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Abstract—Blockchain oracles play a crucial role in delivering
price data from off-chain exchanges to smart contracts, enabling
automated financial services. Chainlink, the dominant oracle
service provider, employs Decentralized Oracle Networks (DONs)
to provide price feeds. In Chainlink’s DON, multiple oracle nodes
independently observe the price of a cryptocurrency and run
the Off-Chain Reporting (OCR) protocol to determine a unique
price from their observation values. Price deviations originating
from the OCR protocol will pose security risks. To prevent
arbitrary price deviations induced by Byzantine oracle nodes,
OCR’s validity property guarantees that the determined price
is bounded by honest observation values. However, this bound
in real-world settings remains unclear, and it is unknown how
much price deviation Byzantine behaviors can still induce.

In this paper, we conduct an in-depth study of the poten-
tial impacts of Byzantine behaviors on the determined price
in the OCR protocol, through both empirical and theoretical
analyses. First, our empirical analysis reveals that, in real-
world settings, Byzantine behaviors still have ample space to
sway the determined price in the OCR protocol. We then detail
Byzantine behaviors that strategically sway the determined price
and formally model their impacts. Furthermore, we evaluate
the impacts of these Byzantine behaviors using Chainlink’s
real-world price data. Our experimental results show that the
price deviation induced by Byzantine behaviors can reach up to
8.47% of the ETH price. Our case studies further indicate that
the downstream financial impacts of a price value swayed by
Byzantine behaviors can be on the order of 105 USD, and the
cumulative impacts of such price values may reach millions of
USD. In summary, this work uncovers that Byzantine behaviors
can still cause non-negligible impacts on the determined price in
the OCR protocol, even under the validity guarantee. We have
ethically reported our findings to Chainlink, aiming to support
the security of the OCR protocol.

∗Corresponding authors

I. INTRODUCTION

Since smart contracts cannot directly access off-chain in-
formation, blockchain oracles play a crucial role in feeding
real-world data into smart contracts [1], [2], primarily price
data into Decentralized Finance (DeFi) contracts. Given the
inherent centralization issue [3] of a single oracle node, current
oracle service providers widely adopt Decentralized Oracle
Networks (DONs) [4]–[10]. A DON consists of multiple in-
dependent oracle nodes, each of which observes the price of a
certain cryptocurrency from its own data source, with discrep-
ancies among oracle nodes’ observation values. These oracle
nodes run a distributed oracle protocol to determine a unique
representative value, which is then transmitted on-chain. Since
automated financial services depend on this determined price
value, deviation in it can lead to security risks, such as
arbitrage and incorrect execution of DeFi contracts [11], [12].
To prevent malicious oracle nodes (i.e., Byzantine oracle
nodes) from causing arbitrary deviation in the determined price
value, the distributed oracle protocol is required to satisfy the
validity property. The validity property guarantees that the
determined price value lies within the range bounded by
the minimum and maximum observation values of honest
oracle nodes, and this range is referred to as the honest range,
which specifies the allowable degree of deviation.

Chainlink is the dominant oracle service provider and main-
tains the most widely used DONs currently [13], [14]. As of
May 2025, Chainlink’s DONs secure 68% of the total value
across all oracle services in the entire blockchain ecosystem,
and 78% on the Ethereum mainnet [15]. Chainlink’s DON
relies on the Off-Chain Reporting (OCR) protocol [16] to de-
termine a unique price value that is transmitted on-chain. Thus,
unlike other distributed oracle protocols [17]–[22], OCR has
already seen deployment in real-world applications. However,
the security of OCR, especially in terms of price deviations
that may be induced by Byzantine oracle nodes, is not yet
well understood. In this regard, the only guarantee provided by
OCR is the validity property. OCR allows any price deviation
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within the honest range, yet how wide this range is in real-
world settings remains unclear. The width of the honest range
is treated as a negligible parameter in related works [21], [22]
and has not been thoroughly investigated so far. Moreover, the
extent of price deviations that can be induced by Byzantine
behaviors in the OCR protocol remains unknown.

To fill the gap, we conduct an in-depth study on price devi-
ations that can be induced by Byzantine behaviors in the OCR
protocol. These price deviations present exploitable opportu-
nities for adversaries to gain unfair advantages, posing threats
to the fairness of price feeds and causing financial impacts on
other downstream applications. Since the OCR protocol has
seen long-term practical use, our study combines empirical
and theoretical analyses. First, we thoroughly investigate the
honest range of price observation values in Chainlink’s DON
through an empirical analysis. Our results show that the width
of the honest range can reach up to 13.13% of the ETH price,
which is far beyond prior assumptions [21], [22]. A wide
honest range implies that Byzantine behaviors still have ample
space to sway the determined price value, posing a potential
risk despite the validity guarantee. Motivated by this finding,
we conduct a theoretical analysis of Byzantine behaviors’
impacts on the determined price value. Specifically, we detail
each type of Byzantine behavior that can occur in the OCR
protocol and how they sway the determined price value. These
Byzantine behaviors strategically exploit the OCR protocol to
cause an observation value, which should not have been the
representative value, to be finally adopted as such. We model
the impacts of these Byzantine behaviors and propose metrics
to characterize the impacts. Furthermore, we evaluate the real-
world price deviations that Byzantine behaviors may induce.
To this end, we conduct an empirical analysis by simulating
the impacts of Byzantine behaviors using Chainlink’s historical
price feed instances. Our experimental results show that the
price deviation induced by Byzantine behaviors in the OCR
protocol can reach up to 8.47% of the ETH price. Additionally,
we conduct case studies on Chainlink’s primary downstream
applications, demonstrating that the associated financial im-
pacts of Byzantine behaviors can be on the order of 105 to
106 USD.

Our study uncovers that merely guaranteeing validity is in-
sufficient, as the sway of Byzantine behaviors can still induce
non-negligible price deviations, constituting a security pitfall
in the OCR protocol. Due to factors such as cryptocurrency
price volatility, the honest range under OCR’s validity property
in real-world settings can be considerably wide. The potential
impacts of Byzantine behaviors on the determined price value
should be further bounded, and we discuss possible mitigation
strategies in Section VII. Our study offers new insights into
distributed oracle protocols in real-world application contexts,
highlighting that assessing the impacts of Byzantine behaviors
remains essential despite the validity guarantee.

We summarize our contributions as follows.
• We conduct the first thorough investigation of the honest

range in real-world settings. Through an empirical anal-
ysis of 84,097 Chainlink’s historical price feed instances,

we reveal that, despite the validity guarantee, Byzantine
behaviors can still have ample space to sway the deter-
mined price value in the OCR protocol.

• We formally model the impacts of Byzantine behaviors
on the determined price value in the OCR protocol.
We introduce two types of Byzantine behaviors that can
strategically sway the determined price value, and we
conduct a theoretical analysis of their impacts under two
different scenarios of the OCR protocol.

• We evaluate the price deviations that Byzantine behaviors
can induce using real-world data. We conduct an em-
pirical analysis encompassing 72,711 filtered price feed
instances, 13 downstream liquidations, and 4,465,424
downstream charge transactions to assess the impacts of
Byzantine behaviors in OCR. Our experimental results
demonstrate that these impacts are non-negligible.

• We open-source our datasets and code to facilitate future
research. The artifact is available at https://github.com/
Zhai-Di/ocr-security. Additionally, we discuss possible
mitigation measures to further bound the potential im-
pacts of Byzantine behaviors in the OCR protocol.

II. BACKGROUND

A. Decentralized Oracle Networks (DONs)

Blockchain Oracle. Smart contracts built on top of the
blockchain cannot directly access off-chain data, this inherence
causes the blockchain and smart contracts to function as an
enclosed system. However, the execution of DeFi contracts
inevitably relies on price data from exchanges. To bridge the
connection between the blockchain and the external world,
blockchain oracles are employed to provide price feeds for
DeFi contracts. Blockchain oracles also introduce security
issues [23], and oracle exploits have emerged as a root cause
of many DeFi incidents [24].

Distributed Oracle Problem. Centralized oracles rely on
the trustworthiness of a single entity, which introduces the
risk of a single point of failure [25]. To address this risk,
mainstream oracle service providers have adopted DONs for
price feeds. In a DON, Byzantine oracle nodes may provide
falsified observation values, and even the observation values
of honest oracle nodes may exhibit discrepancies. Thus, oracle
nodes in the DON must agree on a single representative
value that is transmitted on-chain. This is referred to as the
distributed oracle problem [17], [21], [22]. In the literature,
it is regarded as a specialized instance of the convex agree-
ment problem [26], [27], and distributed oracle protocols
are designed to address the distributed oracle problem. As
with classical approximate agreement protocols [28], [29],
distributed oracle protocols satisfy the validity property, which
ensures that the representative value is always in the convex
hull [26] of the honest values. For scalar values, this property
means that the representative value lies within the range
bounded by the minimum and maximum honest values.
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B. Chainlink’s Price Feed Scheme
Chainlink’s price feed scheme comprises both off-chain and

on-chain components, as shown in Figure 1.
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Fig. 1: Chainlink’s price feed scheme

The off-chain component refers to Chainlink’s DON. For a
given blockchain, such as Ethereum, Chainlink deploys a DON
for each asset pair it currently supports to provide price feeds.
The number of oracle nodes in Chainlink’s DON is typically
set to 16, 19, or 31, with these oracle nodes designated by
Chainlink. Chainlink previously hosted oracle competitions
and selected winners to join specific DONs. However, Chain-
link’s DONs for price feeds currently do not allow external
nodes to join. Each oracle node in Chainlink’s DON has a
unique cryptographic key pair, and receives bounties from
Chainlink by providing observation values. The oracle nodes
in Chainlink’s DON run the OCR protocol [16] to determine
a representative price value.

The on-chain component includes the aggregator contract,
the proxy contract, and the consumer contracts. The aggregator
contract interacts directly with the off-chain DON. Specif-
ically, this contract records the on-chain addresses of each
oracle node in the DON and receives price observation values
transmitted from the DON. These observation values are
stored in the aggregator contract. Furthermore, the aggregator
contract provides a set of functions for retrieving price data,
which return the median of the observation values from
multiple oracle nodes. The proxy contract references a specific
aggregator contract and ensures the continuity of Chainlink’s
price feed services when the underlying aggregator contract is
upgraded, thereby providing significant convenience to users.
A consumer contract refers to any contract that consumes
Chainlink’s price feeds, such as a DeFi contract. When query-
ing the price of a cryptocurrency, the consumer contract calls
one of the exposed functions of the proxy contract, without
having to concern the underlying aggregator contract.

III. REVIEW OF CHAINLINK’S OCR PROTOCOL

In this section, we review the OCR protocol. We first
introduce the system model, upon which the OCR protocol
is built. We then present a protocol overview and the proof of
OCR’s validity property.

A. System Model
The off-chain DON consists of n oracle nodes, among

which f are Byzantine oracle nodes [30]. Byzantine oracle

nodes can arbitrarily deviate from the protocol, subject only
to the underlying cryptographic assumptions. The remaining
oracle nodes, referred to as honest oracle nodes, are assumed
to behave honestly and conform to the protocol. The system
satisfies the condition n ≥ 3f+1, and the current configuration
adopts n = 3f +1 to achieve optimal resilience. The connec-
tions between oracle nodes are authenticated and encrypted,
enabling them to send point-to-point messages in a network
under the partial synchrony assumption [31], i.e., there exists
an unknown Global Stabilization Time (GST), after which the
message transmission delay between any two honest nodes has
a known upper bound.

B. OCR Protocol Overview

We describe the three sub-protocols that constitute OCR,
namely, pacemaker, report generation, and transmission, with
the median adopted as the representative value. Notably, our
study primarily focuses on report generation.

1) Pacemaker: Pacemaker periodically initiates a new re-
port generation instance. Specifically, pacemaker is respon-
sible for triggering a designated leader to initiate a report
generation instance. Furthermore, when the leader fails to
make sufficient progress, pacemaker is capable of aborting
the current report generation instance.

2) Report Generation: A report generation instance pro-
ceeds in multiple rounds, with a new round beginning every
Tround time units. In each round, a unique oracle node is
selected as the leader, while the remaining oracle nodes are
referred to as non-leaders. Report generation generates one
report per round. At the start of round r, the leader initiates
the process by broadcasting OBSERVE-REQ messages to all
oracle nodes, including itself. Upon receiving the OBSERVE-
REQ message, the oracle node moves to round r, obtains
a new observation value (e.g., ETH/USD price) from its
own data source, signs it, and sends it back to the leader
in an OBSERVE message. When the leader has gathered
OBSERVE messages from 2f + 1 distinct oracle nodes, it
enters a grace period of duration Tgrace, during which delayed
observation values are awaited. The configuration of this grace
period is motivated by Chainlink’s reward mechanism, which
incentivizes oracle nodes for their participation as observers
and allows slightly delayed oracle nodes to remain eligible
for rewards. Moreover, the resulting report is enriched with a
broader set of observation values.

Upon the expiration of the grace period, the leader sorts the
received observation values in non-decreasing order (allowing
for duplicates), forming an ordered list referred to as the
observations list. The observations list, together with the
signatures from all observers, constitutes a report. The leader
then includes this report in a REPORT-REQ message and
broadcasts it to all oracle nodes. Upon receiving the REPORT-
REQ message, the oracle node first verifies all signatures in
the report. It then checks whether the time interval (e.g.,
the update interval for ETH/USD price is 1h under normal
circumstances) is sufficient, or the price has fluctuated beyond
a certain threshold (e.g., 0.5% for ETH/USD price) compared
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to the last price feed. If either condition is met, the oracle
node signs the report, indicating that the oracle node validates
this report. The oracle node subsequently sends a REPORT
message containing its signed report to the leader.

Once a report has been validated by at least f +11 distinct
oracle nodes, the leader assembles this report along with the
signatures of the oracle nodes that validated it, generating an
attested report. The leader then includes the attested report
in a FINAL message, which is broadcast to all oracle nodes.
Upon receiving the FINAL message, the oracle node verifies
the signatures in the corresponding attested report, and then
sends a FINAL-ECHO message containing the attested report
to all other oracle nodes. To this end, the attested report is
disseminated, ensuring that oracle nodes who have not yet
received the FINAL message can quickly obtain it. When
at least f + 11 oracle nodes confirm receipt of the attested
report, round r is completed, and the attested report is passed
to transmission, from where it will be sent to the aggregator
contract. The process that we primarily focus on is illustrated
in Figure 2.
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Fig. 2: The illustrated DON consists of four oracle nodes, i.e.,
n = 4, f = 1, and the leader is oracle-node-0 in the current
round. Here, sigi denotes the signature of oracle-node-i, and
vi denotes the observation value of oracle-node-i. r denotes
the current round number, R denotes the report generated by
the leader, and O denotes the attested report.

3) Transmission: Transmission encapsulates the process
by which oracle nodes send the attested report to the on-
chain aggregator contract. Oracle nodes wait for the first
report accepted by the aggregator contract. The consensus
mechanism of the blockchain ensures that all honest oracle
nodes see the same representative value (i.e., the median of
the observations list) from this first accepted report and reach
an agreement.

1Oracle nodes reach agreement on the representative value by leveraging
the consensus mechanism of the blockchain they provide price feeds to.

4) Representative Value: The median of the observations
list in the attested report that is first accepted by the
aggregator contract will serve as the representative price
value. When a consumer contract requests cryptocurrency
price data, the proxy contract simply returns this median. Since
integer division rounds towards zero, the median is essentially
the value at index ⌊observations list.length/2⌋. Recall
that the leader enters the grace period after receiving 2f + 1
OBSERVE messages from distinct oracle nodes in report
generation, and it waits for any potentially delayed observation
values. Thus, the length of an observations list is not fixed, and
the only guarantee is that it is at least 2f+1. The OCR protocol
satisfies the validity property, as detailed in Property 1.

Property 1 (Validity). Let L be the observations list in an
attested report. L is sorted in non-decreasing order. Let m be
the median of L, and let Vh denote the set of observation
values from all the honest oracle nodes. It follows that
min(Vh) ≤ m ≤ max(Vh).

Proof: We prove this property by contradiction. Without
loss of generality, we assume that m > max(Vh). Since
L contains at least 2f + 1 observation values, there are at
least f + 1 values in L that are greater than max(Vh). These
f +1 observation values are all from Byzantine oracle nodes.
However, according to the system model, there can be at most
f Byzantine oracle nodes in the DON, which contradicts the
assumption. Similarly, we can prove that m ≥ min(Vh).

IV. POTENTIAL RISK DESPITE THE VALIDITY GUARANTEE

According to the validity property, any price deviation
within the honest range is allowed by the OCR protocol.
However, how wide the honest range actually is remains
unclear. To measure the honest range of price observation
values in Chainlink’s DON, we conduct a large-scale empirical
study. To the best of our knowledge, we are the first to
thoroughly investigate the honest range based on long-term
price observation values in real-world settings. Our empirical
analysis reveals that the honest range may still leave ample
space for Byzantine behaviors to sway Chainlink’s price data,
posing a potential risk despite the validity guarantee.

A. Dataset

According to the code of Chainlink’s aggregator con-
tract [32], it emits a NewTransmission event upon re-
ceiving an attested report generated by the OCR protocol,
and the parameters of NewTransmission event include the
observations list contained in the report. Thus, we retrieved all
NewTransmission events from block 12016450 (approxi-
mately when Chainlink began adopting OCR in March 2021)
to block 22648562 (June 2025) through a full node on the
Ethereum mainnet [33]. We parsed the data field of each
NewTransmission event to extract the observations list.

With reference to the addresses of proxy contracts listed
on Chainlink’s official website [34], we use the database of
Dune [35] to compute the cumulative number of calls made to
the proxy contracts for each pairs on the Ethereum mainnet.

4



As of 9 June 2025, we observe that 60.61% of the total
calls were directed to the proxy contract for ETH/USD pair,
indicating that ETH/USD price feed is the most demanded on
the Ethereum mainnet. Therefore, we primarily analyze the
ETH/USD price observation values, which includes 84,097
observations lists, a dataset we consider to be highly represen-
tative. Additionally, we collect BNB/USD price observation
values using the same approach and extend our empirical
analysis to the BNB/USD pair in Appendix D.

B. Measuring the Honest Range

Since the Chainlink’s DON for ETH/USD price feeds con-
sists of 31 oracle nodes (i.e., n = 31, f = 10), an observations
list should contain 31 observation values under ideal condi-
tions, where all 31 oracle nodes honestly conform to the OCR
protocol and submit their observations to the leader before
the grace period expires. Under such ideal conditions, any
differences among the observation values should merely reflect
natural variations, which arise due to differences in the data
sources used by the oracle nodes and slight inconsistencies in
the times at which they retrieve prices. However, we observed
the following phenomena in the collected observation values.

• 13.46% of the observations lists, which we refer to
as incomplete lists, contain fewer than 31 observation
values. To the best of our knowledge, Chainlink has
not published any reports specifically focused on this
phenomenon. We infer that the underlying causes may
include: ❶ some oracle nodes becoming unresponsive due
to transient benign faults (e.g., crashes); ❷ high network
latency or slow responses from queried data sources,
resulting in the oracle node’s OBSERVE message arriving
at the leader after the grace period expired; and ❸ certain
oracle nodes exhibiting Byzantine behaviors.

• Some observation values, which we refer to as anomalies,
exhibit significant deviations from the other values within
the same observations list, which cannot reasonably be
attributed to natural variations. Table I presents several
illustrative examples.

TABLE I: Examples of Anomalies.

Anomalies Other
Observations

Corresponding
Event Logs

ob1: 1654.79
ob2: 1689.83

min: 3284.27
max: 3290.16 0x8252......1537/Logs

ob1: 1639.27 min: 3273.99
max: 3278.50 0x394d......38d1/Logs

ob30: 4810.35
ob31: 4813.19

min: 3843.08
max: 3872.82 0x2fdd......d6d8/Logs

ob30: 27047822019
ob31: 27047822020

min: 3861.71
max: 3891.84 0xf9a3......608f/Logs

ob30: 21759587641
ob31: 21759587647

min: 3862.99
max: 3891.01 0x633f......c030/Logs

ob30: 4591094991
ob31: 4591095006

min: 3851.12
max: 3886.11 0xf289......9819/Logs

obi denotes the i-th value in an observations list.

These phenomena indicate that historical observation values
should not all be regarded as honest and unaffected by other
faults. However, identifying the root causes of incomplete lists
and anomalies in the historical observation values is nearly
impossible, as doing so would require access to the oracle
nodes’ internal execution logs corresponding to those time
periods. Moreover, even values from honest oracle nodes,
which are referred to as honest observation values, may
exhibit a certain degree of natural variations. It is both chal-
lenging and of little practical significance to exactly determine
whether each observation value is honest. Therefore, we first
estimate the historical maximum of natural variations between
honest observation values and then exclude lists that may
contain anomalies based on this estimate, thereby enabling
the remaining lists to be treated as consisting entirely of
honest observation values. The corresponding rationale and
experiments are detailed as follows.

1) Estimating the Maximum Natural Variation: We first
exclude all incomplete lists to avoid the potential influence of
Byzantine behaviors. For each complete list, let ξ denote the
minimum difference between the largest and smallest values
in any 2f + 1-subset of a complete list. Since there are at
least 2f + 1 honest observation values in a complete list,
the maximum natural variation is no smaller than ξ. The
detailed proof is provided in Theorem 2 (Appendix A). In
the following, we use m to denote the median of an
observations list. We calculate ξ for each complete list, and,
considering ETH price volatility, we normalize ξ relative to m
(i.e., ξ/m). Among the 72,777 complete lists, the maximum
value of ξ/m is 0.0851, indicating that historically there
existed a natural variation equal to or exceeding 8.51% of
the ETH price at that time.

2) Excluding Anomalies: We analyze the characteristics
exhibited by an observations list that contains anomalies, as
detailed in Theorem 1.

Theorem 1. Let L denote an observations list consisting of
3f + 1 values. Let obi denote the i-th value in L, where
1 ≤ i ≤ 3f + 1. If there exists an anomaly in L, which
is abnormally large (resp. small) that the difference between
it and any honest observation value in L exceeds ϵ, then
ob3f+1 − ob2f+1 > ϵ (resp. obf+1 − ob1 > ϵ).

Proof: Without loss of generality, assume a large anomaly
obal exists in L that the difference between it and any honest
observation value exceeds ϵ. Since L contains at most f
observation values from Byzantine oracle nodes, there exists
at least one honest observation value among the largest f +1
values in L, which is denoted as obhl. As L is sorted in non-
decreasing order, we have obhl ≥ ob2f+1 and ob3f+1 ≥ obal.
Because obal − obhl > ϵ, it follows that ob3f+1 − ob2f+1 > ϵ.
Similarly, when there exists a small anomaly obas in L, we
can prove that obf+1 − ob1 > ϵ.

We apply the characteristics revealed by Theorem 1 to
set filtering conditions, excluding lists potentially containing
anomalies. Specifically, we define the parameter ϵ in Theo-
rem 1 to represent the maximum acceptable natural variation,
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Fig. 3: Alignment between the remaining lists after filtering and the DEX prices

and exclude all lists that satisfy either ob3f+1−ob2f+1 > ϵ or
obf+1− ob1 > ϵ. Given that historically the maximum natural
variation is at least 8.51% of m, we set ϵ = 0.0851×m. The
sensitivity analysis of ϵ, presented in Appendix B, demon-
strates that our parameter choice has no significant effect on
the subsequent experimental results. After our filtering, there
remain 72,711 lists.

Furthermore, we align each remaining list with DEX prices
to reference market moves. For each historical list, we take the
block in which the price feed event occurs as the center block,
and set a 6-block lead window and a 6-block lag window2.
Within each 13-block window, we collected WETH/USDT
price data from both Uniswap [36] and Sushiswap [37]. Thus,
we aligned the range of values in each remaining list with
the range of DEX prices within the corresponding 13-block
window, and the results are presented in Figure 3. It can
be observed that the remaining lists after filtering exhibit an
overall trend consistent with the DEX price movements. More-
over, the range of values in each remaining list (represented
by the red-shaded area in Figure 3) is almost covered by
the range of DEX prices within the corresponding 13-block
window (represented by the blue-shaded area in Figure 3).
The results indicate that, after our filtering, the differences
among observation values in each remaining list are primarily
attributable to market volatility rather than oracle noise, and
thus the remaining 72,711 lists are reasonably regarded as
not containing any anomalies, with all observation values
considered honest.

For each remaining list, we calculate the difference between
its maximum and minimum values, which represents the width
of the honest range, and normalize the results relative to m.
The results are shown in Figure 4, which reveals that the width
of the honest range in real-world settings can far exceed the
related assumptions made in existing studies [21], [22]. For
instance, there exists an honest range [3076.76, 3510.31]3,
whose width reaches 433.55 USD, accounting for 13.13%
of the ETH price (i.e., the median) at that moment. Within
the 13-block window corresponding to this price feed, the
market indeed experienced significant volatility. Even a single

2Following the default configuration of the OCR protocol, we estimate the
duration of one OCR round to be 60s and adopt 6 blocks as the lead/lag
window.

3The corresponding event log is in 0x80b9019cb90645cd4451dd2c19fc
17d1cbe20955941b9e282d195e244c96dfd4/Logs

Fig. 4: Width of the honest range in historical price observation
values

data source, Sushiswap, exhibits an ETH price change of
10.59% within this window, and diverse data sources used
by Chainlink’s oracle nodes result in larger price differences.

C. Our Finding

Our empirical study suggests that the honest range of real-
world price observation values may have been overlooked, and
the wide honest range introduces a potential risk. The validity
property of OCR merely guarantees that Byzantine oracle
nodes cannot push the determined price value outside the
honest range. However, with a wide honest range, Byzantine
behaviors can sway Chainlink’s price data to a large extent.
For instance, when the honest range is [3076.76, 3510.31]3,
the ETH price determined by the OCR protocol without the
presence of Byzantine behaviors is 3302.30 USD, whereas
Byzantine behaviors may shift this price to 3510.31 USD or
to 3076.76 USD. Since price deviations affect the transaction
funds of downstream applications, Byzantine behaviors’ sway
on price data undermines the fairness of price feeds, providing
adversaries with exploitable opportunities. Therefore, even un-
der the guarantee of the validity property, it remains necessary
to concretely assess the extent to which Byzantine behaviors
in the OCR protocol can sway Chainlink’s price data.

V. BYZANTINE BEHAVIORS’ SWAY: MODELING ITS
IMPACTS ON PRICE DATA

Motivated by our finding (Section IV-C), we further con-
duct a theoretical analysis of the extent to which Byzantine
behaviors can sway the determined price value in the OCR
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protocol. Specifically, we first present the threat model and
then propose the metrics for characterizing the impacts of
Byzantine behaviors on the determined price value. Building
on this, we model the impacts of Byzantine behaviors under
two different scenarios of OCR.

A. Threat Model

Based on Section III-A, we consider a DON comprising n
oracle nodes, among which f are Byzantine, where n = 3f+1.
Our threat model assumes that Byzantine oracle nodes collude
to maximize (or minimize) the price value determined by the
OCR protocol for creating unfair advantages (e.g., arbitrage,
frontrunning [12], [38]). This assumption is widely adopted in
related studies [21], [22], [27], [28], [39], [40]. According to
the OCR protocol, Byzantine oracle nodes cannot learn about
any honest oracle node’s observation values before receiving
the observations list generated by the leader. We consider
attack approaches that aim to intercept or infer the honest
observation values to fall outside the scope of this paper. In
each OCR round, a Byzantine oracle node acts as either the
leader or a non-leader, depending on the output of a pseudo-
random function. The capabilities of a Byzantine leader and
a Byzantine non-leader are distinguished by their respective
Byzantine behaviors, which are detailed below.
Byzantine non-leader’s behavior:

Falsify the observation value. In Report Generation, upon
receiving an OBSERVE-REQ message from the leader, a
Byzantine oracle node first obtains a price observation value
from data sources as normal. This correctly obtained obser-
vation value is referred to as the original observation value.
However, this Byzantine oracle node then falsifies the original
observation value to a sufficiently large (resp. small) value4

so that the value will move to the end (resp. beginning)
of the observations list, thereby swaying the median. Since
such falsification is performed without knowledge of the
distribution of other honest observation values, it is realistic to
assume that a Byzantine oracle node typically falsifies a value
significantly larger (or smaller) than its original observation
value (e.g., an original observation value of 3702.42 USD
might be falsified to 4302.42 USD). This Byzantine oracle
node includes the falsified observation value in an OBSERVE
message, signs it, and sends it to the leader. Upon verifying the
signature of the sending oracle node, the leader then generates
an observations list using this falsified observation value along
with the other received observation values.
Byzantine leader’s behavior:

Select a subset of observation values. In Report Gen-
eration of the OCR protocol, upon the expiration of the
grace period and receiving observation values from more than
2f + 1 distinct oracle nodes, the Byzantine leader does not
include all received values in the observations list as required.
Instead, aiming to maximally sway the median, the Byzantine
leader selects the 2f + 1 largest (resp. smallest) values from

4Due to price volatility, the OCR protocol does not set thresholds on
observation values, and Table I demonstrates that significantly deviating
observation values are permitted.

the received observation values to generate the observations
list, discarding the rest, which exactly satisfies the threshold
required by the OCR protocol. Such selection leads to a larger
(resp. smaller) resulting median. Notably, such selection would
go undetected, as a Byzantine leader could deceitfully claim
that the 2f +1 observation values finally included are all that
it originally received.

B. Metrics

Byzantine behaviors can change the observations list (whose
original length is denoted by l), resulting in a value that
was not originally the median (i.e., its index is not equal
to ⌊l/2⌋) becoming the final median. This is the essential
reason why Byzantine behaviors in the OCR protocol can sway
Chainlink’s price data. Since an observations list is sorted in
non-decreasing order, we leverage indices in the list to reflect
changes in the median and propose metrics to characterize the
impacts of Byzantine behaviors. The relevant definitions are
as follows.

Definition 1 (Original Observations List: Lori). Assuming that
no Byzantine behaviors occur, each Byzantine oracle node
conforms to the OCR protocol just like an honest oracle
node. The observations list that will be formed under this
ideal situation is referred to as the original observations list,
denoted by Lori, and it is sorted in non-decreasing order.
Notably, when Byzantine behavior occurs, Lori serves as an
ideal reference list that does not actually exist.

Definition 2 (Final Observations List: Lfin). In Report Gener-
ation of the OCR protocol, Byzantine non-leaders falsify their
observation values or the Byzantine leader selects a subset
of observation values to generate the observations list. Under
the aforementioned Byzantine behaviors, the finally generated
observations list Lfin is referred to as the final observations
list, which is sorted in non-decreasing order.

Definition 3 (Metric: Byzantine-Induced Price Deviation
(∆P ) and Byzantine-Induced Index Deviation (∆I)). The
median of the final observations list Lfin is denoted as Mfin.
Assuming all other conditions remain unchanged, while there
is no Byzantine behavior, the original observations list is Lori,
with the median of Lori being Mori. Let ∆P denote the price
deviation induced by Byzantine behaviors, referred to as the
Byzantine-induced price deviation. Then we have

∆P = |Mfin −Mori|. (1)

Let Iori denote the index of Mori in Lori. Notably, in the
scenarios we analyze below, Mfin also exists in Lori. Thus,
let Ifin be the index of Mfin in Lori. Let ∆I denote the index
deviation induced by Byzantine behaviors, referred to as the
Byzantine-induced index deviation. Then we have

∆I = |Ifin − Iori|. (2)

We use ∆P as the metric for characterizing the price
deviation under the sway of Byzantine behaviors. Clearly, a
larger ∆P indicates a greater impact of Byzantine behaviors
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on the determined price value. Since ∆P is correlated with
the concrete positions in Lori occupied by Byzantine oracle
nodes’ original observation values, we adopt the mathematical
expectation E(∆P ) to capture the average price deviation that
can be induced by Byzantine behaviors. Given that Lori is
sorted in non-decreasing order, we leverage ∆I to reflect ∆P
in our theoretical analysis.

Definition 4 (Metric: Maximum Uncertain Price Deviation).
In Report Generation of the OCR protocol, f Byzantine oracle
nodes exhibit the aforementioned Byzantine behaviors. Given
a certain original observations list, if the f Byzantine oracle
nodes aim to inflate the price, they can shift the median from
Mori to M ′

fin; conversely, if they aim to deflate it, they can
shift the median to M ′′

fin. Let Umax = max(M ′
fin −M ′′

fin).
We define Umax as the maximum uncertain price deviation.

We use Umax as the metric for characterizing the maxi-
mum deviation between the prices resulting from Byzantine
behaviors with different aims. From the perspective of price
feed users, it is unknown whether the potential f Byzantine
oracle nodes aim to inflate or deflate the price. Byzantine
behaviors with unknown aims induce uncertainty in the de-
termined price value, and this metric captures the maximum
deviation under such uncertainty. Thus, this metric should be
effectively bounded (when necessary, should be much less
than the width of the honest range). Similarly, since Lori is
sorted in non-decreasing order, max(I ′fin − I ′′fin) can reflect
max(M ′

fin −M ′′
fin).

C. Impacts of Byzantine Behaviors under Two Scenarios

We model the impacts of Byzantine behaviors under two
possible scenarios, which are distinguished by whether the
leader in the current OCR round is Byzantine. In Scenario I,
the leader is honest, whereas in Scenario II, the leader is
Byzantine. The OCR protocol uses a pseudo-random function
to select the unique leader for several (a configurable param-
eter) consecutive rounds. Under the static adversary model, if
one of the Byzantine oracle nodes is selected as the leader
(with probability approximately 1/3), Scenario II occurs.
Otherwise, Scenario I occurs. Under the adaptive adversary
model, given that the selected leader may be subsequently
corrupted, Scenario II occurs more frequently. Overall, these
two scenarios are applicable under either adversary model.

1) Scenario I (Honest Leader): Under Scenario I, Byzan-
tine oracle nodes can merely exhibit falsifying behavior, while
selecting behavior does not occur. With the goal of maximally
inflating (resp. deflating) the price, all f Byzantine oracle
nodes falsify their respective original observation values into
sufficiently large (resp. small) values. These falsified values
will be moved to the last (resp. first) f positions of the final
observations list. According to Property 1, the price (i.e.,
Mfin) does not take any of these falsified values. However,
by using the original observations list as a reference, the
Byzantine behaviors shift the median index from Iori to Ifin,
as illustrated in Figure 5.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 72 3 4 5 6 8 9 10

Lori

Lfin

Iori

11 12 13 14 15

Ifin

(a) Inflation case, where Byzantine oracle nodes inflate the price

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 6 107 8 9 12 1411 13 15

Lori

Lfin

Iori

0 1 2 3 4

Ifin

(b) Deflation case, where Byzantine oracle nodes deflate the price

Fig. 5: Scenario I. The illustrated DON consists of 16 oracle
nodes, 5 of which are Byzantine and perform falsification. The
blue-bordered boxes indicate the positions of each observation
value in Lori, while the black-bordered boxes indicate the
positions of each observation value in Lfin. The numbers
inside the boxes denote the indices of the observation values.
The original observation values obtained by the falsifying
oracle nodes should have fallen into the red-marked positions
in Lori; however, after falsification, they instead fall into the
red-marked positions in Lfin.

Since Byzantine oracle nodes cannot control honest oracle
nodes’ values, their f original observation values occupy
random positions (i.e., indices) in the ordering of a list. As a
result, the index deviation exhibits randomness. For instance,
Figure 6 shows a case with index deviation 0, where Byzantine
behaviors cause no price deviation.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 6 127 8 9 10 11 13 14 15

Lori

Lfin 0 1 2 3 4

= IoriIfin

Fig. 6: Due to the particular positions of those falsifying oracle
nodes’ original observation values in Lori, the median remains
unchanged, i.e., Ifin = Iori.

As a foundation for evaluating the metric Byzantine-induced
price deviation under Scenario I, we use classical probability
theory to derive the general regularity of the index deviation.
In the inflation (resp. deflation) case, f values in Lori are
moved to the end (resp. beginning) of Lfin, which may cause
the position of the median to shift backward (resp. forward).
To calculate the probability distribution of ∆I (i.e., the index
deviation induced by Byzantine behaviors), we introduce a dis-
crete random variable X that describes the random positions
of the falsifying oracle nodes’ original observation values in
Lori. Specifically, X (0 ≤ X ≤ f ) denotes that, among the f
original observation values, exactly X have indices positioned
before Ifin. Let l denote the length of Lori (where l = 3f+1),
such that Iori = ⌊l/2⌋. Eq. 3 presents the probability that X
takes the value x. Eq. 4 (or Eq. 5) shows that ∆I is a random
variable function with respect to X , allowing us to calculate
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TABLE II: The probability distribution of ∆I in Scenario I when l = 31, where Pr[∆I = ∆i] denotes the corresponding
probability, which is identical in both the inflation and deflation cases.

∆I 0 1 2 3 4 5 6 7 8 9 10
Pr[∆I = ∆i] 0.00007 0.00072 0.00395 0.01457 0.04038 0.08809 0.15416 0.21533 0.23216 0.17688 0.07370

the probability distribution of ∆I using Pr[X = x].

Pr[X = x] =

(
Ifin

x

)
·
(
l−1−Ifin

f−x

)(
l
f

) . (3)

Ifin =

⌊
l

2

⌋
+X, (inflation case)

∆I =

∣∣∣∣⌊ l

2

⌋
+X −

⌊
l

2

⌋∣∣∣∣ = X.

(4)

Ifin =

⌊
l

2

⌋
− f +X, (deflation case)

∆I =

∣∣∣∣⌊ l

2

⌋
− f +X −

⌊
l

2

⌋∣∣∣∣ = f −X.

(5)

For instance, when l = 31 (i.e., the size of Chainlink’s DON
for ETH/USD price feeds), the probability distribution of ∆I
is shown in Table II. According to Table II, the mathematical
expectation of ∆I (i.e., E(∆I)) can be calculated, and the re-
sult is E(∆I) = 7.27. Therefore, under Scenario I, Byzantine
behaviors cause the median to shift approximately 7 positions
in Lori on average.

As a foundation for evaluating the metric maximum uncer-
tain price deviation under Scenario I, we analyze the max-
imum uncertain index deviation. For the f falsifying oracle
nodes, when they aim to inflate (resp. deflate) the price and
shift the median to M ′

fin (resp. M ′′
fin), corresponding to index

I ′fin (resp. I ′′fin) in Lori, it always holds that I ′fin−I ′′fin ≤ 2f .
In the illustration shown in Figure 5, I ′fin − I ′′fin = 2f . Thus,
under Scenario I, max(I ′fin−I ′′fin) = 2f . Furthermore, a more
general conclusion can be drawn: when the observation values
from Byzantine oracle nodes in Lori are indexed within the
interval [⌊l/2⌋− f +1, ⌊l/2⌋+ f − 1], then under Scenario I,
I ′fin − I ′′fin reaches its maximum value of 2f .

2) Scenario II (Byzantine Leader): Under Scenario II,
both selecting and falsifying behaviors can occur, and these
Byzantine behaviors can be divided into two steps for a clearer
explanation. In the first step, similar to Scenario I, all f
Byzantine oracle nodes falsify their respective original obser-
vation values into sufficiently large (resp. small) values. These
falsified values are sent to the Byzantine leader, who sorts them
into a non-decreasing list. We refer to this intermediate list as
Lint, with the f falsified values occupying the first (resp. last)
f positions.

In the second step, to further inflate (resp. deflate) the price,
the Byzantine leader selects the last (resp. first) 2f +1 values
in Lint and discards the remaining observation values. Such
selection results in the final observations list consisting of f
falsified values and f + 1 additional largest (resp. smallest)
values, thereby making the final median (i.e., Mfin) as large
(resp. small) as possible. By using the original observations

list as a reference, the Byzantine oracle nodes shift the median
index from Iori to Ifin, as illustrated in Figure 7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 72 3 4 5 6 8 9 10

Lori

Lint

Iori

11 12 13 14 15

Ifin

3 4 50 1 2Lfin 86 7 9 10

(a) Inflation case, where Byzantine oracle nodes inflate the price

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 6 107 8 9 12 1411 13 15

Lori

Lint

Iori

0 1 2 3 4

Ifin

Lfin3 4 50 1 2 86 7 9 10

(b) Deflation case, where Byzantine oracle nodes deflate the price

Fig. 7: Scenario II. The gray box represents Lint. The
observation values at the red-marked positions in Lori are
falsified and moved to the red-marked positions in Lint. The
observation values inside the red dashed box are discarded by
the Byzantine leader.

In Scenario II, since the first step mainly involves f Byzan-
tine non-leaders performing falsification, the index deviation
induced by Byzantine behaviors also exhibits a certain degree
of randomness. Notably, in the second step, the Byzantine
leader has access to all observation values sent to it and can
always select the largest (resp. smallest) 2f + 1 values. As a
result, Byzantine behaviors under Scenario II always achieve
∆I > 0.

As a foundation for evaluating the metric Byzantine-induced
price deviation under Scenario II, we calculate the probability
distribution of ∆I by introducing a discrete random variable
Y , which describes the random positions of the falsifying
oracle nodes’ original observation values in Lori. Specifically,
Y (0 ≤ Y ≤ f ) denotes that, among the f original observation
values, exactly Y have indices positioned before Ifin. Analo-
gous to the analysis under Scenario I, l denotes the length of
Lori. Eq. 6 presents the probability that Y takes the value y.
Eq. 7 (or Eq. 8) shows that ∆I is a random variable function
with respect to Y , and we calculate the probability distribution
of ∆I using Pr[Y = y].

Pr[Y = y] =

(
Ifin

y

)
·
(
l−1−Ifin

f−y

)(
l
f

) . (6)

Ifin =

⌊
2f + 1

2

⌋
+ f + Y = 2f + Y,

∆I = 2f + Y −
⌊
l

2

⌋
. (inflation case)

(7)
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Ifin =

⌊
2f + 1

2

⌋
− f + Y = Y,

∆I =

⌊
l

2

⌋
− Y. (deflation case)

(8)

Table III presents the probability distribution of ∆I under
Scenario II for the setting l = 31 (i.e., the size of Chainlink’s
DON for ETH/USD price feeds). Furthermore, we calcu-
late the mathematical expectation of ∆I , and the result is
E(∆I) = 14.55. This result indicates that, under Scenario II,
Byzantine behaviors shift the median by approximately half
the length of Lori on average, nearly shifting it to the
maximum (resp. minimum) value of Lori.

As a foundation for evaluating the metric maximum un-
certain price deviation under Scenario II, we analyze the
maximum uncertain index deviation. For the f falsifying
oracle nodes, when they aim to inflate (resp. deflate) the
price and shift the index of the median to I ′fin (resp. I ′′fin)
in Lori, it always holds that I ′fin − I ′′fin ≤ 3f . In the
illustration shown in Figure 7, I ′fin − I ′′fin = 3f . Thus, under
Scenario II, max(I ′fin − I ′′fin) = 3f . Furthermore, a more
general conclusion can be drawn: when the observation values
from Byzantine oracle nodes in Lori are indexed within the
interval [1, 3f−1], then under Scenario II, I ′fin−I ′′fin reaches
its maximum value of 3f . This indicates the potential existence
of f Byzantine oracle nodes that can sway the determined
price to the maximum value as well as the minimum value
in Lori, thereby introducing significant uncertainty to down-
stream transaction funds.

VI. EVALUATION

Following the theoretical analysis, we evaluate the real-
world impacts of Byzantine behaviors in the OCR protocol on
Chainlink’s price data and associated downstream applications.
Specifically, we conduct an empirical analysis to answer the
following three Research Questions (RQs).

• RQ1. How much deviation can Byzantine behaviors in
the OCR protocol induce in Chainlink’s real-world price
data?

• RQ2. To what degree can Byzantine behaviors in the
OCR protocol induce uncertainty in Chainlink’s real-
world price data?

• RQ3. To what degree can price deviations induced by
Byzantine behaviors impact the transaction funds in the
downstream applications?

We conduct experiments using the dataset described in Sec-
tion IV-A to answer these RQs. Notably, this section builds on
the definitions in Section V-B. In the following experiments,
each of the 72,711 observations lists obtained after filtering in
Section IV-B2 is treated as an original observations list (Lori)
without Byzantine behaviors, and l denotes the length of Lori.

A. RQ1: Deviations in Chainlink’s Real-World Price Data
Induced by Byzantine Behaviors in the OCR Protocol

To answer RQ1, we evaluate the metric Byzantine-induced
price deviation using real-world price observation values from

Chainlink’s DON. For a given Lori, the positions occupied by
the f values of Byzantine oracle nodes exhibit randomness,
and the corresponding price deviation may therefore vary.
Recall that our theoretical analysis provides the probability
distribution of the index deviation (Table II and Table III). We
align the values in each historical list according to their indices
with the specified probabilities to calculate the mathematical
expectation E(∆P ), which captures the average Byzantine-
induced price deviation. Specifically, the calculation in our
simulation is based on Eq. 9 and Eq. 10, where vj denotes the
observation value at index j in Lori. Clearly, Iori = ⌊l/2⌋,
and Mori = v⌊l/2⌋.

inflation case:
E(∆P ) = E(Mfin −Mori) = E(Mfin)−Mori,

E(Mfin) =

l−1∑
j=0

pj · vj ,

where pj = Pr[Ifin = j] = Pr[∆I = j − Iori].

(9)

deflation case:
E(∆P ) = E(Mori −Mfin) = Mori − E(Mfin),

E(Mfin) =

l−1∑
j=0

pj · vj ,

where pj = Pr[Ifin = j] = Pr[∆I = Iori − j].

(10)

We simulate the price deviation induced by Byzantine
behaviors under Scenario I for the 72,711 historical price
feed instances. The results are sorted in descending order, and
E(∆P ), as well as E(∆P )/Mori (the normalized value), at
specific top fractions are shown in Table IV (inflation case)
and Table V (deflation case).

According to our experimental results under Scenario I’s
inflation case (resp. deflation case), E(∆P ) and E(∆P )/Mori

reach up to 120.86 USD (resp. 105.77 USD) and 3.57%
(resp. 3.07%). This suggests that each 1 ETH involved in
transactions relying on the swayed price feed is, in expectation,
overvalued by as much as 120.86 USD, or 3.57% above
the original ETH/USD price. A similar interpretation applies
to the deflation case. Although the occurrence of significant
E(∆P ) or E(∆P )/Mori may not seem very frequent, we will
demonstrate through case studies that such price deviations can
have a non-negligible impact on downstream applications.

Similarly, we simulate the price deviation induced by
Byzantine behaviors under Scenario II for the 72,711 historical
price feed instances. The experimental results for the inflation
and deflation cases are presented in Table VI and Table VII,
respectively.

According to our experimental results under Scenario II’s
inflation case (resp. deflation case), E(∆P ) and E(∆P )/Mori

reach up to 209.24 USD (resp. 230.04 USD) and 8.47% (resp.
6.79%). It can be observed that the price deviations induced
by Byzantine behaviors under Scenario II are more significant
than those under Scenario I, highlighting the critical influence
of the Byzantine leader in the OCR protocol.

10



TABLE III: The probability distribution of ∆I in Scenario II when l = 31, where Pr[∆I = ∆i] denotes the corresponding
probability, which is identical in both the inflation and deflation cases.

∆I 5 6 7 8 9 10 11 12 13 14 15
Pr[∆I = ∆i] 2.3E-8 4.7E-7 5.2E-6 0.00004 0.00024 0.00120 0.00519 0.02002 0.07008 0.22581 0.67742

TABLE IV: Values of Byzantine-induced price deviation cor-
responding to the top fractions of results under Scenario I’s
inflation case.

Top fraction 0.005% 0.01% 0.1% 1% 10%

E(∆P ) (USD) 96.21 70.09 29.86 14.02 4.29

E(∆P )/Mori 2.99% 2.65% 1.23% 0.55% 0.17%

TABLE V: Values of Byzantine-induced price deviation cor-
responding to the top fractions of results under Scenario I’s
deflation case.

Top fraction 0.005% 0.01% 0.1% 1% 10%

E(∆P ) (USD) 64.37 50.81 26.59 13.00 4.08

E(∆P )/Mori 2.60% 2.07% 1.18% 0.53% 0.17%

Chainlink triggers a new price feed when the ETH/USD
price fluctuates by more than 0.5%. Overall, compared to
this deviation threshold, our experimental results demon-
strate that the Byzantine-induced price deviation is non-
negligible. Notably, an adversary may exploit Byzantine oracle
nodes to sway the price toward its own interests, threatening
the fairness of the price feed mechanism and causing down-
stream financial impacts.

B. RQ2: Uncertainty in Chainlink’s Real-World Price Data
Induced by Byzantine Behaviors in the OCR Protocol

To answer RQ2, we evaluate the metric maximum uncertain
price deviation using real-world price observation values from
Chainlink’s DON. From the perspective of a downstream user,
the price data injected into its contract may be either inflated
or deflated due to potential Byzantine behaviors in the OCR
protocol. We leverage the metric maximum uncertain price de-
viation to evaluate the maximum uncertainty present in Chain-
link’s real-world price data when it is swayed by Byzantine
behaviors. As analyzed in Section V-C, under Scenario I (resp.
Scenario II), the uncertainty induced by Byzantine behaviors
reaches its maximum when Byzantine oracle nodes’ original
observation values occupy indices within the interval [6, 24]
(resp. [1, 29]) of Lori. Thus, we calculate the corresponding
maximum uncertain price deviation (i.e., Umax) for each of
the 72,711 historical price feed instances. The results are
sorted in descending order, and Umax, as well as Umax/Mori

(the normalized value) at specific top fractions are shown in
Table VIII(Scenario I) and Table IX(Scenario II).

According to our experimental results, under Byzantine
behaviors in Scenario I, 37.92% of Chainlink’s historical price
feed instances exhibit a maximum uncertain price deviation
that exceeds half of the width of the corresponding honest

TABLE VI: Values of Byzantine-induced price deviation cor-
responding to the top fractions of results under Scenario II’s
inflation case.

Top fraction 0.005% 0.01% 0.1% 1% 10%

E(∆P ) (USD) 201.12 199.14 126.29 37.60 11.83

E(∆P )/Mori 6.60% 6.38% 4.77% 1.58% 0.49%

TABLE VII: Values of Byzantine-induced price deviation
corresponding to the top fractions of results under Scenario II’s
deflation case.

Top fraction 0.005% 0.01% 0.1% 1% 10%

E(∆P ) (USD) 198.00 123.95 71.06 30.95 10.35

E(∆P )/Mori 6.12% 4.78% 2.85% 1.29% 0.43%

range, and 15.52% exceed two-thirds. Under Byzantine be-
haviors in Scenario II, the maximum uncertain price deviation
equals the full width of the corresponding honest range,
and the theoretical analysis supporting this result is given in
Section V-C2. Overall, the OCR protocol allows the metric
maximum uncertain price deviation to approach the full
width of the honest range. As the honest range of price
observation values may be considerably wide in real-world
settings, we argue that the metric maximum uncertain price
deviation should be effectively bounded below the width of
the honest range, in order to limit the uncertainty induced
by Byzantine behaviors.

C. RQ3: Downstream Financial Impacts of the Price Devia-
tions Induced by Byzantine Behaviors

To answer RQ3, we conduct case studies to demonstrate the
downstream financial impacts of the price deviations induced
by Byzantine behaviors. We conduct the case studies from
two different perspectives. The first focuses on the potential
impacts of a single price feed swayed by Byzantine behaviors,
while the second focuses on the potential cumulative impacts
of a large number of price feeds swayed by Byzantine behav-
iors.

1) Downstream Impacts of a Single Price Feed Swayed
by Byzantine Behaviors: DeFi lending platform Aave [41]
is one of the primary downstream applications that rely on
Chainlink’s price feeds. During liquidations, Aave relies on
these price feeds to calculate the amount of collateral that
the liquidator receives for repaying a given debt, along with
the liquidation bonus (a certain portion of the collateral).
As a concrete instance, we consider a historical price feed
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TABLE VIII: Values of maximum uncertain price deviation
corresponding to the top fractions of results under Scenario I

Top fraction 0.005% 0.01% 0.1% 1% 10%

Umax (USD) 192.05 144.98 66.63 31.65 11.61

Umax/Mori 5.34% 4.98% 2.77% 1.27% 0.47%

TABLE IX: Values of maximum uncertain price deviation
corresponding to the top fractions of results under Scenario II

Top fraction 0.005% 0.01% 0.1% 1% 10%

Umax (USD) 337.66 303.56 209.55 69.91 22.68

Umax/Mori 11.10% 9.58% 7.45% 2.89% 0.94%

(corresponding to the event log in footnote5) and demonstrate
the impacts that price deviations induced by Byzantine behav-
iors can have on the liquidations executed on Aave. During
the period when this price feed was valid, i.e., from block
13179376 to block 13179389, we identified 13 liquidations
whose collateral asset was WETH, and each of them is
listed in Table XVII (Appendix E). At that time, Aave relied
on Chainlink’s ETH/USD price data to value WETH, and
the liquidation bonus rate for WETH is 5%. If Byzantine
oracle nodes inflate the USD price of ETH, the amount of
WETH received by the liquidator for repaying a given debt
(including the liquidation bonus) will decrease, causing a
loss to the liquidator. Conversely, if Byzantine oracle nodes
deflate the USD price of ETH, this will cause a gain to the
liquidator. In this OCR round, we simulate, under Scenario I
and Scenario II, the average price that Byzantine behaviors can
inflate (resp. deflate), i.e., E(Mfin). We then compare these
results with those in the absence of Byzantine behaviors to
calculate the total decrease (resp. increase) in the amount of
WETH received by all the liquidators, which is referred to as
liquidators’ average loss (resp. gain). When f Byzantine oracle
nodes’ original observation values occupy particular indices in
a list (as detailed in Section VI-B), the potential inflation (resp.
deflation) of the price reaches its maximum. Accordingly, we
also calculate the total decrease (resp. increase) in the amount
of WETH received by all the liquidators under this condition,
which is referred to as liquidators’ maximum loss (resp. gain).
The results are presented in Table X.

TABLE X: Liquidators’ loss or gain caused by Byzantine
behaviors, where Byzantine behaviors in the inflation case can
cause liquidators’ loss, whereas Byzantine behaviors in the
deflation case can cause liquidators’ gain.

Liquidators’ loss
or gain (WETH)

Average
loss

Maximum
loss

Average
gain

Maximum
gain

Scenario I -69.41 -101.22 +46.52 +77.10

Scenario II -136.51 -141.49 +152.29 +175.02

50x80b9019cb90645cd4451dd2c19fc17d1cbe20955941b9e282d195e244c9
6dfd4/Logs

We estimate the price of one WETH using 3230.32 USD,
which is the ETH/USD price of the next OCR round in
Chainlink’s historical record, and the liquidators’ loss or gain
is on the order of 105 USD. These results demonstrate that
even a single price feed swayed by Byzantine behaviors can
cause non-negligible financial impacts for the downstream
application.

2) Cumulative Downstream Impacts of Price Feeds Swayed
by Byzantine Behaviors: Using Dune’s database [35], we
observe that the two contracts with the highest number of calls
to the ETH/USD proxy contract both belong to the Ethereum
Name Service (ENS). The two contracts obtain the latest
ETH/USD price via Chainlink’s proxy contract and convert the
USD-denominated rental fee into ETH, which is then charged
on the Ethereum mainnet.

To extract the actual ETH amounts in each ENS charge,
we filtered and parsed 4,465,424 relevant function calls from
block 14678295 (April 2022) to block 22648260 (June 2025).
We simulate the sway of Byzantine behaviors on the OCR
rounds underlying these 4,465,424 function calls. For each
of these OCR rounds, we focus solely on the average price
deviation that Byzantine behaviors can induce (i.e., E(∆P )),
because the likelihood of always inducing the maximum
deviation is negligible. In an OCR round, if Byzantine oracle
nodes inflate (resp. deflate) the USD price of ETH, a USD-
denominated rental fee converts to less (resp. more) ETH than
it would without Byzantine behaviors, resulting in a loss (resp.
gain) for ENS’s revenue. In all these OCR rounds, if the
Byzantine behaviors are always under Scenario II, the total
loss (or gain) for ENS’s revenue is maximized, since E(∆P )
under Scenario II exceeds that under Scenario I. Conversely,
if Byzantine behaviors are always under Scenario I, the total
loss (or gain) for ENS’s revenue is minimized. We simulate
all these OCR rounds under Scenario I and under Scenario II
separately, and the results are presented in Table XI, with the
loss or gain in USD calculated based on an ETH price of
2425.31 USD (June 25, 2025).

TABLE XI: ENS’s loss or gain caused by Byzantine behaviors,
where Byzantine behaviors in the inflation (resp. deflation)
case can cause ENS’s loss (resp. gain).

ENS’s loss or gain Total loss Total gain

Scenario I in ETH -159.50 +179.66

in USD -386,837.63 +435,742.38

Scenario II in ETH -800.45 +1356.79

in USD -1,941,339.53 +3,290,630.66

It can be observed that the cumulative impacts of a large
number of price feeds swayed by Byzantine behaviors on
ENS’s revenue are on the order of 105 to 106 USD. Overall,
our case studies demonstrate that the downstream financial
impacts of the price deviations induced by Byzantine
behaviors can reach at least on the order of 105 USD.
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VII. MITIGATION

In this section, we discuss possible mitigations and their
trade-offs.

To counter the Byzantine leader’s selecting behavior, a
simple and direct approach is to eliminate the grace period,
at the cost of reducing the reward opportunities for slower
oracle nodes. Fundamentally avoiding the Byzantine leader’s
selecting requires integrating certain cryptographic techniques
into the current OCR protocol, such that the leader only
verifies signatures while the actual observation values remain
hidden from it. However, this is a complex task, and we leave
it for future research.

Regarding the falsifying behaviors, the goal should be to
mitigate the impacts that falsifying imposes on the determined
price, since it is difficult to identify which observation value
is falsified. The metric Byzantine-induced price deviation
will decrease as the DON’s f/n ratio is reduced. Using
the dataset filtered in Section IV-B2, we simulate two DON
configurations, n = 5f + 1 and n = 6f + 16. In each
round, we assume f observation values are uniformly absent
from the corresponding list because of delays, to simulate
the elimination of the grace period. When Byzantine oracle
nodes inflate (resp. deflate) the price, the maximum values of
this metric under the two simulated configurations are 2.83%
(resp. 2.36%) and 1.96% (resp. 2.34%), which are lower than
those under the current configuration, 7.85% (resp. 5.87%).
Therefore, for highly volatile cryptocurrencies such as ETH,
it is necessary to further reduce the f/n ratio.

More importantly, we present an approach that bounds the
metric maximum uncertain price deviation under the falsifying
behaviors, i.e., using the approximation function introduced by
Dolev [28] (defined in Eq. 11) to determine the unique price
value.

df,f (L) = mean(selectf (reduce
f (L))). (11)

As given in Eq. 11, we set both parameters of the function to f ,
where f denotes the number of Byzantine oracle nodes in the
DON. The observations list L is sorted in non-decreasing or-
der, and the operation reducef (L) removes the f largest and f
smallest values from L. By removing these values, we exclude
potential values that fall outside the honest range, thereby
ensuring the validity property. The output of reducef (L) is
then sampled using the operation selectf (·), which starts from
the minimum value and selects every f -th value. The mean of
the sampled values is taken as the determined price.

When the DON configuration n = αf + 1 satisfies α ≥ 4,
the metric maximum uncertain price deviation is bounded by
a width of 1/(α−2) of the honest range. The proof is given in
Appendix F. Notably, under falsifying behaviors, the current
median-based method is unable to provide a clear bound on
this metric, even if the f/n ratio decreases. We simulate the
falsifying behaviors of f Byzantine oracle nodes and measure
the metric maximum uncertain price deviation relative to the
width of the honest range. Under the DON configurations

6These two configurations fully utilize the 31 values in each list.

n = 5f + 1 and n = 6f + 1, the comparisons between
Dolev’s approximation function and the median-based method
are shown in Figure 8a and Figure 8b, respectively. Although

(a) n = 31, f = 6 (b) n = 31, f = 5

Fig. 8: Ratio of the maximum uncertain price deviation to the
width of the honest range.

the honest range is inherently determined by market volatility
and thus beyond our control, the application of Dolev’s func-
tion further bounds the uncertain price deviations induced by
Byzantine behaviors, and the bounds it provides are explicit. In
contrast, the median-based method allows Byzantine-induced
uncertain price deviations to approach the full width of the
honest range. The trade-off of adopting Dolev’s function is an
increase in the computation cost of the aggregator contract. We
simulate the on-chain computation of both the median-based
method and Dolev’s function on the Sepolia testnet over a
list containing 25 observation values7. The results show that
the median-based method consumes 44,961 gas, while Dolev’s
function consumes 47,338 gas. Under our experimental setup,
the additional computation cost introduced by Dolev’s function
is acceptable.

VIII. RELATED WORK

Solutions to the distributed oracle problem. The dis-
tributed oracle problem is, to some extent, analogous to
abstract sensor fusion [27]. The solutions [28], [40], [42]–
[44] are designed to aggregate multiple values in a distributed
setting to obtain a result that is correct in some sense. However,
the focus of these solutions varies. Jin et al. [40] design and
implement a sensor fusion system that provably preserves
the privacy of sensor inputs and defends against pollution
attacks. In the context of DONs, Chakka et al. [21] focus on
the scalability issue and propose a distributed oracle protocol
based on an honest simple majority, rather than the conven-
tional requirement of an honest super majority. Bandarupalli
et al. [22] focus on the complexity of the algorithm and
propose a distributed oracle protocol with low communication
complexity. The trade-off in both [21] and [22] is relaxing the
condition of the validity property. Xiao et al. [17] focus on the
trustworthiness of data sources and propose a decentralized
oracle architecture that integrates truth discovery techniques
with a Byzantine fault tolerance consensus protocol. Based
on the prior work [17], Zeng et al. [18] further propose an
approach that allows oracle nodes to dynamically join and
leave the DON. However, neither [17] nor [18] has been
deployed in real-world applications.

7With the elimination of the grace period, f lagging observation values are
absent from the list.
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Blockchain oracles in real-world applications. Currently,
mainstream oracle service providers [4]–[6] all adopt DONs
as their underlying infrastructure. How to determine a unique
price value from multiple price observation values is a critical
problem for them. Excluding Chainlink, we briefly introduce
how two other major blockchain oracles address this criti-
cal problem. In Chronicle’s DON [5], a certain number of
trusted nodes act as validators, whose multisignatures are
used to ensure the validity of the observations set. Similar
to Chainlink, Chronicle takes the median of the observations
set as the representative value. Pyth [6] employs a standalone
blockchain called Pythnet. Each price data point from multiple
sources includes a corresponding confidence interval, and
Pythnet’s consensus mechanism aggregates and validates the
price data based on the confidence intervals. However, these
oracle services are not as widely used as Chainlink.

Security issues related to oracles. Given the crucial role
of oracles in the DeFi ecosystem, attacks exploiting oracles
cause monetary losses, thereby posing threats to the security
of the DeFi ecosystem [24], [45]–[48]. Deng et al. [49]
design a framework to automatically analyze DeFi contract
behaviors under price deviations from oracles. Mo et al. [50]
propose a framework to automatically detect unsafe transac-
tions associated with deviated price feeds. To mitigate the
uncertainty existing in price data from on-chain Decentralized
Exchanges (DEXs), Park et al. [51] propose an adaptive
conformal consensus algorithm to derive a consensus set of
price data from multiple DEXs. Closely related to our study,
Gansäuer et al. [11] reveal that Chainlink’s price data on
the Ethereum mainnet exhibit large deviations under market
volatility and identify associated arbitrage implications. How-
ever, their study focuses solely on Chainlink’s configuration
of the time intervals and volatility thresholds of price updates,
without conducting an in-depth analysis of the OCR protocol.

IX. CONCLUSION

In this paper, we present an in-depth study of the security
of Chainlink’s OCR protocol. We first reveal that the honest
range of price observation values in real-world settings can
reach 13.13% of the ETH price, which has been overlooked.
We then formally model the impacts of Byzantine behaviors
on price data, and further evaluate the price deviations in-
duced by Byzantine behaviors and their downstream financial
impacts using real-world data. Our experimental results show
that Byzantine behaviors can induce price deviations of up
to 8.47% of the ETH price, and the downstream financial
impacts can be on the order of 105 to 106 USD. Finally,
we discuss possible mitigation strategies. Our study offers
new insights into distributed oracle protocols in real-world
application contexts, demonstrating that the validity property
alone is insufficient, and this limitation exposes a gap between
the protocol’s theoretical design and its practical deployment.
Even if the validity property is satisfied, assessing and further
bounding the impacts of Byzantine behaviors remain essential
for distributed oracle protocols deployed in real-world appli-
cations.
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APPENDIX

A. Rationale for Estimating Maximum Natural Variation

Theorem 2. Let obi denote the i-th value in an observations
list L, the length of L is 3f + 1, such that 1 ≤ i ≤ 3f + 1.
Let nvmax denotes the maximum natural variation between
any two honest observation values in L. Then it follows that
nvmax ≥ min{obi+2f −obi|1 ≤ i ≤ f+1}. In the main text,
we use ξ to denote mini{obi+2f − obi|1 ≤ i ≤ f + 1}.

Proof: Let Vh denote the set of all honest observation values
in L, obh min denote the first observation value equal to
min(Vh) in L, and obh max denote the last observation value
equal to max(Vh) in L. Then we have

nvmax = max(Vh)−min(Vh) = obh max − obh min. (12)

Since L is sorted in non-decreasing order, it follows that
obi ≥ obj for any i > j. Moreover, since there are at
least 2f + 1 honest observation values in L, we have
h max ≥ h min+ 2f . When 1 ≤ i ≤ f + 1, we have

nvmax ≥ obh min+2f − obh min ≥ min
i
{obi+2f − obi}. (13)
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B. Sensitivity Analysis of the Maximum Acceptable Natural
Variation (Section IV-B2)

In Section IV-B2, we define the parameter ϵ in Theorem 1
to represent the maximum acceptable natural variation. We
then apply the filtering conditions ob3f+1 − ob2f+1 ≤ ϵ and
obf+1− ob1 ≤ ϵ to extract honest observations lists. Here, we
conduct a sensitivity analysis on the parameter ϵ.

Recall that we calculated ξ for each complete list. ξ denotes
the minimum difference between the largest and smallest
values in any 2f +1-subset of a complete list. Since there are
at least 2f+1 honest observation values in a complete list, the
parameter ϵ should satisfy ϵ ≥ ξ. Let m denote the median
of an observations list. In historical ETH/USD price feed
instances, the maximum value of ξ/m is 0.0851, and we set
ϵ = 0.0851×m in Section IV-B2. For the sensitivity analysis
of the parameter ϵ, we introduce an adjustable threshold t. The
threshold t takes 10 uniformly spaced values in the interval
[0, 0.0851], and we set ϵ = max(ξ, t×m) accordingly in ten
runs of the experiment. Note that the starting value of t, i.e.,
0, represents that for every list the maximum acceptable
natural variation takes its theoretical lower bound, which
is an extreme condition that rarely occurs in practice.
When t takes the value 0.0851, we have max(ξ, 0.0851×m) =
0.0851×m, which is equivalent to the setting ϵ = 0.0851×m
used in the main text. We record, for each parameter setting,
the maximum values reached by the width of the honest range,
the metric Byzantine-induced price deviation, and the metric
maximum uncertain price deviation. Considering ETH price
volatility, we normalize all corresponding experimental
results relative to m.

1) Width of the Honest Range: When t takes the values
0, 0.0095, 0.0189, 0.0284, 0.0378, 0.0473, 0.0567, 0.0662,
0.0756, and 0.0851 in order, the maximum width of the honest
range is always 13.13%. This is because the lists with a wide
honest range typically occur during periods of high price
volatility, where the differences between observation values
are large. Consequently, these lists inherently have sufficiently
large ξ, and are preserved in our filtering regardless of the
value of parameter t.

2) Byzantine-induced Price Deviation: As shown in Ta-
ble XII, varying t does not change the maximum value of the
metric Byzantine-induced price deviation in most cases. The
difference caused by varying t from 0 to 0.0851 is at most
2.41%, which occurs only in the inflation case of Scenario II.
Overall, the parameter setting used in the main text does not
significantly inflate this metric.

3) Maximum Uncertain Price Deviation: Table XIII shows
the maximum values of the metric maximum uncertain price
deviation under each setting of t. Similar to the above, the
parameter setting used in the main text does not significantly
inflate this metric.

C. Supplementary Explanation of the Probabilistic Model

In Section V-C, our probabilistic analysis focuses on map-
ping the impacts of Byzantine behaviors to the underlying
probabilistic rules governing index changes, thereby deriving

a generic model. The only assumption of our model is that
Byzantine oracle nodes’ original observation values (i.e., be-
fore being falsified) occupy random positions in the ordering
of a list. This assumption holds because each value’s index
in a sorted list is jointly determined by all values, and the
f Byzantine oracle nodes cannot control the honest values.
This generic model is index-oriented and independent of the
concrete values contained in the list. Practical factors may
affect the concrete values in an observations list. For instance,
oracle nodes may query overlapping data sources, potentially
making their observation values numerically close. However,
the ordering of these values, which determines their indices,
remains random. Thus, overlapping data sources do not affect
our index-oriented probabilistic analysis, while their effects
may be reflected in the experimental results in Section VI.

In our evaluation (Section VI), we align the values in each
historical list according to their indices with our probabilistic
model, thereby injecting concrete data into the generic model,
and calculate the corresponding price deviations for each
historical list. While the index changes caused by Byzantine
behaviors are generic, the resulting price deviations are closely
tied to the concrete values in each list, which may be affected
by practical factors. For instance, overlapping data sources
may produce minimal differences among observation values,
resulting in smaller price deviations under the same index
changes. Notably, we conduct our evaluation using real-world
data, which accurately reflects all practical factors.

D. Empirical Study of Another Pair (BNB/USD)

To broaden our findings, we extend our empirical analysis to
BNB/USD pair. Chainlink’s DON for BNB/USD price feeds
(on the Ethereum mainnet) consists of 16 oracle nodes (i.e.,
n = 16, f = 5), making its size roughly half that of the DON
for ETH/USD pair. We collect the observations list of every
BNB/USD price feed instance from block 11925663 (February
2021) to block 22647404 (June 2025), obtaining a total of
15,665 lists8. From these, we extract 14,530 complete lists
(92.75%), each of which contains 16 observation values.

By Theorem 2, the maximum natural variation within an
observations list is at least ξ. Let m denote the median of
an observations list. Among the historical BNB/USD lists,
the maximum of the ratio ξ/m is 0.0771. To determine the
maximum acceptable natural variation for filtering honest lists,
we adopt the same approach as in Appendix B and introduce
an adjustable threshold t, then conduct a brief sensitivity anal-
ysis on t. Specifically, t takes 10 uniformly spaced values in
the interval [0, 0.0771], and the maximum acceptable natural
variation is max(ξ, t×m). We apply the filtering step under
different settings of t, and the resulting maximum width of the
honest range is shown in Table XIV. Considering BNB price
volatility, all results below are normalized relative to m.
We find that when t is set to 0.06, decreasing it further does
not change the maximum width of the honest range. To avoid

8The update interval for BNB/USD price feeds is 24 hours under normal
circumstances, resulting in fewer observations lists than ETH/USD pair.
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TABLE XII: The maximum of the metric Byzantine-induced price deviation under different t (ETH/USD)

t 0 0.0095 0.0189 0.0284 0.0378 0.0473 0.0567 0.0662 0.0756 0.0851

Scenario I inflation case 3.57% 3.57% 3.57% 3.57% 3.57% 3.57% 3.57% 3.57% 3.57% 3.57%
deflation case 2.87% 2.87% 2.87% 2.87% 2.87% 2.87% 3.07% 3.07% 3.07% 3.07%

Scenario II inflation case 6.06% 6.06% 6.06% 6.06% 6.06% 6.06% 6.48% 8.47% 8.47% 8.47%
deflation case 6.00% 6.00% 6.00% 6.00% 6.00% 6.00% 6.12% 6.79% 6.79% 6.79%

TABLE XIII: The maximum of the metric maximum uncertain price deviation under different t (ETH/USD)

t 0 0.0095 0.0189 0.0284 0.0378 0.0473 0.0567 0.0662 0.0756 0.0851

Scenario I 7.56% 7.56% 7.56% 7.56% 7.56% 7.56% 7.56% 8.92% 8.92% 8.92%

Scenario II 13.13% 13.13% 13.13% 13.13% 13.13% 13.13% 13.13% 13.13% 13.13% 13.13%

inflating the results, we therefore set the maximum acceptable
natural variation to max(ξ, 0.06×m). After filtering, 14,514
honest lists remain, and their widths of the honest range are
presented in Figure 9.

TABLE XIV: Maximum width of the honest range under
different t (BNB/USD)

t 0 0.0086 0.0171 0.0257 0.0343

max width 11.21% 11.21% 11.21% 11.21% 11.21%

t 0.0428 0.0514 0.0600 0.0685 0.0771

max width 11.21% 11.21% 11.21% 12.56% 14.20%

Fig. 9: Width of the honest range in historical lists (BNB/USD)

In terms of the overall distribution, the widths of the honest
range of BNB/USD price feeds are comparable to those of
ETH/USD price feeds. Using these honest lists, we evaluate
the metric Byzantine-induced price deviation and the metric
maximum uncertain price deviation for BNB/USD price feeds
following the same approach detailed in Section VI. The
experimental results are presented in Table XV and Table XVI,
respectively. We note that the overall distributions of both
metrics in BNB/USD price feeds do not differ significantly
from those in ETH/USD price feeds. In general, wider honest
ranges in price feeds lead to larger values of the two metrics.
The honest range is closely associated with cryptocurrency
price volatility, which is influenced by various factors. There-
fore, assessing the impacts of Byzantine behaviors in the OCR
protocol depends on the concrete price observation values.

TABLE XV: Values of Byzantine-induced price deviation
(BNB/USD) corresponding to the top fractions of normalized
results

Top fraction 0.007% 0.01% 0.1% 1% 10%

Scenario I inflation 3.4% 3.26% 2.32% 1.02% 0.36%

deflation 4.36% 3.97% 1.85% 0.79% 0.26%

Scenario II inflation 6.17% 5.85% 4.37% 1.97% 0.68%

deflation 8.36% 6.83% 4.24% 1.88% 0.70%

TABLE XVI: Values of maximum uncertain price deviation
(BNB/USD) corresponding to the top fractions of normalized
results

Top fraction 0.007% 0.01% 0.1% 1% 10%

Scenario I 8.04% 8.01% 4.54% 2.24% 0.82%

Scenario II 11.21% 10.75% 8.32% 3.67% 1.39%

E. Liquidations Analyzed in Section VI-C1

We analyzed 13 liquidations that executed on Aave within
the block range [13179376, 13179389], the details of which
are listed in Table XVII.

F. Application of Dolev’s Approximation Function

In Section VII, we apply Dolev’s approximation function to
bound the metric maximum uncertain price deviation, and the
theoretical basis is presented below. Notably, Lemma 1 was
proven in [28], where it is referred to as Lemma 5.

Lemma 1. Let V , W , and U be three multisets, where the
multiset is a collection that may contain duplicate values9. The
approximation function d(·) is defined as follows.

dk,t(V ) = mean(selectk(reduce
t(V ))). (14)

Let k > 0, t ≥ 0, and m > 2t be integers. If the multisets V ,
W , and U satisfy the following conditions10: |V | = |W | = m,
|V − U | ≤ t, |W − U | ≤ t, and |W − V | ≤ k, then we have

|dk,t(V )− dk,t(W )| ≤ max(U)−min(U)

⌊m−2t−1
k ⌋+ 1

. (15)

9The formal definition of the multiset is provided in [28].
10V −U denotes the difference between two multisets, as defined in [28].
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TABLE XVII: Details for each liquidation analyzed in Sec-
tion VI-C1

Transaction
Hash

Debt
Asset

Debt
Amount

Collateral
Asset

Collateral
Amount

0x3286......1c59 USDC 319561.55 WETH 102.50

0x202d......e093 DAI 152242.26 WETH 48.17

0x61fc......4b5f USDC 469135.78 WETH 150.47

0xcdd2......2916 USDC 272464.56 WETH 87.39

0x788c......c0a4 DAI 907909.79 WETH 295.24

0x75b9......a326 DAI 188416.62 WETH 61.27

0x7260......7c09 USDC 342494.33 WETH 109.85

0xe1b3......0f25 USDT 34059.72 WETH 11.16

0xf326......bc3d USDT 49149.50 WETH 16.10

0x5a37......3342 USDT 3567326.31 WETH 1168.90

0x0ebc......e97d USDT 922844.10 WETH 302.39

0xbd99......f99e USDT 81191.34 WETH 26.60

0xfd4f......ce85 DAI 23285.22 WETH 7.57

Theorem 3. Let n denote the total number of oracle nodes in
the DON, and let f denote the number of Byzantine oracle
nodes among them, satisfying the condition n ≥ 4f + 1.
Assume that the f Byzantine oracle nodes exhibit falsifying
behaviors, although the specific goals of their falsification re-
main unknown. Let L′ and L′′ denote the formed observations
lists under any two possible cases caused by the falsifying
behaviors. Let Vh denote the set consisting of observation
values from all the honest oracle nodes, and let d(·) represent
Dolev’s approximation function. Thus, we have

|df,f (L′)− df,f (L
′′)| ≤ max(Vh)−min(Vh)

⌊n−3f−1
f ⌋+ 1

. (16)

proof : Recall that the network is under the partial synchrony
assumption [31]. With the grace period eliminated, the leader
generates an observations list upon receiving observation val-
ues from n − f distinct oracle nodes. Thus, |L′| = |L′′| =
n−f . Considering that some Byzantine oracle nodes may fall
behind, up to f falsified values are included in the observations
list. It follows that |L′ − Vh| ≤ f , |L′′ − Vh| ≤ f . Since the
observation values from honest oracle nodes are identical in
both L′ and L′′, it follows that |L′ −L′′| ≤ f . L′, L′′ and Vh

satisfy the hypotheses of Lemma 1. Thus, Eq. 16 holds, and
we prove Theorem 3.
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ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The artifact is available on Zenodo
with DOI: https://doi.org/10.5281/zenodo.17874648. The file
AE 458.zip can be downloaded and extracted.

2) Hardware dependencies: A commodity desktop ma-
chine, e.g., an x86-64 CPU with 8 cores and 16 GB of RAM,
running a recent Windows operating system.

3) Software dependencies: Python 3.13.9 is required. Be-
low is a list of the required packages and their versions.

matplotlib == 3.9.2
numpy == 2.1.3
pandas == 2.2.3
web3 == 7.6.0
requests == 2.32.3
urllib3 == 2.2.3
Additionally, 7-Zip is required to extract a dataset used later.
4) Benchmarks: None.

B. Artifact Installation & Configuration

Our experiments were conducted on Windows 11 or Win-
dows 10 system.

1) Enter https://www.python.org/downloads/windows/ in a
browser, download and run the Windows installer (64-
bit) for Python 3.13.9, and select the Add Python
to PATH option during installation. In the following,
path to python.exe denotes the path to the installed
Python interpreter.

2) Enter https://www.7-zip.org/download.html in a
browser, download and run the 64-bit Windows x64
installer.

3) After downloading, right-click the file (AE 458.zip) and
select the option to extract it using 7-Zip. In the follow-
ing, path to artifact denotes the path to the extracted
folder.

4) Right-click on ens case data.7z.001(in the directory
path to artifact/data ae/), select 7-Zip and Extract
Here. The new file named ens case data paper2.csv
will be generated in path to artifact/data ae/ directory.

5) Open Windows cmd, change directory to
path to artifact, and enter the following commands.
path to python.exe -m venv env
env\Scripts\activate
pip install -r requirements.txt

C. Major Claims

• (C1): The ETH/USD price deviation range allowed by
Chainlink’s Off-Chain Reporting (OCR) protocol, i.e., the
honest range of ETH/USD prices, is demonstrated by
Experiment E1, whose results are reported in Figure 4
(Section IV-B).

• (C2): When f Byzantine oracle nodes (excluding the
leader) in the OCR protocol attempt to inflate or deflate
the ETH/USD price, the distributions of the resulting
price deviation and the deviation ratio are demonstrated

by Experiment E2. The results for the inflation and
deflation cases are reported in Table IV and Table V,
respectively (Section VI-A).

• (C3): When f Byzantine oracle nodes (including the
leader) in the OCR protocol attempt to inflate or deflate
the ETH/USD price, the distributions of the resulting
price deviation and the deviation ratio are demonstrated
by Experiment E3. The results for the inflation and
deflation cases are reported in Table VI and Table VII,
respectively (Section VI-A).

• (C4): When f oracle nodes (excluding the leader) in the
OCR protocol exhibit Byzantine behaviors, the distri-
butions of the maximum uncertain price deviation and
the deviation ratio are demonstrated by Experiment E4,
whose results are reported in Table VIII (Section VI-B).

• (C5): When f oracle nodes (including the leader) in the
OCR protocol exhibit Byzantine behaviors, the distri-
butions of the maximum uncertain price deviation and
the deviation ratio are demonstrated by Experiment E5,
whose results are reported in Table IX (Section VI-B).

• (C6): The cumulative impacts of Byzantine behaviors on
ENS’s revenue is demonstrated by Experiment E6, whose
results are reported in Table XI (Section VI-C).

D. Evaluation

1) Experiment (E1): [1 minutes]: The file
AE 458/data ae/eth usd observations.csv records the
historical ETH/USD price observation values in Chainlink’s
decentralized oracle network, i.e., the dataset described in
Section IV-A. Experiment E1 uses this dataset to measure the
honest range of ETH/USD prices and to reproduce the results
shown in Figure 4 (Section IV-B).

[Execution] Execute the following command.

1) cd analysis scripts ae
2) python sec4 measure eth usd honest range.py

[Results] The experiment produces a figure identical to
Figure 4 (Section IV-B). The figure is expected to appear
during execution. If it does not appear, it may have been saved
in the current directory as sec4 fig2.png.

2) Experiment (E2): [2 minutes]: Experiment
E2 uses the dataset filtered in Section IV-B2 (i.e.,
eth usd honest lists.csv) to evaluate the ETH/USD price
deviation that f Byzantine oracle nodes (excluding the leader)
can inflate or deflate.

[Execution] Execute the following command.

1) cd ../sec6 a ae
2) python scenario1 inflation.py
3) python scenario1 deflation.py

[Results] The execution results of the second and third
commands above are consistent with Table IV and Table V
(Section VI-A), respectively. In the output, the data under
distribution of price deviations (USD) correspond to the sec-
ond row of the table, and the data under distribution of price
deviation ratios correspond to the third row of the table.
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3) Experiment (E3): [2 minutes]: Experiment
E3 uses the dataset filtered in Section IV-B2 (i.e.,
eth usd honest lists.csv) to evaluate the ETH/USD price
deviation that f Byzantine oracle nodes (including the leader)
can inflate or deflate.

[Execution] Execute the following command.

1) python scenario2 inflation.py
2) python scenario2 deflation.py

[Results] The execution results of the first and second
commands above are consistent with Table VI and Table VII
(Section VI-A), respectively. In the output, the data under
distribution of price deviations (USD) correspond to the sec-
ond row of the table, and the data under distribution of price
deviation ratios correspond to the third row of the table.

4) Experiment (E4): [1 minutes]: Experiment E4 uses the
dataset (i.e., eth usd honest lists.csv) to evaluate the max-
imum uncertain price deviation that can be induced by f
Byzantine oracle nodes, excluding the leader.

[Execution] Execute the following command.

1) cd ../sec6 b ae
2) python scenario1 uncertainty.py

[Results] The execution results of the second command
above are consistent with Table VIII (Section VI-B). In the
output, the data under distribution of price deviations (USD)
correspond to the second row of the table, and the data under
distribution of price deviation ratios correspond to the third
row of the table.

5) Experiment (E5): [1 minutes]: Experiment E5 evaluates
the maximum uncertain price deviation that can be induced
by f Byzantine oracle nodes, including the leader.

[Execution] Execute the following command.

1) python scenario2 uncertainty.py

[Results] Similar to E4, the execution results of the com-
mand above are consistent with Table IX (Section VI-B).

6) Experiment (E6): [80 minutes]: Using the
data of 4,465,424 historical associated transactions
(ens case data.7z.001), Experiment E6 evaluates the potential
impacts of Byzantine behaviors in the OCR protocol on
ENS’s revenue.

[Preparation]
[Execution] Execute the following command.

1) cd ../sec6 c ae
2) python ens revenue inflation.py
3) python ens revenue deflation.py

[Results] The execution results of the second command
are consistent with the data in the inflation case column11

of Table XI (Section VI-C), and the execution results of the
third command are consistent with the data in the deflation
case column12 of Table XI.

11In the camera-ready version, the column name inflation case is replaced
with Total loss.

12In the camera-ready version, the column name deflation case is replaced
with Total gain.

E. Notes

The submitted artifact supports the main findings of the
paper. The changes that we intend to carry out on the initially
submitted paper are supplementary and will not affect the
submitted artifact.
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