Artifact
Evaluated

ANDss

Available

Incident Response Planning Using a
Lightweight Large Language Model
with Reduced Hallucination

Reproduced

Kim Hammar!, Tansu Alpcan’, and Emil C. Lupu!
f Department of Electrical and Electronic Engineering, University of Melbourne, Australia
i Department of Computing, Imperial College London, United Kingdom
Email: {kim.hammar,tansu.alpcan} @unimelb.edu.au and e.c.lupu@imperial.ac.uk

Abstract—Timely and effective incident response is key to
managing the growing frequency of cyberattacks. However,
identifying the right response actions for complex systems is a
major technical challenge. A promising approach to mitigate
this challenge is to use the security knowledge embedded in
large language models (LLMSs) to assist security operators during
incident handling. Recent research has demonstrated the poten-
tial of this approach, but current methods are mainly based on
prompt engineering of frontier LLMs, which is costly and prone
to hallucinations. We address these limitations by presenting
a novel way to use an LLM for incident response planning
with reduced hallucination. Our method includes three steps:
fine-tuning, information retrieval, and lookahead planning. We
prove that our method generates response plans with a bounded
probability of hallucination and that this probability can be
made arbitrarily small at the expense of increased planning time
under certain assumptions. Moreover, we show that our method
is lightweight and can run on commodity hardware. We evaluate
our method on logs from incidents reported in the literature. The
experimental results show that our method a) achieves up to 22%
shorter recovery times than frontier LLMs and b) generalizes to
a broad range of incident types and response actions.

I. INTRODUCTION

Incident response refers to the coordinated actions taken
to contain, mitigate, and recover from cyberattacks. Today,
incident response is largely a manual process carried out by
security operators [1]. While this approach can be effective,
it is often slow, labor-intensive, and requires significant skills.
For example, a recent study reports that organizations take an
average of 73 days to respond and recover from an incident
[2]. Reducing this delay requires better decision-support tools
to assist operators during incident handling. Currently, the
standard approach to assisting operators relies on response
playbooks [3], which comprise predefined rules for handling
specific incidents. However, playbooks still rely on security
experts for configuration and are therefore difficult to keep
aligned with evolving threats and system architectures [4].

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240358
www.ndss-symposium.org

System Recovery

@ Logs. architecture trajectory
N

Query i
Fine-tuned LLM pg:

Incidents1
v \

fp’m’l 04D

(=1
[5=S
V= Candidate
1o @ Knowledgebase andiaate
! responses
-
¥ cor Retrieve
1
\ .
1 Responses filter
Ty Threat hallucinations
Q). .
Loss L intelligence i
Response
[1. Fine-tuning] [2. Information retrieval] [3. Planning]
OFFLINE -=---- - ONLINE

Fig. 1: The three steps of our method for incident response planning: 1. fine-
tuning of a (lightweight) large language model (LLM); 2. retrieval of relevant
threat intelligence; and 3. decision-theoretic planning and chain-of-thought
(CoT [5]) reasoning to select effective responses and filter hallucinations.

To overcome these limitations, an emerging direction of
research is to leverage the security knowledge encoded in
large language models (LLMs) to generate effective response
actions [6]—[13]. These actions can then be used as suggestions
to security operators. Although this approach remains largely
confined to academic settings for now, it is beginning to see
commercial adoption, as exemplified by IBM’s recent launch of
an LLM-based response service [14]. Most of the LLM-based
methods proposed in the literature so far are based on prompt
engineering of frontier LLMs, such as OPENAI 03 [15]. While
this approach has shown promise, it is costly and relies on
an external LLM provider (e.g., GOOGLE or OPENAI), which
limits flexibility. Another important concern with this approach
is that frontier LLMs are not specialized for incident response,
which makes them particularly prone to hallucinations [16],
i.e., they may generate response actions that appear plausible
but are incorrect or unrelated to the incident.

In this paper, we present a novel method that addresses
these limitations and provides a principled way to use an
LLM as decision support for incident response; see Fig. 1. Our
method includes three main steps: (i) instruction fine-tuning of
a lightweight LLM to align it with the phases and objectives
of incident response; (if) retrieval-augmented generation (RAG)
to ground the LLM in current threat information and system

knowledge; and (iii) decision-theoretic planning and chain-of-
thought (COT) reasoning to generate effective response actions.
We evaluate our method based on log data from incidents
reported in the literature. The results show that our method
surpasses the performance of frontier LLMs (e.g., GEMINI 2.5
PRO [17], [18]) by up to 22% while being far less resource-
intensive. Moreover, we show that our method performs com-
parably to the PPO reinforcement learning method [19], despite
not relying on incident-specific training like PPO does. We
also present an ablation study assessing the contribution of
the individual steps of our method. We show that all steps
contribute to its performance, with fine-tuning and planning
having the greatest impact. In addition to the empirical results,
we present a theoretical analysis that establishes a probabilistic
upper bound on the hallucination probability of our method.
Our contributions can be summarized as follows:

« We develop a novel method for incident response that
integrates a lightweight LLM with instruction fine-tuning,
information retrieval, and decision-theoretic planning.

o We derive a probabilistic upper bound on the hallucina-
tion probability of our method. Under certain assump-
tions, this bound can be made arbitrarily small at the
expense of increased planning time.

« We evaluate our method on logs from incidents reported
in the literature. The results show that our method a)
achieves up to 22% shorter recovery times than frontier
LLMs; b) generalizes to a broad range of incidents and
responses; and ¢) performs comparably to a reinforcement
learning method that is pretrained for each incident.

« We release the first LLM fine-tuned for incident response,
together with a dataset of 68,000 incidents and the cor-
responding responses. Detailed instructions for accessing
the dataset and reproducing our results are provided
in Appendix F. We also provide source code and a
video demonstration of a decision-support system that
implements our method; see the repository at [20].

II. RELATED WORK

Since the early 2000s, there has been broad interest in devel-
oping systems that can assist security operators during incident
response [21], [22]. Traditional decision-support systems are
based on playbooks that map incident scenarios to sequences
of response actions [21], [23], such as those provided by
SPLUNK [24], CISA [25], and OASIS [26]. Although playbooks
can be effective, they rely on security experts for configuration.
As a consequence, they are difficult to keep up-to-date with
evolving security threats and system architectures [4]. Another
common critique of playbooks is that they consist of generic
response actions that are difficult for non-experts to interpret
and execute effectively [3]. Several research efforts have aimed
to address these limitations by automating the generation
of effective incident response strategies and functions. Four
predominant approaches to such automation have emerged:
decision-theoretic [27], reinforcement learning [28], game-
theoretic [29]-[31], and LLM-based approaches [6].

The first three approaches share a common requirement:
they need a perfect simulator (model) that captures how the
system evolves in response to attacks and defensive actions.
The simulator enables the computation of optimal response
strategies (according to the model) through numerical opti-
mization techniques. For example, a standard benchmark in
this line of research is CAGE-2 [32], which simulates an ad-
vanced persistent threat on an enterprise network. State-of-the-
art methods evaluated on this benchmark include dynamic pro-
gramming [33], reinforcement learning [34], and tree search
[35], all of which rely on a simulator. While these approaches
can be effective when high-fidelity simulators are available,
such simulators are rarely available in practice. Furthermore,
the resulting response strategies are limited in scope as they are
trained on a narrow set of attack vectors and response options.
For instance, the CAGE-2 simulation is limited to around 20
attacker actions and defensive countermeasures [35].

A promising approach to address this drawback is to use
large language models (LLMs) to automatically generate ef-
fective response actions based on system logs. This approach
is not limited to a predefined set of actions and eliminates the
need for a simulator. Early studies in this direction include
[6]-[12], and [14]. Notably, the work in [14] is a commercial
product by IBM. While these works report encouraging results,
they have three key limitations: they do not provide a theo-
retical analysis, they do not address the risk of hallucinations,
and most of them require API access to frontier LLMs.

Our method differs from prior work in several ways. It does
not rely on a simulator or a manually-designed playbook, is
lightweight enough to run on commodity hardware, has re-
duced hallucination, is accompanied by a theoretical analysis,
and combines fine-tuning with retrieval-augmented generation
(RAG); see Table 1. Moreover, ours is the only LLM-based
method that is fully open-source (code, weights, and data).

Method Theory RAG Fine-tuning Lightweight LLM Req. simulator ~Manual
OURS (Fig. 1) v v v v v X X
[61,[7]-[11] X X X X 4 X X
[14] X % % 2 4 X X
[12] X 4 X X v X X
[33], [35], [36] 4 X X 4 X v X
[341,[28], [371-[39] X X X v X v X
[23], [40], [41] X X X v X X v

TABLE 1: Comparison between our method and related approaches, which
can be grouped into three categories: those relying on playbooks (white
row), those relying on a simulator for numerical optimization (red rows), and
those using LLMs (blue rows). Compared to other LLM-based approaches,
our method (green row) is the only method that does not depend on frontier
LLMs, is lightweight enough to run on commodity hardware, has reduced
hallucination probability, and is accompanied by a theoretical analysis.

Lastly, we note that a growing body of research applies
LLMs to security use cases other than incident response,
such as penetration testing [42], [43], security assistants [44],
scanning [45], [46], threat hunting [47], verification [48],
piracy [49], detection [50], fuzzing [51], [52], API design [53],
network operations [54], threat intelligence [55], and decom-
pilation [56]. Compared to these works, the main novelty of
our method lies in its approach to reducing hallucinations.

Ground truth

Networked
Prompt I | = | = [= | = system
| | | | .‘ .‘
=Ny B
- | | _ 1 | 2 | B
i
Recovery & Loss L .E .E
trajectory 3 .
9
S
B 3
)
Dataset Logs E = =
8 %‘) Step 1 Step 2 Step 3 Response .E .E
- < e
EO Chain-of-thoughts .E .E
-
System —
architecture t Gradient VgL

Prompt I

(N — — — (N\
=
@— = |]] all—
Recovery -
trajecto > L
1! Ty S
— — — — .
= 5}
9 . =i
é >~ — = —a2l— §
A~ R, ~
esponse a
@ (NN R N (S SR N o O Resy
g : £
Threat — — - I “T='
intelligence £y ,a
2 | > = —laVl— 5
—)
a
L L L
Sy Ixtem N candidate response actions a', ... aN
architecture

a) Offline fine-tuning

b) Online log analysis, information retrieval, and response planning

Fig. 2: The two phases of our method. In the first phase [cf. a)], an LLM is fine-tuned offline on a dataset of logs from 68,000 incidents paired with response
plans and chain-of-thought reasoning steps [5]. In the second phase [cf. b)], system logs and threat intelligence are processed online by the fine-tuned LLM
and used to generate /N candidate responses. These responses are then evaluated via a planning procedure, which selects the most effective response.

III. THE INCIDENT RESPONSE PROBLEM

Incident response involves selecting a sequence of actions
that restores a networked system to a secure and operational
state after a cyberattack. These actions should analyze the
scope of the attack, secure forensic evidence, contain and
evict the attacker, harden the system to prevent recurrence,
and restore critical services. Examples of response actions
include redirecting network flows, updating access control
policies, patching vulnerabilities, shutting down compromised
systems, and restarting operational services. From a security
engineering perspective [57], incident response fits within the
broader cyber resilience framework by operationalizing the
response and recovery phase after a cyberattack [58].

Figure 3 illustrates the phases of incident response. Follow-
ing the attack are detection and response time intervals, which
represent the time to detect the attack and form a response,
respectively. These phases are followed by a recovery time
interval 7', during which response actions are deployed. When
selecting these actions, the goal is to restore the system to
a secure and operational state as quickly as possible while
minimizing operational costs. A key challenge to achieving
this goal is that the information about the attack is often limited
to partial indicators of compromise (e.g., log files and alerts),
while the full scope and severity of the attack are unknown
[59]. Another major difficulty is that even short delays in
initiating the response can lead to high costs. For example,
in the event of a ransomware attack, a delay of just a few
minutes may allow the malware to encrypt systems or spread
laterally across the network [60].

Operational cost:

Recovery time 7'

Dependable service

Tolerance I i Detection time; Response time

: : i Time
: Attack event :Detection event H

Fig. 3: Phases and performance metrics of the incident response problem.

IV. OUR METHOD FOR INCIDENT RESPONSE PLANNING

Motivated by the challenges described above, we develop a
method for using an LLM as decision support during incident
handling, i.e., to help security operators identify and exe-
cute effective response actions quickly. Broadly speaking, our
method takes as input a description of an incident (e.g., system
logs, security alerts, and threat intelligence) and produces as
output a sequence of recommended response actions. The main
challenge in generating such recommendations is to ensure
that the response actions are effective despite the possibility
that the LLM hallucinates. In the following subsections, we
describe the steps we take to address this challenge.

A. Overview of Our Approach and System Architecture

Our method consists of three main steps: (i) supervised fine-
tuning of a lightweight LLM to align it with the objectives of
incident response; (ii) retrieval-augmented generation (RAG)
to ground the LLM in current threat information and system
knowledge; and (iii) decision-theoretic planning to synthesize
effective response actions. These steps can be divided into two
phases: an offline phase for fine-tuning and an online phase
for information retrieval and response generation; see Fig. 2.

The first step of our method is to fine-tune a lightweight
LLM for incident response. We conduct this fine-tuning by
training the LLM on a labeled dataset of incident logs paired
with corresponding response actions and reasoning steps. This
training enables the LLM to learn typical patterns of incident
handling. For example, it learns the logical dependencies
between different phases of the response process, such as
containment and eviction. Another benefit of fine-tuning is
that it can reduce hallucinations; see e.g., [61].

Remark 1. We call an LLM lightweight if it has significantly
fewer parameters than a typical frontier LLM. For the exper-
imental results reported in this paper, we use the DEEPSEEK-
R1-14B LLM, which has 14 billion parameters. This parameter
count is small in comparison with that of the frontier LLM
DEEPSEEK-R1, which has 671 billion parameters [62].

Once fine-tuned, the LLM can provide decision support for
incident response by generating a sequence of recommended
response actions when prompted with details about an in-
cident. However, because the LLM is trained on historical
incident data, it cannot generate response actions that relate
to newly discovered vulnerabilities or attack techniques. To
address this limitation, we augment the system logs with
additional threat information retrieved online. Specifically, we
automatically extract indicators of compromise from the logs
(e.g., hostnames and vulnerability identifiers) and use them to
retrieve relevant information from external sources, such as
threat intelligence APIs and vulnerability databases. We then
append this information to the logs before prompting the LLM.
In addition to improving the quality of the response, several
empirical studies have shown that such retrieval-augmented
generation also reduces the probability of hallucinations [63].

Lastly, instead of directly selecting the response action
generated by the fine-tuned LLM, we use the LLM to generate
several candidate actions and select the most promising action
that is least likely to be hallucinated. In particular, we evaluate
each candidate action by using the LLM to simulate possible
outcomes of the action, after which we select the action that
leads to the shortest expected recovery time according to
the lookahead simulations. This lookahead planning enforces
a form of self-consistency [64], where actions are validated
against the LLM’s predicted outcomes. Such validation has
been shown in prior work to reduce hallucinations; see e.g.,
[65], [66], and [67]. We provide a theoretical justification for
why this procedure can reduce hallucination in §V.

Each of these three steps (fine-tuning, information retrieval,
and planning) is detailed below, starting with fine-tuning.

B. Instruction Fine-Tuning

Our goal with fine-tuning is to make the pre-trained LLM
generate appropriate response actions when prompted with
system logs describing an incident. In this context, we view the
pre-trained LLM as a probabilistic model that takes as input
a sequence of tokens x = xi,Xs,...,X, and predicts the
probability distribution over the subsequent token as

Po(Xnt1 | X1,X2,...,Xn), (1)

where 6 denotes the model parameters.

The next-token prediction in (1) allows us to generate
response actions as follows. We start by concatenating a de-
scription of the incident (e.g., system logs) with an instruction
to generate a response action. We then pass the resulting
text through a tokenizer that converts it into a sequence of
tokens x = xi,...,X,. Next, we feed these tokens into
the LLM to generate the next token by sampling from (1).
Subsequently, we append the generated token to the prompt
and feed the entire sequence back into the LLM to predict
the next token. We repeat this process autoregressively until
the LLM generates a special end-of-sequence token, which is
produced when the LLM determines that the response action
is complete, i.e., when the action has been fully specified.

Remark 2. We place no restrictions on the form of a response
action. It may be a single command, a compound procedure,
or any other textual description, depending on the incident.

To steer the LLM toward generating effective responses, we
fine-tune it using supervised learning on a dataset of 68,000
instruction-answer pairs D = {(x’,y")}X,, where each in-
struction x* consists of information related to an incident and
a task for the LLM to perform. The associated answer y°
describes the correct steps to complete the task, paired with
a sequence of chain-of-thought (COT [5]) reasoning steps that
explain the answer. We use two types of instructions: action-
generation instructions and state-prediction instructions. In the
former case, the vector X’ represents an instruction to generate
a response to an incident. In the latter case, x’ represents an
instruction to assess the current status of the incident response
process. For example, the instruction may be to determine
whether the attack has been contained, whether the system
has been hardened to prevent recurrence, or whether forensic
evidence has been secured.

Dataset generation.

To generate the training dataset for fine-tuning, we use
a combination of log data from our testbed and synthetic
data generated by frontier LLMs. Specifically, we first run a
sequence of emulated cyberattacks (e.g., network intrusions)
in our testbed, which generate system measurements and logs
(e.g., SNORT alerts [68]). We then use these measurements to
construct 500 instruction-answer pairs, e.g., pairs of incidents
(described by log data) and suitable response actions.

Since these 500 pairs are too few for effective fine-tuning,
we then expand the dataset using synthetic data generated by
prompting GEMINI 2.5 PRO [17] and OPENAI 03 [15] with
our initial examples. Following this approach, we construct
a total dataset of 68,000 incidents, which covers a diverse
range of attack types and system architectures. Figure 4
shows the distributions of MITRE ATT&CK tactics [69] in our
dataset, which shows that the most common attacker tactics
are INITIAL ACCESS, EXECUTION, and EXFILTRATION.

Number of incidents

15,000 12490
1005-1
10,000 8,605
6,007 5,683 5,562 5,290
5,000 ﬂ ﬂ ﬂ 1 096 .
0
iz 5 5 23 J
S8 I~ I - g]
§8 5 £ 5555
< g & 3853
5 £ ¢ S 7S
£ i1
I

Fig. 4: Distributions of MITRE ATT&CK TACTICS [69] in our dataset of
instruction-answer pairs (x, y), which we use for fine-tuning the LLM.

Our approach of combining log data with synthetic data
is inspired by the studies presented in [70] and [71], which
successfully used similar approaches to generate fine-tuning
datasets for other domains, e.g., healthcare [71].

Testbed setup. To collect the initial log data for the fine-
tuning, we run the attacks listed in Table 2 in a virtualized 1T

Type Actions MITRE ATT&CK technique

Reconnaissance

TCP SYN scan, UDP scan
TCP XMAS scan
VULSCAN

ping-scan

T1046 service scanning
T1046 service scanning
T1595 active scanning

T1018 system discovery

T1110 brute force
T1110 brute force
T1110 brute force

Brute-force TELNET, SSH, FTP, IRC
MONGODB, CASSANDRA

SMTP, MYSQL, POSTGRES

CVE-2017-7494, CcVE-2015-3306
CVE-2010-0426, CVE-2015-5602
CVE-2015-1427, CVE-2014-6271
CVE-2016-10033, sQL injection

Exploit T1210 service exploitation
T1068 privilege escalation
T1210 service exploitation

T1210 service exploitation

TABLE 2: Attacker actions executed on our testbed to generate the initial
examples for our training dataset, which we use for fine-tuning the LLM.
Actions are mapped to the corresponding vulnerabilities they exploit, as
indicated by the CVE [72] identifiers and MITRE ATT&CK techniques [69].

infrastructure with 64 hosts that we deploy in our testbed; see
Appendix A for the infrastructure configuration. Components
of the infrastructure are implemented as DOCKER containers,
which are connected in a network through virtual links. The
attacks in Table 2 are automated through Python scripts that
execute commands for accessing vulnerable services running
in the containers. During each attack, we record SNORT alerts
and other metrics by reading log files in the containers.

Fine-tuning results. Given the training dataset D, we fine-tune
the LLM by iteratively sampling a batch of instruction-answer
pairs (x',y1),..., (x™,y™) and updating its parameters via
gradient descent based on the cross-entropy loss

M my

L= —%Zzlnpo (Vi | Xy

i=1 k=1

R I ¢)

where m; is the length of the vector y*. We denote the fine-
tuned parameter vector by 6’ to distinguish it from 6.

Figure 5 displays the training loss curves when fine-tuning
the DEEPSEEK-R1-14B LLM [62]. We run the experiment on
4xRTX 8000 GPUs and compare a higher learning rate (blue)
with a lower one (red). We observe that the higher learning rate
results in convergence to a lower loss. Additional experimental
details and hyperparameters can be found in Appendix E.

15 Training loss [cf. (2)]

—— Learning rate 0.00095
—— Learning rate 0.000095

0 100 200 300 400 500 60O 700 800
Training time (min)
Fig. 5: Loss curves when fine-tuning the DEEPSEEK-R1-14B [62] LLM under

two different learning rates. The solid lines indicate the mean loss and the
shaded lines represent the loss on specific batches of training examples; cf. (2).

Figure 6 shows the accuracy and the F; score evaluated on
a held-out set of 500 incidents from the training dataset. The
accuracy is computed by comparing each generated response
action with the correct action in the validation dataset. Simi-
larly, the Fy score is computed by checking if the generated

(T} Fine-tuning without COT
8 cor without fine-tuning] B Fine-tuning with cot

0.93 0.97 094 097 081 0.89

B No fine-tuning no cot

777777

0.16

f2222222
Action accuracy w.r.t ground truth action

Fy score of action type

Fig. 6: The F and accuracy scores on the validation dataset.

action is of the same type(s) as the correct action, which
can be one or more of six types: containment, assessment,
preservation, eviction, hardening, and restoration. We see in
the figure that fine-tuning significantly improves the accuracy
(from 0.16 to 0.89), whereas the improvement in the F} score
is small in comparison (it increases from 0.93 to 0.97).

This result indicates that even before fine-tuning, the LLM
is able to identify the correct type(s) of actions at each stage
of the response with high probability. Hence, the primary
benefit of fine-tuning in our setting is that it makes the LLM
substantially better at adhering to the style of response actions
in the training dataset, as quantified by the accuracy in Fig. 6.

Moreover, we observe in the figure that chain-of-thought
(coT) reasoning has no substantial effect on the F; score but
improves the accuracy from 0.81 to 0.89, which is a small
improvement compared to that of fine-tuning. We explain this
small improvement by the fact that COT does not update the
LLM’s weights as fine-tuning does. Similar results of fine-
tuning and COT have been observed in prior work [71].

C. Retrieval-Augmented Response Generation (RAG)

While the fine-tuned LLM can generate effective response
actions, its outputs depend on the distribution of incidents
seen during training. This presents a limitation as the LLM is
trained on historical data that may not reflect the most recent
threat landscape. To address this challenge, we use indicators
of compromise (e.g., vulnerability identifiers or hostnames)
in the system logs to retrieve relevant threat intelligence from
external sources. By incorporating such information at the time
of action generation, the LLM can adapt its responses to reflect
up-to-date threat information and system knowledge [73]. The
RAG pipeline in our method is illustrated in Fig. 7.

LOGS

=
=

N
3. Response generation

1. Extract 10Cs from logs

2. Information retrieval

Fig. 7: Our RAG pipeline. The LLM extracts indicators of compromise from
logs, retrieves related threat-intelligence data via APIs, appends it to the logs,
and uses the enriched context to generate response actions.

To illustrate the benefit of RAG, consider a scenario where
the LLM is trained on data available only up to 2020. Suppose
that the LLM is prompted with information about an incident
that relates to a vulnerability discovered after 2020, e.g.,
CVE-2021-44228 [72]. In this case, the LLM may not have
sufficient information to generate effective response actions.

The following example contrasts the process of using the
LLM to generate response actions with and without RAG:

e« WITHOUT RAG. Prompted only with the logs, the LLM
generates the action: “isolate host” as it has no knowledge
about the nature of the vulnerability CVE-2021-44228.

e« WITH RAG. The system retrieves information about spe-
cific mitigations for CVE-2021-44228. When provided
with this information, the LLM generates a response
action with targeted mitigations for CVE-2021-44228,
thereby reducing the time to recover from the incident.

D. Incident Response Planning

Having fine-tuned the LLM to produce response actions from
incident logs, we now address the challenge of selecting the
most effective action. Although the LLM can produce effective
actions in many cases, it may also hallucinate and generate
ineffective actions. To reduce the risk of such hallucinations,
our method includes a planning procedure where we use the
LLM to generate multiple candidate actions and then select the
action least likely to be hallucinated, as described below.

System model. We formulate incident response planning as
a stochastic shortest path problem. In this formulation, the
response process evolves over a sequence of time steps t =
0,1,...,7 and the goal is to generate a sequence of actions
ag,ai,...,a,—; that quickly recovers the system from the
incident. In other words, the goal is to minimize the recovery
time. To formalize this goal, we model the progress toward
system recovery with a recovery state. We define this state
based on the MITRE D3FEND [74] taxonomy as follows.

Definition 1 (Recovery state). The recovery state is a vector

3)

where each component is a value in [0,1] representing the
progress toward completing a specific stage of the response.
A value of 0 indicates no progress, while 1 indicates that the
stage is completed. The stages are defined as follows.

o Containment: s} € [0, 1] is the degree to which the attack
has been isolated and prevented from spreading.

o Assessment: s € [0,1] is the degree to which the scope
and severity of the attack have been determined.

e Preservation: st € [0,1] is the degree to which forensic
evidence related to the incident has been preserved.

o Eviction: s € [0,1] is the degree to which the attacker’s
access has been revoked and potential malicious code or
processes have been removed from the system.

o Hardening: si' € [0, 1] is the degree to which the system
has been hardened to prevent recurrence of the attack.

e Restoration: st € [0,1] is the degree to which services
have been restarted and user access has been restored.

_ (1 .S F _E H R
St = (54587, 5¢ 551 »5¢ »5¢)

Remark 3. While the analysis presented in this paper focuses
on the state representation in Def. 1, our method is not
limited to this choice and can accommodate alternative ways
of representing the state, such as dependency graphs.

Given the preceding definition of the recovery state, we
associate each response action a, with a cost ¢(s;, a;), which
represents the time required to execute it in state s;. This

cost function allows our model to assign different time units
to individual actions. For instance, the time to isolate a
compromised host may be a few seconds, whereas the time to
perform a forensic analysis of affected systems can be several
hours. In practice, the cost function ¢ can be configured using
time estimates based on previous incidents or exercises.

The recovery time T is the cumulative time required to
complete all stages of the response, i.e., the time to reach the
terminal state s = (1,1,1,1,1,1), as formally defined below.

Definition 2 (Recovery time). The recovery time T represents
the time to reach the terminal recovery state, i.e.,

|
—

T

T = (4)

C(St7 at),

~+
i
o

where T is the number of actions to recover, i.e.,
T=inf{t|t>0,s, = (1,1,1,1,1,1)}.
We illustrate this definition through the following example.

Example 1 (Recovery time). Consider a response plan with
four actions: ag (assessment and containment), a; (preser-
vation), as (eviction and hardening), and ag (restoration).
Suppose that the incident response team has determined based
on previous incidents and red-teaming exercises that

o Assessment and containment, which mainly involve au-

tomated shell commands, typically take about a minute;

o Preservation, which requires forensic disk imaging and

copying large amounts of data, takes about 2 hours;

o Eviction and hardening, which involve system scans and

configuration updates, take around 25 minutes, and

o Restoration, which involves restarting services and vali-

dating user access, usually completes within 5 minutes.
Using these estimates, our method can be instantiated with
the action costs c(sg,a9) = 1 min, c(s1,a1) = 120 min,
c(sg,as) = 25 min, and c(s3,a3) = 5 min. In this case, the
estimated recovery time T' is calculated through (4) as
3
T=Y c(si,ar) =1+120+ 25+ 5 = 151 min.
t=0

The recovery time provides a general metric to compare
different incident response plans. While no single metric can
capture all dimensions of incident response, the recovery time
is widely used in both research and practice as an indicator of
recovery performance; see e.g., [2], [14], [75]. Moreover, the
recovery time can be complemented with additional perfor-
mance metrics that reflect specific organizational goals, such
as risk preferences or service availability constraints. Such
metrics can be incorporated in our model by encoding them
as cost functions and adding them to the sum in (4).

To illustrate our system model, we show two possible state
trajectories sg,sj,...,s,; in Fig. 8. As shown in the figure,
several response actions may achieve the same effect on the
recovery state. For example, the severity of the attack can be
determined in many ways. Moreover, certain response actions
can lead to shorter recovery times by skipping intermediate

logs indicates anomalous

activity on a host I .S.F.E.H.R

s§°s8 8758 S
INITIATE (0,0,0,0,0,0)

ag: segment network

’ to isolate host
@ ISOLATE (1,0,0,0,0,0)

ah: analyze processes
(found malicious process)

ASSESS (1,1,0,0,0,0)

ay: malware
scan (failed)

ag: analyze logs
(found malicious process)

ag: memory dump

PRESERVE (1,1,1,0,0,0)
ay: stop process

EvICT (1,1,1,1,0,0)
as: upgrade
affected software
a: live-patch

vulnerability HARDEN (1’ L1,1,1, 0)

ag: restart service

RESTORE (1,1,1,1,1,1)

Fig. 8: Two example evolutions of the recovery state s¢; cf. (3). The first
recovery trajectory involves the actions ag,ai,ag,as,a4,as,as and the
second trajectory involves the actions ag, a1, a), a3, a4, af.

steps. For instance, in the event of a denial of service (DOS)
attack, containment and eviction can often be achieved simul-
taneously by appropriate filtering of the network traffic. This
single action both isolates the attack (s} = 1) and revokes
attacker access (s;E = 1). In contrast, an advanced persistent
threat (APT) typically requires multiple actions to complete
these stages. For example, containment may involve isolating
compromised hosts (s} = 1) and eviction may require malware
removal or credential rotation (s = 1). Thus, the recovery
time T for an APT is typically longer than for a DOS attack.

While the examples in Fig. 8 illustrate actions that fully
complete certain response stages, in practice, actions may also
lead to partial completions of different stages. For example,
an initial containment attempt such as blocking suspicious
network traffic may only partially isolate the attack (s} < 1).
Likewise, an assessment action, such as scanning system logs,
may only partially determine the scope of the attack (s} <
1). Hence, Def. 1 and Def. 2 capture the interdependence of
response stages and the incremental progress across them.

Moreover, since a response action can include multiple
steps, our model can also capture the parallelization of re-
sponse stages. Such parallelization can reduce the total recov-
ery time by avoiding sequential execution of response stages,
as illustrated in the following two examples.

Example 2 (Parallelization of containment and assessment).
Consider a response action a that includes steps for both
isolating hosts (a containment step that takes 2 hours) and
analyzing logs (an assessment step that takes 3 hours). Given
such a compound action, we can model the parallelization of
the containment and assessment stages of incident response by
setting the time cost c(s, a) to the duration of the longest step
in the action a (3 hours) rather than the combined duration
(5 hours), which reduces the time to complete the containment

and assessment stages in our model from 5 hours to 3 hours.

In general, the reduction in recovery time achieved by
parallelizing response stages depends on the specific incident,
the systems involved, and the stages that are parallelized.

We illustrate a real-world case of response parallelization
using the WANNACRY incident that affected UK’s health ser-
vice in 2017, as it is one of the few publicly documented
incidents that provides a detailed timeline of the response.

Example 3 (Parallelization of containment, hardening, and
restoration). In the response to the WANNACRY incident that
affected UK’s national health service in 2017, the containment,
hardening, and restoration stages were carried out in parallel
by different actors [60, Fig. 2]. According to the post-incident
report, fully restoring services took roughly a week, while
containment took about 8 hours and hardening (patching)
took about 5 days. Because these response stages proceeded
concurrently rather than sequentially, the overall recovery time
was reduced from about two weeks to one week.

Response generation. Because the recovery state contains
information about the attacker, it is generally not known with
certainty. However, the LLM can predict the state based on
the available system logs and threat intelligence, which we
denote by I. Such predictions allow us to generate a response
plan through auto-regressive sampling as follows. We start by
generating the first action as ag ~ pg/(- | sp,I), where the
initial state is so = (0,0, 0,0, 0, 0). Subsequently, we evaluate
the effect of the action by predicting the next recovery state as
§1 ~ po: (- | so,a0,I). We then repeat the same procedure to
generate the next action as a; ~ pe (- | §1,I). This iterative
procedure continues until the LLM predicts that the terminal
recovery state §; = (1,1,1,1,1,1) has been reached.

The expected time to recover from the incident when using
response actions generated by the LLM depends on the current
recovery state s; (which captures the effects of previous
actions) and the type of incident, as characterized by the vector
I. We formally define this recovery time-to-go as follows.

Definition 3 (Recovery time-to-go). Given an incident de-
scribed by 1, the expected recovery time-to-go from the state
s when executing actions generated by the LLM pg: is

0 #82(1’171717171)7

J(s) = E

(5.n {TIso = s,I} otherwise.

at~pg’

Given this definition, we say that a response action is
hallucinated if it has no effect on the expected recovery time-
to-go. In other words, it does not contribute any progress
toward recovery. This notion is formally defined below.

Definition 4 (Hallucinated response action). A response action
a; is hallucinated if it leads to a recovery state with the same
expected recovery time-to-go as the current state, i.e.,

J(st) —Esyy {J(8641) | as,8, 1} =0, foralls, €S,

where S denotes the set of all states excepr (1,1,1,1,1,1).

This definition implies that hallucinations can be avoided by
generating actions until one is found that reduces the expected
recovery time-to-go. However, this approach to reducing hallu-
cinations is not feasible in practice, as computing the recovery
time requires knowledge of the attacker’s behavior.

To circumvent this limitation, we adopt a different approach,
known as self-verification [66]. Following this approach, we
estimate the recovery time-to-go of response actions using
the LLM itself. This verification enforces a form of self-
consistency [64], where actions are validated against the LLM’s
predicted outcomes. Such validations have been shown to
reduce hallucinations (see e.g., [65] and [67]) and form the
basis for our planning algorithm, as described below. (For a
theoretical justification of why this approach can reduce the
probability of hallucinated response actions, see §V.)

Planning algorithm. At each time ¢ of the response, we use
the LLM to generate N candidate actions AN = {a},... alV}.
Then, for each action a!, we use the LLM to simulate M
recovery trajectories Siy1,a44+1 ..., by sampling actions and
updating the state until S = (1,1,1,1,1,1). We then use the
average length of the simulated trajectories as an estimate of
the expected recovery time-to-go. We define this estimate as

QBra) ~ c(B,a) + Y por(siar | 5e,a, 1) I (se11),
St+1E€S

where J is the estimated time-to-go function and Q(s,a) is
the estimated time-to-go when taking action a in state s.

Finally, we select the action with the shortest expected
recovery time-to-go according to the estimate, i.e.,

a, € argmin Q(3;,al). 5)
aleAlN
This planning procedure is illustrated conceptually in Fig. 9
and the pseudocode is listed in Alg. 1. In the next section,
we analyze the theoretical properties of this procedure and
establish conditions under which it reduces hallucination. We
also derive a bound on its hallucination probability.

atl‘/Likely hallucination

Qi ay) =4
IS, <
— Q5,a7) =3
LLM per Q5 a3) =3

< T =
Recovery trajectory

Fig. 9: Our planning procedure. At each response step, the LLM is prompted
with the incident description I and the predicted recovery state S¢ to generate
N candidate actions (here N = 3). For each action ai, we estimate the
expected recovery time-to-go Q(éz,ai) by simulating recovery trajectories
with the LLM. We then select the action that leads to the shortest trajectory.

V. ANALYSIS OF THE HALLUCINATION PROBABILITY

To analyze the probability that our method generates a
hallucinated response action, we distinguish between two
cases: (i) at least one of the N candidate actions is non-
hallucinated; and (ii) all N actions are hallucinated; cf. (5). In

Algorithm 1: Incident response planning with an LLM.

Input: LLM pg/, system logs I, # actions N, # samples M.
Output: A response plan p, i.e., a sequence of response actions.
Initialize $o < (0,0,0,0,0,0),p < 0,t «< 0.

while §; # (1,1,1,1,1,1) do

o T N R N

Sample af, ... ,aév from pg/ (- | 8¢, I).
fori=1,2,...,N do
| Q(5r,a}) = 2 S4L | RECOVERY-TIME(S, a}, I).
end
Select action &; € arg min,; Q(5t,al), p— pU{(t,ar)}.
10 Update the state as S¢+1 ~ p@(~ | §¢,a¢,I), t+t+ 1.
11 end
12 return p.
13 Procedure RECOVERY-TIME (S, a, I)
14 Predict the state as 8’ ~ pg/ (- | §,a,I).

15 if 8 =(1,1,1,1,1,1) then
16 | return c(5',a).

17 end

18 else

19 Sample a’ from pg/ (- | §',1).

20 return c(s’, a) + RECOVERY-TIME(S’, a’, I).
21 end

22 end

the following, we establish a sufficient condition under which
hallucinations are avoided in case (i), and derive a probabilistic
upper bound on the probability that case (ii) occurs.

A. Sufficient Conditions for Filtering Hallucinations

The purpose of the minimization (5) is to filter hallucinated
actions, i.e., actions that do not affect the recovery time. This
filtering is effective when the lookahead simulations [cf. lines
13-22 in Alg. 1] accurately reflect that hallucinated actions
have no beneficial impact on the expected recovery time.
However, because these simulations rely on the LLM to predict
action outcomes, the filtering is inherently imperfect. Conse-
quently, the effectiveness of the planning step [cf. (5)] depends
on two key factors: (i) the degree to which hallucinated and
non-hallucinated actions can be distinguished based on their
impact on expected recovery time; and (if) the accuracy of the
LLM’s predictions of the resulting recovery state s;; cf. Def. 1.

To quantify these two factors, let .4 denote the set of all
possible response actions (as defined by the vocabulary of the
LLM) and let A(s, I) be the subset of non-hallucinated actions
for the incident described by I, given the recovery state s.
Moreover, let § denote the minimal change in the recovery
time-to-go when taking a non-hallucinated action, i.e.,

§ =min {J(s¢) — Es,, {J(se41) | a,5¢, 1} | a€ A(s,I)}.

In view of Def. 4, we have § > 0.
Similarly, let 1 denote the total variation between the LLM’s
predictions and the true system dynamics (denoted by P), i.e.,

Z lper (s’ | s,a,1I) — P(s' | s,a,I)‘ <n, VseS,acA,
s’eS

where S is the set of all recovery states and S is the set of non-

terminal recovery states, i.e., S = S\ {(1,1,1,1,1,1)}. Note

that the parameter n is upper bounded by 2, i.e., 0 <n < 2.
Given the parameters § and 7, we have the following result.

Proposition 1. Assuming that a) the number of sample tra-
Jjectories M in Alg. 1 is sufficiently large so that the empirical
mean approximates the true expectation and b) that both the
expected recovery time and the LLM’s predicted recovery time
are finite, i.c., || J|oo < 00 and ||J||so < oc. If at least one
action in the set AN [cf. (5)] is non-hallucinated and

6> 2l (Il + 1)

then the action selected by Alg. I will be non-hallucinated.

We present the proof of Prop. 1 in Appendix C. This
proposition provides a sufficient condition under which the
minimization (5) effectively filters hallucinated actions. The
main condition of the proposition is that § (which captures
the degree to which hallucinations and non-hallucinations can
be distinguished) is sufficiently large in comparison with the
inaccuracy of the LLM’s predictions, as quantified by n. While
these parameters are likely unknown in practice, they can be
estimated based on traces of historical incidents. We provide
pseudocode for estimating § and 7 in Alg. 2. The algorithm
iterates over a labeled dataset of incidents and uses the LLM
to predict recovery states and their recovery time-to-go. In
particular, the estimate § is updated based on the difference
between the predicted time-to-go of non-hallucinated actions
and hallucinated ones (line 6). Similarly, the estimate 7 is
computed as the maximum prediction error (line 7).

Algorithm 2: Estimation of parameters ¢ and 7.

1 Input: LLM pg/, incident dataset D. Output: Parameters) , 1.

2 Initialize & < oo, 7 < 0.

3 foreach incident (1,s9,p) € D do

4 foreach step in the response plan p do

5 Predict the state §' and time-to-go J(§) of actions.

6 0 < ming (non-hallucinated){57 J(8t) — J(é’)}.

7 ﬁ%m:‘xzs/es |pes (8" | 81,a,1) — P(s' | st,a,1)|.
end

®

9 end
0 return d, 7.

=

If at least one action in the set AN [cf. (5)] would always
be non-hallucinated, Prop. 1 would imply a condition that
provides a guarantee of avoiding hallucinations. However, in
practice, it is possible that all actions in A% are hallucinated,
in which case the lookahead minimization (5) will not help.
We quantify the probability of this event in the next subsection.

B. Upper Bound on the Hallucination Probability

To complement the above condition for filtering halluci-
nations, we now analyze the hallucination probability. The
main difficulty in this analysis is that the LLM’s propensity to
hallucinate is not known a priori. For this reason, we base our
analysis on empirical observations of its behavior.

To obtain such empirical observations, we start by using
the LLM to generate L sample actions. We then verify how
many of those actions are hallucinated to estimate the LLM’s
hallucination probability . We denote this estimate by h. Due
to sampling variability, this estimate may differ substantially

from the probability h. To address this possibility, we establish
a bound that quantifies how likely it is for the estimate A to
deviate from the hallucination probability A by more than a
given threshold e, as stated in the following proposition.

Proposition 2. Ler h denote the true (but unknown) halluci-
nation probability of the LLM and let h denote the empirical
probability based on L samples. We have

P(h>h+e¢) < 67262[/,
where € > 0 is a configurable parameter.

Proof. We model the process of generating L actions and
verifying which of them are hallucinated as L independent
and identically distributed Bernoulli trials, represented by the
random variables X1, Xo,..., Xy. We have X; = 1 if the
ith sampled action is hallucinated; X; = 0 otherwise. Hence,
7= 15" X;. Applying Hoeffding’s inequality, we have

P(h>h+e¢) < o2,
O

This proposition implies that the probability that all actions
in the set AN [cf. (5)] are hallucinated (i.e., h") can be
controlled with a certain confidence when the conditions of
Prop. 1 hold by increasing N. Moreover, the confidence
increases exponentially with the number of samples L used
to estimate the hallucination probability, as shown in Fig. 10.

—2¢2L

Confidence 1 —e Upper bound on h™N

0.6
0.4

——(h+e) =04
——(h+¢) =05

0.5 ——e=0.1 _ o
——e=015 0.2 o (ht+e) =06
—e—e=0.2

20 40 60 80 100 2 4 6 8 10
Number of samples L Number of candidate actions N

Fig. 10: Illustration of Prop. 2. Here L is the number of samples for estimating
the hallucination probability and NN is the number of candidate actions; cf. (5).

VI. SUMMARY OF OUR METHOD

In summary, our method for using an LLM as decision
support during incident handling consists of three main steps:
1) Offline instruction fine-tuning of a lightweight LLM.

e We fine-tune the LLM via supervised learning on a
dataset of logs from 68,000 incidents paired with
response plans and chain-of-thought reasoning steps.

2) Online information retrieval.

« Before prompting the LLM with system logs to generate
candidate response actions, we enrich the logs with
threat intelligence retrieved from external sources.

3) Online lookahead planning via Alg. 1.

« Instead of directly executing the action generated by
the fine-tuned LLM, we generate several candidate
actions and select the one that leads to the shortest
predicted recovery time, which reduces the probability
of hallucinations under certain conditions; cf. Prop. 1.

Dataset System Attacks

Logs

CTU-Malware-2014 [76]
CIC-IDS-2017 [78]
AIT-IDS-V2-2022 [79]
CSLE-IDS-2024 [81]

WINDOWS XP SP2 servers
WINDOWS and LINUX servers
LINUX and WINDOWS servers/hosts
LINUX servers

Various malwares and ransomwares, e.g., CRYPTODEFENSE [77].
Denial-of-service, web attacks, heartbleed, SQL injection, etc.
Multi-stage attack with reconnaissance, cracking, and escalation.
SAMBACRY, SHELLSHOCK, exploit of CVE-2015-1427, etc.

SNORT alerts [68]
SNORT alerts [68]
WAZUH alerts [80]
SNORT alerts [68]

TABLE 3: The datasets of cyberattacks and logs used for the experimental evaluation.

Method Number of parameters Context window size
OUR METHOD 14 billion 128,000
DEEPSEEK-R1 [62] 671 billion [62] 128,000
GEMINI 2.5 PRO [17] unknown (> 100 billion) 1 million
OPENAI 03 [15] unknown (> 100 billion) 200, 000

TABLE 4: Comparison between our method and frontier LLMs.

VII. EXPERIMENTAL EVALUATION OF OUR METHOD

In this section, we present an experimental evaluation of
our method. We start by comparing its performance with that
of frontier LLMs based on log data from incidents reported in
the literature. We then compare the performance of our method
with that of a popular reinforcement learning method on the
CAGE-2 benchmark [32], namely proximal policy optimization
(PPO) [19]. Our main evaluation metric is the recovery time 7',
as defined in Def. 2. We measure the recovery time in discrete
time units, assigning a time of 1 to all actions except those
that include superfluous steps, which we assign a time of 2.
This time structure allows us to evaluate the decision-making
efficiency of our method without making assumptions about
system-specific execution times, which vary between different
implementations and are not the focus of this paper.

We instantiate our method with the DEEPSEEK-R1-14B LLM
[62], which we fine-tune using the procedure described in
§IV-B. Further, we implement the RAG pipeline described
in §IV-C using the open threat exchange (OTX) API [82].
Finally, we instantiate the planning procedure described in
Alg. 1 with N = 3 candidate actions and M = 3 samples; cf.
(5). Additional experimental details and hyperparameters are
provided in Appendix E and Appendix F.

A. Comparison with Frontier LLMs

We compare our method with three frontier LLMs:
DEEPSEEK-R1 [62], GEMINI 2.5 PRO [17], and OPENAI O3
[15]. Compared to these models, the main difference is that
our method is significantly more lightweight; see Table 4.

Evaluation datasets. The evaluation is based on log data
from 25 incidents across 4 different datasets published in the
literature, namely CTU-Malware-2014 [76], CIC-IDS-2017
[78], AIT-IDS-V2-2022 [79], and CSLE-IDS-2024 [81]; see
Table 3 and Fig. 11. We also include 5 false-positive incidents.
Each incident contains log data and a brief system description.
Given this data, the task of the LLM is to generate effective
response actions, which we compare against the ground truth.

The logs in these datasets are generated during controlled
executions of real cyberattacks, such as software exploits,

10

network intrusions, denial-of-service attacks, and ransomware
attacks; see Table 3. They are established benchmarks in
the research community, which ensures that our results are
reproducible and can be compared with alternative methods.
For example, the CIC-IDS-2017 dataset is cited by more than
5,500 papers and is available as a benchmark problem on
Kaggle with over 90 submissions [78]. While evaluation in
a security operations center (SOC) would provide additional
insights, it involves sensitive data and does not allow repro-
ducible experiments or comparison with alternative methods.
Therefore, we focus on the benchmark datasets in this paper
and leave the evaluation in a SOC for future work. For an
empirical study on the usage of LLMs in incident response
based on interviews with SOC analysts, we refer to [13].

IMPACT [

INITIAL ACCESS [

COMMAND AND CONTROL |

EXECUTION |

COLLECTION |[

LATERAL MOVEMENT |

PRIVILEGE ESCALATION

EXFILTRATION
RECONNAISSANCE

Fig. 11: Occurrences of MITRE ATT&CK TACTICS in the evaluation datasets.

We provide a (condensed) example of an incident from
the CTU-Malware-2014 dataset [76] on the next page. In
this example, the (ground truth) response plan consists of
6 response actions. Hence, the shortest possible recovery
time an LLM can achieve when evaluated on this example is
T = 6. However, if the LLM generates a plan that includes
unnecessary response actions, then the recovery time will be
longer than 6. It is also possible that the generated actions fail
to fully recover the system from the incident. We report such
cases separately in the evaluation results.

Evaluation results. The results are summarized in Fig. 12.
Across all evaluation datasets, our method achieves the short-
est average recovery time. On average, the recovery time of our
method is 13.46 compared to 16.21 for the next best method.
Among the frontier LLMs, we observe that GEMINI 2.5 PRO
performs best on average, whereas the difference between
OPENAI 03 and DEEPSEEK-R1 is not statistically significant.

Scalability analysis. Figure 13 shows the compute time per
time step of Alg. 1 for varying number of candidate actions
N. We observe that the planning time increases linearly with
N when the actions are evaluated sequentially. However,
by parallelizing the computation across multiple GPUs, the
planning time remains nearly constant as N increases.

Average

20 1 16.21 17.28 17.09

| 13.46 I ”}"

19.51

11.12 1226 11.99

10

3 33 4.21 4.48

CTU-Malware-2014 [74]

20
14.22 14.33 13.47

10
3.59 3.29

CIC-IDS-2017 [76]

19,71 13.34

| 1278 13.08
20 1, 4y 1558

I““{I““_II
lrz227]

16.71

4

RS

7.64 8.01 762

SISSIISIIIIY
AR

E

AIT-IDS-V2-2022 [77], [81]
19.19
13.99 14.05

10
1.84 1.93

CSLE-IDS-2024 [79]
21.42

16.3

0.44 081 1.59 1.39

Recovery time

% Ineffective actions % Failed recoveries

Boour metnop HBBcemmi2.5pro BBopenaro3 BBpeEpseek-r1
Fig. 12: Evaluation results (| better): comparison between our method and
frontier LLMs. Bar colors relate to different methods; bar groups indicate
performance metrics; numbers and error bars indicate the mean and the
standard deviation from 5 evaluations with different random seeds.

4 Planning time (sec)
4001 —— Sequential implementation
—eo— Parallel implementation
200
1 1.5 2 2.5 3 3.5 4

Number of candidate actions [V

Fig. 13: Time required (per time step) to execute Alg. 1 for varying number
of candidate actions /N. The average planning times were computed based on
5 executions with RTX 8000 GPUs.

Hallucination probability

—— Empirical (L = 30 samples, M = 3)

—— Empirical (L = 30 samples, M = 10)
—e— Theoretical upper bound (confidence 0.99)

2 2.5 3
Number of candidate actions [NV

Fig. 14: The empirical hallucination probability of our method for varying
number of candidate actions N, as well as the theoretical upper bound on the
hallucination probability h”N' (assuming the conditions of Prop. 1 hold) with
confidence 0.99, i.e., the right-hand side of the bound in Prop. 2 is 0.01.

11

Recovery time D awith rac 0 Bwithout RAG

20
15 +
10

1468 1422 1921 14,41 15.46

14.16

13.46

Recovery time

40 +

29.97
25.68

Bowith planning 0 0 without planning
25.18

Recovery time

30 24.81

20.87

17.31 16.2

20 ¢ 13.46 14.22 12.78 14.41

[77] CSLE-2024 [79]

Average CTU-2014 [74] CIC-2017 [76] AIT-2022

Fig. 15: Ablation-study results for the recovery time metric (J better). Bars
relate to our method with and without different steps; bar groups indicate the
evaluation dataset; numbers and error bars indicate the mean and the standard
deviation from 5 evaluations with different random seeds.

Example incident from the CTU-Malware-2014 dataset [76].

System description (condensed): Two subnetworks (A and B) are
connected via a switch that is also connected to the Internet. All
servers run WINDOWS XP SP2. Their IPs and configurations are...

Snort alert logs (condensed):

[120:3:2] (http_inspect) NO CONTENT-LENGTH..
[1:31033:6] MALWARE Win.Trojan.Cryptodefence..
{TCP} 147.32.84.165:1057 —> 222.88.205.195:443
[129:5:1] Bad segment, adjusted size..
[139:1:1] (spp_sdf) SDF..

Incident summary: Server 147.32.84.165 is infected with the
WIN.TROJAN.CRYPTODEFENCE ransomware. Alerts show the server
is making outbound command and control (C2) connections to
222.88.205.195. This indicates that the ransomware is active and
may be preparing to encrypt files or has already begun doing so.

Response actions (condensed):

1. Disconnect the Ethernet cable of the infected server at
147.32.84.165 to sever its network connection. Concurrently,
configure a rule on the main switch/firewall to block all outbound
traffic to the C2 server 222.88.205.195.

2. Analyze the central switch to scan all network traffic from
both subnetworks A and B for any other hosts attempting to make
connections to the malicious 1P 222.88.205.195.

3. Before altering the infected server, create a complete bit-for-bit
forensic image of its hard drive. This preserves the ransomware
executable, encrypted files, and other evidence for future analysis.

4. Wipe the hard drive of 147.32.84.165. If other infected machines
were discovered, they must also be taken offline and wiped.

5. Upgrade all servers from WINDOWS XP SP2 (which is obsolete)
to a modern operating system that receives security patches.

6. Restore the server’s data from a trusted backup. Once the server is
rebuilt with a modern operating system, reconnect it to the network
and closely monitor for any anomalous activity.

CAGE-2 simulation [30]

ARecovery time ({ better)

% Ineffective actions (| better)

‘% Failed recoveries (] better)

100
4 h 80 4
\ 40
[; n n n n . L ; ; ; h : ; e 0L ; " " " ; e
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Training time (min) Training time (min) Training time (min)
Intrusion response simulation from [81]
*Recovery time ({ better) i % Ineffective actions (| better) % Failed recoveries (| better)
100
15 - 100
10 - 50 4 50
; .) - ™ 5 > .
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Training time (min)

Training time (min)

Training time (min)

——PPO --- OUR METHOD

Fig. 16: Comparison between our method (red curves) and the PPO reinforcement learning method (blue curves) [19]. The first row of plots relates to the
CAGE-2 simulation [32] and the second row relates to the network intrusion simulation from [83]. Columns relate to different evaluation metrics (. better).
Curves show the mean value from evaluations with 5 random seeds; shaded areas indicate standard deviations. The x-axes indicate the training time required
by PPO for each simulation. In contrast, our method requires no incident-specific training.

Hallucination analysis. Figure 14 shows the empirical hal-
lucination probability of our method based on L 30
response actions sampled from the LLM when prompted with
log data from the evaluation datasets. The figure also shows
the theoretical upper bound expressed in Prop. 2.

We observe in Fig. 14 that the theoretical bound holds
uniformly over the empirical probabilities. However, the bound
is not tight, as expected. We used M = 3 and M = 10 samples
to estimate the expected recovery times in Alg. 1. As shown in
the figure, increasing M reduces the hallucination probability.

Ablation study. To evaluate the importance of each step of
our method (i.e., fine-tuning, RAG, and planning), we evaluate
our method with and without each step. The results are
summarized in Fig. 15. We observe performance degradations
when each step is removed. The most substantial degradation
occurs when fine-tuning is removed, which causes the average
recovery time to increase from 13 to 25. Planning also has
a significant impact. Without planning, the average recovery
time jumps from 13 to 21. Retrieval-augmented generation
(RAG) contributes as well, though its effects are more modest.

B. Comparison with Proximal Policy Optimization

Numerous reinforcement learning approaches have been
proposed for incident response, including policy optimization
methods [34], tree search [35], stochastic approximation [83],
and Q-learning [37]; see [84] for an extensive review of the
state of the art. Among these methods, variants of proximal
policy optimization (PPO) [19] dominate recent work. We
therefore use PPO as a representative baseline for comparison.

Experiment setup. We evaluate our method against PPO on
two simulated incidents: an advanced persistent threat from
the CAGE-2 simulation [32], and a network intrusion scenario
from [83]. The evaluation uses the same metrics as in the

12

comparison with frontier LLMs'. The hyperparameters of PPO
that we use for the evaluation are available in Appendix E.

Evaluation results. The results are presented in Fig. 16. Both
our method and PPO achieve similar performance in terms of
recovery time and failed recoveries across the two simulations.
The only notable performance gap is in the percentage of inef-
fective actions for the CAGE-2 simulation, where our method
performs better. The key difference between our method and
PPO lies in their training requirements: PPO requires incident-
specific training (approximately 10-20 minutes of training per
incident) to reach good performance. In contrast, our method
does not require such training to achieve good performance.

C. Discussion of the Evaluation Results

Our experimental results demonstrate a trade-off between
generality, computational cost, and deployment practicality.
Compared to frontier LLMs, our method is significantly more
lightweight, i.e., it requires fewer parameters and runs effi-
ciently on commodity hardware, yet it achieves consistently
better performance across all evaluation metrics. This perfor-
mance advantage is primarily driven by our fine-tuning and
planning steps, as shown in the ablation study; cf. Fig. 15.

When compared to reinforcement learning methods such as
PPO, our method is more computationally costly at inference
time due to the overhead of planning; see Fig. 13. However,
this overhead is offset by a major advantage: our method
requires no incident-specific training. In contrast, PPO must
be retrained for each new incident, which is impractical.

Takeaways. In summary, our main experimental findings are:
e Our method consistently outperforms frontier LLMS
across all evaluation metrics, while being significantly
more lightweight and able to run on commodity hardware.

ITo align the CAGE-2 scenario with our evaluation metrics, we exclude
decoy-related actions as they target prevention rather than response.

o Fine-tuning and decision-theoretic planning are key
drivers of performance, RAG is less important.

o Compared to reinforcement learning methods, our method
has higher overhead but avoids incident-specific training.

D. Comparison with Incident Response Playbooks

From an operational point of view, our method can be seen
as a more dynamic and actionable complement to incident
response playbooks [23], which makes it easy to adopt in
existing SOC workflows [13]. In the following, we describe the
main similarities and advantages of our method in comparison
with conventional incident response playbooks.

Similarities. Both the response plans generated by our method
and playbooks are expressed in text and organized around the
standard stages of incident response, such as containment,
assessment, and eviction. Moreover, both our method and
playbooks are intended to provide decision support rather
than automating the response. Another similarity is that both
of them categorize attacks according to the MITRE ATT&CK
taxonomy. Despite these similarities, our method provides
several advantages over playbooks, as listed below.

Advantages. The main advantage is that our method does
not rely on domain experts for configuration, as playbooks
do. This makes our method more flexible. Another benefit is
that our method generates more precise and context-specific
response actions than playbooks, which often prescribe vague
actions that are not directly executable, as reported in several
empirical studies; see e.g., [3], [4]. By contrast, our method
produces executable actions tailored to the system logs, which
helps the operator to prioritize log entries. As a consequence,
our method provides a higher degree of automation than
conventional playbooks, shifting the operator’s role toward
validating the generated response plan rather than sifting
through logs. Beyond these advantages, a fundamental differ-
ence between our method and playbooks is that a response plan
generated by our method typically spans 2-3 pages, whereas
playbooks often span 40+ pages (see e.g., [25]), many of which
contain information that is not directly relevant to the response
(e.g., general security principles). Thus, our method serves as
a more actionable complement to conventional playbooks.

Limitations. A concern with LLM-based systems is the risk of
hallucination, which limits their reliability in fully autonomous
operation. Our method mitigates this issue through fine-tuning,
information retrieval, and planning, which substantially re-
duces the probability of hallucination and improves reliability.
However, fully autonomous incident response remains chal-
lenging due to the inherent complexity of many incidents,
which makes human oversight necessary for critical decisions.

VIII. CONCLUSION

We introduce a novel method that enables the effective
use of a large language model (LLM) to provide decision
support for incident response planning. Our method uses the
LLM for translating system logs into effective response plans

13

while addressing its limitations through fine-tuning, infor-
mation retrieval, and decision-theoretic planning. We prove
that our method produces incident responses with bounded
hallucination probability; see Prop. 1 and Prop. 2. Under
certain assumptions, this bound can be made arbitrarily small
at the expense of increased planning time. We evaluate our
method on logs from incidents reported in the literature. The
results show that our method a) achieves up to 22% shorter
recovery times than frontier LLMs and b) generalizes to a broad
range of incident types and response actions.

Future work. A primary direction for future work is to
conduct evaluations in operational settings, where security
operators use our method for decision support. Such studies
would provide insights into the practical utility of our method
and how to improve it further. From a theoretical stand-
point, a promising direction of future work is to tighten the
hallucination-probability bound stated in Prop. 2. A possible
approach to tighten this bound is to leverage conformal-
abstention techniques [85]. Another direction for future work
is to extend the system model in §IV-D to include additional
performance metrics beyond recovery time. Moreover, due
to the generality of our method, it is possible to extend
our planning procedure [cf. Alg. 1] in many ways, e.g.,
by incorporating rollout techniques [86] or tree search [35].
Similarly, the information-retrieval step of our method can be
expanded to integrate information from several sources.

ACKNOWLEDGMENT

This research is supported by the Swedish Research Council
under contract 2024-06436.

REFERENCES
[11 D. W. Woods, R. Bohme, J. Wolff, and D. Schwarcz,
“Lessons lost: Incident response in the age of cyber

insurance and breach attorneys,” in 32nd USENIX Security
Symposium (USENIX Security 23). Anaheim, CA: USENIX
Association, Aug. 2023, pp. 2259-2273. [Online]. Available: https:
/Iwww .usenix.org/conference/usenixsecurity23/presentation/woods
IBM Security and P. Institute, “Cost of a data breach report 2024,”
IBM, Cambridge, MA, Tech. Rep. 19, 2024, based on breaches at 524
organizations between March 2023 and February 2024.

R. Stevens, D. Votipka, J. Dykstra, F. Tomlinson, E. Quartararo,
C. Ahern, and M. L. Mazurek, “How ready is your ready? assessing the
usability of incident response playbook frameworks,” in Proceedings of
the 2022 CHI Conference on Human Factors in Computing Systems, ser.
CHI ’22. New York, NY, USA: Association for Computing Machinery,
2022. [Online]. Available: https://doi.org/10.1145/3491102.3517559

D. Schlette, P. Empl, M. Caselli, T. Schreck, and G. Pernul, “Do you play
it by the books? a study on incident response playbooks and influencing
factors,” in 2024 IEEE Symposium on Security and Privacy (SP), 2024,
pp. 3625-3643.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning
in large language models,” in Proceedings of the 36th International
Conference on Neural Information Processing Systems, ser. NIPS *22.
Red Hook, NY, USA: Curran Associates Inc., 2022.

S. R. Castro, R. Campbell, N. Lau, O. Villalobos, J. Duan, and A. A.
Cardenas, “Large language models are autonomous cyber defenders,”
2025. [Online]. Available: https://arxiv.org/abs/2505.04843

M. Rigaki, O. Lukas, C. A. Catania, and S. Garcia, “Out of the cage:
How stochastic parrots win in cyber security environments,” 2023, https:
/larxiv.org/abs/2308.12086.

[2]

[3]

[4]

[5]

[6]

[7]

https://www.usenix.org/conference/usenixsecurity23/presentation/woods
https://www.usenix.org/conference/usenixsecurity23/presentation/woods
https://doi.org/10.1145/3491102.3517559
https://arxiv.org/abs/2505.04843
https://arxiv.org/abs/2308.12086
https://arxiv.org/abs/2308.12086

[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

H. Mohammadi, J. J. Davis, and M. Kiely, “Leveraging large language
models for autonomous cyber defense: Insights from CAGE-2 simula-
tions,” IEEE Intelligent Systems, pp. 1-8, 2025.

Y. Yan, Y. Zhang, and K. Huang, “Depending on yourself
when you should: Mentoring LLM with RL agents to become
the master in cybersecurity games,” 2024. [Online]. Available:
https://arxiv.org/abs/2403.17674

S. Hays and J. White, “Employing LLMs for incident response planning
and review,” 2024. [Online]. Available: https://arxiv.org/abs/2403.01271
X. Lin, J. Zhang, G. Deng, T. Liu, X. Liu, C. Yang, T. Zhang,
Q. Guo, and R. Chen, “IRCopilot: Automated incident response
with large language models,” 2025. [Online]. Available: https:
/larxiv.org/abs/2505.20945

J. F. Loevenich, E. Adler, R. Mercier, A. Velazquez, and R. R. F
Lopes, “Design of an autonomous cyber defence agent using hybrid Al
models,” in 2024 International Conference on Military Communication
and Information Systems (ICMCIS), 2024, pp. 1-10.

D. Kramer, L. Rosique, A. Narotam, E. Bursztein, P. G. Kelley,
K. Thomas, and A. Woodruff, “Integrating large language models into
security incident response,” in Proceedings of the Twenty-First USENIX

Conference on Usable Privacy and Security, ser. SOUPS "25. USA:
USENIX Association, 2025.

S. Hussey. (2025, June) Resolve incidents faster
with IBM Instana intelligent incident investigation
powered by agentic Al [Online]. Available: https:

/lwww.ibm.com/new/announcements/resolve-incidents- faster- with-
ibm-instana-intelligent-incident-investigation-powered-by-agentic-ai
OpenAl, J. Achiam, S. Adler et al., “GPT-4 technical report,” 2024.
[Online]. Available: https://arxiv.org/abs/2303.08774

G. Sriramanan, S. Bharti, V. S. Sadasivan, S. Saha, P. Kattakinda,
and S. Feizi, “LLM-check: Investigating detection of hallucinations in
large language models,” in Advances in Neural Information Processing
Systems, A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
J. Tomczak, and C. Zhang, Eds., vol. 37, 2024, pp. 34 188-34216.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/
2024/file/3c1e1fdf305195¢d620c118aaa9717ad-Paper-Conference.pdf
G. Comanici, E. Bieber et al., “Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next
generation agentic capabilities,” 2025. [Online]. Available: https:
/larxiv.org/abs/2507.06261

G. Team, R. Anil, S. Borgeaud et al., “Gemini: A family of highly
capable multimodal models,” 2024, https://arxiv.org/abs/2312.11805.
[Online]. Available: https://arxiv.org/abs/2312.11805

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, 2017. [Online].
Available: http://arxiv.org/abs/1707.06347

K. Hammar, T. Alpcan, and E. C. Lupu, “Supplementary material of the
paper “Incident Response Planning Using a Lightweight Large Language
Model with Reduced Hallucination”,” 2026, artifact repository: https:
//doi.org/10.5281/zenodo.17459636, Code: https:/github.com/Kim-
Hammar/llm_incident_response_ndss26, dataset: https://huggingface.co/
datasets/kimhammar/CSLE-IncidentResponse- V1, video demonstration:
https://www.youtube.com/watch?v=e7ckmv5p6cl, fine-tuned LLM and
prompts: https://huggingface.co/kimhammar/LLMIncidentResponse.

N. Stakhanova, S. Basu, and J. Wong, “A taxonomy of intrusion response
systems,” Int. J. Inf. Comput. Secur., vol. 1, no. 1/2, p. 169-184, Jan.
2007. [Online]. Available: https://doi.org/10.1504/1JICS.2007.012248
T. Alpcan and T. Basar, “A game theoretic approach to decision and
analysis in network intrusion detection,” in 42nd IEEE International
Conference on Decision and Control (IEEE Cat. No.03CH37475), vol. 3,
2003, pp. 2595-2600 Vol.3.

A. Applebaum, S. Johnson, M. Limiero, and M. Smith, “Playbook
oriented cyber response,” in 2018 National Cyber Summit (NCS), 2018,
pp. 8-15.

Splunk, “Automate incident response with playbooks and actions
in splunk mission control,” 2025, https://help.splunk.com/en/splunk-
enterprise-security-7/mission-control/investigate-and-respond- to-
threats/automate-incident-response/automate-incident-response- with-
playbooks-and-actions-in-splunk-mission-control.

CISA, “Cybersecurity incident & vulnerability response playbooks,”
2021, https://www.cisa.gov/resources-tools/resources/federal-
government-cybersecurity-incident-and- vulnerability-response-
playbooks.

14

[26]

[27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

OASIS, “Cacao security playbooks version 2.0,” 2023,
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/security-
playbooks-v2.0.html.

K. Hammar and R. Stadler, “Intrusion tolerance for networked systems
through two-level feedback control,” in 2024 54th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2024, pp. 338-352.

A. V. Singh, E. Rathbun, E. Graham, L. Oakley, S. Boboila,
A. Oprea, and P. Chin, “Hierarchical multi-agent reinforcement
learning for cyber network defense,” 2024. [Online]. Available:
https://arxiv.org/abs/2410.17351

K. Hammar, T. Li, R. Stadler, and Q. Zhu, “Adaptive security response
strategies through conjectural online learning,” IEEE Transactions on
Information Forensics and Security, vol. 20, pp. 4055-4070, 2025.

S. A. Zonouz, H. Khurana, W. H. Sanders, and T. M. Yardley, “RRE:
A game-theoretic intrusion response and recovery engine,” in 2009
IEEFE/IFIP International Conference on Dependable Systems & Net-
works, 2009, pp. 439-448.

T. Alpcan and T. Basar, Network Security: A Decision and Game-
Theoretic Approach, 1st ed. USA: Cambridge University Press, 2010.
CAGE, “TTCP CAGE challenge 2,” in AAAI-22 Workshop on Artificial
Intelligence for Cyber Security (AICS), 2022, https://github.com/cage-
challenge/cage-challenge-2.

K. Hammar, Y. Li, T. Alpcan, E. C. Lupu, and D. Bertsekas, “Adaptive
network security policies via belief aggregation and rollout,” 2025.
[Online]. Available: https://arxiv.org/abs/2507.15163

S. Vyas, J. Hannay, A. Bolton, and P. P. Burnap, “Automated cyber
defence: A review,” 2023.

K. Hammar, N. Dhir, and R. Stadler, “Optimal defender strategies
for CAGE-2 using causal modeling and tree search,” 2024. [Online].
Available: https://arxiv.org/abs/2407.11070

T. Li, K. Hammar, R. Stadler, and Q. Zhu, “Conjectural online learning
with first-order beliefs in asymmetric information stochastic games,” in
2024 IEEE 63rd Conference on Decision and Control (CDC), 2024, pp.
6780-6785.

A. Applebaum, C. Dennler, P. Dwyer, M. Moskowitz, H. Nguyen,
N. Nichols, N. Park, P. Rachwalski, F. Rau, A. Webster, and M. Wolk,
“Bridging automated to autonomous cyber defense: Foundational
analysis of tabular Q-learning,” in Proceedings of the 15th ACM
Workshop on Artificial Intelligence and Security, 2022. [Online].
Available: https://doi.org/10.1145/3560830.3563732

A. Ramamurthy and N. Dhir, “General autonomous cybersecurity
defense: Learning robust policies for dynamic topologies and diverse
attackers,” 2025. [Online]. Available: https://arxiv.org/abs/2506.22706
Z. Huang, J. Robin, N. Herbaut, N. B. Rabah, and B. L. Grand,
“Toward an intent-based and ontology-driven autonomic security
response in security orchestration automation and response,” 2025.
[Online]. Available: https://arxiv.org/abs/2507.12061

A. Shaked, Y. Cherdantseva, and P. Burnap, “Model-based incident
response playbooks,” in Proceedings of the 17th International
Conference on Availability, Reliability and Security, ser. ARES ’22.
New York, NY, USA: Association for Computing Machinery, 2022.
[Online]. Available: https://doi.org/10.1145/3538969.3538976

M. Akbari Gurabi, L. Nitz, A. Bregar, J. Popanda, C. Siemers,
R. Matzutt, and A. Mandal, “Requirements for playbook-assisted cyber
incident response, reporting and automation,” Digital Threats, vol. 5,
no. 3, Oct. 2024. [Online]. Available: https://doi.org/10.1145/3688810
G. Deng, Y. Liu, V. Mayoral-Vilches, P. Liu, Y. Li, Y. Xu, T. Zhang,
Y. Liu, M. Pinzger, and S. Rass, “PentestGPT: Evaluating and
harnessing large language models for automated penetration testing,” in
33rd USENIX Security Symposium (USENIX Security 24). Philadelphia,
PA: USENIX Association, Aug. 2024, pp. 847-864. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity24/presentation/deng
M. Rodriguez, R. A. Popa, F. Flynn, L. Liang, A. Dafoe, and A. Wang,
“A framework for evaluating emerging cyberattack capabilities of AL”
2025. [Online]. Available: https://arxiv.org/abs/2503.11917

J. Deng, X. Li, Y. Chen, Y. Bai, H. Weng, Y. Liu, T. Wei,
and W. Xu, “RACONTEUR: A knowledgeable, insightful, and
portable LLM-powered shell command explainer,” in 32nd
Annual Network and Distributed System Security Symposium,
NDSS 2025, San Diego, California, USA, February 24-28,
2025. The Internet Society, 2025. [Online]. Available: https:
/Iwww .ndss-symposium.org/ndss-paper/raconteur-a-knowledgeable-
insightful-and-portable-1lm-powered- shell-command-explainer/

https://arxiv.org/abs/2403.17674
https://arxiv.org/abs/2403.01271
https://arxiv.org/abs/2505.20945
https://arxiv.org/abs/2505.20945
https://www.ibm.com/new/announcements/resolve-incidents-faster-with-ibm-instana-intelligent-incident-investigation-powered-by-agentic-ai
https://www.ibm.com/new/announcements/resolve-incidents-faster-with-ibm-instana-intelligent-incident-investigation-powered-by-agentic-ai
https://www.ibm.com/new/announcements/resolve-incidents-faster-with-ibm-instana-intelligent-incident-investigation-powered-by-agentic-ai
https://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2024/file/3c1e1fdf305195cd620c118aaa9717ad-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/3c1e1fdf305195cd620c118aaa9717ad-Paper-Conference.pdf
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
http://arxiv.org/abs/1707.06347
https://doi.org/10.5281/zenodo.17459636
https://doi.org/10.5281/zenodo.17459636
https://github.com/Kim-Hammar/llm_incident_response_ndss26
https://github.com/Kim-Hammar/llm_incident_response_ndss26
https://huggingface.co/datasets/kimhammar/CSLE-IncidentResponse-V1
https://huggingface.co/datasets/kimhammar/CSLE-IncidentResponse-V1
https://www.youtube.com/watch?v=e7ckmv5p6cI
https://huggingface.co/kimhammar/LLMIncidentResponse
https://doi.org/10.1504/IJICS.2007.012248
https://help.splunk.com/en/splunk-enterprise-security-7/mission-control/investigate-and-respond-to-threats/automate-incident-response/automate-incident-response-with-playbooks-and-actions-in-splunk-mission-control
https://help.splunk.com/en/splunk-enterprise-security-7/mission-control/investigate-and-respond-to-threats/automate-incident-response/automate-incident-response-with-playbooks-and-actions-in-splunk-mission-control
https://help.splunk.com/en/splunk-enterprise-security-7/mission-control/investigate-and-respond-to-threats/automate-incident-response/automate-incident-response-with-playbooks-and-actions-in-splunk-mission-control
https://help.splunk.com/en/splunk-enterprise-security-7/mission-control/investigate-and-respond-to-threats/automate-incident-response/automate-incident-response-with-playbooks-and-actions-in-splunk-mission-control
https://www.cisa.gov/resources-tools/resources/federal-government-cybersecurity-incident-and-vulnerability-response-playbooks
https://www.cisa.gov/resources-tools/resources/federal-government-cybersecurity-incident-and-vulnerability-response-playbooks
https://www.cisa.gov/resources-tools/resources/federal-government-cybersecurity-incident-and-vulnerability-response-playbooks
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/security-playbooks-v2.0.html
https://docs.oasis-open.org/cacao/security-playbooks/v2.0/security-playbooks-v2.0.html
https://arxiv.org/abs/2410.17351
https://github.com/cage-challenge/cage-challenge-2
https://github.com/cage-challenge/cage-challenge-2
https://arxiv.org/abs/2507.15163
https://arxiv.org/abs/2407.11070
https://doi.org/10.1145/3560830.3563732
https://arxiv.org/abs/2506.22706
https://arxiv.org/abs/2507.12061
https://doi.org/10.1145/3538969.3538976
https://doi.org/10.1145/3688810
https://www.usenix.org/conference/usenixsecurity24/presentation/deng
https://arxiv.org/abs/2503.11917
https://www.ndss-symposium.org/ndss-paper/raconteur-a-knowledgeable-insightful-and-portable-llm-powered-shell-command-explainer/
https://www.ndss-symposium.org/ndss-paper/raconteur-a-knowledgeable-insightful-and-portable-llm-powered-shell-command-explainer/
https://www.ndss-symposium.org/ndss-paper/raconteur-a-knowledgeable-insightful-and-portable-llm-powered-shell-command-explainer/

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

A. Stafeev, T. Recktenwald, G. D. Stefano, S. Khodayari,
and G. Pellegrino, ‘“YuraScanner: Leveraging LLMs for task-
driven web app scanning,” in 32nd Annual Network and
Distributed System Security Symposium, NDSS 2025, San Diego,
California, USA, February 24-28, 2025. The Internet Society,
2025. [Online]. Available: https://www.ndss-symposium.org/ndss-
paper/yurascanner-leveraging-1lms-for-task-driven- web-app-scanning/
P. Liu, J. Liu, L. Fu, K. Lu, Y. Xia, X. Zhang, W. Chen,
H. Weng, S. Ji, and W. Wang, “Exploring ChatGPT’s capabilities
on vulnerability management,” in 33rd USENIX Security Symposium
(USENIX Security 24). Philadelphia, PA: USENIX Association,
Aug. 2024, pp. 811-828. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity24/presentation/liu-peiyu

M. Allamanis, M. Arjovsky, C. Blundell er al, “From naptime to
big sleep: Using large language models to catch vulnerabilities in
real-world code,” 2024, https://googleprojectzero.blogspot.com/2024/10/
from-naptime-to-big-sleep.html.

Y. Liu, Y. Xue, D. Wu, Y. Sun, Y. Li, M. Shi, and Y. Liu,
“PropertyGPT: LLM-driven formal verification of smart contracts
through retrieval-augmented property generation,” in 32nd Annual
Network and Distributed System Security Symposium, NDSS 2025, San
Diego, California, USA, February 24-28, 2025. The Internet Society,
2025. [Online]. Available: https://www.ndss-symposium.org/ndss-
paper/propertygpt-1lm-driven-formal- verification- of-smart-contracts-
through-retrieval-augmented- property-generation/

V. Gohil, M. DeLorenzo, V. V. A. S. V. Nallam, J. See, and J. Rajendran,
“LLMPirate: LLMs for black-box hardware IP piracy,” in 32nd Annual
Network and Distributed System Security Symposium, NDSS 2025,
San Diego, California, USA, February 24-28, 2025. The Internet
Society, 2025. [Online]. Available: https://www.ndss-symposium.org/
ndss-paper/llmpirate-1lms-for-black-box-hardware-ip-piracy/

Y. Yang, J. Liu, K. Chen, and M. Lin, “The midas touch:
Triggering the capability of LLMs for RM-API misuse detection,”
in 32nd Annual Network and Distributed System Security
Symposium, NDSS 2025, San Diego, California, USA, February
24-28, 2025. The Internet Society, 2025. [Online]. Avail-
able: https://www.ndss-symposium.org/ndss-paper/the-midas-touch-
triggering-the-capability- of-1lms- for-rm-api- misuse-detection/

C. S. Xia, M. Paltenghi, J. Le Tian, M. Pradel, and L. Zhang, “Fuzz4all:
Universal fuzzing with large language models,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ser.
ICSE *24. New York, NY, USA: Association for Computing Machinery,
2024. [Online]. Available: https://doi.org/10.1145/3597503.3639121

X. Ma, L. Luo, and Q. Zeng, “From one thousand pages of
specification to unveiling hidden bugs: Large language model
assisted fuzzing of matter IoT devices,” in 33rd USENIX Security
Symposium (USENIX Security 24). Philadelphia, PA: USENIX
Association, Aug. 2024, pp. 4783-4800. [Online]. Available: https:
/Iwww .usenix.org/conference/usenixsecurity24/presentation/ma-xiaoyue
J. Liu, Y. Yang, K. Chen, and M. Lin, “Generating
APl parameter security rules with LLM for API misuse
detection,” in 32nd Annual Network and Distributed System
Security Symposium, NDSS 2025, San Diego, California, USA,
February 24-28, 2025. The Internet Society, 2025. [Online].
Available: https://www.ndss-symposium.org/ndss-paper/generating-api-
parameter-security-rules- with-1lm-for-api- misuse-detection/

D. Wu, X. Wang, Y. Qiao, Z. Wang, J. Jiang, S. Cui, and
F. Wang, “NetLLM: Adapting large language models for networking,”
in Proceedings of the ACM SIGCOMM 2024 Conference, ser.
ACM SIGCOMM °24. New York, NY, USA: Association for
Computing Machinery, 2024, p. 661-678. [Online]. Available: https:
//doi.org/10.1145/3651890.3672268

M. Arazzi, D. R. Arikkat, S. Nicolazzo, A. Nocera, R. Rehiman
K.A., V. P, and M. Conti, “NLP-based techniques for cyber threat
intelligence,” Computer Science Review, vol. 58, p. 100765, 2025.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1574013725000413

P. Hu, R. Liang, and K. Chen, “DeGPT: Optimizing decompiler
output with LLM,” in 3Ist Annual Network and Distributed
System Security Symposium, NDSS 2024, San Diego, California,
USA, February 26 - March 1, 2024. The Internet Society,
2024. [Online]. Available: https://www.ndss-symposium.org/ndss-
paper/degpt-optimizing-decompiler-output- with-11m/

15

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]
[73]

[74]

R. J. Anderson, Security Engineering: A Guide to Building Dependable
Distributed Systems, 1st ed. USA: John Wiley & Sons, Inc., 2001.
A. A. Ganin, E. Massaro, A. Gutfraind, N. Steen, J. M. Keisler,
A. Kott, R. Mangoubi, and I. Linkov, “Operational resilience: concepts,
design and analysis,” Scientific Reports, vol. 6, no. 1, p. 19540, Jan
2016. [Online]. Available: https://doi.org/10.1038/srep19540

L. Li, X. Zhang, X. Zhao, H. Zhang, Y. Kang, P. Zhao,
B. Qiao, S. He, P. Lee, J. Sun, F. Gao, L. Yang, Q. Lin,
S. Rajmohan, Z. Xu, and D. Zhang, “Fighting the fog of

war: Automated incident detection for cloud systems,” in 2021
USENIX Annual Technical Conference (USENIX ATC 21). USENIX
Association, Jul. 2021, pp. 131-146. [Online]. Available: https:
/Iwww .usenix.org/conference/atc2 1/presentation/li-liqun

A. Morse, “Investigation: Wannacry cyber attack and the NHS,” 2017,
national Audit Office UK.

S. M. T. I. Tonmoy, S. M. M. Zaman, V. Jain, A. Rani, V. Rawte,
A. Chadha, and A. Das, “A comprehensive survey of hallucination
mitigation techniques in large language models,” 2024. [Online].
Available: https://arxiv.org/abs/2401.01313

DeepSeek-AlL, D. Guo, D. Yang et al., “DeepSeek-R1: Incentivizing
reasoning capability in LLMs via reinforcement learning,” 2025.
[Online]. Available: https://arxiv.org/abs/2501.12948

O. Ayala and P. Bechard, “Reducing hallucination in structured
outputs via retrieval-augmented generation,” in Proceedings of the
2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume
6: Industry Track), Y. Yang, A. Davani, A. Sil, and A. Kumar,
Eds. Mexico City, Mexico: Association for Computational Linguistics,
Jun. 2024, pp. 228-238. [Online]. Available: https://aclanthology.org/
2024 .naacl-industry.19/

X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang,
A. Chowdhery, and D. Zhou, “Self-consistency improves chain of
thought reasoning in language models,” in The Eleventh International
Conference on Learning Representations, ICLR Kigali, Rwanda, 2023.
X. Chen, R. Aksitov, U. Alon, J. Ren, K. Xiao, P. Yin, S. Prakash,
C. Sutton, X. Wang, and D. Zhou, “Universal self-consistency
for large language model generation,” 2023. [Online]. Available:
https://arxiv.org/abs/2311.17311

Y. Weng, M. Zhu, F. Xia, B. Li, S. He, S. Liu, B. Sun, K. Liu,
and J. Zhao, “Large language models are better reasoners with
self-verification,” in Findings of the Association for Computational
Linguistics: EMNLP, H. Bouamor, J. Pino, and K. Bali, Eds. Singapore:
Association for Computational Linguistics, Dec. 2023, pp. 2550-2575.
[Online]. Available: https://aclanthology.org/2023.findings-emnlp.167/

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe,
U. Alon, N. Dziri, S. Prabhumoye, Y. Yang, S. Gupta, B. P. Majumder,
K. Hermann, S. Welleck, A. Yazdanbakhsh, and P. Clark, “Self-refine:
iterative refinement with self-feedback,” in Proceedings of the 37th
International Conference on Neural Information Processing Systems, ser.
NIPS °23. Red Hook, NY, USA: Curran Associates Inc., 2023.

M. Roesch, “Snort - lightweight intrusion detection for networks,” in
Proceedings of the 13th USENIX Conference on System Administration,
ser. LISA ’99. USA: USENIX Association, 1999, p. 229-238.

B. E. Strom, A. Applebaum, D. P. Miller, K. C. Nickels, A. G. Pen-
nington, and C. B. Thomas, “Mitre ATT&CK: Design and philosophy,”
in Technical report. MITRE, 2018.

Y. Wang, H. Ivison, P. Dasigi, J. Hessel, T. Khot, K. R.
Chandu, D. Wadden, K. MacMillan, N. A. Smith, I. Beltagy, and
H. Hajishirzi, “How far can camels go? exploring the state of
instruction tuning on open resources,” 2023. [Online]. Available:
https://arxiv.org/abs/2306.04751

H. Yu, T. Cheng, Y. Cheng, and R. Feng, “FineMedLM-ol:
Enhancing the medical reasoning ability of LLM from supervised
fine-tuning to test-time training,” 2025. [Online]. Available: https:
/larxiv.org/abs/2501.09213

MITRE, “CVE,” 2022. [Online]. Available: https://cve.mitre.org/

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Kiittler, M. Lewis, W.-t. Yih, T. Rocktéschel er al., “Retrieval-
augmented generation for knowledge-intensive NLP tasks,” Advances in
neural information processing systems, vol. 33, pp. 9459-9474, 2020.

P. E. Kaloroumakis and M. J. Smith, “Toward a knowledge
graph of cybersecurity countermeasures,” The MITRE Corporation,
Annapolis Junction, MD, Technical Report, 2021, approved for

https://www.ndss-symposium.org/ndss-paper/yurascanner-leveraging-llms-for-task-driven-web-app-scanning/
https://www.ndss-symposium.org/ndss-paper/yurascanner-leveraging-llms-for-task-driven-web-app-scanning/
https://www.usenix.org/conference/usenixsecurity24/presentation/liu-peiyu
https://www.usenix.org/conference/usenixsecurity24/presentation/liu-peiyu
https://googleprojectzero.blogspot.com/2024/10/from-naptime-to-big-sleep.html
https://googleprojectzero.blogspot.com/2024/10/from-naptime-to-big-sleep.html
https://www.ndss-symposium.org/ndss-paper/propertygpt-llm-driven-formal-verification-of-smart-contracts-through-retrieval-augmented-property-generation/
https://www.ndss-symposium.org/ndss-paper/propertygpt-llm-driven-formal-verification-of-smart-contracts-through-retrieval-augmented-property-generation/
https://www.ndss-symposium.org/ndss-paper/propertygpt-llm-driven-formal-verification-of-smart-contracts-through-retrieval-augmented-property-generation/
https://www.ndss-symposium.org/ndss-paper/llmpirate-llms-for-black-box-hardware-ip-piracy/
https://www.ndss-symposium.org/ndss-paper/llmpirate-llms-for-black-box-hardware-ip-piracy/
https://www.ndss-symposium.org/ndss-paper/the-midas-touch-triggering-the-capability-of-llms-for-rm-api-misuse-detection/
https://www.ndss-symposium.org/ndss-paper/the-midas-touch-triggering-the-capability-of-llms-for-rm-api-misuse-detection/
https://doi.org/10.1145/3597503.3639121
https://www.usenix.org/conference/usenixsecurity24/presentation/ma-xiaoyue
https://www.usenix.org/conference/usenixsecurity24/presentation/ma-xiaoyue
https://www.ndss-symposium.org/ndss-paper/generating-api-parameter-security-rules-with-llm-for-api-misuse-detection/
https://www.ndss-symposium.org/ndss-paper/generating-api-parameter-security-rules-with-llm-for-api-misuse-detection/
https://doi.org/10.1145/3651890.3672268
https://doi.org/10.1145/3651890.3672268
https://www.sciencedirect.com/science/article/pii/S1574013725000413
https://www.sciencedirect.com/science/article/pii/S1574013725000413
https://www.ndss-symposium.org/ndss-paper/degpt-optimizing-decompiler-output-with-llm/
https://www.ndss-symposium.org/ndss-paper/degpt-optimizing-decompiler-output-with-llm/
https://doi.org/10.1038/srep19540
https://www.usenix.org/conference/atc21/presentation/li-liqun
https://www.usenix.org/conference/atc21/presentation/li-liqun
https://arxiv.org/abs/2401.01313
https://arxiv.org/abs/2501.12948
https://aclanthology.org/2024.naacl-industry.19/
https://aclanthology.org/2024.naacl-industry.19/
https://arxiv.org/abs/2311.17311
https://aclanthology.org/2023.findings-emnlp.167/
https://arxiv.org/abs/2306.04751
https://arxiv.org/abs/2501.09213
https://arxiv.org/abs/2501.09213
https://cve.mitre.org/

Public Release; Distribution Unlimited. [Online]. Available: https:
//d3fend.mitre.org/resources/D3FEND.pdf

S. Jha, R. R. Arora, Y. Watanabe et al., “ITBench: Evaluating Al
agents across diverse real-world IT automation tasks,” in Proceedings
of the 42nd International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, A. Singh, M. Fazel,
D. Hsu, S. Lacoste-Julien, F. Berkenkamp, T. Maharaj, K. Wagstaff,
and J. Zhu, Eds., vol. 267. PMLR, 13-19 Jul 2025, pp. 27 134-27 197.
[Online]. Available: https://proceedings.mlr.press/v267/jha25a.html

S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical
comparison of botnet detection methods,” Computers & Security, vol. 45,
pp. 100-123, 2014. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167404814000923

D. Y. Huang, M. M. Aliapoulios, V. G. Li, L. Invernizzi, E. Bursztein,
K. McRoberts, J. Levin, K. Levchenko, A. C. Snoeren, and D. Mc-
Coy, “Tracking ransomware end-to-end,” in 20/8 IEEE Symposium on
Security and Privacy (SP), 2018, pp. 618-631.

1. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic
characterization,” in Proceedings of the 4th International Conference
on Information Systems Security and Privacy - ICISSP, INSTICC.
SciTePress, 2018, pp. 108-116, kaggle page: https://www.kaggle.com/
datasets/solarmainframe/ids-intrusion-csv/data.

M. Landauer, F. Skopik, and M. Wurzenberger, “Introducing a new
alert data set for multi-step attack analysis,” in Proceedings of the 17th
Cyber Security Experimentation and Test Workshop, ser. CSET ’24.
New York, NY, USA: Association for Computing Machinery, 2024, p.
41-53. [Online]. Available: https://doi.org/10.1145/3675741.3675748
Wazuh Inc, “Wazuh - the open source security platform,” 2022.
[Online]. Available: https://wazuh.com/

K. Hammar and R. Stadler, “The CSLE-IDS-2024 dataset,” Feb. 2024.
[Online]. Available: https://doi.org/10.5281/zenodo.10706475

AT&T Cybersecurity, “AlienVault Open Threat Exchange (OTX),” https:
//otx.alienvault.com, 2021.

K. Hammar and R. Stadler, “Intrusion prevention through optimal
stopping,” IEEE Transactions on Network and Service Management,
vol. 19, no. 3, pp. 2333-2348, 2022.

K. Hammar, “Optimal security response to network intrusions in it
systems,” Ph.D. dissertation, KTH Royal Instistute of Technology, 2024.
Y. A. Yadkori, I. Kuzborskij, D. Stutz, A. Gyorgy, A. Fisch, A. Doucet,
1. Beloshapka, W.-H. Weng, Y.-Y. Yang, C. Szepesvari, A. T. Cemgil,
and N. Tomasev, “Mitigating LLM hallucinations via conformal
abstention,” 2024. [Online]. Available: https://arxiv.org/abs/2405.01563
D. Bertsekas, Rollout, Policy Iteration, and Distributed Reinforcement
Learning, ser. Athena scientific optimization and computation series.
Athena Scientific, 2021.

——, Dynamic Programming and Optimal Control, Vol. I, 3rd ed.
Athena Scientific, 2007.

M. Standen, M. Lucas, D. Bowman, T. J. Richer, J. Kim, and D. Marriott,
“Cyborg: A gym for the development of autonomous cyber agents,”
CoRR, 2021, https://arxiv.org/abs/2108.09118.

[75]

[76]

[77]

[78]

[79]

[80]
[81]
[82]

[83]

[84]

[85]

[86]

[87]

[88]

APPENDIX A
TESTBED CONFIGURATION

The configuration of the infrastructure that we run on our
testbed (as described in §IV-B) is listed in Table 5 and the
network topology is shown in Fig. 17.

APPENDIX B
EXAMPLE PROMPT TEMPLATE

All of our prompt templates are available at [20]. We
provide an example prompt template in the box to the right.

APPENDIX C
PROOF OF PROPOSITION 1

We start by noting that the planning problem in §IV-D
can be viewed as a stochastic shortest path problem on the
graph of recovery states, where the goal is to reach the state
st = (1,1,1,1,1,1) as quickly as possible. Consequently, the

Prompt template for generating a response action

Below is a system description, a sequence of network logs (e.g.,
from an intrusion detection system), a description of a cybersecurity
incident, the current state of the recovery from the incident, a list
of previously executed recovery actions, and an instruction that
describes a task. Write a response that appropriately completes the
request. Before generating the response, think carefully about the
system, the logs, and the instruction, then create a step-by-step
chain of thoughts to ensure a logical and accurate response.

System:... ### Logs:... ##H# Incident:... ### State:...

Previous recovery actions: ...

Instruction: You are a security operator with advanced knowledge
in cybersecurity and IT systems. You have been given information
about a security incident and should generate the next suitable action
for recovering the system from the incident. Your suggested action
should be based on the logs, the system description, the current state,
and the previous recovery actions only. Make sure that the suggested
recovery action is consistent with the system description and the logs
and that you do not repeat any action that has already been performed.
The goal when selecting the recovery action is to change the state
so that one of the state properties that is currently ’false’ becomes
’true’. The ideal recovery action sequence is: 1. contain the attack
2. gather information 3. preserve evidence 4. eradicate the attacker
5. harden the system 6. recover operational services. When selecting
the recovery action, make sure that it is concrete and actionable and
minimizes unnecessary service disruptions. Vague or unnecessary
actions will not change the state and should be avoided. Return a
JSON object with two properties: *Action’ and ’Explanation’, both
of which should be strings. The property *Action’ should be a string
that concisely describes the concrete recovery action. The property
’Explanation’ should be a string that concisely explains why you
selected the recovery action and motivates why the action is needed.
Response: <think>

problem is well-defined under standard assumptions, see e.g.,
[87] for details. The main approach for proving Prop. 1 is
to bound the difference in estimated recovery time of a non-
hallucinated action and a hallucinated action. To this end, we
start by stating and proving the following lemma. (For ease
of notation, we present the proof here for the case where
c(st,a;) = 1 for all states s; and actions a;; the proof can
be straightforwardly extended to general cost functions.)

Lemma 1. Given the conditions of Prop. 1, we have
] = Jllee < nll oo || oc

where J is the recovery time-to-go function [cf. Def. 3] and
J is the time-to-go function estimated by the LLM.

Proof. We first note that the vocabulary (i.e., the set of tokens)
of any LLM is finite. Therefore, the set of feasible response
actions A is finite. As a consequence, the state predictions
per (s’ | s,a,I) define a transition probability matrix between
(non-terminal) recovery states. We denote this matrix by F and
the corresponding matrix of the real system by F, where Fgg

https://d3fend.mitre.org/resources/D3FEND.pdf
https://d3fend.mitre.org/resources/D3FEND.pdf
https://proceedings.mlr.press/v267/jha25a.html
https://www.sciencedirect.com/science/article/pii/S0167404814000923
https://www.sciencedirect.com/science/article/pii/S0167404814000923
https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv/data
https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv/data
https://doi.org/10.1145/3675741.3675748
https://wazuh.com/
https://doi.org/10.5281/zenodo.10706475
https://otx.alienvault.com
https://otx.alienvault.com
https://arxiv.org/abs/2405.01563
https://arxiv.org/abs/2108.09118

ID(s) ‘ Type Operating system Zone Services Vulnerabilities

1 Gateway Ubuntu 20 - Snort (ruleset v2.9.17.1), SSH, OpenFlow v1.3, Ryu SDN controller | -

2 Gateway Ubuntu 20 DMZ Snort (ruleset v2.9.17.1), SSH, OVS v2.16, OpenFlow v1.3 -

28 Gateway Ubuntu 20 R&D Snort (ruleset v2.9.17.1), SSH, OVS v2.16, OpenFlow v1.3 -

3,12 Switch Ubuntu 22 DMZ SSH, OpenFlow v1.3, OVS v2.16 -

21,22 | Switch Ubuntu 22 - SSH, OpenFlow v1.3, OVS v2.16 -

23 Switch Ubuntu 22 Admin | SSH, OpenFlow v1.3, OVS v2.16 -

29-48 | Switch Ubuntu 22 R&D SSH, OpenFlow v1.3, OVS v2.16 -

13-16 | Honeypot Ubuntu 20 DMZ SSH, SNMP, PostgreSQL, NTP -

17-20 | Honeypot Ubuntu 20 DMZ SSH, IRC, SNMP, PostgreSQL -

4 App node Ubuntu 20 DMZ | HTTP, DNS, SSH CWE-1391

5,6 App node Ubuntu 20 DMZ SSH, SNMP, PostgreSQL, NTP -

7 App node Ubuntu 20 DMZ HTTP, Telnet, SSH CWE-1391

8 App node Debian Jessie DMZ | FTP, SSH, Apache 2, SNMP CVE-2015-3306
9,10 App node Ubuntu 20 DMZ NTP, IRC, SNMP, SSH, PostgreSQL -

11 App node Debian Jessie DMZ Apache 2, SMTP, SSH CVE-2016-10033
24 Admin system | Ubuntu 20 Admin | HTTP, DNS, SSH CWE-1391

25 Admin system | Ubuntu 20 Admin | FTP, MongoDB, SMTP, Tomcat, Teamspeak 3, SSH -

26 Admin system | Ubuntu 20 Admin | SSH, SNMP, Postgres, NTP -

27 Admin system | Ubuntu 20 Admin | FTP, MongoDB, SMTP, Tomcat, Teamspeak 3, SSH CWE-1391
49-59 | Compute node | Ubuntu 20 R&D Spark, HDFS -

60 Compute node | Debian Wheezy R&D Spark, HDFS, Apache 2, SNMP, SSH CVE-2014-6271
61 Compute node | Debian 9.2 R&D IRC, Apache 2, SSH CWE-89

62 Compute node | Debian Jessie R&D Spark, HDFS, Teamspeak 3, Tomcat, SSH CVE-2010-0426
63 Compute node | Debian Jessie R&D SSH, Spark, HDFS CVE-2015-5602
64 Compute node | Debian Jessie R&D Samba, NTP, SSH, Spark, HDFS CVE-2017-7494

TABLE 5: Configuration of the IT infrastructure we run in our testbed. The network topology is shown in Fig. 17.

Clients

Attacker
a

57

o=
Defender

Fig. 17: The IT infrastructure that we use to collect log data for fine-tuning.

denotes the transition probability between the non-terminal
states s and s’. Similarly, we use J and J to denote the
vectors obtained by applying the functions J and J to the
set of non-terminal recovery states S , 1.e., all states for which
s # (1,1,1,1,1,1), where Js denotes the expected recovery
time-to-go from the non-terminal state s.

Since the goal is to minimize the recovery time, we can ex-
press the recovery time-to-go function recursively by defining
a stage cost of 1 for each response action taken. Using this
formulation of the recovery time-to-go, we have

J=1+FJ and J=1+FJ, (6)

where 1 denotes the vector of all ones. Given these Bellman

equations, the difference J — J can be written as
J-J=(1-F)"YF-F)J, (7)

where 1 denotes the identity matrix.

17

Since ||J||oo and ||J|s are assumed finite, ||J||oc and
[|J||oe are also finite. As a consequence, the linear systems
in (6) have unique solutions. Consequently, the inverse in (7)
exists. Taking the supremum norm on both sides of the final
expression in (7), we have

3= T = (1 = B) " (F = F)J]
(2= F) ool (B = F) o,

IN

®)

where the last inequality follows from the sub-multiplicative
property of the supremum norm. Hence, it suffices to show
that the right-hand side in (8) is bounded by 7||.J||so ||/ [|sc. In
view of (6), we have

J=1+FJ] = |J]|lo = (1~ F) 7' .

Since ||J||oo is assumed finite, the expected time to reach
the terminal state s = (1,1,1,1,1,1) from any non-terminal
state s € S is finite. As a consequence, the spectral radius of
the transition matrix between the non-terminal states, i.e., 1:",
must be strictly less than 1. Therefore, we can expand (1 —
F)~! using the Neumann series representation as >y , F¥.
Because the matrix F is non-negative, all of its powers are also
non-negative. As a consequence, (1 — f‘)*l is non-negative.
For any non-negative matrix A, we have ||Alo = [|[Al]c-

Consequently, we obtain
Fllee = 1L =F) " Lloc = [T = F) Moo 9

Now consider the second factor in the right-hand side of (3),
ie., ||(F — F)J||o- Fix any recovery state s. We have

’((F -F) J)’ = |3 (Fow — Fu) 3o

s'eS
(a) ~ nt
< Z ‘Fss’ - Fss’ ' |Js’| < Z Fss' - FSS' ||J||OO
s’eS s'cS

where we use the triangle inequality to move the absolute
value inside the sum and then the fact that |ab| = |a||b] to
obtain (a). Since this bound holds for any state s, we have

I(F = F)J oo < nllIloo-
Substituting this bound and (9) into (8) yields
19 = oo < 1L =F) "Moo | (F = F)Iloo < 0| T[loo[[I oo-

Since the recovery time-to-go from the terminal state is 0 [cf.
Def. 3], we have ||J — J|lcc = |J = Jloos [Tlloc = ||]]c0s
and ||J||oc = ||/||oo- The proof is thus complete. O

Given Lemma 1, we are now ready to derive the proof of
Prop. 1. The event that a hallucinated action a is selected
over a non-hallucinated action a in (5) implies Q(5,4a) <
Q(8,a). To show that this inequality cannot hold under the
proposition’s assumptions, we start by bounding the difference
between @ and Q, where Q(s, a) is the true expected recovery
time-to-go when taking response action a in state s and

Q(s,a) is the LLM’s estimate. We have

Combining this inequality with (10), we have

Q(s,a) — A < Q(s,a) < Q(s,8) < Q(s,a) + A
= Q(s,a) — Q(s,a) < 2A.

Next, since a is hallucinated and a is not, we have

Q(s,a) =1+ Eg[J(s") | a,8,1] =1+ J(s),
Q(s,a) =1+ Eg[J(s') |a,s,]] <1+ J(s) — 6.

Substituting Q(s,a) = 1+ J(s) into the inequality, we obtain
Q(s,a) > Q(s,a) +6 = d < Q(s,a) — Q(s,a) <2A
=2 (Mool oo + 1T) = 20l (111100 + 1)

Since the conditions of the proposition state that

6 > 2 lloe (1 7]lo0 + 1) .

we conclude that whenever a non-hallucinated action exists, it
will be selected by the minimization (5). O

Y

APPENDIX D
NOTATION

Our notation is summarized in Table 6.

|Q(S7 a) - Q(S, a)‘ = Notation(s) Description
a, T Response action; cf. §IV-D, recovery time; cf. §IV-D.
S | s, a, I E P S ‘ s, a, I) () s.8 Recovery state [cf. (3)] and predicted state.
I Initial information about the incident (e.g., logs).
s GS s GS pe, 0 the token distribution of an LLM and its parameters; cf. (1).
o' Fine-tuned parameter vector of an LLM; cf. §IV-B.
D Instruction dataset for fine-tuning; cf. §IV-B.
E pgl S ‘ S, a, I E pgl S | S, a I) () X,y Instruction and desired output; cf. §IV-B.
N Number of candidate actions to evaluate; cf. §IV-D.
S ES s 68 M Number of samples to estimate expected values in Alg. 1.
~ a; The response action selected after planning; cf. (5).
= E Pe’ (S/ | S, a, I) (J(S/) — J(S/)) — J, fN Recoveljy time-to-go func_tions (true and estimated); cf.§IV-D.
Q,Q Q-functions (true and estimated by LLM); cf. §IV-D.
s/ ES~ S, A Sets of recovery states and response actions; cf. §IV-D.
S Set of non-terminal recovery states; cf. §IV-D.
/ 12 / AN The set of N candidate actions at time step ¢; cf. §IV-D.
> (PG Is.a1) —pols [5,21) () f
&
s'es TABLE 6: Notation.
(a) ~
I !/ !
EX oot 1.1 () - 1) |+
oed APPENDIX E
EXPERIMENTAL SETUP
/ ! I
Z (P(s |s.a,1) —per(s’ | s,a, I)) J(s') All computations are performed using 4xXQUADRO RTX
s'€S 8000 Gpus. The hyperparameters that we use for fine-tuning
2 Z por(s' | s,a,1) (j(sl) o J(s’)) 4 and for instantiating PPO are listed in Table 7. Parameters not
=) Ay . .
e listed in Table 7 are set to default values.
s’'e
Parameter(s) Value(s)
!/ I
z : Do’ (S | S, 4, I) - P(S | s, 4, I) ‘ H J”OO LORA rank r,«, dropout,learning rate 64, 128, 0.05, 0.00095
S’ES Batch size, gradient accumulation steps 5, 16
© Temperature, training epochs,quantization 0.6, 2, 4 bit
~ c, ~
— PPO [19, Alg. 1
<N = Tlloo + 1l Tllso < nll Moo [T [loo + nllT [oo, [19. Alg. 1 :
Learning rate, # hidden layers 5148 -107>, 1,
=A # Neurons/layer,# steps/update 64, 2048
. . . Batch size, discount factor ~y 16, 0.99
where (a) follows from the triangle inequality; (b) uses the fact GAE A, clip range, entropy coefficient ~ 0.95, 0.2, 2. 10~
Value coefficient, max gradient norm 0.102, 0.5

that ||abl|cc < ||a|oo]|Pllco; and (c) follows from Lemma 1.

— Feature representation

This bound implies that

cyborg features [88] &
one-hot encoded scan/decoy states

Q(s,a) -A< Q(S7a) < Q(Sva) +A.

Now, if a hallucinated action a is selec~ted over a non-
hallucinated action a in (5), we must have Q(s,a) < Q(s,a).

(10)

18

TABLE 7: Hyperparameters.

APPENDIX F
ARTIFACT APPENDIX

All results presented in this paper are fully reproducible
using open-source software and data. To enable independent
verification of our results and encourage future research, we
release a complete set of artifacts that allow the community
to build upon our work without additional engineering effort.
Specifically, we release the following artifacts:

« A dataset of 68,000 incidents and response plans, which
can be used for fine-tuning LLMs for incident response.
The dataset is generated based on a combination of real
attacks executed on our testbed and synthetic data.

The weights of the fine-tuned LLM that we use to produce
the results reported in the paper. This LLM has 14 billion
parameters and is derived from the DEEPSEEK-R1 LLM.
Python code for downloading the fine-tuning dataset.
Python code for downloading the fine-tuned LLM.
Python code for generating a response action.

Python code for fine-tuning the LLM.

A video demonstration of our incident response system.
The following subsections describe how to access the artifacts
and the setup required to use them.

A. Artifact Dependencies

All artifacts are publicly available at https://doi.org/10.5281/
zenodo.17770990. The code can be accessed at https://
github.com/Kim-Hammar/llm_incident_response_ndss26 and
is released under the CC-BY-SA 4.0 license.

Hardware dependencies. The hardware requirements for our
software artifacts (i.e., the Python scripts) are listed in Table 8
on the next page. The non-software artifacts (i.e., the dataset
and the weights) can be accessed at https://doi.org/10.5281/
zenodo.17770990 and do not require specific hardware.

Software dependencies. The only software requirement for our
artifacts is the Python library called 11m_recovery, which
is written by us and available on PYPI.> We have tested our
artifacts on the following software platforms:
o A MacBook Pro with macOS Sequoia 15.6.1 and Python
3.11.
¢ A Google Cloud virtual machine with Ubuntu 22.04 and
Python 3.10.
« A Google Colab notebook with Ubuntu 20.04 and Python
3.9.

Data and model dependencies. Our artifacts are self-
contained. The Python scripts rely only on the dataset and
model that we supply as part of our artifacts.
B. Artifact Installation & Configuration

To install our artifacts, run the following commands:

git clone https://github.com/Kim-Hammar/

1lm_incident_response_ndss26
pip install 1lm recovery==0.0.13

Zhttps:/pypi.org/project/lim-recovery/.

19

C. Experiment Workflow

To evaluate our software artifacts (i.e., the Python scripts),
open the directory 11lm_incident_response_ndss26
and follow these steps:

e (S1) python load_fine_tuned_llm.py

— This step downloads the weights of our fine-tuned LLM
from HUGGINGFACE.

e (§2) python load_training_dataset.py

— This step downloads the dataset that we use for fine-
tuning from HUGGINGFACE.
e (S3) python response_generation.py
— This step samples a random incident from the fine-
tuning dataset and uses the fine-tuned LLM to generate
the first response action.
e (S4) python fine_tune_llm.py
— This step fine-tunes the DEEPSEEK-RI1-DISTILL-
QWEN-14B LLM on our dataset. To reduce the exe-
cution time, we have configured the script to use a
small subset of the fine-tuning dataset.

Remark 4. Some of the Python scripts require a GPU to
complete within a reasonable time; see Table 8. A single
commodity GPU is sufficient, e.g., RTX 8000. If no GPU is
available, the functionality of the response-generation process
can be verified through our video demonstration at https://
www.youtube.com/watch?v=SCxq2ye-R4Y. The video demon-
strates the decision-support system for incident response that
we have developed based on the above scripts. The complete
software of our system is available at https://github.com/
Kim-Hammar/csle and https.// github.com/Kim- Hammar/llm_
recovery. This software is released for the community to build
on, but is not included as an artifact in this paper.

D. Major Claims
The main claims of our paper are as follows.

o (C1): We release the first fine-tuning dataset for incident

response.

(C2): We release the first open-source fine-tuned LLM for

incident response.

(C3): Our LLM is lightweight.

(C4): Our method has reduced hallucination.

— We prove this claim in Propositions 1 and 2 in the
paper.

(C5): Our method generates effective incident response

plans.

E. Evaluation

This section includes the operational steps and experiments
to evaluate the functionality of our artifacts and validate the
major claims of our paper.

Experiment (El).

[Access the fine-tuned LLM, the video demonstration,
and the training dataset] [10 human-minutes + O compute-
minutes]: This experiment validates claims (C1) and (C2).

https://doi.org/10.5281/zenodo.17770990
https://doi.org/10.5281/zenodo.17770990
https://github.com/Kim-Hammar/llm_incident_response_ndss26
https://github.com/Kim-Hammar/llm_incident_response_ndss26
https://doi.org/10.5281/zenodo.17770990
https://doi.org/10.5281/zenodo.17770990
https://pypi.org/project/llm-recovery/
https://www.youtube.com/watch?v=SCxq2ye-R4Y
https://www.youtube.com/watch?v=SCxq2ye-R4Y
https://github.com/Kim-Hammar/csle
https://github.com/Kim-Hammar/csle
https://github.com/Kim-Hammar/llm_recovery
https://github.com/Kim-Hammar/llm_recovery

Artifact Hardware requirements

Load fine-tuning dataset Commodity CPU, 8 GB RAM, 20 GB storage.

Load fine-tuned LLM Commodity CPU, 72 GB RAM, 100 GB storage.

Generate response action RTX 8000 GPU (or a more powerful GPU), 72 GB RAM, 100 GB storage.
Fine-tune LLM 4xRTX 8000 GPU (or a more powerful GPU), 72 GB RAM, 200 GB storage.
Video demonstration None, access at https://www.youtube.com/watch?v=SCxq2ye-R4Y &.
Dataset for fine-tuning None, access at https://doi.org/10.5281/zenodo.17770990.

Weights of the fine-tuned model None, access at https://doi.org/10.5281/zenodo.17770990.

TABLE 8: The hardware requirements for our artifacts.

[How to] Access the artifacts at https://doi.org/10.5281/
zenodo.17770990. The video demonstration is also available

on YouTube: https://www.youtube.com/watch?v=SCxq2ye-
R4Y. The setup for the demonstration is illustrated in Fig. 18.

Browser

— Gateway

Eg%% Web server

OTX threat
intelligence API

Fine-tuned LLM;
DEEPDEEK-R1-14B.

Fig. 18: Setup for the video demonstration. The fine-tuned LLM and a Python-
based web server run on a SUPERMICRO 7049 server with Ubuntu 22.04, 768
GB RAM, a 24-core Intel Xeon CPU, and 4x RTX 8000 GPUs. The server
hosts a web application that provides a browser-accessible user interface for

our incident response decision-support system.

[Preparation] None.
[Execution] None.

[Results] Access to a dataset of 68,000 incidents and re-
sponses, the weights of a fine-tuned LLM for incident response,

and a video demonstration of our incident response system.

Experiment (E2). [Download the fine-tuned LLM and the
training dataset] [5 human-minutes + 5 compute-minutes]:

This experiment validates claim (C3).

[How to] Complete steps (S1) and (S2) in §F-C. (If the
hardware requirements for (S1) are not met, watch the video

instead.)
[Preparation] Install our artifacts, as described in §F-B.

[Execution] Run the commands listed for steps (S1) and

(S2) in §F-C.
[Results] The expected output of (S1) is:

python load_fine_tuned_llm.py
Loading the fine-tuned incident response LLM. LLM
loaded successfully.

20

The expected output of (S2) is:

python load_training_dataset.py
Loading training dataset.
Training dataset loaded successfully.

Experiment (E3). [Use the fine-tuned LLM] [5 human-minutes
+ 5 compute-minutes]: This experiment validates claims (C3)
and (C5).
[How to] Complete step (S3) in §F-C. (If you do not have
access to a GPU, watch the video demonstration instead.)
[Preparation] Install our artifacts, as described in §F-B.
[Execution] Follow step (S3) in §F-C.
[Results] The output of (S3) should be similar to:

python response_generation.py

I recognize that while the attack is contained,
I do not yet have enough information to fully
eradicate it. Therefore, I choose to acquire
disk and memory images along with relevant logs,
preserving evidence in a forensically sound
manner to support analysis.</think>

{

"Action": "Acquire full disk and memory images of
10.20.11.42 and export DNS, firewall, and NetFlow
logs to write-protected storage.",

"Explanation": "Capturing images and logs

secures evidence for later analysis and legal
requirements."}

Experiment (E4). [Fine-tune a new LLM] [5 human-minutes
+ 5 compute-minutes]: This experiment demonstrates the fine-
tuning process. We have scaled down the experiment so that
it can be completed quickly. Full fine-tuning can take several
days, depending on the hardware setup.

[How to] Complete step (S4) in §F-C. (If you do not have
access to a GPU, watch the video demonstration instead.)

[Preparation] Install our artifacts, as described in §F-B.

[Execution] Follow step (S4) in §F-C.

[Results] The output of (S4) should be similar to:

python fine_tune_llm.py
Step: 1, Epoch: 0.5000,
Step: 2, Epoch: 1.0000,

Acknowledgments. We thank the artifact evaluators for thor-
oughly verifying our code and providing valuable feedback,
which helped us improve the usability of our artifacts.

https://www.youtube.com/watch?v=SCxq2ye-R4Y&
https://doi.org/10.5281/zenodo.17770990
https://doi.org/10.5281/zenodo.17770990
https://doi.org/10.5281/zenodo.17770990
https://doi.org/10.5281/zenodo.17770990
https://www.youtube.com/watch?v=SCxq2ye-R4Y
https://www.youtube.com/watch?v=SCxq2ye-R4Y

