
Should I Trust You? Rethinking the Principle of
Zone-Based Isolation DNS Bailiwick Checking

Yuxiao Wu∗§, Yunyi Zhang†§, Chaoyi Lu‡ and Baojun Liu†‡¶
∗Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University

†Tsinghua University ‡Zhongguancun Laboratory
wuyuxiao25@mails.tsinghua.edu.cn, yunyizhang@mail.tsinghua.edu.cn, lucy@zgclab.edu.cn, lbj@tsinghua.edu.cn

Abstract—DNS cache poisoning attacks covertly hijack domain
access by injecting forged resource records into resolvers. To
counter this, resolvers employ bailiwick checking, a critical de-
fense mechanism designed to filter potentially malicious records
from DNS responses. However, in the context of third-party
services, a misalignment between domain ownership and the
traditional, top-down zone delegation model has emerged, posing
significant challenges to the effectiveness of bailiwick checks.

In this paper, we present a systematic analysis of the design
and implementation of bailiwick checking. We demonstrated that
mainstream resolvers generally adopt a conservatism principle:
they will cache any resource record that satisfies minimal con-
straints, regardless of its direct relevance to the originating query.
Building on this finding, we propose a novel cache poisoning
attack (termed CUCKOO DOMAIN): by controlling one single
subdomain, attackers can compromise its parent domain or its
sibling domains. The results of our testing revealed that seven
major DNS resolver implementations, including BIND9 and Mi-
crosoft DNS, are vulnerable. Through a large-scale measurement
study, we confirmed that 44.64% of open resolvers and 21 major
public DNS providers are also at risk. In addition, we found that
over a million subdomains provided by 7 providers—including
No-IP, ClouDNS, and Akamai—are potentially vulnerable to
hijacking through this attack. We have conducted a responsible
disclosure, reporting the affected software vendors and service
providers. BIND9, Unbound, PowerDNS and Technitium have
acknowledged our reports and assigned 3 CVEs. We call upon the
community and software vendors to address the new challenges
that modern service ecosystems pose to the effectiveness of
bailiwick checking.

I. INTRODUCTION

The Domain Name System (DNS), as a key part of the
Internet infrastructure, is responsible for transforming user-
friendly domain names into machine-understandable IP ad-
dresses. Its security and stability are directly related to the
normal operation of upper-layer applications, such as PKI [1]
and Email [2]. DNS cache poisoning injects forged resource
records into resolvers to hijack traffic for a target domain,
severely undermining the security of the Internet.

§ Both are first authors. ¶ Corresponding author.

Constructing specially-crafted response packets is a simple
and effective method for achieving DNS cache poisoning. In
the early stages of DNS, resolvers were designed with limited
security considerations and would indiscriminately cache all
resource records returned by an authoritative nameserver, even
when the records are owned by a different zone (e.g., records
owned by alternic.net can be injected into responses for
internic.net queries and then cached by resolver [3]),
which led to the first generation of cache poisoning attacks.
An attacker could inject forged records of an arbitrary do-
main, by simply configuring an authoritative nameserver for
a domain they controlled. To sanitize such malicious records
in DNS responses, major resolver software vendors designed
and implemented bailiwick checks. While mostly effective
against such attacks, recent research [4] has demonstrated that
bailiwick checks in mainstream resolver software may still be
bypassed using carefully crafted responses.
Research Gap. Bailiwick checking aims to filter malicious
resource records from DNS responses, but what constitutes
a “malicious” record is not only formally undefined but also
notoriously difficult to specify. This lack of a standard has
led software vendors to independently implement their own
versions of the check. As a result, there is currently no sys-
tematic understanding of bailiwick checking implementations
within the security community.
Conservative Bailiwick Checking. In this work, we fill the
gap by systematically analyzing the principles and implemen-
tation of bailiwick checks by reviewing relevant RFCs and
auditing the source code of mainstream resolver software. We
found that while the specific logic of their bailiwick check
implementations varies, the core mechanism is fundamentally
zone-based. They rely on the top-down hierarchy of the do-
main namespace, setting the current zone based on a “closest”
principle. Each record in a response is then compared against
this current zone to determine whether it should be filtered. For
example, when resolving example.com with no pre-existing
cache entries, a resolver will first initialize the current zone to
the root (i.e., “.”) and subsequently to example.com. Moreover,
we confirmed that most implementations adopt a conservatism
policy, aiming to cache as many potentially useful records as
possible. This validation consists only of confirming that a
record’s domain name is part of the current zone, either by
being identical to the zone or by being one of its subdomains.
CUCKOO DOMAIN Attack. We found that conservative

Network and Distributed System Security (NDSS) Symposium 2026 
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240330
www.ndss-symposium.org



checking policies lead to an over-trust of resource records
from the authoritative nameservers of upper-level zones, which
introduces new security risks. This principle is predicated on
the traditional assumption that, within the DNS hierarchy, a
upper-level zone holds administrative authority over its lower-
level zone. However, in the context of third-party services,
administrative control is often demarcated by the service
itself, not by traditional zone delegation. For instance, with a
Dynamic DNS (DDNS) service, a user registers and configures
a subdomain from the provider; in this case, administrative au-
thority for that subdomain belongs to the user, not the service
provider who owns the parent domain. Due to conservative
checking policies, the resolver will cache the subdomain’s
records when they are served by the parent zone’s authoritative
nameserver. By exploiting it, an attacker with control over a
single such subdomain can configure specific records to create
a new attack vector, affecting any other sibling subdomain
or even the parent domain. We call it CUCKOO DOMAIN,
derived from the cuckoo’s practice of brood parasitism, where
it deposits its eggs in the nests of unsuspecting hosts, and its
offspring then displace or attack the host’s own young.

This attack pattern is analogous to well-known threats in
the web security field. For example, attackers can exploit
platforms that provide subdomains, such as GitHub Pages [5],
to conduct cross-site scripting attacks [6] or supercookies [7].
To address this, the Public Suffix List [8] was proposed
to limit the trust scope of each domain. In light of the
CUCKOO DOMAIN, it is necessary to rethink the effectiveness
of current bailiwick checking constraints in the context of
modern business scenarios.
Evaluation of Impact. To evaluate the attack’s real-world
impact, we first designed and implemented 20 distinct test
payloads across three categories to systematically evaluate the
bailiwick implementations of eight major resolver software.
We found that seven of the eight software packages were
vulnerable to at least one payload, and two (PowerDNS [9]
and Microsoft DNS [10]) were vulnerable to all three. We
then extended our testing to 588,624 stable open resolvers
and 30 popular public DNS services. Our results show that
262,779 (44.64%) of these open resolvers and 21 major public
DNS providers are impacted by at least one of our test
payloads (e.g., Quad9 DNS [11], Clean Browsing DNS [12]),
demonstrating the widespread nature of the threat.

Furthermore, we validated the attack on seven major third-
party services, including No-IP [13] and Akamai [14], con-
firming its practical exploitability. We demonstrated that on
these services, an attacker can easily register a subdomain and
configure resource records. This capability serves as a stepping
stone to poison responses from the provider’s nameserver,
leading to cache poisoning on resolvers. Finally, we used
Passive DNS (PDNS) to evaluate the real-world impact scale
of the attack. Our analysis shows that across seven service
providers, this threat affects millions of customer subdomains.
Mitigation and Disclosures. Based on our findings, we
propose mitigation for DNS software and third-party service
providers. We evaluated these schemes on popular domain

service platforms, and our results confirm that the proposed
solutions do not interfere with legitimate domain resolution.
Furthermore, we responsibly disclosed the issues to affected
DNS software, public DNS services, and third-party providers.
To date, BIND9 [15], Unbound [16], PowerDNS [9] and
Technitium [17] have acknowledged our report, assigned 3
CVEs and released patched versions.
Contributions. We make the following contributions:

Systematic analysis of bailiwick principle. We bridged the
gap in the study of bailiwick checks with a systematic analysis
of the design and implementation. By reviewing 470 RFCs and
auditing 8 major DNS software, we uncover a significant di-
vide between the protocol standards and their implementation
in practice.

New threat model. We proposed a novel threat model that
allows attackers to poison the cache of their sibling or even
parent domains in the same zone by controlling any subdomain
within the zone.

Comprehensive evaluation of new attacks. We performed a
comprehensive threat assessment across major software imple-
mentations, third-party service providers, open resolvers, and
public DNS providers. The evaluation results show that seven
major software implementations, 44.64% of open resolvers,
and 21 public DNS providers are vulnerable to this threat.
Furthermore, over a million customer domains hosted by seven
third-party service providers face potential hijacking risks.

II. BACKGROUND

In this section, we introduce the DNS concepts, including
the DNS namespace and DNS packet structure. Then we
describe the bailiwick rules.

A. DNS Overview

DNS Namespace and Resolution. The DNS namespace is
a tree structure where each node represents a domain name.
As shown in Figure 1, the apex of the structure is the DNS
root zone (denoted as “.”) , followed by a number of Top-Level
Domains (TLDs), such as com and net. The Second-Level
Domains (SLDs) further down the hierarchy are managed by
registrars, such as GoDaddy [18] and Dynadot [19], which
provide registration services while transferring ownership of
the domain and its subdomains to the domain administrator.
The authoritative data for a domain is stored in its correspond-
ing authoritative name server according to the domain name
and data type, and a group of domains which are in the same
authoritative server is called a DNS zone.

After receiving a DNS query, the DNS resolver first checks
its local cache to see if it has the answer. If not, it recursively
queries the DNS root server, TLD server, SLD server, until it
reaches the authoritative name server for the queried domain
(step ➋, ➍, and ➏ in Figure 1). During this process, name
servers may return referral or answer responses, as
shown in Figure 2 (a) and (b). A referral response is used
to indicate that the queried domain name does not belong to
the current zone, and it provides the information of a name
server that is “closer” to the answer in authority and

2



additional sections. An answer response contains the
requested resource records for the queried domain in answer
section, such as A record for IPv4 address, NS record for name
server, and CNAME record for a canonical name.

For example, when facing a query for example.com, the
name server for com return a referral to indicate the
authoritative server for example.com (step ➎), while the
server for example.com returns an answer containing final
answers (step ➐). In order to optimize the DNS resolution
process, the resolvers will cache the DNS records in referral
and answer packets for a period of time.

Client Recursive
resolver

.

com net

example.com

Domain Name Space
Root

TLD

SLD

Authoritative Name Servers

Delegate

Delegate

1

2 Query example.com

3 Referral to TLD NS

4 Query example.com

5 Referral to SLD NS

6 Query example.com

7 Authoritative answer

Query

8 Answer

Fig. 1. Standard DNS resolution for example.com.

DNS Packet Structure. Both DNS query and response
packets consist of the header flags and four sections contain-
ing information about the current resolution process, namely
question, answer, authority, and additional. Fig-
ure 2 illustrates two response packets whose QR bit in the
header flags used to distinguish the query and response packets
are both set, and the AA flag is set in Figure 2 (b) to indicate it
is an authoritative answer response. The question section
contains the domain and the type of resource record requested
by the client. A server which is not authoritative for the queried
domain uses the authority and additional sections to
provide referral information, while an authoritative server fill
the answer section with the requested resource records.

A 5-tuple structure is used to describe the elements of the
resource record in the three sections except for the question
section:⟨RNAME,RTYPE,RCLASS,TTL,RDATA⟩. When the re-
solver try to cache a new records whose RNAME, RTYPE, and
RCLASS are the same as the one in the cache, it will decide
whether to update the cache based on the data trust level.
Though different DNS software have different implementa-
tions of the cache update policy [20], they all follow two basic
principles to determine the trust level of the records: the ones
in authoritative answer responses have a higher trust level
than those in other responses; and the ones in the answer
section in the same packet has a higher trust level.

B. Bailiwick Rules
Back to 1990s, the implementations of DNS resolvers were

relatively simple, and they would cache all resource records in
the response packets without any checking. Generally, a name
server should not provide records outside of its zone [21].
However, the attacker who controlled a malicious authoritative
name server could inject arbitrary records into the each section
of the response packets, as shown in Figure 2 (c), (d) and (e).

Packet (c) spoof a A record for victim1.com. in the
answer section, while packet (d) injects a NS record for
victim2.com. in the authority section. These two
malicious records can be directly cached by the resolver, and
will be returned to the clients. Packet (e), on the other hand,
modifies the glue record [22] in the additional section,
which will only be used for subsequent queries for com. by
the resolver, but still achieves the goal of domain hijacking.

In order to prevent malicious user from poisoning the re-
source records of other users’ domains, the bailiwick checking
principle is implemented in mainstream DNS software [4]. The
key idea of bailiwick checking is to filter out records that are
not supposed to appear in the response packet based on their
RNAME. However, how to implement this principle is complex
in practice, thus different software vendors are implementing
as they see fit to defend the very type of cache poisoning since
there is no standardization of bailiwick checking.

The principle of DNS bailiwick checking is the key mech-
anism to prevent malicious responses. However, with the
development of the Internet, especially the popularity of
hosting-based services, it is unclear whether the independent
implementation of DNS software can effectively cope with the
new challenges. We reveal the vulnerabilities in Section III,
and detail the implementation and the differences of bailiwick
checking among various software in Section IV.

III. ATTACK OVERVIEW

In this section, we propose a novel threat model based on the
vulnerabilities in the implementations of zone-based isolation
bailiwick checking, and analysis the feasibility of the attack.

A. Threat Model

Our new threat model focuses on third-party hosting
providers, where an attacker’s control of a single subdomain
can be weaponized. The objective is to poison the DNS cache
for other sibling subdomains or even the parent service domain
itself. Under this scenario, the attacker can directly impact a
large number of domains belonging to other users of the same
service. Figure 3 illustrates our threat model.

First, a prerequisite for the attacker is to gain control over
the resource record configuration of an arbitrary subdomain
under the target SLD that is not zone-cut. A lack of a zone
cut implies that the subdomain shares the same authoritative
servers as its parent domain. This prerequisite is frequently met
in practical hosting-based environments where different sub-
domains are often partitioned for distinct services or business
units. We introduce such real-world scenarios in Section III-C.

Second, similar to existing cache poisoning attacks [4, 23–
25], the attacker needs to send DNS queries to the target
resolver to trigger the attack. This is naturally satisfied for open
resolvers, such as Google Public DNS [26] and Cloudflare
DNS [27]. For resolvers that are private, the attacker can
either enter the internal network or leverage internal hijacked
machines to send DNS queries.

Additionally, due to the fact that only a few domains in
the real world are configured with DNSSEC [28, 29], and

3



Header Flags：QR

Question Section：
example.com.        A

Answer Section：
（Empty）

Authority Section：
com.       NS       a.gtld-servers.net.

Additional Section：
a.gtld-servers.net.    A    192.5.6.30

(a) Normal referral

Header Flags：QR  AA

Question Section：
example.com.       A

Authority Section：
（Empty）

Additional Section：
（Empty）

(b) Normal answer

Answer Section：
example.com.     A    23.192.228.80

Header Flags：QR  AA

Question Section：
attacker.com.       A

Authority Section：
（Empty）

Additional Section：
（Empty）

(c) Spoofing Answer Section

Answer Section：
victim1.com.           A          a.t.k.r

Header Flags：QR  AA

Question Section：
attacker.com.       A

Authority Section：
victim2.com.    NS    ns.atkr.com.

Additional Section：
（Empty）

(d) Spoofing Authority Section

Answer Section：
attacker.com.               A      a.b.c.d

Header Flags：QR  AA

Question Section：
attacker.com.       A

Authority Section：
com.       NS       a.gtld-servers.net.

Additional Section：
a.gtld-servers.net.      A      a.t.k.r

(e) Spoofing Additional Section

Answer Section：
attacker.com.               A      a.b.c.d

Fig. 2. Normal responses (a) and (b) for A record query of example.com. Spoofing responses (c), (d) and (e) for A record query of attacker.com.

the insufficient deployment of resolvers that perform DNSSEC
validation [30], we do not consider DNSSEC protection [31].
Comparison with Related Works. CUCKOO DOMAIN dif-
fers from previous DNS cache poisoning attacks in the as-
pects described below. First, the CUCKOO DOMAIN attack
exploits improper domain ownership delegation in hosting-
based services, rather than software implementation flaws like
forwarders lacking resource record validation [25, 32], or
operating system side-channels [33–35]. Second, while prior
research has examined bailiwick checks, these studies have
often lacked a systematic analysis of real-world bailiwick
implementations, or have focused narrowly on specific resolver
types (e.g., CDNS [4]). Consequently, a comprehensive, sys-
tematic analysis of bailiwick rules remains absent.

A body of work has also studied cache poisoning via in-
bailiwick responses. For instance, the well-known Kaminsky
attack [24] leverages referral responses to achieve cache
poisoning. Other studies have focused on response packet
forgery through methods such as IP fragmentation [23, 36, 37]
or birthday attacks [38]. These approaches primarily intro-
duced novel methods for response packet forgery, compelling
recursive resolvers to accept spoofed packets directly, thereby
bypassing bailiwick checks. However, our work does not
focus on devising new response packet forgery techniques.
Instead, we conduct an in-depth analysis of the adaptability
of recursive resolvers’ bailiwick rules to contemporary and
novel scenarios, revealing the limitations of “legacy” bailiwick
checks. Moreover, prior attack methods can be integrated
within our proposed threat model.

❷ attacker.victim.com?

❸ Inject spoofed response 
to poison victim.com
(Table II shows payloads)

Victim.com’s
authoritative server
(e.g., DDNS, hosting)

attacker.victim.com

otherchild.victim.com

Subdomain created 
by attacker

Subdomains created 
by other users

Off-path 
attacker

Recursive 
resolver

❶ attacker.victim.com?

Bailiwick check passed
Spoofed response cached

Ordinary DNS client

❹ otherchild.victim.com? ❺ Hit cache, OR,
❺ Query rogue serverRogue DNS response ❻

No query due to cache

Fig. 3. Threat model and attack flow of CUCKOO DOMAIN.

B. Attack Workflow
The attack comprises two steps: (1) obtaining a subdomain

for the target domains and (2) poisoning the cache of recursive
resolvers by exploiting the limitations of current bailiwick
rules under the subdomains scenario. It is a common practice
for large enterprises to host multiple distinct services within
a single DNS zone, assigning these services to different
subdomains. Certain public offerings, such as Dynamic DNS
(DDNS) or free subdomain services, allow users to register
a subdomain to host their own services. In the first step,
an attacker can gain control over a subdomain by simply
registering for the service. We introduce practical scenarios
of how an attacker acquires a subdomain in Section V-C.

For the second step, the attacker follows the general
cache poisoning procedure illustrated in Figure 3. First,
the attacker initializes a query for a subdomain (e.g., at-
tacker.victim.com) under their control to the target recursive
resolver. Next, the recursive resolver issues a query to the
authoritative server for that subdomain. The attacker then
injects a crafted, spoofed response (step ❸ in Figure 3).
The response contains forged NS data designed to be com-
pliant with existing bailiwick rules, thus evading checks
(detailed in Section V-A). For example, the authoritative
server for victim.com or otherchild.victim.com
is maliciously set to ns.rogue-ns.com. In our threat
model, the attacker is off-path and can leverage existing off-
path techniques to inject the spoofed packet. For instance,
an attacker could configure an oversized resource record
for their subdomain to force IP fragmentation, enabling the
insertion of the spoofed packet through a fragmentation-based
attack [23, 25, 36, 37, 39]. We discuss the practical feasibility
of such off-path attacks in Section III-C, and confirm that
mainstream service providers allow users to configure resource
records and IP fragmentation in Section V-C. Finally, the
recursive resolver accepts and caches the spoofed response.
As a result, when a victim client queries the targeted victim
domain for the resolver, the resolver is redirected to query the
attacker’s rogue authoritative server.

C. Practical Considerations of CUCKOO DOMAIN

In this section, we analyze the feasibility of the CUCKOO
DOMAIN by discussing the practical factors. First, we describe
how current bailiwick rules can be exploited in the context
of this attack. Next, we introduce several common subdomain

4



services that furnish realistic scenarios in which the attack can
be mounted. Finally, we discuss the feasibility of injecting the
required spoofed data packets.

Limitations of Bailiwick Rules. The core objective of
bailiwick rules is to prevent forged resource records. However,
as network services have evolved, the boundaries of domain
ownership have shifted, rendering existing bailiwick rules
insufficient in certain contemporary scenarios. This allows
an attacker to trigger a new attack vector by controlling
any subdomain, leading to cache poisoning attacks. Through
systematic analysis, we tested 20 different payloads against
mainstream DNS software implementations and, based on
the experimental results, designed three new attack variants
(Section V-A). Moreover, we also demonstrate the prevalence
of vulnerable open resolvers in the real world in Section V-B.

Subdomain Service Provider. In practice, many online ser-
vices allocate subdomains to users to provide specific function-
alities. For instance, GitHub [5] assigns subdomains to users
for hosting blogs. However, not all such subdomain services
meet the requirements of our threat model. An exploitable
service needs to satisfy two conditions: First, the user needs to
be able to configure resource records, which can contribute to
launching a off-path attack. Second, the subdomain still resides
in the same zone as its parent domain without a separate zone
cut, meaning the subdomain and its parent share the same
nameservers. After a detailed investigation, we identified the
following services that satisfy these requirements, and measure
their vulnerability and prevalence in Section V-C:

Dynamic DNS (DDNS). DDNS [40] is a service that allows
users to update their DNS records dynamically, which is
often used by home users and small businesses. It provides
users with a convenient way to access certain services by
establishing a mapping between a fixed domain name and a
dynamic IP address. Most service providers (e.g., No-IP [13],
Dynv6 [41]) usually allow users to configure some other
resource records, such as CNAME and TXT records. We take
Dynv6 as an example and show the configuration interface of
its DDNS service in Appendix A. Users can configure their
domain and related DNS resource records on this interface.

Free subdomain service. Some zone administrators (e.g.,
ClouDNS [42] and DNS Exit [43]), provide free subdomains
within the zone to users for various purposes, such as personal
websites and custom emails. These domains are not cut off
from the DNS zone when users register, which means that
the resource records directly configured by users still reside
directly in the authoritative server of the zone.

Load balancing service. To achieve load balancing during
the resolution process, some service providers offer Global
Traffic Management (GTM) or Content Delivery Network
(CDN) services, which allow users to configure a CNAME
record pointing to the vendor’s subdomain. The service
provider then responds to the resolver using different nodes
with information such as the resolver’s geographic location
and server status to manage traffic. In GTM services such
as Akamai [14], users can configure various records for the
service provider’s subdomain to align with our threat model.

Others. In addition to the above three publicly available
subdomain services, we also find that some IoT vendors (e.g.,
Synology [44] and ASUSTOR [45]) and large companies
assign different subdomains and their record configuration
rights to different internal users or devices. For the former, they
provide a subdomain for their branded devices (e.g., NAS) to
support various functions, including but not limited to DDNS,
email services, and communication protocol specification. For
the latter, it is common in large companies where different
departments or teams are assigned different subdomains under
the same zone for easier management and resource isolation.

Attack Implementation. The fragmentation attack is a
powerful off-path attack method as it only requires the attacker
to forge a small number of random bits in the response packet.
However, existing attacks [23, 25, 36, 37] either rely on
DNSSEC validation-enabled data packets, making it difficult
for malicious data to pass validation, or struggle to identify
authoritative servers in real-world environments that can re-
turn oversized response packets, limiting their impact range.
CUCKOO DOMAIN, on the other hand, presents a natural
advantage for overcoming these limitations. An attacker can
manipulate the resource records of their subdomain to force
the generation of oversized DNS response packets, thereby
facilitating the execution of fragmentation attack. It is worth
noting that fragmentation is only one pathway to carry out
our attack. We provide attackers who perform port inference
attacks [33, 46] with a variety of payloads.

Feasibility of fragmentation attack. Due to the severity
of fragmentation attacks, RFC 9715 [47] outlines a series of
mitigation measures. However, since packet fragmentation and
reassembly are handled by the operating system, the resolver
cannot detect whether a packet has been fragmented. They
only apply bailiwick checking to examine the recived packets
from OS. Our tests confirm the practical viability of this threat
(Section V-C). The results show that the authoritative servers
of 7 tested service providers can be induced to send frag-
mented responses, indicating their vulnerability to this attack
vector. We also demonstrated an end-to-end fragmentation
attack on the resolver in Appendix B.

IV. SYSTEMATIC ANALYSIS OF THE SPECIFICATION AND
IMPLEMENTATION OF BAILIWICK PRINCIPLE

In this section, we first present a comprehensive analysis
of the definition of bailiwick in DNS RFCs. Then, we sys-
tematically review the implementation of bailiwick rules in
mainstream DNS software and summarize their workflow and
differences in bailiwick checking.

A. Bailiwick in RFCs

We begin by analyzing bailiwick rules from the perspective
of protocol standards, collecting and organizing relevant spec-
ifications of the bailiwick. Specifically, we gathered 470 DNS-
related RFCs and searched for the keyword “bailiwick” within
their contents. This process ultimately yielded only six relevant
RFCs, as shown in Figure 4. We present relevant passages from
these RFCs in Appendix C

5



Upon manual review of these six RFCs, we categorized
them into two types: those imposing requirement constraints
and those providing definitions. We observed that a formal
definition of bailiwick appeared after the requirement con-
straints, which implies that bailiwick checking was initially
implemented across different software as a de facto standard
rather than a formally specified one.

Three RFCs (6763 [48], 7477 [49], and 9199 [50]) of
requirement constraints do so for specific responses, requiring
them to satisfy bailiwick rules. For instance, RFC 6763, pub-
lished in 2013, required resolvers to “verify that any records
they receive from a given authoritative name server are in
bailiwick for that server, and ignore them if not.” However, it
does not further elaborate on the precise meaning of bailiwick.

The remaining three RFCs (7719 [51], 8499 [52], and
9499 [53]), published in 2015, 2019, and 2024 respectively,
attempted to provide a formal definition of bailiwick. However,
acknowledging the difficulty of providing a precise dictionary
definition, they ultimately recommended treating “bailiwick”
as a historical term, and it is sufficient to understand its
technical significance.
Summary. Bailiwick rules emerged as a de facto standard
from efforts to mitigate DNS cache poisoning attacks and
have been implemented independently across different resolver
software. The community once made efforts to try to propose
a specific normative description of bailiwick in the RFC,
ultimately pivoting away from the dictionary definition, instead
recommending an understanding of its technical meaning.

B. Systematic Analysis of Bailiwick Checking in DNS software

To gain an in-depth understanding of how different DNS
software implements the bailiwick checking, we systematically
analyzed mainstream DNS software. Specifically, we selected
eight of the most prevalent DNS software, which have also
been analyzed in prior research [20, 54–58], including six
open-source software and two closed-source software. For
open-source software, we analyzed their bailiwick imple-
mentations and runtime behavior using a hybrid approach
combining static and dynamic analysis. In conjunction with
official documentation and relevant RFCs [21, 52, 59, 60],
we conducted a four-week manual analysis of the bailiwick
implementation source code for all six software. Additionally,
we performed dynamic analysis using GDB [61] to collect
runtime data and resolver interaction logs. For the closed-
source software, Microsoft DNS and Simple DNS Plus, we
first reviewed their official documentation [10, 62]. Sub-
sequently, we employed the testing methodology described
in Section V-A to analyze the behavior of their respective
bailiwick check implementations.

Next, we present the results of our analysis on bailiwick
check implementations and summarize the discrepancies iden-
tified among the different DNS software, as shown in Table I.

(I) Query Initialization. After receiving a query Q from the
client, the resolver first parses and retains the queried domain
(i.e., QNAME) and record type (i.e., QTYPE), while ignoring
the records added in the answer and authority sections.

Then, the resolver will search its cache for records that
match the QNAME and QTYPE. If existing, it will return the
cached data as the response R. If not, it will use the zone
closest to QNAME in cache as the starting point for recursive
queries and initialize the variable QZONE to that zone for
bailiwick checking. For example, when querying the A record
of example.com, if there are no records in the resolver’s
cache, it will initialize QZONE to “.” and send a query to
the root server. If there are NS records of com, it will mark
QZONE to com and send the query. The bailiwick check
verifies whether the name of the resource record (i.e., RNAME)
is equal to, or a subdomain of, the QZONE, formally denoted
as RNAME = QZONE or RNAME < QZONE.

(II) Referral Processing. Prior to receiving the answer
response from the target authoritative server, the resolver
iteratively queries each name server in a top-down fash-
ion, constructing a complete resolution chain with the aid
of referral responses. The main difference between
referral and answer responses is that referral does
not contain records in answer section, but only carries the
relevant information for the “closer” name servers. Thus, the
resolver only checks and caches the records in authority
and additional sections. Different software implementa-
tions exhibit significant variations in how they process re-
source records within referral responses.

• PowerDNS, Technitium, Microsoft DNS, and Simple DNS
Plus cache records in authority section if and only
if RNAME < QZONE. They check each record in
the authority section individually. Regardless of the
relationship between RNAME and QNAME, as long as the
condition RNAME < QZONE is met, the record is
cached and utilized in future resolution processes.

• All resolvers (e.g., BIND9, PowerDNS) cache and use
glue records in additional section if and only if
RNAME < QZONE. To mitigate resolution loops
under in-domain delegation, RFC 1034 [59] introduced
glue records and required their use exclusively within
referral responses. However, we found that all re-
solver software only check the relationship between the
RNAME of a glue record in the additional section and
the QZONE; if RNAME < QZONE, they will cache
the record and utilize it in future resolution processes.

• Knot and PowerDNS cache records in authority and
additional sections when RNAME = QZONE.
However, they differ in their caching behavior: Knot
will not update its cache with new resource records that
have a trust level equal to or lower than that of existing
records, whereas PowerDNS will update its cache with
new resource records of the same trust level.

• MaraDNS strictly requires records in authority sec-
tion that RNAME ≤ QZONE and RNAME ≥
QNAME, and cache the corresponding glue records.

After the above processing, the resolver will update QZONE
with the “closer” domain in NS records, which will be used
for subsequent bailiwick checks.

6



RFC 6763: DNS-Based Service 
Discovery.
Status: PROPOSED STANDARD.

February 2013 RFC 7477: Child-to-Parent Sync-
hronization in DNS.
Status: PROPOSED STANDARD.

March 2015

RFC 9199: Considerations for Large 
Authoritative DNS Server Operators.
Status: INFORMATIONAL.

March 2022

RFC 7719: DNS Terminology.
Status: INFORMATIONAL.
Obsoleted by 8499.

December 2015 RFC 8499: DNS Terminology.
Status: BEST CURRENT PRACTICE.
Obsoleted by 9499.

January 2019

RFC 9499: DNS Terminology.
Status: BEST CURRENT PRACTICE.

March 2024

Fig. 4. The timeline of the RFCs related to bailiwick checking.

TABLE I
IMPLEMENTATION DIFFERENCE IN BAILIWICK CHECKING OF MAINSTREAM DNS SOFTWARE.

Functional implementation BIND9[15] Knot[63] Unbound[16] PowerDNS[9] Technitium[17] MaraDNS[64] Microsoft
DNS[10]

Simple DNS
Plus[62]

Version 9.20.13 6.0.9 1.22.0 4.9.91 13.3 3.5.0036 2025 9.1.116

Check matched RTYPE records in AN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Check NS from a referral response ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Check AR from a referral response ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Check NS from an answer response ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓
Check AR from an answer response ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

Cache sibling record in referral response ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓
Update delegation in referral response ✗ ✓ ✗ ✓2 ✗ ✗ ✗ ✗
Cache unmatched RNAME in AN ✗ ✗ ✗ ✓3 ✗ ✗ ✓ ✗
Cache sibling record in answer response ✓ ✓ ✗ ✓ - - ✓ ✓
Update delegation in answer response ✓ ✓ ✓ ✓ - - ✓ ✗
Cache overwrites with the same level data ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Vulnerable
T1 Attack ✗ ✗ ✗ ✓3 ✗ ✗ ✓ ✗
T2 Attack ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓
T3 Attack ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓

AN: Answer Section. NS: Authority Section. AR: Additional Section. 1 Due to the extended testing period, we evaluated three versions of PowerDNS: 4.9.9,
5.1.7 and 5.2.5. 2 PowerDNS versions 5.1.7 and 5.2.5 implement correctly. 3 PowerDNS version 5.2.5 implement correctly.

(III) Answer Sanitization. Authoritative answer re-
sponses from a target domain’s authoritative server are as-
signed the highest trust level. Consequently, resolver software
processes the records within the answer response differently
than it does for referral responses. Moreover, with the ex-
ception of Technitium and MaraDNS—which only process the
answer section while ignoring the records in authority
and additional sections—all other tested resolver imple-
mentations inspect every record across all sections of the
response, caching any records that pass the requisite checks.

• PowerDNS and Microsoft cache records in the answer
section when the condition RNAME ≤ QZONE is
met. Other implementations, in contrast, apply a stricter
check, additionally requiring that RNAME equals QNAME.

• BIND9, Knot, PowerDNS, and Microsoft DNS cache and
use resource records in authority and additional
sections, requiring only that RNAME ≤ QZONE and
not the stricter condition of RNAME = QNAME. As
previously described, Knot still will not update its cache
with a new record that has a trust level equal to or lower
than that of the existing record.

• Unbound caches and uses resource records in
authority and additional sections, when
RNAME ≤ QZONE and RNAME ≥ QNAME.

• Simple DNS Plus only requires RNAME < QZONE.
Summary. Most resolver implementations perform bailiwick
checking by validating resource records based on the QZONE.
They apply different rules for different response types, such as
referral and answer, and assign varying trust levels to

different resource records. However, some resolver neglect to
validate the RNAME of records within answer responses using
QNAME. In scenarios where subdomain ownership boundaries
are ambiguous, our threat model (Section III-A) exploits this
widespread neglect of RNAME validation to achieve cache
poisoning of sibling domains and even the parent domain
itself. Our large-scale evaluation in Section V demonstrated
the widespread, real-world impact of this threat.

V. EVALUATION OF CUCKOO DOMAIN IN THE WILD

The analysis in Section IV revealed that mainstream DNS
software implementations primarily focus on QZONE for their
bailiwick checks. This creates a vulnerability to CUCKOO DO-
MAIN in scenarios where subdomain ownership is ambiguous,
potentially leading to cache poisoning.

Building on these findings, in this section, we first design
corresponding attack test packets and evaluate the susceptibil-
ity of 8 mainstream software. Next, we conduct a large-scale
impact assessment on public DNS services and open resolvers.
Finally, we analyze the extent to which subdomain service
providers are affected. Our experimental results confirm the
widespread, real-world impact of the CUCKOO DOMAIN.

A. Evaluating Mainstream DNS Software

1) Test Payload Design: As shown in Section IV-B, the
bailiwick checking mechanism is implemented differently in
different sections. Thus, we design distinct test payloads for
each section to comprehensively evaluate the susceptibility of
each software, as shown in Table II. We assume an attacker ob-
tains the subdomain atkr.victim.com from a subdomain service

7



provider with the SLD victim.com, and gains the authority to
configure arbitrary resource records for it. Our payloads were
designed according to the following principles:

• For the answer section, since all implementations in-
spect the RTYPE of resource records, we design two
test scenarios: (i) utilizing various RTYPEs while ensur-
ing the injected resource record remains consistent with
the QTYPE, including payload 1 (A), payload 2 (TXT),
and payload 6 (CNAME). (ii) inserting special resource
records, such as payload 5 (CNAME), into the data packet.

• For the authority section, we poison the target do-
main’s authoritative server information by constructing
various NS records. For example, payload 9 configures
the SLD’s authoritative server to be the attacker’s own
subdomain, while payload 11 points to an authoritative
server in a different TLD.

• For the additional section, we try to overwrite the
IP address of the parent domain’s nameserver using glue
records. For example, payload 17 injects an NS record for
the parent domain into the authority section, followed
by a corresponding spoofed glue record. Payload 19
injects a spoofed IP address for the parent’s authoritative
server by leveraging the attacker’s own subdomain.

In addition to targeting the parent domain, we also designed
test payloads targeting other subdomains (i.e., the sibling
domain of the subdomain controlled by attackers) denoted by
payloads with a “-c” suffix. For example, payload 3 directly
injects an A record for a subdomain (sibling.victim.com).

This approach, which targets three sections while simultane-
ously considering sibling domains and parent domains, enables
us to propose more (13/20, i.e. PN1-8, 13-16 and 19) test cases
beyond existing studies [58, 65].

In total, we design and implement 20 payloads, which we
have subsequently categorized into the following three types
based on their attack effectiveness and scope of impact:

T1: Arbitrary Record Injection (PN1-4). By exploiting
a validation flaw in how resolvers handle resource records
within the answer section—specifically, that they only re-
quire the resource record type (RTYPE) to match the query
type (QTYPE)—an attacker can directly inject forged records
for parent or sibling domains.

T2: Authority Record Takeover (PN5-16). Leveraging
a flaw in the way resolvers validate authority records, the
attacker can inject a fake CNAME record in the answer section
to directly point the target domain to a controlled domain, or
inject a fake NS record in the authority section to hijack
all queries to the target domain.

T3: Glue Record Poisoning (PN17-20). By exploiting
flaws in the way resolvers handle glue records, the attacker
can indirectly hijack the target domain by overwriting the glue
records in the resolver’s cache.

2) Test Results of Mainstream DNS Software: We design a
local DNS environment1 based on DNS-Builder. Except for
MaraDNS, each of the other seven software implementations

1https://github.com/fly1ngpengu1ns/DNS-Bailiwick

we tested was susceptible to at least one payload. In particular,
PowerDNS and Microsoft DNS were vulnerable to all three
payload categories. The test results are shown in Table II.

• The bailiwick checking in PowerDNS and Microsoft
DNS are the most permissive, rendering both susceptible
to all three categories of attack payloads. Specifically,
PowerDNS was found to be vulnerable to all 20 of our
tested payloads, while 16 of these payloads were effective
against Microsoft DNS.

• BIND9, Knot, Unbound, and Simple DNS Plus are all
susceptible to both T2 and T3 threats. Moreover, for each
of these software implementations, at least five distinct
test payloads were effective.

• Technitium is vulnerable to T2 attacks because it improp-
erly caches and uses the records of sibling domain from
the authority and additional sections.

B. Evaluating DNS Resolvers in the Wild

To evaluate the real-world impact of CUCKOO DOMAIN, we
conducted a large-scale measurement of resolvers in the wild.

1) Collecting Available DNS Resolvers: We first collect our
test subjects, which include major public DNS providers and
a large number of stable open resolvers.

Public DNS Providers. We collect a list of 30 popular pub-
lic DNS vendors that are widely used in the real world, based
on search engines and previous studies [20, 35, 54, 57, 66–69]
as listed in Appendix D, including Google Public DNS [26]
and Quad9 DNS [11].

Open Resolvers. To assess the susceptibility of open re-
solvers in the wild, we utilized XMAP [70] to conduct a scan
of the entire IPv4 address space on June 1, 2025. Specifically,
we probe the entire routable IPv4 address space with DNS
queries, classifying hosts that provide a successful response
as open resolvers. To prevent any interference with regular
user activity, we utilize a domain name registered exclusively
for our scanning purposes. Prior research [71] has confirmed
that open resolvers are dynamic, with a high churn rate over
short periods. Accordingly, we repeated our scan on June 7,
2025, and defined the final set of open resolvers as the IP
addresses present in both scan results. Finally, we collected
588,624 stable open resolvers, as shown in Table III.

2) Measurement Setups: To conduct a large-scale impact
evaluation on in-the-wild DNS resolvers without disrupting
legitimate users, we configured a controlled experimental en-
vironment. This setup comprises two domains and four servers
with public IP addresses. The first domain, victim.com, serves
as the service domain of the target subdomain hosting provider.
The second, attack.net, is an attacker-controlled domain used
to host authoritative nameservers for a cross-TLD delegation.
The 4 servers are configured with distinct roles: (1) a client
to simulate queries; (2) an authoritative nameserver for zone
division; (3) the legitimate authoritative nameserver for vic-
tim.com; and (4) a rogue authoritative nameserver, controlled
by the attacker, returns forged resource records and is the
server the target resolver queries if an attack is successful.

8



TABLE II
INFORMATION ABOUT THE PAYLOADS AND WHETHER THE DNS RESOLVER CACHES MALICIOUS INFORMATION.

Payload Name1 DNS
Section Values in DNS Section2

Cache the Malicious Records of victim.com/sibling.victim.com?3

BIND9 Knot Unbound PowerDNS Technitium MaraDNS Microsoft
DNS

Simple
DNS Plus

1. AN-a
QD A? sub.atkr.victim.com

No No No Yes4 No No Yes NoAN sub.atkr.victim.com A a.t.k.r
victim.com A a.t.k.r

2. AN-txt
QD TXT? sub.atkr.victim.com

No No No Yes4 No No Yes NoAN sub.atkr.victim.com TXT aktr-txt
victim.com TXT aktr-txt

3. AN-a-c
QD A? sub.atkr.victim.com

No No No Yes4 No No Yes NoAN sub.atkr.victim.com A a.t.k.r
sibling.victim.com A a.t.k.r

4. AN-txt-c
QD TXT? sub.atkr.victim.com

No No No Yes4 No No Yes NoAN sub.atkr.victim.com TXT aktr-txt
sibling.victim.com TXT aktr-txt

5. AN-cname
QD A? sub.atkr.victim.com

No No No Yes4 No No Yes NoAN sub.atkr.victim.com A a.t.k.r
victim.com CNAME atkr.net

6. AN-cname-2
QD CNAME? sub.atkr.victim.com

No No No Yes4 No No Yes NoAN sub.atkr.victim.com CNAME sub.atkr.net
victim.com CNAME atkr.net

7. AN-cname-c
QD A? sub.atkr.victim.com

No No No Yes4 No No Yes NoAN sub.atkr.victim.com A a.t.k.r
sibling.victim.com CNAME atkr.net

8. AN-cname-2-c
QD CNAME? sub.atkr.victim.com

No No No Yes4 No No Yes NoAN sub.atkr.victim.com CNAME sub.atkr.net
sibling.victim.com CNAME atkr.net

9. NS-in-domain

QD A? sub.atkr.victim.com

Yes No Yes Yes No No Yes NoAN sub.atkr.victim.com A a.t.k.r
NS victim.com NS ns.atkr.victim.com
AR ns.atkr.victim.com A a.t.k.r

10. NS-in-domain-referral6
QD A? sub.atkr.victim.com

No No No Yes5 No No No NoNS victim.com NS ns.atkr.victim.com
AR ns.atkr.victim.com A a.t.k.r

11. NS-out-zone
QD A? sub.atkr.victim.com

Yes No Yes Yes No No Yes NoAN sub.atkr.victim.com A a.t.k.r
NS victim.com NS ns.atkr.net

12. NS-out-zone-referral6 QD A? sub.atkr.victim.com No No No Yes5 No No No NoNS victim.com NS ns.atkr.net

13. NS-in-domain-c

QD A? sub.atkr.victim.com

Yes Yes No Yes No No Yes YesAN sub.atkr.victim.com A a.t.k.r
NS sibling.victim.com NS ns.atkr.victim.com
AR ns.atkr.victim.com A a.t.k.r

14. NS-in-domain-referral-c6
QD A? sub.atkr.victim.com

No No No Yes Yes No Yes YesNS sibling.victim.com NS ns.atkr.victim.com
AR ns.atkr.victim.com A a.t.k.r

15. NS-out-zone-c
QD A? sub.atkr.victim.com

Yes Yes No Yes No No Yes YesAN sub.atkr.victim.com A a.t.k.r
NS sibling.victim.com NS ns.atkr.net

16. NS-out-zone-referral-c6 QD A? sub.atkr.victim.com No No No Yes Yes No Yes YesNS sibling.victim.com NS ns.atkr.net

17. AR-victim-domain

QD A? sub.atkr.victim.com

No No Yes Yes No No Yes YesAN sub.atkr.victim.com A a.t.k.r
NS victim.com NS ns.victim.com
AR ns.victim.com A a.t.k.r

18. AR-victim-domain-referral6
QD A? sub.atkr.victim.com

No Yes No Yes No No No NoNS victim.com NS ns.victim.com
AR ns.victim.com A a.t.k.r

19. AR-attack-domain

QD A? sub.atkr.victim.com

No No Yes Yes No No Yes YesAN sub.atkr.victim.com A a.t.k.r
NS sub.atkr.victim.com NS ns.victim.com
AR ns.victim.com A a.t.k.r

20. AR-attack-domain-referral
QD A? sub.atkr.victim.com

Yes7 Yes Yes Yes No No No NoNS sub.atkr.victim.com NS ns.victim.com
AR ns.victim.com A a.t.k.r

1 The naming format is: section where the malicious records is located - type of malicious records / relationship between malicious records and QZONE - either referral or answer -
whether it targets sibling domains. 2 We use red color to highlight malicious records. 3 We use red color to highlight the vulnerable resolvers.
4 PowerDNS version 5.2.5 is immune to this payload. 5 PowerDNS versions 5.1.7 and 5.2.5 are immune to this payload.
6 These payloads can be used directly for port inference attacks, but fragmentation attacks require additional benign NS records, as demonstrated in Appendix B.
7 BIND9 overwrites the original glue record with the attacker address a.t.k.r, but continues to use the original glue record during the subsequent 10 seconds of resolution.

When using a specific payload from Table II to test a open resolver r, the testing process involves following three stages:

9



i. Zone division. To assess each target resolver against 20
payloads, we employ a method that isolates each test to
prevent cross-payload interference. Specifically, to test a
payload (e.g., payload 4) against a resolver r, we use a
unique domain such as payload-4-r.victim.com.
A dedicated name server within our experimental environ-
ment handles the delegation for these domains. Notably,
while this subdomain-based approach reduces the num-
ber of SLDs required for testing, we acknowledge that
resolver behavior may be influenced by the domain’s level
in the hierarchy. We validated this testing method against
major DNS resolver software to confirm its effectiveness.

ii. Attack launch. When the resolver r sends a query for
[payload-id]-[r].victim.com, the authoritative
name server will respond the malicious packet according
to the payload information in the query. Some payloads,
such as the packet 11, involve a out-of-zone NS record,
where the RDATA will be replaced with attack.net, and
all forged authoritative name servers will ultimately point
to our controlled server with IP address a.t.k.r.

iii. Attack verify. We determine the outcome of an attack by
examining the response received at the client. For a T1
attack, success is confirmed if the resource record in the
response from the victim’s authoritative nameserver has
been replaced with the attacker’s IP address (i.e., a.t.k.r).
For T2 and T3 attacks, a successful attempt results in the
client receiving a response directly from the attacker’s
rogue authoritative nameserver, which also contains the
attacker’s IP address (i.e., a.t.k.r).

Client Open
resolver

1 Query [payload-id]-[r].victim.com

Forward Server
(victim.com)

Zone
Division

2 Query

3 Referral

8 Query based on cache status
7 Query with probe data

6 Answer [payload-id]-[r].victim.com

10 Answer with received data

Attack Server
([payload-id]-[r].victim.com)

4 Query

5 Answer with payload

9 Answer using different data

Verify Server
(attack.net with a.t.k.r)Attack

Launch

Attack
Verify

Fig. 5. Identify vulnerable open resolver with a specific payload.

3) Evaluation Results: Our large-scale measurement results
reveal that 44.64% of open resolvers are vulnerable to at least
one threat, as listed in Table III. We found that 6.98% of
resolvers are susceptible to the T1 attack, as they cached and
utilized at least one of payloads 1–4. A larger portion, 39.95%
of resolvers, face the T2 attack, where malicious authority
records can be injected via payloads 5–16. Among these,
payload 9 was the most impactful, successfully inserting an NS
record and its corresponding glue record by the authority
and additional sections of the answer responses for over

30% of the resolvers. Lastly, the T3 attack threatens 23.59% of
resolvers, indicating that these resolvers place excessive trust
in unsolicited glue records.

Cache status of three sections. The validation policies for
resource records result in significant differences in how various
resolvers cache and utilize the answer, authority, and
additional sections of a DNS response. As shown in
Table III, the number of resolvers caching records in the
answer section (payloads 1 to 8) is generally lower than other
sections. In contrast, the authority section has the highest
number of vulnerable resolvers. This result is consistent with
the findings in Table II, indicating that resource records in
the answer section are afforded a higher trust level and are
consequently subject to stricter validation policies. In contrast,
the checks for the authority and additional sections
are comparatively more lenient.

Cache status of subdomains. The results show that all eight
subdomain-related payloads were cached by tens of thousands
of resolvers, and the most effective payload (Payload 10) was
adopted by 18.02% of them. This finding demonstrates that by
controlling a single subdomain, an attacker can compromise
the resource records for any other subdomain under the same
parent domain. We highlight the pervasiveness and significant
danger posed by this attack vector, especially given the popu-
larity of current service hosting services.

Furthermore, we analyzed the geographical distribution of
all vulnerable resolvers using the GeoLite database [72], as
depicted in Figure 6. These vulnerable resolvers are widely
distributed globally, with particularly large numbers in China,
United States, and Russia (these resolvers account for 67%,
18%, and 60% of their total resolvers, respectively), demon-
strating the widespread nature of this threat.

TABLE III
VULNERABLE OPEN DNS RESOLVER STATISTICS.

Attack Payload # IP % Attack Payload # IP %

DNS resolver on
Jun. 1 2025 1,044,825 - DNS resolver alive

on Jun. 7 2025 588,624 100%

1. AN-a 28,611 4.86% 2. AN-a-c 26,216 4.45%
3. AN-txt 28513 4.84% 4. AN-txt-c 28,545 4.85%

5. AN-cname 28,697 4.88% 6. AN-cname-c 26,061 4.43%
7. AN-cname2 28,607 4.86% 8. AN-cname2-c 26,239 4.46%
9. NS-in-domain 179,175 30.44% 10. NS-in-domain-c 106,049 18.02%
11. NS-in-domain

-referral 46,776 7.95% 12. NS-in-domain
-referral-c 39,224 6.66%

13. NS-out-zone 105,837 17.98% 14. NS-out-zone-c 99,886 16.97%
15. NS-out-zone

-referral 5,850 0.99% 16. NS-out-zone
-referral-c 24,636 4.19%

17. AR-victim-domain 89,591 15.22% 18. AR-attack-domain 46,309 7.87%
19. AR-victim-domain

-referral 76,121 12.93% 20. AR-victim-attack
-referral 54,961 9.34%

T1 Attack 41,104 6.98% T2 Attack 235,171 39.95%
T3 Attack 138,856 23.59% Total Vulnerability 262,779 44.64%

For each public DNS service in our dataset, we executed the
testing procedure 10 times to mitigate potential inconsistencies
caused by multiple backends. The complete experimental
results are presented in Table VI of Appendix D. Our findings
show that 21 mainstream public DNS services are affected
by at least one payload, including Quad9 DNS [11], Dyn-
DNS [73], and OpenDNS [74]. Moreover, six of these major

10



Fig. 6. Geographical view of vulnerable resolvers in each region, with
different colors representing their percentages.

services, such as Clean Browse DNS [12] and OpenDNS [74],
were found to be vulnerable to all three threat types. Table IV
details the vulnerability status of 10 representative providers.

TABLE IV
VULNERABILITIES OF 10 OUT OF 30 PUBLIC RESOLVER VENDORS.

Public DNS Vendors IPv4 Address
Vulnerable?

T1 T2 T3

CNNIC sDNS [75] 1.2.4.8 ✗ ✓ ✓

Quad9 DNS [11] 9.9.9.9 ✗ ✓ ✓

Strongarm DNS [76] 52.3.100.184 ✓ ✓ ✓

Hurricane Electric DNS [77] 74.82.42.42 ✓ ✓ ✓

ControlD DNS [78] 76.76.2.0 ✓ ✓ ✓

LibreDNS [79] 88.198.92.222 ✓ ✓ ✓

Safe Surfer DNS [80] 104.155.237.225 ✓ ✓ ✗

OneDNS [81] 117.50.10.10 ✗ ✓ ✓

Clean Browsing DNS [12] 185.228.168.10 ✓ ✓ ✓

Dyn DNS [73] 216.146.35.35 ✗ ✓ ✓

✓: Vulnerable. ✗: Notvulnerable.

C. Evaluating Vulnerable Service Providers

To implement CUCKOO DOMAIN, our threat model requires
the attacker to control a subdomain that is still within the
target zone. It is a common practice for large enterprises to
delegate different subdomains for distinct business functions.
Concurrently, some business models involve assigning subdo-
mains to users to provide specific services, such as DDNS.
Following the introduction in Section III-C, we evaluated the
impact scope of our threat model in real-world scenarios.

Specifically, we collect our test targets from public reports
and industry forums. For DDNS service, we choose No-IP [13]
and Dynv6 [41] as targets. No-IP, established in 1999, is one
of the oldest and most well-known DDNS providers, while
Dynv6 is widely used due to its native support for IPv6 and
totally free service. For free subdomain service, we select DNS
Exit [43] and ClouDNS [42]. DNS Exit, founded in 1998, is
an ICANN accredited registrar, while ClouDNS is the largest

global hosting DNS provider in Europe. For load balancing
service, we choose Akamai GTM [14], which has the largest
distributed platform in the world, as our target for further
analysis. For other subdomain service, we select Synology [44]
and ASUSTOR [45], which are well-known NAS vendors that
provide subdomain services for their users.

Furthermore, we register a test account with each provider
to validate its vulnerability. To prevent any service disruption,
our assessment for each provider adhered to the conditions
outlined in our threat model. First, we directly apply a subdo-
main or read their official documentation to confirm our ability
to configure its resource records. Second, using techniques
from prior work [25, 82] (sending PTB to lower down targets’
MTU), we determine whether the provider’s name servers
support fragmentation. We ran three trials from three vantage
points and marked a name server as supporting fragmentation
only if fragmented responses appeared in all trials.

In addition, to evaluate the real-world impact of these
service providers, we measure the scope and scale of their op-
erations using Passive DNS (PDNS)2 data. We first collect the
domain suffixes provided by these vendors from their official
websites. Then, we collect and count the number of domains
containing these domain suffixes and the average daily queries
from PDNS for April 2025, to reflect the potential number and
impact of CUCKOO DOMAIN’s attack targets.
Results. Our tests revealed that all seven providers allowed
users to register subdomains, and permitted users to config-
ure arbitrary resource records for their subdomain, like TXT
record. Further testing of fragmentation capabilities showed
that the name servers of these providers supported fragmenta-
tion, fragmenting the packet that exceeded 548 bytes.

Moreover, our analysis of PDNS data reveals the widespread
impact of these vulnerable providers. We found that these ven-
dors each expose hundreds of thousands of user subdomains to
security risks, collectively handling a daily DNS query volume
that exceeds ten million, as shown in Table V.

VI. DISCUSSION

In this section, we first propose mitigation strategies for
both software vendors and third-party service providers and
validate the feasibility of these solutions through a large-scale
evaluation of popular domains. Then, we discuss the lessons
learned from our study. Finally, we describe our responsible
disclosure process.

A. Mitigation

Based on our findings, we propose the following enhance-
ments to the bailiwick checking logic for software vendors:

Validating the RNAME against the QNAME when caching
records, rather than only validating the QZONE. This stricter
policy would prevent resolvers from caching excessive out-
of-bailiwick records unrelated to the current query, thereby
effectively mitigating the T1 and T2 attacks.

2The Passive DNS data we use comes from a large security company we
work with. The data has been strictly anonymized, and no user privacy-related
data is involved in the analysis process.

11



TABLE V
AFFECTED VENDORS AND THE POPULARITY OF THEIR SERVICES.

Vendor Available Domain Name Server Number of
Subdomains

Daily
Queries

No-IP1 [13]

∗.ddns.net nf1.no-ip.com
nf2.no-ip.com
nf3.no-ip.com
nf4.no-ip.com

862,426 14,986,250.7
∗.zapto.org 310,049 4,402,439.6
∗.hopto.org 305,116 4,197,433.4
∗.sytes.net 300,657 1,337,583.6
∗.ddns.me 274,537 255,232.4

Dynv6 [41]

∗.dynv6.net ns1.dynv6.com
ns2.dynv6.com
ns3.dynv6.com
ns2.dynv6.net2

ns3.dynv6.net2

31,337 2,749,345.5
∗.dns.army 9,058 3,114,435.7
∗.v6.army 3,390 693,529.5
∗.dns.navy 3,364 734,668.9
∗.v6.rocks 3,111 428,565.6
∗.v6.navy 2,140 542,523.8

DNSExit [43]

∗.linkpc.net ns10.dnsexit.com 9,339 4,548,094.2
∗.publicvm.com ns11.dnsexit.com 7,838 162,293.4

∗.work.gd ns12.dnsexit.com 7,825 199,321.1
∗.run.place ns13.dnsexit.com 2,776 14,355.8

ClouDNS [42] ∗.ip-ddns.com
∗.ddns-ip.net

ns61.cloudns.net
17,684

5,202
149,697.8

74,109.3
ns62.cloudns.com
ns63.cloudns.net
ns64.cloudns.uk

Akamai [14] ∗.akadns.net a1-128.akadns.net4 124,354 3.282×109a18-128.akagtm.org

Synology5 [44]

∗.myds.me ddns-ns1.quickconnect.to
ddns-ns2.quickconnect.to
ddns-ns3.quickconnect.to
ddns-ns4.quickconnect.to

1,481,000 8,925,267.2
∗.synology.me 655,159 15,916,461.5
∗.i234.me 32,338 5,028,393.2

∗.dsmynas.com 10,386 1,095,862.7
∗.dscloud.biz 7,116 2,860,361.9

ASUSTOR [45] ∗.myasustor.com ns1.myasustor.com 11,681 14,576.2ns2.myasustor.com

Total Vul.6 - - 6,400,327 3.3×109

1 No-IP has 82 TLDs as subdomain services, only the top 5 most frequently used domains are shown
in the table.

2 Only dynv6.net has NS records of ns2.dynv6.net and ns3.dynv6.net.
3 FreeDNS has over 20,000 shared TLDs, only the top 5 most frequently used domains are are counted

and displayed.
4 Akamai GTM has a total of 9 authoritative servers, whose SLDs are akadns.net and
akadns.org. The specific list is not detailed here.

5 Synology has 12 TLDs as subdomain services, only the top 5 most frequently used domains are
shown in the table.

6 The number count all available domains, including those not listed, from all affected vendors.

Restricting the caching and use of glue records from
referral responses. Ideally, such records should not be
cached, and under no circumstances should they be used to
overwrite existing resource records. The fundamental role of
glue is to address resolution loops, and it should not be
trusted outside of this narrow context. Previous work [54]
had demonstrated that over-trusting glue records can lead to
significant domain hijacking vulnerabilities.

For third-party service providers, we recommend that they
configure their authoritative nameservers to disallow IP frag-
mentation or use the latest version software, as this can
effectively limit an attacker’s capabilities. The dangers of
UDP fragmentation are well-documented within the secu-
rity community, with a recommendation to prohibit it. The
standard mechanism for handling oversized DNS responses
is to re-issue the query over TCP. Additionally, we think
implementing a zone cut when assigning subdomains is an
effective countermeasure, though it seems cumbersome.
Evaluation of Mitigation. Considering the complexity of real-
world network environments, altering a resolver’s bailiwick
checking logic could potentially impact resolution efficiency or
even lead to resolution failures. To evaluate the impact of our
mitigation, we conducted a large-scale test using the Tranco
list [83]. Specifically, we collect the A, NS, and TXT resource
records for the top 100,000 domains from the Tranco list and
systematically checked each record to determine if it would be

filtered by our proposed mitigation measures. We analyze the
following three types packets that are related to our mitigation,
and display the results in Figure 7.

1) Unmatch Records in Answer’s AN. We look for packets
which contain records in the answer section that do not
match the QNAME of the query. These records should not
be cached, as they are not relevant to the original query.

2) In Zone Records in Answer’s NS. We search for answer
packets that contain NS records in the authority
section, where the RNAME is located below the zone apex
and does not belong to the QNAME or its subdomains.

3) Sibling’s Records in Referral’s NS. We also search for
referral response packets that contain NS records in
the authority section, where the RNAME is a sibling
domain of the QNAME.

Fig. 7. Results of recursive resolution for 100,000 domains in Tranco list.

Results. Our experimental results show that for the top 100K
domains, only a few of query processes generated responses
that would be flagged by our mitigation measures. And, this
did not impact the normal resolution process for the domains.

Firstly, for the answer responses containing unmatched
answer records, we only find one case that using NS as QTYPE
to query csrc.gov.cn, which places the glue record in the
answer section instead of the additional section.

Next, for the answer responses containing in-zone NS
records, we found that 6% of these responses included ad-
ditional NS records. These records are typically used by a
domain’s authoritative nameserver for NS records updates, and
not caching them does not impact the domain resolution pro-
cess. Our proposed mitigation advises against directly caching
these resource records. Instead, performing an active query,
such as directly requesting the NS records for the domain,
provides a more accurate and secure method for obtaining this
information (see Appendix E for details).

Lastly, for the packets containing sibling domain NS
records, we only find the tc.qq.com (ranked 47,472), which
contains the record for tc.qq.com.qq.com.

B. Lessons Learned

The CUCKOO DOMAIN attack reveals the limitations of tra-
ditional solutions in new scenarios, demonstrating that even the

12



most well-designed defenses can develop flaws as technology
and use cases evolve.

As a de facto standard, bailiwick checking is widely adopted
by major resolver software implementations and serves as a
cornerstone of DNS security. However, with the evolution of
the internet—particularly the changing principles of subdo-
main ownership delegation in modern business scenarios—we
must re-examine whether traditional, zone-based implemen-
tations can effectively defend against threats in these new
contexts. This serves as a critical reminder that, in the face
of an ever-evolving internet landscape, continuous effort is
required to safeguard the security of the DNS.

Greater effort is required to bridge the gap between theoret-
ical understanding and practical implementation. During our
analysis of the BIND9 source code, we found that the devel-
opers stated in the comments that “BIND9 caches the records
in the authority section of answer response, whose RNAME
is a subdomain of the domain being queried”3. However, it
actually caches records of subdomains of the zone apex.

The current deployment status of authoritative name servers
is also concerning. Our measurements reveal that servers of
several well-known providers still support IP fragmentation,
which should not exist in standard DNS authoritative servers.
While these providers may deploy customized software to
meet specific operational needs, we highlight that security risks
should not be overlooked, and they should adhere to best prac-
tices for standard DNS authoritative server implementations.

C. Responsible Disclosure

We have responsibly disclosed the threat to all affected
DNS software vendors, public DNS providers, and third-
party service providers , and are actively discussing mitigation
strategies with them. To date, BIND9, Unbound, PowerDNS
and Technitium have acknowledged our disclosureand have
released patched versions. Furthermore, BIND9, Unbound, and
PowerDNS have each assigned a CVE to this vulnerability.
Both BIND9 and Technitium incorporate QNAME into baili-
wick checking, while Unbound and PowerDNS take a more
aggressive approach by discarding records in authority and
additional sections within the answer response. We are
currently awaiting responses from the other vendors.

VII. RELATED WORKS

DNS Cache Poisoning Attacks. Among the vulnerabilities
in DNS, the most notorious is the cache poisoning attack. To
achieve cache poisoning, an attacker can use various methods
to send a malicious response packet to the target DNS resolver
before the genuine response from the authoritative server
arrives. Schuba [84] in 1993 implemented off-path attacks
by brute-forcing the 16-bit Transaction ID in DNS response
packets. Stewart [38] in 2003 utilized the birthday paradox
concept, where multiple clients simultaneously send queries,
enabling attackers to construct only hundreds of packets for

3 https://gitlab.isc.org/isc-projects/bind9/-/blob/v9.20.13/lib/dns/resolver.c
?ref type=tags#L8751-8753

off-path cache poisoning attacks, significantly improving at-
tack efficiency. Kaminisky [24] in 2008 proposed an attack
using random subdomains to bypass cache restrictions.

Due to the deployment of various enhanced DNS packet ran-
domization schemes, such as source port randomization [85],
0x20 encoding [86], and DNS Cookie [87], the state space
of packets has grown exponentially. Consequently, many side-
channel attack methods based on IP Fragmentation [23, 25,
36, 37] and ICMP response packets [33, 34] or pseudo-random
number generator [35] have been proposed to reduce the state
space for brute-force attacks.

Bailiwick Rules and Cache Mechanism Analysis. In 1997,
Kashpureff [3] implemented a significant cache poisoning
attack by injecting out-of-zone data into response packets,
directly prompting the design and implementation of bailiwick
rules in various resolver software. Schomp et al. [32] in 2014
analyzed the response validation practices of routers and found
many of them still lacked bailiwick checking. The bailiwick
principle is the cornerstone of DNS security, but few studies
have systematically analyzed its design and implementation.

Li et al. [4] discussed the differences in QZONE initialization
between forwarding and recursive modes of CDNS, which
allowed the injection of malicious information into the public
cache of CDNS. However, this essentially relies on flaws in
the initialization implementation of CDNS, while this paper
focuses on the bailiwick checking of the response. Li et
al. [20] analyzed the cache update strategy of resolvers for
NS records and demonstrated how to maintain the existence
of an entire zone using subdomains. However, their focus was
on the subtle timing between the deletion of old cache and the
insertion of new cache records, rather than on how to poison
the caches of other domains. Some studies [58, 88] have tested
how resolvers check and cache data using various test cases,
but they failed to provide a comprehensive discussion on the
bailiwick principle and did not propose a practical threat model
for attackers to implement attacks.

VIII. CONCLUSION

Bailiwick checking is a cornerstone of DNS security and
a critical defense against DNS cache poisoning attacks. In
this paper, we conducted a systematic analysis of the design
and implementation of bailiwick checking in major resolver
software. We revealed that conservative checking policies face
significant challenges in modern third-party service scenarios.
Based on these findings, we proposed a new threat model,
the CUCKOO DOMAIN attack, where an attacker who controls
a single subdomain can compromise its parent domain or
other sibling subdomains. Our evaluation shows that seven
mainstream DNS resolver implementations, including BIND9
and Microsoft DNS, are susceptible to this threat. Further-
more, our large-scale measurements confirmed that 44.64%
of open resolvers and 21 public DNS providers, including
Quad9 DNS and DynDNS, are at risk. We further validated
that on seven third-party service platforms, including No-IP,
ClouDNS, and Akamai, millions of customer subdomains are
exposed to potential hijacking risks. We have engaged in

13

https://gitlab.isc.org/isc-projects/bind9/-/blob/v9.20.13/lib/dns/resolver.c?ref_type=tags#L8751-8753
https://gitlab.isc.org/isc-projects/bind9/-/blob/v9.20.13/lib/dns/resolver.c?ref_type=tags#L8751-8753


a responsible disclosure process with the affected vendors;
BIND9, Unbound, PowerDNS and Technitium have confirmed
our findings, assigned 3 CVEs and released patched versions.
We call upon the community and software vendors to address
the new challenges facing DNS security in the context of
modern service paradigms.

ACKNOWLEDGMENT

We thank all anonymous reviewers for their valuable and
constructive feedback. This work is supported by the Na-
tional Key Research and Development Program of China
(No. 2023YFB3105600), and the National Natural Science
Foundation of China (Grant No. 62102218).

ETHICS CONSIDERATIONS

Our experiments involve many DNS software, open re-
solvers, and name servers, so we have fully considered ethical
issues during the actual experimental process. Our institution
does not have an IRB, but we refer to and strictly follow
the Menlo Report [89] and the best practices of network
measurements [90]. Specifically, we have taken the following
measures to ensure the ethicality of our experiments:

Software Testing. Regarding the software testing in Sec-
tion V-A, all open-source software tests were conducted on
a controlled local machine. These software were downloaded
from their official websites and compiled and run in different
Docker containers. We set up a complete DNS resolution
system in this testing environment, including multiple name
servers for the root and other domains, ensuring that this
environment does not interact with the real world.

Internet Measurement. First, during the measurement pro-
cess in Section V-B, we registered all the domains needed for
the tests and pointed them to our controlled DNS servers.
These servers only respond to DNS requests for the test
domains and do not handle requests for any other domains
or provide other services. Second, We ensured that all DNS
records used in the tests point to domains or IPs controlled by
us, without affecting any other real-world DNS components.
We configured the test domains with special TXT records
indicating the purpose of the test and providing contact
information. Third, we used a cloud server to initiate the
DNS queries in Section VI-A and strictly adhered to the
service provider’s terms of use [91]. Fourth, we strictly limited
the scanning rate to avoid potential negative impacts. When
querying target resolvers, we limited it to below 5 QPS per
resolver. For probing the 100,000 domains in Section VI-A, we
queried one domain per second, and the overall measurement
time did not exceed 30 hours to avoid overloading the cloud
server. Finally, we set the TTL of all DNS records in test to
60 seconds to prevent any abuse of cached records.

Vulnerability Disclosure. We have proposed several sug-
gestions to mitigate the risk of CUCKOO DOMAIN, and have
reported vulnerabilities to the affected DNS and subdomain
service vendors in July, 2025, leaving sufficient time (nearly
half a year) for them to confirm and develop patches before
the paper publication.

REFERENCES

[1] Y. Zhang, B. Liu, C. Lu, Z. Li, H. Duan, J. Li, and
Z. Zhang, “Rusted anchors: A national client-side view
of hidden root cas in the web pki ecosystem,” in
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021.

[2] K. Shen, C. Wang, M. Guo, X. Zheng, C. Lu, B. Liu,
Y. Zhao, S. Hao, H. Duan, Q. Pan, and M. Yang, “Weak
links in authentication chains: A large-scale analysis
of email sender spoofing attacks,” in 30th USENIX
Security Symposium, Aug. 2021.

[3] J. Kornblum, “AlterNIC founder arrested,”
https://www.cnet.com/tech/services-and-software/al
ternic-founder-arrested, 1997.

[4] X. Li, C. Lu, B. Liu, Q. Zhang, Z. Li, H. Duan, and
Q. Li, “The maginot line: Attacking the boundary of
DNS caching protection,” in 32nd USENIX Security
Symposium, USENIX Security 2023, 2023.

[5] GitHub, https://pages.github.com/, 2025.
[6] A. Klein, “Dom based cross site scripting or xss of the

third kind,” in Web Application Security Consortium,
Jul. 2005.

[7] A. Barth, “HTTP State Management Mechanism,” RFC
6265, Apr. 2011.

[8] Mozilla, https://publicsuffix.org/, 2025.
[9] PowerDNS, https://www.powerdns.com/, 2025.

[10] M. D. N. System, https://learn.microsoft.com/en-us/wi
ndows-server/networking/dns/dns-overview, 2025.

[11] Quad9DNS, “Quad9,” https://www.quad9.net/, 2025.
[12] CleanBrowsing, “Cb DNS,” https://cleanbrowsing.org/,

2025.
[13] No IP, https://www.noip.com/, 2025.
[14] Akamai, https://www.akamai.com/products/global-tra

ffic-management, 2025.
[15] BIND, https://www.isc.org/bind/, 2025.
[16] Unbound, https://nlnetlabs.nl/projects/unbound/about/,

2025.
[17] Technitium, https://technitium.com/dns/, 2025.
[18] GoDaddy, https://www.godaddy.com/, 2025.
[19] Dynadot, https://www.dynadot.com/, 2025.
[20] X. Li, B. Liu, X. Bai, M. Zhang, Q. Zhang, Z. Li,

H. Duan, and Q. Li, “Ghost domain reloaded: Vulnera-
ble links in domain name delegation and revocation,” in
30th Annual Network and Distributed System Security
Symposium, 2023.

[21] P. Mockapetris, “Domain names - implementation and
specification,” RFC 1035, Nov. 1987.

[22] M. P. Andrews, S. Huque, P. Wouters, and D. Wessels,
“DNS Glue Requirements in Referral Responses,” RFC
9471, Sep. 2023.

[23] A. Herzberg and H. Shulman, “Fragmentation consid-
ered poisonous, or: One-domain-to-rule-them-all.org,”
in 2013 IEEE Conference on Communications and
Network Security (CNS), 2013, pp. 224–232.

[24] D. Kaminsky, “It’s the end of the cache as we know it,”

14

https://www.cnet.com/tech/services-and-software/alternic-founder-arrested
https://www.cnet.com/tech/services-and-software/alternic-founder-arrested
https://www.cnet.com/tech/services-and-software/alternic-founder-arrested
https://pages.github.com/
https://publicsuffix.org/
https://www.powerdns.com/
https://learn.microsoft.com/en-us/windows-server/networking/dns/dns-overview
https://learn.microsoft.com/en-us/windows-server/networking/dns/dns-overview
https://www.quad9.net/
https://cleanbrowsing.org/
https://www.noip.com/
https://www.akamai.com/products/global-traffic-management
https://www.akamai.com/products/global-traffic-management
https://www.isc.org/bind/
https://nlnetlabs.nl/projects/unbound/about/
https://technitium.com/dns/
https://www.godaddy.com/
https://www.dynadot.com/


in Black Hat, 2008.
[25] X. Zheng, C. Lu, J. Peng, Q. Yang, D. Zhou, B. Liu,

K. Man, S. Hao, H. Duan, and Z. Qian, “Poison over
troubled forwarders: A cache poisoning attack targeting
DNS forwarding devices,” in 29th USENIX Security
Symposium (USENIX Security 20), Aug. 2020.

[26] Google, “Google Public DNS,” https://dns.google/,
2025.

[27] CloudFlare, “Cloudflare,” https://1.1.1.1/dns/, 2025.
[28] G. Huston, “Measuring the use of DNSsec,”

https://labs.apnic.net/index.php/2023/09/09/measuring-t
he-use-of-dnssec/, Sep. 2023.

[29] SIDN, “None of the biggest internet services are
DNSsec-enabled,” https://www.sidn.nl/en/news-and-b
logs/none-of-the-biggest-internet-services-are-dnssec-e
nabled, Jan. 2025.

[30] APNIC, “Use of DNSsec validation for world,” https:
//stats.labs.apnic.net/dnssec/XA, 2025.

[31] S. Rose, M. Larson, D. Massey, R. Austein, and
R. Arends, “Protocol Modifications for the DNS Se-
curity Extensions,” RFC 4035, Mar. 2005.

[32] K. Schomp, T. Callahan, M. Rabinovich, and M. All-
man, “Assessing DNS vulnerability to record injection,”
in Passive and Active Measurement - 15th International
Conference, PAM, 2014.

[33] K. Man, Z. Qian, Z. Wang, X. Zheng, Y. Huang,
and H. Duan, “Dns cache poisoning attack reloaded:
Revolutions with side channels,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’20, 2020.

[34] K. Man, X. Zhou, and Z. Qian, “Dns cache poisoning
attack: Resurrections with side channels,” in Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’21, 2021.

[35] A. Klein, “Cross layer attacks and how to use them (for
DNS cache poisoning, device tracking and more),” in
42nd IEEE Symposium on Security and Privacy, 2021.

[36] A. Herzberg and H. Shulman, “Security of patched
DNS,” in Computer Security – ESORICS 2012. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012.

[37] H. Schulmann and M. Waidner, “Fragmentation con-
sidered leaking: Port inference for DNS poisoning,”
in Applied Cryptography and Network Security - 12th
International Conference, 2014.

[38] J. Stewart, “Dns cache poisoning-the next generation,”
Jan. 2003.

[39] X. Feng, Q. Li, K. Sun, K. Xu, B. Liu, X. Zheng,
Q. Yang, H. Duan, and Z. Qian, “PMTUD is not
panacea: Revisiting IP fragmentation attacks against
TCP,” in 29th Annual Network and Distributed System
Security Symposium, 2022.

[40] P. A. Vixie, D. S. Thomson, Y. Rekhter, and J. Bound,
“Dynamic Updates in the Domain Name System (DNS
UPDATE),” RFC 2136, Apr. 1997.

[41] Dynv6, https://dynv6.com/, 2025.
[42] ClouDNS, https://www.cloudns.net/, 2025.

[43] DNSExit, https://freedomain.one/, 2025.
[44] Synology, https://www.synology.com/en-global, 2025.
[45] ASUSTOR, https://www.asustor.com/, 2025.
[46] K. Man, Z. Wang, Y. Hao, S. Zheng, X. Zhou, Y. Cao,

and Z. Qian, “ SCAD: Towards a Universal and Auto-
mated Network Side-Channel Vulnerability Detection ,”
in 2025 IEEE Symposium on Security and Privacy.

[47] K. Fujiwara and P. A. Vixie, “IP Fragmentation Avoid-
ance in DNS over UDP,” RFC 9715, Jan. 2025.

[48] S. Cheshire and M. Krochmal, “DNS-Based Service
Discovery,” RFC 6763, Feb. 2013.

[49] W. Hardaker, “Child-to-Parent Synchronization in
DNS,” RFC 7477, Mar. 2015.

[50] G. Moura, W. Hardaker, J. Heidemann, and M. Davids,
“Considerations for Large Authoritative DNS Server
Operators,” RFC 9199, Mar. 2022.

[51] P. E. Hoffman, A. Sullivan, and K. Fujiwara, “DNS
Terminology,” RFC 7719, Dec. 2015.

[52] P. E. Hoffman, A. Sullivan, and K. Fujiwara, “DNS
Terminology,” RFC 8499, Jan. 2019.

[53] P. E. Hoffman and K. Fujiwara, “DNS Terminology,”
RFC 9499, Mar. 2024.

[54] Y. Zhang, B. Liu, H. Duan, M. Zhang, X. Li, F. Shi,
C. Xu, and E. Alowaisheq, “Rethinking the security
threats of stale DNS glue records,” in 33rd USENIX
Security Symposium, Aug. 2024.

[55] X. Li, W. Xu, B. Liu, M. Zhang, Z. Li, J. Zhang,
D. Chang, X. Zheng, C. Wang, J. Chen, H. Duan,
and Q. Li, “Tudoor attack: Systematically exploring
and exploiting logic vulnerabilities in DNS response
pre-processing with malformed packets,” in 2024 IEEE
Symposium on Security and Privacy (SP), 2024.

[56] H. Lee, A. Gireesh, R. van Rijswijk-Deij, T. T. Kwon,
and T. Chung, “A longitudinal and comprehensive study
of the DANE ecosystem in email,” in 29th USENIX
Security Symposium, Aug. 2020.

[57] P. Jeitner and H. Shulman, “Injection attacks reloaded:
Tunnelling malicious payloads over DNS,” in 30th
USENIX Security Symposium, Aug. 2021.

[58] A. Klein, H. Shulman, and M. Waidner, “Internet-wide
study of DNS cache injections,” in IEEE Conference on
Computer Communications, 2017.

[59] P. Mockapetris, “Domain names - concepts and facili-
ties,” RFC 1034, Nov. 1987.

[60] B. Hubert and R. Mook, “Measures for Making DNS
More Resilient against Forged Answers,” RFC 5452,
Jan. 2009.

[61] GDB, https://www.sourceware.org/gdb/, 2025.
[62] S. D. Plus, https://simpledns.plus/download, 2025.
[63] Knot Resolver, https://www.knot-resolver.cz/, 2025.
[64] MaraDNS, https://maradns.samiam.org, 2025.
[65] W. Wijngaards, “Resolver side mitigations,” Internet-

Draft draft-wijngaards-dnsext-resolver-side-mitigation-
01, Feb. 2009, work in Progress.

[66] A. Klein, H. Shulman, and M. Waidner, “Counting in
the dark: DNS caches discovery and enumeration in the

15

https://dns.google/
https://1.1.1.1/dns/
https://labs.apnic.net/index.php/2023/09/09/measuring-the-use-of-dnssec/
https://labs.apnic.net/index.php/2023/09/09/measuring-the-use-of-dnssec/
https://labs.apnic.net/index.php/2023/09/09/measuring-the-use-of-dnssec/
https://www.sidn.nl/en/news-and-blogs/none-of-the-biggest-internet-services-are-dnssec-enabled
https://www.sidn.nl/en/news-and-blogs/none-of-the-biggest-internet-services-are-dnssec-enabled
https://www.sidn.nl/en/news-and-blogs/none-of-the-biggest-internet-services-are-dnssec-enabled
https://stats.labs.apnic.net/dnssec/XA
https://stats.labs.apnic.net/dnssec/XA
https://dynv6.com/
https://www.cloudns.net/
https://freedomain.one/
https://www.synology.com/en-global
https://www.asustor.com/
https://www.sourceware.org/gdb/
https://simpledns.plus/download
https://www.knot-resolver.cz/
https://maradns.samiam.org


internet,” in 47th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, 2017.

[67] A. Randall, E. Liu, G. Akiwate, R. Padmanabhan, G. M.
Voelker, S. Savage, and A. Schulman, “Trufflehunter:
Cache snooping rare domains at large public DNS
resolvers,” in Proceedings of the ACM Internet Mea-
surement Conference, ser. IMC ’20, 2020.

[68] Y. Afek, A. Bremler-Barr, and L. Shafir, “NXNSAttack:
Recursive DNS inefficiencies and vulnerabilities,” in
29th USENIX Security Symposium, Aug. 2020.

[69] Y. Afek, A. Bremler-Barr, and S. Stajnrod, “NRDelega-
tionAttack: Complexity DDoS attack on DNS recursive
resolvers,” in 32nd USENIX Security Symposium, 2023.

[70] X. Li, B. Liu, X. Zheng, H. Duan, Q. Li, and Y. Huang,
“Fast ipv6 network periphery discovery and security
implications,” in 2021 51st Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works (DSN), 2021, pp. 88–100.

[71] M. Kührer, T. Hupperich, J. Bushart, C. Rossow, and
T. Holz, “Going wild: Large-scale classification of open
DNS resolvers,” in Proceedings of the 2015 Internet
Measurement Conference, ser. IMC ’15, 2015.

[72] MAXMIND, https://dev.maxmind.com/geoip/geolit
e2-free-geolocation-data/, 2025.

[73] Dyn, “Dyn DNS,” https://help.dyn.com/internet-guide
-setup/, 2025.

[74] Cisco, “Opendns,” https://www.opendns.com/, 2025.
[75] C. sDNS, “Cnnic sDNS,” https://www.sdns.cn/, 2025.
[76] StrongarmDNS, “Strongarmdns,” https://strongarm.io/,

2025.
[77] H. Electric, “He DNS,” https://dns.he.net/, 2025.
[78] ControlD, “Controld DNS,” https://controld.com/free-d

ns/, 2025.
[79] LibreDNS, “Libredns,” https://libredns.gr/, 2025.
[80] SafeSurfer, “Safesurferdns,” https://safesurfer.io/, 2025.
[81] OneDNS, “Onedns,” https://onedns.net/, 2025.
[82] M. Brandt, T. Dai, H. Shulman, A. Klein, and M. Waid-

ner, “Domain validation++ for mitm-resilient pki,” in
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, Oct. 2018.

[83] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob,
M. Korczyński, and W. Joosen, “Tranco: A research-
oriented top sites ranking hardened against manipula-
tion,” in Proceedings of the 26th Annual Network and
Distributed System Security Symposium, 2019.

[84] C. Schuba, “Addressing weaknesses in the domain name
system protocol,” Master’s thesis, Aug. 1993.

[85] M. Larsen and F. Gont, “Recommendations for
Transport-Protocol Port Randomization,” RFC 6056,
Jan. 2011.

[86] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and
W. Lee, “Increased DNS forgery resistance through
0x20-bit encoding: security via leet queries,” in Pro-
ceedings of the 15th ACM Conference on Computer and
Communications Security, 2008.

[87] D. E. E. 3rd and M. P. Andrews, “Domain Name System

(DNS) Cookies,” RFC 7873, May 2016.
[88] S. Son and V. Shmatikov, “The hitchhiker’s guide to

DNS cache poisoning,” in Security and Privacy in
Communication Networks, 2010, pp. 466–483.

[89] D. Dittrich and E. Kenneally, “The menlo report: Eth-
ical principles guiding information and communication
technology research,” SSRN Electronic Journal, 2012.

[90] C. Partridge and M. Allman, “Ethical considerations in
network measurement papers,” Commun. ACM, vol. 59,
no. 10, p. 58–64, Sep. 2016.

[91] Alibaba Group, “Alibaba cloud services,” https://www.
alibabacloud.com/, 2025.

[92] Level3, “Level3 DNS,” https://www.publicdns.xyz/pu
blic/level3.html, 2025.

[93] Comodo, “Comodo DNS,” https://www.comodo.com/s
ecure-dns/, 2025.

[94] Yandex, “Yandex.dns,” https://dns.yandex.com/, 2025.
[95] DNS for Family, “DNS for Family,” https://dnsforfami

ly.com/, 2025.
[96] Freenom, “Freenom DNS,” https://www.freenom.com/

en/index.html, 2025.
[97] AdGuard DNS, “Adguard DNS,” https://adguard-dns.i

o/, 2025.
[98] Quad101DNS, “Quad101 DNS,” https://101.101.101.

101/indexen.html, 2025.
[99] 360, “360 secure DNS,” https://sdns.360.net/, 2025.

[100] 114DNS, “114dns,” https://www.114dns.com/, 2025.
[101] Tencent, “DNSPod,” https://www.dnspod.com/, 2025.
[102] CIRA, “Cira shield DNS,” https://www.cira.ca/cybers

ecurity-services/canadian-shield, 2025.
[103] DNS Forge, “DNS forge,” https://dnsforge.de/, 2025.
[104] Baidu, “Baidu DNS,” https://dudns.baidu.com/, 2025.
[105] CZ.NIC, “CZ.NIC,” https://www.nic.cz/odvr/, 2025.
[106] SkyDNS, “Skydns,” https://www.skydns.ru/, 2025.
[107] SafeDNS, “Safedns,” https://www.safedns.com/, 2025.
[108] CenturyLink, “Centurylink DNS,” https://www.centur

ylink.com/home/help/internet/dns.html, 2025.

APPENDIX A
CONFIGURE SUBDOMAIN RECORDS FOR DYNV6

As mentioned in Section III-C, Dynv6 [41] provides a
service that allows users to configure subdomain resource
records for their domains. We exhibit the interface of Dynv6 in
Figure 8 and Figure 9, where users can configure various types
of resource records (such as A, MX, TXT, etc.) for subdomains
and fill in the corresponding values. We employed the tech-
niques described in Section V-C to generate the fragmented
response packets, as shown in Figure 10.

APPENDIX B
END-TO-END FRAGMENTATION ATTACK

We use Docker to set up a local experimental environment to
simulate real-world end-to-end fragmentation attacks. Specif-
ically, we employed PowerDNS 4.9.9 with default settings
(except for disabling DNSSEC) as the victim resolver and
used Python scripts to simulate nameserver that can generate

16

https://dev.maxmind.com/geoip/geolite2-free-geolocation-data/
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data/
https://help.dyn.com/internet-guide-setup/
https://help.dyn.com/internet-guide-setup/
https://www.opendns.com/
https://www.sdns.cn/
https://strongarm.io/
https://dns.he.net/
https://controld.com/free-dns/
https://controld.com/free-dns/
https://libredns.gr/
https://safesurfer.io/
https://onedns.net/
https://www.alibabacloud.com/
https://www.alibabacloud.com/
https://www.publicdns.xyz/public/level3.html
https://www.publicdns.xyz/public/level3.html
https://www.comodo.com/secure-dns/
https://www.comodo.com/secure-dns/
https://dns.yandex.com/
https://dnsforfamily.com/
https://dnsforfamily.com/
https://www.freenom.com/en/index.html
https://www.freenom.com/en/index.html
https://adguard-dns.io/
https://adguard-dns.io/
https://101.101.101.101/index en.html
https://101.101.101.101/index en.html
https://sdns.360.net/
https://www.114dns.com/
https://www.dnspod.com/
https://www.cira.ca/cybersecurity-servic es/canadian-shield
https://www.cira.ca/cybersecurity-servic es/canadian-shield
https://dnsforge.de/
https://dudns.baidu.com/
https://www.nic.cz/odvr/
https://www.skydns.ru/
https://www.safedns.com/
https://www.centurylink.com/home/help/internet/dns.html
https://www.centurylink.com/home/help/internet/dns.html


Fig. 8. The configurable record type in Dynv6.

Fig. 9. The process of configuring TXT record in Dynv6.

fragment responses. The script runs on the authoritative server
and monitors all incoming traffic; upon detecting a DNS query
for our test domain, it intercepts the request and immediately
replies with a fragmented DNS response. We launched a frag-
mentation attack using payload 16 from Table II. To achieve
fragmentation, we first utilized three NS records belonging to
the attacker’s domain (attacker.root.hit), then inserted
malicious record into the forged second fragment, ultimately
hijacking victim.root.hit, as shown in Figure 11.

APPENDIX C
RELEVANT TEXTS ON BAILIWICK IN RFCS

We analyze the relevant texts on bailiwick in RFCs in
Section IV-A. The following are the original texts in the RFCs:

1) The section 12 of RFC 6763 [48] mentioned “Recursive
name servers that talk to multiple authoritative name
servers should verify that any records they receive from
a given authoritative name server are ‘in bailiwick’ for
that server, and ignore them if not.”;

2) The section 3.2.2 of RFC 7477 [49] mentioned “The A
and AAAA type flags indicates that the A and AAAA
address glue records for in-bailiwick NS records within
the child zone should be copied verbatim (with the excep-
tion of the TTL field, for which the parent MAY want
to select a different value) into the parent’s delegation
information”;

3) RFC 7477 [49] use “Out-of-Bailiwick NS Records” as
the title of section 4.3;

4) The section 6 of RFC 7719 [51] mentioned “In-bailiwick:
(a) An adjective to describe a name server whose name
is either subordinate to or (rarely) the same as the zone
origin. In-bailiwick name servers require glue records in

Fig. 10. A packet returned by Dynv6 as a fragment response.

Hijacked 
victim.root.hit.

Normal recursive resolution process

Extra-long records configured
by the attacker in the first fragment

Malicious record in the 
second fragment forged 

by the attacker

Reassembled 
DNS response

Fig. 11. A demonstration of an end-to-end fragmentation attack against
PowerDNS using payload 16.

their parent zone (using the first of the definitions of ‘glue
records’ in the definition above).”;

5) The section 7 of RFC 8499 [52] mentioned “Bailiwick:
‘In-bailiwick’ is a modifier to describe a name server
whose name is either a subdomain of or (rarely) the same
as the origin of the zone that contains the delegation
to the name server. In-bailiwick name servers may have
glue records in their parent zone (using the first of the
definitions of ‘glue records’ in the definition above). (The
word ‘bailiwick’ means the district or territory where a
bailiff or policeman has jurisdiction.)” and “‘In-bailiwick’
names are divided into two types of names for name
servers: ‘in-domain’ names and ‘sibling domain’ names.”;

6) The section 3.6.1 of RFC 9199 [50] mentioned “Multiple
record types exist or are related between the parent of
a zone and the child. At a minimum, NS records are
supposed to be identical in the parent (but often are not),
as are corresponding IP addresses in ‘glue’ A/AAAA
records that must exist for in-bailiwick authoritative
servers.”;

7) The section 7.2.46 of RFC 9499 [53] mentioned “Baili-
wick: ‘In-bailiwick’ and ‘Out-of-bailiwick’ are modifiers
used to describe the relationship between a zone and the
name servers for that zone. The dictionary definition of
bailiwick has been observed to cause more confusion than
meaning for this use. These terms should be considered
historic in nature.”.

APPENDIX D
PUBLIC DNS RESOLVER BEHAVIOR

We collect 30 popular public DNS resolvers and use the test
cases in Table II to find the differences in their DNS resolution
and cache processes, as shown in Table VI.

17



TABLE VI
DNS RESOLUTION AND CACHE BEHAVIOR OF 30 POPULAR PUBLIC DNS RESOLVER VENDORS.

Public DNS Vendors IPv4 Address
T1 Attack T2 Attack T3 Attack

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cloudflare DNS[27] 1.1.1.1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CNNIC sDNS[75] 1.2.4.8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Level3 DNS[92] 4.2.2.1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Google Public DNS[26] 8.8.8.8 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Comodo Secure DNS[93] 8.20.247.10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Quad9 DNS[11] 9.9.9.9 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗

Strongarm DNS[76] 52.3.100.184 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗

Hurricane Electric DNS[77] 74.82.42.42 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗

ControlD DNS[78] 76.76.2.0 ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗

Yandex.DNS[94] 77.88.8.1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

DNS for Family[95] 78.47.64.161 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Freenom World DNS[96] 80.80.80.80 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

LibreDNS[79] 88.198.92.222 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

AdGuard DNS[97] 94.140.14.14 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Quad101 DNS[98] 101.101.101.101 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

360 Secure DNS[99] 101.226.4.6 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

Safe Surfer DNS[80] 104.155.237.225 ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

114DNS[100] 114.114.114.114 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

OneDNS[81] 117.50.10.10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

DNSPod Public DNS+[101] 119.28.28.28 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

CIRA Shield DNS[102] 149.112.121.10 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

DNS Forge[103] 176.9.1.117 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Baidu DNS[104] 180.76.76.76 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

CZ.NIC ODVR DNS[105] 185.43.135.1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Clean Browsing DNS[12] 185.228.168.10 ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗

SkyDNS[106] 193.58.251.251 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

SafeDNS[107] 195.46.39.39 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

CenturyLink DNS[108] 205.171.2.26 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

OpenDNS[74] 208.67.220.120 ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

Dyn DNS[73] 216.146.35.35 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

✓: Vulnerable. ✗: Not Vulnerable.

APPENDIX E
ANALYSIS OF RESPONSES WITH NS RECORDS

Since the number of answer response containing NS
records is relatively large, we conduct a more detailed analysis
in Table VII besides Section VI-A.

First, we find that 36.8% of the answer packets carry
NS records in the authority section. Next, we classify
the NS records based on their RNAME and find that the vast
majority are records for the zone apex, confirming that no
data for sibling domains appears in the answer response.
Finally, based on the NS records obtained during the top-down
recursive resolution process, we find that most of the records
carrying zone apex content are consistent with those in the
referral, and only 2,524 domains attempt to provide NS
records that differ completely from those in the referral.

TABLE VII
ANALYSIS OF ANSWER PACKETS CONTAINING NS RECORD.

Records type provided by answer packets # Packets %

Total number of answer packets 127,484 -
Total number of answer packets with NS records 46,893 100%

Provide NS records for a domain out of the zone 60 0.13%
Provide NS records for zone apex 46,404 98.96%

Provide NS records consistent with referral 43,880 93.57%
Provide NS records inconsistent with referral 2,524 5.38%

Provide NS records for a parent domain of QNAME 229 0.49%
Provide NS records for a domain under the QNAME 200 0.43%

18


	Introduction
	Background
	DNS Overview
	Bailiwick Rules

	Attack Overview
	Threat Model
	Attack Workflow
	Practical Considerations of Cuckoo Domain

	Systematic Analysis of the Specification and Implementation of Bailiwick Principle
	Bailiwick in RFCs
	Systematic Analysis of Bailiwick Checking in DNS software

	Evaluation of Cuckoo Domain in the Wild
	Evaluating Mainstream DNS Software
	Test Payload Design
	Test Results of Mainstream DNS Software

	Evaluating DNS Resolvers in the Wild
	Collecting Available DNS Resolvers
	Measurement Setups
	Evaluation Results

	Evaluating Vulnerable Service Providers

	Discussion
	Mitigation
	Lessons Learned
	Responsible Disclosure

	Related Works
	Conclusion
	Appendix A: Configure Subdomain Records for Dynv6
	Appendix B: End-to-end Fragmentation Attack
	Appendix C: Relevant Texts on Bailiwick in RFCs
	Appendix D: Public DNS Resolver Behavior
	Appendix E: Analysis of Responses with NS records

