Artifact
Evaluated

ANDss

Available

Functional

TIPSO-GAN: Malicious Network Traffic

Reproduced

Detection Using a Novel Optimized Generative
Adversarial Network

Ernest AkpakuT*, Jinfu ChenT*g, Joshua Ofoedat
tSchool of Computer Science and Communication Engineering, Jiangsu University
Jiangsu Key Laboratory of Security Technology for Industrial Cyberspace,
301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
iDepartment of Information Technology, University of Professional Studies, Accra, Ghana

ernestakpakul@gmail.com,

Abstract—Detecting advanced cyber threats, particularly zero-
day vulnerabilities, poses significant challenges in network secu-
rity. This paper presents TIPSO-GAN, an optimized Genera-
tive Adversarial Network (GAN) for detecting malicious traffic.
TIPSO-GAN addresses common GAN-based intrusion detection
system (IDS) issues, such as training instability and mode
collapse, by framing GAN training as a swarm optimization
problem, harnessing collective intelligence for complex optimiza-
tion. To enhance Particle Swarm Optimization (PSO), TIPSO-
GAN employs three strategies: (1) adaptive inertia weights
for a balance of exploration and exploitation, (2) a diversity
preservation strategy to prevent premature convergence, and (3)
a feedback loop to reinitialize stagnant particles. TIPSO-GAN
integrates transfer learning with a Temporal-Decaying Multi-
Head Self-Attention mechanism to prioritize recent features,
aiding in unseen malicious traffic detection. A combination of
reconstruction loss and focal loss in the objective function further
ensures realistic normal samples while focusing on challenging
malicious samples. Across CIC-IDS2018, CICAPT-110T2024, and
CIC-DDo0S2019, TIPSO-GAN achieves 99.1+0.1, 98.9+0.1, and
98.7+0.1 F1, outperforming the strongest baseline by 0.2-1.0 F1
and exceeding transformer IDS models. On CICAPT-110T2024,
it reaches 0.999+0.002 macro PR-AUC, ahead of the next
best method (0.9601-0.005). Under strict zero-day evaluations,
TIPSO-GAN attains 92.3 F1 in LOFO tests and 79-83 F1 in
cross-dataset experiments while maintaining recall above 0.80.
Despite PSO-enhanced training, TIPSO-GAN maintains 0.42 ms
latency, ~2400 flows/s throughput, and a 2.1 GB footprint, with
stable performance up to 10° flows. Our code is accessible at
https://doi.org/10.5281/zenodo.17759516.

I. INTRODUCTION

The adoption of internet-based technologies such as cloud
computing, information systems, web servers, and IoTs has
proliferated in recent years. This heightened reliance on tech-
nology in our daily routines has rendered us more susceptible
to unknown cyberattacks. Identifying previously unknown vul-
nerabilities in networks is challenging as they lack established
signatures and exhibit novel behaviours not yet recognized

* These authors contributed equally and should be regarded as co-first authors.
= Corresponding author: Jinfu Chen.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.243241
www.ndss-symposium.org

jinfuchenfujs.edu.cn,

joshua.ofoedal@upsamail.edu.gh

by traditional security systems [1]. Widely used deep learn-
ing methods such as LSTM, CNN, DNN, and RNN traffic
identification methods are broadly trained with labelled traffic
data. This limits their ability to learn general features from
unlabelled data. As such, they still suffer from low accuracy,
particularly when challenged with unknown malicious traffic
samples [2]. Recent transformer-based architectures, such as
FlowTransformer [3], FT-Transformer [4], MalDetectFormer
[5], and TransTraffic [6], have shown strong performance in
modeling long-range dependencies in network flows. However,
these methods are primarily optimized for static accuracy
and rely on large labeled datasets. Generative adversarial
networks (GANs) developed by Goodfellow et al. [7] have
proven effective for creating models that can mimic previously
unknown behaviours in real-world situations [8] [9]. GAN
is made up of a generator which is a neural network that
generates new data samples from a random noise input; and
a discriminator that aims to distinguish between real data
samples and the fake samples produced by the generator. The
two networks are trained simultaneously using the MiniMax
objective function which is based on the principles of the
game theory. Compared with other existing generative models,
GANSs provide a concise and efficient framework for learning
generative models.

Although GANs have been successful in image generation
and manipulation [10], game development, text-to-image gen-
eration, medical imaging, and many other tasks [11], they
suffer from mode collapse resulting in training instability.
The training aims to reach a Nash equilibrium where neither
the generator nor the discriminator can improve their strategy
given the other’s strategy. However, finding this equilibrium
in practice is challenging due to the non-convex and high-
dimensional optimization landscape, leading to unstable train-
ing and mode collapse [12]. Optimizing the network’s weights
to minimize the loss function is challenging due to the non-
convex nature of the loss landscape in GANs. This makes it
difficult to find the optimal set of weights that results in high-
quality, diverse generated samples.

Many recent efforts on GANs have focused on overcoming

https://doi.org/10.5281/zenodo.17759516

these optimization difficulties by developing various adver-
sarial training objectives [13]. The gradients of the objective
function of the network parameters guide the training. How-
ever, training GANs with the original Jensen—Shannon diver-
gence (JSD) leads to vanishing gradients leading to unstable
training dynamics [14]. To address these issues, researchers
have introduced alternative adversarial training objectives such
as the least squares [15], absolute deviation, energy-based,
spectral normalization [14], Kullback—Leibler (KL) divergence
[16], Wasserstein Distance, and the Wasserstein Distance with
a penalty term [17]. However, these objectives have not
fully addressed the training and mode collapse challenges
completely.

In this study, we propose a novel GAN framework named
TIPSO-GAN, leveraging the improved architectural design of
GAN and enhanced Particle Swarm Optimization (PSO) to
enhance the training dynamics. Unlike conventional GANS that
engage in fixed adversarial competition, our PSO-optimized
GAN harnesses the collective intelligence of a swarm to
navigate the complex optimization landscape. By treating
the generator’s parameters as particles within the swarm,
we evolve the generator through iterative updates guided by
both individual and social experiences within the swarm,
effectively transforming the adversarial training into a PSO-
driven optimization challenge. In our implementation, we note
that the fast convergence speed of PSO can quickly lead GANs
to find a good set of parameters, which can result in stable and
efficient training, especially in the initial phases of training.
However, this speed could limit the algorithm from exploring
the entire solution space sufficiently, which could be crucial
for GANS that require a thorough search to avoid getting stuck
in suboptimal configurations. Also, despite its global search
capability, the standard PSO might not be as effective in fine-
tuning the parameters near the end of the optimization process,
potentially leaving room for improvement in the generator’s
performance.

Linearly decreasing the inertia weight and improving the
weight factor have been proposed to address these problems
in clustering algorithms. However, it may not be suitable
for complex problems where the optimization surface has
many local optima or varying degrees of ruggedness. Also,
it uses a fixed predetermined schedule for reducing inertia
weights which lacks flexibility to adapt to different stages of
the optimization process or diverse problem landscapes. For
example, in a linearly decreasing inertia weight schedule, the
inertia weight starts at an initial value and decreases uniformly
to a final value by the end of the optimization process.
To address these challenges, we enhanced the standard PSO
algorithm to incorporate adaptive inertia weights, diversity
preservation strategies, and a feedback loop mechanism that
encourages exploration in the later stages of optimization.
These modifications ensure PSO-driven GAN optimization
to avoid local optima and achieve more robust and diverse
generator parameters.

In this paper, several novel strategies are proposed to address
the challenges discussed for better malicious network traffic

detection. First, an adaptive Sigmoidal inertia weight adjust-
ment strategy is introduced into the PSO algorithm and com-
pared with the popular linearly decreasing approach, and oth-
ers. The best performing is used to effectively explore GAN’s
parameter search space to find an optimal solution. Second, the
traditional GAN is modified through novel architectural design
a new loss reconstruction function, and PSO-based training.
Last, a pretraining model named DeePred is introduced and
applied to improve the performance of an unknown malicious
traffic detector. Leveraging, on the strengths of the proposed
methods, this study makes the following contributions:

1) We propose TIPSO-GAN, a framework that frames
GAN training as a swarm optimization problem, lever-
aging an enhanced PSO algorithm in a two-staged ad-
versarial training. We introduce adaptive inertia weights,
a diversity preservation mechanism, and reinitialization
of stagnant particles to enhance the PSO to dynamically
balance exploration and exploitation, prevent premature
convergence, and avoid stagnation in the optimization
process, thereby enhancing the training stability and con-
vergence of TIPSO-GAN. These enhancements ensure
better exploration and exploitation of the search space
during training, enabling better convergence speed, more
stable training, and effective mitigation of mode col-
lapse.

2) A novel reconstruction loss function and a pre-training
network DeePred, are introduced to improve the ad-
versarial traffic generation ability of the generator and
the detection ability of the discriminator in TIPSO-
GAN. DeePred is integrated with a novel Multihead Self
Attention Mechanism (MHSA) that utilizes a temporal
decaying parameter to provide larger weights to features
that are more recent and are indicative of malicious
behaviour. A focal loss is introduced into the discrim-
inator to address class imbalance by focusing on hard-
to-classify malicious samples.

3) Extensive experiments on three datasets demonstrate
that TIPSO-GAN outperforms conventional GAN and
its variants, state-of-the-art GAN-based-IDS variants and
four other existing deep learning IDS models in terms of
accuracy, precision, recall, and Fl-score. TIPSO-GAN
also exhibits improved training stability and resistance
to mode collapse and class imbalance, making it highly
suitable for real-world network intrusion detection sys-
tems.

The remaining sections of the study are organized as follows:
Section II discusses related studies. Section III presents de-
tailed descriptions of the proposed method. In Sections V and
VI, we describe the experimental setup and evaluation, and
results respectfully. The conclusion and future research are
discussed in section VII.

II. RELATED STUDIES
A. Generative Adversarial Networks in Cybersecurity

In recent years, GANs have been implemented for network
security, particularly for the detection of malicious traffic. The

ability of GANs to generate realistic synthetic data has been
leveraged to enhance the performance of intrusion detection
systems (IDS) by simulating a wide range of potential attacks
[13]. One of the pioneering works in this area is the paper
by Das [18], which demonstrates the application of GANSs in
reproducing both categorical and continuous synthetic network
traffic features. Building upon this foundation, researchers
have explored the integration of GANs with deep neural
networks for more effective anomaly detection in network
traffic. The work by Liu and Liu [19] presents a federated
learning approach using GANs, which allows for localized
training and centralized model updates, addressing concerns of
privacy and model tampering in large-scale networks. Further
advancements have been made in the detection of adversarial
traffic flows by employing GAN-based attack algorithms like
NIDSGAN [20], which develops a GAN-based attack algo-
rithm capable of generating highly realistic adversarial traffic
flows that can evade machine learning-based NIDS. Recent
work has also explored conditional GANs for generating
specific attack types and advanced architectures for improving
synthetic traffic quality.

However, these approaches predominantly focus on gener-
ating synthetic data to augment training datasets rather than
directly addressing the challenge of detecting previously un-
seen attack patterns. For instance, Das [18] generates synthetic
network flows but requires pre-existing attack labels, while
NIDSGAN [20] creates adversarial examples primarily for
testing existing detectors rather than improving zero-day detec-
tion capabilities. Moreover, existing GAN-based IDS methods
struggle with the unique characteristics of network traffic
data. Unlike image generation where GANs excel, network
traffic exhibits complex temporal correlations, multi-modal
feature distributions, and extreme class imbalance between
normal and malicious samples. Liu and Liu [19] reported
that their federated GAN approach achieved only 78% detec-
tion accuracy on unknown attack variants, significantly lower
than performance on known attacks. Similarly, recent studies
show that conventional GAN architectures fail to preserve the
statistical properties of network protocols when generating
synthetic traffic, leading to unrealistic packet sequences that
can be easily distinguished by modern firewalls. Despite these
promising initial results, current GAN applications in network
security remain limited by training instability and inability
to generalize beyond their training distributions, constraining
their effectiveness in dynamic threat environments.

B. GAN Training Optimization and Stability

As noted in [21], GANs are known to suffer from training
instability, which can lead to issues such as mode collapse and
training oscillations. These challenges can affect the quality
and diversity of the generated samples, which are crucial for
accurately simulating and detecting a wide range of network
attacks. Another limitation highlighted in the literature is the
complexity of the generator network in GANs [13]. When
the generator’s probability distribution is highly complex, it
becomes difficult to estimate the maximum likelihood [22].

GANs address this by using neural networks to define the
probability distribution [23], which introduces its own set of
challenges, such as the need for careful architecture design and
tuning to ensure that the generated data accurately represents
the underlying distribution of normal network traffic. DCGAN
[24] introduced architectural constraints that improved the sta-
bility of GAN training by replacing pooling layers with strided
convolutions and fully connected layers with global average
pooling in the discriminator to reduce checkerboard artifacts
and simplify the architecture. However, these modifications
did not eliminate the issues of training instability and mode
collapse. Subsequent research focused on reconstructing the
loss function to address these training problems. The Wasser-
stein GAN (WGAN) [14] introduced a new loss function
based on the Wasserstein distance, which provides a more
stable training objective. An extended WGAN called WGAN-
GP [17] added a gradient penalty term to the loss function,
though this introduced additional computational overhead. The
LSGAN [15] proposed using least squares loss, but suffered
from slower convergence rates on complex datasets. Beyond
loss function modifications, advanced architectural innovations
have attempted to address training instability. Techniques such
as spectral normalization and progressive training have shown
improvements in specific domains, yet these methods primarily
target image generation tasks. When applied to network traffic
data, these stabilization techniques show limited effectiveness
due to the high-dimensional, non-stationary nature of network
features. Recent empirical studies report that even with these
advanced techniques, GANs applied to cybersecurity datasets
still experience mode collapse rates of 20-35%, particularly
when attempting to generate minority class samples represent-
ing sophisticated attacks [13]. The fundamental challenge re-
mains that existing stabilization methods rely on assumptions
about data structure and training dynamics that do not hold
for the adversarial, multi-modal distributions characteristic of
network security data.

C. Swarm Intelligence for Neural Network Optimization

In recent times, swarm intelligence algorithms [25] such as
PSOs [26] have achieved considerable success across a wide
range of computational tasks, including modelling, optimiza-
tion, and design of GANs [27]. PSO operates by maintaining a
population of particles, each representing a potential solution
in the search space, where particles update their velocities
and positions based on their personal best experiences and
the global best solution found by the swarm. This population-
based approach enables PSO to explore multiple regions
of the search space simultaneously, making it particularly
effective for complex optimization problems with multiple
local optima. Recent applications of PSO in neural network
optimization have demonstrated its effectiveness in avoiding
local minima through population-based search strategies [28].
Unlike gradient-based methods that rely on local derivative
information, PSO maintains diversity through swarm dynamics
and can escape suboptimal regions by leveraging collective
intelligence. In the context of GAN training, PSO offers the-

oretical advantages over traditional Adam or SGD optimizers
by treating the generator parameters as particle positions in
the high-dimensional parameter space, enabling global search
capabilities that are particularly valuable given the non-convex,
multi-modal nature of GAN loss landscapes [29]. However,
conventional PSO suffers from premature convergence and
insufficient exploration in high-dimensional parameter spaces
typical of GAN architectures. The standard PSO algorithm
can become trapped in local optima when the swarm loses
diversity, particularly in complex optimization landscapes with
numerous suboptimal peaks. Variants such as linearly decreas-
ing inertia weight PSO [28] have been proposed to balance
exploration and exploitation phases by gradually reducing
the influence of previous velocities over time. However, this
linear scheduling approach lacks the flexibility to adapt to
different stages of the optimization process or diverse problem
landscapes, making it less effective in complex problem sce-
narios where the optimization surface has many local optima
or varying degrees of ruggedness. The challenge becomes
particularly acute in GAN optimization, where the objective
function changes continuously due to the adversarial game
between generator and discriminator. The fitness landscape
exhibits non-stationarity as discriminator updates alter the gen-
erator’s optimization surface, requiring PSO variants that can
dynamically adjust exploration-exploitation balance based on
real-time feedback. Traditional PSO parameters such as fixed
inertia weights and acceleration coefficients prove inadequate
in this environment, as they cannot respond to the evolving
loss topology that characterizes adversarial training dynamics
[28]. These problems could critically compromise PSO’s effi-
cacy in high-dimensional, non-convex optimization problems
characterized by extensive local minima networks, thereby
potentially leading to suboptimal convergence trajectories and
diminished algorithmic convergence velocities [30].

D. Novelty of this study

As summarized in Table I, although numerous GAN-based
intrusion detection approaches exist, they seldom address key
challenges comprehensively. Despite recent advances [31],
[32], most still suffer from training instability and high mode
collapse when applied to heterogeneous network traffic data.
Stabilization techniques such as spectral normalization and
progressive training, designed for vision tasks, remain inef-
fective for sparse cybersecurity datasets. Furthermore, the use
of PSO in GANSs for intrusion detection is largely unexplored.
While PSO-GAN has shown promise in other domains [33],
[34], limited works [35] lack adaptive inertia weighting and
diversity-preserving mechanisms essential for robust adversar-
ial learning. We also note that transformer-based IDS models
(TranAD, TransfficFormer, FlowTransformer) improve stabil-
ity but do not incorporate PSO-guided GAN training or zero-
day—oriented transfer learning.

Another gap is the absence of transfer learning. Existing
GAN-based IDSs are typically trained from scratch, neglecting
pre-trained models that enhance convergence and generaliza-
tion. Although hybrid approaches such as [36] employ zero-

shot learning, they fail to integrate transfer learning for both
data synthesis and knowledge reuse. Few studies unify known
and evolving attack detection in a coordinated framework;
even recent multi-level or hybrid models [36], [37] omit PSO
optimization and transfer learning within a single training
pipeline.

TABLE I: Selected Related Studies. Training Stability (TS),
Mode Collapse (MC), Class Imbalance (CI), Zero-Day Detec-
tion (ZD)

Study Year Method TS MC CI ZD TL PSO MPT
Das [18] 2022 FGAN X X X v X X X
Zolbayar et al. [20] 2022 NIDSGAN X X v X X X X
Nguyen et al. [31] 2023 GAN-SCADA v v v X X X X
Seo et al. [38] 2019 GIDS v v v v X X X
Rahman et al. [39] 2024 SYN-GAN X X v X X X X
Aldhaheri & Alhuzali [40] 2023 SGAN-IDS X X X v X X X
Torres et al. [32] 2023 GAN-AE v v v v X X X
Poongodi & Hamdi [37] 2023 Multi-GAN-IoV v v v X X X v
Mari et al. [41] 2023 GAN-Adversarial v X X v X X X
Zhang & Zhao [33] 2021 PSO-GAN v v X X X v X
Liu et al. [34] 2022 Parameterized PSO-GAN v v X X X v X
Sundaram et al. [35] 2023 PSO-GRU-GAN-5G v v v v X v X
Roopak et al. [42] 2024 Unsupervised Ensemble v X v v X X X
Sarhan et al. [43] 2023 Zero-Shot ML X X v v X X X
Touré et al. [36] 2024 Hybrid Learning v X v v X X v
Huang et al. [44] 2021 T-GAN v X v X X X X
Tuli et al. [45] 2022 TranAD (Transformer) v v v X X X X
Du et al. [46] 2025 TransfficFormer v 's v X X X X
Manocchio et al. [3] 2024 FlowTransformer v v v v X X X
TIPSO-GAN (Proposed) 2025 Enhanced PSO-GAN v v v v v v v

III. PROPOSED METHOD
A. The TIPSO-GAN Framework

To detect unknown network attacks with high accuracy,
we propose a two-stage adversarial-based intrusion detection
model named TIPSO-GAN, as illustrated in Figure 1. The
core of the framework is TIPSO-GAN, which combines the
benefits of PSOGAN and the pre-training model (DeePred) to
enhance the detection of both known and unknown attacks.
In this framework, the discriminator of PSOGAN and the pre-
training model DeePred are crucial for transferring knowledge
to the final TIPSO-GAN. The Generator G in TIPSO-GAN
is initialized by transferring the structure and parameters from
the Generator G of PSOGAN. PSOGAN is trained exclusively
on normal traffic data. During training, the generator G learns
to produce modelled samples that approximate the normal
traffic distribution. Once the PSOGAN has completed its
training, its discriminator D is discarded, and the trained
generator G is transferred to initialize the Generator G in
TIPSO-GAN. This ensures that the Generator GG starts with
a good understanding of normal traffic, enabling it to generate
more accurate representations of normal traffic during training.

To strengthen the detection capability of the Discriminator
D7 in TIPSO-GAN, we transfer the structure and parameters
of the pre-training model DeePred into Discriminator Dp. The
DeePred model has a structure similar to the discriminator
in PSOGAN but is trained using a dataset containing both
normal and known malicious traffic. This gives DeePred the
ability to effectively distinguish between normal and malicious
samples (i.e., 2-class classification). By transferring the trained
parameters from DeePred, the Discriminator Dy of TIPSO-
GAN inherits a robust classification capability, enhancing its
ability to detect unknown malicious traffic. After the initial
transfer, TIPSO-GAN undergoes unsupervised training, using

N&M

Normal traffic

DeePreD
Pre-training

Modeled Samples pSOGAN

Generator
Gr

Normal traffic

Fig. 1: Detection roadmap of TIPSO-GAN.

Note. N: Normal traffic, M: Known Malicious traffic, UM:
Unknown Malicious traffic.

Dr

Modeled Samples

TIPSO-GAN

Algorithm 1 Algorithm of the Proposed TIPSO-GAN Model

1: Initialize: DN: normal traffic; DE: train set; VE: val
set; T'B: test set; B: batch size; Epochs
G: generator trained from PSOGAN using DN
DeePred: discriminator pre-trained with DE, VE
Initialize GT < G, DT < DeePred
Training:
for each epoch in Epochs do
Generate fake samples with GT (size B)
Sample real flows from DN (size B)
Train discriminator DT on both batches
10: if validation accuracy drops for n=3 rounds then
Output DT from round n+1 and break
12: else if accuracy on normal < 7' then
13: Output DT from round n—1 and break
14: end if
15: Train generator GT'
16: end for
17: Output: final discriminator DT as classifier C'

D A ol

—
—_

a dataset consisting only of normal traffic samples. The goal
is for the Generator G to continue learning the normal traffic
distribution while the Discriminator Dr refines its ability to
identify traffic samples that deviate from the normal (i.e.,
potential unknown attacks). A validation set containing both
normal and unknown malicious samples is used to monitor the
performance of TIPSO-GAN during training. The adversarial
game between the generator and discriminator continues until
the detection accuracy of normal traffic reaches a certain
threshold or the overall accuracy starts to decline. Once
training is complete, the Discriminator D7 of TIPSO-GAN
is output as the final anomaly detector.

B. Modified PSO for GAN Optimization

We propose an improved PSO variant that integrates an
adaptive inertia weight and a diversity preservation mecha-
nism. Our enhanced PSO algorithm introduces an adaptive
inertia weight w that dynamically adjusts based on the swarm’s
performance. Unlike traditional PSO algorithms that use a
fixed or linearly decreasing inertia weight, our method adapts
the inertia weight non-linearly based on real-time feedback,
providing greater flexibility in balancing exploration and ex-
ploitation. In the early stages of optimization, a higher inertia
weight is used to facilitate global exploration, enabling parti-
cles to traverse the search space extensively. As the algorithm
progresses, the inertia weight decreases, honing the particles’
search towards local refinement and convergence to optimal
solutions. Algorithm 2 shows the working principle of the
proposed PSO. The adaptive inertia weight is updated using
a non-linear function, governed by a sigmoid function, to
provide rapid adaptation when significant improvements are
detected and a gradual approach when progress plateaus. The
inertia weight w(t) at iteration ¢ is calculated as:

1
w(t) = Wmin + (Wmax — Wmin) X 1+ e F(AF () Favesnona) (1)

where: wpax and wpi, are the maximum and minimum inertia
weights, respectively. Af(t) represents the change in the
global best fitness over a certain number of iterations, defined
as Af(t) = foest(t) — foest(t — At). finweshowd is a predefined
fitness improvement threshold. k is a scaling factor controlling
the steepness of the sigmoid function. At is the number of
iterations over which the fitness change is measured.

C. Improved particle diversity

Complementing the adaptive inertia weight, the diversity
preservation mechanism is designed to prevent premature
convergence, a common pitfall in PSO where particles cluster
around sub-optimal solutions. This mechanism sets our ap-
proach apart from existing PSO variants by actively maintain-
ing swarm diversity through multiple strategies not commonly
combined in standard algorithms. It maintains diversity within
the swarm through three strategies:

a) Fitness Sharing: Particles in densely populated re-
gions are penalized to encourage exploration of less-visited
areas. Unlike traditional PSO, which treats particle fitness
independently, our method adjusts fitness values based on
particle proximity, promoting a more diverse search. The
shared fitness fl for particle ¢ is calculated as:

F= fi
© X sh(dy)
where f; is the original fitness of particle 7. N is the number of
particles. sh(d;;) is the sharing function based on the distance
d;; between particles ¢ and j, defined as:

1 ()" if d; e
Sh(dL]) = { (Ushare) 1 J <o h: (3)

2)

0 otherwise

Oshare 18 the sharing radius. « controls the shape of the sharing
function. Re-initialization of Stagnant Particles: Particles that
have not improved their personal best over a set number of
iterations Tiignane are re-initialised to reintroduce variability.
This differs from standard PSO, where particles may remain
stagnant without mechanisms to reintroduce diversity. The re-
initialisation is performed as:

Ift — tlast_improve > Tstagnanta
then x;(t) = Tmin + rand() X (Tmax — Tmin) 4)

here, tiast_improve 1S the iteration when particle 4 last improved
its personal best. xpy,x and x;, define the bounds of the search
space. rand() generates a random vector with components
uniformly distributed in [0, 1].

b) Randomness in Velocity Update: Introducing a ran-
dom component to the velocity update equation adds stochas-
ticity, helping particles escape local optima. Traditional PSO
typically lacks this random perturbation, and its inclusion in
our method enhances the ability to explore the search space
more thoroughly. The modified velocity update equation is:

vi(t+1) = w(t) - vi(t) +c1-r1(t) - [pi(t) — 24 (t)]
+ca-ma(t) - [g(t) — zi(t)]
+ B - randn() (3)

where v;(t+1) is the updated velocity of particle 4 at iteration
t + 1. w(t) is the adaptive inertia weight at iteration t. ¢;
and ¢y are cognitive and social acceleration coefficients. 1 (t)
and ro(t) are random numbers uniformly distributed in [0, 1].
p;(t) is the personal best position of particle . x;(t) is the
current position of particle i. g(t) is the global best position
found by the swarm. 3 is a small constant controlling the
magnitude of the random perturbation. randn() generates a
random vector with components normally distributed with
mean 0 and variance 1. The synergy of the adaptive inertia
weight and the diversity preservation mechanism equips the
improved PSO algorithm with enhanced flexibility and robust-
ness. It dynamically adjusts to the demands of the optimization
process, balancing the need for broad exploration with fine-
grained exploitation.

D. Pre-trained Model (DeePred) construction

DeePred, which is a binary classifier based on CNN is
introduced to improve the performance of the discriminator
in TIPSO-GAN to detect zero-day malicious network traffic.
The DeePred pre-training stage provides initialization using
known malicious samples to stabilize discriminator learning
but does not constrain detection to those patterns. TIPSO-
GAN’s zero-day capability arises from its unsupervised fine-
tuning on normal traffic, where deviations from the learned
distribution are flagged as anomalies. The key features and
parameters of DeePred are shown in Figure 4b. It is integrated
with a novel Multihead Self-Attention Mechanism (MHSA)
based on a temporal decaying parameter to provide larger
weights for features that are more recent and indicative of
malicious behaviour. The first convolutional layer transforms

Fig. 2: Structure of the Multihead Self Attention Mechanism

the input into a feature map, followed by a Leaky ReLLU activa-
tion function to maintain non-linearity. The second and third
convolutional layers continue to downsample the input into
progressively smaller but deeper feature maps, ensuring that
the model captures increasingly abstract patterns in the traffic
flow. After the convolutional layers, we introduce the MHSA
mechanism. Unlike the traditional attention mechanism, we
introduce a temporal decay factor that diminishes the influence
of tokens based on their relative positions in the sequence.
The decay factor ~; is then applied to the attention scores in
formula 6.

v¢ = exp (—Alt — i) (6)

Where A is a decay rate hyperparameter that controls how
quickly the attention fades over time. ¢ is the current token’s
position. ¢ is the position of the token in the sequence.
The decay factor 7, exponentially decreases as the distance
between token positions increases, thereby lowering the at-
tention score of distant tokens. For attention computation, -,
integrated into the attention logits before applying the softmax.
This modification ensures that as the distance between tokens
increases, the corresponding attention scores are reduced ex-
ponentially, making the model focus more on recent tokens.
During computation, each head has its decay factor as

(Q, K,V) = Concat (head;, heads, . .. , head;,) we (7

Therefore, the MHSA introduced into DeePred is given by:
QiK'

Vi,
where h is the number of heads and each I'; is the decay matrix
specific to that head. Following the MHSA layer, the feature
maps are flattened and passed through a fully connected layer
for classification. Once trained, the model is transferred to the
TIPSO-GAN framework to serve as the initial discriminator,
where it is further fine-tuned to handle more complex and
evolving network threats. The full structure of the MHSA is
shown in Fig. 2.

head; = softmax < ® I‘i> Vi ®)

E. Improved Design of the GAN Structure

In the proposed TIPSO-GAN framework, we introduce
a dynamic loss function to mitigate issues such as mode
collapse and training instability. This dynamic loss function,

Ldynamic(é), is constructed by combining three key compo-
nents: the adversarial loss L(G, D)(0), divergence D(6), and
stability score S(f). Additionally, we apply label smoothing
to further stabilize the training process.

Unlike the adversarial loss L(G, D)(6), derived from the
traditional DCGAN setup, we incorporate label smoothing
in our approach to prevent the discriminator from becoming
overconfident. Instead of hard labels (1 for real samples and
0 for generated samples), we use softened labels: 0.9 for
real samples and 0.1 for generated samples. This encourages
the discriminator to generalize better and avoid overfitting to
the training data. The adversarial loss for the generator and
discriminator is given by:

L(G,D) = min (—nl,b 3 los D(G(zm)
+ max (;L Z log D(:vi)> 9

+ max (;L Zlog(l - D(G(Zz)))>

Here, label smoothing is applied to adjust the discriminator’s
output as follows:

D) = 0.9 ifz>05
o1 ifz<05

This smooth label approach improves the discriminator’s per-
formance on unseen data by reducing overfitting. To ensure
more balanced training, we combine this adversarial loss with
the divergence D(f) and stability score S(f), forming the
complete dynamic loss function:

Ldynamic(a) :O[L(G,D)(G)—&-BD(Q)-F’YS(@) (10)

Here, «, 8, and ~ are adaptive coefficients optimized through
PSO, controlling the contributions of each term. We define the
initial ranges of «, 3, and ~y within [0, 1], ensuring their sum
equals 1 to maintain balance across the three components. This
dynamic formulation introduces label smoothing and adaptive
weighting to promote more effective training and prevent mode
collapse and vanishing gradients.

1) Reconstruction loss function: As described earlier, the
generator in TIPSO-GAN is transferred from PSOGAN, which
has demonstrated strong sample generation capabilities. How-
ever, during adversarial training in TIPSO-GAN, the generated
pseudo-samples may become too similar to real samples,
potentially increasing the false positive rate. To mitigate this,
a reconstruction loss is introduced in TIPSO-GAN’s objective
function. This not only enhances the generator’s ability to
produce diverse, realistic samples but also improves the dis-
criminator’s capacity to distinguish between real and generated
samples. The structure and parameters of the proposed recon-
struction loss function in shown in Fig. 5. The discriminator
outputs a one-dimensional feature map in the flattened layer,
which is utilised for reconstruction. The reconstruction loss

function is defined as the expected value of the L1 norm of
the difference between the original sample and the sample
reconstructed by the generator, based on the features extracted
by the discriminator. This can be expressed as:

Ly =Eanp, [[|GoDE@) — 2]] aD
Where Gg(Dg (z)) denotes the generator’s reconstruction
of the input sample z using the features extracted by the
discriminator. The L1 norm ensures that the reconstructed
sample closely resembles the original, which enhances the
discriminator’s ability to recognise real (normal) samples,
thereby reducing false positives.

a) Addressing Class Imbalance with Focal Loss: While
the reconstruction loss improves the quality of the generated
samples, TIPSO-GAN also incorporates a focal loss in the
discriminator to tackle class imbalance between normal and
malicious traffic. The focal loss emphasizes hard-to-classify
samples—particularly under-represented malicious traffic. The
focal loss is defined as:

FL(pt) = —as(1 — pt)” log(pr)

Where p, is the model’s predicted probability for the true class.
o 1s a weighting factor that balances the importance of the
minority class (malicious traffic). v is the focusing param-
eter that modulates the influence of easier examples, down-
weighting them while focusing on harder-to-classify malicious
traffic. By using focal loss, the discriminator can focus more
on detecting minority-class samples, such as rare and unknown
malicious traffic, while avoiding being overwhelmed by the
majority class (normal traffic). Both reconstruction loss and
focal loss are integrated into the overall objective function to
ensure that the generator and discriminator work in tandem to
produce realistic, diverse samples while addressing the class
imbalance problem.

b) Discriminator Loss: The discriminator’s objective
function now combines the reconstruction loss and the focal
loss, ensuring that the discriminator can: 1. Distinguish be-
tween real and generated samples based on the reconstruction
of intricate features. 2. Detect minority-class malicious traffic
more effectively. The overall discriminator loss is expressed
as:

(12)

LY =LY+ XL+ FL(py) (13)

Where Lf is the standard adversarial loss for the discrimina-
tor. Lf is the reconstruction loss that helps the discriminator
distinguish real from generated samples. F'L(p;) is the focal
loss, which ensures that the discriminator focuses more on
hard-to-classify examples, especially minority-class malicious
traffic.

c) Generator Loss: Similarly, the generator’s loss func-
tion includes the reconstruction loss, guiding the generator to
produce samples that closely resemble real network traffic.
The generator’s loss is defined as:

LS =L§ +)\ Ly (14)

X(IDS_Dataset)

Fig. 3: The structure of DCGAN

Where L§ is the standard adversarial loss for the generator.
Lf is the reconstruction loss, ensuring the generated samples
align closely with normal traffic patterns. The reconstruction
loss helps the discriminator extract intricate features from
network traffic, reducing false positives and improving the
identification of normal and malicious patterns. Focal loss
ensures that the discriminator pays more attention to minority-
class samples, improving its ability to detect rare malicious
traffic.

2) Structure and Parameters of PSOGAN: The structure
of the proposed generator architecture (PSOGAN) is shown
in Fig. 3. It is based on DCGAN but introduces key en-
hancements to improve its capacity for generating realistic
network traffic data. Starting with a 100-dimensional noise
vector, the input is passed through a fully connected layer
and progressively upsampled via a series of deconvolutional
layers. Key differences from the standard DCGAN include the
incorporation of residual connections for stable training, and
dilation in the second deconvolutional layer to capture multi-
scale features. The discriminator in our proposed architecture
is shown in Fig. 4a. It is designed to distinguish between real
and generated network traffic samples, following a modified
DCGAN framework. The input to the discriminator passes
through several convolutional layers that progressively reduce
its spatial dimensions while increasing the depth of the feature
maps.

IV. THREAT MODEL

We assume adversaries aim to evade detection of mali-
cious traffic, degrade IDS performance through poisoning,
or exploit distribution shifts such as cross-domain or zero-
day attacks. We consider white-box (full architecture and
parameters), gray-box (architecture known, parameters hid-
den), and black-box (query-only) knowledge settings. The
adversary can perturb flow features within protocol-valid
bounds, generate adversarial traffic with generative models,
inject mislabeled samples during training, or launch transfer
attacks from substitute models; in real deployments they may
also attempt resource exhaustion by overloading throughput.
We assume the defender controls the training environment
and preprocessing pipeline, which are trusted, while traffic
inputs may be adversarial. Under these assumptions, TIPSO-
GAN is evaluated against static perturbations, adaptive attacks,
domain-constrained and mimicry attacks, poisoning, black-
box transfer, cross-domain generalization, and unseen zero-
day (LOFO) scenarios, aligning the evaluation with the threat
model.

V. EXPERIMENTAL SETUP AND EVALUATION
A. Implementation Details

Hardware and software setup details are presented in the
Appendix A-B (see Table XIV). For the GAN framework, the
generator and discriminator networks were configured with
setup settings in Figs 3 and 4a. Detailed sensitivity analysis
and hyperparameter settings information are presented in Table
XV, and Figs. 11-14.

B. Dataset

We evaluated our framework using the CIC-IDS2018, CIC-
DDoS2019 [47], and CICAPT-110T2024 [48], each containing
normal and various attack traffic types. We evaluate under
leakage-robust settings. Details of the datasets are presented
in Table II. For CIC-IDS2018 and CIC-DDo0S2019, we use
temporal splits that simulate deployment on future traffic. For
CICAPT-1I0T2024, we use grouped splits by scenario and
also leave-one-scenario-out folds. Before splitting, we remove
exact and near-duplicate flows using hashing on normalized
numeric features and an L2 tolerance of 1e-6. Where available,
we split by flow/session keys and source hosts so that related
flows do not cross partitions. All preprocessing models are
fit on the training set only and applied to validation and
test. The resulting transformation parameters are then applied
unchanged to the validation and test partitions. No information
from validation or test data is used during preprocessing,
training, or model selection, ensuring strict isolation and
preventing leakage. TIPSO-GAN operates at the flow level,
aggregating packets within each TCP/UDP session to capture
temporal and statistical dependencies.

TABLE II: Details of datasets used.

Dataset Hosts Flows Normal (%) Attack Types Format
1 CICDDoS2019 130,079 888,825 0.93 12 CSV
2 CICAPT-IIoT2024 412,640 1,264,978 68.42 8 CSvV

3 CIC-IDS2018 311,940 2,830,743 78.90 8 PCAP

C. Baseline models

We compare TIPSO-GAN against thirteen baselines cover-
ing classical machine learning, transformer-based IDS, GAN
variants, IDS-oriented GANs, and other deep learning meth-
ods. Classical models include Logistic Regression, XGBoost
(weighted), and LightGBM (weighted). Transformer-based
IDS baselines are TransfficFormer [46], FT-Transformer [4],
and MalDetectFormer [5]. GAN variants include the standard
GAN, WGAN, and WGAN-GP [49]. IDS-oriented GANs
include IDSGAN [50], IGAN-IDS [51], SYN-GAN [52],
SGAN-IDS [40], BigGan [53], and FenceGAN [54]. Ad-
ditional deep learning baselines are IDS-INT [55], PSO-D-
SEM [56], FR-APPSO-BiLSTM [57], and HAGRU [19]. This
set spans classical, generative, and deep learning methods,
providing a comprehensive basis for comparison.

VI. RESULTS

Our study addresses the following five main questions:

1) Does TIPSO-GAN achieve stable GAN training and
realistic flow generation? (Sections VI-A & VI-B)

/_H

16
128
s
256 i
4 s »
1002 »‘
Deconvi Decom2

(@)

3
2 32
64
/ \ 128
6/ A —_— 256
2 2 — g D 1
4
»> 20k g B F
comy Deconv2) Deconvl Flatten, linear
Deconv3

(b)

Fig. 4: Network structure of pre-training model DeePreD (a) and Discriminator (b) of DCGAN

Linear(100,4*4*256) [————
Batch Normalization

Convl
N=(64,128), K=5, 5=2 Relu
Lrelu 4*4*256
Deconvl
16*16*64 N=(64,128), K=5, S=2
Batch Normalization
Convl Lrelu
N=(64,128), K=5, S=2
Batch Normalization
Deconv2 8*8+128

Lrelu
N=(64,128), K=5, 5=2

Batch Normalization
Convl Lrelu

N=(64,128), K=5, S=2
Batch Normalization

8*8*128

el 16*16*64
[4745256) Deconva

Flatten(a*4*256) Foeig

Linear(4+4+256,2) pres 32*32*3

Discriminator Generator

Fig. 5: Reconstruction of loss flow chart

Algorithm 2 Modified PSO for GAN Parameters Optimization

1: procedure PSO_GAN(N, max_iterations, Wiax, Wiin, C1, C2)
2 Input: Population size N, Maximum iterations max_iterations, inertia bounds Wi, Wiin, learning rates Cy, C
3 Output: Best-performing configuration for GAN parameters

4 Initialize particles and velocity vectors

5 for iter = 1 to max_iterations do

2 for each particle do

7 Evaluate fitness

8 Update personal and global bests

9; Update velocity and position

10: Apply boundary check

11 end for

12: Adapt inertia weight linearly

13 end for

14: return Best-performing particle configuration

15: end procedure

2) Can TIPSO-GAN generalize to unseen attack families
under LOFO and cross-dataset tests? (Section VI-F)

3) Is TIPSO-GAN robust to adaptive, domain-consistent,
mimicry, poisoning, and transfer attacks? (Section VI-G)

4) How does TIPSO-GAN compare to transformer IDS
models, non-GAN baselines, and stabilized GAN vari-
ants? (Section VI-D)

5) Is TIPSO-GAN efficient for real-time deployment in
terms of latency, throughput, and resource usage? (Sec-
tions VI-H, VI-HI, and VI-I)

A. Training stability and mode collapse

In this experiment, we assess the stability and resilience
of TIPSO-GAN on the CICAPT-IIoT2024 dataset against
mode collapse and compare its performance to DCGAN,
WGAN, LSGAN, and the conventional GAN. Table III re-
ports values at epochs F € 20,50,80,100. TIPSO-GAN
consistently achieved the lowest MMD/KS/RMSE and highest

entropy/coverage, converging as early as epoch 50 and plateau-
ing thereafter. WGAN and SGAN-IDS were second-best in
some cases, but TIPSO-GAN outperformed all baselines in
the final epoch with MMD 0.063, KS 0.095, RMSE 0.081,
entropy 0.91, and coverage 96%. The epoch-wise reporting
demonstrates stability: baseline models improve gradually,
while TIPSO-GAN converges rapidly and maintains flat curves
with no oscillations. This rules out mode collapse, since
entropy and coverage both increase monotonically rather than
dropping at later epochs.

TABLE III: Stability and Mode Collapse.

Meti | Models
etric / Epoch
| GAN DCGAN LSGAN WGAN WGAN-GP BigGAN SGAN-IDS TIPSO-GAN
20 | 0310 0280 0260 0.200 0.185 0.150 0170 0.095
Mupy | 50 | 0260 0210 019 0160 0.148 0.120 0.140 0.070
80 | 0210 0190 0170 0135 0.130 0.110 0.120 0.065
100 | 0.189 0174 0161 0.128 0.125 0.105 0.110 0.063
20 | 0360 0330 0305 0270 0250 0.210 0.240 0.160
Ks | 50 | 0300 0270 0250 0220 0.200 0.170 0.200 0.120
* 80 | 0280 0250 0230 0200 0.190 0.160 0.185 0.100
100 | 0247 0228 0211 082 0178 0.150 0.169 0.095
20 | 0240 0210 0.198 0178 0.165 0.145 0.162 0.120
RMsE | | 30 [0190 0070 0160 0150 0.140 0.118 0138 0.095
80 | 0170 0160 0150 0.130 0.128 0.108 0.120 0.085
100 | 0.152 0.141 0136 0122 0.120 0.102 0.114 0.081
20 | 042 048 050 055 0.57 0.60 058 0.72
Enropy 1 | 0 | 03 056 059 0.66 0.68 071 0.69 0.85
80 | 058 0.60 0.63 0.70 0.72 075 073 0.89
100 | 062 0.6 0.69 0.74 0.76 078 077 0.91
20 | 41% 46% 49% 55% 58% 62% 60% 78%
Coverage 1 | 0 | 3% 8% 63% 70% 72% 76% 74% 90%
: 80 | 60% 63% 68% 77% 79% 82% 80% 94%
100 | 68% 71% 74% 80% 82% 85% 83% 96%

B. Synthetic Data Quality in Learned Embedding Space

To evaluate the fidelity and diversity of generated traffic
beyond raw flow distributions, we compute metrics in a earned
tabular embedding space. A 64-dimensional autoencoder was
trained on real CICIDS-2018 traffic, and synthetic samples
from each GAN variant were projected into this embedding.
Following, we report squared Maximum Mean Discrepancy
(MMD?) as a fidelity measure and precision, recall, and PR-
F1 as diversity measures. All results are averaged over 5
random seeds with 95% confidence intervals. Table IV shows
that TIPSO-GAN achieves the best overall quality, with the
lowest MMD? (0.091 + 0.006) and the highest precision
(0.873 £ 0.009), recall (0.861 + 0.009), and PR-F1 (0.867 £
0.009). SGAN-IDS and WGAN are the closest competitors,
but TIPSO-GAN consistently outperforms them across all
metrics. These results indicate that TIPSO-GAN generates
synthetic IIoT traffic that is both highly faithful to the real
distribution and sufficiently diverse to avoid mode collapse,

04 06
Recall

(a) Collection

04 06
Recall

(d) Defence Evasion
—

Precision

04 g
Recall

(e) Discovery

TABLE IV: Synthetic data quality in a learned tabular

(f) Lateral Movement

04 06
Recall

(g) Persistence (h) Command & Control

Fig. 6: Per-class Precision—Recall curves on CICAPT-110T2024.

embedding (64-D autoencoder).

Model MMD? (() Precision (1) Recall (1) PR-F1 (1)

GAN 0355 £ 0012 0.622 + 0011 0.611 £ 0.012 0.616 & 0.011
DCGAN 0.291 + 0.010 0.678 + 0.012 0.664 & 0.013 0.671 & 0.012
LSGAN 0.248 £ 0.009 0713 + 0.013 0.701 & 0.012 0.707 = 0.012
WGAN 0.182 + 0.008 0.782 + 0.010 0.774 4 0.011 0.778 =+ 0.010
WGAN-GP 0.170 £ 0.008 0.795 + 0.010 ~ 0.769 &£ 0.010 0.782 £ 0.010
BigGAN 0.140 + 0.007 0.821 + 0.009 0.808 & 0.009 0.814 = 0.009
SGAN-IDS 0.152 + 0.007 0.812 + 0.010 0.801 & 0.010 0.806 =+ 0.010
TIPSO-GAN 0.091 + 0.006 0.873 & 0.009 0.861 = 0.009 0.867 =+ 0.009

even under multiple training runs. This confirms the robustness
of TIPSO-GAN when evaluated in a representation learned
from the data, rather than relying only on raw flow statistics.

C. Multiclass detection results

We evaluate detection performance across all eight at-
tack stages using per-class precision-recall (PR) curves and
PR-AUC scores using the CICAPT-110T2024 dataset. Figure
6 shows the per-class PR-AUC curves with all models overlaid.
TIPSO-GAN consistently dominates across classes, achieving
higher PR-AUC than all baselines, particularly in minority
classes such as Persistence and Lateral Movement. Exact
per-class PR-AUC values, together with macro and micro
averages, are reported in Table V, where TIPSO-GAN is
marked as the best model in nearly every case.

To complement these threshold-free results, we also analyze
performance at the operating point used for F1 optimiza-
tion using the CICAPT-IIoT2024 dataset. Row-normalized
confusion matrices for each model, computed at the macro-
Fl-optimal threshold on the validation set, are provided in
Fig. 7. These matrices highlight where errors concentrate
and illustrate that TIPSO-GAN not only achieves higher
recall overall but also avoids the systematic misclassifications

10

observed in GAN and DCGAN baselines. Together, the PR
curves and PR-AUC scores in the main body, along with
confusion matrices in Fig. 7, provide a comprehensive picture:
TIPSO-GAN offers both superior ranking quality and robust
thresholded classification across all APT attack stages.

D. Detection performance

We evaluate all methods under rigorous, reproducible pro-
tocols. For CIC-IDS2018 and CIC-DDo0S2019, we explicitly
deduplicated flows, enforced flow/session and host isolation,
and fit preprocessing only on training data to mitigate leakage.
For CICAPT-IIoT2024, we assign entire scenarios to a single
partition (grouped split) to prevent intra-scenario leakage. All
results are averaged over five independent runs (mean=+std) on
the test sets.

On CIC-IDS2018, classical tabular learners and recent trans-
former models are competitive: LightGBM attains 96.94+0.3
F1 and MalDetectFormer 96.9+0.3 F1, with FT-Transformer
and TransTraffic close behind (96.14+0.4 and 96.5+0.3 F1, re-
spectively). Among GAN-based baselines, WGAN-GP reaches
94.24£0.4 F1 and SGAN-IDS/WGAN achieve 93.74+0.3 FI.
The strongest non-ours baseline overall is PSO-D-SEM at
98.9£0.2 F1. TIPSO-GAN achieves 99.1+0.1 F1 (99.1£0.1
precision, 99.31+0.1 recall), improving over the strongest base-
line by +0.2 F1 while maintaining low variance across seeds.

On CICAPT-1IoT2024, Transformer models remain strong
(TransTraffic 95.0+£0.3 F1; MalDetectFormer 94.74+0.3), and
WGAN-GP is the best among standard GAN variants at
94.24+0.4 F1. PSO-D-SEM is the strongest non-ours method
overall at 98.24+0.2 F1. TIPSO-GAN delivers 98.9£0.1 F1
(98.940.1 precision, 99.14+0.1 recall), exceeding the best
baseline by +0.7 F1 under leakage-free scenario grouping.

On CIC-DDoS2019, temporal splits yield realistic diffi-
culty: TransTraffic attains 94.64+0.4 F1 and MalDetectFormer

60

Collection

Exfiltration

Exfiltration

Credential
Access

Credential
Access.

Defence
Evasion

Defence
Evasion

Actual
Actual

Discovery

Lateral
Movement

Persistence

Predicted

(a) GAN

Collection [93.7 Collection

Exfiltration Exfiltration

Credential Credential

Defence
Evasion

Defence
Evasion

Actual
Actual

Discovery Discovery

Lateral
Movement

teral
Movement

Predicted

(d) WGAN-GP

Predicted

(b) DCGAN

Predicted

(e) SGAN-IDS

70

Collection

€0 Exfiltration

Credential
Access

50

Defence
Evasion

40

Actual

Discovery

30

Lateral

20

10

Command &
Control 29

Predicted

(c) BigGAN

100

Collection

80 Extitation 20

Credential
Access

60 60

Defence

Evasion

Actual

Discovery

40 40

Lateral
Movement

20 20

Persistence

Command &
Control S

Predicted

(f) TIPSO-GAN
Fig. 7: Row-normalized confusion matrices on CICAPT-IIoT2024 at the F1-optimal threshold.

TABLE V: Per-class PR-AUC on CICAPT-110T2024 (mean + 95% CI over 5 seeds).

Class GAN DCGAN LSGAN WGAN WGAN-GP BigGAN SGAN-IDS TIPSO-GAN
Collection 0.788 £ 0.012 0.826 & 0.011 0.862 £ 0.010 0.951 4+ 0.007 0.960 £ 0.006 0.968 4 0.005 0.972 £ 0.006 1.000 + 0.003
Command & Control ~ 0.684 + 0.015 0.736 £ 0.013 0.775 £ 0.012 0.903 £ 0.008 0.941 & 0.006 0.950 £ 0.005 0.960 4 0.006 0.999 £ 0.002
Credential Access 0.618 £ 0.014 0.712 £ 0.012 0.764 £ 0.011 0.895 4+ 0.009 0.944 £ 0.006 0.949 & 0.005 0.955 &£ 0.006 0.999 + 0.002
Defence Evasion 0.671 £ 0.014 0.751 £ 0.012 0.808 £ 0.011 0.921 &£ 0.008 0.950 £ 0.006 0.955 4+ 0.005 0.961 £ 0.005 0.998 + 0.002
Discovery 0.720 £ 0.013 0.793 &£ 0.012 0.829 £ 0.011 0.931 4 0.008 0.954 £ 0.006 0.960 & 0.005 0.967 £ 0.005 0.999 =+ 0.002
Exfiltration 0.738 £ 0.012 0.751 & 0.012 0.851 £ 0.010 0.939 4+ 0.007 0.961 £ 0.005 0.968 4 0.004 0.974 + 0.004 0.999 + 0.002
Lateral Movement 0.583 £ 0.016 0.646 + 0.015 0.754 £ 0.012 0.888 4+ 0.009 0.930 £ 0.006 0.938 4 0.005 0.942 + 0.005 0.999 =+ 0.002
Persistence 0.653 £ 0.015 0.713 £ 0.013 0.747 £ 0.012 0.884 4+ 0.009 0.940 £ 0.006 0.946 4 0.005 0.952 £ 0.005 0.998 + 0.002
Macro Avg 0.682 £ 0.014 0.741 &£ 0.012 0.799 £ 0.011 0.914 4+ 0.008 0.947 £ 0.006 0.954 4 0.005 0.960 £ 0.005 0.999 =+ 0.002
Micro Avg 0.690 £ 0.013 0.747 & 0.012 0.805 £ 0.010 0.920 & 0.007 0.950 £ 0.006 ~ 0.957 4 0.005 0.962 + 0.005 0.999 =+ 0.002

94.34+0.4 Fl; among vanilla GANs, WGAN-GP reaches
93.84£0.4 F1. The best non-ours baseline is PSO-D-SEM at
97.7£0.2 F1. TIPSO-GAN achieves 98.7+0.1 F1 with bal-
anced precision/recall (98.840.1 / 99.0+0.1), improving over
the strongest baseline by +1.0 F1. Across datasets, TIPSO-
GAN consistently outperforms the strongest non-ours baseline
by +0.2-1.0 F1 while preserving high precision and recall and
low run-to-run variance.

E. Calibration Analysis

We further evaluate model calibration, since overconfident
but incorrect predictions pose serious risks in adversarial in-
trusion detection. This experiment was based on the CICAPT-
IIoT2024 dataset. Calibration is assessed through reliability

11

diagrams, which compare predicted confidence with empirical
accuracy. The orange dashed line denotes perfect calibration,
while the blue curve shows the model’s empirical reliability.
The shaded area represents the miscalibration gap, quantita-
tively summarized by the Expected Calibration Error (ECE),
which is displayed in each legend alongside the Brier Score.
Lower values indicate better calibration.

Figure 9 shows that baseline models such as GAN, Big-
GAN, and DCGAN tend to deviate from the diagonal, partic-
ularly at higher confidence levels, indicating overconfidence.
TIPSO-GAN, in contrast, tracks the diagonal closely across all
bins, with the lowest ECE and Brier scores. This demonstrates
that TIPSO-GAN not only improves detection performance but
also produces well-calibrated probability estimates, which are

TABLE VI: Robustness against adversarial attacks (mean £95% CI over 5 seeds).

Category Attack Type Metric GAN DCGAN LSGAN WGAN WGAN-GP BigGAN SGAN-IDS TIPSO-GAN
FGSM (e = 0.03) FPR | 123 11.0 10.2 9.5 8.5 7.9 6.9 2.8
FNR | 15.7 14.4 13.5 12.6 11.2 10.5 9.1 3.5
BIM (e = 0.03) FPR | 13.1 1.7 10.9 10.2 9.2 8.5 74 3.0
FNR | 172 158 14.6 13.6 12.6 1.7 9.8 4.1
Static PGD (e = 0.03) FPR | 14.0 12.6 11.5 10.8 10.1 9.2 8.1 33
FNR | 18.5 16.9 15.6 14.4 134 12.5 10.6 4.5
C&W (L) FPR | 14.8 13.4 12.0 11.4 10.8 9.8 8.6 35
FNR | 19.3 17.7 16.2 152 14.1 13.0 11.0 4.8
DeepFool FPR | 135 12.1 11.0 104 9.7 8.9 79 3.2
FNR | 17.0 15.6 14.4 134 122 113 9.5 4.0
Adaptive-PGD FPR | 154 14.0 129 11.9 11.0 10.2 8.8 3.6
Adaptive FNR | 20.1 18.6 173 16.1 14.8 13.8 119 51
AutoAttack [58] FPR | 16.7 15.1 13.8 13.0 123 11.4 9.6 4.1
FNR | 215 199 18.4 17.2 15.7 14.5 127 5.6
Constrained-PGD FPR | 7.8 7.1 6.5 6.0 54 49 4.7 2.6
Constrained . FNR | 14.9 13.8 12.6 11.7 10.8 9.9 83 4.9
Constrained-AA FPR | 8.6 7.8 6.9 6.5 6.1 5.6 53 31
FNR | 16.5 152 13.9 13.0 122 11.1 9.6 58
EvadeML [59] FPR | 15.8 14.2 13.1 123 11.6 10.7 9.1 4.2
FNR | 20.5 18.8 17.4 16.3 15.3 14.1 12.5 5.4
Mimicry FENCE [60] FPR | 14.9 135 12.4 1.7 10.9 10.0 8.6 3.7
’ FNR | 19.2 17.8 16.6 15.4 14.1 132 11.2 4.9
Mimicus [59] FPR | 15.1 13.7 12.7 11.9 112 10.3 8.9 4.0
FNR | 19.9 18.3 17.0 15.8 14.6 134 11.8 5.2
1% label flip FPR | 10.5 9.3 8.6 79 7.1 6.5 59 2.9
FNR | 12.8 11.6 10.6 10.0 9.4 8.8 7.7 3.8
Poisoning 3% label flip FPR | 132 12.0 11.1 104 9.5 8.7 7.8 3.9
FNR | 18.1 16.7 15.6 14.3 13.0 12.0 10.4 5.0
5% label flip FPR | 16.5 15.1 14.0 13.0 12.4 11.2 10.1 58
FNR | 227 21.1 19.9 18.5 17.1 15.6 13.9 71
ResNet — TIPSO-GAN FPR | 14.6 133 12.4 115 10.5 9.6 8.7 3.9
Black-box FNR | 19.8 18.4 17.0 15.8 14.4 132 11.6 53
Ensemble substitutes FPR | 16.2 14.9 13.6 12.7 11.8 10.8 9.8 4.6
FNR | 22.1 20.6 19.2 17.8 16.3 15.1 134 6.2

critical for operational decision-making in IIoT security.

FE. Robustness against unseen and cross-domain attacks

Table VIII highlights TIPSO-GAN’s robustness under
two strict zero-day regimes using the CIC-IDS2018, CIC-
DDo0S2019, and CICAPT-IIoT2024 datasets. In the LOFO
setting on CIC-IDS2018, performance decreases from 99.1 F1
(temporal split, Table VII) to an average of 92.3 F1, reflecting
the difficulty of generalizing to entirely unseen attack families.
The per-family breakdown shows variability: Web Attacks and
Brute Force remain easier to detect (93.9 and 93.4 F1), while
Infiltration is most challenging (90.4 F1), consistent with its
low prevalence and stealthy traffic patterns. Second, a cross-
dataset protocol was used, training on one corpus and testing
on another to assess domain transferability across different
network environments and traffic distributions. The results
show F1 scores ranging from 79-83 across train/test pairs.
This ~15-20 point drop shows the severe distribution shift
across corpora collected under different environments. Despite
this degradation, TIPSO-GAN consistently maintains recall
above 80%, demonstrating non-trivial transferability to unseen
domains. These results emphasize that while temporal splits
are necessary, zero-day protocols such as LOFO and cross-
dataset evaluation provide a more realistic measure of IDS
generalization.

G. Adversarial Robustness

We evaluate robustness against static, adaptive, domain-
constrained, mimicry, poisoning, and black-box transfer at-
tacks on the CIC-IDS2018 dataset. Results are reported in
terms of FPR and FNR, averaged over five runs with 95%
confidence intervals (Table VI). Under FGSM, BIM, PGD,
C&W, and DeepFool, TIPSO-GAN yields FPR around 3% and

FNR below 5%, while baselines range from 7-19%. Against
Adaptive-PGD and AutoAttack, TIPSO-GAN maintains FNR
under 6%, compared to 12-22% for prior models. With con-
strained PGD and AutoAttack that enforce numeric bounds,
one-hot consistency, immutable masking, and cross-feature
checks, TIPSO-GAN records FPR of 2.6-3.1% and FNR under
6%, outperforming baselines by large margins.

For EvadeML, FENCE, and Mimicus, TIPSO-GAN reduces
FNR to 5-6%, while baselines show 12-20%. With label-flip
poisoning, TIPSO-GAN rises gradually from 3.8% FNR at 1%
flip to 7.1% at 5%, while baselines exceed 13-22%. Black-
box transfer. With ResNet and ensemble substitutes, TIPSO-
GAN holds FNR under 6.2% versus 12-22% for baselines.
TIPSO-GAN sustains lower FPR and FNR across all attack
families, including domain-constrained and mimicry scenarios,
demonstrating credible robustness under realistic IDS evasion
settings.

H. Runtime Performance, Scalability, and Deployment

We benchmark training cost, inference latency, throughput,
and resource usage across representative IDS baselines (Ta-
ble X) on the CICAPT-IIoT2024 dataset. All models were
trained on an NVIDIA A100 with 32 CPU cores. Classical ML
methods (Logistic Regression, XGBoost, LightGBM) achieve
sub-millisecond inference and very high throughput but lack
adversarial robustness. Deep IDS models such as IDS-INT,
PSO-D-SEM, FR-APPSO-BILSTM, and HAGRU require 6—
12 GPU hours to train and have latencies near 1 ms per
flow, limiting scalability to under 1k flows/s. Transformer
models (TransfficFormer, FT-Transformer, MalDetectFormer)
show strong detection but incur higher training cost (18—
24 GPU hours), larger memory footprints (3—3.5 GB), and
moderate throughput (1.3—1.6k flows/s). GAN-based IDS pro-

12

TABLE VII: Detection performance of all evaluated IDS models across three datasets. Red = best; Blue = second best.

Dataset Model Acc. Prec. Rec. F1 Train / Test (s)
Non-GAN Baselines
LightGBM (class weighted) 946 + 04 943 +04 944 +04 944 +£04 191 /8
IDS-INT 874 +£05 86.0£05 845£06 853+£05 25110 / 2481
PSO-D-SEM 97.7 £ 02 972 4+02 982 4+02 97.7+£0.2 42890 / 2410
FR-APPSO-BiLSTM 899+ 04 892 4+04 88.0+05 88.6+04 85400 / 4633
HAGRU 877+ 05 869 +05 850+06 859 +05 51402 / 5180
Transformer-based Models
o TransfficFormer 927+ 0.6 923 4+06 920407 922 +£0.6 1085 / 51
= FT-Transformer 940+ 05 937+05 9384+ 05 938 £0.5 1165/ 52
N TransTraffic 948 £ 04 946 +04 947 +£04 946+ 04 1278 / 59
% MalDetectFormer 945+ 04 9424+04 943 +£04 943 +04 1342 / 61
O GAN-based IDS
GAN 83.14+05 815405 79905 80.7+£0.5 6984 / 1360
DCGAN 8454+ 05 831405 81.1 £05 821+£0.5 34011 / 4445
LSGAN 858 + 04 845 +05 822+05 833+£05 40955 / 2493
WGAN 91.7+£ 03 909 +03 90.0+ 03 90.5+0.3 43233 / 2609
SGAN-IDS 934 +03 925+03 91.1 04 91.8 £0.3 44730 / 3752
SYN-GAN 904 + 04 893 +04 879405 88.6+£04 44500 / 5213
IGAN-IDS 892+ 05 8824+05 864 +£05 873+0.5 32790 / 1693
IDSGAN 882+ 05 87.0+£05 852+06 86.1£0.5 7105 / 870
FenceGAN 849+ 04 84.0+05 819+05 83.0+£05 8381 / 1225
BigGAN 939+ 04 934404 933+£04 934404 49650 / 3150
WGAN-GP 941 £+ 04 937 4+04 939+04 938 +£04 50500 / 2990
TIPSO-GAN (ours) 995 + 0.1 988 +£ 0.1 99.0 + 0.1 98.7 + 0.1 6611 / 410
Non-GAN Baselines
Logistic Regression (calibrated) 89.5 £ 0.6 889 £0.6 884 £ 0.7 88.6 £ 0.6 41/ 6
XGBoost (class weighted) 943+ 04 9404+05 9454+04 942 +04 228 /9
LightGBM (class weighted) 954 +£04 952 4+04 953+£05 953+04 194 /8
IDS-INT 88.7+ 05 875+05 854+06 864 +05 26012 / 2635
PSO-D-SEM 982+ 02 97.84+02 986 +02 982 +0.2 43890 / 2512
FR-APPSO-BiLSTM 90.8 + 04 902 +04 891405 89.6+£04 87453 / 4783
5 HAGRU 889 +05 881405 86.3+£06 872+0.5 52870 / 5347
§ Transformer-based Models
é TransfficFormer 936 £06 9344+06 93.1+06 932+0.6 1120 / 55
E"_ FT-Transformer 948 04 945 4+04 947405 946 £04 1190 / 51
5 TransTraffic 952+ 03 9504+03 9514+04 950+03 1290 / 58
@) MalDetectFormer 949 + 03 947 +04 948 £03 947 +£0.3 1355/ 60
GAN-based IDS
GAN 843+ 04 829+05 814+05 821 +£05 7211 / 1453
DCGAN 854+ 05 84.1+05 826+05 834+05 35601 / 4690
LSGAN 865+ 05 852405 839+£05 845+£05 41879 / 2617
WGAN 929 +03 921 4+03 913403 917403 44302 / 2739
SGAN-IDS 940+ 03 93.04+03 91.7+04 924 +0.3 46213 / 3925
SYN-GAN 919 £ 04 90.74+ 05 888+05 89.7+05 46002 / 5375
IGAN-IDS 90.7 £ 05 89.24+05 875+06 883+05 33791 / 1802
IDSGAN 8908 05 884 +£05 863£06 873 +£0.5 7445 / 901
FenceGAN 858 05 849 +05 829 +£06 839 +05 8724 / 1311
BigGAN 941 £04 93.6+04 934 +£04 935+04 50810 / 3260
WGAN-GP 947 £ 04 942 4+04 943 +£04 942 +04 52110/ 3052
TIPSO-GAN (ours) 99.6 £ 0.1 989 + 0.1 99.1 + 0.1 989 + 0.1 6733 / 429

13

TABLE VII: Detection performance of all evaluated IDS models across three datasets

. Red = best; Blue = second best.

Dataset Model Acc. Prec. Rec. F1 Train / Test (s)
Non-GAN Baselines
Logistic Regression (calibrated) 88.9 £ 0.6 882+ 06 87.6 0.7 879+ 0.6 3876
XGBoost (class weighted) 93.8 £05 933+05 935+04 934+05 219/9
LightGBM (class weighted) 946 £ 04 943 +04 944 +04 944 +04 191/8
IDS-INT 874+ 05 860+05 845+06 853+05 25110 / 2481
PSO-D-SEM 97.74+02 972402 982 4+02 9774+ 0.2 42890/2410
FR-APPSO-BiLSTM 899 £ 04 892 +04 88.0£05 88.6=+04 85400 / 4633
o HAGRU 877 +£05 8.9+05 85.0+£06 859=+05 51402 / 5180
< Transformer-based Models
2 TransfficFormer 927 +0.6 923 +0.6 9204+ 0.7 922 + 0.6 1085 / 51
8 FT-Transformer 940 +£ 0.5 93.74+05 938+ 0.5 93.8+0.5 1165/ 52
9 TransTraffic 948 £ 04 946 +04 947 +04 946+ 04 1278 / 59
©) MalDetectFormer 945+ 04 9424+04 943 +04 943 +04 1342/ 61
GAN-based IDS
GAN 83.1+£05 815+£05 799 4+05 807405 6984 / 1360
DCGAN 845 +05 831+£05 81.1+£05 821+05 34011 / 4445
LSGAN 858 £ 04 845+05 822+£05 833+05 40955 / 2493
WGAN 91.74+ 03 909 +£03 90.04+ 03 90.5+ 0.3 43233 / 2609
SGAN-IDS 934 +03 9254+03 91.1 £04 918 +£0.3 44730 / 3752
SYN-GAN 904 + 04 893 +04 8794+0.5 886404 44500/ 5213
IGAN-IDS 892 +£05 882+05 864+05 873+05 32790 / 1693
IDSGAN 882 +£05 87.0+£05 852+06 86.1=+05 7105 / 870
FenceGAN 849 £04 84.0+£05 819+05 830=£05 8381 / 1225
BigGAN 939+ 04 9344+04 933+04 934404 49650/ 3150
WGAN-GP 941 +£04 93.74+04 939 +04 9384+ 04 50500 /2990
TIPSO-GAN (ours) 995 + 0.1 988 + 0.1 99.0 + 0.1 98.7 + 0.1 6611 /410

TABLE VIII: Generalization performance of TIPSO-GAN under strict zero-day evaluations. Left: leave-one-family-out (LOFO)
on CIC-IDS2018. Right: cross-dataset evaluation where the model is trained on one corpus and tested on another. All values
are mean =+ std over five seeds.

LOFO on CIC-IDS2018 (per-family) \ Cross-Dataset Evaluation (Train — Test)

Held-out Family ‘ Accuracy Precision Recall F1 ‘ Train — Test ‘ Accuracy Precision Recall F1
DoS 915+ 0.7 902408 927+0.7 914+ 0.7 | CIC-IDS2018 — CIC-DD0S2019 824 +08 80.9+09 831+08 81.9+038
Brute Force 938 £ 06 926+06 942+0.6 934+ 0.6 | CIC-IDS2018 — CICAPT-II0T2024 80.6+09 793+10 81.0+09 80.1+09
Botnet 921+ 0.7 91.0+£08 929+ 07 919+ 0.7 | CIC-DD0S2019 — CIC-IDS2018 83.1+£0.7 815+08 842+08 828+07
Infiltration 90.6 £ 0.8 8924+09 91.7+0.8 904+ 0.8 | CIC-DD0S2019 — CICAPT-1IoT2024 | 81.2 + 0.8 80.0+ 09 82.1 +£0.8 81.0+0.38
Web Attacks 943+06 93.0+06 949+06 939+ 0.6 | CICAPT-II0T2024 — CIC-IDS2018 798 £09 785+£1.0 803+£09 794+09
Heartbleed 93.0£0.7 919407 938+£0.7 928+ 0.7 | CICAPT-IloT2024 — CIC-DD0S2019 | 80.2 + 0.8 789+ 09 81.1 £09 80.0+0.8
Mean across families ‘ 926 £ 06 91.7 £0.7 934 1+0.6 923+ 0.6 ‘ -

TABLE X: Runtime performance comparison.

TABLE IX: Computational complexity and resource usage of

Model Train (GPU h) Latency (ms) Throughput Mem (GB) Power (W)
representative IDS models. I/ = epochs, N = samples, d = [gisic Regression o1 005 20,000 0z 2
: : _ _ : _ : XGBoost (weighted) 03 0.20 5,000 0.5 40
feature dimension, L = layers, P = swarm size, I = iterations. [iéam (weighted) 0> o018 5500 02 3
: : IDS-INT 6 0.80 1,250 12 70
FLOPs are estimated per inference. PRODLSEM o - o b "
FR-APPSO-BiLSTM 12 1.20 830 24 110
Model Training Complexity Inference Complexity Memory (GB) FLOPs/flow HAGRU 8 0.95 1,050 2.1 95
Logistic Regression O(E-N-d) 0(d) <05 100 TransfficFormer 18 0.60 1,650 3.0 140
“N- .5 5 N
XGBoost (weighted) O(E - N - dlog N) O(dlog N) 05 108 f/;zg:ffl";g:;:er %2 gg; }‘ggg gg }23
BiLSTM (FR-APPSO) O(E-N-d-L) O(d- L) 24 107 GAN R 035 2830 03 150
HAGRU O(E-N-d-L) O(d- L) 2.1 107 WGAN 6 0~58 2'6%0 2.6 140
TransfficFormer O(E-N-d-L) O(d*- L) 3.0 108 - " !
MalDetectFormer O(E-N-d-L) O(d? - L) 35 108 SGAN-IDS 8 0.51 1,960 L8 140
WGAN.GP O(E-N-d-1) o L) 24 107 WGAN-GP 9 048 2,080 24 150
FenceGAN OE-N-d-I) od-1) 20 107 TIPSO-GAN 14 042 2,400 2.1 150
TIPSO-GAN O(E-N-d-L+P-1I-d) O(d- L +d?) 2.1 107

14

TABLE XI: TIPSO-GAN runtime on increasing data sizes.

Data size Thrpt P50 P90 P99 Mem Power
(flows) (flows/s) (ms) (ms) (ms) (GB) W)
1x 10% 2420 0.17 027 040 2.0 148
5 x 10* 2410 0.18 028 041 2.0 149
1x 10 2400 0.18 029 042 2.1 150
5 x 10° 2380 0.19 031 044 2.1 152
1 x 106 2360 020 032 046 2.2 153
5 x 106 2340 021 034 048 2.2 155
1 x 107 2320 022 035 0.0 2.3 156
5 x 107 2300 024 038 0.55 2.3 158
1x 108 2280 0.25 040 0.60 2.4 160

vide a better trade-off: GAN and WGAN achieve 2.6-2.8k
flows/s, while SGAN-IDS and WGAN-GP trade higher train-
ing cost for robustness. TIPSO-GAN requires 14 GPU hours

DoFNRODFPR
|

10

6.3

Error Rate (%)

U
Q&V‘ ‘éz‘

&

Fig. 8: Ablation of TIPSO-GAN components.

for training due to PSO optimization and multiple loss terms,
but inference remains efficient at 0.42 ms per flow (= 2400
flows/s). Peak memory (2.1 GB) and power draw (150 W)
are comparable to WGAN-GP. At these rates, a single GPU
can sustain 1040 Gbps traffic, and throughput scales linearly
across multiple GPUs. We observe that TIPSO-GAN maintains
stable throughput and sub-millisecond latency as input size
grows from 10* to 10® flows; detailed results are provided
in Appendix Table XI. This confirms that TIPSO-GAN scales
reliably to real-world high-volume traffic settings.

1) Runtime and Scalability Analysis: Table XI summarizes
the runtime behavior of TIPSO-GAN as the dataset size
increases from 1 x 10* to 1 x 10% network flows using
the CICAPT-IIoT2024 dataset. The model maintains near-
linear scalability, with throughput decreasing only marginally
(2420 — 2280 flows/s) as data volume grows by four orders
of magnitude. Median (P50) inference latency remains below
0.25 ms even at the largest scale, while memory usage stays
within 2-2.4 GB. These results demonstrate that TIPSO-GAN
achieves efficient inference with modest resource growth,
confirming its suitability for large-scale real-time intrusion
detection deployments.

1. Computational Complexity Analysis

Table IX reports complexity and resource usage across rep-
resentative IDS models using the CICAPT-110T2024 dataset.

15

TABLE XII: Resource Utilization Across TIPSO-GAN Mod-
ules (CICAPT-II0T2024)

Module GPU Memory (GB) FLOPs (x107) Runtime / Epoch (s) Latency (ms / flow)

Generator (G / G7)
Discriminator (D / D)
DeePred (pre-trained)

PSO optimizer (train-time only)

1.0
0.9
12
0.3

10.3
9.8

10.7
12

36
34
39
11

128
124
13.1

Total (TIPSO-GAN) 2.1 107 120 12.8

Classical ML methods (Logistic Regression, XGBoost) are
linear in d, with negligible memory and FLOPs, but provide
limited robustness. RNN-based IDS (BiLSTM, HAGRU) scale
as O(d - L) at inference, requiring 2-3 GB memory and 107
FLOPs. Transformer IDS (TransfficFormer, MalDetectFormer)
incur quadratic O(d? - L) cost from attention, leading to the
highest memory (3-3.5 GB) and 10® FLOPs. GAN baselines
(WGAN-GP, FenceGAN) remain at O(d - L) with moderate
memory (2-2.4 GB). TIPSO-GAN introduces O(P - I - d)
overhead during training from PSO, but maintains O(d-L+d?)
inference cost, with 2.1 GB memory and 107 FLOPs. This
shows TIPSO-GAN is heavier to train but efficient at infer-
ence, close to GAN baselines and lighter than transformer IDS.

J. Ablation study

We performed an ablation study to quantify the contribution
of each component in TIPSO-GAN (Fig. 8) using the CICAPT-
[IoT2024 dataset. Removing MHSA led to the sharpest degra-
dation, increasing FNR from 5.2% to nearly 8%. Excluding
adversarial loss or focal loss also caused notable increases
in error, confirming their role in stabilizing training and
improving recall on rare attack classes. Transfer learning and
PSO contributed moderate but consistent gains, while gradient
penalty and regularization further reduced both FPR and FNR
by about one point. The ablation demonstrates that the full
TIPSO-GAN design yields the lowest error rates and that
multiple components work synergistically to achieve robust-
ness. As shown in Table XII, TIPSO-GAN maintains modest
computational demands despite its multi-component design.
Training consumes approximately 2.1 GB GPU memory and
10" FLOPs per epoch, with an average runtime of about
120s. The PSO optimizer adds only ~12% additional FLOPs
during training, while inference latency remains 12.8 ms per
flow comparable to WGAN-GP. DeePred and the discriminator
account for most of the memory footprint, confirming that
TIPSO-GAN delivers robust detection efficiency with limited
computational overhead suitable for real-time deployment.

VII. CONCLUSION AND FUTURE WORK

This work introduced TIPSO-GAN, a novel intrusion detec-
tion framework that redefines GAN training as a swarm opti-
mization problem. The results demonstrate that TIPSO-GAN
consistently outperforms thirteen baselines, under temporal
splits and stability under strict zero-day regimes. The frame-
work also exhibits superior calibration, robustness against
adaptive adversarial attacks, and resilience to class imbalance,
confirming its suitability for deployment in real-world network
defense systems. The current implementation of TIPSO-GAN

operates at the flow level, where each record aggregates
multiple packets belonging to the same TCP or UDP session.
This design captures temporal and statistical dependencies
that are not observable in isolated packets and enables stable
adversarial training with compact feature spaces. However,
this also means TIPSO-GAN does not perform per-packet
classification. Future work will investigate the integration
of fine-grained packet-level embeddings with TIPSO-GAN’s
adversarial optimization to enable real-time packet-wise de-
tection without sacrificing stability. Future study could also
extend TIPSO-GAN to streaming detection environments, op-
timize its efficiency for resource-constrained IoT deployments,
and investigate cross-domain transfer to improve adaptability
across heterogeneous network infrastructures.

ACKNOWLEDGMENTS

This work was partly supported by the National Natural
Science Foundation of China (NSFC) (Grant nos. 62172194,
62202206 and U1836116), the Natural Science Foundation
of Jiangsu Province, China (Grant no. BK20220515), the
China Postdoctoral Science Foundation, China (Grant no.
2021M691310), and Qinglan Project of Jiangsu Province,
China.

REFERENCES
[1] I. Cviti¢, D. Perakovic, B. B. Gupta, and K.-K. R. Choo, “Boosting-
based ddos detection in internet of things systems,” IEEE Internet of
Things Journal, vol. 9, no. 3, pp. 2109-2123, 2022.
J. Yang, X. Jiang, G. Liang, S. Li, and Z. Ma, “Malicious traffic
identification with self-supervised contrastive learning,” Sensors, vol. 23,
8 2023.
L. D. Manocchio, S. Layeghy, W. W. Lo, G. K. Kulatilleke, M. Sarhan,
and M. Portmann, “Flowtransformer: A transformer framework for
flow-based network intrusion detection systems,” Expert Systems
with Applications, vol. 241, p. 122564, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S095741742303066 X
Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko, “Revisiting
deep learning models for tabular data,” in Proceedings of the 35th
International Conference on Neural Information Processing Systems, ser.
NIPS ’21. Red Hook, NY, USA: Curran Associates Inc., 2021.
S. Zhang, Y. Fan, H. Zhou, and B. Li, “Maldetectformer:
leveraging sparse spatiotemporal information for effective malicious
traffic detection,” in Proceedings of the Thirty-Ninth AAAI
Conference on Artificial Intelligence and Thirty-Seventh Conference
on Innovative Applications of Artificial Intelligence and Fifteenth
Symposium on Educational Advances in Artificial Intelligence, ser.
AAAT25/IAAT'25/EAAT’25. AAAI Press, 2025. [Online]. Available:
https://doi.org/10.1609/aaai.v39i21.34411
C. Kang, J. Yoon, D. Choi, E. Park, S. Pack, and J. Han, “Transtraffic:
Predicting network traffic using low resource data,” in 2022 13th In-
ternational Conference on Information and Communication Technology
Convergence (ICTC), 2022, pp. 786-788.
1. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
networks,” Advances in Neural Information Processing Systems 27
(NIPS 2014), 6 2014. [Online]. Available: http://arxiv.org/abs/1406.2661
Z. Moti, S. Hashemi, H. Karimipour, A. Dehghantanha, A. N. Jahromi,
L. Abdi, and F. Alavi, “Generative adversarial network to detect
unseen internet of things malware,” Ad Hoc Networks, vol. 122,
p. 102591, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1570870521001281
H. D. Menéndez, S. Bhattacharya, D. Clark, and E. T. Barr, “The
arms race: Adversarial search defeats entropy used to detect malware,”
Expert Systems with Applications, vol. 118, pp. 246-260, 2019.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0957417418306535

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

16

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

W. Qian, H. Li, and H. Mu, “Circular lbp prior-based enhanced
gan for image style transfer,” Int. J. Semant. Web Inf. Syst.,
vol. 18, no. 2, p. 1-15, Dec. 2022. [Online]. Available: https:
//doi.org/10.4018/1ISWIS.315601
X. Zhang, J. Wang, and S. Zhu, “Dual generative adversarial networks
based unknown encryption ransomware attack detection,” IEEE Access,
vol. 10, pp. 900-913, 2022.

Z. Zhou, Y. Li, J. Li, K. Yu, G. Kou, M. Wang, and B. B. Gupta,
“Gan-siamese network for cross-domain vehicle re-identification in
intelligent transport systems,” IEEE Transactions on Network Science
and Engineering, vol. 10, no. 5, pp. 2779-2790, 2023.

A. Dunmore, J. Jang-Jaccard, F. Sabrina, and J. Kwak, “A comprehen-
sive survey of generative adversarial networks (gans) in cybersecurity
intrusion detection,” IEEE Access, vol. 11, pp. 76 071-76 094, 2023.
M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” in Proceedings of the 34th International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.
PMLR, 06-11 Aug 2017, pp. 214-223. [Online]. Available: https:
/Iproceedings.mlr.press/v70/arjovsky17a.html

X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley, “Least
squares generative adversarial networks,” 2017 IEEE International
Conference on Computer Vision (ICCV), pp. 2813-2821, 2016. [Online].
Available: https://api.semanticscholar.org/CorpusID:206771128

G. Dlamini and M. Fahim, “Dgm: a data generative model to improve
minority class presence in anomaly detection domain,” Neural Comput-
ing and Applications, vol. 33, pp. 13635-13 646, 10 2021.

R. Chapaneri and S. Shah, “Enhanced detection of imbalanced mali-
cious network traffic with regularized generative adversarial networks,”
Journal of Network and Computer Applications, vol. 202, 6 2022.

S. Das, “Fgan: Federated generative adversarial networks for anomaly
detection in network traffic,” 2022.

X. Liu and J. Liu, “Malicious traffic detection combined deep neural
network with hierarchical attention mechanism,” Scientific Reports,
vol. 11, no. 1, p. 12363, 2021.

B.-E. Zolbayar, R. Sheatsley, P. McDaniel, M. J. Weisman, S. Zhu,
S. Zhu, and S. Krishnamurthy, “Generating practical adversarial network
traffic flows using nidsgan,” 2022.

B. Babayigit and M. Abubaker, “Towards a generalized hybrid deep
learning model with optimized hyperparameters for malicious traffic
detection in the industrial internet of things,” Engineering Applications
of Artificial Intelligence, vol. 128, p. 107515, 2 2024.

M. Fathallah, M. Sakr, and S. Eletriby, “Stabilizing and improving
training of generative adversarial networks through identity blocks and
modified loss function,” IEEE Access, vol. 11, pp. 4327643285, 2023.
Q. Yuan, G. Gou, Y. Zhu, Y. Zhu, G. Xiong, and Y. Wang, “Mcre: A
unified framework for handling malicious traffic with noise labels based
on multidimensional constraint representation,” IEEE Transactions on
Information Forensics and Security, vol. 19, pp. 133-147, 2024.

A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks,”
arXiv e-prints, p. arXiv:1511.06434, Nov. 2015.

S. Das, A. Abraham, and A. Konar, “Swarm intelligence algorithms
in bioinformatics,” in Computational Intelligence in Bioinformatics.
Springer, 2008, pp. 113-147.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” 1995, pp.
1942-1948.

E. K. Boahen, B. E. Bouya-Moko, and C. Wang, “Network anomaly
detection in a controlled environment based on an enhanced psogsarfc,”
Computers and Security, vol. 104, 5 2021.

S. Choudhary, S. Sugumaran, A. Belazi, and A. A. A. El-Latif, “Lin-
early decreasing inertia weight pso and improved weight factor-based
clustering algorithm for wireless sensor networks,” Journal of Ambient
Intelligence and Humanized Computing, pp. 1-19, 2023.

M. A. K. Raiaan, S. Sakib, N. M. Fahad, A. A. Mamun, M. A.
Rahman, S. Shatabda, and M. S. H. Mukta, “A systematic review
of hyperparameter optimization techniques in convolutional neural
networks,” Decision Analytics Journal, vol. 11, p. 100470, 2024.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
$2772662224000742

L. Zhang and L. Zhao, “High-quality face image generation using
particle swarm optimization-based generative adversarial networks,”
Future Generation Computer Systems, vol. 122, pp. 98-104, 2021.

https://www.sciencedirect.com/science/article/pii/S095741742303066X
https://doi.org/10.1609/aaai.v39i21.34411
http://arxiv.org/abs/1406.2661
https://www.sciencedirect.com/science/article/pii/S1570870521001281
https://www.sciencedirect.com/science/article/pii/S1570870521001281
https://www.sciencedirect.com/science/article/pii/S0957417418306535
https://www.sciencedirect.com/science/article/pii/S0957417418306535
https://doi.org/10.4018/IJSWIS.315601
https://doi.org/10.4018/IJSWIS.315601
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://api.semanticscholar.org/CorpusID:206771128
https://www.sciencedirect.com/science/article/pii/S2772662224000742
https://www.sciencedirect.com/science/article/pii/S2772662224000742

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X21001126

H. N. Nguyen, T. Lan-Phan, and C.-J. Song, “Generative adversarial
network-based network intrusion detection system for supervisory con-
trol and data acquisition system,” in 2024 IEEE International Conference
on Consumer Electronics-Asia (ICCE-Asia), Nov 2024, pp. 1-3.

T. K. Boppana and P. Bagade, “Gan-ae: An unsupervised intrusion
detection system for mqtt networks,” Engineering Applications of
Artificial Intelligence, vol. 119, p. 105805, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0952197622007953
L. Zhang and L. Zhao, “High-quality face image generation using
particle swarm optimization-based generative adversarial networks,”
Future Generation Computer Systems, vol. 122, pp. 98-104, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X21001126

L. Tian, Z. Wang, W. Liu, Y. Cheng, F. E. Alsaadi, and X. Liu,
“Empower parameterized generative adversarial networks using a novel
particle swarm optimizer: algorithms and applications,” International
Journal of Machine Learning and Cybernetics, vol. 13, pp. 1145-1155,
4 2022.

R. Shameli and S. Rajkumar, “High-speed threat detection in 5g
sdn with particle swarm optimizer integrated gru-driven generative
adversarial network,” Scientific Reports, vol. 15, no. 1, p. 10025, 2025.
[Online]. Available: https://doi.org/10.1038/s41598-025-95011-z

A. Touré, Y. Imine, A. Semnont, T. Delot, and A. Gallais,
“A framework for detecting zero-day exploits in network flows,”
Computer Networks, vol. 248, p. 110476, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128624003086
M. Poongodi and M. Hamdi, “Intrusion detection system using
distributed multilevel discriminator in gan for iot system,” Transactions
on Emerging Telecommunications Technologies, vol. 34, no. 11, p.
e4815, 2023. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/ett.4815

E. Seo, H. M. Song, and H. K. Kim, “Gids: Gan based intrusion detec-
tion system for in-vehicle network,” in 2018 16th Annual Conference
on Privacy, Security and Trust (PST), Aug 2018, pp. 1-6.

S. Rahman, S. Pal, S. Mittal, T. Chawla, and C. Karmakar, “Syn-gan:
A robust intrusion detection system using gan-based synthetic data
for iot security,” Internet of Things, vol. 26, p. 101212, 2024.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
52542660524001537

S. Aldhaheri and A. Alhuzali, “Sgan-ids: Self-attention-based generative
adversarial network against intrusion detection systems,” Sensors,
vol. 23, no. 18, 2023. [Online]. Available: https://www.mdpi.com/
1424-8220/23/18/7796

A.-G. Mari, D. Zinca, and V. Dobrota, “Development of a machine-
learning intrusion detection system and testing of its performance
using a generative adversarial network,” Sensors, vol. 23, no. 3, 2023.
[Online]. Available: https://www.mdpi.com/1424-8220/23/3/1315

M. Roopak, S. Parkinson, G. Y. Tian, Y. Ran, S. Khan, and
B. Chandrasekaran, “An unsupervised approach for the detection of zero-
day distributed denial of service attacks in internet of things networks,”
IET Networks, vol. 13, no. 5-6, pp. 513-527, 2024. [Online]. Available:
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ntw2.12134
M. Sarhan, S. Layeghy, M. Gallagher, and M. Portmann, “From
zero-shot machine learning to zero-day attack detection,” International
Journal of Information Security, vol. 22, no. 4, pp. 947-959, 2023.
[Online]. Available: https://doi.org/10.1007/s10207-023-00676-0

R. Huang, L. Ma, J. He, and X. Chu, “T-gan: A deep learning
framework for prediction of temporal complex networks with adaptive
graph convolution and attention mechanism,” Displays, vol. 68,
p- 102023, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0141938221000366

S. Tuli, G. Casale, and N. R. Jennings, “Tranad: deep transformer
networks for anomaly detection in multivariate time series data,” Proc.
VLDB Endow., vol. 15, no. 6, p. 1201-1214, Feb. 2022. [Online].
Available: https://doi.org/10.14778/3514061.3514067

W. Du, J. Xue, X. Yang, W. Guo, D. Gu, and W. Han, “Transfficformer:
A novel transformer-based framework to generate evasive malicious
traffic,” Knowledge-Based Systems, vol. 319, p. 113546, 2025.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
50950705125005921

I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,” in

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

International Conference on Information Systems Security and Privacy,
2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:
4707749

E. Ghiasvand, S. Ray, S. Igbal, S. Dadkhah, and A. A. Ghorbani,
“Cicapt-iiot: A provenance-based apt attack dataset for iiot environ-
ment,” 2024. [Online]. Available: https://arxiv.org/abs/2407.11278

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved Training of Wasserstein GANSs,” arXiv e-prints, p.
arXiv:1704.00028, Mar. 2017.

Z. Lin, Y. Shi, and Z. Xue, “Idsgan: Generative adversarial networks
for nbsp;attack generation against intrusion detection,” in Advances in
Knowledge Discovery and Data Mining: 26th Pacific-Asia Conference,
PAKDD 2022, Chengdu, China, May 16-19, 2022, Proceedings, Part
I1l. Berlin, Heidelberg: Springer-Verlag, 2022, p. 79-91. [Online].
Available: https://doi.org/10.1007/978-3-031-05981-0_7

S. Huang and K. Lei, “Igan-ids: An imbalanced generative adversarial
network towards intrusion detection system in ad-hoc networks,”
Ad Hoc Networks, vol. 105, p. 102177, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1570870519311035
S. Rahman, S. Pal, S. Mittal, T. Chawla, and C. Karmakar, “Syn-gan:
A robust intrusion detection system using gan-based synthetic data
for iot security,” Internet of Things, vol. 26, p. 101212, 2024.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
$2542660524001537

J. Donahue and K. Simonyan, Large scale adversarial representation
learning. Red Hook, NY, USA: Curran Associates Inc., 2019.

L. Niu, Z. Li, and S. Li, “Mmd fence gan unsupervised anomaly
detection model based on maximum mean discrepancy,” Int. J. Cogn.
Inform. Nat. Intell., vol. 18, no. 1, p. 1-13, jun 2024. [Online].
Available: https://doi.org/10.4018/1JCINI.344813

F. Ullah, S. Ullah, G. Srivastava, and J. C.-W. Lin, “Ids-int: Intrusion de-
tection system using transformer-based transfer learning for imbalanced
network traffic,” Digital Communications and Networks, 3 2023.

F. Rustam and A. D. Jurcut, “Malicious traffic detection in multi-
environment networks using novel s-date and pso-d-sem approaches,”
Computers and Security, vol. 136, 1 2024.

H. Jiang, S. Ji, G. He, and X. Li, “Network traffic anomaly detection
model based on feature reduction and bidirectional Istm neural network
optimization,” Scientific Programming, vol. 2023, pp. 1-18, 11 2023.
S. Liu, F. Peng, and K. Tang, “Reliable robustness evaluation via
automatically constructed attack ensembles,” in Proceedings of the
Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-
Fifth Conference on Innovative Applications of Artificial Intelligence
and Thirteenth Symposium on Educational Advances in Artificial
Intelligence, ser. AAATI'23/TAAT'23/EAAI'23. AAAI Press, 2023.
[Online]. Available: https://doi.org/10.1609/aaai.v37i7.26064

C. Liu, C. Lou, M. Yu, S. Yiu, K. Chow, G. Li, J. Jiang, and W. Huang,
“A novel adversarial example detection method for malicious pdfs
using multiple mutated classifiers,” Forensic Science International:
Digital Investigation, vol. 38, p. 301124, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2666281721000226
A. Chernikova and A. Oprea, “Fence: Feasible evasion attacks on neural
networks in constrained environments,” ACM Trans. Priv. Secur., vol. 25,
no. 4, Jul. 2022. [Online]. Available: https://doi.org/10.1145/3544746
K. G. Shreeharsha, C. G. Korde, M. H. Vasantha, and Y. B. N. Kumar,
“Training of generative adversarial networks using particle swarm opti-
mization algorithm.” Institute of Electrical and Electronics Engineers
Inc., 2021, pp. 127-130.

X.-L. Li, R. Serra, and O. Julien, “Effects of the Particle Swarm
Optimization parameters for structural dynamic monitoring of cantilever
beam,” in Surveillance, Vishno and AVE conferences. Lyon, France:
INSA-Lyon, Universit¢ de Lyon, Jul. 2019. [Online]. Available:
https://hal.science/hal-02188562

APPENDIX A
ADDITIONAL EXPERIMENTAL RESULTS

A. Experiment on the improved particle swarm inertia weight

The performance of five inertia weight strategies was as-
sessed using a hybrid sinc—exponential test function (Eq. 15-

17

https://www.sciencedirect.com/science/article/pii/S0167739X21001126
https://www.sciencedirect.com/science/article/pii/S0167739X21001126
https://www.sciencedirect.com/science/article/pii/S0952197622007953
https://www.sciencedirect.com/science/article/pii/S0167739X21001126
https://www.sciencedirect.com/science/article/pii/S0167739X21001126
https://doi.org/10.1038/s41598-025-95011-z
https://www.sciencedirect.com/science/article/pii/S1389128624003086
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4815
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4815
https://www.sciencedirect.com/science/article/pii/S2542660524001537
https://www.sciencedirect.com/science/article/pii/S2542660524001537
https://www.mdpi.com/1424-8220/23/18/7796
https://www.mdpi.com/1424-8220/23/18/7796
https://www.mdpi.com/1424-8220/23/3/1315
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ntw2.12134
https://doi.org/10.1007/s10207-023-00676-0
https://www.sciencedirect.com/science/article/pii/S0141938221000366
https://www.sciencedirect.com/science/article/pii/S0141938221000366
https://doi.org/10.14778/3514061.3514067
https://www.sciencedirect.com/science/article/pii/S0950705125005921
https://www.sciencedirect.com/science/article/pii/S0950705125005921
https://api.semanticscholar.org/CorpusID:4707749
https://api.semanticscholar.org/CorpusID:4707749
https://arxiv.org/abs/2407.11278
https://doi.org/10.1007/978-3-031-05981-0_7
https://www.sciencedirect.com/science/article/pii/S1570870519311035
https://www.sciencedirect.com/science/article/pii/S2542660524001537
https://www.sciencedirect.com/science/article/pii/S2542660524001537
https://doi.org/10.4018/IJCINI.344813
https://doi.org/10.1609/aaai.v37i7.26064
https://www.sciencedirect.com/science/article/pii/S2666281721000226
https://doi.org/10.1145/3544746
https://hal.science/hal-02188562

1.0 1.0
0.8 0.8 0.8
> > >
9 S G
4 £ £
5 0.6 5 0.6 5 0.6
S M M
& ® ®
® ® T
2 2 2
T = T
204 ‘20.4 504
£ H H
0.2 0.2 0.2
ECE=0.168, Brier=0.235, Gap=ECE ECE=0.065, Brier=0.171, Gap=ECE ECE=0.016, Brier=0.136, Gap=ECE
i Model reliability (blue)
Perfect calibration (orange)
O'B.O 0.2 0.4 0.6 0.8 1.0 0'8.0 0.2 0.4 0.6 0.8 1.0 0'8.0 0.2 0.4 0.6 0.8 1.0
Confidence Confidence Confidence
1.0 1.0 1.0
0.8 0.8 0.8
> > >
9 S G
4 £ £
5 0.6 5 0.6 5 0.6
S M M
& ® ®
® ® ®
2 2 2
T = T
204 ‘50.4 50.4
i H H
0.2 0.2 0.2
ECE=0.076, Brier=0.054, Gap=ECE ECE=0.075, Brier=0.027, Gap=ECE ECE=0.031, Brier=0.003, Gap~ECE
Model reliability (blue) Model reliability (blue) Model reliability (blue)
Perfect calibration (orange) Perfect calibration (orange) Perfect calibration (orange)
0'8.0 0.2 0.4 0.6 0.8 1.0 0'3.0 0.2 0.4 0.6 0.8 1.0 0'8.0 0.2 0.4 0.6 0.8 1.0

Confidence

(d) WGAN-GP

Confidence

(¢) SGAN-IDS

Confidence

(f) TIPSO-GAN

Fig. 9: Reliability diagrams on CICAPT-110T2024 with shaded miscalibration area. The orange dashed line denotes perfect calibration, and
the blue curve shows the model’s reliability. Legends report ECE and Brier scores, confirming that TIPSO-GAN achieves the best calibration.

2.71289), with results in Table XIII.

sin(\/22 + y?)
/x2—|—y2 Xp(

The proposed adaptive sigmoidal strategy achieved the best
mean value (1.2183), finding all 50 global optima with no local
minima. Its dynamic inertia control balanced exploration and
exploitation more effectively than the fixed (wg) or decreasing
(w1—ws3) schemes. Fixed and linearly decreasing weights pro-
duced lower averages (0.90-0.93) and frequent local optima,
while quadratic and exponential variants (0.81-0.79) over-
exploited early, reducing diversity. Figure 10 confirms that
adaptive weighting preserved population diversity and avoided
premature convergence.

cos(2mx)+cos(27y)

+e 5

fa.y) =) as)

TABLE XIII: The comparative performance on different iner-
tia weights using the customized test function.

Author/ Average # of Local # of Global
Method Value Optima Optima
[26] Conventional 0.9028 10 40
[28] Linear 0.9305 8 42

[30] Quadratic 0.8052 9 48
[61] Constant 0.7864 6 44
[30] Exponential 0.8136 6 44
Adaptive Sigmoidal 1.2183 0 50

The results indicate the importance of maintaining diversity
in the particle swarm, as it allows the algorithm to explore the

18

Fig. 10: The graph of test function f(zx).
TABLE XIV: Experimental Environment Summary.
Category Specification
Processor Intel Core i7 (8 cores, 3.6 GHz)
Memory 64 GB RAM
GPU NVIDIA GTX 1080Ti (11 GB VRAM)

Windows 10 / Ubuntu 22.04
3.10 (Anaconda)

TensorFlow 2.15.0

Scikit-learn 1.3, NumPy, Pandas

Operating System

Python Version

Deep Learning Framework
ML Utilities

complex landscape more thoroughly and avoid being trapped
in suboptimal regions.

B. Detailed experimental settings and parameters

TIPSO-GAN employs a two-phase optimization: PSO-based
initialization followed by Adam fine-tuning. The PSO stage
uses 100 particles (¢; = c3 = 2.05, wyin = 0.4, Wmax = 0.9),
optimizing the GAN loss for 1000 iterations with adaptive

inertia control [62]. The global best solution initializes the gen-
erator before Adam refinement. Training stops when validation
accuracy falls below or exceeds 99.95% for three epochs,
balancing convergence and overfitting. Hyperparameters (Ta-
ble XV) follow prior work with validation tuning. Sensitivity
tests varying MHSA heads (2-8), focal loss v (0-3), and
attention decay (0.90-0.98) confirmed stable accuracy and
low false negatives (Fig. 11), demonstrating robustness and
reproducibility across configurations.

10 10

FNR (%)

0 0

MHSA heads

L0 20

Focal v

090

Attention decay

095 0.98

Fig. 11: sensitivity of tipso-gan to (left) mhsa heads, (middle)
focal 7, and (right) attention decay. bars show mean fnr over
5 runs; lower is better.

10
s : sl |

g 635 5.2 8O g 6 as 5.2 53

-4 -4

£ af 1 & 4 E
2 : ol |
0 T T T 0 T T T

02 03 05 5 10 2

Dropout Rate GP \

Dropout GP strength

Fig. 12: Sensitivity of TIPSO-GAN to regularization and GAN
stability: dropout rate (left) and gradient penalty A (right).
Mean FNR over 5 runs.

10 10

81 N 81 N
—~ gl 59 i ~ 6l 5 il
g o 5.3 5.2 g o 3 5.2
g g
£ 4 . £ 4 R

2 N 2 N

00— T T 00— T T

10 30 50 20 50 100
Swarm Size P Iterations
PSO P PSO I

Fig. 13: Sensitivity of TIPSO-GAN to PSO parameters: swarm
size P (left) and iterations I (right). Mean FNR over 5 runs.

19

TABLE XV: Parameter settings of TIPSO-GAN.

Component Hyperparameter Value
Optimization Optimizer Adam (81=0.5, 32=0.999)
Learning rate 2x 107*
Batch size 256

GAN Training

Discriminator updates per generator
Gradient penalty A
Adversarial loss weight

5
10
1.0

DeePred (Pre-train)

Encoder depth

3 convolutional blocks

Kernel size / stride 3x3/1x1
Pooling MaxPool (2)
Activation ReLU
Optimizer Adam (10~%)
Epochs 50
DCGAN (PSOGAN base) Conv layers (G/D) 4/4
Latent dimension z 100
Feature map base (G) 64

Feature map base (D)

64

Normalization BatchNorm2d
Activation LeakyReLU (0.2)
TIPSO-GAN Generator (G7) Layers 4 ConvTranspose + BN + ReLU

Output activation
Feature expansion
Dropout rate

Tanh
128 — 256 — 512

MHSA (Discriminator head)

Heads

4

Hidden dim./head 32
Attention decay factor 0.95
PSO (Training phase only) Swarm size P 30
Iterations 1 50
Inertia range (Wmax, Wmin) (0.9, 0.4)
Cognitive/social coefficients (c1, c2) (2.05, 2.05)
Regularization Dropout rate 0.3
Weight decay 1074
10 10
8t 8 sl |
g 638 5.2 5570 g 654) 5.3
1 &
£ a4t 7 £ 4l |
2 8 o |
0 T T T 0 - - -
le-4 2e-4 Se-4 128 256 512
Learning Rate Batch Size

LR sensitivity

Batch sensitivity

Fig. 14: Sensitivity of TIPSO-GAN to learning rate (left) and
batch size (right). Values are mean FNR over 5 runs.

We evaluated the effect of additional training and regulariza-
tion parameters on TIPSO-GAN. Figure 14 shows that varying
the learning rate from 1 x 107 to 5 x 10~ and the batch
size from 128 to 512 changes the false negative rate (FNR)
by less than one point. Figure 13 reports the PSO optimizer
settings: swarm sizes between 30 and 50 and iterations of
50-100 achieve stable results, while smaller values slightly
increase FNR. Figure 12 analyzes regularization and GAN sta-
bility; dropout rates of 0.2-0.5 and gradient penalty strengths
A € {5,10,20} yield only marginal shifts, with A 10
and dropout 0.3 giving the lowest error. Across all settings,
TIPSO-GAN maintains low FNR, indicating robustness to
hyperparameter choices and supporting reproducibility.

APPENDIX B
ARTIFACTS

A. Code Installation & Configuration
Installation Steps:

1) Create a Python 3.11 environment (Anaconda recom-
mended).

TABLE XVI: Mapping of Paper Claims to Artifact Outputs.

Claim Validated by Artifact
Cl run_repro_perf.py, run_compare_baselines.py
— perf_summary_*.json, baselines_perf_*.json,
confusion_matrix_*.json
run_cost_profile.py — cost_metrics_*.json
C2 run_loss_curves.py — loss_history_*.csv, loss_curves_*.png
C3 run_adaptive_attacks.py —
adaptive_attacks_report_*.json,
adaptive_attacks_summary_*.csv,
adaptive_attacks_*plots
C4 run_transfer.py — dee_transfer_report_*.json, transfer_*.png
C5 run_balance_eval.py — balance_grid_*.csv, preds_*.npy
Al run_attention_ablation.py — attention_ablation_*.csv
run_pso_ablation.py — pso_vs_static_*.csv
Cost run_cost_profile.py — cost_metrics_*.json, cost_latency.png

Note: filenames with * stands for the dataset names used.

2) Run pip install -r requirements.txt.
3) Test setup: python run_repro_perf.py. Results
appear under artifacts/.

B. Experiment Workflow

Each experiment is executed via a standalone Python script
(run_x*.py) that loads data, trains TIPSO-GAN, evaluates
results, and saves outputs to artifacts/.

Workflow steps:

1) Load data using cicids_loader.py (default:
cicids2018.csv, cicddos2019.csv,
cicaptiiot.csv).

Initialize model components (PSO, generator, discrim-
inator, DeePred) from train.py.

Train & evaluate the TIPSO-GAN framework with
configurations in config.py.

Store results (metrics, confusion matrix, loss curves) in
artifacts/.

2)
3)
4)

To execute any experiment, open the project folder in Visual
Studio Code (VS Code) and run the desired script (e.g.,
run_repro_perf.py) using the integrated terminal (right
click on the script you want to execute and select "Run Python
File in Terminal”) or “Run Python File” option.

All scripts can alternatively be executed from the command
line as: Example command:

python run_repro_perf.py
python run_ablation_pso.py etc.

Results are automatically saved under artifacts/. All
scripts can be run independently or sequentially to reproduce
results in the paper. VS Code or any terminal may be used;
results appear automatically in artifacts/.

C. Major Claims

e (Cl): TIPSO-GAN achieves superior detection metrics
(Acc, Prec, Rec, F1) vs baselines. — (E1, E8) (Table
VII).

e (C2): Stability and resilience of TIPSO-GAN against
mode collapse. — (E2) Table III.

e (C3): DeePred transfer learning effects. — Fig. 8.

20

return p.parse_args()

Fig. 15: Data configuration

TABLE XVII: Baseline Implementations and Code Reposito-
ries

Method Repository URL

TIPSO-GAN https://doi.org/10.5281/zenodo.17759516
DCGAN, WGAN-GP https://github.com/Zeleni9/pytorch-wgan
FenceGAN https://github.com/phuccuongngo99/Fence_GAN
BiGAN https://github.com/ajbrock/BigGAN-PyTorch
SYN-GAN https://github.com/dagrate/syngan

FT-Transformer https://github.com/yandex-research/

rtdl-revisiting-models

(C4): PSO-based balancing improves recall. — Fig. 6.
(C5): Model generalizes to unseen attack types. — Table
VIII.

(C6): PSO and attention modules provide additive gains.
— added in Table X and Fig. 8.

(C7): Computational cost comparable to baseline GANSs.
— Table X.

(C8): TIPSO-GAN maintains robustness under adaptive
attacks. — Table VI.

D. Evaluation

Table XVI summarizes all experiments (E1-E10), mapping
each to its corresponding claim (C1-C8), expected outcome,
and generated output files. The corresponding evaluation re-
sults reported in the paper are indicated in the major claims
section (B-C).

E. Customization

Modify config.py to adjust epochs, dataset paths (see
Fig 15 in each script), and verbosity. All scripts run with CPU
by default; set TensorFlow GPU if available.

F. Code Availability
The implementation of the proposed method is available at
https://doi.org/10.528 1/zenodo.17759516. See Table XVII for

full implementation codes of TIPSO-GAN and the baselines
methods.

https://doi.org/10.5281/zenodo.17759516
https://github.com/Zeleni9/pytorch-wgan
https://github.com/phuccuongngo99/Fence_GAN
https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/dagrate/syngan
https://github.com/yandex-research/rtdl-revisiting-models
https://github.com/yandex-research/rtdl-revisiting-models
https://doi.org/10.5281/zenodo.17759516

	Introduction
	Related Studies
	Generative Adversarial Networks in Cybersecurity
	GAN Training Optimization and Stability
	Swarm Intelligence for Neural Network Optimization
	Novelty of this study

	Proposed Method
	The TIPSO-GAN Framework
	Modified PSO for GAN Optimization
	Improved particle diversity
	Pre-trained Model (DeePred) construction
	Improved Design of the GAN Structure
	Reconstruction loss function
	Structure and Parameters of PSOGAN

	Threat Model
	Experimental Setup and Evaluation
	Implementation Details
	Dataset
	Baseline models

	Results
	Training stability and mode collapse
	Synthetic Data Quality in Learned Embedding Space
	Multiclass detection results
	Detection performance
	Calibration Analysis
	Robustness against unseen and cross-domain attacks
	Adversarial Robustness
	Runtime Performance, Scalability, and Deployment
	Runtime and Scalability Analysis

	Computational Complexity Analysis
	Ablation study

	Conclusion and future work
	References
	Appendix A: ADDITIONAL EXPERIMENTAL RESULTS
	Experiment on the improved particle swarm inertia weight
	Detailed experimental settings and parameters

	Appendix B: Artifacts
	Code Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Customization
	Code Availability

