
Was My Data Used for Training? Membership
Inference in Open-Source LLMs via Neural

Activations
Xue Tan∗‡, Hao Luan∗‡, Mingyu Luo∗‡, Zhuyang Yu∗‡, Jun Dai†B, Xiaoyan Sun†B, and Ping Chen∗§B

∗Institute of Big Data, Fudan University, Shanghai, China
†Department of Computer Science, Worcester Polytechnic Institute, MA, USA

‡College of Computer Science and Artificial Intelligence, Fudan University, Shanghai, China
§Purple Mountain Laboratories, Nanjing, China

Abstract—With the rapid development of Large Language
Models (LLMs), their applications have expanded across var-
ious aspects of daily life. Open-source LLMs, in particular,
have gained popularity due to their accessibility, resulting in
widespread downloading and redistribution. The impressive ca-
pabilities of LLMs results from training on massive and often
undisclosed datasets. This raises the question of whether sensitive
content such as copyrighted or personal data is included, which is
known as the membership inference problem. Existing methods
mainly rely on model outputs and overlook rich internal repre-
sentations. Limited access to internal data leads to suboptimal
results, revealing a research gap for membership inference in
open-source white-box LLMs.

In this paper, we address the challenge of detecting the training
data of open-source LLMs. To support this investigation, we
introduce three dynamic benchmarks: WikiTection, NewsTection,
and ArXivTection. We then propose a white-box approach for
training data detection by analyzing neural activations of LLMs.
Our key insight is that the neuron activations across all layers of
LLM reflect the internal representation of knowledge related to
the input data within the LLM, which can effectively distinguish
between training data and non-training data of LLM. Exten-
sive experiments on these benchmarks demonstrate the strong
effectiveness of our approach. For instance, on the WikiTection
benchmark, our method achieves an AUC of around 0.98 across
five LLMs: GPT2-xl, LLaMA2-7B, LLaMA3-8B, Mistral-7B, and
LLaMA2-13B. Additionally, we conducted in-depth analysis on
factors such as model size, input length, and text paraphrasing,
further validating the robustness and adaptability of our method.

I. INTRODUCTION

Recent advances in Large Language Models (LLMs) have
significantly enhanced performance across a diverse set of
Natural Language Processing (NLP) tasks. Among the family
of LLMs, open-source models, such as GPT-2 [1], [2], [3],
BLOOM [4], Mistral [5], and LLaMA 1/2/3 [6], [7], [8],
hold a crucial position due to their large numbers, exceptional
performance, and wide-ranging impact. Currently, the Hug-
ging Face Hub hosts over 900,000 publicly available models,
spanning a wide array of architectures, including language

models, vision models, and multimodal systems [9]. According
to a Meta report, by early 2025, cumulative downloads of its
LLaMA series models had reached 1 billion, highlighting the
widespread adoption of open-source models [10].

The rapid advancement of LLMs has been primarily driven
by extensive training on massive datasets. For instance, the
training corpus for Meta’s first-generation LLaMA model
contains up to 1.4 trillion tokens [6]. These datasets include
not only vast amounts of general web content but also sensitive
information across various domains, including personal data,
financial records, and copyrighted materials [11]. With the
widespread deployment of LLMs, increasing attention is being
paid to the sources of training data and the associated privacy
risks. Notably, while model developers often release their
models to the open-source community, they are typically
reluctant to disclose detailed information about the training
corpora [12], [13], [14]. This lack of transparency complicates
ethical and legal compliance and raises concerns about privacy
protection. The corpora used for training LLMs may contain
unauthorized personal data or copyrighted content [15], [16],
potentially resulting in a series of legal disputes. For instance,
The New York Times filed a copyright infringement lawsuit
against OpenAI and Microsoft, accusing the companies of
using millions of articles without permission to train the Chat-
GPT model [17]. Furthermore, due to the opacity of training
data, it is impossible to confirm whether the performance of
LLMs stems from genuine task understanding or simply from
prior exposure to test data.

Since the training data for LLMs is not publicly
disclosed, how can we detect whether an open-
source LLM has been trained on a given text?

In this paper, we focus on the above question. The task of
detecting training data is essentially a membership inference
attack (MIA) [18], which seeks to determine whether a given
text was included in the LLM’s training corpus by analyzing its
behavior. Research in this field has made significant progress,
with most existing methods relying on the probability distribu-
tion of text tokens under the assumption that such distributions

B Corresponding authors: Ping Chen <pchen@fudan.edu.cn>, Jun Dai
<jdai@wpi.edu>, and Xiaoyan Sun <xsun7@wpi.edu>

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240474
www.ndss-symposium.org

mailto:pchen@fudan.edu.cn
mailto:jdai@wpi.edu
mailto:xsun7@wpi.edu

(a) LLaMA3-8B (b) Mistral-7B

Fig. 1: t-SNE visualizations of activations for member and
non-member data in the WikiTection dataset.

serve as indicators of whether a text was included in the
training set [19], [20], [21], [22], [23]. It is worth noting that
these methods are primarily designed for black-box LLMs,
which do not permit access to internal model information such
as gradients or activations. Due to limited access to internal
model information, their accuracy in membership inference
tends to be relatively low. Privacy auditing research on white-
box LLMs has explored the use of token embeddings, attention
weights, and gradients to perform MIAs [24]. However, due
to performance bottlenecks, the detection results of these
methods have consistently failed to be fully convincing.

In this paper, our primary focus is on open-source LLMs.
As these LLMs are white-box models, we can design effective
methods to fully leverage their internal information, enabling
high-accuracy training data detection. As the direct response of
an LLM to its input, neural activations may more accurately
reflect the membership status of the input. Our preliminary
experiments indicate that members, texts that were likely seen
by the model during training, and non-members, texts that are
unlikely to have been seen by the model, exhibit significant
differences in activations, as shown in Figure 1. Building
on this key finding, we propose NART (Neural Activations
Reveal Training), a training data detection pipeline based on
LLM activations. This pipeline consists of four main stages:
Data Collection, Activation Extraction, Preprocessing, and
NART Model Design.

A key challenge in evaluating MIAs on open-source LLMs
is ensuring that member and non-member datasets come
from the same distribution. Otherwise, models may exploit
distributional differences, leading to inflated and misleading
performance. Prior work [25] shows that even simple baselines
can take advantage of such shifts. Therefore, the widely
adopted strategy of using the model’s knowledge cutoff date
to distinguish between member and non-member data [26],
[20], [22], [24] is not a reliable approach. To mitigate this
issue, we fine-tune LLMs on curated datasets, treating included
samples as members and excluded ones as non-members.
However, since LLMs are pretrained on large-scale internet
corpora, many public datasets may already be part of their
training sets. To mitigate the risk of such data overlap, we
additionally construct three dedicated datasets: WikiTection,
NewsTection, and ArXivTection, sourced respectively from

Wikipedia, Common Crawl, and ArXiv. Importantly, all data in
these collections first appeared after the latest known training
cutoff date of the target LLMs, significantly reducing the
likelihood of unintentional data leakage. To better simulate
real-world scenarios where texts of varying lengths may need
to be detected, the data we collected is not of uniform length.
We first split each text in the dataset to ensure it meets
the input length constraints of the LLM. Then, we construct
prompts from the resulting subsequences and retrieve the
activation values for the last token in each prompt across all
layers in the LLM, and normalize them. Next, we introduce
three preprocessing strategies to effectively represent the di-
verse activation patterns. NonFE directly uses the normalized
activation matrix of the last token as the subsequence feature,
preserving full activation details but with high computational
cost. StatFE summarizes activations from each layer using
statistical descriptors such as the minimum, maximum, and
mean, thereby enhancing robustness and reducing dimension-
ality. HistFE captures activation distribution characteristics
through histograms, offering an efficient and noise-tolerant
representation. While these strategies yield informative acti-
vation representations, activation differences between member
and non-member samples remain subtle and dispersed across
layers. To address this challenge, we employ a triplet network
that learns a discriminative metric space by optimizing relative
distances between samples, embedding member activations
closer together while pushing non-member activations farther
apart. This metric-learning framework enables the model to
capture fine-grained relational beyond absolute activation val-
ues, and improving discrimination with limited labeled data.

We evaluate the effectiveness of NART across various model
architectures. Specifically, we fine-tune models such as GPT2-
xl [3], LLaMA2-7B [6], LLaMA2-13B, Mistral-7B [27], and
LLaMA3-8B on our constructed datasets. In addition, we
evaluate NART on the pretrained Pythia-12B [28] and DCLM-
1B [29] models using their publicly available training and
test sets from the Pile [30], MIMIR [31], and DCLM [29]
datasets, further demonstrating the method’s generalizability
and robustness. Furthermore, we evaluate the robustness of
NART under varying model sizes and input lengths.

In summary, our main contributions are as follows:

1) Since it has been observed that LLM activations encode
membership-related information, we propose NART, a
novel and automated membership inference pipeline for
open-source LLMs that is designed to detect whether
a given text was included in the training corpus of a
language model.

2) We introduce three new benchmarks for identifying
whether a text was used in the training of LLMs:
WikiTection, NewsTection, and ArXivTection, each com-
prising 6,000 text samples.

3) Our method has been empirically validated across di-
verse LLM architectures and experimental settings. It
consistently achieves an AUC around 98% on our cu-
rated benchmark datasets.

2

II. BACKGROUND AND RELATED WORK

A. Language Modeling

The primary objective of Large Language Models (LLMs)
is to understand and generate human-like text [32], [33]. In
neural language modeling, a tokenizer T is first used to decom-
pose the input text into a sequence of tokens D = t1, . . . , tN ,
where each token ti is an element of the vocabulary V .
Given the generated token sequence, a neural network [34]
is trained to estimate the probability of the next token via
maximum likelihood estimation. Given the model parameters
θ and the training set X containing N tokens, the training
objective of the model LLMθ is to minimize the following
loss function [35], [36]:

L(θ) = − log

N∏
i=1

LLMθ(xi | x1, . . . , xi−1), (1)

Due to computational constraints, the model’s maximum con-
text length is limited to a fixed value Cmax. Therefore, for
any token ti, the model is conditioned only on the previous C
tokens (where C ≤ Cmax), i.e., LLMθ(ti+1 | ti−C+1, . . . , ti)
which is denoted as LLM(ti+1).

Pretraining and supervised fine-tuning are key stages in
the training process of LLMs. The pretraining phase employs
an unsupervised learning approach [37], enabling the model
to train on large-scale, diverse datasets. Through exposure
to vast amounts of textual data, the model gradually learns
intricate language patterns and nuances, fostering a deeper
understanding of language. During the supervised fine-tuning
phase, the LLM is further trained on task-specific or domain-
specific datasets to precisely adapt to target applications. By
optimizing its parameters, fine-tuning transforms the broad
language understanding gained during pretraining into special-
ized capabilities, such as translation and question answering.

B. Membership Inference Attack

Membership Inference Attack (MIA) has gained widespread
attention in the field of machine learning as a representative
privacy attack technique, due to the potential negative conse-
quences of leaking membership information [38], [39], [40],
[41]. In the field of LLMs, this privacy risk has similarly
attracted attention, as the specific outputs of LLMs may lead
to the leakage of private information.

The theoretical foundation of existing MIAs primarily lies
in the observation that models tend to generate more con-
fident and stable predictions for samples encountered during
training. Some methods utilize probability-based metrics, such
as loss [42] and perplexity [19], to differentiate between
members and non-members. However, MIAs based solely
on perplexity may incorrectly identify simple or highly pre-
dictable sequences as members, even if they were never seen
during training. The Neighboring-based Attack [21] generates
text similar to the target sample through data augmentation
and compares the perplexity scores between the target sample
and its neighboring samples. LiRA does not rely on log
perplexity; instead, it utilizes likelihood ratios to perform

MIAs. Min-k%Prob [20] determines whether a target response
belongs to the training data by computing the log-likelihood
of the least probable token within the response. DE-COP [26]
conducts MIAs by combining original texts with their rewritten
versions and prompting the model to distinguish between
them via multiple-choice questions. However, in white-box
settings, such methods do not fully exploit internal model
information, limiting the potential improvement in MIA ac-
curacy. PARSING [24] leverages both forward (e.g., token
embeddings and attention) and backward (e.g., gradients)
signals of LLMs in a fine-tuning setting for membership
inference, but achieves a modest AUC of approximately 0.75.
Probe [43] trains autoregressive models for membership infer-
ence using internal representations from individual layers, but
the approach achieves limited effectiveness (maximum AUC
of 0.698 and TPR@5%FPR of 0.167) and incurs substantial
computational cost, as a separate probe must be trained for
each layer. Moreover, the dataset used in their experiments
contains samples of at most 143 tokens, further limiting
the method’s effectiveness. LUMIA [44] leverages existing
datasets and pretrained models to train probes on layer-wise
internal activations for membership inference, extending this
approach to multimodal large models; however, it also requires
training individual probes for each layer. In contrast, our
method aggregates activations across all layers and employs a
non-linear triplet network built upon a Siamese architecture to
capture global membership patterns, enabling more effective
discrimination between training and non-training samples.
This design achieves AUC and TPR@5%FPR scores close to
0.98 while keeping computational overhead low.

C. Siamese Networks

The Siamese network is a neural architecture widely used
in metric learning. It consists of two identical, weight-sharing
subnetworks that process separate inputs to produce feature
vectors. The similarity between the two outputs is then com-
puted using a distance metric such as the Euclidean distance.

Siamese networks have been widely applied in the field of
image processing. For instance, HybridCNN [45] proposes an
image matching method based on a Siamese network, and
OSNV [46] employs a lightweight Siamese network for feature
extraction. Moreover, this architecture has also been exten-
sively used in NLP tasks. The study [47] proposes a model
that uses Siamese networks to differentiate sentence attributes.
During the training process, the model simultaneously inputs
the main sentence along with its similar or dissimilar parts
and optimizes by measuring their similarity. The study [48]
addresses the problem of building text classifiers with limited
or no training data by proposing a few-shot learning approach
based on Siamese networks. This approach significantly re-
duces inference costs. Siamese networks, as a typical few-
shot learning method, is based on comparing the similarity
between samples, rather than relying on large amounts of
labeled data like traditional classification networks. In MIAs
on open-source models, where acquiring a large number of

3

training samples is challenging, the few-shot learning approach
based on Siamese networks is particularly effective.

III. PROBLEM STATEMENT

Capability of the Auditor: In this work, we define text
D consisting of tokens ti, where i ∈ 1, . . . , N . We consider
an auditor A with white-box access to an LLM, which
enables the auditor to query the model using a sequence of
tokens and to examine internal parameters or hidden states
(e.g., activation maps). Our study focuses on open-source
models that provide white-box accessibility, making this threat
model both practical and realistic. Such models may inad-
vertently incorporate unauthorized or sensitive information
during training, thereby introducing potential privacy and
compliance concerns. Notably, many models such as LLaMA-
2 [6], Mistral-7B [5], and GPT-2 [3] are publicly available
and fully accessible through platforms like the Hugging Face
Hub. Given their widespread distribution and the inherent
difficulty in monitoring their downstream usage, the potential
privacy risks associated with these models merit heightened
attention. The auditor may represent one of three user groups:
(1) individuals or organizations seeking to verify whether their
private data have been used in model training, (2) regulatory
authorities auditing data usage compliance under frameworks
such as the GDPR, and (3) model developers aiming to ensure
that their training data are free from sensitive information and
fully compliant with relevant data protection standards.

In addition to having access to the LLM, the auditor is also
assumed to possess a collection of texts D that follows the
same distribution as the model’s training corpus. Specifically,
DM denotes the subset of texts used during the LLM’s
training, referred to as members, ∀D ∈ DM , D ∈ Dtrain.
Conversely, let DNM denote the texts that were not used
during training, referred to as non-members, i.e., ∀D ∈
DNM , D /∈ Dtrain. It is important to note that both DM

and DNM are obtainable in realistic settings. First, existing
LLMs are commonly trained on textual corpora collected
from publicly available sources such as Common Crawl [49],
Project Gutenberg [50], and similar platforms. Second, these
datasets are continuously updated over time. By comparing
the timestamps of data updates with the timeline of model
training, we can differentiate between DM and DNM [22],
[26], [20]. For instance, data published prior to the model’s
training phase can be treated as DM , whereas data updated
afterward can be regarded as DNM . This temporal distinction
forms the basis of our dataset construction.

Objective of the Auditor: The auditor’s primary objective
is to determine whether a given target sample D was included
in the training data of the LLM. Given an LLM trained on
a dataset Dtrain, the auditor is assumed to have access to
auxiliary knowledge K. For a given target sample D, the
auditor aims to construct a membership inference model M
that maps the input triplet (D,LLM,K) to a binary decision,
formally defined as:

M (D,LLM,K) → {0, 1} , (2)

where 0 denotes that D was not included in the training set,
while 1 indicates that D was part of the model’s training data.

IV. METHODOLOGY

The goal of the auditor A is to determine whether a given
text D was included in an LLM’s training data. We extract
activations from the response generation process of open-
source models as the basis for making this determination.

Intuition: Prior works on the privacy of LLMs [19], [22],
[26], [20] suggest that the model’s prediction confidence is
typically higher for training data compared to unseen data.
This observation motivates the hypothesis that auditors can
effectively leverage this behavior for membership inference.
LLM activations, which encode input data across multiple
levels of abstraction, enable the model to progressively extract
high-level semantic features from low-level representations.
The rich information encoded in these activations reflects
both the model’s end-to-end decision-making process [51]
and its internal representations of knowledge associated with
the input. Therefore, we hypothesize that the confidence gap
between training and non-training samples is effectively mani-
fested in the corresponding activation patterns. In summary, we
propose that auditors can leverage the information embedded
in LLM activations to perform membership inference.

Figure 1 shows t-SNE (t-distributed stochastic neighbor em-
bedding) visualizations of LLM activations for both member
and non-member texts. t-SNE is a non-linear dimensionality
reduction technique that preserves local neighborhood struc-
tures in high-dimensional data. It visualizes the mean activa-
tions across all layers of two LLMs, LLaMA3-8B and Mistral-
7B, captured during the generation of tokens associated with
both training and non-training texts. The activations reveal
a noticeable separation between training and non-training
samples, providing empirical support for our hypothesis. These
results suggest that activations at various layers of an LLM can
serve as informative features for membership inference.

A. Approach Overview

Figure 2 and Algorithm 1 illustrates the steps of NART to
leverage LLM activations for membership inference.

1) We first collect data from public platforms and construct
corresponding datasets based on the publication time of
the data and the training period of LLMs. We then query
the LLM with each subsequence of text D from the
dataset, setting the text length to C. We also evaluate
the impact of varying C on the model’s performance.

2) Next, we collect the activations of the last token in the
subsequence and normalize them to highlight the pattern
differences between members and non-members. This
process enhances the accuracy and robustness of auditor
A in performing membership inference.

3) Subsequently, we apply various strategies to process the
activations of the last token across all layers of the LLM
into a subsequence-level activation feature.

4) Finally, we use the obtained subsequence-level activation
features to train a model based on a Siamese network.

4

 3. Preprocessing

Feature
Extraction

Answer

LLM

4. NART Model Design
Deep ArchitectureDistance Calculate ActivationsEmbeddings

[....]

You are a helpful assistant. Below is a given
topic and related contexts. Please continue
writing or analyze the contexts.
Topic:[...]
Context: [...]

Prompt

Generation

 1. Data Collection 2. Activation Collection

Activation
Normalization

Fig. 2: The workflow of NART.

For each input text Dtest, NART can determine whether
Dtest belongs to the training set of the LLM.

You are a helpful assistant. Below is a given topic and related
contexts. Please continue writing or analyze the contexts.
Topic: [topic]
Context: [contexts]

You are a helpful assistant. Below is an original passage along
with its corresponding topic. Please rewrite and paraphrase the
passage in a way that preserves its meaning while altering the
sentence structure and expression.
Original Passage:[original passage]
Topic: [topic]

Fig. 3: Prompt used to guide the LLM in generating a response
given the context.

B. Querying the Model

When querying the model, the length N of the input text
D may exceed the model’s maximum context length Cmax.
Therefore, we divide D into Ns subsequences Sj of length
C, where j = 1, . . . , Ns, C ≤ Cmax, Ns =

⌈
N
C

⌉
. For the

last subsequence SNs
, its length is denoted as C ′, satisfying

C ′ ≤ C. This reformulates the inherently complex long-text
membership inference problem into a more tractable short-
text detection task. Each subsequence Sj is then used to
construct a prompt following the format illustrated in Figure 3.
By aggregating the detection results from these fine-grained
subsequences, we make a final determination on whether D
belongs to the training set. This strategy not only improves
the model’s capability to handle long texts but also enhances
the overall stability and robustness of the detection results.
The context length C is a predefined hyperparameter that will
be evaluated in subsequent experiments to assess its effect on
model performance.

C. Activation Collection and Normalization

The activation of the last token integrates the semantic
information of the entire input, representing the LLM’s internal
encoding of the input and its associated knowledge. As the
model processes the input, information propagates through lay-
ers to retrieve relevant knowledge for answer generation [52].

When the generated content matches the model’s learned
knowledge, retrieval succeeds; mismatches indicate missing
knowledge and produce distinct last-token activation patterns.
To collect these activations, for each subsequence Sj of the
text D, we extract the activation Actj of the last token across
all layers of the LLM, where j ∈ {1, . . . , Ns}. Next, we
introduce activation normalization to facilitate its effective
integration into the training process. Specifically, we compute
the mean µ and standard deviation σ of the activations across
all texts in the dataset. These statistics are then used to
normalize the activations according to the following formula:

Norj = (Actj − µ) /σ. (3)

D. Feature Extraction

We employ three different methods to construct the feature
representation of each subsequence from the normalized acti-
vation Norj . We first directly use the normalized activation
Norj of the last token in subsequence Sj as the feature
representation of that subsequence, referred to as NonFE.
However, as LLMs generate high-dimensional activations for
each token across multiple layers (e.g., 48 layers × 6,400
dimensions in GPT2-xl), utilizing them for inference incurs
substantial computational cost, although it retains fine-grained
activation details beneficial for discrimination. To address
this, we further introduce two feature extractors, StatFE and
HistFE, to derive more discriminative representations from the
normalized activations. StatFE extracts statistical summaries
of layer-wise activations rather than full activation details,
enhancing robustness and reducing computational cost, while
HistFE models activation distributions via histograms, which
compress high-dimensional activations into compact statisti-
cal representations, thereby improving efficiency under low-
resource or noisy conditions.

Statistical Feature Extractor (StatFE). We compute sta-
tistical features from each layer of the normalized activations
Norj of the last token in subsequence Sj to capture the

5

overall distribution patterns, including the minimum, maxi-
mum, mean, and standard deviation. Additionally, a set of x-
percentile values is calculated, where x ∈ Xperc, to further
capture the characteristics of the activation distribution. These
statistical features are then concatenated to form the feature
representation of subsequence Sj .

Algorithm 1: The Procedure of NART
Input : A text to be detected D = t1t2 . . . tN , a

target LLM , the length of the subsequence
C, embedding dimension d, the margin of the
triplet margin loss α, support samples
{Dsi}Mi=1 ∈ T with label {Lsupi

}Mi=1;
1 Divide D into Ns subsequences Sj of length C, where

j = 1, . . . , Ns, C ≤ Cmax, Ns =
⌈
N
C

⌉
;

2 Query the LM with each subsequence Sj ;
3 Normalization:
4 Collect activation Actj from all layers of LLM for

the last token in each subsequence Sj ;
5 Normalize the Actj with the mean µ and standard

deviation σ, w.r.t. Eq. 3
6 Feature Extraction:
7 Preprocess the activation Actj to obtain a

subsequence-level feature representation:
FSj

= FEATURE EXTRACTOR {Norj},
which contains three different strategies: NonFE,
StatFE and HistFE , as shown in Sec. IV-D;

8 Divide the training set, processed as above and
containing both member and non-member samples,
into multiple triplets {Fa, Fp, Fn};

9 Model Training:
10 Initialize Siamese Network M with ResNet18,

replace fully-connected layer with Linear (512, d);
11 for all each triplet {Fa, Fp, Fn} do
12 Compute embeddings Ea = M(Fa),

Ep = M(Fp), En = M(Fn);

13 Define loss function:
L = max(Dist (Ea, Ep)− Dist (Ea, En) + α, 0);

14 Train M on each triplet {Ea, Ep, En};
15 Sample Test:
16 for all support sample Dsupi in {Dsupi}Mi=1 do
17 Compute embedding EDsupi

= M(Dsupi
)

18 for all subsequences in the test sample Dt do
19 Compute embedding of each subsequence:

ESj = M(Sj), j ∈ {1, . . . , Ns}.

20 for all subsequence embedding ESj
in {ESj

}Ns
j=1 do

21 for all support embedding EDsupi
in

{EDsupi
}Mi=1 do

22 Compute distance di = ∥ESj − EDsupi
∥2

23 Predict LSj
= LDsupK

, where K = argmini di

24 The lable of the test sample Dt:

L(Dt) = 1

[∑Ns

j=1 LSj
≥ Ns

2

]
, L(Dt) = 1

indicates that Dt is a member sample, whereas it
is a non-member sample.

Histogram Feature Extractor (HistFE). HistFE charac-
terizes the activation distribution of subsequence Sj in D by
constructing a histogram. Specifically, it first bins each layer of
the normalized activations Norj into Nb equal-sized intervals
(bins). Then, it computes both the count and proportion
of activation values falling into each interval. Finally, the
proportions of all Nb bins are aggregated to form a feature
vector that represents the subsequence-level characteristics of
Sj for membership inference.

E. NART Model Design

We utilize the NART model to perform membership in-
ference on the subsequences Sj of text D, where j ∈
{1, . . . , Ns}. We employ Convolutional Neural Networks
(CNNs) with the ResNet18 architecture [53] to efficiently
capture the relationships between and within different layers
of the LLM. Drawing inspiration from few-shot learning and
Siamese networks, we utilize triplet networks that share the
same architecture and weights to learn the activation features
of member and non-member texts, as shown in Figure 2. In
this membership inference task, labeled samples are typically
limited, and training a classifier directly on raw activations is
vulnerable to noise, inter-layer inconsistencies, and subtle dif-
ferences between member and non-member samples, leading
to limited effectiveness. Contrastive learning based on Siamese
networks adopts a self-supervised objective that pulls similar
samples closer and pushes dissimilar ones apart, enabling the
extraction of discriminative features without explicit labels and
enhancing the separability between member and non-member
representations. In addition, it amplifies the supervision signal
under limited data conditions by constructing abundant sample
pairs, which is particularly valuable since obtaining sufficient
member and non-member samples is often difficult in practice.
Thus, the proposed contrastive learning model is particularly
well suited for membership inference under limited labeled
data, as it effectively preserves and enhances the model’s
discriminative power.

We employ the triplet margin loss as the model’s training
objective [54], a loss function based on “triplets,” commonly
used in metric learning tasks. A triplet consists of three
components:
• Anchor: The reference sample, typically serving as the

benchmark in the triplet.
• Positive: A sample from the same class as the anchor, with

the goal of minimizing the distance between positive sample
and the anchor.
• Negative: A sample from a different class than the anchor,

with the goal of maximizing the distance between negative
sample and the anchor.

During training, we partition the dataset into a training set,
a test set, and a support set. Each text in the training set
is first divided into multiple subsequences based on a given
length C, and then further divided into Da, Dp, and Dn,
which represent the Anchor, Positive, and Negative samples,
respectively. Subsequently, we feed the aforementioned sam-
ples into the LLM to extract the activation feature vectors

6

corresponding to the subsequence, denoted as Fa, Fp, and Fn.
These activation features are mapped into embeddings Ea, Ep

and En through the Siamese network M. The triplet loss
ensures that the distance between the anchor and the positive
sample, Dist (Ea, Ep), is smaller than the distance between
the anchor and the negative sample, Dist (Ea, En), by at least
a specified margin α. The loss function is formally defined as:

L = max(Dist (Ea, Ep)− Dist (Ea, En) + α, 0), (4)

where Dist(·, ·) denotes a distance metric (typically the Eu-
clidean distance), and α is a positive constant. If α is too
large, the loss remains high and convergence is difficult, but it
improves the model’s capability to distinguish between similar
samples. If α is too small, the loss quickly approaches zero,
making training easier but less effective at differentiating
between Ep and En. Choosing an appropriate α enables a
balance between discriminative capability and convergence
speed. The goal of the training process is to minimize the
loss, thereby enhancing the model’s capability to distinguish
between member and non-member samples of the LLM.

During testing, for a given test text Dt, it is first divided
into a set of subsequences {Sj} with fixed lengths, where
j ∈ {1, . . . , Ns}. For each subsequence Sj , we compute the
distance between its embedding ESj

and that of support sam-
ples EDsup

, Dsup ∈ T , using the trained model. The support
set T refers to a constructed dataset comprising labeled sam-
ples, denoted as {Dsup1

, ..., DsupM
}, and their corresponding

labels are {Lsup1 , ..., LsupM
}. The label of Sj is determined

according to the label of the support sample Dsup that is
closest to it. That is, Sj is assigned the label of Dsup, meaning
LSj

= LDsupK
, where K = argmini Dist(ESj

, EDsupi
) and

DsupK
is the nearest support data to the Sj . LSj

= 1 indicates
that the subsequence is a member sample, while LSj = 0
indicates that it is a non-member sample. Finally, the label
L(Dt) of text Dt is aggregated based on the membership of
all subsequences:

L(Dt) = 1

 Ns∑
j=1

LSj
≥ Ns

2

 . (5)

The indicator function 1 returns 1 if a majority of subse-
quences are classified as members; otherwise 0.

V. EXPERIMENTAL SETUP

A. Model

Our experiments focus on several popular open-source mod-
els, including GPT-2 [3], LLaMA2-7B [6], Mistral-7B [27],
LLaMA3-8B, GPT-OSS-20B [55], Qwen3-8B [56], Pythia-
12B [28], and DCLM-1B [29]. We chose these LLMs because
they are widely used across various tasks and exhibit different
structures and characteristics, making them well-suited for
studying MIAs on open-source models. We use the prompt
shown in Figure 3 to guide the LLMs in generating responses
to input questions. GPT-2 employs a vocabulary of 50K tokens
and supports an input length of up to 1K tokens. LLaMA2-7B
and LLaMA3-8B both utilize a 32K-token vocabulary, with

maximum context lengths of 4K and 8K tokens, respectively.
Mistra-7B also adopts a 32K-token vocabulary and supports
an 8K-token context window. GPT-OSS-20B supports a maxi-
mum context window of approximately 131K tokens, whereas
Qwen3-8B has a context window size of 32K tokens. Pythia-
12B is a decoder-only Transformer comprising 12 billion
parameters and a 2K-token context window. DCLM-1B is a
1.4-billion-parameter language model trained on the DCLM-
Baseline dataset, with a context length of 2K tokens.

B. Dataset for Membership

To rigorously evaluate the effectiveness of our method,
we carefully constructed three datasets: WikiTection, News-
Tection, and ArXivTection. Each dataset comprises internet
content that was published after the most recent update of
the LLMs, ensuring that the data were not accessible during
the model’s pretraining phase and thereby minimizing the
risk of data leakage. We fine-tuned the LLM on a subset of
each dataset, with fine-tuning details provided in Section A-A.
In the subsequent membership inference task, the data used
for fine-tuning are designated as positive samples, while the
remaining data that were not involved in fine-tuning are treated
as negative samples. We further evaluated our method on the
pretrained Pythia-12B and DCLM-1B models, which were
trained on the Pile [30] and DCLM [29] datasets, respectively.
The results are presented in Section B-D.

• WikiTection: We used the Wikipedia API to collect
web pages that were first published between October 2024
and February 2025. This time frame was chosen because
most LLMs, including those used in our experiments, were
last updated prior to this period. We used webpage titles as
the topic for each data sample and cleaned the content by
removing noise and non-informative characters, retaining only
meaningful plain text. The constructed WikiTection dataset
consists of 6,000 samples. These samples vary significantly in
length, ranging from 128 to 512 tokens. The same construction
principle is applied to the two subsequent datasets.

• NewsTection: News data is inherently time-sensitive,
making it well-suited to our dataset construction strategy.
Accordingly, we adopted the same cutoff date as used in the
WikiTection dataset and selected news webpage links from the
Common Crawl [49] dataset that satisfied the temporal criteria.
We then crawled the corresponding webpages and extracted
the meaningful body text along with the headlines. The lengths
of these texts also ranges from 128 to 512 tokens.

• ArXivTection: ArXiv is a major platform for academic
research dissemination, and we utilized papers from this
platform to construct our dataset. RedPajama-Data [57] notes
that the ArXiv maintainers provide an Amazon S3 bucket
containing monthly updates of all source LaTeX files. We
retrieved papers from this bucket that met our temporal criteria,
applied similar preprocessing steps. In this dataset, the text
length is fixed at 2048 tokens, as academic papers are typically
long-form texts. In contrast, the text length in the other two
datasets is not fixed, and varies.

7

TABLE I: The performance of NART on three datasets across different LLMs.

Dataset FeaEXTRACT Metrics LLMs
GPT2-xl LLaMA2-7B LLaMA3-8B Mistral-7B LLaMA2-13B GPT-OSS-20B Qwen3-8B

WikiTection

NonFE TPR@5%FPR 0.991 0.941 0.991 0.997 0.989 0.990 0.996
AUC 0.992 0.981 0.998 0.996 0.997 0.994 0.999

StatFE TPR@5%FPR 0.986 0.991 0.996 0.992 0.987 0.988 0.990
AUC 0.997 0.994 0.991 0.998 0.997 0.993 0.992

HistFE TPR@5%FPR 0.995 0.982 0.991 0.995 0.991 0.990 0.993
AUC 0.995 0.996 0.995 0.997 0.996 0.994 0.998

NewsTection

NonFE TPR@5%FPR 0.918 0.900 0.941 0.959 0.982 0.972 0.984
AUC 0.977 0.976 0.988 0.985 0.986 0.980 0.988

StatFE TPR@5%FPR 0.982 0.972 0.918 0.977 0.964 0.980 0.978
AUC 0.994 0.988 0.971 0.996 0.989 0.989 0.984

HistFE TPR@5%FPR 0.982 0.941 0.939 0.973 0.964 0.986 0.990
AUC 0.988 0.985 0.965 0.991 0.984 0.990 0.994

ArXivTection

NonFE TPR@5%FPR 0.973 0.941 0.988 0.982 0.977 0.984 0.982
AUC 0.986 0.967 0.994 0.989 0.993 0.990 0.986

StatFE TPR@5%FPR 0.982 0.941 0.982 0.973 0.991 0.990 0.988
AUC 0.998 0.984 0.993 0.994 0.996 0.994 0.990

HistFE TPR@5%FPR 0.986 0.961 0.982 0.964 0.996 0.990 0.992
AUC 0.991 0.985 0.997 0.992 0.999 0.995 0.997

C. Baselines

To validate the effectiveness of our method, we conducted
comparisons with several representative baselines:

• The Loss attack [42] infers the membership status of a
given example by checking whether the target model’s loss on
it exceeds a predefined threshold.

• Zlib and Lowercase are two perplexity-based membership
inference methods [38]. Zlib determines membership by com-
paring the perplexity of an example to its zlib compression
entropy. In contrast, Lowercase evaluates membership by
comparing the perplexity of the original example to that of
its lowercased version.

• Min-K% Prob [58] makes predictions based on the log-
likelihood of the lowest-probability token in the target sample.
It assumes that the model exhibits higher confidence across all
tokens for training members; therefore, the log-likelihood of
low-probability tokens can serve as a discriminative signal to
distinguish between members and non-members.

• The Neighborhood attack [21] leverages probability cur-
vature to detect membership. In the experiment, we use the
RoBERTa masked language model [59] to replace a token in
the original sample, generating multiple neighboring samples.
We then compare the loss of the target language model on
the original sample with the average loss on the neighboring
samples, thereby determining the membership status of the
original sample.

• PARSING [24] proposes a white-box membership in-
ference method that combines forward information (such as
intermediate representations) and backward information (such
as gradients and losses) from the model. By constructing
attribute embeddings and applying discrepancy metrics, the
method effectively distinguishes member samples from non-
member ones, enabling dynamic monitoring of privacy risks.

• Probe [43] trains linear probes on activations from each
layer of the LLM and selects the layer with the best validation
performance as the final detection layer. The corresponding
probe is then used to determine whether a test sample belongs
to the member set.

D. Evaluation Metrics

To comprehensively evaluate the effectiveness of NART, we
adopt two metrics: True Positive Rate at low False Positive
Rate (TPR at low FPR) and Area Under the Curve (AUC).
In MIA tasks, the primary objective is to accurately iden-
tify member samples while minimizing the impact of false
positives. Therefore, TPR at low FPR is a more appropriate
evaluation metric, as it measures the true positive rate under
a fixed low false positive rate, reflecting the practical effec-
tiveness of the attack. In this work, we adopt TPR@5%FPR
and TPR@10%FPR as our evaluation metrics [58], [22]. In
addition, Table XI in Section B-A further validates the model’s
performance under TPR@3%FPR and TPR@1%FPR.

E. Methodology Parameters

In the experiments, since the collected texts originate from
different platforms and vary in length, they often do not meet
the maximum input length requirements of LLMs. Therefore,
we divide each text D into multiple subsequences {Sj} with
the fixed length C = 128. We randomly selected 1,000
member samples and 1,000 non-member samples from each
dataset for the experiment. For the feature extractor StatFE,
we uniformly selected 50 percentiles within the range of 0 to
100. In HistFE, the number of bins was set to 200. NonFE
is the default method we employed. The ratio of the training
set to the test set was 3:1, and the number of samples in
the support set is set to 100 by default. The margin of the
triplet margin loss was set to α = 1.0. All of our experiments
and language model queries were conducted on a set of A100
NVIDIA GPUs.

VI. RESULTS

A. Evaluation across LLMs and Datasets

Table I summarizes the experimental results of NART
using the NonFE, StatFE, and HistFE feature extraction
methods on the WikiTection, NewsTection, and ArXivTection
datasets. A notable distinction is that the Qwen3-8B model
used in our experiments corresponds to the July 2025 update.

8

Consequently, we augmented all three datasets with additional
samples collected between August and November 2025 to
ensure that the fine-tuning data for Qwen3-8B did not appear
in the model’s training corpus. The results in Table I provide a
comprehensive evaluation of NART’s performance in training
data detection across diverse domains and LLMs. For instance,
under Mistral-7B, NART achieves an AUC of around 0.98
across all three datasets with both NonFE and HistFE, vali-
dating the stability and superior performance of NART under
diverse data distributions. The performance of NART with
StatFE may fluctuate due to the characteristics of the dataset
and the choice of parameters. On the WikiTection dataset,
NART with all three feature extraction methods achieves
a TPR@5%FPR of 0.99 on nearly all of the seven main-
stream LLMs, including GPT2-xl, LLaMA2-7B, LLaMA3-
8B, Mistral-7B, LLaMA2-13B, GPT-OSS-20B, and Qwen3-
8B. In addition, Table XI in Section B-A further validates the
model’s performance under more stringent false positive rate
conditions, specifically TPR@3%FPR and TPR@1%FPR. In
Section B-E , we also evaluate the effectiveness of our method
when the fine-tuning dataset consists of tens of thousands of
samples. These results demonstrate that the method maintains
exceptional training data identification capability, even at ex-
tremely low false positive rates, which is crucial for practical
applications. Furthermore, NART demonstrates consistently
strong performance across both smaller models (e.g., GPT2-xl
with approximately 1.5B parameters) and larger models (e.g.,
LLaMA2-13B with approximately 13B parameters), further
confirming its robustness and generalizability. Overall, the
experimental results highlight NART’s effectiveness in identi-
fying training data, thereby validating the proposed approach.

B. Comparison to Baselines

To validate the outstanding performance of NART, we
compared it with several baseline methods, and the results
are shown in Table II. The baseline methods are evaluated on
the same test dataset as our proposed approach, with member
and non-member samples each accounting for 50% of the
data. As shown in the experimental results, our proposed
method significantly outperforms existing methods in terms
of performance. For instance, on the WikiTection dataset, the
Min-K% Prob method achieves an AUC of 0.694 for training
data detection on the GPT2-xl model, whereas our NART
method reaches an AUC of 0.992, demonstrating a substantial
performance advantage. Moreover, the performance of existing
baselines shows instability when applied to different LLMs.
In contrast, our proposed method maintains consistently high
and stable performance across various datasets and model
scales, with AUC scores consistently around 0.98. This further
demonstrates the robustness and generalization capability of
our approach across diverse data distributions and text types,
as well as its strong compatibility with various LLMs. This
further demonstrates the strong robustness and generalization
of our approach under varying data distributions and text types,
as well as its good compatibility with different LLMs.

Fig. 4: AUC performance across different model sizes.

Fig. 5: AUC performance across different text lengths for texts
from ArXiv papers.

C. Model Size

We evaluated the performance of our solution on the Wiki-
Tection, NewsTection, and ArXivTection datasets, using LLMs
of different sizes from the GPT-2 series, specifically GPT2-
small with 124M parameters, GPT2-medium with 355M pa-
rameters, GPT2-large with 774M parameters, and GPT2-xl
with 1.5B parameters. Given that our previous experimental
results have shown that our solution performs exceptionally
well on large-scale models, in this experiment, we chose
models from the GPT-2 series to explore the performance of
our solution on smaller models of varying sizes.

The experimental results shown in Figure 4 demonstrate
that our method delivers excellent performance on small-scale
LLMs, with the overall AUC consistently exceeding 0.97.
Additionally, we observe a steady improvement in detection
performance as model size increases. This trend can be at-
tributed to the larger parameter counts, which enhance the
models’ memorization and representation capabilities. How-
ever, the performance gain tends to plateau in medium-sized
models. For instance, on GPT2-large, the AUC reaches 0.99 on
the WikiTection dataset, approaching the optimal level. These
findings suggest that our method can reliably and accurately
detect training data.

D. Text Length

We further evaluated the performance of our method in
training data detection tasks across different LLMs as the input
text length varied. Figure 5 illustrates the trend of detection

9

TABLE II: NART outperforms baselines in terms of AUC across different LLMs.

Dataset Models Black-box Techniques White-box Techniques

Loss attack [42] Zlib [38] Lowercase [38] Min-K% Prob [58] Neighborhood [21] PARSING [24] Probe [43] Our Method

WikiTection

GPT2-xl 0.528 0.502 0.497 0.694 0.635 0.761 0.797 0.992
LLaMA2-7B 0.519 0.499 0.509 0.717 0.623 0.779 0.806 0.981
LLaMA3-8B 0.521 0.516 0.513 0.684 0.638 0.807 0.839 0.998
Mistral-7B 0.531 0.511 0.521 0.701 0.645 0.821 0.836 0.996

NewsTection

GPT2-xl 0.503 0.512 0.563 0.707 0.686 0.731 0.746 0.977
LLaMA2-7B 0.497 0.509 0.556 0.682 0.721 0.742 0.738 0.976
LLaMA3-8B 0.516 0.491 0.547 0.686 0.752 0.759 0.815 0.988
Mistral-7B 0.491 0.514 0.550 0.691 0.744 0.778 0.806 0.985

ArXivTection

GPT2-xl 0.516 0.477 0.534 0.571 0.672 0.756 0.753 0.986
LLaMA2-7B 0.486 0.528 0.536 0.563 0.696 0.779 0.721 0.967
LLaMA3-8B 0.528 0.536 0.531 0.601 0.715 0.812 0.791 0.994
Mistral-7B 0.482 0.502 0.518 0.581 0.737 0.797 0.784 0.984

performance (AUC) on the ArXivTection dataset across differ-
ent input lengths (measured in tokens). As the number of input
tokens increases, the model’s ability to distinguish between
training and non-training data improves steadily, with AUC
values gradually rising and stabilizing.

This trend suggests that longer texts generally contain richer
semantic information, which makes the model’s activation
responses more distinguishable between member and non-
member samples, thereby improving detection accuracy. We
also observe that when the input text length is around 128
tokens, the detection performance of NART has essentially
reached its optimum. Additionally, we further evaluate the
performance of our method as the input text reaches the
maximum context length of the LLMs in Section B-F.

TABLE III: The performance of NART on paraphrased datasets
across different LLMs.

Paraphrased Metrics LLMs
Dataset GPT2-xl LLaMA2-7B LLaMA3-8B Mistral-7B

WikiTection para TPR@5%FPR 0.978 0.942 0.969 0.987
AUC 0.989 0.973 0.995 0.997

NewsTection para TPR@5%FPR 0.841 0.827 0.841 0.959
AUC 0.969 0.953 0.965 0.988

ArXivTection para TPR@5%FPR 0.971 0.934 0.982 0.971
AUC 0.983 0.968 0.997 0.989

E. Paraphrased Text Detection

In real-world scenarios, it is often necessary to determine
whether paraphrased or edited texts are part of the training
data of LLMs. For instance, copyrighted content may be
subtly modified without authorization and included in the
training of LLMs, thereby circumventing regulatory oversight.
Existing research primarily focuses on detecting instances that
exactly match the training data. However, it remains unclear
whether MIA methods can effectively identify semantically
equivalent paraphrased instances. To explore this problem, we
investigate training data detection in a paraphrased setting. We
utilize GPT-4o to paraphrase the original texts of member and
non-member samples while preserving the original semantic
meaning, with the prompt shown in Figure 9 (Section A-B).

Observations from Table III indicate that, even after para-
phrasing, the WikiTection and ArXivTection datasets can
still be accurately detected by our proposed method. When
evaluated across four LLMs, including GPT2-xl, LLaMA2-7B,

LLaMA3-8B and Mistral-7B, the AUC values all exceeded
0.965, and the TPR@5%FPR values were also above 0.93.
These results demonstrate that our method maintains strong
detection performance even when handling paraphrased data.
We attribute this effectiveness on paraphrased texts to its
reliance on activation patterns shaped by semantics rather than
lexical memorization, and the paraphrased texts preserve the
original meanings.

F. Generalization

As previously discussed, our method requires a certain
amount of training data to construct the detection model.
However, in real-world scenarios, challenges such as limited
availability of labeled data and imbalanced class distributions
are common. To assess the robustness and practicality of our
approach under such conditions, we further explore its appli-
cability in data-scarce and imbalanced settings. Specifically,
we combine the three datasets for joint training and evaluate
performance on each dataset individually. This strategy more
closely reflects real-world deployment scenarios, where train-
ing a dedicated model for each task may be infeasible due to
computational or data constraints. Instead, we aim to develop
a generalizable solution capable of effectively handling diverse
tasks using a unified model.

Less Training Data. To simulate data-scarce scenarios, we
design three experimental settings with varying amounts of
training data. The first setting includes 1,000 samples per
dataset, resulting in 3,000 samples in total, with an equal
split between training and non-training data for each LLM.
The second setting uses 600 samples per dataset, yielding
a total of 1,800 samples. The third setting contains 400
samples per dataset, amounting to 1,200 samples in total. The
test set and support set are fixed at 400 and 100 samples,
respectively. As shown in Figure 6, our method consistently
achieves strong performance, with AUC scores exceeding 0.95
across different training data scales. Although a slight decline
in AUC is observed as the training data size decreases, the
overall performance remains within an acceptable range. In
the experiments presented in Section B-B, we further reduced
the size of the training data by setting the training set to 50,
100, and 200 samples. The results are reported in Table XII.
These results show our approach remains robust and practical
even with limited data.

10

(a) WikiTection (b) NewsTection (c) ArXivTection

Fig. 6: AUC scores of NART across different test datasets under varying training data sizes.

TABLE IV: Evaluating NART under imbalanced datasets.

Testing Metrics LLMs
Dataset GPT2-xl LLaMA2-7B LLaMA3-8B Mistral-7B

WikiTection
TPR@5%FPR 0.986 0.934 0.983 0.975

TPR@10%FPR 0.988 0.965 0.991 0.980
AUC 0.989 0.976 0.989 0.986

NewsTection
TPR@5%FPR 0.911 0.902 0.938 0.955

TPR@10%FPR 0.932 0.965 0.973 0.969
AUC 0.973 0.977 0.985 0.981

ArXivTection
TPR@5%FPR 0.971 0.940 0.988 0.975

TPR@10%FPR 0.979 0.956 0.990 0.979
AUC 0.978 0.966 0.989 0.981

Imbalanced Training Data. In this experiment, we focus
on scenarios involving imbalanced training data across differ-
ent categories. The data distribution is configured in a 1:2:3
ratio across the WikiTection, NewsTection, and ArXivTection
datasets, corresponding to 400, 800, and 1,200 samples, re-
spectively. As shown in Table IV, our method continues to
exhibit strong performance despite the imbalanced training
data distribution. The AUC scores for all datasets exceed 0.96,
and the TPR@10%FPR values remain consistently above 0.95,
with the highest reaching 0.991. These results further validate
the robustness and practical applicability of our approach in
imbalanced data scenarios.

G. Impact of Mislabeled Samples

In practical settings, the training dataset may include a
notable proportion of mislabeled instances. For example, sam-
ples labeled as members may actually be non-members, and
vice versa. Table V presents the impact of such mislabeled
membership samples. We simulated three levels of label noise
with error ratios of 5%, 10%, and 20%. The results show that
when the error ratio is low (e.g., 5%), the proposed method
maintains strong detection performance. However, as the error
ratio increases to 20%, the effectiveness of the method declines
noticeably, though the AUC still reaches up to 0.946 and
the TPR@5%FPR remains at 0.733. These findings highlight
the importance of accurate sample labeling for ensuring the
reliability of the detection model.

TABLE V: Performance of NART under different mislabeled
data ratios across multiple LLMs.

Dataset Mislabeled Ratio
GPT2-xl LLaMA3-8B Mistral-7B

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

WikiTection

5% 0.988 0.941 0.986 0.961 0.939 0.686

10% 0.956 0.757 0.923 0.757 0.872 0.398

20% 0.861 0.486 0.863 0.438 0.768 0.181

NewsTection

5% 0.982 0.961 0.945 0.853 0.968 0.951

10% 0.971 0.893 0.894 0.427 0.940 0.748

20% 0.946 0.733 0.808 0.405 0.818 0.259

ArXivTection

5% 0.991 0.941 0.989 0.971 0.970 0.951

10% 0.962 0.874 0.959 0.709 0.938 0.689

20% 0.814 0.143 0.829 0.171 0.848 0.295

TABLE VI: Training and inference time comparisons across
datasets and models.

Model
Training Time per Epoch Inference Time per Sample

WikiTection NewsTection ArXivTection WikiTection NewsTection ArXivTection

PARSING 11.15s 10.76s 10.89s 0.0019s 0.0015s 0.0018s
NART NonFE 18.34s 18.52s 18.62s 0.0060s 0.0059s 0.0061s
NART StatFE 0.58s 0.56s 0.58s 0.0054s 0.0034s 0.0035s
NART HistFE 1.99s 1.21s 1.66s 0.0098s 0.0098s 0.0056s

H. Efficiency

Table VI compares the time overhead of NART with differ-
ent feature extraction methods and the white-box membership
inference method PARSING [24], using LLaMA3-8B as the
target LLM. The comparison includes the average training time
per epoch and the average inference time per test sample. The
experiment was conducted with 1,500 training samples and
500 test samples, where member and non-member samples
each accounted for 50%. Experimental results show that NART
exhibits minimal variation in inference time per test sample
across different feature extraction strategies, while the training
time varies significantly. This is primarily because the StatFE
and HistFE methods substantially reduce the dimensionality
of the training data, thereby lowering computational overhead.
In addition, NART outperforms PARSING in terms of effi-
ciency. This is because PARSING requires extensive access
to the LLM’s internal information to train the membership
inference classifier.

11

I. Ablation Study

Effects of Different Support Set Size. In our proposed
framework, the support set Dsup, introduced during the testing
phase serves as a reference for each test instance. Specifically,
the model computes the distance between the test sample
and category-specific samples in the support set, assigning
the label of the closest category. The support set effectively
acts as a set of “prototypes,” enabling reliable comparisons
under few-shot conditions. This allows the model to perform
accurate class discrimination in the embedding space based on
the learned representations. We conducted experiments with
varying support set sizes to investigate their impact on the
performance of NART. Specifically, we gradually increased
the number of support samples from 20 to 200 and evaluated
the resulting changes in detection performance. As shown in
Figure 7, we performed sensitivity experiments on support
set size using the ArXivTection dataset with two LLMs:
GPT2-xl and LLaMA3-8B. Across all performance metrics,
the variation in support set size had minimal impact on the
overall effectiveness of NART. Notably, even with a minimal
support set of just 20 samples, the model maintained excellent
detection performance, with AUC values consistently around
0.99. These results demonstrate that NART exhibits strong
robustness with respect to support set size.

(a) GPT2-xl (b) LLaMA3-8B

Fig. 7: Effects of support set size.

Activations from Specified Layers. In previous experi-
ments, we consistently used activations from all layers of the
LLMs as input features to comprehensively capture the acti-
vation differences when processing training and non-training
data. Existing experimental results indicate that this approach
helps retain the model’s internal representational information
to the fullest extent, thereby enhancing the accuracy and
robustness of training data detection. Here, we explore whether
using activations from specific layers can yield the desired
results. The results are shown in Table VII, with Table VIIa
and Table VIIb presenting the AUC scores obtained using
activations from a single layer and activations from a subset
of layers, respectively. The LLM used in this experiment is
LLaMA3-8B, which has a 32-layer network architecture.

We found that, in both settings, our approach still achieves
good AUC scores in most cases. However, some fluctuations
were occasionally observed. For instance, in Table VIIa, the
AUC score for the NewsTection dataset exhibited significant
variation, with the lowest value being 0.507. In Table VIIb,

the lowest AUC score for the NewsTection dataset was 0.581.
Notably, these fluctuations typically occurred in the earlier
or middle layers of the LLM, whereas using the last few
layers of the model resulted in stable and satisfactory AUC
scores. The fluctuations in AUC scores are primarily attributed
to the characteristics of different layers in the large model.
The earlier and intermediate layers capture low-level features,
which are relatively unstable, leading to fluctuations in some
datasets. In contrast, the later layers, which integrate higher-
level information, provide more stable features, thus enhancing
the stability of the AUC scores. Furthermore, the character-
istics of different datasets exacerbate these fluctuations. For
example, the feature distribution of the NewsTection dataset
may be more complex, leading to larger fluctuations in the
earlier layers, while datasets like WikiTection, with greater
structure and information density, tend to be more stable.

TABLE VII: AUC scores of NART using activations from
different transformer layers of LLaMA3-8B.

(a) AUC scores on Specified Layer

Dataset layer
1

layer
7

layer
12

layer
18

layer
25

layer
32

WikiTection 0.993 0.996 0.993 0.999 0.997 0.998
NewsTection 0.507 0.987 0.779 0.569 0.991 0.989
ArXivTection 0.989 0.990 0.998 0.991 0.995 0.997

(b) AUC scores on Specified Layers

Dataset layers
1–3

layers
6–9

layers
11–14

layers
17–22

layers
24–28

layers
29–32

WikiTection 0.997 0.995 0.999 0.998 0.997 0.998
NewsTection 0.581 0.987 0.630 0.677 0.987 0.976
ArXivTection 0.993 0.989 0.998 0.993 0.996 0.998

Quantized Models. All the above experiments were con-
ducted with each LLM configured to use floating point pre-
cision of 32 bits. To further assess the robustness of our
proposed approach in real-world deployment scenarios, we
conduct experiments on the WikiTection and ArXivTection
datasets to investigate whether changes in model activations
under different numerical precision settings (e.g., float32,
float16, int8, int4) affect membership inference performance.
This experiment is designed to simulate practical deploy-
ment conditions where LLMs may be quantized for resource-
constrained environments, such as edge devices or mobile
platforms. Our goal is to evaluate the applicability and stability
of the proposed method under low-precision computation. As
shown in the results of Table VIII, when model inference
is performed at lower precisions (e.g., float16 or int8), the
activations produced by the LLM still support our approach in
achieving satisfactory membership inference performance, de-
spite a slight fluctuations in AUC. This indicates that changes
in model precision have minimal impact on the performance
of our method, further demonstrating its robustness.

12

TABLE VIII: TPR@5%FPR of NART on WikiTection and ArXiv-
Tection with LLaMA3-8B and Mistral-7B under varying precision.

Dataset Precisions LLaMA3-8B Mistral-7B

WikiTection

float32 0.991 0.977
float16 0.994 0.981

int8 0.989 0.975
int4 0.993 0.979

ArXivTection

float32 0.988 0.982
float16 0.986 0.979

int8 0.993 0.981
int4 0.984 0.983

(a) Percentiles of StatFE (b) Bins of HistFE

Fig. 8: Impact of percentile selection in StatFE and bins count
in HistFE on AUC scores for NewsTection.

Impacts of Parameters in StatFE and HistFE Methods.
In the two feature extraction methods we propose, StatFE
and HistFE, the number of percentiles determines the di-
mensionality of the StatFE feature vector, while the number
of bins directly affects the accuracy of the histogram in
HistFE, thus influencing the final feature dimensions. To
better understand the impact of these parameters on feature
extraction performance, we conducted ablation experiments
focusing on these two key factors. The experimental results are
shown in Figure 8, where Figure 8a illustrates the performance
of StatFE with 20, 50, and 100 percentiles uniformly selected
from the range of 0 to 100. We observed that the choice of
percentiles impacts the performance of our method, and the
optimal selection varies across different models. Figure 8b
shows the effect of different bin counts in HistFE on the final
performance. As the number of bins increases, the data range
represented by each bin becomes narrower, enabling the model
to capture more refined features and variations.

VII. DISCUSSION

Next, we present an in-depth discussion on the applicability
and potential limitations of the proposed approach.

General Applicability. In this work, we address the prob-
lem of detecting training data in LLMs within a white-box
setting. To achieve this, we design and implement a compre-
hensive detection pipeline: we first extract deep representation
information from the model’s intermediate activations, then
apply carefully designed feature extraction methods, such as
NonFE, StatFE, and HistFE, to convert these activations into
vector representations suitable for classification. Finally, we

employ a framework to facilitate efficient and robust member-
ship inference in a few-shot setting. We systematically evaluate
our approach across various language model architectures and
diverse datasets. The results demonstrate that our method
consistently delivers strong performance and exhibits excellent
generalization across multiple real-world tasks. Even with a
limited number of textual examples and significant class imbal-
ance, our method consistently demonstrates robust and reliable
performance (as shown in Section VI-F). Moreover, to address
the variability of text lengths encountered in real-world sce-
narios, our approach improves adaptability and generality by
segmenting long texts and aggregating predictions from their
subsequences. Table VI in Section VI-H demonstrates that the
StatFE and HistFE feature extraction methods significantly
reduce training time. Meanwhile, in Section B-I, we performed
blind attacks on our dataset, which demonstrated that there
is no distribution shift, further validating the effectiveness
and generalizability of our approach. Overall, we provide a
comprehensive solution for stakeholders in the open-source
LLM ecosystem, addressing privacy protection and copyright
compliance challenges.

Limitations. In our experiments, we observed that the
proposed approach performs suboptimally in cross-category
tasks. Specifically, when the training and testing data originate
from different datasets, such as training on WikiTection and
testing on ArXivTection, the model exhibits poor perfor-
mance. Section B-B considers the scenario where training
and testing samples are drawn from different datasets. The
corresponding experimental results are presented in Table XIII.
We attribute this issue to differences in textual characteris-
tics across datasets from different platforms. For example,
Wikipedia texts are more standardized and clearly structured,
intended for a general audience and written in relatively simple
language. In contrast, ArXiv texts are academic in nature, rich
in technical terminology and complex syntactic constructions.
Our experimental results indicate that as long as the training
set includes samples from a particular category, even in small
quantities, the model can still achieve strong performance.
Moreover, acquiring a small number of representative text
samples is often feasible, ensuring that our approach remains
effective even under data-scarce conditions.

VIII. CONCLUSION

In this paper, we leverage the white-box nature of open-
source LLMs and observe that their internal activation patterns
exhibit significant differences when queried with training
versus non-training data. Building on this insight, we propose
a method that utilizes model activation information to detect
training data, thereby enabling MIAs against LLMs. We fine-
tune LLMs using carefully selected datasets to determine
the membership status of data samples. We collect texts
from multiple platforms and construct three datasets, namely
WikiTection, NewsTection, and ArXivTection. Each dataset
contains data released after the latest known training cutoff
dates of the LLMs, ensuring that all training samples are
genuinely novel to the models. Next, we generate prompts

13

from the constructed datasets and input them into the LLM to
obtain the corresponding activation values. These activations
are then normalized, and three feature extraction methods,
namely NonFE, StatFE, and HistFE, are employed to extract
feature vectors that represent the input texts. Finally, we
train a triplet network to learn activation features of member
and non-member texts, enabling the model to capture subtle
distinctions and substantially improving the accuracy and
robustness of training data detection. Extensive experiments
across various model architectures and datasets demonstrate
that our approach not only achieves outstanding performance
but also exhibits strong robustness and wide applicability.

ACKNOWLEDGMENT

Xue Tan, Hao Luan, Mingyu Luo, Zhuyang Yu, and Ping
Chen were funded in part by the National Key R&D Program
of China under Grant No. 2022YFB3102902.

REFERENCES

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” NeurIPS, vol. 33, pp. 1877–1901, 2020.

[2] OpenAI2023, “Gpt-4 technical report,”
https://cdn.openai.com/papers/gpt-4.pdf, 2023.

[3] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[4] T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić, D. Hesslow,
R. Castagné, A. S. Luccioni, F. Yvon, M. Gallé et al., “Bloom: A 176b-
parameter open-access multilingual language model,” arXiv preprint
arXiv:2211.05100, 2022.

[5] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier,
L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang,
T. Lacroix, and W. E. Sayed, “Mistral 7b,” 2023.

[6] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[7] ——, “Llama 2: Open foundation and fine-tuned chat models,” arXiv
preprint arXiv:2307.09288, 2023.

[8] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle,
A. Letman, A. Mathur, A. Schelten, A. Vaughan et al., “The llama 3
herd of models,” arXiv preprint arXiv:2407.21783, 2024.

[9] H. Face, “Hugging face models,” https://huggingface.co/models, 2025,
accessed: 2025-03-25.

[10] M. AI, “Meta ai blog,” https://ai.meta.com/blog/, 2025, accessed: 2025-
03-25.

[11] X. Zhao, L. Li, and Y.-X. Wang, “Provably confidential language
modelling,” in NAACL, 2022, pp. 943–955.

[12] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[13] J. Bai, S. Bai, Y. Chu, Z. Cui, K. Dang, X. Deng, Y. Fan, W. Ge,
Y. Han, F. Huang et al., “Qwen technical report,” arXiv preprint
arXiv:2309.16609, 2023.

[14] A. Yang, B. Xiao, B. Wang, B. Zhang, C. Bian, C. Yin, C. Lv, D. Pan,
D. Wang, D. Yan et al., “Baichuan 2: Open large-scale language models,”
arXiv preprint arXiv:2309.10305, 2023.

[15] K. Chang, M. Cramer, S. Soni, and D. Bamman, “Speak, memory: An
archaeology of books known to chatgpt/gpt-4,” in EMNLP, 2023.

[16] M. Mozes, X. He, B. Kleinberg, and L. D. Griffin, “Use of llms for
illicit purposes: Threats, prevention measures, and vulnerabilities,” arXiv
preprint arXiv:2308.12833, 2023.

[17] M. M. Grynbaum and R. Mac, “The Times sues OpenAI and
Microsoft over A.I. use of copyrighted work,” https://www.nytimes.
com/2023/12/27/business/media/new-york-times-open-ai-microsoft-
lawsuit.html, 2023.

[18] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
symposium on security and privacy (SP). IEEE, 2017, pp. 3–18.

[19] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee,
A. Roberts, T. Brown, D. Song, U. Erlingsson et al., “Extracting training
data from large language models,” in USENIX Security 21, 2021.

[20] W. Shi, A. Ajith, M. Xia, Y. Huang, D. Liu, T. Blevins, D. Chen,
and L. Zettlemoyer, “Detecting pretraining data from large language
models,” in ICLR, 2024.

[21] J. Mattern, F. Mireshghallah, Z. Jin, B. Schoelkopf, M. Sachan, and
T. Berg-Kirkpatrick, “Membership inference attacks against language
models via neighbourhood comparison,” Findings of ACL, 2023.

[22] M. Meeus, S. Jain, M. Rei, and Y.-A. de Montjoye, “Did the neurons read
your book? document-level membership inference for large language
models,” in USENIX Security, 2024, pp. 2369–2385.

[23] W. Zhang, R. Zhang, J. Guo, M. Rijke, Y. Fan, and X. Cheng,
“Pretraining data detection for large language models: A divergence-
based calibration method,” in EMNLP, 2024, pp. 5263–5274.

[24] Q. Sun, H. Wu, and X. S. Zhang, “On active privacy auditing in
supervised fine-tuning for white-box language models,” arXiv preprint
arXiv:2411.07070, 2024.

[25] D. Das, J. Zhang, and F. Tramèr, “Blind baselines beat membership infer-
ence attacks for foundation models,” arXiv preprint arXiv:2406.16201,
2024.

[26] A. V. Duarte, X. Zhao, A. L. Oliveira, and L. Li, “De-cop: detecting
copyrighted content in language models training data,” in ICML, 2024.

[27] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier et al.,
“Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.

[28] S. Biderman, H. Schoelkopf, Q. G. Anthony, H. Bradley, K. O’Brien,
E. Hallahan, M. A. Khan, S. Purohit, U. S. Prashanth, E. Raff et al.,
“Pythia: A suite for analyzing large language models across training and
scaling,” in ICML. PMLR, 2023, pp. 2397–2430.

[29] J. Li, A. Fang, G. Smyrnis, M. Ivgi, M. Jordan, S. Y. Gadre, H. Bansal,
E. Guha, S. S. Keh, K. Arora et al., “Datacomp-lm: In search of the
next generation of training sets for language models,” NeurIPS, 2024.

[30] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster,
J. Phang, H. He, A. Thite, N. Nabeshima et al., “The pile: An
800gb dataset of diverse text for language modeling,” arXiv preprint
arXiv:2101.00027, 2020.

[31] M. Duan, A. Suri, N. Mireshghallah, S. Min, W. Shi, L. Zettlemoyer,
Y. Tsvetkov, Y. Choi, D. Evans, and H. Hajishirzi, “Do membership
inference attacks work on large language models?” in COLM, 2024.

[32] S. Narang and A. Chowdhery, “Pathways language model (palm): Scal-
ing to 540 billion parameters for breakthrough performance,” Google AI
Blog, 2022.

[33] Y. Sun, S. Wang, S. Feng, S. Ding, C. Pang, J. Shang, J. Liu, X. Chen,
Y. Zhao, Y. Lu et al., “Ernie 3.0: Large-scale knowledge enhanced
pre-training for language understanding and generation,” arXiv preprint
arXiv:2107.02137, 2021.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” NeurIPS,
vol. 30, 2017.

[35] A. Radford, J. Wu, D. Amodei, D. Amodei, J. Clark, M. Brundage, and
I. Sutskever, “Better language models and their implications,” OpenAI
blog, vol. 1, no. 2, 2019.

[36] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” Journal of machine learning
research, vol. 21, no. 140, pp. 1–67, 2020.

[37] T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, R. Tibshirani, and
J. Friedman, “Unsupervised learning,” The elements of statistical learn-
ing: Data mining, inference, and prediction, pp. 485–585, 2009.

[38] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer,
“Membership inference attacks from first principles,” in SP. IEEE,
2022, pp. 1897–1914.

[39] V. Feldman, “Does learning require memorization? a short tale about a
long tail,” in STOC, 2020, pp. 954–959.

[40] H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and X. Zhang,
“Membership inference attacks on machine learning: A survey,” ACM
Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1–37, 2022.

[41] S. Truex, L. Liu, M. E. Gursoy, L. Yu, and W. Wei, “Demystifying
membership inference attacks in machine learning as a service,” IEEE
transactions on services computing, vol. 14, no. 6, pp. 2073–2089, 2019.

14

https://cdn.openai.com/papers/gpt-4.pdf
https://huggingface.co/models
https://ai.meta.com/blog/
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html

[42] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in
machine learning: Analyzing the connection to overfitting,” in CSF.
IEEE, 2018, pp. 268–282.

[43] Z. Liu, T. Zhu, C. Tan, B. Liu, H. Lu, and W. Chen, “Probing language
models for pre-training data detection,” in ACL, 2024, pp. 1576–1587.

[44] L. Ibanez-Lissen, L. Gonzalez-Manzano, J. M. de Fuentes, N. Anciaux,
and J. Garcia-Alfaro, “Lumia: Linear probing for unimodal and multi-
modal membership inference attacks leveraging internal llm states,” in
ESORICS. Springer, 2025, pp. 186–206.

[45] I. Melekhov, J. Kannala, and E. Rahtu, “Siamese network features for
image matching,” in ICPR. IEEE, 2016, pp. 378–383.

[46] S. Chang, W. Li, Y. Zhang, and Z. Feng, “Online siamese network for
visual object tracking,” Sensors, vol. 19, no. 8, p. 1858, 2019.

[47] Y. Huang, A. Li, B. Zhou, J. Huang, L. Lan, X. Yin, and Y. Jia, “Person
entity attribute extraction based on siamese network,” IEEE Access,
vol. 7, pp. 64 506–64 516, 2019.

[48] T. Mueller, G. Pérez-Torró, and M. Franco-Salvador, “Few-shot learning
with siamese networks and label tuning,” in ACL, 2022, pp. 8532–8545.

[49] “Common crawl,” https://commoncrawl.org.
[50] M. Hart, “Project gutenberg.” [Online]. Available: https://www.

gutenberg.org/
[51] J. He, Y. Gong, Z. Lin, C. Wei, Y. Zhao, and K. Chen, “Llm factoscope:

Uncovering llms’ factual discernment through measuring inner states,”
in Findings of ACL, 2024, pp. 10 218–10 230.

[52] K. Meng, A. S. Sharma, A. J. Andonian, Y. Belinkov, and D. Bau,
“Mass-editing memory in a transformer,” in ICLR, 2023.

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[54] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in CVPR, 2015, pp. 815–823.

[55] S. Agarwal, L. Ahmad, J. Ai, S. Altman, A. Applebaum, E. Arbus, R. K.
Arora, Y. Bai, B. Baker, H. Bao et al., “gpt-oss-120b & gpt-oss-20b
model card,” arXiv preprint arXiv:2508.10925, 2025.

[56] A. Yang, A. Li, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Gao,
C. Huang, C. Lv et al., “Qwen3 technical report,” arXiv preprint
arXiv:2505.09388, 2025.

[57] A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski,
V. Ramasesh, A. Slone, C. Anil, I. Schlag, T. Gutman-Solo et al., “Solv-
ing quantitative reasoning problems with language models,” NeurIPS,
vol. 35, pp. 3843–3857, 2022.

[58] X. Li, Y. Zhang, R. Lou, C. Wu, and J. Wang, “Chain-of-scrutiny:
Detecting backdoor attacks for large language models,” arXiv preprint
arXiv:2406.05948, 2024.

[59] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

APPENDIX A
ADDITIONAL DETAILS OF EXPERIMENT

A. Details and Results of Finetuning

Table IX presents the key parameters used for fine-tuning
the target LLM, which are determined based on the model’s
convergence behavior during the fine-tuning process. Table X
presents the performance of the fine-tuned LLM on the training
and test sets. We employ three metrics, namely BLEU-4,
ROUGE-1, and ROUGE-L, to evaluate the quality of the
generated text. The results show that the scores on the training
and test sets are highly consistent across all datasets, with dif-
ferences of less than 0.03. This indicates that the model main-
tains stable generation quality on unseen data, demonstrating
strong generalization ability without signs of overfitting. The
performance differences across datasets are mainly attributed
to variations in domain and writing style. Specifically, the
structurally regular WikiTection dataset achieves better per-
formance, whereas the more complex ArXivTection dataset
performs relatively worse.

TABLE IX: Main hyperparameters used in finetuning target
model.

Dataset
Target Model

learning rate batch size epoch max-seq-len
WikiTection 2e-5 16 3 512
NewsTection 2e-5 16 4 512
ArxivTection 2e-5 16 3 2048

TABLE X: Performance comparison of different LLMs on
training and test sets across three datasets.

Dataset Application Metrics
LLMs

GPT2
-xl

LLaMA2
-7B

LLaMA3
-8B

Mistral
-7B

LLaMA2
-13B

GPT-OSS
-20B

Qwen3
-8B

WikiTection

Training
Set

BLEU-4 0.736 0.755 0.820 0.816 0.753 0.569 0.727

ROUGE-1 0.810 0.870 0.889 0.896 0.864 0.612 0.790

ROUGE-L 0.809 0.867 0.886 0.894 0.861 0.597 0.750

Test
Set

BLEU-4 0.721 0.748 0.813 0.773 0.747 0.531 0.731

ROUGE-1 0.794 0.858 0.879 0.889 0.859 0.578 0.784

ROUGE-L 0.791 0.856 0.876 0.885 0.856 0.561 0.787

NewsTection

Training
Set

BLEU-4 0.379 0.407 0.465 0.458 0.415 0.187 0.232

ROUGE-1 0.363 0.387 0.444 0.456 0.403 0.263 0.341

ROUGE-L 0.329 0.359 0.413 0.436 0.375 0.212 0.306

Test
Set

BLEU-4 0.365 0.387 0.448 0.446 0.406 0.157 0.256

ROUGE-1 0.346 0.371 0.439 0.447 0.395 0.230 0.356

ROUGE-L 0.317 0.334 0.404 0.415 0.357 0.181 0.324

ArXivTection

Training
Set

BLEU-4 0.282 0.399 0.392 0.412 0.396 0.141 0.239

ROUGE-1 0.228 0.240 0.244 0.244 0.239 0.127 0.215

ROUGE-L 0.139 0.153 0.155 0.155 0.151 0.103. 0.161

Test
Set

BLEU-4 0.249 0.332 0.338 0.339 0.333 0.136 0.242

ROUGE-1 0.190 0.196 0.198 0.197 0.198 0.117 0.234

ROUGE-L 0.135 0.143 0.145 0.144 0.145 0.101 0.189

B. Prompt

You are a helpful assistant. Below is a given topic and related
contexts. Please continue writing or analyze the contexts.
Topic: [topic]
Context: [contexts]

You are a helpful assistant. Below is an original passage along
with its corresponding topic. Please rewrite and paraphrase the
passage in a way that preserves its meaning while altering the
sentence structure and expression.
Original Passage:[original passage]
Topic: [topic]

Fig. 9: Prompt used to guide GPT-4o in generating semanti-
cally equivalent paraphrases of the given context.

APPENDIX B
SUPPLEMENTARY EXPERIMENTAL RESULTS AND

ANALYSES

A. The Performance of NART

In order to provide a more comprehensive evaluation of the
proposed NART method under membership inference attack
(MIA) scenarios, we further introduce two additional metrics:
TPR@3%FPR and TPR@1%FPR. These metrics assess the
accuracy of membership inference under stricter false positive
rate constraints. As shown in Table XI, NART maintains
high membership inference accuracy even under stringent FPR
conditions. For example, on the WikiTection dataset, when
different feature extraction strategies are applied and LLMs

15

https://commoncrawl.org
https://www.gutenberg.org/
https://www.gutenberg.org/

such as GPT2-xl, LLaMA3-8B, and Mistral-7B are used,
the TPR@1%FPR ranges from 0.968 to 0.994. These results
further validate the effectiveness of the proposed method,
indicating its ability to reliably determine whether a data
sample was part of an LLM’s training set.

TABLE XI: The performance of NART across different LLMs.

Dataset FeaEXTRACT Metrics
LLMs

GPT2-xl LLaMA3-8B Mistral-7B

WikiTection

NonFE
TPR@3%FPR 0.991 0.991 0.993
TPR@1%FPR 0.968 0.990 0.989

StatFE
TPR@3%FPR 0.982 0.995 0.995
TPR@1%FPR 0.973 0.994 0.993

HistFE
TPR@3%FPR 0.995 0.989 0.995
TPR@1%FPR 0.977 0.978 0.991

ArXivTection

NonFE
TPR@3%FPR 0.971 0.987 0.982
TPR@1%FPR 0.955 0.986 0.973

StatFE
TPR@3%FPR 0.981 0.977 0.973
TPR@1%FPR 0.955 0.971 0.965

HistFE
TPR@3%FPR 0.982 0.978 0.964
TPR@1%FPR 0.973 0.968 0.932

TABLE XII: AUC and TPR@5%FPR results of NART with
varying training dataset sizes.

Dataset Dataset GPT2-xl LLaMA3-8B Mistral-7B

Size AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

WikiTection
50 0.994 0.989 0.991 0.976 0.995 0.993

100 0.994 0.990 0.998 0.989 0.996 0.990
200 0.995 0.991 0.999 0.990 0.998 0.996

ArXivTection
50 0.988 0.973 0.998 0.987 0.990 0.986

100 0.991 0.978 0.996 0.989 0.988 0.989
200 0.989 0.980 0.993 0.991 0.991 0.983

B. Generation

Less Training Data. Table XII presents the performance
of NART with limited training data. In this setting, the test
set contains 400 samples, while the support set consists of
50 samples. The experimental results indicate that, due to the
twin-network architecture and the use of triplet loss, NART
achieves an AUC above 0.986 and a TPR@5%FPR exceeding
0.973, even with only 50 training samples. This demonstrates
the robustness and applicability of NART in extreme scenarios,
particularly when access to LLM training data is severely
limited.

Training and Testing Data from Different Sources. To
further evaluate the generalization capability of the proposed
method, we simulate a realistic scenario in which the training
and testing data originate from different sources. In this
experiment, the training set is constructed from two datasets,
while the test set is drawn from a third, distinct dataset. The
training set contains 3,000 samples, the test set 1,000 samples,
and the support set 200 samples. As shown in Table XIII,
NART achieves the best performance when the training data
come from NewsTection and ArXivTection and the test data
are from WikiTection, with AUC values exceeding 0.970
and TPR@5%FPR above 0.930. In contrast, when the test
set consists of samples from NewsTection or ArXivTection,
the performance of NART drops noticeably. We attribute

this to the higher degree of specialization and complexity
in NewsTection and ArXivTection compared to WikiTection,
making models trained on these datasets more adaptable to
WikiTection, whereas the reverse transfer is less effective.

TABLE XIII: Generalization performance of NART. Abbre-
viations: Wiki (WikiTection), News (NewsTection), ArXiv
(ArXivTection).

Training Test Metrics
LLMs

Dataset Dataset GPT2-xl LLaMA3-8B Mistral-7B

Wiki & News ArXiv
TPR@5%FPR 0.567 0.405 0.894

AUC 0.918 0.751 0.970

News & ArXiv Wiki
TPR@5%FPR 0.932 0.959 0.951

AUC 0.972 0.989 0.978

Wiki & ArXiv News
TPR@5%FPR 0.206 0.526 0.209

AUC 0.712 0.889 0.762

C. Comparison of Model Architecture

The proposed membership inference model is designed as a
triplet network based on a Siamese architecture and few-shot
learning principles. This design enables the model to maintain
high performance even under extremely limited training data,
as shown in Table XII. We also compare our approach with
standard multilayer perceptron (MLP) and logistic regression
classifiers, as summarized in Table XIV. The results show that
both MLP and logistic regression models suffer substantial
performance degradation and instability when trained with
limited samples, as they are unable to capture the subtle activa-
tion differences between member and non-member samples. In
contrast, our proposed model effectively amplifies fine-grained
representation differences and consistently achieves accurate
and stable membership inference under such conditions.

TABLE XIV: AUC and TPR@5%FPR results of NART across
different inference model architectures on ArXivTection.

Model
Dataset GPT2-xl LLaMA3-8B Mistral-7B

Size AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

MLP
50 0.875 0.750 0.910 0.000 0.953 0.893

200 0.978 0.960 0.991 0.989 0.993 0.986

Logistic Regression
50 0.882 0.702 0.849 0.725 0.902 0.000

200 0.952 0.858 0.946 0.893 0.962 0.936

Triplet Networks
50 0.988 0.973 0.998 0.987 0.990 0.986

200 0.989 0.980 0.993 0.991 0.991 0.983

D. Performance of NART on Pretrained Language Models

Pythia is a suite of LLMs [28] trained on the Pile [30], a
corpus consisting of 825 GiB of diverse text from 22 sources
spanning academic writing, internet content, and dialogue. The
MIMIR dataset [31] is constructed from both the training and
test subsets of the Pile. The DCLM benchmark [29] consists of
240T text tokens extracted from Common Crawl, and a series
of models are trained on different subsets of this benchmark.
Since the models trained on these benchmarks use publicly
accessible training and testing data, these benchmarks are well
suited for MIA evaluation and have been widely adopted as
reliable benchmarks in privacy research [25], [31].

16

We sampled 1,000 training examples and 1,000 testing
examples from the Pile, MIMIR, and DCLM datasets to
evaluate our membership inference method on the Pythia-
12B and DCLM-1B models. The training samples and testing
samples are used as member and non-member data, respec-
tively. As shown in Table XV and Table XVI, our method
achieves strong membership inference performance on the
Pile, MIMIR, and DCLM datasets using pretrained models,
with TPR@10%FPR scores of 0.911, 0.931, and 0.980 (AUC
scores of 0.923, 0.955, and 0.974), respectively. However,
compared to fine-tuned models, the performance is moderately
lower. This is likely due to the large scale of the pretraining
corpus, where each sample is typically observed only once
during training, resulting in weaker memorization and reduced
membership inference accuracy.

TABLE XV: The performance of NART on Pythia-12B.

Dataset FeaEXTRACT
Pythia-12B

AUC TPR@10%FPR TPR@5%FPR TPR@3%FPR TPR@1%FPR

Pile
NonFE 0.923 0.911 0.683 0.475 0.188
StatFE 0.931 0.916 0.691 0.415 0.201
HistFE 0.918 0.899 0.654 0.489 0.199

MIMIR
NonFE 0.955 0.931 0.802 0.446 0.305
StatFE 0.932 0.921 0.525 0.465 0.297
HistFE 0.967 0.941 0.832 0.723 0.356

TABLE XVI: The performance of NART on DCLM-1B.

Dataset FeaEXTRACT
DCLM-1B

AUC TPR@10%FPR TPR@5%FPR TPR@3%FPR TPR@1%FPR

DCLM-Baseline

NonFE 0.974 0.980 0.970 0.584 0.386

StatFE 0.935 0.901 0.733 0.446 0.149

HistFE 0.988 0.990 0.980 0.842 0.436

TABLE XVII: Performance comparison of different LLMs on
training and test sets.

Dataset Application Metrics LLMs
GPT2-xl LLaMA3-8B Mistral-7B

WikiTection

Training Set
BLEU-4 0.838 0.851 0.831

ROUGE-1 0.908 0.943 0.934
ROUGE-L 0.902 0.942 0.932

Test Set
BLEU-4 0.800 0.828 0.785

ROUGE-1 0.868 0.893 0.897
ROUGE-L 0.865 0.897 0.895

NewsTection

Training Set
BLEU-4 0.537 0.579 0.573

ROUGE-1 0.537 0.581 0.575
ROUGE-L 0.503 0.560 0.551

Test Set
BLEU-4 0.513 0.559 0.555

ROUGE-1 0.517 0.558 0.563
ROUGE-L 0.483 0.533 0.539

ArXivTection

Training Set
BLEU-4 0.262 0.317 0.316

ROUGE-1 0.200 0.214 0.211
ROUGE-L 0.164 0.180 0.181

Test Set
BLEU-4 0.254 0.317 0.313

ROUGE-1 0.196 0.211 0.202
ROUGE-L 0.163 0.181 0.176

E. Performance of NART on Massive Datasets
In practice, LLMs are typically trained or fine-tuned on

massive datasets. To evaluate the effectiveness of our pro-

posed method under large-scale data conditions, we expanded
the WikiTection, NewsTection and ArXivTection datasets to
include 100K samples each and conducted experiments with
training set sizes of 20K, 50K, and 100K. Table XVII presents
the performance of the fine-tuned model on the training and
test sets when the fine-tuning dataset contains 100K samples
and the test set contains 10K samples. The results show that
the training and test performances are highly consistent across
different datasets, with a difference of less than 0.05, indicat-
ing that the fine-tuned model has strong generalization ability
and does not exhibit overfitting. As shown in Table XVIII, our
method can still accurately determine whether a given sample
belongs to the training set, even when the LLM is trained
on tens of thousands of data samples. For example, with the
100K WikiTection dataset for fine-tuning, our method achieves
an TPR@5%FPR of 0.990 and AUC of 0.997 on GPT2-xl.

F. Maximum Context Length

We further conducted experiments to evaluate the effec-
tiveness of our method when the input length reaches the
maximum context length supported by each LLM. In this
study, we selected four LLMs with different maximum context
lengths (GPT2-xl with 1K, LLaMA2-7B with 4K, LLaMA3-
8B with 8K, and LLaMA3-8B-32K with 32K) and constructed
input samples that fully utilize each model’s maximum context
length for fine-tuning and subsequent activation extraction. For
original texts shorter than the required length, we replicated
the content to extend them to the target length. As shown in
Table XIX, our method remains effective under the maximum
context-length setting and some models even achieve better
performance than with shorter inputs (Table I).

G. Performance of NART on Datasets from Earlier Model
Versions

In practical applications, the proposed detection model often
needs to leverage activation data from newer versions of LLMs
to identify samples that appeared during the training of earlier
versions. To simulate this scenario, we conducted multiple
rounds of fine-tuning, using activation data from different
update iterations to train the detection model, which was then
used to determine the membership status of samples from the
initial fine-tuning stage. As shown in Table XX, the results
demonstrate that detection models trained on activation data
from newer LLM versions exhibit reduced effectiveness when
inferring the membership status of data utilized in earlier train-
ing stages. Specifically, the model’s inference performance
degrades for data belonging to older versions. For example,
when we fine-tuned GPT2-xl on the NewsTection dataset for
3 and 6 rounds, the AUC of the detection model on the
first-round fine-tuning data decreased from 0.971 to 0.843.
Nonetheless, the overall performance remains acceptable.

H. Impact of Token Position on NART Detection Performance

We compared the performance of detection models trained
and tested using activations from tokens at different positions
within the input. As shown in Table XXI, we conducted

17

TABLE XVIII: The performance of NART across Massive Datasets.

Dataset Size Metrics GPT2-xl LLaMA3-8B Mistral-7B
NonFE StatFE HistFE NonFE StatFE HistFE NonFE StatFE HistFE

WikiTection
20K TPR@5%FPR 0.979 0.980 0.982 0.990 0.990 0.992 0.992 0.990 0.994

AUC 0.995 0.989 0.994 0.996 0.997 0.998 0.996 0.998 0.999

50K TPR@5%FPR 0.980 0.960 0.990 0.996 0.994 0.992 0.994 0.990 0.990
AUC 0.997 0.979 0.998 0.998 0.999 0.999 0.998 0.999 0.999

100K TPR@5%FPR 0.990 0.919 0.989 0.995 0.994 0.990 0.990 0.988 0.992
AUC 0.997 0.962 0.998 0.998 0.998 0.996 0.996 0.994 0.996

NewsTection
20K TPR@5%FPR 0.995 0.990 0.996 0.990 0.990 0.986 0.980 0.990 0.995

AUC 0.998 0.996 0.999 0.991 0.998 0.995 0.995 0.996 0.998

50K TPR@5%FPR 0.990 0.985 0.990 0.980 0.980 0.986 0.988 0.980 0.990
AUC 0.995 0.995 0.998 0.991 0.990 0.995 0.996 0.992 0.998

100K TPR@5%FPR 0.989 0.980 0.990 0.990 0.980 0.990 0.990 0.986 0.990
AUC 0.998 0.990 0.997 0.998 0.990 0.996 0.998 0.995 0.998

ArXivTection
20K TPR@5%FPR 0.951 0.949 0.953 0.980 0.985 0.982 0.980 0.990 0.990

AUC 0.984 0.981 0.986 0.994 0.990 0.990 0.995 0.996 0.998

50K TPR@5%FPR 0.963 0.958 0.966 0.988 0.982 0.990 0.990 0.982 0.990
AUC 0.978 0.972 0.980 0.996 0.992 0.994 0.994 0.993 0.998

100K TPR@5%FPR 0.959 0.950 0.953 0.990 0.985 0.988 0.995 0.990 0.992
AUC 0.979 0.951 0.981 0.995 0.994 0.994 0.999 0.998 0.999

TABLE XIX: Evaluation of NART on LLMs under Maximum
Context Length Input.

Dataset Models
NonFE StatFE HistFE

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

WikiTection

GPT2-xl 0.999 0.992 0.995 0.990 0.998 0.995

LLaMA2-7B 0.998 0.990 0.996 0.988 0.999 0.990

LLaMA3-8B 0.998 0.995 0.996 0.990 0.999 0.990

LLaMA2-7B-32K 0.999 0.995 0.995 0.990 0.996 0.995

NewsTection

GPT2-xl 0.998 0.990 0.996 0.990 0.999 0.995

LLaMA2-7B 0.980 0.960 0.985 0.975 0.986 0.970

LLaMA3-8B 0.990 0.980 0.986 0.960 0.991 0.980

LLaMA2-7B-32K 0.999 0.995 0.996 0.990 0.992 0.990

ArXivTection

GPT2-xl 0.996 0.989 0.991 0.985 0.993 0.991

LLaMA2-7B 0.995 0.990 0.989 0.980 0.991 0.983

LLaMA3-8B 0.996 0.992 0.995 0.989 0.998 0.994

LLaMA2-7B-32K 0.996 0.992 0.990 0.988 0.995 0.992

TABLE XX: Performance of NART under different update
times across multiple LLMs.

Dataset Update Times
GPT2-xl LLaMA3-8B Mistral-7B

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

WikiTection
3 0.993 0.985 0.979 0.905 0.998 0.996
6 0.983 0.927 0.949 0.786 0.974 0.943

NewsTection
3 0.971 0.858 0.934 0.612 0.991 0.964
6 0.843 0.631 0.871 0.384 0.919 0.579

ArXivTection
3 0.984 0.975 0.995 0.989 0.990 0.986
6 0.970 0.831 0.990 0.988 0.989 0.982

experiments using the activations of the first token, a middle-
position token, and the last token. The results show that
the activations of the last token achieve the best and most
stable performance, as they more comprehensively capture the
internal representation of the entire input, leading to clearer
distinctions between member and non-member samples. For
example, on the NewsTection dataset using GPT2-xl, the
detection model achieved TPR@5%FPR scores of 0.010 and
0.089 when using the first-token and middle-token activations,
respectively, whereas the last-token activation yielded 0.918.

TABLE XXI: Performance of NART on Activations from
Tokens at Different Positions.

Dataset Position of token
GPT2-xl LLaMA3-8B Mistral-7B

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

WikiTection
first 0.528 0.040 0.572 0.040 0.594 0.050

middle 0.616 0.218 0.847 0.594 0.812 0.198
last 0.992 0.991 0.998 0.991 0.996 0.997

NewsTection
first 0.501 0.010 0.601 0.065 0.489 0.030

middle 0.561 0.089 0.937 0.648 0.526 0.079
last 0.977 0.918 0.988 0.941 0.985 0.959

ArXivTection
first 0.514 0.019 0.535 0.040 0.525 0.139

middle 0.591 0.178 0.993 0.980 0.538 0.069
last 0.986 0.983 0.994 0.988 0.989 0.982

I. Blind Attacks on Datasets

In the WikiTection, NewsTection, and ArXivTection
datasets we constructed, all samples occur after the latest
known training cutoff dates of the LLMs used in our ex-
periments. The member samples for fine-tuning and the non-
member samples for evaluation are randomly selected from the
three datasets. We employed various blind attack methods [25]
to test whether there are distribution shifts between the mem-
ber and non-member samples. The experimental results, as
shown in Table XXII, indicate that the blind attacks have
minimal impact on our datasets (with TPR@5%FPR below
0.10, compared to a much higher value of 0.947 reported in
[25] when the blind attacks succeed), demonstrating that there
are no distribution shifts in our datasets.

TABLE XXII: Performance comparison across different blind
attacks.

Dataset
Date Detection Bag-of-words classification Greedy rare word selection

AUC TPR@5%FPR AUC TPR@5%FPR AUC TPR@5%FPR

WikiTection 0.512 0.056 0.514 0.066 0.495 0.075

NewsTection 0.497 0.051 0.489 0.044 0.526 0.086

ArXivTection 0.523 0.086 0.492 0.045 0.502 0.060

18

	Introduction
	Background and Related Work
	Language Modeling
	Membership Inference Attack
	Siamese Networks

	PROBLEM STATEMENT
	Methodology
	Approach Overview
	Querying the Model
	Activation Collection and Normalization
	Feature Extraction
	NART Model Design

	Experimental Setup
	Model
	Dataset for Membership
	Baselines
	Evaluation Metrics
	Methodology Parameters

	Results
	Evaluation across LLMs and Datasets
	Comparison to Baselines
	Model Size
	Text Length
	Paraphrased Text Detection
	Generalization
	Impact of Mislabeled Samples
	Efficiency
	Ablation Study

	Discussion
	Conclusion
	References
	Appendix A: Additional Details of Experiment
	Details and Results of Finetuning
	Prompt

	Appendix B: Supplementary Experimental Results and Analyses
	The Performance of NART
	Generation
	Comparison of Model Architecture
	Performance of NART on Pretrained Language Models
	Performance of NART on Massive Datasets
	Maximum Context Length
	Performance of NART on Datasets from Earlier Model Versions
	Impact of Token Position on NART Detection Performance
	Blind Attacks on Datasets

