
Decompiling the Synergy:
An Empirical Study of Human–LLM Teaming in

Software Reverse Engineering
Zion Leonahenahe Basque∗, Samuele Doria†, Ananta Soneji∗, Wil Gibbs∗, Adam Doupé∗,

Yan Shoshitaishvili∗, Eleonora Losiouk†, Ruoyu Wang∗, Simone Aonzo‡
∗Arizona State University

†University of Padua
‡EURECOM

{zbasque, asoneji, wfgibbs, doupe, yans, fishw}@asu.edu
sdoria@math.unipd.it, eleonora.losiouk@unipd.it

simone.aonzo@eurecom.fr

Abstract—Large Language Models (LLMs) are revolutionizing
fields previously dominated by human effort. This work presents
the first systematic investigation of how LLMs can team with
analysts during software reverse engineering (SRE). To accom-
plish this, we first document the state of LLMs in SRE with an
online survey of 153 practitioners, and then we design a fine-
grained human study on two Capture-The-Flag-style binaries
representative of real-world software.

In our human study, we instrumented the SRE workflow
of 48 participants (split between 24 novices and 24 experts),
observing over 109 hours of SRE. Through 18 findings, we found
various benefits and harms of LLMs in SRE. Remarkably, we
found that LLM assistance narrows the expertise gap: novices’
comprehension rate rises by approximately 98%, matching that
of experts, whereas experts gain little; however, they also had
harmful hallucinations, unhelpful suggestions, and ineffective
results. Known-algorithm functions are triaged up to 2.4× faster,
and artifact recovery (symbols, comments, types) increases by at
least 66%. Overall, our findings identify powerful synergies of
humans and LLMs in SRE, but also emphasize the significant
shortcomings of LLMs in their current integration.

I. INTRODUCTION

The first step to securing software is understanding it;
after all, complex tasks such as finding unintended program
behavior first require comprehending its intended behavior. In
the modern age, programs are developed at breakneck speeds,
requiring an understanding of more software than ever. To
understand this software, often foreign to its analyst, is known
as Software Reverse Engineering (SRE).

Unfortunately, SRE is a complex and primarily human-
driven process [1]–[3]. SRE practitioners use a variety of
strategies to understand software, frequently carrying out mul-
tiple subtasks in the process [1]. These subtasks are typically

performed iteratively, and the relationships among them are
often complex [1], [2].

Recently, LLMs have shown promise for approaching
largely human-driven tasks in security [4], [5]. As such,
rapid work by both the research and practitioner communities
explores integrating LLMs into SRE tasks. Researchers have
approached isolated tasks, such as symbol recovery [6]–[9],
type inference [6], [8], and vulnerability identification [10],
[11]. In response, practitioners integrate these initial findings
into binary decompilers, e.g., Hex-Rays Decompiler (ships
with IDA Pro) and Ghidra, among other industry-standard SRE
tools [12]–[15]. However, despite their known advancements
in individual tasks, no work exists to show whether these
LLMs benefit the SRE process from the human perspective.

Similar to human-AI teaming [16], the interaction between
an SRE practitioner and an LLM impacts the performance of
LLM-enhanced, human-driven SRE. We refer to this interac-
tion and LLM results interpretation as the dynamics between
SRE practitioners and LLMs. Existing studies, which focus on
studying LLM improvements to SRE tasks in isolation [5]–[9],
fail to consider the human-LLM dynamics involving iterative
sub-tasks. These studies do not directly or adequately measure
the impacts that LLMs have on the entire human-driven SRE
process. This represents a lost opportunity to optimize LLM-
enhanced, human-driven SRE.

In this paper, we present the first work studying the dynam-
ics between humans and LLMs during SRE. To accomplish
this systematic study, we present three distinct phases. First,
to understand the current LLM-SRE community, we survey
153 SRE practitioners who have used LLMs in SRE. We
discover that practitioners rely on six distinct features to
accomplish SRE tasks. Using these results, with the help of
13 experts in SRE, we design a fine-grained human study
involving two CTF-style challenges, a decompiler plugin to
support the six discovered features, and an online platform
for instrumentation. Finally, we conducted this study on 48
participants, relying on both quantitative and qualitative data

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240380
www.ndss-symposium.org

found in observations, writeups, and post-study responses.
In our study, we observe over 6,586 minutes of SRE across

24 experts and 24 novices. Participants interacted with LLMs a
total of 1,517 distinct times, across two challenges, on over 50
functions. Through an analysis of their behavior, we discover
18 different findings on the impacts and best strategies for
LLM use in SRE. These findings enable us to answer where,
when, and how LLMs can augment the SRE process. We find
that they have both benefits and harms to SRE.

We find LLMs shorten the skill gap for novice SRE prac-
titioners, improving their performance by 98%, helping them
approach expert levels of SRE. On average, LLMs decrease
the analysis time of standard algorithms by 238% and enable
users to recover more artifacts lost to compilation (at least
66% more). However, these benefits were not without their
harms. Experts showed nearly no change in performance when
utilizing an LLM, and in some cases, were harmed by their
hallucinations, namely on vulnerability identification. Artifacts
recovered by LLMs, more frequently than not, were unhelpful,
causing more noise in the SRE process. Additionally, novel
and large code continues to degrade LLMs’ quality, hurting
reverse engineers who overrely on them.

We observe, as it stands, that LLMs play an assistant role
in SRE. They are best utilized when they act as a quick and
under-relied-upon filter for understanding, not a replacement.
LLMs show promise in being the first line of analysis, but
expertise is still required to interpret the results.

Contributions. This paper makes the following contributions:
• We create a snapshot of the state of LLM-SRE between

2024 and 2025, and establish six ways SRE practitioners
rely upon and use LLMs.

• We illuminate 18 findings surrounding the integration of
LLMs into the SRE process, including their effects, their
best uses, and how they might be improved upon.

• We implement and open source a platform1 and a de-
compiler plugin2 for studying fine-grained human-driven
SRE with LLMs in decompilers, including both behavior
instrumentation and practitioner-utilized LLM features.

Our work takes the first steps toward understanding and
optimizing how humans and LLMs collaborate for SRE.
While the results are promising, they are constrained by
some limitations: the scale and representativeness of our study
challenges, the restricted tooling (limited to static analyses and
excluding dynamic or advanced non-LLM tools), the absence
of participant assessments of SRE environment satisfaction,
and the reliance on self-reported expertise. These factors may
limit generalizability (Section X).

However, even if our work is not definitive, it establishes a
foundation for future research on human-AI collaboration in
SRE. Our findings will help the community explore impactful
ways to enhance human-LLM collaboration in SRE. It also
offers insights for education, future research, and practical tool
development for real-world reverse engineering.

1https://github.com/mahaloz/dec-synergy-study
2https://github.com/mahaloz/DAILA

II. BACKGROUND AND SCOPE OF THE STUDY

This paper explores the intersection of two domains: Soft-
ware Reverse Engineering and Large Language Models.
Software Reverse Engineering (SRE) involves analyzing
software to uncover its design and functionality. Applications
range from malware analysis to vulnerability discovery and
piracy prevention. The primary goal is to reconstruct program
logic and identify conditions that trigger specific code behav-
iors, often linked to bugs or malicious actions. SRE typically
unfolds in multiple phases and involves tools like IDA Pro
and Ghidra, which integrate disassembly, decompilation, and
debugging in a unified interface. Both static and dynamic
analyses are employed: the former inspects code without
execution (e.g., file structure, functions, assembly), while the
latter monitors runtime interactions with memory and the OS.

This study focuses on static binary analysis, examining
executables without execution. Our participants interact with
disassembled and decompiled code via IDA Pro, aligning
with traditional program comprehension research [1], [17] that
emphasizes reading over debugging. We extend traditional
research in this area by allowing access to decompilation,
which is commonly used in SRE, as it simplifies binaries for
understanding [18], [19].
Large Language Models (LLMs) are transformer-based neu-
ral networks trained on vast text corpora using self- and
semi-supervised methods [20], [21]. Modern LLMs, typically
using decoder-only architectures [22], excel at general-purpose
language generation. Initially, task adaptation required fine-
tuning. Today, prompt engineering guides model behavior
through carefully designed input prompts, leveraging pre-
trained knowledge without retraining [23]. This has proven
efficient and often comparable to fine-tuning for large models.
Scope of the study. We aim to investigate how LLMs
are being integrated into the SRE workflow, specifically for
static code understanding, and assess whether their use en-
hances analysts’ performance compared to traditional methods.
Through this study, we intend to answer the following research
questions:
RQ1: How do SRE practitioners integrate LLMs into the SRE
process, and what are their perceptions? (Section IV)
RQ2: How does the inclusion of LLMs in the SRE process
impact the performance of practitioners? (Section VI)
RQ3: How do practitioners interact with LLMs, and what
factors influence their interactions? (Section VII)

III. METHODOLOGY

In this section, we describe the three phases of our methodol-
ogy, discuss the recruitment process, and present the statistical
methods employed throughout our study.

A. Three Study Phases

To answer our research questions, we systematically ex-
plore, design, and complete our study in three phases.

I) Formative research (Section IV). We conduct both a
comprehensive literature review (including practitioner tools)

2

https://github.com/mahaloz/dec-synergy-study
https://github.com/mahaloz/DAILA

and an online pre-study survey to understand the design
requirements for our study. This phase informs our design on
how practitioners interact with LLMs during the SRE process
and through what platforms. In total, we use 153 survey
responses to create a snapshot of modern LLM for SRE use
between 2024 and 2025.
II) Study design (Section V). Next, we design the human
study and platform for measuring LLM use in SRE. We use
the Phase I results for both the SRE platform (IDA Pro) and
LLM features used in our study. We then design two binary
executable CTF-style challenges for practitioners to complete,
with a writeup required for explaining each solution. We
design the challenges and platform iteratively with a team of
13 SRE experts to be representative of real-world difficulties
that practitioners may face. Finally, we design a post-study
survey to qualitatively confirm the quantitative results we find
in the experiment.
III) Empirical Study and Analysis (Section VI and Sec-
tion VII). Using the design from Phase II, we run our study
on 48 participants (a subset of the 153 survey respondents
in Phase I) and analyze the results. We analyze three sources
of data in this phase: 1. fine-grained quantitative data, such
as clicks and function renames actioned during the study, 2.
solution writeups used to assess participants’ understanding of
the challenges, and 3. free responses in the post-study survey
capturing general sentiments of LLM usefulness. We analyze
the results with two goals. First, we analyze how LLMs
impacted the SRE process, from the understanding level to the
solving speed. Second, we explore how participants extracted
useful responses from LLMs with different strategies.

B. Participant Recruitment

We recruited all participants online during 2024 and 2025.
We primarily recruited participants through personal and pro-
fessional connections to ensure that they have prior experience
using LLMs for SRE. Recruits include students with relevant
experience (e.g., taking malware analysis courses), researchers
from eight universities, and experts from six renowned cy-
bersecurity companies with headquarters located on different
continents.

We do not offer compensation for the anonymous pre-
study survey, which complies with prior work practices [1],
[24]. Participants who expressed interest in Phase III provided
their email addresses for contact. Contacted participants who
completed the SRE session were compensated with a $50 gift
card. This includes participants who finished both challenges,
but may not have solved both correctly.

C. Statistical Analysis of Quantitative Data

We implement a rigorous methodology that integrates sta-
tistical testing and effect size estimation in our study. Because
the field of human reverse engineering study is emerging, there
are no established effect size thresholds specific to SRE tasks.
Thus, we situate our methodology within the broader domain
of software engineering, which also involves code compre-
hension, a key component of our participants’ activities. We

adopt the guidelines proposed by Kampenes et al. [25] and
conduct all statistical tests using a significance threshold of
α = 0.05. In cases involving multiple comparisons, we apply
the Benjamini-Hochberg correction [26] to control the false
discovery rate (FDR).
Comparing two independent samples. For any given chal-
lenge, a participant is assigned to either the control or treat-
ment group independently of their assignment on the other
challenge. With each participant completing two challenges,
we randomly assign their treatment group (LLM support) to
one of the two challenges. This design, together with our deci-
sion to make two vastly different challenges, ensures that prior
exposure to one challenge does not influence the performance
of the other, which addresses the potential carryover effect.
Statistical methodology. I) We assess the normality of the
data using the Shapiro-Wilk test. II) If the data is consistent
with normality, we assess the equality of variances using Lev-
ene’s test, with the mean as the center parameter for symmetric
distributions [27]. III) If Levene’s test fails to reject the null
hypothesis, we assume equal variances and use the two-sample
(pooled) t-test. Otherwise, if it indicates significant variance
differences, we use Welch’s t-test. IV) In case of statistically
significant difference, we computed Cohen’s d to quantify the
magnitude; for samples with n < 20, we applied Hedges’ g ad-
justment, which adds a small bias correction [28]–[30]. V) In
order to estimate the effect size, we adopted the finer-grained
classification of Funder et al. [31], who further refined Cohen’s
guidelines [32] that are frequently employed in social sciences
and software engineering [33]. Accordingly, we adopted the
following interpretation: effect size es is classified as small
(es ≤ 0.1), medium (0.1 < es ≤ 0.2), large (0.2 < es ≤ 0.8),
and very large (es > 0.8).

However, if the assumption of normality is violated (point
I) or the sample size is too small (n < 11), we follow
the recommendations of Fay et al. [34] and Gibbons et
al. [35]. Namely, we employ the Mann-Whitney U test as a
robust nonparametric alternative to the independent samples
t-test. Given that the literature suggests caution with very
small samples [36], [37], we never test with fewer than five
observations per group. We also compute Cliff’s Delta δ
as a robust nonparametric effect-size measure [38], [39]. It
ranges from −1 ≤ δ ≤ 1, and measures how often values
in one distribution tend to be larger than values in another
distribution. We adopt commonly used Cliff’s δ thresholds
in software engineering [33]: negligible (δ < 0.147), small
(0.147 ≤ δ < 0.33), medium (0.33 ≤ δ < 0.474), and large
(δ ≥ 0.474).
Correlation. To assess the presence of a statistically signifi-
cant relationship between two variables (i.e., equal size), we
implement a flexible correlation testing procedure that selects
the appropriate statistical test based on the distributional
properties of the input data, enabling us to capture both
linear and non-linear associations without violating statisti-
cal assumptions. If both datasets are found to be normally
distributed (using the Shapiro-Wilk test), we compute the
Pearson correlation coefficient, which reflects the strength and

3

direction of a linear relationship. Conversely, if one or both
groups deviate from normality, we use Spearman’s rank-order
correlation, which is more appropriate for ordinal data or
non-linear monotonic relationships. The effect size is again
interpreted in accordance with Funder et al. [31].

IV. FORMATIVE RESEARCH

This section investigates RQ1: How do SRE practitioners
integrate LLMs into the SRE process, and what are their
perceptions?

We first investigate how practitioners use and integrate
LLMs into the SRE process to guide our experiment design
in Section V. Then, we design an online survey to provide us
with a road map for accurately studying how practitioners use
LLMs. All questions are motivated by a literature review of
recent works in LLMs for SRE. We reviewed both academic
work and popular plugins used by practitioners. We present
aggregated answers to questions that are relevant to our study
design. The survey and its answers can be found in Table IV
in the Appendix.

In total, 153 participants responded to our online survey.
The survey respondents were students (43.1%), followed
by employees (27.5%), academic researchers (17.0%), and
freelancers (9.2%). Many participants were seasoned reverse
engineers: 41.2% had more than three years of experience,
while 40.5% had between one and three years. Their most used
SRE framework was IDA Pro (81.0%), with Ghidra (73.0%)
closely following.
LLM Use. Participants also reported how often they used
LLMS during SRE: 34.0% responded sometimes, whereas
32.0% responded often or always. Additionally, 67.8% of
participants reported that LLMs were occasionally beneficial,
25.2% considered them highly advantageous, while 7.0%
found them unhelpful. The most used LLM was GPT (OpenAI,
85.6%), followed by Claude (Anthropic, 11.6%). To interact
with their LLMs, participants reported mainly using decompi-
lation as input (59%), followed by machine code (28%), and
intermediate languages (13%).
LLM Features. Participants reported using LLMs for six
identified features known from prior work:
(1) Function Summarization. Comments the function with a

description or summary based on its behavior or pur-
pose [12], [14].

(2) Function Identification. Identifies well-known functions
and algorithms. While testing this feature, we also noticed
that if the LLM does not find a match, it tries to
categorize the functions based on its potential role (e.g.,
cryptographic, network, file handling) w.r.t. similar well-
known code patterns [40].

(3–4) Function and Variable Renaming. Renames the function
or all of its variables with meaningful nomenclature to
facilitate comprehension [6], [8], [9], [12]–[14], [40],
[41].

(5) Vulnerability Identification. It identifies potential security
vulnerabilities by detecting patterns and coding practices
that may lead to security risks [10], [40].

(6) Library Function Documentation. It generates context-
rich documentation of a library function so that the
reverse engineer can understand its functionality without
manually searching through reference materials [41].

The following percent of participants reported using these
features in SRE: Function Summarization (63.7%), Function
Identification (28.8%), Function Renaming (23.3%), Variable
Renaming (28.1%), Vulnerability Identification (17.1%), and
Library Function Documentation (2.1%). We note that par-
ticipants wrote in the Library Function Documentation feature
through an ”Other” option in our survey. We use the results of
these responses to design what LLM features will be available
to participants in the study (Section V).
Perceptions on LLMs. In a free-response section, participants
also shared their experiences using LLMs for SRE tasks.
The reported experiences are mixed, acknowledging both the
benefits and limitations of existing LLM-SRE tools. Partici-
pants report that LLMs excel at explaining the behaviors of
decompiled code and improving code readability by renaming
variables. They are also useful for understanding known al-
gorithms and accelerating workflows by creating scripts for
SRE frameworks. Regarding limitations, participants report
that LLMs often produce incorrect or misleading responses,
reducing trust and wasting time. LLMs often create generic or
superficial explanations, and their effectiveness diminishes for
large, obfuscated, or highly mathematical tasks.

V. STUDY DESIGN

While our online survey in Section IV provides a broad
perspective of LLM use in SRE, we next seek to understand
how LLMs augment the process at a more technical level.
Thus, we design a behavior-focused experiment that captures
granular details on SRE performances, with and without LLM
assistance on modern tools. Such a contrast allows us to
measure not only raw performance differences but also how
the presence of LLM assistance changes analyst behavior, tool
usage patterns, and solution strategies.

We designed and piloted our experiment in collaboration
with a Subject-Matter Experts (SME) team comprising 13 ex-
pert reverse engineers: three paper authors, six research group
members, two industry professionals, and two academics with
expertise in binary analysis and Capture The Flag (CTF)
organization. Importantly, none of the SME team members
participated in the study, ensuring unbiased data collection.

A. Study Overview

Motivated by recent work in human SRE [1], we design two
CTF-style reverse engineering challenges and task participants
with solving them. We design a fully browser-based study,
where participants can access a virtual machine (VM), a virtual
networked computer (VNC), that hosts the challenges and
LLM tools, whose features were informed directly by the
findings of our online survey (Section IV).

We provide each participant with a link to our online
platform (Section V-B). Upon visiting the site, the participant

4

Figure 1: A screenshot of the online platform after a participant
starts a challenge. A VNC is accessible in the browser that
provides access to an instrumented decompiler (with an LLM
plugin), browser, and text editor.

is given access to two challenges (Section V-D), ordered ran-
domly. Upon clicking start on a challenge, a VM is launched,
giving access to that binary, an instrumented version of IDA
Pro (including the 6 LLM features derived from the pre-study,
§ IV), a text editor, and a web browser. On one challenge
(random), the LLM features are disabled.

A participant reverses the challenge with the goal of un-
derstanding how to “read the flag.” When a participant feels
satisfied with their understanding, they end the study and
complete the writeup. Upon finishing both challenges, they
fill out a post-study survey. Accordingly, each participant in
the study creates two writeups describing their solutions. We
grade each writeup for understanding (§ V-F) and collect the
technical data, such as clicks, generated while they reversed.

B. Online Platform

A key aspect of our study design is making it accessible,
since expert reverse engineers are difficult to find and sched-
ule [42]. To accomplish this, we design our online platform
to host our challenges and tools that can allow participants to
complete the study asynchronously.

Our online platform builds atop the cybersecurity education
work DOJO [43], which helps provide participants with a
virtual desktop, a virtual networked computer (VNC), that
hosts both the study challenges and our tools. A screenshot
of what participants would see in this environment can be
seen in Figure 1.

Upon visiting the site for the first time, a participant is
shown our two challenges in a random order. Before start-
ing the experiment, each participant could optionally view a
walkthrough video introducing the IDA Pro interface and a
basic toy program to familiarize themselves with the platform.
We clearly state in each challenge’s description that the
participants must not find and report a flag, but must provide

a natural language description of the flag retrieval procedure.
This is the same approach that Mantovani et al. adopt [1] to
avoid unintended solutions in their SRE challenges.

When participants click “Start” on a challenge, the recording
for that VNC is started as well as all other instrumentation,
and a VNC tab is opened. That VNC has both the challenge
open in our tools and a text editor for creating a writeup.
When a participant feels they have completed the challenge,
they click “Finish” and the final time is saved along with their
instrumented data and writeup.

C. SRE & LLM Tooling

When a VNC is opened, a participant is given access to
an instrumented version of IDA Pro 9 with the respective
challenge open in it. Our instrumentation collects most track-
able data in IDA, including functions visited, clicks, variable
renames, etc, and is built on BinSync [44]. IDA is the only
tool participants have access to, meaning they cannot use a
debugger or run the challenge.

To give participants access to LLM features, we develop a
decompiler plugin that implements the six features discovered
in our online survey (§ IV). We implement each feature based
on prior work [6], [8]–[10], [12]–[14], [40], [41]. In particular,
we closely studied the methodology for creating prompts from
Hu et al. [6], which created prompts to improve decompiled
functions. We created our prompts by first describing the
decompilation improvement task (summarization, renaming,
etc.). Next, we described the output format of the task (JSON).
We then provided a minimal example input with the correct
output format. Finally, we provided the decompilation text of
the function in question (triggered by participant use on a
function). We validated this design choice by studying other
related open-source prompts [12]–[15], [40] and found that
they had similar patterns.

Additionally, to account for any missed features that partic-
ipants may use in real-world reversing, we integrate a chatbox
into the decompiler where participants can interact freely with
an LLM. Excluding the LLM chatbox, participants use the
LLM features by right-clicking on an open function in IDA
Pro and using the specified feature.

For all features, including the chatbox, participants could
use any of the models reported in our online survey (§ IV):
GPT-4o, GPT-4o-Mini, GPT-4-Turbo, Claude-3-5-Sonnet, and
Gemini-Pro. When participants start the study, they are re-
quired to choose a model. If they are unsure which model to
select, GPT-4o is used by default.

D. SRE Challenges Development

Here, we present our design heuristics for developing two
challenges, RPC (Challenge #1) and Secrets (Challenge #2).

Representativeness. Challenges must represent real-world
software. In collaboration with the SME team, we identify
the most common software characteristics encountered during
SRE and select a subset for manual static analysis. We exclude
the ones that demand dynamic or automated analysis, e.g., self-
modifying code. The list includes authentication/authorization,

5

Table I: Software metrics of the SRE challenges.

Metric RPC Secrets

Functions 26 26
Lines of Code 427 461
McCabe Cyclomatic Complexity 29 31
Operands Count 957 1021
Distinct Operands 172 184
Operators Count 1933 2397
Distinct Operators 50 51
Halstead Volume 22526 26922
Halstead Difficulty 139 141
Halstead Effort 3.13× 106 3.81× 106

compression, encryption, hashing, data validation, encoding,
file management, memory manipulation, networking, parsing,
serialization, string operations, and sorting. We also include
some known algorithms in each challenge because real-world
software uses them. We note that this list excludes traditional
program obfuscation, such as control flow flattening, which
was outside the scope of our study. Our challenges also only
contained advanced mathematics in hashing and encryption.

In our post-survey, we ask participants to rate their agree-
ment with the statement “the two challenges are good repre-
sentative examples of real-world software.” Out of 48 respon-
dents, 81% (n = 39) strongly or moderately agree whereas no
one strongly disagreed.

With the help of the SME team and some novice volunteers,
we estimate that both challenges could be solved within one
hour for experts and two hours for novices. Our participants
could complete both challenges at different times to reduce
cognitive burden.

Equal levels of difficulty. The two challenges must act as
control and treatment. So, they must be of an equivalent level
of difficulty, which means solving them should require similar
efforts. However, perceived difficulty is extremely subjective.
In addition to the supervision of the SME team, we elect to rely
on the well-known software metrics, striving to ensure as much
similarity as possible, as reported in Table I. Particularly, the
Halstead Difficulty measures the difficulty in understanding
the program, for example, when doing a code review.

In our post-survey, we ask participants to rate their agree-
ment with the statement: “The two CTF challenges were of
similar difficulty.” Out of 48 responses, 87% (n = 43) selected
strongly or moderately agree, whereas only one strongly
disagreed.

E. SRE Challenges

Challenge#1 – RPC. It mimics a remote procedure call (RPC)
server. The server uses a custom protocol to communicate with
the client, which involves encoding (Base64), compression
(Run-Length Encoding - RLE), and encryption (Tiny Encryp-
tion Algorithm - TEA). In this protocol, after authentication,
the client can manipulate a 32-byte buffer by sending specific
bytes that correspond to different operations. The flag is stored
in the /flag file, but only the admin user can load files
into the buffer. Therefore, to solve this challenge, the player

has to find the (hardcoded) admin user name and then spot
a vulnerability: the decryption key of the admin password is
easily guessable as it is randomized from the time library
function. Finally, after authenticating as an admin, they must
send the correct bytes with a sequence of operations that load
the flag file into the buffer, which is eventually returned.
Challenge#2 – Secrets. It is an encrypted file manager with
a custom shell (and commands) for managing files. The
file manager supports multiple user accounts for creating
encrypted files. The encryption algorithm is Advanced En-
cryption Standard (AES) in ECB mode. On user registration,
a username and password are stored. The system will create
a folder with the same user name and derive the user’s key
using a custom key derivation function. Then, the key is hashed
(DJB2), and its hash is stored in clear text in a file named
/<username>/.shadow.The saved hash is from the key
derived from the password. Since each file is encrypted, they
are world-readable, implying that all other users can read
everyone’s hashes. In this system, the admin user has created
an encrypted file named flag that contains the string to be
retrieved. This challenge is solved by understanding that the
function for showing the content of files is vulnerable to a path
traversal attack. After creating a user account, the command
show ../admin/.shadow will display the admin’s key
hash. The custom key derivation function is then susceptible
to brute-force attacks, as its output is contingent upon a mere
two bytes and can be validated with the known DJB2 hash. In
the event of a match, such a key decrypts the flag file.
Completion Criteria. Participants completed a challenge if
they created a writeup and did not use outside tools other than
IDA Pro and our LLM plugin. All writeups should contain text
about solving the challenge. Writeups with only irrelevant text
are not considered and would be an incomplete SRE session.

We note that this approach allows for participants who had
incomplete or incorrect solutions to the challenges. We in-
cluded all who made valid attempts on both and demonstrated
some understanding of at least one. This variability makes
direct comparisons difficult, as some participants spent less
time and showed lower comprehension. However, it allows
us to make a more holistic measurement of different SRE
approaches and understanding levels. To account for this vari-
ability in solution completeness and participant understanding,
we evaluated each challenge writeup using a structured scoring
rubric, discussed next.

F. Challenge Writeup Evaluation

We scored each writeup from 0 to 8. Each challenge
included 7 checkpoints, with a 8 point awarded for a fully
correct solution. This accommodates solvers who demonstrate
holistic understanding without explicitly identifying all tech-
nical details (e.g., recognizing an algorithm’s function without
naming it).
Challenge#1 - RPC - Checkpoints. First, writeups were
awarded one point for identifying the numerical operation to
read the flag. To read the flag, they must use the hardcoded
name and password “admin” and “secret,” which is worth one

6

point. The second bug in RPC is that randomness is seeded to
time, which awards another point for mentioning it in their
writeup. All data must be decrypted to talk to the server,
and mentioning “encrypted” or “hashed” data also awards one
point. Finally, a point is awarded for each of the three known
algorithms (Base64, RLE, TEA) mentioned in the writeup.
Challenge#2 - Secrets - Checkpoints. Writeups are first
awarded a point for mentioning that the program manages and
creates files. An additional point is awarded if they mention
that the files can be encrypted. A key part of the challenge is
understanding that each password has a derived hash stored
in a “.shadow” file, which awards another point. The hash
is created from a key derived from the password, which is
flawed. A point is awarded for mentioning that the derived
key is flawed. To read an arbitrary user’s hash, a user must
use the path traversal in the “show” command. A point is
awarded for mentioning “path traversal.” Finally, a point is
awarded for each of the two known algorithms (AES, DJB2)
mentioned in the writeup. Note that Quicksort is not awarded
a point since the algorithm is implemented in a function (ls)
that is not required to solve the challenge.

Since the awarding of individual points could still be sub-
jective, two researchers on the SME team scored the writeups
independently. Across both challenges, a total of 96 writeups
were scored. Both researchers scored a writeup the same, on
the same checkpoints, in 82 cases (85%). They differed by
assigning one point on 12 cases (13%) and two points on 2
cases (2%). In total, both researchers aligned on 753 out of
768 point assignments (98%). With this in mind, we concluded
that our grading criteria and point assignment were likely
sufficient.

VI. LLM IMPACTS ON SRE

We ran our study, designed in Section V, between 2024
and 2025. In total, 51 respondents from our online survey
participated in our experiment. After reviewing their results,
we eliminated 3 participants’ data from our analysis due to
submission quality: one left an empty writeup, another wrote
only irrelevant text in a writeup, and one used dynamic analy-
sis to solve their challenge. As such, all analysis is performed
on the 48 valid submissions in our study. Cumulatively, these
48 participants reverse engineered for 109 hours across two
challenges, creating 96 writeups, and interacting with LLMs
1517 times. This group included 24 self-reported experts and
24 self-reported novices. We report the summary of their
performance in Table II.

Therefore, the purpose of this section is to analyze these
data to answer RQ2: How does the inclusion of LLMs in the
SRE process impact the performance of practitioners?

We first focus on how LLMs affected the SRE process
positively or negatively. Second, we analyze the strategies
these participants took to get optimal performance from their
LLMs. When comparing any two groups for independence
or correlation, we use the methodology described in Sec-
tion III-C. When we obtain a statistically significant result,

Table II: Averaged performance metrics across all study par-
ticipants and challenges, grouped by expertise.

Metric Experts Novices
RPC Secrets RPC Secrets

Solve Times (m) 64.55 69.32 70.70 69.89
Time in Function (m) 2.39 2.56 2.62 2.61
Comments 2.00 1.96 1.38 0.83
LLM Interactions 19.96 10.42 19.17 13.67
Function Transitions 324.25 219.75 356.42 212.08
Clicks 512.04 361.17 636.12 417.21
Understanding Score 5.38 4.21 3.79 2.46

we report it with triple: p-value (p), effect size (es), and effect
size interpretation. Otherwise, we just report the p-value.

Finally, when available, we integrate responses from our
post-study survey to give a more holistic view of our results.
Each response is anonymized to their skill level with N or E
for novice and expert, respectively.

A. Study Assumptions

Before further analysis, we validate two assumptions made
in our study design.
Assumption 1: Self-reported SRE expertise is trustworthy. To
evaluate this assumption, we first examined whether partici-
pants’ self-reported years of SRE experience differed between
the two groups. We found a statistically significant difference
(p = 0.0001, es = 0.65, large effect size). On average,
participants in the expert group reported six years of expe-
rience, compared to two years in the novice group. Although
this comparison relies on self-reported measures as well, it
provides evidence of internal consistency within participants’
own assessments of their background.

We next evaluated whether the self-reported novice and ex-
pert groups differed on performance-based measures indepen-
dent of self-report. Because we are interested in participants’
underlying SRE skill, we compared their performance on the
challenge completed without LLM assistance.

Experts statistically differed from novices in their under-
standing scores from their writeups (p = 0.001, es = 0.56,
large effect size). On average, experts had an understanding
score of 4.79, while novices had 3.12, both out of the maxi-
mum of 8. This indicates that the self-reported expert group
often understood more than the novices across both challenges.

An understanding rate can be calculated by dividing a
participant’s understanding score by their solve time (minutes).
Experts statistically differed from novices in their understand-
ing rates (p = 0.001, es = 0.57, large effect size). Experts had
an average rate of 0.08 points per minute, while novices had
0.06. This indicates that self-reported experts understood more
in less time than novices, reproducing results found in previous
work [1]. Although this data does not indicate if a self-reported
expert is an expert relative to all reversers, it does suggest that
they may be relative to our self-reported novices. Considering
these observations, we assume self-reports of expertise levels
are reflective of reality for our study.
Assumption 2: Both challenges are of equal difficulty. We
validate this assumption by, again, comparing two groups

7

Experts Novices Experts (LLM) Novice (LLM)

0.00

0.05

0.10

0.15

0.20

Un
de

rs
ta

nd
in

g
Ra

te
 (S

co
re

 /
Ti

m
e

(m
))

Figure 2: Understanding rates for participants with and without
LLM assistance, grouped by SRE expertise. Higher under-
standing rates indicate higher performance SRE.

when they are not utilizing an LLM. For this case, we compare
participants across both expertise levels on the two challenges.
There was no significant difference in understanding scores
(p = 0.68) or rates (p = 0.47) on both challenges across
all users, irrespective of expertise. Additionally, considering
expertise, experts and novices had no significant difference
in understanding scores or rates between the challenges (p >
0.05). This data indicates that challenges had similar rates of
understanding and, therefore, difficulty.

B. Expertise Dependent LLM Improvements

SRE expertise plays a fundamental role in how fast and well
reverse engineers understand a program [1]. SRE expertise
also determined whether a participant greatly benefited from
an LLM. In Figure 2, an overview of understanding rates can
be seen across skill level and LLM use.
Finding 1. Novices using LLMs exhibit expert levels of pro-
gram understanding rates—regardless of whether experts use
LLMs or not. Comparing novice participants’ performances
across both challenges, we observed a statistical difference
when they utilized an LLM (p = 0.03, es = 0.38, medium
effect size). While utilizing an LLM, they had an average
understanding rate of 0.07, compared to a 0.04 rate without
(98.55% improvement). Additionally, when comparing novices
with LLMs to experts (both with LLMs and without), we found
no statistical difference in their understanding rates.

Various novices in our study also felt that they had improved
holistically across challenges. As N15 noted, “I would not have
understood the binary half as well without the LLM in that
same time span.” N13 remarked, “I was kinda mind blown
by how the LLM analyzed some [complex] functions. . . and
determined they perform base64 encoding and TEA decryption
almost instantly. That really saved time during reversing by not
having to focus on those parts and focus on more interesting
parts to reverse engineer.”

N14 summarized: “Using LLM made things much faster and
easier with the risk of mistakes. However, these mistakes can
be easily reversed. The time complexity spent on reversing

might still be O(Time spent without LLM), but with LLM,
the average time will be highly decreased.” Meaning that in
the worst case, fixing LLM mistakes could take as much time
as doing the task manually from scratch (hence, same time
complexity). However, this claim did not necessarily hold for
all participants.
Finding 2. LLM usage does not impact experts’ program
understanding rate. Unlike novices, when comparing experts’
performances across both challenges, we did not see a statis-
tically significant difference in their understanding rates with
LLMs. However, experts had marginal gains in their average
understanding rate with LLM usage. This data may indicate
that SRE expertise outweighs the effects of LLMs. An expert
(E5), articulated why this may be the case, stating that LLMs
were “a hit or miss on usefulness, but low effort to read the
summary and see if it seemed to be useful. Really high value
when it got it right.”

C. Augmented Artifact Recovery

During the SRE process, participants recovered different
artifacts lost in compilation. Specifically, symbol names (both
functions and variables), types (including custom structs), and
comments. Prior work had identified that these artifacts (func-
tion names and comments) were recovered more frequently
by experts [1]. We explore these findings by expanding the
number of artifacts users can create and receive help on from
an LLM. Except for structs, LLMs could also recover these
artifacts on demand, as a practitioner would normally.
Finding 3. Manual artifact recovery is positively correlated
with program understanding. We find that experts and novices
did not significantly differ in the number of artifacts they
manually recovered (p = 0.33). On average, experts recovered
54 artifacts, while novices recovered 41. We speculate that this
difference in results from prior work may be caused by the
expanded set of artifacts we support in our study, such as
structs and stack variables.

However, we found that participants who manually recov-
ered more artifacts, regardless of expertise, tended to have
higher understanding scores. A higher manual artifact recovery
rate was positively correlated with a higher understanding
score (p = 0.01, large effect size). Manually recovered
artifacts do not include artifacts directly recovered by an
LLM. In fact, LLM-recovered artifacts did not show a similar
correlation with manually recovered artifacts.
Finding 4. LLM artifact recovery is not correlated with im-
proved program understanding. We measured LLM recovered
artifacts as those that an LLM directly created. This excludes
artifacts that a human may have manually created after reading
an LLM answer. These LLM changes were not correlated with
improved understanding (p = 0.34). This finding may indicate
that LLM recovered artifacts are not of the same quality as
those created by humans. We note that this analysis ignores
human changes resulting from LLM changes, which would
increase understanding (explored in Section VII-B).
Finding 5. LLM users recover more artifacts, including more
false positives. When combining the artifacts recovered by

8

LLMs and humans, we found that the presence of an LLM
led to more overall artifacts on a challenge. Both experts and
novices significantly differed in their total recovered artifacts
while using LLMs (p = 0.01, es = 0.52, large effect size, and
p = 0.01, es = 0.43, medium effect size, respectively). On
average, experts went from 54 artifacts to 84, while novices
went from 41 to 67. Although these findings seem intuitive,
they indicate that LLMs may not be replacing human efforts
to recover artifacts. Considering that LLM recovered artifacts
had no understanding correlation, our data may indicate LLMs
create more artifacts that do not contribute, meanwhile increas-
ing noise, which may be harmful.

An artifact type of particular interest was function names.
Generally speaking, (good) function names summarize the
purpose of a group of code. This abstraction allows SRE
practitioners to understand what a function does quickly [7].
As such, creating a function name can often give insights about
a participant’s understanding of that function.
Finding 6. LLMs recover function names of known algorithms
with a higher accuracy than humans. A known algorithm
function implements algorithms whose designs and specifica-
tions are standardized and documented online, such as base64
decoding. Across both challenges, there was a total of 13
known algorithm functions.

We manually compared the renames from LLMs to those of
humans on all 13 functions. A function rename was counted
as a match if it was semantically equivalent. For example,
with the ground truth being handle_request, a rename
of handle_connection would be counted as semantically
equivalent. LLMs showed a statistically significant difference
in average rename accuracy for these functions when com-
pared to humans (p = 0.4, medium effect size). On average,
LLMs had an 85% accuracy, while humans 66%.

We also found that LLMs showed no significant difference
in rename accuracy on all other functions when compared
to humans (p = 0.82). Humans had an average accuracy of
65%, while LLMs had an average of 57% across 37 functions.
Considering earlier LLM artifact correlations, we speculate the
impacts of these renames may not significantly contribute to
improved understanding.

D. Function Speed Differences

While solving both challenges, participants had to analyze
various functions. We recorded both the total time participants
spent in each function and the number of visits. We counted
a visit as a participant looking at a function (in IDA Pro) for
more than one second. On average, experts revisited a function
9.46 times and spent a total of 296.72 seconds in a function.
Novices revisited a function 9.93 times and spent a total of
313.98 seconds in a function. Interestingly, we did not observe
any correlation, suggesting a contribution from LLMs when
viewing the sessions as a whole. Therefore, we focused on
individual functions.
Finding 7. Experts using LLMs spend less time on known
algorithms and more time on custom ones. At the binary level,
experts showed non-significant performance when using an

LLM. However, when comparing experts’ total view times
of functions across themselves, with and without LLM, they
showed a significant difference (p < 0.05) in total view time
on six functions. On four of these functions, LLM users
were at least 248% faster on average. All four functions
implemented common algorithms: TEA, Heapsort, Base64
Decode, and RLE compression. On Base64 Decode, experts
also had two fewer visits on average.

On the other two (out of six) functions, which implemented
custom algorithms, LLM users experience a slowdown. They
were a minimum of 314% slower on average, and had to revisit
one of those functions, a request handler, up to 14 times more
on average. Although these gains did save experts time, we
conclude, from previous findings, that these did not play a
pivotal role in understanding the program faster.
Finding 8. Revisit frequency scales strongly with lines of code
for everyone, and LLMs rarely change that pattern overall.
Looking at the binary as a whole, revisits are positively
correlated (p < 0.05) with lines of code, in every case:
for all participants, experts, and novices, and those with and
without LLMs (six instances in total). While this is an expected
result, it is surprising that Spearman’s ρ we obtained is very
similar in all the tested cases, i.e., 0.76 ≤ ρ ≤ 0.77 (large
effect size). We further investigated at function granularity,
and in the majority of cases, both novices and experts did
not show significant differences (p ≥ 0.05) in their function
visit times with and without LLMs. They did, however, show
differences in function visit amounts on two functions. On the
first, load, a function from RPC that contained 37 lines to
read the flag, novices had 53% less revisits with LLM. On
the second, ls_cmd, a function from Secrets that contained
107 lines to implement a Unix-style file lister, novices had
240% more revisits (with and without LLM). We note that
the ls_cmd function was not essential to solve the Secrets
challenge. Indeed, mentioning the function, or its purpose in
the writeup, did not necessarily earn understanding points.
This is a clear sign of how experts’ skills have prevented them
from wasting time on this function.

E. Misunderstandings

In some solution writeups, participants described program
functionality that was incorrect or did not exist, which we
classify as a misunderstanding. In 20 out of 96 writeups (20%),
a user had at least one misunderstanding in their writeup.
These misunderstanding cases were split evenly between 10
LLM users and 10 non-LLM users.

We analyzed these instances of misunderstandings and clas-
sified each occurrence into two distinct groups: fabrications,
which were observed when a participant described a non-
existent phenomenon, and misclassifications, which occurred
when a description was incorrect. Finding 9. LLM vulner-
ability hallucinations negatively impact subsequent human
analysis. We observed three fabrications only in the responses
of participants who used an LLM. Specifically, all three
participants reported a buffer overflow vulnerability in their
writeup for the RPC challenge, which had been suggested

9

by the LLM when asked to identify potential vulnerabilities.
All three participants received these suggestions in different
functions. On these functions, they spent a minimum of 231%
more time than average.

Indeed, asking an LLM to identify vulnerabilities frequently
resulted in worse user performance. The “find vulnerability”
feature was negatively correlated with understanding score
(p = 0.01, es = −0.35, large effect size).

Additionally, the LLM feature to identify vulnerabilities
drew the most skepticism (n = 5) of all LLM features in our
study. It was widely seen as unreliable, prone to false positives,
and lacking actionable specificity. E22 wrote, “It said there
was a UAF, but it’s not.” N15 commented, “After using it, I
felt at that point I was better off searching for the vulnerability
myself.” E10 similarly shared: “ChatGPT is a game changer
for reversing [...] really good for code understanding, not good
for finding complex vulnerabilities.”

VII. LLM STRATEGIES AND FACTORS

In Section VI, we answered RQ2 showing how LLMs affect
both novices and experts alike during the SRE process. A
part of that analysis showed that novices approach a similar
understanding rate to experts while using an LLM. In this
section, we look at this phenomenon from a different angle
by answering RQ3: How do practitioners interact with LLMs,
and what factors influence their interactions?

Using a methodology inspired by previous work [1], we
select the top ten and bottom ten participants by their un-
derstanding rate, on their LLM-enabled challenge, and we
examine strategies and factors that contributed to improved or
worsened performances. The top ten performers included five
novices and five experts, whereas the bottom ten comprised
nine novices and one expert.

A. LLM Expertise

Before joining our study, all participants reported both their
prior experience in SRE and LLM-assisted SRE. For LLM-
assisted SRE experience, participants reported using LLMs
rarely, sometimes, often, or always for SRE. We considered
those who reported often or always to be experienced LLM
users and all others to be inexperienced. On average, a
participant reported sometimes using an LLM, indicating they
are inexperienced LLM users.
Finding 10. Prior experience in using LLMs does not make
them more useful for SRE. When comparing the top and
bottom performers, we found no significant difference be-
tween their reported LLM-SRE expertise (p = 0.78). When
expanding this to the entire dataset of participants, we found
no correlation between LLM experience and understanding
rate or solve time (p = 0.25, p = 0.41). Both comparisons
suggest that having prior experience in using LLMs may not
increase their usefulness significantly over that of new LLM
users. This may also suggest that LLMs are intuitive enough
to use, that new users derive the same benefits from them as
experienced ones.

Finding 11. Experienced LLM users are more cautious about
using LLMs. Although experienced LLM users were not signif-
icantly better at SRE with LLMs, they did show differences in
how much they relied on them. We found that LLM expertise
(higher being more experienced) was negatively correlated
with LLM usage amount (p = 0.04, es = −0.3, large
effect size). On average, an experienced LLM user queried
an LLM 20 times during a challenge, while an inexperienced
user queried it 35 times. We note that this difference did not
correlate with improved understanding, suggesting that this
caution may have been inconsequential.

Combining these two findings, we conclude that LLMs may
not require special training for usage in SRE and can be used
effectively by novices. However, it may be harder to convince
prior LLM users to keep using them widely, since distrust may
be contributing to their caution, as explored in Section VI-E.

B. LLM Features
In our study, participants had access to the six LLM

features (presented in Section IV) and a free-prompt LLM
chat. Across all participants, the most frequently used task was
largely Func Summary (625), followed by Func Rename
(328), Var Rename (287), Lib Func Docs (84), Func
Identify (84), LLM Chat (75), and Func Vulns (34).
Finding 12. Understanding does not hinge on the quantity of
LLM queries. At a high level, no feature was utilized more
across the top and bottom performers. When comparing the
amounts of queries both for each feature and also all together,
we found no significant difference between the two groups
(p > 0.05). On average, top performers queried 29 times,
while the bottom performers queried 37 times. However, these
two groups still performed significantly different (p = 0.01,
es = 1.0, large effect), with a 0.17 and 0.02 understanding
rate on average respectively. The data show that sheer volume
of LLM queries has no predictive power: the decisive factor
is the placement of queries, i.e., knowing which function to
ask about and when to ask, rather than how often any given
feature is invoked.
Finding 13. Asking LLMs clarifying questions is still an
important LLM feature. The LLM Chat feature is different
from other features because it allows participants to freely
interact with the LLM, where users can provide arbitrary
context. We analyzed participants’ use of the LLM Chat,
which was used a total of 75 times, and categorized the
users’ interactions by their purpose with respect to the six
features. However, the largest share of queries (40.6%) was
context-related, and we were unable to associate them with
a feature (e.g., hash-breaking strategies and explanations of
regular expressions). This indicates a firm reliance on the
LLM for problem-solving support and help with articulating
technical concepts. Then, the most common category/feature
was Lib Func Docs, accounting for 25.0% of the queries,
suggesting that participants frequently relied on the LLM as
a quick-reference tool for detailed questions about specific
functions. This was followed by Func Summary (15.6%),
Func Identify (12.5%), and Func Vulns (3.1%).

10

4 9 11 12 12 13 13 13 13 14 14 14 15 15 15 15 15 16 16 17 17 20 22 22 22 28 30 31 36 37 37 39 42 44 45 47 47 47 49 50 52 61 64 64 65 69 72 78 78 10
7

10
9

13
7

Function (Lines of Code)

0

5

10

15

20

25

Di
ffe

re
nc

e
in

 N
um

be
r o

f Q
ue

rie
s

Top 10 > Bottom 10
Bottom 10 > Top 10

Figure 3: The difference in query amount by the top 10 and bottom 10 LLM users, sorted by function lines of code.

During reversing, participants switched between LLM ac-
tions (queries) and human actions (artifact recovery). Some
actions used in succession led to increased understanding rates.
We investigated these action sequences in pairs. The heatmap
in Figure 6 visualizes these pairs, focusing on which led to
human actions.
Finding 14. LLM Func Summary and Var Rename lead to
better program understanding. Across all participants, three
LLM features were correlated with an increase in understand-
ing rate when accompanied by a human change: (Func Sum-
mary → function rename), (Func Summary → function
retyping), and (Var Rename → function rename). They had
the following statistical results: (p = 0.01, es = 0.40, large
effect), (p = 0.02, es = 0.32, large effect), and (p = 0.01,
es = 0.42, large effect), respectively. Notably, an LLM
summarization followed by a manual function rename had the
highest occurrence of 154, which dwarfed the next largest of
just 19 with an LLM variable and a function rename.

E1 appreciated “the ability of LLM to effortlessly sum-
marize the function, renaming local variable names, and
renaming function name.” N13 found Var Rename feature
useful to “filter out decompilation statements.” Similarly E7
commented, “Variable names were a lot more useful than I
expected; a quick way to increase readability.” According to
N21, “summarize function combined with rename variables is
a GOATED combo that made everything easier.”

Of all action tuples involving LLMs, only these three
tuples had positive effect on understanding rates. The common
occurrence of all of them is the ending human action. This
finding aligns with earlier findings in Section VI-C that
manually recovered artifacts were correlated with improved
understanding. From this, we conclude that LLM responses
which led to human actions were likely the most helpful
towards increasing understanding.
Finding 15. Experts overestimate the usefulness of some LLM
features. In the post-study survey, participants ranked their
perceived usefulness of features. We asked for both an explicit
score (on a five-point Likert scale) and a free response if they
felt anything was notable. All reported post-study scores can
be found in Figure 5 in the Appendix.

In only two cases, Func Summaryand Func Vulns, user
opinions aligned strongly with our observed results: sum-

marization was useful and vulnerability identification was
harmful. After the Func Summary feature (n = 24, § VI-B),
Lib Func Docs (n = 8), Var Rename (n = 8), and Func Re-
name (n = 5) features were found helpful by our participants
for improving code readability in the free response.

E11 mentioned “the [document] library call man page
[feature] was useful in speed[ing] up the reversing process.”
Novices had contrasting view about Lib Func Docs feature.
N12 appreciated the feature :“the ability to summarize func-
tions and write man page descriptions directly in the decom-
piled view as comments was an excellent feature.” N19, on
the contrary said, “summarize library call man page injected
big blocks of text as comments in the decompiled view which
made it hard to read, preferred the color highlighted man pages
on the web instead.” We note that across all experts, there
was no notable change in performance–as we have previously
demonstrated, yet, many quotes and Likert-scale responses
from experts contradict our observed results. Additionally,
features such as manual page recovery played a lesser role
than many participants thought.

C. Query Frequency

Although the best and worst performers had similar overall
LLM usage, they differed when analyzed on a per-function
basis. One specific aspect was the number of times users were
prompted on a single function.
Finding 16. LLMs have degrading benefits when utilized
repeatedly on individual functions. Top performers had fewer
repeated query uses across all functions than bottom perform-
ers. Their average query use per function significantly differed
(p = 0.0004, es = −0.94000, large effect size), with the
top users using 1.71 queries and the bottom users using 3.43.
This data may extend the findings in Section VII-C, furthering
that less query use on individual functions may allow better
understanding rates among participants.

Some participants reflected this fear of over-querying and
over-reliance on LLMs: as E8 admitted, “I was prone to try
to go faster and be less careful, relying a bit too much on
the LLM support... sometimes it caused me to miss important
details.” This issue was particularly found concerning for less
experienced users, as cautioned by E9: “I wouldn’t want a

11

1st Visit (n=14) 2nd Visit (n=9) 3rd Visit (n=14) 4th Visit+ (n=11)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175
Un

de
rs

ta
nd

in
g

Ra
te

 (S
co

re
 /

Ti
m

e
(m

))

Figure 4: Understanding rates for participants that complete
all queries on their first function visit vs on multiple visits.

novice using it, as I’m afraid they would reverse a lot of
programs without actually understanding what’s going on.”

The most frequently queried functions were dispatch
and decompress from the RPC challenge, each queried
22 times. Specifically, dispatch handles the user’s opera-
tion command, while decompress performs RLE decoding.
Similarly, base64_decode and tea_decrypt, also from
RPC, were queried 16 and 18 times, respectively. These
functions all play a central role in the challenge logic, and their
high query count may reflect areas of conceptual complexity
or critical decision points for participants.
Finding 17. LLMs perform worse on larger functions (greater
than 40 lines of code). The size of functions, which often
relates to complexity [45], was also a factor in query reuse.
For both challenges, the median, mean, and max lines of
code for functions were 31, 38, and 137, respectively. The top
performers significantly differed from the bottom performers
in their use of LLMs on functions larger than the median size
(p = 0.0003, es = −0.57988, large effect size). In Figure 3,
the difference in query amount can be seen on each function
across both challenges, sorted by lines of code. Interestingly,
the top performers used LLMs less on larger functions than
the bottom performers, with an average of 4.73 vs 9.69.

D. Query Timing

One factor of query use was the time at which a participant
decided to utilize an LLM while reverse engineering a func-
tion. To better quantify the time spent reversing on a function,
we also tracked the number of visits (leaving a function and
then re-entering it) participants had on functions. We observed
that many top participants used all their LLM queries on their
first visit to a function. To further investigate, we measured
the number of visits each participant made to a function
before using their last LLM query, and we categorized the
strategy accordingly. For example, if a participant completed
all of their LLM queries in three visits to a function, they
would implement a three-visit strategy for most functions. The

aggregated understanding rates of each visit strategy can also
be seen in the Figure 4.
Finding 18. LLMs provide greater benefit when utilized at
the beginning of function understanding, not the end. Out
of the top ten performers of all LLM users, 9 are first-visit
strategy users (out of a total of 11 first-visit strategy users).
Moreover, first-visit strategy users significantly differed in
their understanding rates from all other participants (p = 0.01,
es = 0.45, medium effect size). On average, they had an
understanding rate of 0.13, while all users had 0.08. This
data indicates that LLM use at first glance of a function may
produce better overall results.

Users who adopted the first-visit strategy primarily re-
lied on the Func Summary prompt, which accounted for
41.20% of their queries. This was followed by Var Rename
(18.92%) and Func Rename (21.62%). In contrast, the use
of LLM Chat was relatively limited (4.94%), with Lib
Func Docs (5.54%), Func Vulns (2.24%), and Func
Identify (5.54%) used even less frequently.

E. Other Strategies

Participants also described other LLM strategies that they
felt had a significant effect on their SRE process. E7 noted,
“When I renamed a few things first, I think the LLM sugges-
tions got better.” E12 noted that they observed improved results
when they added manual context, such as function comments,
saying ‘I often had to add a bit of context in a hack-y way.”
However, we found no correlation between any human-action-
to-LLM chain and understanding score, suggesting that this
may be a perception rather than a reality.

E22 shared their strategy of working from the inside out,
naming variables and functions in the deepest functions first,
then moving outward, also known as a depth-first search (DFS)
strategy, and added that “naming them from inner function to
its caller provided better results.” Previous work has shown
DFS to be an effective strategy for humans in SRE [1], and
we found indications that this may also be true for LLM use.
When comparing visit time on individual functions, we found
that functions queried in a DFS strategy versus a linear strategy
had a statistical difference (p = 0.001, es = −0.24702, small
effect size). The averages for each were 25.82 seconds and
46.83 seconds, respectively, though a small effect indicates
that there may not be a substantial difference in results.

VIII. KEY TAKEAWAYS

We conducted the first empirical study comparing humans,
both experts and novices, with and without LLM support dur-
ing software reverse engineering. In this section, we synthesize
the major themes emerging from our findings and discuss their
broader implications.
I) LLMs primarily shape the first moments of understand-
ing, not deeper refinements. Our findings indicate that the
SRE process is often disproportionately influenced by the first
encounter with a function. Early impressions frequently deter-
mine the pace and quality of subsequent analysis, affecting
both overall solve time and understanding rate. LLMs are

12

well-suited to this stage, as they enable practitioners to obtain
a first-pass overview at minimal cognitive costs. This effect
is most evident among novices, whose understanding rates
approach those of experts when assisted by LLMs (Findings 1,
and 18).

However, this advantage does not extend to deeper or
iterative understanding. When practitioners revisit functions
or attempt to refine mental models across functions, LLM
assistance yields diminishing returns and can even hinder
progress (Finding 16). These results suggest that current LLMs
act primarily as summarization tools rather than collaborators
capable of supporting sustained reasoning across functions
or binaries. As a result, LLMs accelerate early semantic
grounding but do not meaningfully assist with the deeper
analytical processes characteristic of expert-level SRE (Find-
ings 2, and 7).
II) The current interaction model of LLMS in SRE
does not support expert knowledge refinement. Despite
increasing adoption, the prevailing interaction model for LLM-
assisted SRE does not effectively support experts. Experts
exhibited little improvement in understanding rate or overall
performance when using LLMs, suggesting that the integration
model itself is insufficient (Finding 2). Experts selectively
offload routine pattern recognition tasks, such as identifying
known algorithms, while reallocating effort toward bespoke or
complex logic. This results in effort redistribution rather than
net acceleration (Finding 7).

These observations highlight a limitation of current LLM
integrations, which primarily treat LLMs as first-pass sum-
marizers rather than tools for iterative refinement or collabo-
rative hypothesis development. Without advances that enable
meaningful knowledge refinement, LLMs are likely to remain
assistants for novices rather than true teammates for experts.
III) Even rare hallucinations can severely derail SRE
workflows. Although hallucinations occurred infrequently
across thousands of LLM interactions, their impact was dis-
proportionately harmful. In particular, hallucinated vulnerabil-
ity reports significantly disrupted participants, often leading
analysts to pursue nonexistent flaws for extended periods
(Finding 9). This behavior is especially concerning in SRE,
where practitioners frequently explore competing hypotheses
and cannot easily invalidate theories without substantial inves-
tigative effort.
IV) Semantic recovery often depends on the act of naming,
not merely the presence of names. Artifact recovery, in-
cluding function names, variable names, types, and comments,
plays a central role in SRE. While LLMs substantially increase
the total number of recovered artifacts, these automatically
generated artifacts are not correlated with improved program
understanding (Findings 4, and 5). In contrast, artifacts created
manually by practitioners show a strong positive relationship
with understanding (Finding 3).

We hypothesize that this discrepancy arises because artifact
creation is itself an understanding process. The act of naming
requires the analyst to commit to a hypothesis about a func-
tion’s role, even when imperfect. When LLMs generate arti-

facts automatically, this process is partially bypassed, poten-
tially reducing opportunities for deeper comprehension. While
LLM-generated names are effective for identifying known
algorithms (Finding 6), reliance on automatically generated
artifacts in more complex contexts may hinder understanding.
V) Only certain forms of cognition can be effectively
offloaded to LLMs. Our findings reveal clear limits on
which aspects of SRE can be effectively offloaded to LLMs.
Tasks that admit a concise, single-purpose abstraction, such
as summarizing well-scoped functions or identifying standard
algorithms, are well suited to LLM assistance and consistently
beneficial (Findings 6, and 18). In contrast, functions that serve
multiple roles, have been heavily optimized, or incorporate
intertwined logic, remain challenging for LLMs to characterize
accurately (Finding 17).

These results suggest that LLMs are most effective for
compressible cognition, where behavior can be meaningfully
captured in a single abstract description. For more complex
code, successful SRE still requires iterative human analysis,
potentially complemented by selective and early LLM use.

IX. RELATED WORK

Human Cognitive Processes during SRE. Mantovani et
al. [1] investigated how human experts approach and solve
SRE tasks. Although their study primarily focused on analyz-
ing cognitive strategies, it provided a foundational reference
for the design of our user study. Additional related work
on characterizing mistakes in the SRE process [46] and on
the automated analysis of instrumented disassembler SRE
data via screen recordings [47] further informed our effort
to understand human behavior in SRE.

In contrast, our work differs significantly in scope and
methodology: we introduce more realistic and semantically
rich challenges with higher code complexity, and our partic-
ipants interact with a broader set of tools – most notably,
decompilation and LLM integration – which fundamentally
alter the nature of the SRE process and the cognitive dynamics
involved.

Other researchers [24] evaluated whether the adoption of
external machine learning-based tools can improve human
performance in discriminating a malicious program from a
benign one. The authors find that machine learning algorithms
can be a valuable tool for malware classification but should
not be used to replace human analysts entirely. While Aonzo
et al. [24] compare the independent decision-making processes
of humans and machines, we delve into how LLMs can assist
human analysts throughout the RE process.
LLMs for SRE. Since the recent advent of LLMs, we have
seen an increasing evaluation of the capabilities of LLM-based
tools, some of which have also considered the SRE scenario.
Concerning end-to-end SRE, Pearce et al. [4] explored the
ability of LLMs to identify program purposes, capabilities, and
variables from decompiled code. Their findings indicate that,
while LLMs show promise, their performance is insufficient
for reliable zero-shot reverse engineering. Their work estab-
lishes that LLMs can perform some initial SRE tasks, but they

13

do not study how their results may be used or perceived by
human SRE practitioners. Our work explores this interaction
and the more human-driven use of LLMs in SRE.

Amodei et al. [9] propose a novel technique to recover
variable names from binaries, leveraging the strengths of both
generative models and program analysis. They evaluated their
technique on a dataset of 940k binary functions and showed
that it outperforms state-of-the-art techniques. The recent pa-
per by Peiwei et al. [6] directly addresses the synergy between
decompilers and LLMs for SRE. Their focus on optimizing de-
compiler output with LLMs aligns with our goal of improving
code readability during the SRE process. Similarly, Shang et
al. [5] evaluated LLM’s ability to understand stripped binary
code, focusing on tasks such as function name recovery and
code summarization. Their study revealed the challenges posed
by complex and obfuscated code, emphasizing the need for
further research to improve LLM performance in this domain.
Rukmono et al. [48] introduce an approach to summarizing
software systems at higher levels of abstraction. They combine
the capabilities of LLMs with static code analysis to generate
summaries of software components.

LLMs are also used to find vulnerabilities in code [49]. Re-
searchers have mostly focused on C/C++, Java, and Solidity, in
particular on memory-related, framework-specific, and smart
contract vulnerabilities, respectively. However, most attempts
target function-level and file-level vulnerabilities, while there
is a lack of repository-level datasets, thus limiting the adoption
in real-world scenarios.

Our work builds upon the existing state of the art and offers
a deeper understanding of the practical applications of LLMs
during the whole SRE process.
User-Study on LLMs. Researchers have explored how users
interact with LLM-based solutions for software development
and analysis. LLMs have been used to improve developer
productivity. GILT [50] introduced a prototype tool that inte-
grates information retrieval with LLMs to improve information
search during software development. The authors demon-
strated the effectiveness of the tool in assisting developers with
various tasks. Nguyen et al. [51] investigated how students in-
teract with LLMs for code generation, highlighting challenges
in prompt engineering and the misalignment between human
and machine understanding. Furthermore, Zamfirescu-Pereir
et al. [52] explored the difficulties non-AI experts encounter
when designing prompts.

Previous user studies have focused on measuring user
interaction with LLM-enhanced tools at individual stages of
the SRE process or software development. This paper focuses
on the entire SRE process workflow.

X. LIMITATIONS

While designing our study, we had to make several choices
to balance the feasibility of the study with the amount of data
we could collect. These choices may have introduced bias into
our results.
Restricted Tooling. In the SRE sessions of our study,
we limited all participants’ analyses of challenges to static

analysis. In real-world SRE, practitioners often have access to
dynamic analysis tools, such as debuggers, which enable them
to confirm assumptions through direct observation. They may
also have access to other, more advanced tools, like symbolic
execution frameworks. Since we did not allow participants to
use these types of tools, they may have solved challenges in
alternative ways to their normal workflow. This limitation can
contribute to longer solve times and understanding rates.

Additionally, we did not survey our participants to deter-
mine if they were satisfied with a static-only approach to re-
verse engineering. We speculate that many would prefer more
tools when reverse-engineering. However, to limit confounding
variables in our study, we limited what tools participants could
use, similar to prior work [1].
Challenge Representativeness. We designed two CTF-style
challenges for our study that approximate tasks SRE practi-
tioners may encounter in real-world programs. Although the
majority of participants reported that they are representative
of real programs (Section V), our challenges can still lack
characteristics of real-world software. Our challenges contain
no obfuscation, have limited complex mathematics, and are
smaller than modern statically compiled programs.
Self-Reported Expertise. To determine SRE expertise, we
relied on self-reporting and partially confirmed results by
statistically testing the difference between the two groups.
However, the difference between these two groups may not
necessarily indicate that one is a novice and the other an
expert. Similar to previous works [1], this could have led
to the incorrect classification of experts and novices in SRE.
Future work should explore more effective experiments for
benchmarking and determining expertise levels in SRE.
LLM Prompts. As with any research applying LLMs, the
style and wording of prompts may influence the results. During
the SRE sessions, participants primarily relied on prompts
written by the research team. These prompts were adapted
from previous research, but they pose the risk of being more
or less effective than the prompts practitioners currently use.
As such, some scenarios of LLM use in our study may yield
better or worse performance, which could bias the results.

XI. CONCLUSION

Our study takes the first in-depth empirical dive into how
LLMs impact SRE and demonstrates that they augment ana-
lysts rather than replace them. The benefits are clear: LLMs
support SRE practitioners in many tasks and can even close the
gap in some aspects between experts and novices. However,
our study shows that many areas of LLM integration still
require research and development to be helpful for the most
challenging SRE tasks. We present our findings, hopeful that
the SRE community will utilize our work to make LLMs an
even more helpful tool for security. All in all, LLMs are neither
oracles nor impostors, but mirrors held to human insight: their
reflections sharpen only in the steady gaze of critical thought
and domain expertise.

14

XII. OPEN SCIENCE

To protect the privacy of our participants, individual ob-
served actions from our empirical study are not available to
the public, nor upon request. This includes all data generated
by individuals in our SRE environment, all write-ups, and indi-
vidual responses to our pre- and post-study surveys. However,
we make aggregated data, such as the total number of clicks
in the study, available upon request. Additionally, our entire
SRE environment infrastructure, including all of our tools,
prompts, and challenges in the study, is made open source and
available at https://github.com/mahaloz/dec-synergy-study. An
actively maintained version of the LLM decompiler plugin is
also available at https://github.com/mahaloz/DAILA.

XIII. ETHICS CONSIDERATIONS

Our study constitutes human subject research (HSR), so we
follow our institution’s HSR guidelines and received approval
from the Institutional Review Board (IRB). Our study is
approved under “Continuing Review,” which requires yearly
re-approval to ensure continued ethical and safety compliance
until all research activities (including reporting of findings) are
complete.

In accordance with our IRB’s requirements and our own eth-
ical considerations of the proper handling of our participants,
all of them were fully informed of the study purpose, data
handling procedures, and their right to withdraw at any time
without penalty. They provided explicit consent for recording
and data storage, and all recordings were stored on access-
controlled servers in accordance with best security practices.
No sensitive or personally identifying information was col-
lected beyond contact details necessary for compensation.

The study tasks were designed to pose minimal psycholog-
ical or professional risk, with no deception or stress-inducing
elements. Participants were not required to complete the two
challenges in sequence, as they could take a break of any
duration between them. Finally, all results were analyzed
and reported in aggregate form to prevent any possibility of
reidentification. Even when participant perceptions (qualitative
insights from the open responses) are reported about their
experiences in the experiment, we use random participant
identifiers.

ACKNOWLEDGMENTS

This research was supported in part by the Advanced Re-
search Projects Agency for Health (ARPA-H) under contract
SP4701-23-C-0074; the National Science Foundation (NSF)
under grants 2232915 and 2146568; the U.S. Department
of the Interior under Grant No. D22AP00145-00; the U.S.
Department of the Navy under grant N00014-23-1-2563; and
by the Defense Advanced Research Projects Agency (DARPA)
in collaboration with the Naval Information Warfare Center
Pacific (NIWC Pacific) under contract N66001-22-C-4026.
Additional support was provided by the U.S. Department of
Defense and Google academic research funding.

This work also received funding from the French Na-
tional Research Agency (ANR) under the France 2030

program through grants ANR-22-PECY-0007 (DefMal) and
ANR-23-IAS4-0001 (CKRISP). Further support was pro-
vided by the European Union NextGenerationEU through the
project SEcurity and RIghts In the CyberSpace (SERICS)
(PE00000014–CUP H73C2200089001), as part of the National
Recovery and Resilience Plan (NRRP), and by the 2023
STARS Grants UniPD programme through the PatchThemAll
project.

Finally, we would like to thank all the participants who took
part in our user study and Riccardo Bonavigo for helping with
the challenges’ design.

REFERENCES

[1] A. Mantovani, S. Aonzo, Y. Fratantonio, and D. Balzarotti, “RE-Mind:
a first look inside the mind of a reverse engineer,” in 31st USENIX
Security Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 2727–2745.

[2] D. Votipka, S. Rabin, K. Micinski, J. S. Foster, and M. L. Mazurek,
“An observational investigation of reverse Engineers’ processes,” in
29th USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 1875–1892.

[3] T. Nosco, J. Ziegler, Z. Clark, D. Marrero, T. Finkler, A. Barbarello,
and W. M. Petullo, “The industrial age of hacking,” in 29th USENIX
Security Symposium (USENIX Security 20), 2020, pp. 1129–1146.

[4] H. Pearce, B. Tan, P. Krishnamurthy, F. Khorrami, R. Karri, and
B. Dolan-Gavitt, “Pop quiz! can a large language model help with
reverse engineering?” 2022.

[5] X. Shang, S. Cheng, G. Chen, Y. Zhang, L. Hu, X. Yu, G. Li, W. Zhang,
and N. Yu, “How far have we gone in binary code understanding using
large language models,” in 2024 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2024, pp. 1–12.

[6] P. Hu, R. Liang, and K. Chen, “Degpt: Optimizing decompiler output
with llm,” in Proceedings 2024 Network and Distributed System Security
Symposium, vol. 267622140, 2024.

[7] L. Jiang, X. Jin, and Z. Lin, “Beyond classification: Inferring function
names in stripped binaries via domain adapted llms,” in Proceedings of
the 2025 on ACM SIGSAC Conference on Computer and Communica-
tions Security, 2025.

[8] D. Xie, Z. Zhang, N. Jiang, X. Xu, L. Tan, and X. Zhang, “Resym: Har-
nessing llms to recover variable and data structure symbols from stripped
binaries,” in Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, 2024, pp. 4554–4568.

[9] X. Xu, Z. Zhang, Z. Su, Z. Huang, S. Feng, Y. Ye, N. Jiang, D. Xie,
S. Cheng, L. Tan et al., “Unleashing the power of generative model in
recovering variable names from stripped binary,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2025.

[10] G. Deng, Y. Liu, V. Mayoral-Vilches, P. Liu, Y. Li, Y. Xu, T. Zhang,
Y. Liu, M. Pinzger, and S. Rass, “PentestGPT: Evaluating and harnessing
large language models for automated penetration testing,” in 33rd
USENIX Security Symposium (USENIX Security 24). Philadelphia, PA:
USENIX Association, Aug. 2024, pp. 847–864.

[11] Z. Li, S. Dutta, and M. Naik, “IRIS: LLM-assisted static analysis
for detecting security vulnerabilities,” arXiv preprint arXiv:2405.17238,
2024.

[12] Ivan Kwiatkowski, “Gepetto,” https://github.com/JusticeRage/Gepetto,
Accessed December 18, 2025.

[13] Tim Blazytko, “ReverserAI,” https://github.com/mrphrazer/reverser ai,
Accessed December 18, 2025.

[14] Atredis Partners, “aiDAPal,” https://github.com/atredispartners/aidapal,
Accessed December 18, 2025.

[15] Evyatar E., “GptHidra,” https://github.com/evyatar9/GptHidra, Accessed
December 18, 2025.

[16] R. Zhang, N. J. McNeese, G. Freeman, and G. Musick, “”an ideal
human” expectations of ai teammates in human-ai teaming,” Proceedings
of the ACM on Human-Computer Interaction, vol. 4, no. CSCW3, pp.
1–25, 2021.

[17] J. Börstler and B. Paech, “The role of method chains and comments in
software readability and comprehension—an experiment,” IEEE Trans-
actions on Software Engineering, vol. 42, no. 9, pp. 886–898, 2016.

15

https://github.com/mahaloz/dec-synergy-study
https://github.com/mahaloz/DAILA
https://github.com/JusticeRage/Gepetto
https://github.com/mrphrazer/reverser_ai
https://github.com/atredispartners/aidapal
https://github.com/evyatar9/GptHidra

[18] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping
johnny to analyze malware: A usability-optimized decompiler and
malware analysis user study,” in 2016 IEEE Symposium on Security
and Privacy (SP). IEEE, 2016, pp. 158–177.

[19] Z. L. Basque, A. P. Bajaj, W. Gibbs, J. O’Kain, D. Miao, T. Bao,
A. Doupé, Y. Shoshitaishvili, and R. Wang, “Ahoy sailr! there is no
need to dream of c: A compiler-aware structuring algorithm for binary
decompilation,” in 33rd USENIX Security Symposium (USENIX Security
24), 2024, pp. 361–378.

[20] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[22] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T.
Cheng, A. Jin, T. Bos, L. Baker, Y. Du et al., “Lamda: Language models
for dialog applications,” arXiv preprint arXiv:2201.08239, 2022.

[23] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[24] S. Aonzo, Y. Han, A. Mantovani, and D. Balzarotti, “Humans vs. ma-
chines in malware classification,” in 32nd USENIX Security Symposium
(USENIX Security 23). Anaheim, CA: USENIX Association, Aug.
2023, pp. 1145–1162.

[25] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. Sjøberg, “A systematic
review of effect size in software engineering experiments,” Information
and Software Technology, vol. 49, no. 11-12, pp. 1073–1086, 2007.

[26] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
a practical and powerful approach to multiple testing,” Journal of the
Royal statistical society: series B (Methodological), vol. 57, no. 1, pp.
289–300, 1995.

[27] J. L. Gastwirth, Y. R. Gel, and W. Miao, “The impact of levene’s test
of equality of variances on statistical theory and practice,” Statistical
Science, vol. 24, no. 3, pp. 343–360, 2009.

[28] J. Cohen, Statistical power analysis for the behavioral sciences. rout-
ledge, 2013.

[29] L. V. Hedges, “Distribution theory for glass’s estimator of effect size
and related estimators,” journal of Educational Statistics, vol. 6, no. 2,
pp. 107–128, 1981.

[30] P. Marfo and G. Okyere, “The accuracy of effect-size estimates under
normals and contaminated normals in meta-analysis,” Heliyon, vol. 5,
no. 6, 2019.

[31] D. C. Funder and D. J. Ozer, “Evaluating effect size in psychological
research: Sense and nonsense,” Advances in methods and practices in
psychological science, vol. 2, no. 2, pp. 156–168, 2019.

[32] J. Cohen, “A power primer,” Methodological Issues and Strategies in
Clinical Research, pp. 279–284, 2016.

[33] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[34] M. P. Fay and M. A. Proschan, “Wilcoxon-mann-whitney or t-test? on
assumptions for hypothesis tests and multiple interpretations of decision
rules,” Statistics surveys, vol. 4, p. 1, 2010.

[35] J. D. Gibbons and S. Chakraborti, Nonparametric statistical inference:
revised and expanded. CRC press, 2014.

[36] M. W. Fagerland and L. Sandvik, “Performance of five two-sample
location tests for skewed distributions with unequal variances,” Con-
temporary clinical trials, vol. 30, no. 5, pp. 490–496, 2009.

[37] A. Hart, “Mann-whitney test is not just a test of medians: differences in
spread can be important,” Bmj, vol. 323, no. 7309, pp. 391–393, 2001.

[38] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological bulletin, vol. 114, no. 3, p. 494, 1993.

[39] R. J. Grissom and J. J. Kim, Effect sizes for research: Univariate and
multivariate applications. Routledge, 2012.

[40] Mattias Karlsson, “GhidraChatGPT,” https://github.com/likvidera/Ghidr
aChatGPT, Accessed December 18, 2025.

[41] Binary Ninja, “Binary Ninja Sidekick,” https://sidekick.binary.ninja/,
Accessed December 18, 2025.

[42] A. Ellard-Gray, N. K. Jeffrey, M. Choubak, and S. E. Crann, “Finding the
hidden participant: Solutions for recruiting hidden, hard-to-reach, and
vulnerable populations,” International journal of qualitative methods,
vol. 14, no. 5, p. 1609406915621420, 2015.

[43] C. Nelson and Y. Shoshitaishvili, “Dojo: Applied cybersecurity edu-
cation in the browser,” in Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1, 2024, pp. 930–936.

[44] The BinSync Team, “BinSync: A binary-analysis collaboration frame-
work,” https://github.com/binsync/binsync, Accessed December 18,
2025.

[45] M. H. Halstead, Machine-independent computer programming. Spartan
Books, 1962.

[46] I. Ford, A. Soneji, F. B. Kokulu, J. Vadayath, Z. L. Basque, G. Vipat,
A. Doupé, R. Wang, G.-J. Ahn, T. Bao et al., ““watching over the
shoulder of a professional”: Why hackers make mistakes and how they
fix them,” in 2024 IEEE Symposium on Security and Privacy (SP).
IEEE, 2024, pp. 350–368.

[47] T. T. Zhang, C. Taylor, B. Coppens, W. Mebane, C. Collberg, and
B. De Sutter, “reanalyst: Scalable annotation of reverse engineering
activities,” Journal of Systems and Software, p. 112492, 2025.

[48] S. A. Rukmono, L. Ochoa, and M. R. Chaudron, “Achieving high-level
software component summarization via hierarchical chain-of-thought
prompting and static code analysis,” in 2023 IEEE International Con-
ference on Data and Software Engineering (ICoDSE). IEEE, 2023, pp.
7–12.

[49] Z. Sheng, Z. Chen, S. Gu, H. Huang, G. Gu, and J. Huang, “Llms in
software security: A survey of vulnerability detection techniques and
insights,” 2025.

[50] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, and B. Myers,
“Using an llm to help with code understanding,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering, ser.
ICSE ’24. New York, NY, USA: Association for Computing Machinery,
2024.

[51] S. Nguyen, H. M. Babe, Y. Zi, A. Guha, C. J. Anderson, and M. Q.
Feldman, “How beginning programmers and code llms (mis)read each
other,” in Proceedings of the CHI Conference on Human Factors in
Computing Systems, ser. CHI ’24, vol. 1. ACM, May 2024, p. 1–26.

[52] J. Zamfirescu-Pereira, R. Y. Wong, B. Hartmann, and Q. Yang, “Why
johnny can’t prompt: How non-ai experts try (and fail) to design llm
prompts,” in Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems, ser. CHI ’23. New York, NY, USA: Association
for Computing Machinery, 2023.

APPENDIX

A. Online Post-Study Survey Questionnaire

CTF Challenges: Participants were asked to indicate their
level of agreement using a 5-point Likert scale ranging from
Strongly Disagree to Strongly Agree.

• The two CTF challenges are good representative exam-
ples of real-world software.

• The security vulnerabilities in the two CTF challenges
are good representative examples of real-world ones.

• The two CTF challenges were of similar difficulty.
Usability: Participants were asked to indicate their level of
agreement using a 5-point Likert scale ranging from Strongly
Disagree to Strongly Agree.

• Learning to use IDA Pro with LLM support was easy for
me.

• My interaction with IDA Pro with LLM support was clear
and understandable.

Contribution of the LLM: Participants were asked to
indicate their level of agreement using a 5-point Likert scale
ranging from Strongly Disagree to Strongly Agree.

• Using IDA Pro with LLM support allowed me to under-
stand the functions of the program faster than when I did
NOT have GPT support.

• I was more confident of the solution when I used IDA
Pro with LLM.

16

https://github.com/likvidera/GhidraChatGPT
https://github.com/likvidera/GhidraChatGPT
https://sidekick.binary.ninja/
https://github.com/binsync/binsync

Figure 5: Participants’ responses to a 5-point Likert scale from
Helpful to Harmful for LLM-plugin features

• Different prompt engineering techniques have an impact
on the quality of the suggestions.

• I felt that the LLM can be used instead of searching using
the web browser.

Usefulness of LLM-Enhanced Features: Participants were
asked to rate the following features on a 5-point Likert scale
ranging from Very Harmful to Very Helpful, based on how
each supported their understanding of the target program.

• Summarize this function.
• Identify the source of this function.
• Suggest variable names.
• Suggest function name.
• Find vulnerabilities in this function.
• Summarize library call man page.
• Free prompt with GPT.

Open-Ended Reflection:
• What stood out to you about the experience of using IDA

Pro with LLM support compared to the standard IDA
Pro? For example, was anything good, bad, surprising,
or notable?

Participant Information for Compensation Disbursement:
• What email should we send the gift card to?
• Are you a US citizen?

Table IV: A summary of key findings from the survey con-
ducted on the study participants. Categories marked with an
asterisk (*) are part of multiple-choice questions.

Survey
Total 153
Age Range No. %
21-25 66 43.1%
26-30 34 22.2%
18-20 17 11.1%
36-40 13 8.5%
31-35 13 8.5%
40+ 9 5.9%
50+ 1 0.7%
Occupation* No. %

Fu
nc

 S
um

m
ar

y
Fu

nc
 R

en
am

e
Va

r R
en

am
e

Li
b

Fu
nc

 D
oc

s
Fu

nc
 Id

en
tif

y
Fu

nc
 V

ul
ns

LL
M

 C
ha

t
Hu

m
an

Func Summary

Func Rename

Var Rename

Lib Func Docs

Func Identify

Func Vulns

LLM Chat

Human

28 87 87 18 24 5 11 175

50 19 50 11 7 3 4 31

37 103 11 9 2 9 3 29

12 4 5 18 3 5 8 11

20 9 10 1 15 2 5 13

- 1 2 3 1 1 5 4

2 - 2 1 2 1 54 7

53 18 24 11 7 6 5 -

Figure 6: Heatmap of LLM action
transitions, with the y-axis represent-
ing the initial action and the x-axis
representing the subsequent action.
Each cell indicates the number of
transition occurrences across all par-
ticipants. *(human to human action
transitions were not included)

Table III: Participant Agreement Ratings on 5-point Likert
Scale.
SA = Strongly Agree, MA = Moderately Agree, N = Neutral, MD =
Moderately Disagree, SD = Strongly Disagree

Statement SA MA N MD SD
1. Challenges represent real-
world software

13 18 12 5 0

2. Security vulnerabilities in
challenges are realistic

6 31 10 1 0

3. Challenges are similarly dif-
ficult

8 23 5 11 1

4. Learning to use IDA Pro with
LLM support was easy.

32 13 1 1 1

5. Interacting with IDA Pro with
LLM support was clear and un-
derstandable.

27 17 2 1 1

6. LLM helped me understand
functions faster

33 11 3 1 0

7. More confident of the solu-
tion using LLM

15 19 9 4 1

8. Prompt engineering has an
impact on the quality of the
suggestions

14 10 22 1 1

9. LLM can be used instead of
searching on the web browser

21 18 3 5 1

Academic/Student 66 43.1%
Industry/Employee 42 27.5%
Academic/Researcher 26 17.0%
Industry/Freelance 14 9.2%
Other 5 3.3%
SRE Experience (years) No. %
[1-3] 62 40.5%
[4-6] 28 18.3%
< 1 28 18.3%

17

[7-9] 17 11.1%
> 10 18 11.8%
SRE Frequency No. %
Sometimes - Once a week 56 36.6%
Often - Multiple days in a week 49 32.0%
Rarely - Once a month 23 15.0%
Always - Every day 19 12.4%
Very Rarely - Once a year 6 3.9%
Novices and Experts No. %
Novice 85 55.6%
Expert 68 44.4%
SRE Context* No. %
For hobby and/or passion 110 32.9%
Competitive (e.g., CTF) 87 26.0%
For work and/or research 79 23.7%
For academic studies 55 16.5%
Other 3 0.9%
Use of LLMs outside SRE No. %
Often - Multiple days in a week 61 39.9%
Always - Every day 35 22.9%
Sometimes - Once a week 26 17.0%
Rarely - Once a month 21 13.7%
Never - I do not use them at all 10 6.5%
LLMs Preference* No. %
GPT by OpenAI 140 57.1%
Claude by Anthropic 36 14.7%
LLaMA by Meta 27 11.0%
Other 24 9.8%
PaLM by Google 13 5.3%
Mistral by Mistral 5 2.0%
Program Format Popularity* No. %
ELF 124 53.4%
Portable Executable (PE) 69 29.7%
Other 27 11.6%
Mach Object (Mach-O) 12 5.2%
SRE Frameworks* No. %
IDA Pro 110 81.0%
Ghidra 107 73.0%
Binary Ninja 48 13.6%
angr 29 8.2%
Radare2 27 7.6%
Other 11 3.1%
JEB 10 2.8%
Rizin/Cutter 8 2.3%
Hopper 3 0.8%
Use of LLMs during SRE No. %
Sometimes 52 34.0%
Rarely 49 32.0%
Often 43 28.1%
Always 9 5.9%
LLMs used during SRE* No. %
GPT by OpenAI 131 64.2%
Other 27 13.2%
Claude by Anthropic 20 9.8%

LLaMA by Meta 15 7.4%
PaLM by Google 8 3.9%
Mistral by Mistral 3 1.5%
Most frequent queries to LLMs* No. %
Summarize a function 100 25.9%
Improve the readability of the code 76 19.7%
Identify the original source code 43 11.1%
Rename variables 41 10.6%
Rename functions 36 9.3%
Summarize a program 36 9.3%
Other 25 6.5%
Find vulnerabilities 29 7.5%
Type of code input* No. %
Source Code (decompiled) 132 60.0%
Machine Code (disassembled) 61 27.7%
Intermediate Language (lifted) 27 12.3%
Usefulness of using LLMs during SRE No. %
Sometimes yes, sometimes no 104 68.0%
Yes 36 23.5%
No 13 8.5%

18

	Introduction
	Background and Scope of the Study
	Methodology
	Three Study Phases
	Participant Recruitment
	Statistical Analysis of Quantitative Data

	Formative Research
	Study Design
	Study Overview
	Online Platform
	SRE & LLM Tooling
	SRE Challenges Development
	SRE Challenges
	Challenge Writeup Evaluation

	LLM Impacts on SRE
	Study Assumptions
	Expertise Dependent LLM Improvements
	Augmented Artifact Recovery
	Function Speed Differences
	Misunderstandings

	LLM Strategies and Factors
	LLM Expertise
	LLM Features
	Query Frequency
	Query Timing
	Other Strategies

	Key Takeaways
	Related Work
	Limitations
	Conclusion
	Open Science
	Ethics Considerations
	References
	Appendix
	Online Post-Study Survey Questionnaire

