
Breaking Isolation: A New Perspective on
Hypervisor Exploitation via Cross-Domain Attacks

Gaoning Pan∗†, Yiming Tao‡, Qinying Wang§‡, Chunming Wu‡, Mingde Hu∗†, Yizhi Ren∗†⋆, Shouling Ji‡
∗Hangzhou Dianzi University, ‡Zhejiang University, §EPFL

†Zhejiang Provincial Key Laboratory of Sensitive Data Security and Confidentiality Governance
Email: {pgn, 20227001, renyz}@hdu.edu.cn, {taoym, wuchunming, sji}@zju.edu.cn, qinying.wang@epfl.ch

Abstract—Hypervisors are under threat by critical memory
safety vulnerabilities, with pointer corruption being one of the
most prevalent and severe forms. Existing exploitation frame-
works depend on identifying highly-constrained structures in
the host machine and accurately determining their runtime
addresses, which is ineffective in hypervisor environments where
such structures are rare and further obfuscated by Address Space
Layout Randomization (ASLR). We instead observe that modern
virtualization environments exhibit weak memory isolation —
guest memory is fully attacker-controlled yet accessible from
the host, providing a reliable primitive for exploitation. Based
on this observation, we present the first systematic charac-
terization and taxonomy of Cross-Domain Attacks (CDA), a
class of exploitation techniques that enable capability escalation
through guest memory reuse. To automate this process, we
develop a system that identifies cross-domain gadgets, matches
them with corrupted pointers, synthesizes triggering inputs, and
assembles complete exploit chains. Our evaluation on 15 real-
world vulnerabilities across QEMU and VirtualBox shows that
CDA is widely applicable and effective.

I. INTRODUCTION

Virtualization technology has been widely adopted in data
centers, cloud computing, testing environments, and other
scenarios [1]. These use cases place increasing demands on
virtualization security, making it a critical focus for vendors
and developers. As the cornerstone of virtualization, the hy-
pervisor plays a pivotal role in managing and isolating virtual
machines (VMs) within cloud environments, which makes it
a high-value target for potential attackers. By exploiting vul-
nerabilities in the hypervisor, attackers can escalate privileges
and gain control over the host system from a guest VM. This
enables them to perform a range of malicious activities, such
as data theft, system manipulation, or even a complete takeover
of the cloud infrastructure—a scenario commonly referred to
as virtual machine escape. This form of attack has attracted
growing attention from the security community, and numerous

⋆ Corresponding Author: Yizhi Ren (renyz@hdu.edu.cn)

vulnerabilities and exploits have been uncovered in recent
years [2], [3], [4], [5], [6], [7], [8], [9], [10].

Among these vulnerabilities, pointer corruption stands out
as a particularly dangerous and common consequence, typ-
ically caused by issues like use-after-free (UAF) or out-
of-bounds (OOB) memory access. These vulnerabilities can
corrupt address values in memory, allowing attackers to hijack
pointers and redirect them to attacker-controlled locations.
Such hijacked pointers may then be dereferenced to perform
arbitrary memory access, enabling the attacker to read from
or write to arbitrary locations in the hypervisor address space,
potentially affecting sensitive data or control flow. Our investi-
gation shows that pointer corruption is a frequent consequence
of hypervisor vulnerabilities. An analysis of QEMU CVEs
from the past five years indicates that about 23.9% ultimately
result in pointer corruption (see Table I).

Despite their severity, exploiting pointer corruptions in hy-
pervisors remains challenging due to indirection and complex-
ity. Unlike in kernel or user-mode environments, exploitable
memory structures in hypervisors are difficult to identify
due to their scarcity and high degree of customization. To
make matters worse, their address layout is further obscured
by memory isolation mechanisms and address space layout
randomization (ASLR), often requiring stringent conditions,
such as additional vulnerabilities that leak address information,
which are difficult to obtain. This renders existing exploitation
frameworks, originally designed for kernel and user-mode
environments [11], [12], limited, as they typically rely on
locating those exploitable structures. As a result, existing
exploits targets hypervisor tend to be case-specific and hand-
crafted [13], [6], [7], [5], requiring deep manual analysis
to identify suitable victim structures that expose read/write
capabilities. To date, many of these vulnerabilities remain
underexploited or entirely unexplored in practice, which limits
our collective understanding and may cause security-critical
bugs to be overlooked. This raises an alarming question:
how to design a systematic framework for exploiting pointer
corruption in hypervisor that generalizes across both diverse
vulnerability types and hypervisor platforms?

In this work, we conduct the first systematic study of ex-
ploiting hypervisor pointer corruptions through cross-domain
memory interactions. Instead of identifying attack-controllable
structure in host machines, we introduce guest memory as a

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240376
www.ndss-symposium.org

reusable and attacker-controlled primitive. Our analysis reveals
that the asymmetric isolation between host and guest in most
modern virtualization systems can be leveraged to escalate
exploitation. Specifically, while guest access to host memory
is restricted, the host retains the ability to freely dereference
pointers into guest memory. By redirecting corrupted pointers
to crafted payloads in guest memory, attackers can reliably
perform operations such as arbitrary memory writes, buffer
manipulation, and fake object injection. We refer to this gen-
eral exploitation paradigm applicable to most hypervisors as
Cross-Domain Attacks (CDA). CDA transforms the challenge
of finding exploitable host structures into a more tractable
problem—leveraging guest-controlled memory as a stable,
visible, and influenceable foothold for exploitation. Despite its
power and generality, this attack surface has remained largely
overlooked and lacks systematic exploration in prior work.

TABLE I: Classification of QEMU CVEs (2019–2024) by root
cause and corruption capability.

Vulnerability Category Ptr. Corr. Data-only Corr. No Corr. Total

Use-After-Free 12 1 2 15
OOB Write 18 12 0 30
OOB Read 0 0 14 14
Integer Overflow 1 5 1 7
Uninitialized Variable 1 0 0 1
Information Leak 0 0 13 13
Logic/Crash and Others 0 0 54 54

Subtotal 32 18 84 134
Percentage 23.9% 13.4% 62.7% 100.0%

Ptr. Corr. = vulnerabilities that may alter pointer values. Data-
only Corr. = vulnerabilities affecting data but not pointers. No
Corr. = vulnerabilities with no corruptive effect on memory.

To bridge the gap in understanding CDA in real-world,
we develop a framework to automatically identify CDA-
capable code paths and synthesize end-to-end exploits for
different types of vulnerabilites that cause pointer corruptions.
Starting from a PoC that triggers a corrupted pointer, our CDA
framework locates hypervisor code segments that dereference
guest-sourced pointers and identifies candidate gadgets for ex-
ploitation. It then applies a trace-guided input synthesis strat-
egy to generate gadget-triggering inputs, and incrementally
assembles complete exploits by aligning memory layouts and
scheduling system interactions. Our system achieves a high
degree of automation and demonstrates broad applicability
across different hypervisor platforms and vulnerability types.

To evaluate the effectiveness and generality of CDA, we
conducted comprehensive experiments. We first analyzed the
distribution of cross-domain gadgets across multiple hypervi-
sors and found that nearly all major attack surfaces expose
code paths containing such gadgets, suggesting CDA’s wide
applicability. We then measured the success rate of placing
cross-domain gadgets in memory under different conditions.
The results show that stack layouts exhibit substantial gadget
coverage around common entry paths, while heap allocations
provide even broader and more uniform opportunities for plac-
ing guest-derived pointers—making CDA-compatible layouts

Hypervisor

heap

mapping

shared libs

code

Guest Memory

MMIO read/write

DMA transfer

Host OS

Hardware and Firmware

hva ← gpa

Fig. 1: Architecture of Type-2 Hypervisors.

consistently achievable in practice. Additionally, we applied
our technique to 15 real-world vulnerabilities—13 in QEMU
and 2 in VirtualBox, and successfully achieved exploitation in
all cases. These results confirm that CDA is broadly applicable
and effective for exploiting hypervisor pointer corruption
vulnerabilities. Finally, the automated components of CDA
introduce only acceptable and predictable overhead.
The main contributions of this work are as follows:

• A systematic characterization of cross-domain attacks
(CDA), including their root causes and four pointer-use
variants, establishing CDA as a general paradigm for
upgrading pointer-corruption capabilities.

• A prototype system is developed to automate the pro-
posed exploitation approach. The experimental data are
now available at an repository https://github.com/HDU-
SEC/cda.

• A comprehensive evaluation is conducted to demonstrate
the coverage of cross-domain gadget identification within
the hypervisor, the generality across various pointer cor-
ruption scenarios, and the effectiveness in exploiting real-
world hypervisor vulnerabilities.

II. BACKGROUND

A. Workflow of Hypervisor Exploitation

In virtualized environments, attackers typically exploit vul-
nerabilities in the hypervisor from a guest system in order
to gain control over the host system, a process commonly
referred to as virtual machine escape. In this work, we focus
on the typical Type-2 virtualization in the host, where the
hypervisor runs as a user-space process and is thus subject
to conventional user-space memory protection mechanisms,
such as Address Space Layout Randomization (ASLR) and
Non-Executable (NX). To exploit the hypervisor, attackers
must construct a reliable exploitation chain that begins with a
memory corruption vulnerability. This chain typically involves
gradually upgrading capabilities, bypassing multiple layers of
protection, and ultimately achieving arbitrary code execution
within the hypervisor context.

2

B. Guest Memory Management

Virtualization technology allows multiple virtual machines
to share the same physical memory resources. The memory
perceived by each guest operating system is actually an
abstraction provided by the hypervisor through memory vir-
tualization. As illustrated in Figure 1, the hypervisor typically
allocates a contiguous region of memory in the host user
space, referred to as the Host Virtual Address (HVA) space, via
mmap. This region is then exposed to the guest as its Guest
Physical Address (GPA) space. The GPA-to-HVA mapping is
registered with the host kernel via system calls, enabling the
kernel to construct hardware-assisted page tables to support ef-
ficient memory address translation and access. From the host’s
perspective, in addition to conventional user-mode memory
segments, the hypervisor process includes a distinct memory-
mapped region known as Guest Memory, which is used to
support the execution of the guest operating system and its
applications. Through virtualization, the hypervisor enforces
strict boundary isolation on this memory region: the guest can
only access and manage its own guest memory, and is prohib-
ited from accessing memory outside of its assigned space. This
isolation ensures both memory safety and logical separation
between the guest and the host. When communication between
the guest and host is required, it is typically facilitated through
Memory-Mapped I/O (MMIO) and Direct Memory Access
(DMA). MMIO is used for issuing control commands, while
DMA is employed for high-throughput data transfer.

C. Exploiting Pointer Corruption Vulnerabilities

The basic concept of exploiting a pointer corruption vul-
nerability is to redirect a corrupted pointer to a memory
region that enables the attacker to escalate their capabilities.
Typically, the attacker targets a security-critical object, such
as one that contains control information or a function pointer,
and prepares the memory layout so that this object becomes
accessible through the corrupted pointer. The pointer itself
may be hijacked through direct overwrites, indirect memory
manipulations, or side effects of other vulnerabilities. Once the
corrupted pointer is dereferenced during subsequent execution,
the attacker gains the ability to access or influence unintended
memory regions, which can further lead to arbitrary reads or
writes, unauthorized access, or control-flow manipulation.

D. Scope and Assumption

This work focuses on the automatic exploitation of pointer
corruption vulnerabilities in type-2 hypervisors. We assume
that the adversary has already obtained a pointer corruption
primitive that allows modifying a host-side pointer via a
guest-triggered vulnerability. The attacker is also assumed to
possess full privileges within the guest VM, aligning with real-
world cloud environments where attackers generally control
the entire virtual machine. Additionally, we assume that stan-
dard user-mode protection mechanisms, such as address space
layout randomization (ASLR) are enabled by default. The
automatic capability upgrade technique proposed in this work
does not violate these protections. Notably, type-2 hypervisor

1 // guest-controlled offset
2 void usbredir_buffered_bulk_packet(...,

↪→ uint8_t *data, size_t data_len, ...) {
3 size_t i = choose_offset(...);
4 ...
5 bufp_alloc(dev, data + i, len, status, ep,

↪→ data); // interior ptr
6 }
7

8 int bufp_alloc(USBRedirDevice *dev, uint8_t *
↪→ data, uint16_t len, ...) {

9 ...
10 if (bufpq_should_drop(dev, ep)) {
11 free(data); // free(data + i): not

↪→ chunk base
12 return -1;
13 }
14 ...
15 }

Fig. 2: Simplified illustration of the mistaken-free vulnerability
in QEMU (CVE-2021-3682). An interior pointer data+i is
passed downward and later freed, corrupting heap metadata.

setting is widely used in multi-tenant cloud infrastructures
(e.g., Alibaba Cloud [14]) and aligns with prior hypervisor
fuzzing research [9], [15]. Importantly, we do not assume that
the attacker can directly execute arbitrary code on the host
or invoke host-side functions at will. All exploitation steps
must occur strictly along the natural logic of the hypervisor’s
existing code paths, as triggered by legitimate guest–host
interactions.

III. MOTIVATION AND OUR EXPLOITATION

In this section, we use a motivating example (§III-A) to
motivate our exploitation (§III-B) and clarify our assumptions
(§II-D).

A. A Running Example

Figure 2 presents a simplified example of the mistaken-
free vulnerability (CVE-2021-3682) in QEMU. In this case, an
interior pointer data + i, derived from a guest-controlled
offset, is passed into the function bufp_alloc. This value is
received as the parameter data, which is later freed within the
callee. As a result, the memory allocator incorrectly invokes
free() on a non-base pointer, corrupting internal heap
metadata. This behavior constitutes a classic case of pointer
corruption, and may be leveraged to manipulate subsequent
allocations depending on allocator behavior and attacker-
controlled buffer contents. At the time of writing, there is no
public exploit available for this vulnerability.

Intuitively, to exploit this vulnerability, the attacker corrupts
the internal metadata of a heap chunk, redirecting future
allocations to a chosen address and causing them to overlap
with critical in-memory structures. However, exploiting such
pointer corruption in hypervisors is highly challenging. First,
exploitable structures are rare and subject to strict constraints
on chunk size and pointer offset, making reliable alignment

3

Domain 1 (Guest Space)

Domain 2 (Host Space)
Memory
Corruption

Fully
Controllable

Limited
Primitives

Pointer
Hijacking

Program Execution Time

Domain Migration Fake Object Forging Exploit Trigger

Capability
Escalation

Fig. 3: CDA approach for exploiting pointer hijacking primitives.

difficult. Second, due to address space layout randomization
(ASLR), the attacker lacks visibility into the runtime addresses
of potential targets. Gaining precise control typically requires
an additional information leak, significantly raising the bar for
successful exploitation.

Limitations of Existing Techniques. The most related
efforts on locating exploitable in-memory structures are found
in kernel exploitation, where attackers have devised various
strategies to identify and abuse kernel objects [11], [12].
However, such approaches are less applicable to hypervisors.
The set of controllable in-memory structures is significantly
smaller, and successful pointer hijacking often demands pre-
cise field alignment—constraints that vary across vulnera-
bilities and cannot be satisfied by generic layouts. These
factors hinder the generalizability of structure-oriented search
techniques in hypervisor contexts. To date, no systematic or
automated exploitation methodology has been established for
hypervisor environments.

Overlooked Isolation Flaws. However, existing exploita-
tion techniques commonly assume strong guest-host memory
isolation in the hypervisor, enforcing a strict separation be-
tween guest and host memory usage. In this model, attackers
are restricted to user mode-like capabilities, significantly lim-
iting the exploitation potential. Yet this assumption does not
always hold in practice. Scavenger [16] had already demon-
strated that once a corrupted host pointer was redirected into
guest memory, the hypervisor could access guest-controlled
content without restriction. This broke isolation boundaries
and allowed guest memory to participate in host-side heap
operations, enabling far stronger primitives than previously
considered.

New Insight: Modern hypervisors exhibit a fundamental
asymmetry: although a guest cannot directly read or write
host memory, the host routinely accesses guest memory
with few restrictions. This weak isolation exposes a con-
tiguous, attacker-controlled region directly within the host
address space. From the attacker’s perspective, every byte
of guest memory is controllable, making it a stable and
highly manipulable foothold for exploitation. Redirecting
a corrupted host pointer into this region circumvents the
scarcity of suitably aligned host structures and sidesteps
heap-layout uncertainty, opening a new avenue for precise
and reliable hypervisor exploits.

// Guest (Attacker)

fake = guest_alloc_page();
↪→ (1) allocate fake object

mmio_write(MMIO_ADDR, map_gpa(fake));
↪→ (2) send fake object’s GPA

...
fake->ops = final_attacker_ops;

↪→ (5) modify fake object to
finalize the exploit

// Host (Hypervisor)

s->ptr = (Req *)gpa_to_hva(gpa);
↪→ (3) vulnerability overwrites

pointer to fake object
qemu_free(s->ptr);

↪→ (4) host uses attacker object

Fig. 4: Code example to show the workflow of CDA.

B. Our Exploitation

Driven by the new insights, we present a systematic charac-
terization of how pointer hijacking primitives in hypervisors
can be exploited through Cross-Domain Attacks (CDA) —
a class of techniques that enable capability escalation with-
out relying on exploitable structures, crafted I/O primitives,
or additional information leaks. It provides a more general
and reusable exploitation strategy, significantly reducing the
complexity of identifying usable structures and constructing
fragile, highly specialized payloads, thus ensuring the success
of complete exploitation.

Our approach involves two core steps: cross-domain mi-
gration and fake object forging, as illustrated in Figure 3.
In the first step, a pointer hijacking primitive is repurposed
to redirect the host-side pointer to the guest memory space,
enabling cross-boundary injection of attacker-controlled data.
In the second step, this redirected pointer is used to access a
carefully crafted fake object placed in guest memory, resulting
in capability escalation.

Step 1: Cross-Domain Migration. It is achieved by placing
a special type of code snippet that leaves a host virtual address
(HVA) pointing to guest memory in the host address space.

4

Guest Space

Host Freelist

chunk fd guest address

Fake Chunk

① free mid chunk data+i

② free base chunk data

③ overwrite fd via gadget

④ malloc mid chunk

⑤ malloc to guest
and produce UAF

(data)

(data + i)

virtio_gpu_create_mapping_iov

Fig. 5: Exploiting the running example.

These snippets are part of the communication mechanism
between the guest and the host, responsible for establishing
the mapping between a GPA and a corresponding HVA, and
for facilitating data transfer. We refer to such code snippets
as cross-domain gadgets. Through careful memory layout ma-
nipulation during the window between vulnerability triggering
and pointer dereference, the residual guest-HVA pointer1 left
by these gadgets can be reused to redirect the corrupted pointer
into the guest memory space.

Step 2: Fake Object Forging. It is achieved by carefully
placing a forged object within the guest memory, at the loca-
tion pointed to by the hijacked pointer. This fake object mimics
the layout and semantics expected by the hypervisor’s internal
logic—such as containing function pointers, capability flags,
or structured data fields. When the corrupted pointer is later
dereferenced by the host, the hypervisor transparently accesses
this attacker-controlled payload, unknowingly operating on
manipulated data. This enables the attacker to upgrade the
exploit capability without modifying any host-side data or
bypassing memory protections directly.

Code Sample of CDA Workflow. As illustrated in the
Figure 4, the guest first allocates a page to store a forged
object and issues an MMIO write to trigger the vulnerable
host code path (Steps 1–2). During this host-side processing,
a memory corruption bug (e.g., overflow or UAF) allows the
attacker to overwrite an internal hypervisor pointer with an
arbitrary value. By supplying the host virtual address (HVA)
corresponding to the forged guest page, the attacker forces
the hypervisor to treat attacker-controlled guest memory as
a legitimate host object (Step 3). When the hypervisor later
performs an operation such as free() or a structure dereference
on this corrupted pointer (Step 4), it unknowingly operates on
the forged object. The guest can then modify the same memory
page at any time, enabling it to install the final payload that
will be executed upon the hypervisor’s subsequent dereference
(Step 5).

Exploiting Running Example. To exploit the
vulnerability in the running example, we use the
virtio_gpu_create_mapping_iov function as a
cross-domain gadget, as illustrated in Figure 5. This gadget

1A guest–HVA pointer is a host-side pointer whose value is a host virtual
address (HVA) that corresponds to a guest memory region.

is capable of producing a guest-HVA pointer within a
heap-allocated object, and its chunk size is compatible with
the vulnerable structure.

When the vulnerability is triggered (① in Figure 5), the
attacker first frees a subregion within a heap buffer, specifi-
cally, the pointer at data + i, and then subsequently frees
the original buffer data. This sequence creates overlapping
chunks that simultaneously reside in the hypervisor’s freelist.
Following this (③ in Figure 5), the attacker invokes the
selected cross-domain gadget to allocate a new chunk and uses
heap spraying to place it at the reclaimed data location. At
this point, the metadata of the freed chunk at data + i is
modified to overwrite its fd pointer with a guest address. This
manipulation causes a fake chunk located in guest memory
to be inserted into the host freelist. As a consequence (⑤ in
Figure 5), the next heap allocation made by the hypervisor
retrieves this fake chunk, effectively returning a pointer into
guest-controlled memory. Since the attacker has full read/write
control over guest memory, this transforms the vulnerability
into a standard Use-After-Free primitive. The attacker can then
reliably craft payloads within guest memory to corrupt critical
host data structures or redirect control flow, thereby achieving
a full virtual machine escape.

CDA Variants. To further demonstrate the expressiveness
and versatility of the Cross-Domain Attack (CDA) model, we
identify and categorize four representative variants, each char-
acterized by the dereference semantics of the hijacked pointer
and the resulting impact. These variants include arbitrary Code
Execution (CDAA), where the attacker gains control over the
program counter or function pointer to execute arbitrary code;
Information Leakage (CDAI), which enables reading sensitive
data by redirecting pointers to attacker-observable memory;
Critical Data Overwriting (CDAO), which targets security-
critical fields such as credentials or control flags; and Chunk
Confusion (CDAC), which manipulates allocator metadata
to corrupt heap integrity. These variants illustrate the broad
range of exploitation consequences achievable through CDA
under different vulnerability scenarios. A formal taxonomy
and detailed case studies for each variant are provided in
Appendix B.

Technical Challenges. To perform the exploitation de-
scribed above, an adversary must address several key chal-
lenges. First, identifying valid gadget candidates is difficult
due to their implicit and inconsistent patterns across the
hypervisor codebase. Without explicit semantics or uniform
signatures, systematically locating these translation points is
highly non-trivial. Second, establishing a viable match be-
tween a corrupted pointer and a gadget requires understanding
the memory characteristics of the gadget-produced pointer.
Lacking such knowledge makes the matching process sub-
stantially more ambiguous and error-prone. Third, triggering
deep gadget paths requires inputs that satisfy complex and
hidden control-flow conditions. The vast input space and lack
of intermediate feedback hinder direct exploration. Finally,
integrating all components into a complete exploit demands
precise coordination of control flow, memory layout, and time

5

④ Assembling Exploit Chains

Linear Combination

③ Synthesizing Gadget-triggering Inputs

① Identifying Cross-Domain Gadgets

Static Identification

Source
code

Gadgets
Database

PoC

②Matching Paired Gadgets

Complete
Exp

< site, src, path >
Stack Depth Alignment

Heap Offset Matching

Gadget Candidates

Function Instrumentation

Prefix Matching

Trace
Guided
Fuzzing

Pre
process

Fig. 6: The overall workflow of CDA framework.

window.

IV. METHODOLOGY

Figure 6 outlines the workflow of the CDA framework,
which is divided into four sequential stages. At a high level, the
framework takes as input (i) the hypervisor’s source code and
(ii) a proof-of-concept (PoC) that triggers a pointer corruption,
and produces as output an exploit that redirects the corrupted
pointer into the guest memory—achieving one of the four
CDA variants. Starting from a pointer corruption vulnerabil-
ity, we first statically identify cross-domain gadget instances
within the hypervisor and organize them into a structured
database (§IV-A). Given a PoC, we then match it with suit-
able gadget candidates based on memory layout compatibil-
ity—differentiating between heap- and stack-based corruption
models (§IV-B). Next, we synthesize concrete guest inputs
that reliably trigger the selected gadgets, using a trace-guided
fuzzing strategy to incrementally drive execution through the
intended call chains (§IV-C). Finally, a complete exploit is
assembled by integrating the original PoC and the gadget-
triggering input, forming a coherent execution sequence that
redirects the corrupted pointer to attacker-controlled guest
memory and completes the capability escalation (§IV-D).
Subsequent operations after the pointer redirection are beyond
the scope of this paper, as they follow standard exploitation
procedures.

A. Identifying Cross-Domain Gadgets

Identifying cross-domain gadgets involves statically an-
alyzing the hypervisor codebase to extract all code sites
that perform GPA-to-HVA translation under guest influence.
These translation functions map guest physical addresses to
host virtual addresses, during which guest-HVA pointers are
temporarily or globally stored in host memory. Empirically,
we find that these sites represent the primary contexts where
guest-derived addresses are likely to reside in host memory,
creating opportunities for pointer redirection. In addition, we

further identify their guest-accessible invocation paths. Cross-
domain gadgets are thus necessary to bridge corrupted host
pointers to attacker-controlled guest memory when ASLR pre-
vents direct address targeting, capturing code-reuse scenarios
where existing instructions leave guest addresses accessible.
The full list of hypervisor functions responsible for address
translation is provided in Appendix A.
Definition: Cross-Domain Gadgets. G = {(site, src, path) |
site ∈ S, src ∈ T , path ∈ P} denotes the set of all cross-
domain gadgets. Each element g ∈ G is a 3-tuple that uniquely
identifies a gadget instance within the hypervisor. Here site
refers to a program location where a GPA-to-HVA translation
is performed, src denotes a guest-controllable operand that
flows into the translation logic, and path represents the static
call chain from a guest-facing interface to the translation site.

To identify such gadgets in practice, we conduct a static
analysis over the hypervisor codebase. We begin by locating
all translation sites that perform GPA-to-HVA mappings, in-
cluding standard functions and subsystem-specific logic. For
each site, we trace the origin of the GPA operand to determine
whether it can be influenced by the guest, either through
descriptor structures, MMIO registers, or I/O buffers. Sites
with no viable guest-controlled sources are discarded.

Focusing exclusively on guest-influenced translations en-
ables precise control over the resulting host virtual address.
This controllability eliminates the need for imprecise memory
spraying or blind guessing across the entire guest memory
space, and allows the attacker to steer the corrupted pointer
to a specific location in guest memory. As a result, this
constraint significantly improves the reliability and precision
of subsequent exploit stages.

For each remaining candidate, we extract its associated
call chain using static source-to-sink analysis, which identifies
guest-reachable paths that lead from external interfaces to the
translation site. This path provides crucial context for eval-
uating gadget reachability and constructing triggering inputs
in later stages. Each verified (site , src, path) triple is then
inserted into a structured gadget database, forming the set G.

Example. Table II presents a representative example of a
cross-domain gadget extracted from QEMU’s NVMe device.
The gadget is triggered via an MMIO write, where a guest-
controlled field of type dma_addr_t is translated into a
HVA and stored in a pointer variable named ram_ptr.
This pointer is later used as an access target and can be
abused as a redirection target for a corrupted pointer during
exploitation. Since ram_ptr holds a guest-derived address,
an attacker who hijacks a corrupted pointer to target ram_ptr
can effectively manipulate host logic to operate on attacker-
controlled guest memory. This makes the gadget suitable in
CDA-style exploitation. A full list of cross-domain gadgets
are shown in Table VI in the appendix.

B. Matching Paired Gadgets

Building upon the cross-domain gadget database, we now
describe how to match a given pointer hijacking vulnerability
with a suitable gadget instance to enable exploitation. The

6

TABLE II: A cross-domain gadget extracted from QEMU’s NVMe device.

Gadget Family Upper Function Translation Function HVA Variable GPA Source Field Trigger Type Call Path

DMA gadget dma_memory_write address_space_write ram_ptr s→tx_descriptor MMIO
nvme_mmio_write → nvme_process_db
→ stl_le_pci_dma → stl_le_dma
→ dma_memory_write

Algorithm 1: Paired Gadget Matching Strategy
Input: Gadget database G, corrupted pointer metadata

M , pointer region R ∈ {stack, heap}
Output: Set of matched gadgets Gmatch

1 Gmatch ← ∅ ;
2 if R = stack then
3 foreach g = (site, src, path) ∈ G do
4 g.depth ← Length(path) ;

5 pdepth ←M.stack_depth ;
6 foreach g ∈ G do
7 if g.depth = pdepth then
8 Gmatch ← Gmatch ∪ {g} ;

9 else if R = heap then
10 foreach g ∈ G do
11 if IsStoredAsStructField(g) then
12 (g.size, g.offset)← ExtractStructInfo(g) ;

13 (ssize, ooffset)←M.heap_layout ;
14 foreach g ∈ G do
15 if g.size = ssize and g.offset = ooffset then
16 Gmatch ← Gmatch ∪ {g} ;

17 return Gmatch

database contains numerous program paths that generate guest-
address HVAs at different memory offsets, and the key insight
is that our framework aims to pair a vulnerability with the
gadget whose residual guest-HVA pointer is spatially aligned
with the corrupted pointer. This spatial alignment allows
the gadget’s leftover HVA to overwrite the corrupted pointer
exactly, thereby transforming an otherwise unexploitable cor-
ruption into a valid cross-domain redirection primitive.

Specifically, we focus on identifying a paired gadget whose
pointer write behavior can be aligned with the corrupted
pointer produced by a proof-of-concept (PoC) input. Based
on an empirical study of prior hypervisor vulnerabilities, we
observe that corrupted pointers typically reside in either the
stack or the heap. These two regions exhibit fundamentally
different allocation semantics and memory layouts, which in
turn necessitate distinct pairing strategies. For stack-resident
pointers, layout compatibility depends on relative stack depth.
For heap-resident pointers, it depends on object structure
and field offset. We therefore design two complementary
gadget matching procedures, one for each case, formalized
in Algorithm 1.

Stack-Based Matching. This strategy formalizes the intu-

Fuzz Engine Executed in
Hypervisor

Call Chain Tracking

Function A

Function B ☑ Bit

Gadget Target
(Function C) ☑ Bit

☑ Bit

Gadget
Reached? Return Inputs

Mutate
Inputs

New Path
Prefix Extended Y

✅ Assertion (REACHED)Monitor Trace

Fig. 7: Trace-guided fuzzing workflow.

ition that if a gadget deposits a guest-HVA pointer at a specific
stack depth, and the corrupted pointer resides at the same depth
during the crash, then the two can be treated as aligned. That
is, we assume that matching the relative call depth is sufficient
to ensure that the memory locations coincide, thereby enabling
layout reuse. For each gadget in the database, we first annotate
its relative stack depth based on the length of its static call
chain (lines 2–4). Given a crashing PoC, we extract the depth
of the corrupted pointer within the call stack (line 5), and then
select gadgets with matching stack depth (lines 6–8). These are
returned as candidate paired gadgets that can be deployed via
controlled call sequences.

Heap-Based Matching. In contrast to the stack, heap
memory is governed by allocator behavior and object layout.
Heap-based corruptions often target structure fields embedded
within dynamically allocated chunks. Our insight is that if a
gadget writes a guest-HVA pointer into a structure field with a
known size and offset, and if a corrupted pointer resides at the
same layout position, then the attacker can feasibly align the
two via object spraying. We first identify gadgets that store
guest-HVA pointers as part of structure fields by performing
backward dataflow analysis (lines 9–11), annotating each with
its structure size and offset. Then, from the PoC, we extract
the corrupted object’s size and the field’s offset (line 12).
Layout-aligned gadgets are selected as viable heap-matching
candidates (lines 13–16).

C. Synthesizing Gadget-triggering Inputs

Given a set of matched gadget instances produced, the
next step is to synthesize concrete guest inputs that can
reliably trigger the execution of these gadgets. This is essential
for enabling end-to-end exploit construction, but presents
a practical challenge: gadgets typically reside deep within
the hypervisor’s call chains, and the conditions under which
they are executed may be highly constrained. Applying naive
coverage-guided fuzzing is insufficient, as the search space is

7

Algorithm 2: Trace-Guided Input Synthesis for Gadget
Triggering

Input: Gadget G with call chain [f1, f2, . . . , fn]
Output: Input x that triggers G via the intended call

chain
1 Instrument each function fi ∈ [f1 . . . fn] to update

bitmap[i] on execution;
2 Instrument fn with a termination signal (e.g.,

assertion/crash);
3 Initialize corpus ← ∅;
4 while not timeout do
5 x← MUTATEINPUT();
6 RUNGUEST(x);
7 P ← LONGESTVALIDPREFIX([f1 . . . fn],

bitmap);
8 if P is longer than any previous prefix then
9 Add x to corpus;

10 if fn reached via valid prefix then
11 return x;

12 return ⊥ ; // No trigger found within
time bound

enormous and lacks effective guidance. To address this, we de-
sign a trace-guided input synthesis strategy that incrementally
steers fuzzing toward executing the target gadget, as shown
in Algorithm 2 and visualized in Figure 7. The core idea
is that our strategy focuses on guiding the fuzzing process
by monitoring progress along the call chain leading to the
target gadget. Instead of blindly generating random inputs, the
strategy tracks the path through the call chain and selectively
preserves inputs that extend the chain towards the intended
target. This turns the problem into a guided search over partial
call chains, which significantly reduces the search space and
improves the likelihood of successfully triggering the gadget.

The synthesis strategy consists of three key steps. ① For
each candidate gadget, we instrument every function along its
call chain to set a corresponding bit in a reserved region of
the global coverage bitmap upon execution (line 1). The final
target function—the gadget’s translation site—is instrumented
with a termination signal assert to serve as a concrete
indicator of successful triggering (line 2). ② During fuzzing,
the system repeatedly generates and mutates guest inputs (line
5), then executes them within the virtualized environment (line
6), monitoring which chain elements have been traversed.
After each execution, we extract the longest valid prefix of
the chain that has been traversed in the correct order (line
7). Inputs that extend this prefix are marked as interesting
and added to the fuzzing corpus (lines 8–9), promoting in-
cremental exploration. This mechanism gradually drives the
fuzzer toward deeper chain coverage. ③ To ensure that the
observed function visitation reflects the intended chain, we
enforce strict caller verification: each function is only marked
as reached if invoked directly by its expected predecessor.

This constraint is embedded into the LongestValidPrefix
check (line 7) to eliminate spurious matches arising from
unrelated execution paths. Once an input successfully reaches
the gadget’s target function via the full intended chain (line
11), the fuzzer terminates and returns the corresponding input
(line 12). The result of this stage is a collection of synthesized
inputs corresponding to gadgets that have been confirmed
executable through their annotated control paths.

D. Assembling Exploit Chains

Given a PoC that triggers a pointer corruption vulnerability
and a synthesized gadget-triggering input, the final step is to
construct an end-to-end exploit that redirects control or data
flows across the guest–host boundary. This process involves
stitching together the vulnerability trigger with a validated
cross-domain gadget to form a coherent exploit chain.

We begin by decomposing the PoC into three semantic
stages: the preparation phase, which sets up memory layout
and execution context; the trigger phase, which produces the
corrupted pointer; and the exploitation phase, which derefer-
ences the corrupted pointer. The preparation phase includes
both payload placement and runtime stabilization. In heap-
based scenarios, this entails spraying controlled structures into
the guest heap to ensure consistent placement. In stack-based
cases, we suppress asynchronous interference (e.g., signal
delivery, multithread scheduling) by disabling preemption and
isolating execution to a clean context, thereby ensuring a de-
terministic stack layout for the pointer corruption to manifest
reliably.

To integrate the selected gadget, we insert the synthesized
gadget-triggering input at a position in the PoC’s execution
flow determined by the vulnerability type. The input is placed
either before or after the corruption trigger, depending on the
vulnerability type (e.g., post-trigger for UAF, pre-trigger for
stack corruption). Our system accommodates both patterns by
supporting flexible interleaving of the gadget-triggering input
with the PoC logic. This ensures that the corrupted pointer,
once created, is redirected to a valid and attacker-controlled
guest memory region by invoking a gadget instance identified
in IV-A and matched in IV-B. This intermediate step preserves
execution continuity while re-routing the pointer dereference
target, effectively bridging the gap between vulnerability and
capability elevation.

Following gadget invocation, the program proceeds to deref-
erence the now-translated pointer. Depending on the seman-
tics of the gadget and the nature of the dereference, this
access may directly manipulate sensitive data structures or
initiate privilege escalation. The overall exploit chain, which
includes vulnerability activation, gadget activation, and capa-
bility upgradation, is illustrated in Figure 8, which shows the
temporal and logical structure of this composition.

E. Extensibility and Portability

Our framework is designed with modularity and adaptability
in mind, enabling it to generalize across different hypervisors
and vulnerability types. To port the framework to a new

8

ExploitationTriggerPreparation
Gadget-Triggering

Input

PoC
construct

guest-side payload

eliminate noise

activate
vulnerability

invoke gadget

pointer dereference

vulnerability point exploitable pointstitching point

Complete
Exploit

Fig. 8: Workflow for assembling an exploit chain.

hypervisor, developers only need to perform lightweight and
localized adaptations while keeping the core pipeline for gad-
get identification, matching, and exploit synthesis unchanged.
Specifically, our static analysis step requires extracting three
categories of information from the hypervisor’s developer
documentation: (1) the base translation functions (e.g.,
bhyve’s vm_map_memory), (2) the I/O entry points (e.g.,
e1000_write_reg), and (3) the types and definitions of
guest-influenced variables (e.g., vm_paddr_t).

V. EVALUATION

To demonstrate the practicality of CDA, we collected a
series of metrics to establish its prevalence in virtualization
environments. We focused on QEMU (used either standalone
or together with KVM) and VirtualBox, which are representa-
tive hypervisor software. Our goal is to address the following
research questions:

• RQ1: How prevalent are cross-domain gadgets, and what
is their distribution within hypervisors?

• RQ2: How frequently do cross-domain gadgets produce
guest–HVA pointers?

• RQ3: How does CDA perform in actual exploit scenar-
ios?

For our static analysis, we utilized CodeQL, while function
stack frames and variable offsets were extracted at the binary
level using Ghidra. To validate the actual exploit scenarios,
each experiment was conducted on a server equipped with
an Intel(R) Xeon(R) Platinum 8124M CPU @ 3.00GHz (72
cores) and 64GB of RAM. Both the host and guest operating
systems were 64-bit Ubuntu 20.04 LTS.

A. Gadget Prevalence

To understand how cross-domain gadgets originate inside
real hypervisors, we begin with the static analysis stage
of our CDA framework. First, we extract all GPA-to-HVA
translation functions in both QEMU and VirtualBox. These
are all APIs that accept guest-supplied GPAs and convert them
into host-accessible addresses under guest influence. Using
documentation-guided patterns and interprocedural tracing,
our analysis identifies 44 translation functions in QEMU
and 23 in VirtualBox. Given that virtual devices represent
the primary attack surface and constitute the largest portion
of the hypervisor’s code [8], [17], [9], we use device type as
the basic unit of analysis when categorizing these translation

Virtio
(12)

USB(2)

Others(1)
Storage(1)

USB
(5)

Storage
(8)

Audio
(3)

Network
(10)

Others
(2)

Mapping
APIs

16 (36.4%)

Read/Write APIs
28 (63.6%)

(a) Distribution in QEMU.

sharefd
(1) Audio

(3)

Display
(1)

Network
(4)

Virtio
(2)

Storage
(5)

USB
(3)

​Others
(4)

Mapping
APIs

1 (4.3%)

Read/Write APIs
22 (95.7%)

(b) Distribution in VirtualBox.

Fig. 9: Statistics on the number of virtual devices with GPA-
to-HVA translation functions in the hypervisor.

1 int lsi_mem_read(LSIState *s, dma_addr_t addr,
↪→ void* buf, dma_addr_t len)

2 {
3 if (s->mode & LSI_DMODE_SIOM) {
4 address_space_read(*s->pci_io_as,

addr, buf, len);
5 } else {
6 pci_dma_read(s, addr, buf, len);
7 }
8 }

Fig. 10: A gadget in QEMU’s lsi_mem_read function
that conditionally invokes either address_space_read or
pci_dma_read based on the DMA mode.

functions. Across both systems, these translation functions fall
empirically into two major semantic categories: read/write
APIs and mapping APIs.

As shown in Figure 9, read/write APIs constitute the
majority—63.6% in QEMU and 95.7% in VirtualBox.
These APIs appear broadly across device families such
as storage, USB, network, and block devices. Their high
frequency reflects their fundamental role in moving data
across the guest–host boundary. Because these APIs are
embedded in many device I/O paths, they create numer-
ous translation points through which guest-controlled GPAs
flow. For example, Figure 10 presents code from the lsi
storage device in QEMU, where calls to pci_dma_read
and address_space_read temporarily materialize guest
addresses as local variables during execution—an inherent

9

consequence of C’s calling conventions.
Mapping APIs account for the remaining 36.4% of

translation functions in QEMU and 4.3% in VirtualBox.
Although fewer in number, mapping APIs often generate struc-
tured heap-allocated objects, such as descriptor tables or DMA
mapping entries, in which guest addresses are embedded.
These objects persist beyond the scope of individual API
calls and may be reused or accessed by multiple devices,
giving mapping-derived translation points a broader and more
durable influence. In QEMU, mapping APIs are primarily used
in virtio and USB subsystems, consistent with the design of
high-throughput and paravirtualized devices. VirtualBox, by
contrast, uses mapping APIs almost exclusively in the HGCM
shared-file subsystem, reflecting its more centralized archi-
tecture. While our analysis also observes mapping patterns
in initialization-only structures (e.g., deviceState), these
memory regions are not attacker-controlled and are therefore
excluded from our statistics.

Second, using these translation sites as anchors, we enu-
merate all concrete cross-domain gadgets on QEMU. For
each translation function, we trace the propagation of guest-
influenced GPAs along its call chain and record the contexts
where these translated values interact with host pointer op-
erations. This process yields 772 gadget instances, which
naturally cluster into eight major gadget families, each
representing a distinct translation semantic and operand-usage
pattern. Table VI in the appendix summarizes these families,
their representative APIs, and the underlying translation se-
mantics.

Overall, this analysis shows that GPA-to-HVA translation
logic is deeply embedded across hypervisor device-emulation
code, and both read/write and mapping APIs serve as sys-
tematic and recurring sources of cross-domain gadgets. The
large number and diversity of these gadgets highlight the
structural ease with which guest-controlled addresses permeate
hypervisor execution paths, underscoring the practicality of
constructing CDA attacks across a wide range of devices and
translation contexts.

B. Pointer Presence

Since our CDA exploitation pipeline relies on reusing
guest-derived pointers left in the hypervisor’s memory, the
availability and distribution of such pointers fundamentally
determine whether a corrupted host pointer can be redirected
to guest memory. To assess the feasibility of CDA across
real virtualization workloads, we perform a comprehensive
measurement of guest-pointer coverage in QEMU’s stack and
heap.

1) Stack Analysis: To evaluate where guest-derived pointers
naturally appear during hypervisor execution, we analyzed the
stacks of QEMU’s three major entry paths—MMIO (memory-
mapped I/O handlers), bh (bottom-half handlers), and timer
(timer callbacks)—and aggregate all guest-pointer residues
beneath their entry frames. Because MMIO uses a dedicated
VCPU-thread stack while bh and timer callbacks share the
main-loop stack, we analyzed them separately. MMIO handlers

0xe0 0x800 0x21c0 0x6320
Stack Offset (bytes)

0.0

0.5

(a) MMIO entry

0xe0 0x800 0x21c0 0x6320
Stack Offset (bytes)

0.0

0.5

(b) Timer/BH entry.

Fig. 11: Distribution and coverage of guest-derived pointers in
the QEMU stack.

0x0 0x10 0x4000 0x40000
Malloc size (bytes)

0% 100% 50% 0%

Fig. 12: Heap coverage of guest-derived pointers in QEMU.

are invoked on VM exits, whereas bh/timer callbacks
execute asynchronously on the main-loop thread. The resulting
heat-strip visualizations (Figure 11) reveal a consistent and
structured distribution pattern.

Across all entry paths, shallow stack frames (roughly
0–0x200) show relatively sparse residual pointers for
MMIO due to multiple initialization layers, whereas
bh/timer—invoked directly from the event loop—exhibit
noticeably denser activity in the same region. Mid-stack
frames (approximately 0x200–0x800) form a clear high-
density band for all entry types, corresponding to the
core device-emulation and DMA read/write routines that
frequently spill guest-HVA pointers. Beyond this point,
the 0x800–0x21c0 interval appears as a lighter, more
heterogeneous transition region. This segment contains fewer
residues and reflects device-specific behaviors; nonetheless,
residues still appear intermittently, providing occasional
placement candidates for CDA. A markedly different pattern
emerges in the deep stack region (around 0x21c0–0x6320).
As shown in the figure 11, this band extends even further
under bh/timer execution, where virtio backends produce
a long, continuous dark band driven by regularly structured
DMA and DMA-mapping APIs, which leave guest addresses
at both aligned and non-aligned offsets. This deep region is
not only broader but also more uniform for bh/timer than
MMIO, creating a large space where corrupted host pointers
can reliably be redirected into guest memory.

Overall, these stacked dense bands—spanning shallow, mid,
transition, and deep regions—show that QEMU repeatedly
leaves guest-derived pointers across large portions of its
execution stacks. Consequently, CDA remains feasible for
pointer corruptions occurring at a wide variety of stack depths,
regardless of the specific device or entry path involved.

2) Heap Analysis: We further examine where guest-derived
pointers appear in QEMU’s heap allocations. By grouping

10

allocations by size and visualizing pointer residues (Figure 12),
we observe a clear and highly structured pattern of coverage
across malloc size classes. Allocations in the 0x10–0x4000
range exhibit consistently full coverage, meaning guest-
controlled pointers can be positioned reliably at these sizes.
In the 0x4000–0x40000 range, coverage remains substan-
tial—typically around half of all possible positions—due to
regular spacing and layout properties of QEMU’s allocation
structures. Beyond these ranges, residues become scarce, and
coverage drops to zero.

Our measurement is based directly on malloc size classes,
reflecting how real heap manipulation works. In practice,
objects of the same allocation size can be reliably steered
into the same bins and co-located via standard heap fengshui
techniques. This allows an attacker to position a corrupted
heap object onto a chunk that already contains guest-pointer
residues, making matching feasible whenever the allocation
sizes align. Thus, evaluating coverage at the granularity of
malloc size directly indicates which heap objects can practi-
cally host residue-bearing chunks during exploitation.

A key observation is that a wide variety of virtio backends
naturally create elastic guest-pointer placement opportuni-
ties in these size classes: their internal structures and padding
patterns allow the guest to control both the size and align-
ment of embedded addresses, resulting in a broad, contiguous
spectrum of heap objects in which guest-HVA pointers can
be positioned. Importantly, these patterns are not tied to a
single data structure or device type; instead, they emerge
repeatedly across multiple virtio implementations, making the
effect systematic rather than device-specific. A representative
example illustrating this elastic layout behavior is provided in
Appendix C.

Since most heap objects involved in I/O processing fall
within these size ranges, nearly all heap-based pointer cor-
ruptions in QEMU can be paired with suitable guest-pointer
residues. Consistent with this observation, our automated
search identifies over a hundred residuable heap locations
within one hour, confirming that heap layouts provide exten-
sive and repeatable opportunities for CDA redirection.

C. Exploit Practicality

To comprehensively evaluate the practicality of our ap-
proach, we examined all pointer-corruption vulnerabilities
listed in Table I, and successfully exploited 15 vulnerabili-
ties in QEMU and VirtualBox. Our framework successfully
exercised all four CDA variants across a broad spectrum of
vulnerability classes, including heap overflows, out-of-bounds
accesses, UAF, double free, and uninitialized free, and across
diverse device types such as slirp, USB, NVMe, and multiple
virtio subsystems. Among the 15 evaluated vulnerabilities in
QEMU and VirtualBox, CDA enabled reliable exploitation in
all cases, including several vulnerabilities that had previously
been considered highly challenging to exploit in practice,
such as CVE-2021-3682, CVE-2020-2575, and Scavenger.
These results demonstrate that guest memory can serve as
a stable and reusable primitive when traditional host-centric

Guest

Host

Heap

Vulnerable
Structure

Fake Chunk

Exploitable
Structure

① free② add to
freelist

③ malloc

④ read/write

0x7f6917e00000

0x55dccacbd000

UAF!

Fig. 13: The workflow of QEMU NVMe case’s exploitation
based on the CDA attack.

strategies fail. The CDA variant used for each vulnerability is
summarized in Table III.

A closer examination of the variant distribution reveals
clear patterns that align with the structural characteristics of
different vulnerability types. CDAI most frequently appears
in out-of-bounds read vulnerabilities because redirecting a
corrupted pointer to guest memory naturally produces attacker-
controlled information leaks. CDAO is widely applicable to
overwrite-based bugs, where pointer-adjacent fields such as
lengths, flags, or buffer descriptors can be reliably redirected
to guest memory. CDAC often arises in UAF-style vulner-
abilities, including double free and uninitialized free, since
the attacker can steer guest-mapped chunks into the host’s
freelist and effectively convert guest objects into host-allocated
ones. CDAA appears less frequently because control-sensitive
function pointers are relatively sparse in hypervisor structures;
however, when such pointers exist, CDAA enables reliable
control-flow hijacking, as demonstrated in CVE-2020-2575
and CVE-2023-3180. These observations indicate that CDA
variants occur naturally based on the underlying bug structure,
and CDA provides a unified exploitation strategy that adapts
consistently across them.

Case Study: QEMU NVMe Uninitialized Free. The bug
occurs when an sglist structure is freed without proper
initialization, causing the hypervisor to free an attacker-
influenced pointer. Under conventional exploitation models,
the attacker would need to find a host-side structure that
matches the size and layout of sglist, place it at an ap-
propriate heap location, and identify device-specific primitives
capable of manipulating its pointer fields. These conditions are
difficult to satisfy in practice. CDA removes these obstacles.
As illustrated in Figure 13, our framework identifies a virtio-
based cross-domain gadget that leaves guest addresses in
allocator-sized chunks, representing the exploitable structures.
Through standard heap grooming, this gadget output is placed
into the host’s freelist, ensuring that the vulnerable sglist
structure receives a guest-derived pointer when allocated. Dur-
ing the uninitialized free, this guest-controlled fake chunk is
inserted into the host’s freelist and becomes indistinguishable
from a regular host allocation, giving the attacker full read-

11

TABLE III: We successfully exploited 15 real-world vulnerabilities using CDA, with 13 of them being in QEMU and 2 in
VirtualBox. Among them, we use A to represent executing weird machine (Fig 14a), I to represent information leakage (Fig
14b), O to represent overwriting critical data (Fig 14c), and C to represent chunk confusion (Fig 14d). These are the types of
CDA variants used for these vulnerabilities.

CVE id/Name Device Vulnerability Type CDA Variants Impact Success

QEMU

CVE-2019-6778 slirp Heap overflow O,C RCE ✓
CVE-2019-14378 slirp Heap overflow O,C RCE ✓
CVE-2020-7039 slirp Heap overflow O,C RCE ✓

CVE-2020-14364 USB OOB A,I RCE ✓
CVE-2021-3682 USB redirector device Mistake free O,C RCE ✓
CVE-2021-3929 Nvme UAF O,C RCE ✓
CVE-2023-3180 virtio-crypto Heap overflow A,I RCE ✓
CVE-2023-6693 virtio-net Stack overflow I Info leak ✓

Scavenger NVMe Uninitialized free O,C RCE ✓
Fixes: 1733eebb9e7 virtio-iommu OOB read I Info leak ✓

CVE-2024-3446 virtio-gpu Double free O,C RCE ✓
CVE-2024-8612 virtio-blk OOB read I Info leak ✓
Fixes: 62dbe54c virtio-sound Heap overflow A RCE ✓

VirtualBox CVE-2020-2575 usb-ohci Uninitialized heap A RCE ✓
CVE-2020-2758 VHWA UAF A,I RCE ✓

CVE id/Name Device Input Gen. Exploit Build

CVE-2024-3446 virtio-gpu 268 s 17.8 min
CVE-2024-8612 virtio-blk 274 s 18.3 min
CVE-2021-3682 USB-redir 517 s 19.2 min
Scavenger NVMe 531 s 14.6 min
CVE-2023-3180 virtio-crypto 522 s 18.9 min

TABLE IV: Dynamic runtime (10 runs) of input synthesizing
and exploit assemblying across representative vulnerabilities.

write access to a chunk now treated as host memory.
This transformation captures the core capability of CDAC.

Once the uninitialized free is redirected to a guest-controlled
chunk, the vulnerability becomes a stable UAF primitive that
already provides full attacker control over the freed object.
From this point onward, the remaining exploitation steps
follow well-established and standardized UAF exploitation
workflows, such as steering the reallocated chunk toward
security-critical structures or converting the primitive into
control-flow hijacking. When stronger capabilities are desired,
this UAF condition can also be transformed into other CDA
variants. CDAO enables metadata manipulation, CDAI enables
targeted information disclosure, and CDAA becomes possible
when a callable field is present. The NVMe case therefore
illustrates how CDA turns a structurally difficult vulnerability
into a reliable exploitation substrate, while still allowing
further capability escalation through other CDA variants when
needed.

Analysis of Failed Cases. During our evaluation, we also
analyzed the remaining cases in Table I where CDA was
not achieved. We manually examined all the listed pointer
corruption vulnerabilities and found that the failures generally
fall into two categories: (1) some corrupted pointers are never
dereferenced afterward, preventing further exploitation; (2) in
other cases, the corrupted values are not attacker-controllable,
making it infeasible to redirect it to a usable payload.

D. Overhead Analysis of the CDA

We measured the dynamic overhead of CDA by evalu-
ating two steps: input synthesizing (Sec.IV-C) and exploit
assembling (Sec.IV-D), as shown in IV. Five representative
vulnerabilities across QEMU and VirtualBox were selected
to cover typical device types and bug categories. For input
generation, we report the average time (ten runs) required
to find the first usable, low-noise cross-domain gadget. The
results show stable completion times ranging from 268 to 531
seconds, depending on gadget-family complexity. For exploit
building, the automated combination of primitives incurs neg-
ligible cost. However, a small manual adjustment is required to
realign heap-grooming offsets, since certain gadget-triggering
inputs introduce minor side effects that slightly shift the heap
layout. This validation step results in an overall average build
time of 14.6 to 19.2 minutes across vulnerabilities. Overall,
these measurements show that CDA incurs an acceptable and
predictable dynamic overhead, enabling end-to-end exploit
construction with manageable cost.

VI. DISCUSSION

A. Possible Defense Mechanism

Memory Access Control. We believe that preventing the
host from accessing guest memory by default could serve as a
viable defense strategy against CDA. In the kernel space, de-
fenses such as Supervisor Mode Execution Protection (SMEP)
and Supervisor Mode Access Prevention (SMAP) [18] already
prevent kernel-mode code from directly accessing user-mode
memory, effectively isolating different privilege levels. A
similar mechanism could be adopted in the hypervisor setting:
the host would be restricted from accessing guest memory
by default, with hardware enforcing a strong access barrier
between host and guest.

Such isolation would prevent unintended or malicious host
interactions with guest memory, significantly reducing the risk
of CDA exploits that rely on redirecting host pointers into

12

guest-controlled regions. However, certain operations—such as
device emulation or management tasks—legitimately require
the host to access guest memory. To support these needs
securely, access could be selectively permitted through ded-
icated APIs or hardware instructions that temporarily relax
the isolation under tightly controlled conditions. Inspired by
the STAC and CLAC instructions used by SMAP, hypervisors
could adopt similar mechanisms to grant temporary, auditable
access to guest memory only when explicitly invoked.

Gadget Reduction. An alternative line of defense focuses
on reducing the presence of cross-domain gadgets. To achieve
this, hypervisors should avoid storing raw guest-HVA pointers
in host memory. Instead, guest memory references can be
represented using opaque tokens such as handles or offsets,
have no direct dereference semantics. When memory access
is required, these tokens are resolved through a secure lookup
mechanism to obtain the corresponding HVA. Another com-
plementary approach is to cryptographically encode guest-
HVA pointers, similar to pointer authentication (PAC), before
storing them, and to decode them only upon verified use.
This ensures that no valid guest address remains in cleartext
within host memory, thereby preventing potential misuse.
These designs eliminate the presence of dereferenceable guest
addresses in host memory, thereby blocking a key prerequisite
for CDA-based exploitation.

B. Potential Existence of Additional Gadgets

Following a best-effort approach, we collected translation
functions from official documentation and validated them
through static analysis. However, undocumented routines may
still exist and inadvertently retain guest-HVA pointers, forming
implicit cross-domain gadgets beyond our current coverage.
While our analysis captures the major patterns observed in
practice, we acknowledge that additional cases could emerge
and warrant further investigation.

C. Limitations on Confidential VMs

While our CDA framework demonstrates effective cross
boundary exploitation in traditional virtualized environments,
its applicability to Confidential Virtual Machines (CVMs),
such as those protected by AMD SEV-SNP or Intel TDX,
is limited. These platforms enforce strict memory encryption
and isolation: guest memory and CPU state are encrypted
and integrity protected, so that the hypervisor or host cannot
directly read or modify guest data. As a result, key primitives
required by CDA will be restricted.

However, shared pages remain accessible in plaintext to
the host, such as GHCB pages, TDX shared buffers, and
virtio shared rings [19]. If the hypervisor does not properly
validate and constrain its use of these shared regions, CDA-
style attacks may still reappear, since the attacker fully controls
these buffers. Overall, although CVMs significantly reduce
the gadget surfaces and translation visibility needed by CDA,
the fundamental idea of cross-domain pointer manipulation
remains relevant and merits further exploration in isolation-
enhanced environments.

D. Applicability to KVM Integration

Within the QEMU virtualization setting considered in this
work, our scope is confined to the userspace portion, where
guest memory is mapped into the process address space and
exposed as host-side HVAs. At the same time, we note that
the KVM subsystem (Kernel-based Virtual Machine [20])
also maintains HVA pointers as part of its normal operation.
Although this work does not examine whether similar CDA-
like behaviors could arise at the kernel boundary, we do not
rule out this possibility. A systematic investigation of cross-
domain pointer interactions within pure KVM or other kernel-
level virtualization paths remains promising future work and
may reveal additional opportunities for understanding CDA
beyond the userspace components of the hypervisor.

E. Applicability to Other Scenarios

The core concept of CDA revolves around exploiting the
weak isolation between two distinct memory spaces. By taking
advantage of this weak separation, an attacker can manipulate
the memory layout of the target space by using the controllable
environment of their own space, thereby facilitating successful
exploitation. This approach is particularly dangerous because it
leverages the interaction between two spaces that lack rigorous
boundary validation, making a wide range of systems vulner-
able to this type of attack. Essentially, any environment where
two isolated memory spaces interact—such as Software Guard
Extensions (SGX), Trusted Execution Environments (TEE),
microservices architectures, and inter-process communication
systems—can be at risk if they do not enforce strict boundary
checks. The concept becomes especially effective in minimal-
istic or constrained architectures, where available primitives
are limited, but one space remains fully controllable by the
attacker. In such scenarios, where a weak boundary exists
between the interacting domains, an attacker can manipulate
one domain to influence the other, bypassing conventional
security defenses. The potential impact of CDA-style attacks
is broad, extending to any system where domain separation is
not rigorously maintained. This underscores the critical need
for robust boundary validation and strict isolation policies to
protect against such sophisticated attacks, as any weakness in
these areas could provide an entry point for exploitation.

VII. RELATED WORK

Hypervisor Vulnerability Discovery. In the field of vir-
tualization, vulnerability discovery has always been a focal
point for security researchers. Early efforts began with dump
fuzzing [21], [22], [23], followed by advancements in address-
ing data input issues [8], [10], [24], [25], and later incor-
porating generation of high-quality test case sequences [26],
[17], [27], [28] and hardware-assisted methods [29], [9].
For example, Hyper-Cube [24] utilizes a custom operating
system to achieve high-throughput, multi-dimensional fuzzing.
Nyx [29] employs full-system snapshots and a hardware-
assisted coverage framework to fuzz hypervisors. V-Shuttle [8]
uses DMA redirection to flatten nested structures, while MOR-
PHUZZ [10] reshapes the input space of virtual devices by

13

collecting feedback from the core hypervisor’s interface APIs.
ViDeZZo [17] leverages static analysis to extract dependencies
within and between messages. Over time, virtualization vul-
nerability discovery techniques have made significant progress.
However, vendors are increasingly focused on whether these
vulnerabilities can be exploited in cloud environments [30].

Kernel Exploitation. The development of kernel exploita-
tion techniques has progressed through several stages, gradu-
ally forming a rich methodological framework. Early research
primarily focused on bypassing various kernel protections to
ensure successful exploitation (e.g., [31], [32]). As the field
matured, the research focus shifted toward generating exploits
for specific vulnerabilities, exemplified by tools like Collision,
Fuze, Koobe, and Exprace [33], [34], [35], [36], [37], [38],
[39], driving significant advancements in the precision and
stability of exploit generation. Building on this foundation,
further research has focused on enhancing the stability of heap
exploitation [40], [41] and actively exploring new exploita-
tion primitives [42], [11], [43], [44], [45]. New exploitation
methods continue to emerge, such as the DirtyCred and
PSpray techniques [46], [47], injecting fresh perspectives into
kernel exploitation. Meanwhile, the advent of the Automated
Exploit Generation (AEG) technology has further increased
automation [48], [49], making exploitation more efficient and
accessible. These advancements indicate that kernel exploita-
tion has now established a solid technical foundation and a
mature toolkit. By comparison, exploitation in virtualization
systems remains far less developed. Although cross-domain
ideas such as ret2usr [32] show how kernels can redirect
execution into user memory, these techniques do not translate
to hypervisors, which lack direct access to guest memory and
must instead rely on GPA-to-HVA translation. CDA is novel in
that it systematically reveals when hypervisors unintentionally
reintroduce guest-HVA pointers into host memory, formalizes
these behaviors into four semantic variants, and turns guest
memory into a practical, reusable exploitation substrate.

Hypervisor Exploitation. Current VM-to-hypervisor ex-
ploitation research has produced numerous practical VM-
escape attacks across both open-source and proprietary hy-
pervisors—including QEMU [3], [2], [16], [50], [51], Virtual-
Box [52], [53], VMware [6], [7], [5], [13], [54], and ESXi [4].
These attacks span virtual devices, network stacks, and shared
services and primarily rely on identifying exploitable host-
side structures such as function pointers or corrupted ob-
jects. As a result, prior techniques remain highly ad-hoc,
heavily dependent on expert-crafted primitives, and tied to
specific host-resident artifacts. Moreover, existing work is
almost entirely host-centric, treating guest memory only as
attacker input rather than as a first-class exploitation substrate.
Although prior studies (e.g., [16]) showed isolated cases where
hypervisors may dereference guest-controlled addresses, they
did not characterize the underlying conditions, generality, or
semantic variants of such cross-domain behaviors. CDA de-
parts fundamentally from these earlier VM-to-hypervisor
attacks by systematizing this phenomenon: we identify the
root causes of cross-domain pointer flows, formalize four

canonical variants based on pointer-use semantics, and demon-
strate that these opportunities arise broadly across hypervisor
codebases. This work therefore elevates CDA from scattered
empirical observations to a general, structured exploitation
paradigm—a perspective not captured in prior literature.

VIII. CONCLUSION

In virtualization environments, exploiting pointer corruption
vulnerabilities is particularly challenging due to the scarcity of
exploitable data structures in the host. Traditional techniques
often lack a stable foothold for redirecting corrupted pointers,
limiting their effectiveness. In this paper, we provide the first
systematic characterization of CDA, which leverages weak
guest-host isolation to redirect corrupted host pointers to
attacker-controlled payloads in guest memory. Our findings re-
veal that cross-domain attacks pose a significant and emerging
threat to the security of existing virtualization infrastructures.
This transforms guest memory into a reusable and controllable
primitive for exploitation. Additionally, we develop an auto-
mated system to identify cross-domain gadgets and construct
exploitation chains, demonstrating the approach’s practicality
across real-world hypervisors. We hope this work raises aware-
ness in the virtualization and cloud security communities. We
hope this work raises awareness in the virtualization and cloud
security communities about the risks of implicit trust in guest
memory and motivates stronger isolation mechanisms.

ETHICS CONSIDERATION

In conducting our research, we focus exclusively on known
hypervisor vulnerabilities, all of which have already been
patched by vendors. Furthermore, all experiments are con-
ducted in controlled local environments, fully isolated from
any public cloud infrastructure. As such, our work does not
pose any risk to production systems or real-world deploy-
ments, and does not raise any ethical concerns. In addition,
we have proactively communicated our findings to the QEMU
development team to discuss the broader implications of CDA
and potential mitigation strategies. While the developers are
still assessing the long-term impact, we have proposed several
mitigation directions based on our analysis.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments on our work. This work is supported by the Funda-
mental Research Funds for the Provincial Universities of Zhe-
jiang (No.GK259909299001-004), the National Natural Sci-
ence Foundation of China (Grants No.62402147, U2441239,
U24A20336, 62172243, 62402425 and 62402418), the China
Postdoctoral Science Foundation under No.2024M762829,
the Zhejiang Provincial Natural Science Foundation un-
der No.LD24F020002, the "Pioneer" and "Leading Goose"
R&D Program of Zhejiang, China (Grant No.2025C02261,
2025C02263, 2025C02033 and 2025C01082), the Zhejiang
Provincial Priority-Funded Postdoctoral Research Project un-
der No.ZJ2024001, and Zhejiang Provincial Key Laboratory
for Sensitive Data Security Protection and Confidentiality
Management No.2024E10048.

14

REFERENCES

[1] A. Desai, R. Oza, P. Sharma, and B. Patel, “Hypervisor: A survey on
concepts and taxonomy,” International Journal of Innovative Technology
and Exploring Engineering, vol. 2, no. 3, pp. 222–225, 2013.

[2] Z. Shao, J. Weng, and Y. Zhang, “3d red pill: A guest-to-host escape
on qemu/kvm virtio devices,” Black Hat Asia, 2020.

[3] N. Elhage, “Virtunoid: A kvm guest! host privilege escalation exploit,”
Black Hat USA, vol. 2011, 2011.

[4] H. Zhao, Y. Zhang, K. Yang, and T. Kim, “Breaking turtles all the way
down: An exploitation chain to break out of vmware esxi.” in WOOT@
USENIX Security Symposium, 2019.

[5] “Pwning vmware, part 2: Zdi-19-421, a uhci bug, 2020,” https://nafod.
net/blog/2020/02/29/zdi-19-421-uhci.html, 2020.

[6] “Speedpwning vmware workstation,” https://www.synacktiv.com/sites/
default/files/2020-10/Speedpwning_VMware_Workstation.pdf, 2020.

[7] “The great escapes of vmware: A retrospective case study of vmware
guest-to-host escape vulnerabilities,” https://www.blackhat.com/docs/eu
-17/materials/eu-17-Mandal-The-Great-Escapes-Of-Vmware-A-Ret
rospective-Case-Study-Of-Vmware-G2H-Escape-Vulnerabilities.pdf,
2017.

[8] G. Pan, X. Lin, X. Zhang, Y. Jia, S. Ji, C. Wu, X. Ying, J. Wang,
and Y. Wu, “V-shuttle: Scalable and semantics-aware hypervisor virtual
device fuzzing,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, 2021, pp. 2197–2213.

[9] A. Bulekov, Q. Liu, M. Egele, and M. Payer, “{HYPERPILL}: Fuzzing
for hypervisor-bugs by leveraging the hardware virtualization interface,”
in 33rd USENIX Security Symposium (USENIX Security 24), 2024, pp.
919–935.

[10] A. Bulekov, B. Das, S. Hajnoczi, and M. Egele, “Morphuzz: Bend-
ing (input) space to fuzz virtual devices,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 1221–1238.

[11] Y. Chen, Z. Lin, and X. Xing, “A systematic study of elastic objects
in kernel exploitation,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp.
1165–1184.

[12] D. Xie, D. He, W. You, J. Huang, B. Liang, S. Gan, and W. Shi,
“Bridgerouter: Automated capability upgrading of out-of-bounds write
vulnerabilities to arbitrary memory write primitives in the linux kernel,”
in 2025 IEEE Symposium on Security and Privacy (SP). IEEE, 2025,
pp. 810–828.

[13] “A ctf-style escape journey on vmware workstation,” https://hitcon.org
/2020/slides/A%20CTF-Stype%20Escape%20Journey%20on%20VMw
are%20Workstation.pdf, 2020.

[14] “Convert the format of an image in alibaba cloud,” https://www.alibab
acloud.com/help/en/ecs/user-guide/convert-the-format-of-an-image,
2025.

[15] Z. Ma, Q. Liu, Z. Li, T. Yin, W. Tan, C. Zhang, and M. Payer, “Truman:
Constructing device behavior models from os drivers to fuzz virtual
devices,” in 32nd Annual Network and Distributed System Security
Symposium, NDSS, 2025, pp. 24–28.

[16] G. Pan, X. Lin, X. Ying, J. Wang, and C. Wu, “Scavenger: Misuse error
handling leading to qemu/kvm escape,” Black Hat Asia, 2021.

[17] Q. Liu, F. Toffalini, Y. Zhou, and M. Payer, “Videzzo: Dependency-
aware virtual device fuzzing,” in 2023 IEEE Symposium on Security
and Privacy (SP). IEEE, 2023, pp. 3228–3245.

[18] “Supervisor mode access prevention,” https://en.wikipedia.org/wiki/Su
pervisor_Mode_Access_Prevention, 2023.

[19] “Confidential computing 101,” https://docs.enclaive.cloud/confidenti
al-cloud/technology-in-depth/amd-sev/technology/fundamentals#:~:
text=In%20standard%20use%20cases%2C%20VMs,for%20securing%2
0I/O%20traffic.&text=AMD%20SEV%20VMs%20determine%20wheth
er,various%20threats%20in%20virtualized%20environments, 2024.

[20] “Kernel virtual machine,” https://linux-kvm.org/page/Main_Page, 2025.
[21] S. Bleikertz, “Xenfuzz,” https://www.openfoo.org/blog/xen-fuzz.html,

2021.
[22] “Viridian fuzzer,” https://github.com/mwrlabs/ViridianFuzzer, 2021.
[23] M. Gorobets, O. Bazhaniuk, A. Matrosov, A. Furtak, and Y. Bulygin,

“Attacking hypervisors via firmware and hardware,” Black Hat USA,
2015.

[24] S. Schumilo, C. Aschermann, A. Abbasi, S. Wörner, and T. Holz,
“Hyper-cube: High-dimensional hypervisor fuzzing.” in NDSS, 2020.

[25] A. Henderson, H. Yin, G. Jin, H. Han, and H. Deng, “Vdf: Targeted
evolutionary fuzz testing of virtual devices,” in Research in Attacks,
Intrusions, and Defenses: 20th International Symposium, RAID 2017,
Atlanta, GA, USA, September 18–20, 2017, Proceedings. Springer,
2017, pp. 3–25.

[26] C. Myung, G. Lee, and B. Lee, “{MundoFuzz}: Hypervisor fuzzing with
statistical coverage testing and grammar inference,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 1257–1274.

[27] Y. Liu, S. Chen, Y. Xie, Y. Wang, L. Chen, B. Wang, Y. Zeng,
Z. Xue, and P. Su, “Vd-guard: Dma guided fuzzing for hypervisor
virtual device,” in 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2023, pp. 1676–1687.

[28] Z. Zhang, G. Pan, R. Wang, Y. Tao, Z. Pan, C. Tu, M. Zhang,
Y. Li, Y. Shen, and C. Wu, “Insvdf: Interface-state-aware virtual device
fuzzing,” in 2025 IEEE/ACM 47th International Conference on Software
Engineering (ICSE). IEEE Computer Society, 2025, pp. 727–727.

[29] S. Schumilo, C. Aschermann, A. Abbasi, S. Wörner, and T. Holz, “Nyx:
Greybox hypervisor fuzzing using fast snapshots and affine types,” in
30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
2597–2614.

[30] S. E. Marios Pomonis, “Virtual escape; real reward: Introducing google’s
kvmctf,” https://security.googleblog.com/2024/06/virtual-escape-real-r
eward-introducing.html, 2024.

[31] R. Hund, T. Holz, and F. C. Freiling, “Return-oriented rootkits: Bypass-
ing kernel code integrity protection mechanisms,” in USENIX security
symposium, 2009, pp. 383–398.

[32] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:
Rethinking kernel isolation,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 957–972.

[33] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu, “From
collision to exploitation: Unleashing use-after-free vulnerabilities in
linux kernel,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, 2015, pp. 414–425.

[34] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “{FUZE}:
Towards facilitating exploit generation for kernel use-after-free vulnera-
bilities,” in 27th {USENIX} Security Symposium ({USENIX} Security
18), 2018, pp. 781–797.

[35] W. Chen, X. Zou, G. Li, and Z. Qian, “Koobe: Towards facilitating
exploit generation of kernel out-of-bounds write vulnerabilities,” in
Proceedings of the 29th USENIX Conference on Security Symposium,
2020, pp. 1093–1110.

[36] Y. Lee, C. Min, and B. Lee, “Exprace: Exploiting kernel races through
raising interrupts.” in USENIX Security Symposium, 2021, pp. 2363–
2380.

[37] W. Wu, Y. Chen, X. Xing, and W. Zou, “Kepler: Facilitating control-
flow hijacking primitive evaluation for linux kernel vulnerabilities.” in
USENIX Security Symposium, 2019, pp. 1187–1204.

[38] K. Lu, M.-T. Walter, D. Pfaff, S. Nümberger, W. Lee, and M. Backes,
“Unleashing use-before-initialization vulnerabilities in the linux kernel
using targeted stack spraying.” in NDSS, 2017.

[39] H. Cho, J. Park, J. Kang, T. Bao, R. Wang, Y. Shoshitaishvili, A. Doupé,
and G.-J. Ahn, “Exploiting uses of uninitialized stack variables in linux
kernels to leak kernel pointers,” in 14th USENIX Workshop on Offensive
Technologies (WOOT 20), 2020.

[40] Y. Chen and X. Xing, “Slake: Facilitating slab manipulation for exploit-
ing vulnerabilities in the linux kernel,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019,
pp. 1707–1722.

[41] K. Zeng, Y. Chen, H. Cho, X. Xing, A. Doupé, Y. Shoshitaishvili,
and T. Bao, “Playing for {K (H) eaps}: Understanding and improving
linux kernel exploit reliability,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 71–88.

[42] I. Yun, D. Kapil, and T. Kim, “Automatic techniques to systematically
discover new heap exploitation primitives,” in Proceedings of the 29th
USENIX Conference on Security Symposium, 2020, pp. 1111–1128.

[43] J. Koschel, P. Borrello, D. C. D’Elia, H. Bos, and C. Giuffrida,
“Uncontained: Uncovering container confusion in the linux kernel,” in
32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
5055–5072.

[44] R. Wang, K. Chen, C. Zhang, Z. Pan, Q. Li, S. Qin, S. Xu, M. Zhang,
and Y. Li, “{AlphaEXP}: An expert system for identifying {Security-
Sensitive} kernel objects,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 4229–4246.

15

https://nafod.net/blog/2020/02/29/zdi-19-421-uhci.html
https://nafod.net/blog/2020/02/29/zdi-19-421-uhci.html
https://www.synacktiv.com/sites/default/files/2020-10/Speedpwning_VMware_Workstation.pdf
https://www.synacktiv.com/sites/default/files/2020-10/Speedpwning_VMware_Workstation.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Mandal-The-Great-Escapes-Of-Vmware-A-Retrospective-Case-Study-Of-Vmware-G2H-Escape-Vulnerabilities.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Mandal-The-Great-Escapes-Of-Vmware-A-Retrospective-Case-Study-Of-Vmware-G2H-Escape-Vulnerabilities.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Mandal-The-Great-Escapes-Of-Vmware-A-Retrospective-Case-Study-Of-Vmware-G2H-Escape-Vulnerabilities.pdf
https://hitcon.org/2020/slides/A%20CTF-Stype%20Escape%20Journey%20on%20VMware%20Workstation.pdf
https://hitcon.org/2020/slides/A%20CTF-Stype%20Escape%20Journey%20on%20VMware%20Workstation.pdf
https://hitcon.org/2020/slides/A%20CTF-Stype%20Escape%20Journey%20on%20VMware%20Workstation.pdf
https://www.alibabacloud.com/help/en/ecs/user-guide/convert-the-format-of-an-image
https://www.alibabacloud.com/help/en/ecs/user-guide/convert-the-format-of-an-image
https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention
https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention
https://docs.enclaive.cloud/confidential-cloud/technology-in-depth/amd-sev/technology/fundamentals#:~:text=In%20standard%20use%20cases%2C%20VMs,for%20securing%20I/O%20traffic.&text=AMD%20SEV%20VMs%20determine%20whether,various%20threats%20in%20virtualized%20environments
https://docs.enclaive.cloud/confidential-cloud/technology-in-depth/amd-sev/technology/fundamentals#:~:text=In%20standard%20use%20cases%2C%20VMs,for%20securing%20I/O%20traffic.&text=AMD%20SEV%20VMs%20determine%20whether,various%20threats%20in%20virtualized%20environments
https://docs.enclaive.cloud/confidential-cloud/technology-in-depth/amd-sev/technology/fundamentals#:~:text=In%20standard%20use%20cases%2C%20VMs,for%20securing%20I/O%20traffic.&text=AMD%20SEV%20VMs%20determine%20whether,various%20threats%20in%20virtualized%20environments
https://docs.enclaive.cloud/confidential-cloud/technology-in-depth/amd-sev/technology/fundamentals#:~:text=In%20standard%20use%20cases%2C%20VMs,for%20securing%20I/O%20traffic.&text=AMD%20SEV%20VMs%20determine%20whether,various%20threats%20in%20virtualized%20environments
https://docs.enclaive.cloud/confidential-cloud/technology-in-depth/amd-sev/technology/fundamentals#:~:text=In%20standard%20use%20cases%2C%20VMs,for%20securing%20I/O%20traffic.&text=AMD%20SEV%20VMs%20determine%20whether,various%20threats%20in%20virtualized%20environments
https://linux-kvm.org/page/Main_Page
https://www.openfoo.org/blog/xen-fuzz.html
https://github.com/mwrlabs/ViridianFuzzer
https://security.googleblog.com/2024/06/virtual-escape-real-reward-introducing.html
https://security.googleblog.com/2024/06/virtual-escape-real-reward-introducing.html

[45] E. Avllazagaj, Y. Kwon, and T. Dumitras, , “{SCAVY}: Automated
discovery of memory corruption targets in linux kernel for privilege
escalation,” in 33rd USENIX Security Symposium (USENIX Security
24), 2024, pp. 7141–7158.

[46] Z. Lin, Y. Wu, and X. Xing, “Dirtycred: Escalating privilege in linux
kernel,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 1963–1976.

[47] Y. Lee, J. Kwak, J. Kang, Y. Jeon, and B. Lee, “Pspray: Timing {Side-
Channel} based linux kernel heap exploitation technique,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 6825–
6842.

[48] S. Heelan, T. Melham, and D. Kroening, “Automatic heap layout
manipulation for exploitation,” in 27th {USENIX} Security Symposium
({USENIX} Security 18), 2018, pp. 763–779.

[49] Y. Wang, C. Zhang, Z. Zhao, B. Zhang, X. Gong, and W. Zou, “Maze:
Towards automated heap feng shui.” in USENIX Security Symposium,
2021, pp. 1647–1664.

[50] “Venom: (cve-2015-3456),” https://access.redhat.com/zh_CN/articles/1
447963, 2015.

[51] Q. Li, G. Pan, H. He, and C. Wu, “Matryoshka trap: Recursive mmio
flaws lead to vm escape.”

[52] “Breaking out of the box: Technical analysis of virtualbox vm escape
with windows lpe,” https://www.synacktiv.com/sites/default/files/2023-1
0/hexacon_breaking_out_of_the_box.pdf, 2023.

[53] “Pwn2own 2020: Oracle virtualbox escape,” https://starlabs.sg/blog/202
0/09-pwn2own-2020-oracle-virtualbox-escape/, 2020.

[54] “Urb excalibur: The new vmware all-platform vm escapes,” https://i.bl
ackhat.com/Asia-24/Presentations/Asia-24-Jiang-URB-Excalibur-The
-New-VMware-All-Platform-VM-Escapes.pdf, 2024.

APPENDIX A
ADDRESS TRANSLATION FUNCTIONS

Table V lists the hypervisor functions responsible for guest
physical address (GPA) to host virtual address (HVA) trans-
lation across two widely used virtualization platforms. In
QEMU, this functionality is implemented by functions such as
address_space_map() and other variants, which manage
memory mapping and access for guest memory regions. In
VirtualBox, similar roles are performed by functions such as
PGMPhysWrite() and PGMR3PhysBulkGCPhys2CCPtrE
xternal(), which provide fine-grained control over guest-to-
host address resolution and data access.

Category Translation Functions

QEMU

address_space_map();
address_space_unmap();
address_space_read_full();
address_space_read();
address_space_write();

Virtualbox

PGMPhysWrite(); PGMPhysRead();
PGMR3PhysBulkGCPhys2CCPtrExternal();
PGMR3PhysBulkGCPhys2CCPtrReadOnlyExternal();
PGMR3PhysGCPhys2CCPtrExternal();

TABLE V: Hypervisor address translation functions.

APPENDIX B
CDA VARIANTS

We summarize four variants of CDA, categorized by the
usage context of the corrupted pointer—namely when the
vulnerable code performs a free, call, read, or write operation
on it—which collectively cover all possible exploitation effects
of CDA, as detailed below:

1) Arbitrary Code Execution (CDAA): We begin by in-
troducing the first CDA variant: arbitrary code execution, as
illustrated in Figure 14a. This variant targets cases where a
pointer corruption vulnerability results in a corrupted function
pointer, which is subsequently dereferenced by the hypervisor.
Instead of attempting to locate a valid function address within
the host—an approach made difficult by ASLR, limited code
reuse gadgets—CDA takes a more flexible path by redirecting
the corrupted pointer to guest memory. Guest memory, while
isolated from the guest’s perspective, is still directly accessible
by the host. Thus, once the corrupted function pointer is
invoked, the control flow is transparently transferred to an
attacker-controlled region in guest space, where a staged
shellcode resides. This effectively bypasses the need for re-
liable host-side code reuse primitives or shellcode injection
mechanisms.

2) Information Leakage (CDAI): Next, we introduce the
second CDA variant: sensitive information leakage, as illus-
trated in Figure 14b. This scenario arises when a pointer
corruption vulnerability leaves behind a corrupted data pointer
that is later used in a write operation. Instead of pointing
to a legitimate buffer in host memory, CDA redirects this

16

https://access.redhat.com/zh_CN/articles/1447963
https://access.redhat.com/zh_CN/articles/1447963
https://www.synacktiv.com/sites/default/files/2023-10/hexacon_breaking_out_of_the_box.pdf
https://www.synacktiv.com/sites/default/files/2023-10/hexacon_breaking_out_of_the_box.pdf
https://starlabs.sg/blog/2020/09-pwn2own-2020-oracle-virtualbox-escape/
https://starlabs.sg/blog/2020/09-pwn2own-2020-oracle-virtualbox-escape/
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Jiang-URB-Excalibur-The-New-VMware-All-Platform-VM-Escapes.pdf
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Jiang-URB-Excalibur-The-New-VMware-All-Platform-VM-Escapes.pdf
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Jiang-URB-Excalibur-The-New-VMware-All-Platform-VM-Escapes.pdf

uint32_t *func_ptr; // corrupted address

func_ptr = guest_address; // vulnerable point

(*func_ptr)(); // exploit point

Hypervisor Code

Shellcode

Guest Memory

Arbitrary Code
Execution

(a) Example illustrating how CDA causes arbitrary code execution.

uint32_t *data_ptr; // corrupted address

data_ptr = guest_address; // vulnerable point

memcpy(data_ptr, key_data); // exploit point

Hypervisor Code Guest Memory

Information
Leakage

(b) Example illustrating how CDA can leak information.

uint32_t *data_ptr; // corrupted address

data_ptr = guest_address; // vulnerable point

len = data_ptr->len; // exploit point

Hypervisor Code

Malicious Data

Guest Memory

Overwrite
Critical Data

(c) Example illustrating how CDA can overwrite critical data.

uint32_t *data_ptr; // corrupted address

data_ptr = guest_address; // vulnerable point

free(data_ptr); // exploit point

Hypervisor Code

Fake Chunk

Guest Memory

Chunk
Confusion

Added to
Host’s Freelist// Or: fd → guest address → next alloc to guest

(d) Example illustrating how CDA can craft chunk confusion.

Fig. 14: CDA variants to exploit pointer corruption vulnerabilities.

pointer to an attacker-controlled address within the guest
memory space. As a result, when the hypervisor writes data
to the corrupted pointer, it unintentionally writes directly
into guest memory—effectively leaking sensitive information
from the host to the guest. This variant enables a side-effect-
free and stealthy data exfiltration channel, without requiring
any interaction through standard I/O mechanisms such as
DMA buffers or MMIO transactions. Traditional interfaces
often impose strict constraints, such as requiring pre-allocated
transfer objects, matching data formats, or bounded transfer
sizes. CDA bypasses these limitations and eliminates the need
for additional communication logic.

3) Critical Data Overwriting (CDAO): We now present the
third CDA variant: critical data overwriting, as illustrated in
Figure 14c. In this scenario, a pointer corruption vulnerability
leaves behind a corrupted data pointer that is later used in a
read operation. CDA redirects this pointer to guest memory,
causing the hypervisor to read attacker-controlled data directly
from the guest space. As a result, the guest-controlled input is
implicitly trusted and used to update sensitive fields within the
hypervisor. This variant effectively allows the attacker to inject
arbitrary values into critical data structures without the need
for traditional write primitives. Since the guest space is entirely
under the attacker’s control, the attacker can craft malicious
data with fine-grained control over content, layout, and size,
making the overwrite both precise and stealthy. By abusing
the host’s implicit trust in the source of a read operation,
this variant converts a seemingly benign data corruption into a
powerful logic corruption primitive, enabling further exploita-
tion such as privilege manipulation, control flag flipping, or
fake object injection.

4) Chunk Confusion (CDAC): Finally, we describe the last
CDA variant: chunk confusion, as illustrated in Figure 14d.
This attack occurs when the corrupted address produced by
a pointer corruption vulnerability is involved in memory
allocation or deallocation, leading to inconsistencies in the
hypervisor’s heap management logic. We formalize two rep-
resentative scenarios:

(1) If the corrupted address is used in a free() operation,
CDA redirects it to guest memory, causing the hypervisor to

erroneously free an attacker-crafted fake chunk residing in the
guest space. This fake chunk is then inserted into the host’s
freelist and treated as a valid memory region by the host-
side allocator. As a result, future memory allocation requests
from the hypervisor may return pointers to guest memory,
allowing the attacker to gain full read/write access to sensitive
host data structures allocated on top of it. This effectively
enables a guest-assisted heap spraying primitive, leveraging
the hypervisor’s own memory manager.

(2) Similarly, when the corrupted value affects heap meta-
data—such as a manipulated fd pointer in a free chunk—CDA
can redirect the allocator’s next chunk candidate into guest
space. During the next allocation, the hypervisor mistakenly
allocates memory from the attacker-controlled guest region.
This allows the guest to pre-position payloads or metadata that
will later be interpreted as legitimate host structures, enabling
logic corruption or type confusion attacks without violating
memory access protections.

These two patterns demonstrate how CDA can subvert the
hypervisor’s memory allocator by injecting crafted objects
from the guest domain, enabling precise control over the
heap layout and allocation behavior in host space. Unlike
traditional heap exploits that require complex heap feng shui
in host memory, CDA provides a lightweight and deterministic
alternative.

APPENDIX C
EXAMPLE OF ELASTIC CROSS-DOMAIN GADGET

To illustrate the versatility of elastic cross-domain gadgets,
we present a representative example from the virtio-GPU
device. As shown in Figure 15, the device allocates a data
structure whose size is directly controlled by the guest (line
3). This structure contains an array of iovec entries, each
embedding a length field (line 7) and a guest physical address
(line 8). The resulting layout forms a one-to-one mapping table
of guest addresses, with entries spaced at regular 0x10-byte
intervals.

Because both the total allocation size and the number of
embedded guest addresses are determined by the guest, this
layout acts as a highly flexible elastic cross-domain gadget,
capable of adjusting its size, alignment, and pointer positions

17

TABLE VI: Summary of cross-domain gadgets in the QEMU: Each gadget is triggered by a guest-controllable field and mapped
to host address space via MMIO or Timer/BH mechanisms.

Gadget Family Upper Function Translation Function HVA Variable GPA Source Field Trigger Type Count

DMA gadget

dma_memory_map address_space_map ad→lst AHCIPortRegs→fis_addr MMIO (4), BH (0) 4
pci_dma_map address_space_map ring→page txd.addr MMIO (10), BH (0) 10
dma_memory_read address_space_read_full ram_ptr s→tx_descriptor MMIO (81), BH (21) 102
dma_memory_write address_space_write ram_ptr s→tx_descriptor MMIO (91), BH (16) 107

USB gadget

usb_packet_map address_space_map packet→iov sgl→sg[num_sg].base MMIO (3), BH (11) 14
get_dwords address_space_read_full ram_ptr q→qhaddr MMIO (1), BH (35) 36
put_dwords address_space_write ram_ptr q→qhaddr MMIO (2), BH (44) 46
xhci_dma_read_u32s address_space_read_full ram_ptr sctx→pctx MMIO (22), BH (8) 30
xhci_dma_write_u32s address_space_write ram_ptr sctx→pctx MMIO (17), BH (4) 21
xhci_write_event address_space_write ram_ptr intr→er_start MMIO (17), BH (5) 22

Virtio gadget virtqueue_map_desc address_space_map iov[num_sg].iov_base desc[num_sg].addr MMIO (40), BH (16) 56
virtio_gpu_create_mapping_iov address_space_map iov[num_sg].iov_base desc[num_sg].addr MMIO (0), BH (2) 2

Display gadget cpu_physical_memory_map address_space_map data s→dispc.l[0].addr[0] MMIO (1), BH (0) 1

Block device gadget dma_blk_cb address_space_map dbs→iov req→sg.qsg MMIO (4), BH (6) 10

SCSI gadget lsi_mem_read address_space_read ram_ptr s→dsp MMIO (4), BH (0) 4
lsi_mem_write address_space_write ram_ptr s→dsp MMIO (4), BH (0) 4

PCI gadget pci_dma_read address_space_read_full ram_ptr r→bdbar MMIO (59), BH (120) 179
pci_dma_write address_space_write ram_ptr desc.buffer_addr MMIO (42), BH (22) 64

SDHCI gadget
sdhci_do_adma address_space_read_full ram_ptr dscr.addr MMIO (12), BH (2) 14
sdhci_sdma_transfer_multi_blocks address_space_read_full ram_ptr s→sdmasysad MMIO (9), BH (1) 10
sdhci_sdma_transfer_multi_blocks address_space_write ram_ptr desc.buffer_addr MMIO (9), BH (1) 10

Total 772

1 int virtio_gpu_create_mapping_iov(VirtIOGPU *g
↪→ , uint32_t nr_entries, struct iovec **
↪→ iov)

2 {
3 *iov = g_malloc0(sizeof(struct iovec) *

↪→ nr_entries);
4 for (i = 0; i < nr_entries; i++) {
5 uint64_t addr = ents[i].addr;
6 uint32_t len = ents[i].length;
7 (*iov)[i].iov_len = len;
8 (*iov)[i].iov_base =

↪→ dma_memory_map(addr, &len);
9 }

10 return 0;
11 }

Fig. 15: A elastic gadget in
virtio_gpu_create_mapping_iov that calls
dma_memory_map with a guest-provided address addr
and length len. The return value is stored in iov_base,
forming a host-accessible pointer derived from guest input.

to match diverse heap-based exploitation needs. Importantly,
similar elastic patterns emerge across multiple virtio backends,
indicating that this capability is inherent to their allocation and
structure design rather than a device-specific anomaly.

APPENDIX D
DETAILED CROSS-DOMAIN GADGETS

To support our analysis of CDA, we provide a comprehen-
sive breakdown of gadget instances across various device sub-
systems. Table VI summarizes 776 gadget instances identified
in our study, categorized by gadget family, trigger function
pair, and their guest-controlled GPA source field.

18

	Introduction
	Background
	Workflow of Hypervisor Exploitation
	Guest Memory Management
	Exploiting Pointer Corruption Vulnerabilities
	Scope and Assumption

	Motivation and Our Exploitation
	A Running Example
	Our Exploitation

	Methodology
	Identifying Cross-Domain Gadgets
	Matching Paired Gadgets
	Synthesizing Gadget-triggering Inputs
	Assembling Exploit Chains
	Extensibility and Portability

	Evaluation
	Gadget Prevalence
	Pointer Presence
	Stack Analysis
	Heap Analysis

	Exploit Practicality
	Overhead Analysis of the CDA

	Discussion
	Possible Defense Mechanism
	Potential Existence of Additional Gadgets
	Limitations on Confidential VMs
	Applicability to KVM Integration
	Applicability to Other Scenarios

	Related Work
	Conclusion
	References
	Appendix A: Address Translation Functions
	Appendix B: CDA Variants
	Arbitrary Code Execution (CDAA)
	Information Leakage (CDAI)
	Critical Data Overwriting (CDAO)
	Chunk Confusion (CDAC)

	Appendix C: Example of Elastic Cross-Domain Gadget
	Appendix D: Detailed Cross-Domain Gadgets

