executable programs, Xiang and Yu et al. [18], [20] adopted a
dynamic analysis approach by interacting with target programs
to uncover such vulnerabilities at runtime. The vulnerabilities
covered in these works also form part of our dataset, thereby
indirectly supporting the development of LinkGuard.
File System Defenses. A range of defense mechanisms has
been proposed to enhance the security and robustness of file
systems. Lin et al. [88] applied the concept of mimicry-based
defense in a distributed framework to protect file systems
against various threats. For file-based TOCTOU [16] attacks,
prior works [89], [90], [91], [92], [93], [94] primarily rely on
static or dynamic analysis at the user-space level for detection,
while others [95], [96], [97], [98], [99] focus on runtime
prevention by monitoring kernel-space level access. Despite
substantial efforts toward file system protection, to the best of
our knowledge, no existing work has effectively addressed LF
attacks within the Windows file system.

IX. CONCLUSION

This paper presents the first systematic study of defenses
against Link Following (LF) attacks in the Windows file sys-
tem. Motivated by observations from our empirical analysis,
we propose LinkGuard, a lightweight, state-aware runtime
guard against LF attacks. To the best of our knowledge,
LinkGuard is the first approach capable of effectively miti-
gating LF attacks targeting Windows systems. We evaluate a
prototype implementation on five representative Windows sys-
tems to validate its compatibility. On a dataset of 70 real-world
vulnerabilities, LinkGuard successfully mitigates all single-
step attacks and 95.45% of multi-step attacks, with zero false
positives on benign file operations. On average, it introduces
1% overhead in microbenchmarks and 3.4% overhead in real-
world application workloads, with a negligible 5 ms latency
on benign file operations.
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APPENDIX A
METHODOLOGY APPENDIX

A. File ACL Hardening

This example shows a typical ACL-hardening
strategy, where developers remove all access rules
not associated with SYSTEM and disable inheritance.
Notably, the use of SetAccessControl and
SetAccessRuleProtection reflects an upper-layer
abstraction over the native SetSecurityFile API.

public static void SecureDataDirectory() {

    string path = @"C:\ProgramData\Intel\Intel Extreme Tuning Utility";

    // Get current ACL

    DirectoryInfo dirInfo = new DirectoryInfo(path);

    DirectorySecurity acl = dirInfo.GetAccessControl();

    // Remove all access rules not belonging to SYSTEM

    foreach (FileSystemAccessRule rule in acl.GetAccessRules() {

        string identity = rule.IdentityReference.Value;

        if (!identity.Contains("SYSTEM")) {

            acl.RemoveAccessRule(identity, rule.FileSystemRights, rule.AccessControlType);

        }

    }

    // Protect ACL from inheritance and apply updated rules

    acl.SetAccessRuleProtection(isProtected: true, preserveInheritance: false);

    dirInfo.SetAccessControl(acl);

}
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Fig. 9: Countermeasure of CVE-2024-21835: decompiled
code illustrating File ACL Hardening.

B. Code Example Code for Enabling Redirection Guard

Listing 1 shows a practical example of enabling
Redirection Guard at the process level using the
SetProcessMitigationPolicy API.

ULONG SetProcessMitigationMode(
_In_ MODE_OPTION Option

) {
ULONG Error = ERROR_SUCCESS;
PROCESS_MITIGATION_REDIRECTION_TRUST_POLICY

policy = {0};

if (Option == MODE_OPTION::Enforce) {
policy.EnforceRedirectionTrust = 1;

} else if (Option == MODE_OPTION::Audit) {
policy.AuditRedirectionTrust = 1;

}

if (!SetProcessMitigationPolicy(
ProcessRedirectionTrustPolicy,
&policy,
sizeof(policy))) {

Error = GetLastError();
LogError(Error, "Failed to set

mitigation policy");
}

return Error;
}

Listing 1: Code example: enabling Redirection Guard via
SetProcessMitigationPolicy

C. File Name Randomization.

This countermeasure introduces a randomly generated sub-
directory (via GenerateRandomName) in the temporary
path to prevent attackers from predicting and constructing

link chains at known locations. As shown in lines 9–10
of the patch in Figure 10, the original two-level path
(TempPath/FileName) is replaced with a three-level path
(TempPath/RandomName/FileName), thereby inserting
an unpredictable directory layer to mitigate LF attacks.

void CreateLogFile(char *FileName) {

  …
  char LogFilePath[MAX_PATH];

  char TempPath[MAX_PATH];

  char RandomName[16];

 // Generate unpredictable subdir

+ GenerateRandomName(RandomName, 

"%08X.%03X");

-  snprintf(LogFilePath, MAX_PATH, "%s\\%s", 

TempPath, FileName);

+ snprintf(LogFilePath, MAX_PATH, "%s\\%s\\

%s", TempPath, RandomName, FileName);

  CreateFile(LogFilePath);

}

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 10: Countermeasure of CVE-2025-3617: pseudocode
illustrating File Name Randomization.

D. File Path Validation

In the patch for CVE-2023-35342, the
developers mitigate the vulnerability by invoking
GetFileInformationByHandle API to retrieve
file metadata and inspecting the number of associated
symbolic links, thereby identifying and blocking potentially
unsafe access.
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void __fastcall  InitTraceFile (TrcLib *this) {

        wchar_t * FileName = "Wiatrace.log";    

        if (!TrcLib::IsPathALink(FileName)){

            CreateFileW(FileName, ···);

        }

}

+

+

(a) Patched Code with File Path Validation

bool IsPathALink (const wchar_t * FileName){

        HANDLE FileW = CreateFileW(FileName, ···);

        if (GetFileInformationByHandle(FileW, &FileInfo) && 

FileInfo.NumberOfLinks > 1){

            return TRUE;

    }

        return FALSE;

}
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(b) Implementation Details of IsPathALink

Fig. 11: The File Path Validation Countermeasure Analysis in
CVE-2023-35342

17



TABLE VI: Detailed Breakdown of Dataset-α. This table presents the attack types and corresponding countermeasure
classifications for each CVE. We provide statistics on the excluded cases. In total, 82 CVEs were excluded, including
61 without accessible execution environments and 21 with available environments but insufficient technical details to
reproduce the exploitation.

# CVE ID Attack Type Countermeasures

1 CVE-2018-12148 S C1
2 CVE-2018-12168 S C1
3 CVE-2018-6261 M C1
4 CVE-2019-11114 S C1
5 CVE-2019-13382 M C1
6 CVE-2020-0668 S C1
7 CVE-2020-11474 S C5
8 CVE-2020-9682 S C6
9 CVE-2021-25261 M C1
10 CVE-2021-26862 M C5
11 CVE-2021-28313 S C6
12 CVE-2021-43237 S C6
13 CVE-2022-22262 M C1
14 CVE-2022-28225 M C1
15 CVE-2022-30523 M C1
16 CVE-2022-32450 S C5
17 CVE-2022-38604 M C6
18 CVE-2022-38699 S C1
19 CVE-2022-41120 S C1, C6
20 CVE-2022-44704 M C1
21 CVE-2023-20178 M C1
22 CVE-2023-21752 M C6
23 CVE-2023-28868 M C5
24 CVE-2023-28869 S C5
25 CVE-2023-28892 S C6
26 CVE-2023-29343 M C1, C6
27 CVE-2023-32163 S C2, C5
28 CVE-2023-35342 M C6
29 CVE-2023-36047 M C6
30 CVE-2023-36723 S C3
31 CVE-2023-36874 M C6
32 CVE-2023-42099 M C1
33 CVE-2023-50915 S C1
34 CVE-2024-11399 M C1
35 CVE-2024-11857 S C1

# CVE ID Attack Type Countermeasures

36 CVE-2024-20656 S C5
37 CVE-2024-21111 M C2
38 CVE-2024-21447 M C6
39 CVE-2024-26238 M C6
40 CVE-2024-27460 S C6
41 CVE-2024-28916 M C3
42 CVE-2024-30033 M C6
43 CVE-2024-3037 S C6
44 CVE-2024-35204 S C1
45 CVE-2024-38022 S C3
46 CVE-2024-38084 M C3
47 CVE-2024-38393 S C3
48 CVE-2024-43114 M C1
49 CVE-2024-44193 M C5
50 CVE-2024-45315 M C5
51 CVE-2024-45316 M C1
52 CVE-2024-49051 M C4
53 CVE-2024-49107 M C3
54 CVE-2024-6974 M C1
55 CVE-2024-8404 M C6
56 CVE-2024-8405 M C6
57 CVE-2024-9871 M C1
58 CVE-2025-0651 M C3
59 CVE-2025-20099 S C1
60 CVE-2025-21204 M C1
61 CVE-2025-21347 S C2
62 CVE-2025-24287 M C1
63 CVE-2025-24327 M C1
64 CVE-2025-25230 M C1
65 CVE-2025-29975 M C3
66 CVE-2025-32721 M C3
67 CVE-2025-32817 M C4, C5
68 CVE-2025-3617 M C1
69 CVE-2025-48443 M C1
70 CVE-2025-49680 S C3

S: Single-step attacks. M: Multi-step attacks. C1–C6 Countermeasures: C1: ACL Hardening, C2: Secure Path Binding, C3: Redirection Guard, C4: Name
Randomization, C5: Least Privilege, C6: File Path Validation.

E. Detailed Breakdown of Dataset-α

APPENDIX B
ARTIFACT APPENDIX

This is the artifact evaluation appendix for this paper. In
this paper, we present LinkGuard, a lightweight state-aware
runtime guard against LF attacks targeting Windows systems.
The novelty of LinkGuard lies in its two-stage design: The
first stage aims to improve defense efficiency by performing
dynamic subject filtering, which monitors only file operations
and associated subjects involved in the creation and following
of link chains; The second stage applies FSM-based rule

matching to defend LF attacks, ensuring effective and accurate
defense precisely.

We evaluate the prototype across five representative Win-
dows systems to validate its compatibility. On a dataset of
70 real-world vulnerabilities, LinkGuard successfully miti-
gates all single-step attacks and 95.45% of multi-step attacks,
with zero false positives on benign operations. On average,
LinkGuard only incurs 1% overhead in microbenchmarks and
3.4% overhead in real-world application workloads, while
adding a negligible 5 ms latency on benign file operations.
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A. Description & Requirements

1) How to access: The artifact can be downloaded from
the Zenodo record2. All artifacts can be accessed by simply
extracting the downloaded archive.

2) Hardware dependencies: We run our experiments on a
VMware virtual machine hosted on an HP laptop running Win-
dows 11. The artifacts can be used on either physical or virtual
machines. It is recommended to configure the environment
with at least 4 CPU cores, 16 GB RAM, and 200 GB of free
disk space, running Windows 11 as the operating system.

3) Software dependencies: A Windows system is required
for Artifact Evaluation. We recommend using Windows 11
24H2. The other software dependencies are listed below.
• Building. (1) Visual Studio 2022 is required to compile

the executables and kernel drivers necessary for LinkGuard,
along with the corresponding Windows Driver Kit (WDK)3

and Windows SDK4. (2) CMake5 is used to leverage the
build toolchain provided by Visual Studio, producing the
final executable and driver binaries.

• Running. (1) VMware Workstation6 is required to load the
provided virtual machine, which encapsulates the complete
execution environment, including the prepared dataset and
all necessary dependencies for running LinkGuard.
4) Benchmarks: The artifact provided virtual machine in-

cludes two pre-installed vulnerable applications and their
corresponding exploit scripts; reproduction instructions are
documented in the quick-reproduction-guide.pdf.
When LinkGuard is deployed and activated on this VM,
attempts to reproduce the LF attacks using the supplied scripts
are detected by LinkGuard and prevented, causing the exploit
attempts to fail.

B. Artifact Installation & Configuration

Given that deploying LinkGuard requires numerous
Windows-specific dependencies and intricate system configu-
rations, such as enabling unsigned driver installation, we pro-
vide a Quick-Deployment-Guide.pdf. We recommend
using the Quick-Deployment-Guide, which offers a pre-
configured virtual machine environment integrating LinkGuard
and all necessary datasets, to facilitate evaluation.

C. Major Claims

LinkGuard’s defense against Link-Following attacks primar-
ily achieves the following two goals:
• (G1): LinkGuard accurately detects and mitigate LF attacks

with low runtime overhead, minimal runtime latency, and
high compatibility, thereby ensuring its practicality for real-
world deployment.

2https://doi.org/10.5281/zenodo.17481221
3https://learn.microsoft.com/en-us/windows-hardware/drivers/

download-the-wdk#download-icon-for-sdk-step-2-install-sdk
4https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/
5https://cmake.org/download/
6https://www.vmware.com/products/desktop-hypervisor/

workstation-and-fusion

• (G2): LinkGuard should effectively mitigate both known
types of LF attacks, namely, single-step and multi-step
attacks. Moreover, the design should facilitate ease of exten-
sion, allowing rapid adaptation to mitigate newly identified
LF attacks, that is, by incorporating their characteristic
behaviors into FSM rules for timely defense.

D. Evaluation

LinkGuard successfully mitigates 97.1% (68/70) of LF
attacks in our evaluation, including all single-step attacks
(26/26) and 95.45% (42/44) of multi-step attacks.

Due to responsible disclosure constraints and the fact
that some exploit scripts were independently developed by
the authors, we cannot distribute the full set of affected
software and attack scripts. Instead, the artifact includes a
virtual machine preloaded with two representative vulnera-
ble applications and their corresponding exploit scripts (see
quick-reproduction-guide.pdf). Deploying and ac-
tivating LinkGuard on this VM prevents the supplied LF attack
reproductions, thereby demonstrating the practical effective-
ness of our defense.

E. Notes

Note that although we provide a preconfigured VM for
quick deployment of LinkGuard, Windows driver-installation
semantics prevent LinkGuard from being activated out-of-the-
box within that VM. Detailed instructions for running the
VM and activating LinkGuard are provided in the Quick
Deployment Guide.pdf.
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