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Abstract—Encrypted messaging systems provide end-to-end
security for users but obstruct content moderation, making it dif-
ficult to combat online abuses. Traceability offers a promising so-
lution by enabling platforms to identify the originator/spreader of
messages, yet this capability can be abused for mass surveillance
of innocent messages. To mitigate this risk, existing approaches
restrict traceability to (problematic) messages that are reported
by multiple users or are on a predefined blocklist. However,
these solutions either overtrust a specific entity (e.g., the party
defining the blocklist) or rely on the unrealistic assumption of
non-collusion between servers run by a single platform.

In this paper, we propose an abuse-resistant source tracing
scheme that distributes traceability across distinct real-world
entities. Specifically, we formally define its syntax and prove its
security properties. Our scheme realizes two essential principles:
minimal trust, which ensures that traceability cannot be abused
as long as a single participant involved in tracing is honest,
even if all others collude; and minimal information disclosure,
which prevents participants from acquiring any information (e.g.,
communication parties’ identities) unnecessary for tracing. We
implemented our scheme using techniques deployed by Signal,
and our evaluation shows it offers comparable performance to
state-of-the-art schemes that are vulnerable to abuse.

I. INTRODUCTION

End-to-end encryption (E2EE) has been widely deployed
in real-world messaging platforms such as WhatsApp and
iMessage, serving billions of users daily. A persistent issue
within end-to-end encrypted messaging systems (EEMSs) is
the prevalence of online abuse, which includes hate, harass-
ment, and misinformation [51]. To mitigate online abuse, plat-
forms typically employ content-based methods (e.g., machine
learning [24], [54]) to detect problematic messages. Unfortu-
nately, these methods require access to the detected content
(e.g., text, image, video) in plaintext, which is safeguarded
by E2EE in EEMSs. Therefore, E2EE poses a significant
challenge to combat online abuse within EEMSs [45], [50].

Traceability is a promising paradigm for addressing online
abuse in EEMSs [55]. Instead of detecting problematic con-
tent in plaintext, traceability enables the platform to identify

culprits responsible for disseminating problematic messages.
Subsequently, the platform can implement targeted measures,
such as suspending services [59], to impede the perpetrators
of online abuse. In recent years, governments in various
countries have also considered legislation to mandate trace-
ability in EEMSs [38], [42]. However, traceability inevitably
compromises the privacy guarantees offered by E2EE [58].
For instance, a malicious platform could abuse its traceability
power to monitor innocent messages containing politically
sensitive content. In contrast, a plausible traceability solution
should only allow the platform to trace genuinely problematic
messages. To address this challenge, we must define trace rules
that determine which messages are permissible for tracing.

A. Prior Work

Existing tracing schemes primarily address traceability, ex-
ploring various tracing mechanisms including message trace-
back [33], [55], source tracing [11], [28], [41], and impact
tracing [56]. These solutions permit the platform to trace any
reported message, irrespective of whether it is problematic
or innocuous, posing a significant risk of platform abuse. To
mitigate this risk, two distinct approaches have been proposed.

Threshold-based approach [6], [37] limits the platform’s
traceability to messages reported multiple times by different
recipients. The intuition behind implementing this approach is
that recipients submit a share of tracing metadata with each
report; the platform can trace the originator’s identity once a
sufficient number of shares have been collected. For instance,
Liu et al. [37] and Bell et al. [6] implemented fuzzy and exact
threshold reporting using a novel counting bloom filter and
secret sharing, respectively. However, these schemes require
either the platform or recipients to be honest. A recipient
colluding with the platform could submit original tracing
metadata instead of a share, thus nullifying the threshold
limitation. Even worse, a malicious platform could create an
arbitrary number of malicious recipients to report encrypted
messages. This issue, analogous to the Sybil attack [19], is
inherent to any threshold reporting scheme.

Blocklist-based approach [4] limits the platform’s trace-
ability only to messages included in a pre-defined blocklist.
This requires a trusted regulator to define the blocklist, as the
platform itself cannot be trusted with this task. For example,
real-world regulators like the National Center for Missing and
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Exploited Children (NCMEC) provide hashes of child sexual
abuse materials (CSAM) to platforms like Google to detect
problematic content [49]. However, a critical concern is that
the regulator could also be dishonest. Such a regulator could
covertly inject innocent messages into the blocklist, leading
to mass surveillance. Moreover, the high sensitivity of the
blocklist (e.g., child sexual exploitation) prevents the regulator
from demonstrating that the messages within the blocklist are
genuinely problematic. Consequently, the assumption of an
honest regulator is fragile from a real-world perspective. This
fragility is evidenced by trust issues in Apple’s attempts to
deploy their client-side scanning scheme [25], [31], [34].

In summary, while traceability helps curb online abuse, it
inherently risks granting excessive power to the platform or
regulator, potentially leading to mass surveillance. Existing
solutions rely on strong trust assumptions—either in the plat-
form, recipients, or regulator. This motivates us to seek an
abuse-resistant traceability design that requires weaker trust
assumptions among participants.

II. OVERVIEW

We now provide details of our design considerations, con-
tributions, and techniques.

A. Design Considerations

To achieve abuse-resistant traceability, we first outline two
essential properties for practical deployment:
Minimal trust for abuse resistance requires that a tracing
scheme cannot be abused even if only one arbitrary partici-
pant, aside from the originator, is trusted. Ideally, a tracing
scheme should prevent abuse even if all the participants,
except the originator, are untrusted — even when they col-
lude. Unfortunately, this goes against the core of traceability,
which depends on non-originator participants to identify the
originator. Without this capability, an originator could simply
obstruct the disclosure of their identity and evade tracing.
Therefore, achieving abuse-resistant traceability under such an
ideal assumption is infeasible. We thus adopt a minimal trust
model, assuming only one trusted non-originator participant
and allowing arbitrary collusion among all other participants.
Minimal information disclosure ensures that only necessary
information is revealed to servers (e.g., the platform) for trac-
ing. This principle has two key aspects: First, a tracing scheme
must minimize the collection of user information. This means
that all information irrelevant to tracing problematic messages
should be concealed. Specifically, this includes maintaining the
confidentiality of all messages before tracing and ensuring the
anonymity of communication parties and reporters. Second,
the scheme must also minimize the exposure of detection infor-
mation. For instance, illegal content databases like NCMEC’s
CSAM hash database should expose as little as possible. This
is crucial because any unnecessary exposure of illegal content
risks re-traumatizing survivors [16], [53]. These two aspects
contribute to the scheme’s abuse resistance, thereby improving
overall user privacy and reducing data leakage risks.

Report

Regulator

Moderator

Sender

Platform

Trace

Recipient

Fig. 1: Our system model. The solid and dashed lines represent
the reporting-then-tracing and messaging process, respectively.

B. Our Contributions

In this paper, we aim to address the following question:

“Can we design an abuse-resistant tracing scheme with
minimal trust and minimal information disclosure?”

We introduce a new system model grounded in the principle
of minimal trust and propose a source tracing scheme that
ensures minimal information disclosure. The system addresses
the risk of abuse by assigning distinct roles and responsibilities
to each participant, thereby establishing a system of mutual
checks and balances.
New model for traceability with minimal trust. Our system
model draws from observations of real-world moderation
systems, which invariably include participants beyond the
platform. For instance, a regulator (like NCMEC) manages
a blocklist of illegal content, while a moderator (similar to
the Oversight Board [9]) reviews the platform’s (e.g., Meta’s)
content moderation decisions. Users interact solely with the
platform, with the moderator and regulator operating transpar-
ently in the background.

Based on these observations, we distribute tracing respon-
sibilities across four distinct participants (see Fig. 1):
• Users: 1 Report unwanted messages they receive.
• Platform: 2 Collect reports from recipients in reporting; and

5 Trace the originator of problematic messages in tracing.
• Regulator: 3 Inspect reports collected by the platform to

filter out invalid ones (i.e., reports on innocent messages).
• Moderator: 4 Review moderation decisions made by the

regulator and transmit only valid ones to the platform.
Meanwhile, our system adopts a threat model grounded in

minimal trust: it is abuse-resistant if any single participant
(platform, moderator, regulator, or recipients) is trusted, even
if all others collude. This represents a weaker trust assumption
than in prior single- and multi-server schemes. We contrast this
model with existing approaches to demonstrate its advantages:
• Single-server schemes (e.g., [41], [55]) centralize trust in the

platform. While such models can satisfy minimal trust, they
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grant the platform unilateral power to trace any message and
creating a high risk of abuse.

• Multi-server schemes attempt to distribute trust but introduce
other weaknesses. Those relying on a single designated
trusted server [4], [21] merely shift the single point of
trust. Other schemes employ secure multi-party computation
(MPC) with symmetric servers [6], [36] have two weak-
nesses: 1) The servers are often run by a single entity,
collapsing the distinct trust domains and voiding MPC
guarantees [32], and 2) the symmetric architecture requires
all servers to view the reported messages for moderation,
harming privacy.

Our model avoids these pitfalls by assigning asymmetric roles
to participants, which ensures both minimal trust and minimal
information disclosure. The regulator, moderator, and platform
each have distinct, non-overlapping responsibilities and access
privileges, preventing any single entity from unilaterally con-
trolling the tracing process.
New scheme for abuse-resistant source tracing. Within our
minimal-trust model, we design a new sourcing tracing scheme
that prevents abuse while minimizing information disclo-
sure. Our scheme achieves this by distributing responsibilities
among its participants, who collectively enforce specific rules
to determine message traceability.

In detail, our regulator uses a private blocklist to fil-
ter reports, a design that minimizes detection information
disclosure. The blocklist’s content remains exclusively with
the regulator. However, this non-public list carries a risk: a
malicious regulator could potentially add innocent messages
to the blocklist for tracing. To counter this, our moderator
independently reviews the regulator’s decisions, only forward-
ing valid cases to the platform. Furthermore, honest recipients
prevent abuse, even if all servers are malicious, by submitting
just one share per report. This stops servers from collecting
enough shares to trace innocent messages.

As a result, our system permits tracing only for messages
that simultaneously meet three rules: 1) reported by multiple
recipients; 2) defined by the regulator in a blocklist; and
3) reviewed by the moderator. This approach combines the
principles of threshold reporting, blocklisting, and content re-
viewing. Consequently, we define “innocent messages” as any
messages that do not satisfy this complete set of rules; “abuse”
is any information leakage about these innocent messages.

With minimal trust, our scheme can naturally withstand
traceability abuse even when an adversary controls all partici-
pants but one. The single trusted participant can independently
thwart abuse in the following ways:

• An honest platform prevents the adversary from obtaining
the tracing result, even if the adversary can bypass the rules.

• An honest regulator maintains a blocklist devoid of innocent
messages, thereby preventing the adversary from tracing a
message outside the blocklist.

• An honest moderator faithfully reviews the received re-
ported messages, filtering out invalid reports on innocent
messages from the adversary.

TABLE I: Comparison with prior work.

Scheme Trace Rule Trust
Assumption Anon. Basic

Security

TMR19 [55] Unrestricted Honest platform #  
PEB21 [41] Unrestricted Honest platform #  
IAV22 [28] Unrestricted Honest moderator†   
BGJP23 [4] Pre-emptive blocklist Honest regulator   
LRTY22 [37] Fuzzy threshold Non-colluding platform

and recipients‡
G#  

BE24 [6] Exact threshold   

Ours
Exact threshold
Post-facto blocklist
Content review

Minimal trust   

Basic Security: Confidentiality, unforgeability, and accountability.
Anon. (Anonymity): G# represents one-sided anonymity (i.e., at the level
of Signal’s sealed sender [30]).
Trust Assumption: †: The moderator is a decoupled tracing authority,
fundamentally differing from our moderator; ‡: BE24 uses two servers
and additionally assumes they do not collude.

• Honest recipients submit only a share of the tracing meta-
data as a report. Thus, the adversary cannot trace a message
without obtaining sufficient reports.
Furthermore, our scheme enforces minimal user information

disclosure, preventing unnecessary data leakage across the
board. This principle applies to innocent messages, where
both their content and originator remain permanently con-
cealed. Even for problematic messages, we apply this principle
stringently. For example, after multiple reports, the platform
only reconstructs an encrypted problematic message for the
regulator. The regulator can then only decrypt and view its
content if the encrypted message belongs to the blocklist.
Additionally, the identities of communication parties and re-
porters are permanently concealed from the platform across
all messages. This makes our scheme compatible with EEMSs
that feature anonymity [30].
More improvements beyond abuse resistance. Beyond its
core abuse resistance, our scheme offers several advancements
over prior work, which we summarize in Table I.
• Source tracing: Our source tracing scheme is a generic

construction, offering cryptographic agility [27]. Moreover,
it leverages existing techniques, such as key-verification
anonymous credential (as used in Signal’s private group
system [13]), which makes it easy to deploy.

• Blocklisting: Our blocklisting implementation checks all
reported messages against the most current blocklist (i.e.,
post-facto), unlike the previous scheme’s [4] pre-emptive
approach, which checks at message creation. This timing
mismatch limits their ability to trace most problematic
messages, as such messages are typically blocklisted only
after they have begun to spread.

• Threshold reporting: Our threshold reporting implementa-
tion achieves an exact reporting threshold between users
and the platform. This contrasts with prior work that either
offered a fuzzy threshold that risks false positives (tracing
the originator of insufficiently reported messages) [37], or
required two servers that are difficult to deploy due to their
impractical trust assumptions [6], [36].
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C. Our Techniques

Our construction proceeds in two stages: first, we implement
a source tracing scheme within anonymous EEMSs; second,
we assign servers different authorities to enforce distinct trace
rules for abuse resistance.
Source tracing with anonymity. The foundation of our
scheme is tracing metadata tmd that accompanies each mes-
sage, enabling traceability within EEMSs.
• Sending. A sender attaches an tmd to every message.
• Receiving. Upon receipt, the recipient verifies the validity

of tmd and rejects any messages with malformed metadata.
• Reporting. A recipient reports an unwanted message by

submitting it to the servers along with its tmd.
• Tracing. The servers first verify the validity of tmd. If tmd

is valid, they recover the originator’s identity from it.
Additionally, throughout the process of messaging, tmd is
hidden in E2EE and remains unreadable to the platform, thus
preserving the anonymity of the underlying EEMS.

Building on the workflow described, this tracing metadata
is designed with four components to simultaneously ensure
traceability, accountability, and confidentiality:
• Encrypted originator identity (ctu): The originator’s identity

is encrypted using server’s public keys. This provides trace-
ability, allowing servers to recover the originator’s identity in
tracing, while ensuring confidentiality from all other parties.

• Anonymous token (token): A publicly verifiable token,
signed by the platform, that attests to the originator’s validity
without revealing their actual identity. This provides ac-
countability, preventing malicious users from impersonating
others while preserving anonymity among recipients.

• Encrypted tag (cttag): A tag binding the originator’s identity
to the message content. It ensures accountability, preventing
malicious users from framing others by fabricating messages
they never sent.

• Zero-knowledge consistency proof (πsend): A proof showing
that 1) the identity within (ctu, token, cttag) is identical
and valid; 2) the message in cttag matches the verifier’s
received message. This makes the entire metadata verifiable
by any participant, ensuring no malicious sender can evade
tracing, which guarantees accountability and confidentiality.
Note that this proof can be efficiently instantiated using the
generic linear Sigma protocol [10].
Next, to achieve abuse resistance, our scheme protects

the originator’s identity with a layered ciphertext ctu. Its
decryption requires sequential approval from the regulator,
moderator, and platform, where each step is conditioned on
the enforcement of a distinct rule. The entire process is gated
by the platform collecting enough reports from recipients,
which is followed by the regulator’s blocklist check and the
moderator’s content review.
Threshold reporting. Our scheme adapts the threshold aggre-
gation reporting (TAR) protocol [15] for threshold reporting.
Given a shared secret (e.g., a reported message) between
users, TAR allows individual users to produce a secret share.
The platform can only reconstruct this secret when collecting

shares that exceed a predefined threshold. Unfortunately, the
original TAR protocol is vulnerable to malicious reporters
who can submit duplicate reports for the same message to
circumvent the threshold. We address this by introducing a
report deduplication mechanism. Each reporter generates a de-
terministic deduplicate tag that uniquely binds their identity to
the reported message. The platform can then discard duplicate
reports by detecting repeated tags, which ensures each user
contributes only once to a message’s report count.
Blocklisting. We use set pre-constrained encryption (SPCE)
in [4] for blocklisting, but with a critical architectural shift.
Unlike that work, which binds a message to a blocklist at
creation time, we defer this binding to reporting time. This
simple change ensures every report is moderated against the
most current blocklist. This deferred-binding approach was
previously infeasible. In prior models, a malicious recipient
and platform could collude to bypass the binding check and
maliciously trace an innocent message. This attack works
because the platform is the only server to verify the recipient’s
report. Our model solves this by making the regulator an active
validator of blocklisting, where all reports require validation
by the regulator before tracing. This neutralizes the threat of
collusion between recipients and the platform, as a trusted
regulator can immediately reject false reports.
Content reviewing. A final challenge is to prevent a malicious
regulator from abusing its power by adding innocent messages
to the blocklist to enable their tracing. A straightforward
method is to engage a group of third parties to audit the block-
list at the system setup [44]. But, this method discloses the
messages within the blocklist (e.g., CSAMs) to these auditors,
violating minimal information disclosure. In particular, except
for tracked messages, participants other than the regulator
should learn nothing about the blocklist.

Our solution is to review the outcome of the regulator’s
inspection, not the blocklist itself. The moderator reviews
only the messages that the regulator has already flagged as
being on the blocklist and ready for tracing. This approach
is effective for two reasons: 1) Abuse only occurs when an
innocent message is actually traced, not just when it is added to
the blocklist. Our review happens at the last possible moment
before tracing. 2) It minimizes information disclosure, as the
moderator only sees messages that have met all other trace
rules, not the entire sensitive blocklist. This strategy prevents
the regulator from abusing its power while protecting the
confidentiality of the blocklist.

III. MODELS AND GOALS

A. Participants
There are four types of participants involved in our system

model. Each participant behaves as follows.
• Users U : Users communicate with each other via the under-

lying EEMS, acting simultaneously as sender US and recip-
ient UR. Additionally, recipients can report any unwanted
message to the platform.

• Platform P: The platform authenticates user’s identities and
transmits encrypted messages from senders to recipients. It
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also processes (i.e., verifies, collects, and aggregates) user
reports, transmitting the aggregated result to the moderator.
Upon receiving reviewed tracing metadata from the mod-
erator, it discloses the originator of reported messages for
further targeted interventions.

• Regulator R: The regulator generates and maintains a regu-
larly (e.g., weekly) updated blocklist, ruling what messages
are considered problematic. It inspects aggregated reports
from the platform and forwards valid ones to the moderator
for further review.

• Moderator M: The moderator is responsible for reviewing
content moderation decisions from the regulator. For valid
decisions, it transmits the tracing metadata to the platform to
trigger tracing. Conversely, it ceases to forward the metadata
to the platform for invalid decisions.

B. Threat Model

All participants in our system can be either semi-honest or
malicious, with their behaviors detailed below:

• Users U : Semi-honest users correctly execute our scheme
but attempt to deduce the originator of received messages
from the corresponding tracing metadata. Malicious users
would strive to evade tracing, falsely attribute a problematic
message’s originator to an innocent user, or intentionally
report innocent messages to maliciously trigger a trace.

• Platform P: A malicious platform seeks to compromise
users’ privacy, targeting the content and originator’s identity
of innocent messages, as well as the identities of the
communicating parties and reporters. Additionally, it may
bypass the verification of reports to circumvent trace rules.

• Regulator R: A semi-honest regulator generates and en-
forces the blocklist but seeks to disclose the reported
message’s originator. Conversely, a malicious regulator may
inject innocent messages into the blocklist.

• Moderator M: A semi-honest moderator dutifully verifies
content moderation decisions from the regulator but attempts
to infer the reported message’s originator. Conversely, a
malicious moderator may neglect to revise received content
moderation decisions.

Our threat model allows all malicious participants to col-
lude, as long as the minimal trust principle introduced in
Section II-B holds. This principle is dynamically applied
across our security games (Section VI), where the scope of
collusion is tailored to the participants relevant to each spe-
cific property. For instance, in analyzing abuse resistance—a
property involving recipients, the platform, the regulator, and
the moderator—the threat model assumes an adversary that
can corrupt any three of these four parties.

C. Design Goals

Our goal is to implement a source tracing scheme that
prevents the potential abuse of traceability. Consequently, the
design goals of our scheme encompass three key aspects:

First, our scheme should satisfy all the requirements of a
conventional source tracing scheme.

• Message confidentiality: Participants other than the users
who received the message directly learn nothing about the
content of the messages before reporting.

• Source confidentiality: Participants cannot determine the
message’s originator from the tracing metadata.

• Trace accountability: A malicious user cannot send a mes-
sage that cannot be traced in the future, and a group of
malicious users cannot manipulate the tracing result.

• Messaging anonymity: The identities of communication par-
ties are concealed from the servers1 in messaging.

Second, threshold reporting requires that a user’s report for
a specific message be unique and anonymous.

• Report uniqueness: A user cannot report the same forwarded
message to the platform twice.

• Reporting anonymity: The platform cannot infer users’ iden-
tities from their reports.

Third, blocklisting mandates that the blocklist used for
filtering reports be certified by the regulator and remain
confidential to all participants except the regulator itself.

• Blocklist confidentiality: Participants other than the regulator
learn nothing about the content of the blocklist from the
blocklist, except for reported messages.

• Blocklist authenticity: Only the regulator can add or update
elements in the blocklist.

Remark 1 (Source replacement). A user may copy and
paste a received message to re-send it, rather than forward
it. Consequently, the user would be traced as the originator,
replacing the actual originator. Since the underlying EEMS can
only identify the first user who sent a message as its originator,
rather than the one who created it in the real world, this is an
inherent limitation of any tracing scheme [41], [55]. Therefore,
we consider it a non-goal of this work.

IV. DEFINITIONS

This section defines the syntax of our scheme and its core
building blocks.

A. Preliminaries

Notations. If S is a set, then |S| represents its cardinality
and a ←$ S uniformly samples an element from S. For two
sets S1 and S2, we use S1

∪← S2 to denote S1 ← S1 ∪ S2.
Additionally, [n] represents the set of integers {1, 2, . . . , n}
and the dot notation is employed to access the element of a
tuple. For example, we use token.cm to retrieve the field cm
of tuple token = (cm, σsw, rd).
Algorithms. If Alg is an interactive algorithm that receives
input from S and produces output for T , we denote is as:
Alg⟨S(input), · · · ⟩ → (T (output), · · · ) or ⊥, where S, T ∈
{R,M,P,U}. The symbol ⊥ indicates the failure of algo-
rithm execution, and · · · indicates that it receives additional
inputs from and produces outputs for various participants.

1For simplicity, we use ‘servers’ to refer to R, M, and P henceforth.
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B. Syntax

At a high level, our scheme consists of five phases:
Setup phase. The servers generate their key-pairs and initial-
ize system parameters.

• KGen(1λ)→ (R(pkR, skR),M(pkM , skM ),P(pkP , skP )):
The key generation protocol lets the servers initialize their
key-pairs individually.

• LGen(B, skR) → eb: The blocklist generation protocol
enables the regulator to encode a blocklist B to eb.

In summary, the system parameters are the threshold δ (set
by servers) and the encoded blocklist eb. We assume (pkR,
pkM , pkP , δ, eb) is an implicit input for all other algorithms.
Registration phase. The users register to the platform and
obtain publicly verifiable anonymous tokens for 1) originating
fresh messages and 2) reporting problematic messages.

• UReg⟨U(id),P(skP )⟩ → U(uk, cred) or ⊥: The user
registration algorithm, executed only once for each new user
by P , generates a secret key uk and a corresponding long-
term anonymous credential cred for the user.

• TkGen⟨U(uk, cred),P(skP )⟩ → U(token) or ⊥: The
token generation protocol, executed interactively between P
and U , allows U to derive a publicly verifiable ephemeral
anonymous token from its long-term credential.

Message phase. Users communicate with each other via
the platform. Meanwhile, users generate tracing metadata for
messages they originate, allowing tracing in the future.

• Send(m,uk, token) → tmd: The send algorithm allows a
user to generate tracing metadata using its secret key and
an anonymous token when originating a message.

• Receive(m, tmd) → {0, 1}: The receive algorithm, run
by the recipient, checks the validity of received tracing
metadata and rejects the malformed ones. This ensures that
every reported message can be traced to its originator.

Report phase. The recipients report unwanted messages, and
then the platform processes these reports for tracing.

• Report(m, tmd, uk, cred, eb) → report: The report algo-
rithm, run by the recipient, allows the user to generate a
report of a received unwanted message.

• VfReport(report, skP ) → report′ or ⊥: The report veri-
fication algorithm is run by P to check the validity of a
received report. If verification succeeds, it outputs a refined
report; otherwise, it outputs ⊥.

• Collect({report′i}i∈[n]) → cttmd,3 or ⊥: The collect algo-
rithm enables the platform to collect and aggregate refined
reports to encrypted tracing metadata.

Trace phase. The regulator and moderator filter out invalid
reports, allowing the platform to trace only valid reports.

• Inspect(cttmd,3, skR) → (cttmd,2,m) or ⊥: The inspect
algorithm, executed by R to handle user reports, verifies
the compliance of these reports with a trace rule. If the
rule is satisfied, R obtains the message m and updates the
encrypted tracing metadata cttmd,3, thereby signalingM for
further reviews.

• Review(cttmd,2,m, skM ) → (cttmd,1,m) or ⊥: The
review algorithm, operated by M, evaluates the content
moderation decision on the reported message. If M deems
the message problematic, it updates the encrypted tracing
metadata cttmd,2, signaling P to commence tracing.

• Trace(cttmd,1,m, skP ) → id or ⊥: The trace algorithm,
run by P , validates the encrypted tracing metadata cttmd,1.
If validation succeeds, it reveals the originator’s identity of
the reported message m.

C. Building Blocks

We next define the building blocks of our design and briefly
discuss the core properties required.
Keyed-verification anonymous credential (KVAC). A KVAC
protocol [12] allows the server S to (blindly) issue credentials
to clients; with the credential, the client C can anonymously
authenticate themselves to S.

• KGen(1λ) → (pp, kS): The key generation algorithm en-
ables S to create public parameters pp and secret key kS .

• Issue⟨C(id),S(kS)⟩ → C(cred, πiss): The credential is-
suance algorithm produces a credential cred with proof πiss

for C with identity id. In addition, for blind issuance, please
refer to BlindIssue in Appendix A.

• VfIssue(id, cred, πiss) → {0, 1}: The issuance verification
algorithm allows C to verify the proof of issuance πiss,
outputting ‘1’ if the verification is successful.

• Show(id, cred) → (cm, πshow, rd): The present algorithm
enables C to generate a presentation (cm, πshow, rd) to
authenticate its identity to S anonymously, where cm is a
commitment to id and rd is randomness used in cm.

• VfShow(kS , cm, πshow) → {0, 1}: The show verification
algorithm allows S to verify a credential presentation’s
validity, outputting ‘1’ for success or ‘0’ for failure.

A KVAC protocol should satisfy: 1) Unforgeability: A mali-
cious client cannot generate an accepting proof for an identity
they never received a corresponding credential. 2) Anonymity:
A credential presentation from Show reveals nothing about the
client’s identity. Notably, KVAC’s security implies the binding
and hiding properties of the commitment cm.
Multi-key public key encryption (mkPKE). A mkPKE
protocol enables a message to be encrypted with multiple
public keys, while decryption requires all corresponding secret
keys. We provide a definition involving three keys:

• KGen(1λ) → (pk, sk): The key generation algorithm takes
in a security parameter and outputs a key-pair.

• Enc(pk3, pk2, pk1,m) → ct3: The encryption algorithm
takes in three public keys and a message, producing a third-
level ciphertext.

• Dec3(sk3, ct3)→ ct2: The decryption algorithm takes in the
third-level ciphertext and the secret key sk3, and outputs a
second-level ciphertext.

• Dec2(sk2, ct2)→ ct1: The decryption algorithm takes in the
second-level ciphertext and the secret key sk3, and outputs
a first-level ciphertext.
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• Dec1(sk1, ct1)→ m: The decryption algorithm takes in the
first-level ciphertext and the secret key sk1, and outputs a
message.

Similar to a typical PKE’s confidentiality, mkPKE ensures that
ciphertexts at all levels (ct3, ct2, ct1) are semantically secure,
thereby revealing nothing about the message.
Threshold aggregation reporting (TAR). A TAR [15] proto-
col enables a server to collect shared secrets from clients only
when a pre-defined threshold of contributions is met.
• Share(δ, S) → (ek, lb, sh): The share algorithm, executed

by a client, accepts a threshold δ and a secret S, producing
a message label lb, a private key ek, and a share sh.

• Aggregate(δ, {shi}i∈[n]) → ek: The aggregate algorithm,
executed by the server, takes a set of shares and recover the
key ek when the number of shares exceeds δ.

A TAR protocol ensures privacy that a server with fewer than
the threshold number of shares gains no information about the
encryption key.
Set pre-constrained encryption (SPCE). SPCE [4] ensures
that only ciphertexts containing messages from a pre-defined
blocklist are decryptable, even with a malicious key generator.
It consists of a server S and clients C.
• Setup(1λ,B) → (sp, eb, pkS , skS): The setup algorithm is

executed by S. It generates system parameters sp, initializes
a key-pair (pkS , skS), and encodes the blocklist B to eb.
Finally, it publishes (sp, eb, pkS) to all the clients.

• Enc(pkS ,m, p, eb) → ct or ⊥: The encryption algorithm
is run by C, starting with the encoded blocklist eb’s ver-
ification. Subsequently, C encrypts the payload p using a
message m and eb, producing a ciphertext ct.

• Dec(skS , ct) → p or ⊥: The decryption algorithm allows
S to decrypt a ciphertext ct only when the corresponding
message belongs to the blocklist (i.e., m ∈ B).

A SPCE scheme satisfies: 1) Server privacy: Clients gain no
knowledge of the blocklist’s content from the corresponding
encoded blocklist eb. 2) Client privacy: The server learns
nothing about the payload from a ciphertext if the message
is not in the blocklist.

V. DESIGN

This section presents the construction of our abuse-resistant
source tracing scheme, along with the instantiations of its
building blocks.

A. Full Construction

Our full construction is formalized in Fig. 2 and Fig. 3, with
its primary building blocks defined in Section IV. Additionally,
we specify the other primitives involved as follows:
• SKE = (Enc,Dec) is a symmetric encryption scheme that

satisfies random key robustness (RKR) [1], [22]. RKR
guarantees that a ciphertext can only be decrypted with the
correct key; otherwise, Dec outputs ⊥ indicating a failure.

• MAC = (KGen,Tag,Vf) is a deterministic message authen-
tication code scheme, where the generated tag also satisfies
weak pseudorandomness [18].

• DS = (Sign,Vf) is a digital signature scheme.
• Com = (Commit,Vf) is a commitment scheme.
• PoK = (Prv,Vf) is a non-interactive zero-knowledge proof

of knowledge (NIZKPoK) scheme. We represent the proof
generation and verification as: π ← Prv(y,x); {0, 1} ←
Vf(y, π), where y, x, and π are a statement, witness, and
proof, respectively.

Below, we describe the algorithms in different phases.
Setup phase enables the servers to initialize the system.

In KGen, servers independently execute key generation
algorithms of the underlying building blocks. Specifically,
all servers generate a key-pair for mkPKE. Additionally, the
platform generates separate key-pairs for KVAC and DS.
For simplicity, we use (pkR/M/P , skR/M/P) to denote the
servers’ public and secret keys, even when used for different
building blocks like KVAC or DS.

Subsequently, in LGen, the regulator initializes an SPCE
key-pair and generates an encoded blocklist eb of problematic
messages using SPCE.Setup(1λ,B). This blocklist B is a set
of problematic messages defined by the regulator. The server
privacy of SPCE guarantees that eb leaks nothing about B to
other participants, thus preserving blocklist confidentiality.

In addition, the servers configure a reporting threshold δ.
Finally, they publish their public keys (pkR, pkM , pkP ), the
encoded blocklist eb, and the threshold δ to all users.
Registration phase consists of a one-time user registration
process and a multi-time token generation process.

Using UReg, a user id requests an anonymous identity from
the platform upon joining the system. The platform responds to
the user with a random key uk and a corresponding credential
cred using KVAC.Issue. Besides, the platform records the tuple
(id, uk) for future tracing.

Next, using TkGen, the user converts the received key veri-
fication anonymous credential (cred) into a publicly verifiable
anonymous token (token) over an anonymous channel (e.g.,
privacy relay [3] and oblivious HTTP [52]). Specifically, the
user submits a credential presentation derived from cred to the
platform. The platform returns a signature on the presentation
after successfully verifying it. Ultimately, the user obtains an
anonymous token (cm, σ, rd), where cm is a commitment on
uk. This anonymous token overcomes KVAC’s limitation on
the credential verifier, allowing any participant to verify a
user’s identity validity, rather than only the platform. Addition-
ally, since these tokens are independent of messages, users can
request these tokens during off-peak times without affecting
messaging latency. The intuition behind TkGen is analogous
to the pre-processing in Hecate [28].
Message phase includes sending and receiving a message.

Whenever a message is sent, the sender transmits a tuple
(m, tmd) to the recipient. Depending on the message type,
there are two sources of the tracing metadata tmd. Specifically,
the sender executes Send to generate a new tmd for a fresh
message, while reusing the received tmd for a forwarded
message. The sender generates tmd as follows:

• Encrypted originator identity (ctu): An encryption of uk
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UReg⟨U(id),P(skP )⟩ [P↔U ]

// P generates U ’s key and credential.

uk ←$ MAC.KGen(1λ)

Lid
∪← {(id, uk)}

(cred, πiss)←$ KVAC.Issue(uk, skP )

// U verifies the issued credential.

if KVAC.VfIssue(uk, cred, πiss) = 0 :

return ⊥
return (uk, cred)

TkGen⟨U(uk, cred),P(skP )⟩ [U↔P]

// U generates credential presentation.

(cm, πsw, rd)←$ KVAC.Show(uk, cred)

// P verifies and signs valid presentation.

if KVAC.VfShow(skP , cm, πsw) = 0 :

return ⊥
σ ← DS.Sign(skP , cm)

token = (cm, σ, rd)

return token

Relation ϕsend

Instance: y = (m, pkR, pkM , pkP ,

cm, ctu,3, cttag)

Witness: x = (uk, rd)

ϕsend(y,x) = 1, iff.:
mkPKE.Enc(pkR, pkM , pkP , uk) = ctu,3

∧mkPKE.Enc(pkR, pkM , pkP , tag) = cttag

∧MAC.Vf(uk,m, tag) = 1

∧ Com.Vf(uk, cm, rd) = 1

Send(m,uk, token) [US→UR]

tag ← MAC.Tag(uk,m)

ctu,3 ← mkPKE.Enc(pkR, pkM , pkP , uk)

cttag ← mkPKE.Enc(pkR, pkM , pkP , tag)

πsend ← PoK.Prv((m, pkR, pkM , pkP , cm, ctu,3, cttag), (uk, rd))

token′ ← (token.cm, token.σ)

tmd = (token′, ctu,3, cttag, πsend)

return tmd

Receive(m, tmd) [UR→UR]

if DS.Vf(σ, pkP , cm) = 0 :

return 0

if PoK.Vf((m, pkR, pkM , pkP , cm, ctu,3, cttag), πsend) = 0 :

return 0

return 1

Fig. 2: Algorithms in the registration and message phase. The process of initializing server keys and encoding the blocklist is
described in the setup phase text. The notation [A → B] indicates a non-interactive algorithm executed by A, which returns
the output to B. In contrast, [A ↔ B] denotes an interactive algorithm between A and B.

using multi-key PKE could be decrypted only if all three
servers are involved. Note that, as users’ key uk is bound
to their identity id in UReg, we treat uk as users’ identity
after user registration.

• Anonymous token (token): A user obtains multiple tokens
in the registration phase and uses a different token for each
generated tracing metadata.

• Encrypted tag (cttag): A multi-key PKE ciphertext of a
MAC tag that combines uk and m.

• Zero-knowledge consistency proof (πsend): Prove that the
above components are well-formed, i.e., 1) uk remains
consistent across these components, and 2) the message sent
via E2EE matches the one committed in cttag .

Upon receiving a message with tracing metadata (m, tmd),
a recipient verifies it using Receive. This process involves
two key aspects: 1) Signature verification: The signature σ
authenticates the originator’s key uk within tmd. 2) Proof
verification: The proof πsend ensures that tmd is well-formed,
as defined by its relation ϕsend in Fig. 2.
Report phase involves submitting reports by recipients and
processing these reports by the platform.

To report an unwanted message using Report, a recipient
generates a report comprising three functionalities:

• Achieving traceability (lb, sh′, ct′tmd): Encrypt the tuple
(m, tmd) using SPCE, and subsequently divide the cipher-
text into shares utilizing TAR.

• Authenticating identity (cm, πsw): Run KVAC.Show to gen-
erate a credential presentation from the recipient’s credential
obtained in UReg.

• Ensuring report uniqueness (dup, πrpt): Generate a dupli-

cate tag dup that deterministic binds the message label lb
to the recipient’s key uk . Two identical tags will appear
when a recipient reports the same message twice.

Upon receiving a report, the platform use VfReport to verify
two aspects: 1) The validity of the reporter’s identity. 2) The
well-formedness of the duplicate tag. If these verifications
succeed, the platform stores a refined report, removing the
verification components (cm, πsw, πrpt) from the original.

Once the platform collects enough reports with the same
label lb, it executes Collect to aggregate them. This algorithm
begins with deduplication, where reports sharing the same tag
dup are identified and removed. Next, the key ek is aggregated
from the remaining unique reports. Finally, the platform uses
ek to decrypt the SPCE ciphertext cttmd,3 from ct′tmd, and
sends it to the regulator for inspection.
Trace phase consists of three steps executed sequentially by
the regulator, moderator, and platform.

First, the regulator R run Inspect to check whether the
reported message m is on the blocklist B. This check is uses
SPCE.Dec. If m /∈ B, SPCE.Dec outputs ⊥, ensuring that
R learns nothing about innocent messages outside B. On the
other hand, when m ∈ B, R recovers (m, tmd) from the
received ciphertext cttmd,3. Next, R uses skR to decrypt the
encrypted originator identity ctu,3 within tmd to ctu,2. The
proof πd,2 guarantees this decryption’s correctness, preventing
a malicious R from swapping ctu,2 with an innocent user’s
encrypted identity and violating trace rules. In the end, R
forwards the tuple (m, tmd, ctu,2, πd,2) to the moderator.
Second, the moderator M executes Review to evaluate the
reported message from R. For problematic messages, M
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Report(m, tmd, uk, cred, eb) [UR→P]

(ek, lb, sh)← TAR.Share(δ, tmd)

cttmd,3 ← SPCE.Enc(pkR,m, (m, tmd), eb)

ct′tmd ← SKE.Enc(ek, cttmd,3)

dup← MAC.Tag(uk, lb)

(cm, πsw, rd)← KVAC.Show(cred, uk)

πrpt ← PoK.Prv((lb, dup, cm), (uk, rd))

// The relation ϕrpt = 1 , iff.:

// Com.Vf(uk, cm, rd) = 1 ∧ MAC.Vf(dup, uk, lb) = 1

report = (lb, sh, ct′tmd, dup, πrpt, cm, πsw)

return report

VfReport(report, skP ) [P→P]

if KVAC.VfShow(skP , cm, πsw) = 0 :

return ⊥
if PoK.Vf((lb, dup, cm), πrpt) = 0 :

return ⊥
report′ ← (lb, sh, dup, ct′tmd)

return report′

Collect({report′i}i∈[n]) [P→R]

Lrpt,Ldup ← ∅
for (shi, dupi) ∈ {report′i}i∈[n] :

if dupi /∈ Ldup :

Ldup
∪← {dupi}

Lrpt
∪← {shi}

ek ← TAR.Aggregate(δ,Lrpt)

if ek = ⊥ : return ⊥
cttmd,3 ← SKE.Dec(ek, ct′tmd)

return cttmd,3

Inspect(cttmd,3, skR) [R→M]

(m, tmd)← SPCE.Dec(skR, cttmd,3)

if Receive(m, tmd) = 0 :

return ⊥
ctu,2 ← mkPKE.Dec3(skR, ctu,3)

πd,2 ← PoK.Prv((ctu,3, ctu,2, pkR), skR)

// ϕ = 1 , iff.: ctu,2 = mkPKE.Dec3(skR, ctu,3)

cttmd,2 = (tmd, ctu,2, πd,2)

return (cttmd,2,m)

ReviewJudge(cttmd,2,m, skM ) [M→P]

if Receive(m, tmd) = 0

∨ PoK.Vf((ctu,3, ctu,2, pkR), πd,2) = 0

return ⊥
if Judge(m) = 0 : return ⊥
ctu,1 ← mkPKE.Dec2(skM , ctu,2)

πd,1 ← PoK.Prv((ctu,2, ctu,1, pkM ), skM )

// ϕ = 1 , iff.: ctu,1 = mkPKE.Dec2(skM , ctu,2)

cttmd,1 = (tmd, ctu,2, πd,2, ctu,1, πd,1)

return (cttmd,1,m)

Trace(cttmd,1,m, skP ) [P→P]

if Receive(m, tmd) = 0

∨ PoK.Vf((ctu,3, ctu,2, pkR), πd,2) = 0

∨ PoK.Vf((ctu,2, ctu,1, pkM ), πd,1) = 0

return ⊥
uk ← mkPKE.Dec1(skP , ctu,1)

id← Lid[uk]

return id

Fig. 3: Algorithms in the report and trace phase. Judge is an oracle that reviews tracked messages’ content, returning ‘1’ to
indicate a problematic message and ‘0’ for an innocent message.

further decrypts the encrypted identity ctu,2 and forwards the
report to the platform for tracing; otherwise, M discontinues
the tracing process. The core of Review is the Judge oracle,
determining whether the reported message should be traced.
In practice, Judge can involve human review [24] or machine-
learning-based classification [59]. Additionally, we emphasize
that M’s revision preserves minimal information disclosure,
as M only observes messages that meet both recipients’ and
the regulator’s trace rules.

Finally, the platform P executes Trace to recover the
originator’s identity. This recovery can succeed only if the
encrypted identity ctu,3 has been processed by both R and
M, a guarantee provided by the semantic security of mkPKE.
Remark 2 (Blocklist update). Since the encoded blocklist
eb is stored in users’ storage, the regulator cannot update
the blocklist locally. Consequently, to update eb, the regulator
incorporates newly appended elements into a fresh blocklist
and re-initializes it to generate a new encoded blocklist, which
is then broadcast to all users. This updating strategy follows
the principle of updatable PSI in [17]. A potential concern with
this approach is the unbounded growth of encoded blocklists.
Fortunately, in practice, the regulator can renew eb during
users’ client updates, which allows it to compact multiple
blocklists into a single one and remove obsolete elements.

B. Instantiation of Building Blocks

PoK, KVAC, and SPCE. To ensure parameter consistency
within tracing metadata, elements generated by different build-

KGen(1λ)

sk ←$ Zq, pk ← gsk

return (pk, sk)

Enc(pk3, pk2, pk1,m)

r ←$ Zq, E1 ← gr

E2 ← pkr
3 · pkr

2 · pkr
1 ·m

return ct3 = (E1, E2)

Dec3(sk3, ct3)

E′
2 ← E2/E

sk3
1

ct2 = (E1, E
′
2)

return ct2

Dec2(sk2, ct2)

E′′
2 ← E′

2/E
sk2
1

ct1 = (E1, E
′′
2 )

return ct1

Dec1(sk1, ct1)

m← E′′
2 /E

sk1
1

return m

Fig. 4: Instantiation of multi-key PKE.

ing blocks must conform to the PoK protocol. For efficiency,
we instantiate PoK using the generic linear Sigma protocol
[10, Chapter 19.5.3] with Fiat-Shamir transformation [23].
Consequently, we instantiate all building blocks under discrete
logarithm problems, ensuring that the relationships between
ciphertexts can be described through linear relations among
group elements. Specifically, our instantiation of KVAC and
SPCE follow [12, Section 4.2] and [4, Figure 2], respectively.
We recall these constructions in Appendix A.
Multi-key PKE. We instantiate a mkPKE scheme by slightly
modifying the ElGamal encryption [20], presented in Fig. 4.
Although we only consider three keys in the construction, it
can be easily extended to multiple keys. The semantic security
of the leveled ciphertexts (e.g., ct2, ct1) can be directly reduced
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TAR.Share(δ, S)

r ← H1(S||1)
ek ← H1(S||2)
lb← H1(S||3)
sh←$ SS.Share(ek, δ; r)

return (ek, lb, sh)

TAR.Aggregate(δ, {shi}i∈[n])

if n < δ : return ⊥
ek ← SS.Recover({shi}i∈[n])

return ek

MAC.KGen(1λ)

return k ←$ Zq

MAC.Tag(k,m)

return tag ← H2(m)k

MAC.Vf(k,m, tag)

tag′ ← H2(m)k

if tag′ ̸= tag :

return 0

return 1

Fig. 5: Instantiation of TAR and MAC. SS = (Share,Recover)
is a secret sharing protocol with reproducibility [7]. The hash
function H1 : {0, 1}∗ → Zp is modeled as random oracle;
H2 : {0, 1}∗ → G is cryptographic secure.

to the semantic security of standard ElGamal encryption.
Threshold aggregation reporting. We instantiate a TAR
protocol in Fig. 5, which follows the secret sharing-based
construction in [15]. In Share, a client first deterministically
derives a randomness r, a symmetric key ek, and a label lb
for identifying the secret. The client then uses the underlying
secret sharing protocol, SS.Share, to generate a random δ-out-
of-n share sh of ek. Upon receiving sufficient shares from the
clients, the server aggregates them to reconstruct the key ek.

To avoid share collisions, the prime field for generating
secret shares sh must be sufficiently large. For Shamir’s secret
sharing, the deterministically-derived randomness r ensures
that all clients holding the same secret generate the same
set of polynomial coefficients. Each client then creates its
unique share by evaluating this polynomial at a randomly sam-
pled x-coordinate within the field. Our implementation uses
Curve25519, which operates over a 255-bit prime field. This
makes the probability of a share collision—wherein two clients
independently sample the same x-coordinate—negligible.
Message authentication code. We instantiate the MAC in Fig.
5, which is realized by a weak pseudorandom function (wPRF)
[13], [40]. The wPRF output H(m)k satisfies uniqueness,
weak pseudorandomness, and unforgeability.

C. Design Choices

Deniability vs. Unframeability. Deniability allows a user
to deny sending or receiving a specific message to a third
party, thus protecting users’ privacy under mass surveillance.
In contrast, unframeability ensures that no participant, not even
a malicious platform, can originate a message under another
user’s identity. Our design can achieve either deniability or
unframeability, depending on who generates the users’ secret
keys. When the platform generates the users’ keys, it can forge
tracing metadata corresponding to any message and user’s
identity, thereby achieving platform deniability. Conversely,
when using blind issuance of KVAC to issue credentials to
the users, they can generate their secret keys. In this case,
only the user themselves can generate tracing metadata under

their key. The choice between deniability and unframeability
can be tailored to real-world scenarios.
Key-verification vs. Publicly verifiable. To accommodate
the Sigma protocol, we instantiate the anonymous credential
(AC) using KVAC. An alternative approach is using a publicly
verifiable AC protocol, such as pairing-based credentials [5].
In this case, all cryptographic tools should be built using
structure-preserving cryptography [2] compatible with the
pairing-based proof system [26]. Although this alternative
would incur higher costs than the instantiation without pairing,
it offers two benefits: First, it eliminates the need for TkGen,
which is introduced to transform a KVAC into a publicly
verifiable AC. Second, it allows recipients to re-randomize
received tracing metadata, thereby achieving unlinkability.
Linkability vs. Unlinkability. Linkability allows a user
who receives two identical forwarded messages to determine
whether they originated from the same user. In contrast,
unlinkability severs the connection between messages from
the same originator. As discussed above, our construction
can support unlinkability by selecting appropriate underlying
building blocks, albeit at the cost of some efficiency. We leave
a more efficient unlinkable construction as future work.
Report count confidentiality vs. Efficiency. In our design, the
platform can observe the report counts associated with each
deterministically generated label from the tracing metadata.
Crucially, the platform can neither link a given label to the
message content nor to the originators’ or reporters’ identities.
Even in a collusion scenario where a recipient helps the
platform link a label to their received message, our reporting
anonymity ensures the identities of all other reporters remain
protected. Furthermore, this leakage does not undermine our
abuse resistance; the originator’s identity remains secured by
the three-layer mkPKE ciphertext. Additionally, for systems
requiring stricter privacy, this leakage could be suppressed by
using a leakage-free TAR protocol [35], albeit at a higher cost.

VI. SECURITY ANALYSIS

In this section, we formally define and prove the security of
our design. Due to the page limits, some security definitions
and all formal proofs are deferred to Appendix B.

Before detailing the security goals, in Fig. 6, we introduce
two oracles that will be utilized in multiple security games.
Considering the possibility of servers colluding with users, we
categorize the users into two sets Um and Uh that represent
users who collude and do not collude with the adversary,
respectively. First, Ocred allows the adversary to register any
user’s identity in the system but only obtain the key and
credential of colluding users Um. Second, Otoken enables the
adversary to derive anonymous tokens from their credentials.

A. Confidentiality

The confidentiality ensures that the content and the origi-
nator’s identity of a message remain hidden before tracing.
Source confidentiality. Source confidentiality dictates that
tracing metadata reveals nothing about its originator’s identity.
To capture this goal, we define the game SConfA,b

ST , shown
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Ocred(id, isMal)

if id ∈ (Uh ∪ Um) : return ⊥
(uk, cred)← UReg(id, skP )

Lk[id]← (uk, cred)

if isMal = 1 : Um
∪← {id}

return (id, uk, cred)

else : Uh
∪← {id}

return id

Otoken(uk, cred)

tk ← TkGen(uk, cred, skP )

if tk = ⊥ : return ⊥

Ltk
∪← {(cred, tk)}

return tk

Fig. 6: The oracles for simulating the user registration phase.
The platform’s secret key skP , users’ secret key Lk and tokens
Ltk are maintained by the challenger.

in Fig. 7. In this game, an adversary acts as a malicious
recipient who can collude with any two servers. The adversary
is allowed to query Ocorrupt to obtain the secret keys of two
out of three servers. Furthermore, if the adversary chooses to
corrupt the platform, they also obtain Lk, which stores all
users’ identities and credentials. The adversary’s task is to
distinguish tracing metadata generated by different originators
when querying Osend,b.

Definition 1 (Source Confidentiality). We say a source
tracing scheme ST satisfies source confidentiality if, for any
PPT adversary A, A’s advantage in winning SConfA,b

ST is
negligible, where the advantage is defined as follows:

AdvSConf
ST (A) =

∣∣∣Pr[SConfA,1
ST = 1

]
− Pr

[
SConfA,0

ST = 1
]∣∣∣ .

Theorem 1. Assuming the PoK protocol, mkPKE scheme,
and KVAC protocol satisfy zero-knowledge property, semantic
security, and anonymity, respectively, then the construction in
Section V-A satisfies source confidentiality.

Intuitively, all components in the tracing metadata (tmd) are
indistinguishable from random bit strings, as they satisfy either
the indistinguishability or zero-knowledge property. First, the
anonymous token (token) comprises a commitment and the
platform’s signature. This signature is generated from an
anonymous credential presentation that reveals nothing about
the originator’s identity. Thus, the token reveals nothing to
the adversary, even if A colludes with the platform. Second,
the ciphertexts (ctu,3, cttag) are encrypted using the servers’
public keys. Since A can only acquire two of the three
servers’ secret keys, mkPKE’s semantic security guarantees
that these ciphertexts are indistinguishable from random bit
strings. Finally, the zero-knowledge property of the proof
(πsend) ensures no information is leaked. For a formal proof,
please refer to Appendix B-A.
Message confidentiality. Message confidentiality ensures that
the tracing metadata or message reports disclose nothing about
the content of innocent messages to participants other than the
direct recipient. In this context, we do not consider collusion
between the recipient and servers, as a malicious recipient can
always relay the message to a colluding server.

SConfA,b
ST (1λ)

Lk,Ltk,Uh,Um ← ∅
(skR, skM ,

skP , pk)← KGen(1λ)

// Choose a pair of key indices.

{j, k} ← A(pk)
if {j, k} ̸⊆ {R,M,P} :

return ⊥
b′ ← AO∗

b (pk)

return b′

Osend,b(id0, id1,m)

if ∃id ∈ {id0, id1},
id /∈ Uh : return ⊥

(ukb, credb)← Lk[idb]

tkb ← TkGen(ukb, credb, skP )

tmdb ← Send(m,ukb, tkb)

return tmdb

Ocorrupt(i)

if i /∈ {j, k} : return ⊥
if i = P : return (skP ,Lk)

else : return ski

Fig. 7: Security game of source confidentiality. Here, pk
represents the public keys of servers (pkR, pkM , pkP ). O∗

b

denotes Ocred, Otoken, Osend,b, and Ocorrupt.

The message confidentiality of our design is straightfor-
ward. First, before reporting, both the message content and
tracing metadata are transmitted via the underlying E2EE.
This ensures that only the communication parties can access
the plaintext; all other participants observe only end-to-end
encrypted ciphertexts. Second, during the report phase, the
privacy provided by TAR ensures the platform learns nothing
of the message content from user reports. Furthermore, even
if the platform collects enough shares, it only reconstructs
a SPCE ciphertext of (m, tmd), which inherently preserves
message confidentiality due to its client privacy.
Blocklist confidentiality. Blocklist confidentiality ensures that
the encoded blocklist reveals nothing about its content to
anyone other than the regulator. In our design, this property
directly stems from SPCE’s set-hiding property [4], guaran-
teeing its master public key (our encoded blocklist) reveals
no information about the blocklist content B. This property is
defined as server security in Apple PSI [39, Section 5.1].

B. Accountability

The accountability prevents malicious users from manip-
ulating tracing results or submitting duplicate reports, while
ensuring only the regulator can modify the encoded blocklist.
Trace accountability. Trace accountability ensures that an
adversary cannot evade tracing or manipulate tracing results.
This property encompasses the goals of sender binding and
trace unforgeability from prior work [41], guaranteeing that a
message can be traced back to its actual originator.

We formally define this property in a game ActAST , depicted
in Fig. 8. In this game, the adversary’s task is to create a valid
tuple of messages and tracing metadata that either cannot be
traced (id∗ = ⊥) or will be traced to the wrong originator
(id∗ ∈ Uh ∧ (id∗,m∗) /∈ Lq). To prevent trivial wins, we
require that the misidentified user be honest, as the adversary
can always generate unrecorded tracing metadata using the
secret keys of malicious users Um. Furthermore, we allow
the adversary to obtain any user’s tracing metadata for any
message. In particular, for malicious users Um, the adversary
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ActAST (1
λ)

Lq,Lk,Ltk,Uh,Um ← ∅
(skR, skM , skP , pk)← KGen(1λ)

(ct∗tmd,1,m
∗)← AO∗

(skR, skM , pk)

id∗ ← Trace(ct∗tmd,1,m
∗, skP )

if id∗ = ⊥ : return 1

if id∗ ∈ Uh ∧ (id∗,m∗) /∈ Lq :

return 1

return 0

OhonSend(id,m)

if id /∈ Uh : return ⊥
(uk, tk)← Lk[id]

tmd← Send(m,uk, tk)

Lq
∪← {(id,m)}

return tmd

Fig. 8: Security game of trace accountability, where O∗

denotes Ocred, Otoken, and OhonSend.

can obtain their secret key and credentials, enabling it to
generate tracing metadata by executing the Send algorithm.
For honest users Uh, the adversary can obtain their tracing
metadata by querying the oracle OhonSend.

Without loss of generality, ActAST focuses on the tracing
metadata’s accountability and omits the intermediate steps
(i.e., Collect, Inspect, and Review) for enforcing trace rules.
Since these steps only affect the reconstruction of the tracing
metadata, even if an adversary can manipulate these processes,
it still needs to forge tracing metadata to break trace unforge-
ability. Therefore, this omission does not affect our analysis.

Definition 2 (Trace accountability). We say a source tracing
scheme ST satisfies trace accountability if for any PPT
adversary A, A has a negligible advantage in winning the
game ActAST , where the advantage is defined as follows:

AdvAct
ST (A) =

∣∣Pr[ActAST = 1
]∣∣ .

Theorem 2. Assuming the PoK protocol satisfies soundness;
the KVAC protocol, DS scheme, and MAC scheme satisfy
unforgeability, then the construction in Section V-A satisfies
trace accountability.

Informally, we can reduce trace accountability to the un-
forgeability of the components within the tracing metadata.
In detail, the anonymous token incorporates a commitment
and a platform-generated signature. The signature ensures that
the adversary cannot forge a valid token not issued by the
platform. Furthermore, the MAC binds the originator’s identity
to the message. Moreover, the consistent proof guarantees
the originator’s identity remains consistent across both the
anonymous token and the MAC. Upon receiving or tracing
a message, an honest recipient or the platform will verify the
validity of the signature and consistent proof. These verifica-
tions ensure that the tracing metadata is well-formed, thereby
mitigating the risk of a malicious sender using malformed
tracing metadata to evade tracing or falsely implicate honest
users. We defer the formal proof to Appendix B-B.
Report uniqueness. Report uniqueness ensures that a user
cannot generate duplicate reports of the same message, even
if colluding with the moderator and regulator. For our con-
struction, this property primarily relies on the unique dedu-

plication tag generated by a deterministic MAC. Specifically,
the deduplication tag is generated from the reported message
and the reporter’s key. Consequently, two identical tags would
appear if a user reports the same message twice. To prevent
a malicious reporter from submitting a malformed tag, we
require the reporter to submit an anonymous credential and
consistent proof, verifying their identity to the moderator. A
formal definition and proof can be found in Appendix B-C.
Blocklist authenticity. Blocklist authenticity safeguards the
integrity of the encoded blocklist against a malicious mod-
erator or platform. It ensures that the problematic messages
embedded within the encoded blocklist are maintained by the
regulator. In our construction, this property can be reduced to
the unforgeability of the signature, which is signed using the
regulator’s secret key.

C. Anonymity

Our tracing scheme’s anonymity is independent of the un-
derlying EEMS; it’s designed not to undermine the underlying
EEMS’s native anonymity. Specifically, our anonymity defi-
nitions ensure the algorithms’ output (e.g., tracing metadata
or reports) leaks no information about user identities. Con-
sequently, the final integrated system inherits the anonymity
level of the underlying EEMS.
Messaging anonymity. Message anonymity ensures that the
identities of both the sender and the recipient remain concealed
from all other participants, encompassing both sender and
recipient anonymity. First, source confidentiality safeguards
the originator’s identity, ensuring anonymity when the sender
is the message originator. Second, the sender and recipient’s
identities are not required in any part of our algorithms,
making their confidentiality inherent. Thus, our construction
preserves message anonymity.
Reporting anonymity. Reporting anonymity mandates that
a message report does not disclose the reporter’s identity.
For our construction, we can reduce this property to the
underlying building blocks’ confidentiality. Due to KVAC’s
anonymity and PoK’s zero-knowledge property, the credential
presentation (cm, πsw) and proof of report πrpt leak nothing
about the reporter’s identity. The only potential source of
identity leakage is the deduplication tag used to ensure report
uniqueness. Given the MAC’s weak pseudorandomness [18],
this tag remains secure when the input tracing metadata has
sufficient entropy. Crucially, we prove that the tracing metadata
appears random to the platform in source confidentiality. As
a result, the platform cannot ascertain the reporter’s identity
from any report. Moreover, this property holds even if a user
submits the same message twice, as the platform can only
link the two reports without inferring the reporter’s identity.
A formal definition and proof can be found in Appendix B-D.

VII. IMPLEMENTATION AND EVALUATION

To evaluate the performance of our design, we implement
it using Rust [29] and conduct experiments on two PCs. For
server-side benchmarking, we utilized a PC with an Intel Xeon
8375C CPU @ 2.90GHz and 192 GB RAM. For user-side
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TABLE II: Bandwidth and latency comparison.

Schemes
Bandwidth Latency

Send Receive Report Send Process Receive Overall

Peale et al.† [41] 256B 320B 160B 42.6 - 39.0 µs 19.4 µs 81.7 - 160.1 µs 143.7 - 218.5 µs
Issa et al. [28] 380B 484B 380B 32.5 µs 22.5 µs 161.4 µs 216.4 µs
Bartusek et al. [4] 2304B 2304B 2304B 2528.5 µs - 10973.5 µs 13502 µs
Ours 614B 614B 1708B 954.2 µs - 300.1 µs 1254 µs

Peale et al. (the linkable scheme) [41] and Issa et al. [28] represent the most efficient schemes for non-anonymous and anonymous EEMS, respectively.
Bartusek et al. [4] is the only tracing scheme incorporating blocklisting.
†: The runtime of PEB21 varies between an originated message (left) and a forwarded (right) message.

TABLE III: Runtime of our algorithms.

LGen(|B| = {105, 106, 107}) UReg TkGen Report VfReport Collect(δ = {20, 40, 60}) Inspect Review Trace

{1.92 s, 21.4 s, 284.9 s} 697.2 µs 757.8 µs 1491 µs 415.3 µs {5.88 ms, 24.6 ms, 53.1 ms} 759.1 µs 621.0 µs 567.5 µs

benchmarking, we employed a PC with an Intel Core i5-9600K
CPU @ 4.60GHz and 32 GB RAM.

A. Implementation Details

Our implementation utilizes the platform-agnostic APIs
provided by libsignal [47], with all group operations performed
using Curve25519 [14]. Moreover, the instantiations of KVAC
and PoK are directly invoked through the libsignal API, as
these tools are integral to Signal’s private group system [13].
Additionally, we instantiate the SKE, DS, and PKE using AES-
GCM-256, ECDSA, and Hybrid PKE [43], respectively. Fur-
thermore, the TAR scheme is built on Shamir secret sharing.
The hash function that maps an arbitrary-length bit string to
a fixed-length bit string is instantiated by SHA-512.

For the experimental setting, we set the user’s secret key to
32 bytes, equivalent to the size of a group element. The |B|
elements in the blocklist are assigned to 1.2|B| items in the
Cuckoo hashing table. The message size is set to 1 kB in all
the experiments to align with prior work [41].

B. Performance Evaluation

Here, we evaluate all our algorithms’ performance and
present the following results.
Comparison with prior work. We begin by comparing our
scheme with the current state-of-the-art (SOTA) in source
tracing. Notably, we exclude threshold reporting schemes
from the comparison due to their primary overhead occurring
outside the message phase. For instance, the primary overhead
of Liu et al. [37] is maintaining a collaborative counting
bloom filter on the platform; Bell et al. [6] is built on black-
box invocations for source tracing; thus, its performance in
messaging depends on the underlying tracing schemes.

Table II presents our comparison results in bandwidth and
latency overhead. Overall, due to the employment of trace
rules, our scheme requires slightly more overhead compared
to the SOTA schemes; nevertheless, it remains sufficient for
practical deployment. When sending a 1 kB message from
a user to another user, our scheme introduces additional

bandwidth and latency overheads of less than 1.7 kB and 1.3
ms, respectively. Furthermore, our system incurs no platform-
side operations when sending a message. Considering the daily
volume of messages on WhatsApp (i.e., 100 billion [48]),
this can significantly reduce the platform-side complexity and
overhead of deployment.
Runtime. We then present the runtime of our algorithms in
Table III. All algorithms have runtimes of less than 1.5 ms,
except for Collect and LGen. The only algorithm potentially
impacting messaging latency is TkGen. While it requires users
to request anonymous tokens before messaging, this can be
done during off-peak times, limiting its impact. Furthermore,
the algorithms involved in the report phase (Report, VfReport,
Collect) and the trace phase (Inspect, Review, Trace) are
executed infrequently and are therefore not latency-sensitive.

We also measure Collect and LGen across various thresholds
and blocklist sizes, respectively. Our measurements indicate
that the efficiency of these two algorithms is sufficient for
practical deployment, even in the worst cases. For instance,
the regulator can encode a blocklist containing 10 million
messages within 5 minutes.
Storage. We next present the storage overheads of our scheme.
On the user side, a client needs to store a secret key (32B), an
anonymous credential (64B), and multiple anonymous tokens
(134B). For a user sending 10,000 messages daily, these tokens
require only 1.3 MB of storage. Additionally, clients should
store the encoded blocklist for blocklisting, where a blocklist
containing 10 million messages requires 320 MB of storage.
Importantly, since the blocklist is re-initialized during OS
software updates (typically occurring once every two months),
downloading these keys does not impact the user experience.
On the server side, the moderator collects refined reports
(1420B) after verification. For one million such reports, this
incurs an overhead of only 1.35 GB. It is reasonable to assume
that the system processes reports within a time window (e.g.,
one month), thereby preventing indefinite storage growth.
End-to-end prototype. We finally test the end-to-end messag-
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TABLE IV: End-to-end runtime (ms).

Runtime Signal Signal & Ours Difference

Sending 3.03 4.84 1.81
Receiving 0.84 1.13 0.29
Total 3.87 5.97 2.10
E2E latency† 77.91 80.37 2.46

†: The end-to-end latency encompasses network latency and algorithm
execution times.

ing overhead by integrating the Send and Receive components
into the signal-cli [46] and libsignal [47]. All of our evalua-
tions rely on Signal’s Sealed Sender feature [30] for sender
anonymity. As discussed in Section VI-C, the use of this one-
sided anonymous EEMS does not compromise our protocol’s
security guarantees.

Table IV presents a comparison of messaging latency be-
tween the original Signal and Signal with our scheme. For
this evaluation, we deployed the client on a virtual machine
(2-core CPU, 8GB RAM, 32GB storage) hosted on GitHub
Codespaces. The clients communicated directly via the official
Signal server. The results indicate that the inclusion of our
scheme introduces only a minor overhead (2.46 ms) to the
latency between users.

VIII. CONCLUSION

This paper introduced the goal of achieving abuse-resistant
traceability with minimal trust and information disclosure for
EEMSs. Aiming at this goal, we introduced a novel system
model wherein each participant is a real-world entity belong-
ing to different trust domains. Under the model, we propose
a source tracing scheme in which each participant enforces
distinct trace rules for reported messages. Implementation and
evaluation show that our scheme requires only 1.3 ms of
latency and 1.7 kB of bandwidth per message, making it
practical for real-world deployment.
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ETHICS CONSIDERATIONS

This work does not present direct ethical concerns, as it
does not include any personal data. The evaluations conducted
are simulations of clients and servers and do not involve
interaction with real users. However, the real-world deploy-
ment of this work presents an ethical challenge. While our
goal is to curb abuse, any traceability mechanism inherently
compromises user privacy by creating a capability to reveal
an originator’s identity. This capability, even when narrowly
targeted, creates a privacy risk for all users. Consequently,
we argue that a technical solution alone is insufficient for
responsible deployment. Any implementation must be gov-
erned by robust non-technical safeguards, including clear legal

frameworks, independent oversight, and rigorous adherence to
human rights principles.
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APPENDIX A
PRELIMINARIES

Proof of Knowledge (PoK). We use the Sigma protocol for
arbitrary linear relations [10, Chapter 19.5.3] to instantiate the
proofs. Specifically, for a linear relation

ϕ(y,x) =

y1 =

n∏
j=1

g
xj

1j ∧ . . . ∧ ym =

n∏
j=1

g
xj

mj

 ,

• Prv(y,x): A prover generates a proof as follows:
1) Compute commitments Ci ←

∏n
j=1g

rj
ij , where rj ←$ Zq ,

j ∈ [n], and i ∈ [m].
2) Compute a challenge as c = H({Ci}i∈[m]).
3) Compute responses sj ← rj + xjc, where j ∈ [n].
4) Send the proof π = ({Ci}i∈[m], {sj}j∈[n]) to a verifier.

• Vf(y, π): The verifier accepts the proof π if the equation∏n
j=1g

sj
ij = Cj · yci holds for i ∈ [m].

Keyed-Verification Anonymous Credential (KVAC). We
utilize the KVAC protocol as introduced in [12, Section 4.2].
For simplicity, we assume that each client is represented by a
single identity rather than a set of attributes.
• KGen(1λ) → (pp, kS): Generate a group (G, p, g), an

element h ← G, MAC’s secret keys x0, x1 ←$ Zq , and
server parameters kS as X0 = hx0 , X1 = hx1 . Commit the
secret key x0 as Cx0

= gx0hx̂0 , where x̂0 ←$ Zq . It finally
outputs:

pp = (G, p, g, h,X0, X1, Cx0), kS = (x0, x1, x̂0).

• Issue⟨C(id),S(kS)⟩ → C(cred, πiss): To issue a credential
with an identity id ∈ Zq , the server computes u′ =
ux0+x1id, where u ←$ G. Then, the server sends the
credential cred = (u, u′) and a proof πiss as follows:

πiss =PoK.Prv{(x0, x1, x̂0, id) :

u′ = ux0+x1id ∧ Cx0
= gx0hx̂0 ∧X1 = hx1}.

• VfIssue(id, cred, πiss) → {0, 1}: Upon receiving a creden-
tial and corresponding proof, a client verifies the proof with
her id and public parameters using PoK.Vf.

• BlindIssue⟨C(Eid),S(kS)⟩ → (cred, πiss): To blindly re-
quest a credential, a client generates a request as follows:

1) Randomly choose a key-pair (d, gd), where d←$ Zq .
2) Encrypt the identity with Elgamal encryption as Eid ←

(gr, gr·dgid).
3) Generate a proof of knowledge πr of (r, id) that proves

the ciphertext is well-formed.
Upon receiving a blind request (Eid, πr), the platform issues
an encrypted credential as follows:

15

https://github.com/Ming-bc/trace-ruler
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://www.bu.edu/riscs/2021/08/10/apple-csam/
https://www.bu.edu/riscs/2021/08/10/apple-csam/
https://www.theverge.com/2022/12/7/23498588/apple-csam-icloud-photos-scanning-encryption
https://www.theverge.com/2022/12/7/23498588/apple-csam-icloud-photos-scanning-encryption
https://www.theatlantic.com/technology/archive/2018/09/whatsapp/571276/
https://www.theatlantic.com/technology/archive/2018/09/whatsapp/571276/
https://www.apple.com/child-safety/pdf/Alternative_Security_Proof_of_Apple_PSI_System_Mihir_Bellare.pdf
https://www.apple.com/child-safety/pdf/Alternative_Security_Proof_of_Apple_PSI_System_Mihir_Bellare.pdf
https://www.eff.org/deeplinks/2020/08/faq-why-brazils-plan-mandate-traceability-private-messaging-apps-will-break-users
https://www.eff.org/deeplinks/2020/08/faq-why-brazils-plan-mandate-traceability-private-messaging-apps-will-break-users
https://github.com/rozbb/rust-hpke
https://github.com/AsamK/signal-cli
https://github.com/signalapp/libsignal/tree/main
https://techcrunch.com/2020/10/29/whatsapp-is-now-delivering-roughly-100-billion-messages-a-day/
https://techcrunch.com/2020/10/29/whatsapp-is-now-delivering-roughly-100-billion-messages-a-day/
https://blog.google/intl/en-au/company-news/outreach-initiatives/how-we-detect-remove-and-report-child-sexual-abuse-material/
https://blog.google/intl/en-au/company-news/outreach-initiatives/how-we-detect-remove-and-report-child-sexual-abuse-material/
https://blog.google/intl/en-au/company-news/outreach-initiatives/how-we-detect-remove-and-report-child-sexual-abuse-material/
https://cdt.org/insights/outside-looking-in-approaches-to-content-moderation-in-end-to-end-encrypted-systems/
https://cdt.org/insights/outside-looking-in-approaches-to-content-moderation-in-end-to-end-encrypted-systems/
https://www.thorn.org/blog/hashing-detect-child-sex-abuse-imagery/
https://www.thorn.org/blog/hashing-detect-child-sex-abuse-imagery/
https://blog.x.com/en_us/topics/company/2022/-our-approach-to-the-2022-us-midterms
https://blog.x.com/en_us/topics/company/2022/-our-approach-to-the-2022-us-midterms
https://eprint.iacr.org/2025/2187
https://faq.whatsapp.com/1206094619954598/?helpref=uf_share
https://faq.whatsapp.com/1206094619954598/?helpref=uf_share
https://www.whatsapp.com/legal/messaging-guidelines
https://www.whatsapp.com/legal/messaging-guidelines


1) Verify the proof πr and abort if the verification fails.
2) Randomly choose b←$ Zp and set u← gb.
3) Generate a ciphertext Eu′ of u′ ← gb(x0+x1id) from the

encrypted identity Eid.
4) Generate a proof πblind of (x0, x1, b), and return

(u,Eu′ , πblind) to the client.
Finally, once receiving the platform’s response, the client
verifies the proof πblind and decrypts Eu′ to get u′.

• Show(id, cred) → (cm, πshow, rd): The prover chooses
r, z ← Zq , and computes Cid = uidhz and Cu′ = u′gr.
It then output a tuple cm = (u,Cid, Cu′), randomnesses
rd = (r, z), and a proof:

πshow = PoK.Prv
{
(id, z, r) : Cid = uidhz ∧ V = g−rXz

1

}
.

• VfShow(kS , cm, πshow)→ {0, 1}: The verifier parses cm =
(u,Cid, Cu′) and computes V as:

V =
ux0Cx1

id

Cu′
=

ux0uid·x1hzx1

ux0+x1idgr
=

hx1z

gr
= g−rXz

1 ,

and verifies the proof πshow. If the proof is valid, it outputs
‘1’; otherwise, it outputs ‘0’.

Set Pre-Constrained Encryption (SPCE). We instantiate the
SPCE using the protocol proposed by Bartusek et al. [4, Figure
2], inspired by the Apple PSI system [8].
• Setup(1λ,B) → (sp, eb, pkS , skS): The server setup the

system as follows:
1) Initialize system parameter as sp = (n′, h0, h1) ←

CH.Gen(1λ, n, ε), where CH = (Gen,Hash) is a Cuckoo
hashing.

2) Generate a key-pair as (sk ←$ Zq, pk ← gsk).
3) Encode the blocklist as follows:

a) Generate a table T ← CH.Hash(n′, h0, h1,B).
b) For each element T [i] in T : If T [i] = ⊥, generate

a key as T [i] ← gri ; otherwise, generate a key as
T [i]← H(T [i])skS .

c) Sign the table as σT ← DS.Sign(skS , T ).
4) Publish the tuple (sp, pkS , eb = (T , σT )) to all clients.

• Enc(pkS ,m, p, eb)→ ct or ⊥: To encrypt a payload p, for
b ∈ {0, 1}, a client produces a ciphertext as follows:

1) Verify the encoded blocklist as DS.Vf(σT , pkS , T ), and
output ⊥ if the verification fails.

2) Randomly choose βb, γb ←$ Zq .
3) Compute Qb ← gβb ·H(m)γb using the message m and

encryption key as Sb ← pkβb

S · T
γb

hb(m).
4) Encrypt the payload as Cb = SKE.Enc(Sb, p), where the

SKE scheme satisfies RKR.
5) Output the ciphertext ct = (Q0, C0, Q1, C1).

• Dec(skS , ct) → p or ⊥: To decrypt a ciphertext ct, the
server computes as follows:

1) For b ∈ {0, 1}, reconstruct the key as S′
b ← QskS

b and
decrypt the ciphertext as pb ← SKE.Dec(S′

b, Cb).
2) If both p0 and p1 are ⊥, output ⊥; otherwise, output the

non-empty one. Note that, due to the SKE’s RKR, at most
one key will decrypt successfully.

APPENDIX B
SECURITY DEFINITIONS AND PROOFS

A. Source Confidentiality

Before presenting the proof, we recall Theorem 1 as follows:

Theorem 3. Let ST be the construction in Section V-A, for
any PPT adversary A, it holds that:

AdvSConf
ST (A) ≤ εZK

PoK + εSS
mkPKE + εANON

KVAC ,

where εZK
PoK , εSS

mkPKE , and εANON
KVAC denotes a PPT ad-

versary’s advantage in breaking the PoK’s zero-knowledge
property, the mkPKE’s semantic security, and the KVAC’s
anonymity, respectively.

Proof. We prove the above theorem through indistinguishable
games, where all the modifications happen in Osend,b.
• G0 : We begin with the game that identical to SConfA,b

ST in
Fig. 7 when b = 0.

• G1 : In Send, we model the hash function in PoK as a
random oracle, enabling the challenger to program it.2 As
a result, the proof πsend will be generated in simulation
mode. This modification decouples the proof from other
components in the tracing metadata. The indistinguishability
between this game and G0 can be easily reduced to the
zero-knowledge property of the PoK scheme. Specifically,
we have: ∣∣∣AdvG1ST (A)− AdvG0ST (A)

∣∣∣ ≤ εZK
PoK .

• G2 : In Send, we replace the key uk0 with the key uk1
of uid1. This modification affects the ciphertexts ctu,3 and
cttag in the tracing metadata tmd. Since the two ciphertexts
are encrypted using all the servers’ keys and the adversary
can only obtain two of the three keys, we can apply the
semantic security of mkPKE. Specifically, we have:∣∣∣AdvG2ST (A)− AdvG1ST (A)

∣∣∣ ≤ εSS
mkPKE .

• G3 : In TkGen, we finally replace the anonymous credential
cred0 with cred1 of uid1. Due to the anonymity of KVAC,
its Show algorithm produces two indistinguishable creden-
tial presentations for two different input credentials. Thus,
we have: ∣∣∣AdvG3ST (A)− AdvG2ST (A)

∣∣∣ ≤ εAnon
KV AC .

In the final game G3, the tracing metadata tmdb is identical
to tmd1 in the game SConfA,b

ST when b = 1, which concludes
the proof.

B. Trace Accountability

Before presenting the proof, we recall Theorem 2 as follows:

Theorem 4. Let ST be the construction in Section V-A, for
any PPT adversary, it holds that:

AdvAct
ST (A) ≤ εUnf

KV AC + εUnf
DS + εSound

PoK +
qh·εUnf

MAC

(1−εSound
PoK )(1−εZK

PoK)
,

2We assume the PoK works in random oracle model (ROM), but the proof
also holds when it is in the common reference string (CRS) model.
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where εSound
PoK an adversary’s advantage in breaking PoK’s

soundness; εUnf
KV AC , εUnf

DS , and εUnf
MAC denote the advantage

in breaking the unforgeability of KVAC, DS, and MAC, re-
spectively; qh denotes the number of queries to Ocred.

Proof. We prove the above theorem through a series of indis-
tinguishable games.
• G0 : This game is identical to ActAST in Fig. 8.
• G1 : In TkGen of Otoken, we replace the anonymous

credential’s verification (i.e., KVAC.VfShow) with a check
to determine whether the credential cred is an output from
Ocred. Since the adversary has no access to the KVAC
issuer’s secret key skP , the difference of A’s advantage in
G0 and G1 is upper bounded by the KVAC’s unforgeability,
i.e., ∣∣∣AdvG1ST (A)− AdvG0ST (A)

∣∣∣ ≤ εUnf
KV AC .

• G2 : In Receive within the Trace algorithm, we replace the
anonymous token’s verification (i.e., DS.Vf(cm, pkP , σ))
with a check to determine whether the token (cm, σ) is
output from Otoken. Since the adversary has no access to
the signer’s secret key skP , we have:∣∣∣AdvG2ST (A)− AdvG1ST (A)

∣∣∣ ≤ εUnf
DS .

In the resulting game G2, A’s advantage includes the
probability that the two winning conditions occur. Let S1
and S2 be the events that A wins in the winning condition
(uid∗ /∈ (Um∪Uh)) and ((uid∗ ∈ Uh)∧(uid∗,m∗ ∈ Lq)), re-
spectively. It is easy to see that the two events are independent.
Thereby, we have:

AdvG2ST (A) = Pr[S1] + Pr[S2],

We now argue that, for any PPT adversary, the probability
of the two events happening is negligible.

Claim 1. For any PPT adversary A in G2, the following
equation holds:

Pr[S1] ≤ εSound
PoK .

We substantiate this claim with a straightforward analysis
on the tracing metadata tmd∗ within the ciphertext ct∗tmd,1.
First, the Receive algorithm ensures that token∗ in tmd∗ must
have been previously queried in Otoken. Consequently, we can
retrieve a key uk∗ corresponding to token∗ from Ltk and Lk.
Second, unless A can break the soundness of PoK, the proof
πsend guarantees that the ciphertext ctu,3 is a well-formed
ciphertext of uk∗, implying that the decryption result must be
uk∗. Since the key uk∗ is directly retrieved from the list Lk,
the corresponding identity uid∗ must have been previously
queried in Ocred, thereby rendering the event S1 impossible.

Claim 2. For any PPT adversary A in G3, the following
equation holds:

Pr[S2] ≤
qh · εUnf

MAC

(1− εSound
PoK )(1− εZK

PoK)
,

Proof. We prove this claim by contradiction. Suppose that, for
a PPT adversary A, the probability Pr[S2] is non-negligible,

we show that there exists a PPT adversary B that has a non-
negligible advantage in breaking the unforgeability of MAC
(i.e., EU-CMA). Given a MAC oracle that responds to tags on
request messages, B simulates G3 as follows:
1) Setup. B initializes the system normally and additionally

randomly picks an index j ∈ [qh].
2) Oracle queries. Throughout the game, B answers A’s

queries to the oracles as follows:
• Ocred : A makes this query with a tuple (uid, isMal). If
isMal = 1, B correctly executes the algorithms in the
oracle. On the i-th query that isMal = 0, B proceeds as
follows: If i ̸= j, B executes as isMal = 1; otherwise,
B sets uidj = uidi and returns 0.

• Otoken : A makes this query with a credential credu.
Because B owns the platform’s secret key, it can execute
the algorithms correctly.

• OhonSend : A make this query with a tuple (m,uid). If
uid ̸= uidj , B correctly executes the algorithms in the
oracle; otherwise, B proceeds the query as follows:
a) Generate two random bit strings as the anonymous

token token and encrypted identity ctu,3.
b) Forward the message m to the MAC oracle, and

obtains tag as response.
c) Generate the encrypted tag cttag using public keys

and the tag.
d) Generate the proof πsend by running the PoK in the

simulation mode.
e) Return tmd = (token, ctu,3, cttag, πsend) to A.

3) Forge. Finally, A outputs a tuple (m∗, ct∗tmd,1), where
ct∗tmd,1 = (tmd∗, ct∗u,2, π

∗
d,2, ct

∗
u,1, π

∗
d,1). The tracing meta-

data tmd∗ satisfies Receive(m∗, tmd∗) = 0 and (uid∗ ∈
Uh) ∧ ((uid∗,m∗) /∈ Lq).

Due to the forward confidentiality, it is evident that B’s
simulation for G2 is perfect unless A can break the zero-
knowledge property of the proof πsend. Thus, the simulation
fails with a probability equal to εZK

PoK .
Next, we analyze B’s advantage in breaking the unforge-

ability of MAC. If uid∗ ̸= uidj , B aborts. Otherwise,
due to the proof of knowledge property of the PoK, B
can extract the witness ukj from the proof; then, it for-
wards (m∗,MAC.Tag(ukj ,m

∗)) to its own challenger. Con-
sequently, B wins with the advantage:

AdvUnf
MAC(AMAC) ≥ (1− εZK

PoK) · (1− εSound
PoK ) · Pr[S2]

qh
,

which proves Claim 2.

Based on the indistinguishable games and Claim 1-2, we
prove the Theorem 2.

C. Report Uniqueness

We formalize this property in the game UniqueAST (see Fig.
9). The adversary can access the secret keys of malicious users
Um, the reports of honest users Uh, the moderator’s secret key
skM , and the regulator’s secret key skR.
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UniqueAST (1
λ)

Lq,Lk,Ltk,Uh,Um ← ∅
(skR, skM , skP , pk)← KGen(1λ)

(lb∗, {rpt∗i }i∈[n])

← AO∗
(skR, skM , pk)

for rpt ∈ {rpt∗i }i∈[n] :

if rpt.lb ̸= lb∗ ∨ rpt /∈ Lq :

return 0

if VfReport(rpt, skP ) = ⊥ :

return 0

Lrpt ← dedup({rpt∗i }i∈[n])

if |Lrpt| > |Um|
return 1

Oreport(m, id, tmd)

if id /∈ Uh : return ⊥
(uk, cred)← Lk[id]

rpt← Report(m, tmd,

uk, cred, eb)

Lq
∪← {rpt}

return rpt

dedup({rpt′i}i∈[n])

Lrpt,Ldup ← ∅
for dupi ∈ {rpt′i}i∈[n] :

if dupi /∈ Ldup :

Lrpt
∪← {rpt′i}

Ldup
∪← {dupi}

return Lrpt

Fig. 9: Security game of report uniqueness, where O∗ denotes
the above Oreport and Ocred in Figure 6.

After querying the oracles, the adversary outputs a list of
reports that should be successfully verified and have not been
queried previously. The adversary wins if, after deduplication,
the number of unique reports exceeds the number of malicious
users. This indicates that the adversary has successfully created
two duplicated tags that has the same reporter and message.

Definition 3 (Report uniqueness). We say a source tracing
scheme ST satisfies report uniqueness if for any PPT adver-
sary A, A has a negligible advantage in winning the game
UniqueAST , where the advantage is defined as follows:

AdvUnique
ST (A) =

∣∣Pr[UniqueAST = 1
]∣∣ .

Theorem 5. Let ST be the construction in Section V-A, for
any PPT adversary, it holds that:

AdvUnique
ST (A) ≤ εUnf

KV AC + εSound
PoK .

Proof. See the full version of this paper [57].

D. Reporting Anonymity

We formalize this property in the game AnonA,b
ST in Fig.

10. The oracle Osend enables the adversary to obtain tracing
metadata from any user for a chosen message, while the oracle
OhonRpt,b allows the adversary to acquire reports on valid
tracing metadata from honest users. The adversary’s goal is
to distinguish the source of a report. To prevent trivial wins,
the pairs of tracing metadata and users queried in OhonRpt,b

must be honest users who have not been queried before;
otherwise, the adversary could exploit the deduplicate tag for
report uniqueness to distinguish the reporter.

Definition 4 (Reporting anonymity). We say a source tracing
scheme ST satisfies reporting anonymity if for any PPT

AnonA,b
ST (1λ)

Lq,Lk,Ltk,Ltmd ← ∅
Uh,Um ← ∅
(skR, skM , skP , pk)← KGen(1λ)

b′ ← AO∗
b (skP ,Lk, pk)

return b′

Osend(id,m)

if id /∈ Uh : return ⊥
(uk, cred)← Lk[id]

tk ← TkGen(uk, cred, skP )

tmd← Send(m,uk, tk)

return tmd

OhonRpt,b(m, tmd, id0, id1)

if Receive(m, tmd) = 0 :

return ⊥
for id ∈ {id0, id1} :

if ((id, tmd) ∈ Lq)

∨ (id /∈ Uh) :
return ⊥
Lq ← Lq ∪ {(id, tmd)}

(ukb, credb)← Lk[idb]

rptb ← Report(m, tmd, ukb,

credb, eb)

return rptb

Fig. 10: Security game of reporting anonymity, where O∗
b

denotes the above OhonRpt,b and Ocred, Osend in Figure 6.

adversary A, A has a negligible advantage in winning the
game AnonA,b

ST , where the advantage is defined as follows:

AdvAnon
ST (A) =

∣∣∣Pr[AnonA,1
ST = 1

]
− Pr

[
AnonA,0

ST = 1
]∣∣∣ .

Theorem 6. Let ST be the construction in Section V-A, for
any PPT adversary, it holds that:

AdvAnon
ST (A) ≤ εZK

PoK + εAnon
KV AC + εwPRF

MAC ,

where εwPRF
MAC denotes a PPT adversary’s advantage in break-

ing the weak pseudorandomness of the MAC.

Proof. See the full version of this paper [57].
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