
Cryptobazaar: Private Sealed-bid
Auctions at Scale

Andrija Novakovic∗
Bain Capital Crypto

anovakovic@baincapital.com

Alireza Kavousi∗
University College London

a.kavousi@cs.ucl.ac.uk

Kobi Gurkan
Bain Capital Crypto

kgurkan@baincapital.com

Philipp Jovanovic
University College London

p.jovanovic@ucl.ac.uk

Abstract—This work introduces Cryptobazaar, a scalable, pri-
vate, and decentralized sealed-bid auction protocol. In particular,
our protocol protects the privacy of losing bidders by preserving
the confidentiality of their bids while ensuring public verifiability
of the outcome and relying only on a single untrusted auctioneer
for coordination. At its core, Cryptobazaar combines an efficient
distributed protocol to compute the logical-OR for a list of
unary-encoded bids with various novel zero-knowledge succinct
arguments of knowledge that may be of independent interest.
We present protocol variants that can be used for efficient first-,
second-, and more generally (p+1)st-price as well as sequential
first-price auctions. Finally, the performance evaluation of our
Cryptobazaar implementation shows that it is highly practical.
For example, a single auction run with 128 bidders and a price
range of 1024 values terminates in less than 0.5 sec and requires
each bidder to send and receive only about 32KB of data.

I. INTRODUCTION

An auction is a sales process in which potential buyers
aim to acquire goods or services by placing competitive bids.
Auctions thus facilitate transactions by enforcing a specific set
of rules regarding the resource allocation of a group of bidders.
An auctioneer usually coordinates an auction process and may
also be a seller of goods or services. There are various different
types of auctions with the four main ones being first-price
sealed-bid, second-price sealed-bid (Vickrey), ascending open-
bid (English), and descending open-bid (Dutch). Throughout
history auctions have been used for countless different pur-
poses. They also play a crucial role in many digital systems
such as for selling and buying of advertisements [57], for
allocating block space and determining the transaction order
to mitigate maximal extractable value (MEV) in cryptocurren-
cies [23], [49], or for renting out hardware to run large-scale
computations or to store data [37], and more.

A digital auction system should provide various essen-
tial properties, including: (1) privacy for (losing) bidders
to prevent disclosure of their bid preferences [37] which is
particularly crucial to ensure fairness in iterative/sequential

∗Andrija Novakovic and Alireza Kavousi jointly led the research and
contributed equally to this work.

auctions, as any leakage may allow bidders to adapt their
strategies in subsequent runs [23], [2], [32]; (2) verifiability to
ensure that third parties (auditors) can verify the outcome and
penalize misbehaving participants [32]; (3) trust minimization
to mitigate the influence that a potentially malicious auctioneer
could have on the auction’s outcome [53]; and (4) scalability
to ensure that the auction protocol can meet the requirements
of the application (in terms of the number of bidders or
price ranges) in which it is used and not be a performance
bottleneck (in terms of computational and communication
overheads) [37].

There have been many attempts to design sealed-bid auction
systems with the above properties but they usually fall short
in one way or another: In the commonly used commit-reveal
approach, bidders first commit to their bids and open them
later after all bids have been submitted [54]. This approach
has incentive misalignments though, given that bids may be
selectively revealed and it is usually difficult to protect the
privacy of losing bidders. There have been recent attempts
to address the incentive problem through time-based cryp-
tography [51], [28], [59] but none have managed to address
the privacy issue as well so far. Other approaches rely on
elaborated cryptographic machinery such as generic secure
multi-party computation (MPC) [9] or fully homomorphic
encryption (FHE) [33] to address the privacy challenges which,
however, severely impacts scalability making these protocols
not practically useful or restricting them to small scale settings.
In a recent attempt, Addax [60] achieves both privacy and scal-
ability but only under a weakened threat model that requires
non-colluding assumption among (two or more) auctioneers.

In this work, we propose Cryptobazaar, a novel private
auction protocol which improves over the state-of-the-art by
addressing the previously identified challenges. In particular,
Cryptobazaar provides (1) privacy for (losing) bidders/bids
by only revealing the winning bid and the sale price; (2)
verifiability to ensure that all protocol steps can be publicly
verified by anyone (e.g., auditors) to flag misbehavior; (3)
trust minimization to support auction execution in peer-to-
peer mode while also allowing a single untrusted auctioneer as
coordinator for additional efficiency; (4) scalability to support
a large number of bidders and price ranges while having low
overheads in terms of computation and bandwidth consump-
tion for bidders and auctioneer; and (5) versatility to support
first-, second-, and more general (p+1)st-price auctions (i.e.,

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240481
www.ndss-symposium.org

uniform auctions) as well as an iterative/sequential mode with
only a slight adjustment of the main protocol.

Technical overview. At its core, Cryptobazaar uses the
anonymous veto (AV) protocol [31] to compute, in a scalable
way, a distributed Boolean-OR over all unary-encoded bids to
determine the highest bid, and thus the result of an auction
run, while protecting the confidentiality of the losing bids.
To ensure the well-formedness of all submitted values and
maintain privacy, we design and use various new efficient
zero-knowledge proofs. These include, for example, arguments
for proving correctness of unary encodings which could be
also useful for other applications like voting. We further show
how to link Pedersen commitments to univariate sumcheck
and how to replace an inner-product argument with a uni-
variate sumcheck to improve prover efficiency. These newly
developed techniques on inner-product arguments [10], [14],
log-derivatives [30], and univariate sumcheck [7] may be of
independent interest, e.g., to enhance verifiable shuffling [4].
In the event of having multiple candidate winners, we break
possible ties via public randomness [35] and efficient zero-
knowledge set membership proofs preserving the privacy of
the winner. Moreover, we show how to extend the base version
of Cryptobazaar to second- and more generally (p+1)st-price
auctions without re-running the protocol which is common
practice for private Vickery auctions [40]. We propose a variant
to run secure iterative/sequential auctions using setup re-
randomization techniques, making Cryptobazaar particularly
appealing for practical use cases. Finally, we consider real-
world deployment with a focus on Ethereum and discuss
how Cryptobazaar can be used as an alternative auction
protocol in their block building process [23]. Our systems’
performance easily satisfies Ethereum’s requirement that the
auction terminates in a fraction of its 12-second block time
window. We provide a graphical overview of Cryptobazaar’s
protocol variants in Figure 1.

Contributions. In this work, we show how to build a pri-
vate, scalable, and trustless sealed-bid auction protocol, called
Cryptobazaar, by combining our variant of an anonymous
veto (AV) protocol over unary-encoded bids with various
novel succinct zero-knowledge proof gadgets. Our new system
improves over previous state-of-the-art private auction proto-
cols that either are not scalable [3], or require stronger trust
assumptions such as a threshold [47] or anytrust [60] model.
In summary, we make the following contributions:
• We propose Cryptobazaar, a private scalable sealed-bid

auction protocol that supports first- and second-price auc-
tions and relies only on an untrusted auctioneer for coordi-
nation, a critical improvement over the state-of-the-art [3],
[60].

• We co-design various novel (public coin) zero-knowledge
succinct arguments of knowledge to ensure soundness and
privacy of the different protocol steps.

• We present two extensions to Cryptobazaar showing how
to run uniform auctions and sequential/iterative auctions
efficiently without having to re-execute the full protocol.

• We demonstrate the practicality of our system by evaluating
an open-source implementation of Cryptobazaar in Rust.
A run of the auction with 128 bidders and a price range of
1024 values terminates in less than 0.5 second and requires
each bidder to communicate only about 32KB of data.

II. BACKGROUND

A. Notation

We write x
$← S to denote uniform sampling of element

x from finite set S and [n] for the set of integers {1, . . . , n}.
We denote by G a cyclic group of prime order p and by F
a finite (scalar) field. We write group operations additively.
We indicate group elements by uppercase letters G ∈ G, and
scalars by lowercase letters a ∈ F. Given a scalar a ∈ F and
group element G ∈ G, we denote scalar multiplication by
a · G ∈ G. We express vectors of elements in boldface, e.g.,
a = (a1, . . . , an) ∈ Fn. We denote the inner product of two
vectors a, b ∈ Fn as ⟨a, b⟩ =

∑n
i=1 aibi and the entry-wise

multiplication of two vectors as a ◦ b = (a1 · b1, . . . , an · bn).
To denote the scalar multiplication of scalar a ∈ F with every
element of a vector of group elements G ∈ Gn, we write
a · G = (a · G1, . . . , a · Gn). Given 1 ≤ l ≤ n and vector
a ∈ Fn, we denote the slice of the first l elements of a by
a[:l] = (a1, . . . , al) ∈ Fl and the slice of the last n−l elements
of a by a[l:] = (al+1, . . . , an) ∈ Fn−l. A non-empty subset
H ⊆ F is said to be a multiplicative subgroup of field F if H is
closed under multiplication and inverses. Given a non-empty
subset H ⊆ F we denote by zH(X) =

∏
w∈H(X − w) the

vanishing polynomial of H. Capitalized bold font A ∈ Fn×m

denotes a matrix, with n rows and m columns. Blinding factors
are denoted by Greek letters. We denote the security parameter
by λ ∈ N and implicitly assume for a given n that n = poly(λ).

B. Bilinear Groups

Let G1 and G2 be two cyclic groups of prime order p with
generators G and H , respectively. Let e : G1 ×G2 → GT be
a bilinear map with the following properties.
• Bilinearity. For all U ∈ G1 and V ∈ G2 and a, b ∈ F, we

have e(aU, bV) = e(U, V)ab.
• Non-degeneracy. It holds that e(G,H) ̸= 1.
We call (G1,G2,GT , p,G,H, e) a bilinear group if e is
efficiently computable. For ease of notation, we define [x]1 =
xG ∈ G1, and [x]2 = xH ∈ G2. We sometimes also write [1]1
and [1]2 for the generators G of G1 and H of G2, respectively.

C. Commitment Schemes

A commitment scheme allows a sender to commit to a
secret value and open it later in a verifiable way such that
a receiver can check whether the revealed value is consistent
with the committed one. A commitment scheme has two
main security properties, namely (1) binding, meaning that
the commitment cannot be opened to two different values,
and (2) hiding, meaning that the commitment should not
reveal any information about the committed secret value.
The Pedersen commitment scheme [44] is an example of a
widely-used commitment scheme that is perfectly hiding and

2

Fig. 1: Example executions of different Cryptobazaar protocol variants. Dotted ellipses resemble the anonymous veto (AV) instances
running on bids bi producing result bit strings R. First-price and sequential variants use a unary encoding whereas the uniform variant uses
a Boolean encoding. Entries in R deciding on winners are highlighted in green. Whereas, first-price and sequential auctions have only one
winner, uniform auctions can have multiple ones and sell multiple items (here two) in one protocol run. Sequential auctions use an additional
masking all-1 bid (here b0) submitted by the auctioneer to avoid some privacy-leakage. We omit the illustration of second-price auctions
from this overview to avoid any confusion and refer the reader instead to the text.

computationally binding in which a sender can commit to a
secret value x ∈ F using generators G,H ∈ G and randomness
r ∈ F via C = xG+rH ∈ G. Vector commitments [15] are an
extension allowing a sender to commit to a set of values and
open them individually later on with two popular examples
being Merkle trees and Pedersen vector commitments. Finally,
a polynomial commitment scheme (PCS) [34] is a variant of a
vector commitment scheme that enables the sender to commit
to a polynomial such that the receiver can confirm claimed
evaluations of the committed polynomial later. In more detail:

Definition 1 (Polynomial Commitment Scheme (PCS)). A
polynomial commitment scheme PCS is defined by the fol-
lowing algorithms:

• SP ← PCS.Setup(1λ, d): Takes as input a security param-
eter λ and an integer d, and outputs system parameters SP
to commit to a polynomial of degree ≤ d.

• C ← PCS.Commit(SP, ϕ(·)): Takes as input the system
parameters SP and a polynomial ϕ(·), and outputs a com-
mitment C to ϕ(·).

• (π, ϕ(w)) ← PCS.Open(SP, ϕ(·), w): Takes as input the
system parameters SP, the polynomial ϕ(·), and a point
w, and outputs the polynomial evaluation ϕ(w) and an
evaluation proof π.

• 1/0 ← PCS.Verify(SP, C, w, ϕ(w), π): Takes as input the
system parameter SP, the commitment C, a point w, the
evaluation ϕ(w), and the proof π, and verifies that ϕ(w)
is indeed the evaluation of polynomial ϕ at value w in
commitment C using proof π.

A PCS furthermore satisfies the following security properties:

• Correctness. Given C ← PCS.Commit(SP, ϕ(·)) and
(π, ϕ(w)) ← PCS.Open(SP, ϕ(·), w), then it should hold
PCS.Verify(SP, C, w, ϕ(w), π) = 1 with probability 1.

• Polynomial Binding. An adversary should not be able to
produce two different polynomials ϕ(·) and ϕ′(·) such that

PCS.Commit(SP, ϕ(·)) = PCS.Commit(SP, ϕ′(·)), except
with negligible probability.

• Evaluation Binding. An adversary should not be able
to produce values {C, (w, ϕ(w), π), (w, ϕ′(w), π′)} with
PCS.Verify(SP, C, w, ϕ(w), π) = 1, PCS.Verify(SP, C,
w, ϕ′(w), π′) = 1, and ϕ(w) ̸= ϕ′(w), except with neg-
ligible probability.

In our protocols we use the popular KZG polynomial
commitment scheme [34]:

• SP ← KZG.Setup(1λ, d): Outputs a bilinear pairing group
(G1,G2,GT , p,G,H, e), and system parameters SP =
[τ i]1 = (G, τG, . . . , τdG) for trapdoor τ ∈ F which is
generated by a (distributed) trusted authority.

• C ← KZG.Commit(SP, ϕ(·)): Outputs the commitment
C = [ϕ(τ)]1 =

∑d
i=0 ϕi[τ

i]1.
• (π, ϕ(w)) ← KZG.Open(SP, ϕ(·), w): Computes the quo-

tient polynomial q(X) = (ϕ(X)− ϕ(w)) · (X − w)−1 and
outputs evaluation ϕ(w) and proof π = [q(τ)]1.

• 1/0 ← KZG.Verify(SP, C, w, ϕ(w), π): Outputs 1 if
e(π, [τ−w]2) = e(C− [ϕ(w)]1, [1]2) holds and 0 otherwise.

The basic version of KZG is not hiding since it is determin-
istic. However, in some situations having hiding is desirable.
This means that no PPT adversary should learn anything
about an unqueried evaluation point w′ given information
of up to d evaluations. By masking commitment and proof
with randomizers, one can turn KZG into blinded KZG [58]
and achieve hiding. KZG requires a setup phase to compute
system parameters SP that include a trapdoor τ . To ensure
that no individual party knows τ , which would enable them
to undermine the security of KZG, one can use a distributed
protocol to compute SP ensuring security as long as there is
a single honest contribution [42]. Alternatively, one could use
a PCS that does not require a trusted setup at the cost of a
performance trade-off [6].

3

D. Anonymous Veto

In Cryptobazaar we use the anonymous veto (AV) proto-
col [31] as one of the main building blocks. AV is an efficient
two-round protocol for computing the logical-OR function
over a set of input bits without revealing any information
about the individual ones. AV is run over a cyclic group G
of prime order p with a generator G in which the Decision
Diffie-Hellman (DDH) problem is hard. It works as follows:
• Each party i samples a random value xi ∈ F, and broad-

casts xiG. After seeing messages from all other parties, i
computes Yi =

∑i−1
j=1 xjG−

∑n
j=i+1 xjG.

• After obtaining Yi, each party i computes a value Ri as
either Ri = riYi if they veto or Ri = xiYi if they do
not veto where ri

$← F, and sends Ri to all of the other
participants.

The output of the AV protocol is obtained by having each
party compute R =

∑n
i=1 Ri. If no one vetoes then R =

0, otherwise if at least one party vetoes then R ̸= 0. This
follows from the definition of Yi that implies

∑
i xiYi = 0 (see

Proposition 1, [31]). To illustrate this equality more intuitively,
let X be the vector of elements obtained after the first AV
round, i.e., Xi = xiG, then we define matrix M as

M =



0 −1 −1 · · · −1
1 0 −1 · · · −1

1 1
. . .

. . .
...

...
...

. . . 0 −1
1 1 · · · 1 0

 .

Now it holds ⟨X,M ·XT ⟩ = 0. The AV protocol preserves
the privacy of a participating party as long as not all the other
parties collude. The security of this scheme stems from the
inability of an attacker to distinguish between riYi and xiYi

under the DDH assumption. Later we show how the structure
of M can be used to efficiently delegate the computation of
Yi for i ∈ [n] to a single untrusted party.

E. Zero-knowledge Argument of Knowledge

In Cryptobazaar we deploy zero-knowledge succinct non-
interactive arguments of knowledge (zkSNARKs) [43], [50]
to enforce honest behavior of the parties and ensure public
verifiability. We refer the reader to the cited literature for a
comprehensive survey and formal definitions on zkSNARKs.

An argument system is public coin if all the messages sent
form the verifier have uniform distribution and are independent
from the ones received from the prover. This then allows
to make the protocol non-interactive using Fiat-Shamir [22].
Note that all our arguments throughout the paper will be
public coin and thus can be made non-interactive. We prove
the security of our arguments in the Algebraic Group Model
(AGM) [26]. There are different ways to build zkSNARKs
concretely. We follow the approach in PLONK [27] by taking
polynomial interactive oracle proofs (IOP) [8], combining it
with a polynomial commitment scheme to obtain succinct
interactive arguments, and applying the Fiat-Shamir transform

to make it non-interactive. Below we recall the basics for some
of the techniques that we use in our zkSNARKs.

Inner-product Arguments (IPA). An inner-product argu-
ment [10] is an efficient argument system for the following
relation:

R =

{(
G,H ∈ Gn, P ∈ G,
c ∈ Fp;a, b ∈ Fn

p

)
:
P = ⟨a,G⟩+ ⟨b,H⟩,
c = ⟨a, b⟩

}
An IPA convinces the verifier that the prover knows the

openings of two Pedersen vector commitments satisfying a
given inner product relation. Bunz et al. [13] proposed an
improved IPA where the inner-product value c is hidden as part
of the vector commitment P and with logarithmic proof size
in the vector dimension n. IPA can be generalized to capture
other types of inner products, including ones that work with
bilinear pairings [14].

Univariate Sumcheck Protocol. The univariate sumcheck
protocol [7] relates the sum of any (low-degree) polynomial
over a multiplicative subgroup H of field F to the polynomial’s
evaluation at a single point. The following lemma offers a
polynomial IOP that we use for constructing some of our
arguments.

Lemma 1 (Univariate Sumcheck for Subgroups). Given a
multiplicative subgroup H of field F, a polynomial f(X)
sums to σ over H if and only if f(X) can be written as
Xg(X) + h(X)zH(X) + σ/|H|.

Interactive argument systems exploit the following basic
property of polynomials, which is commonly known as the
Schwartz-Zippel lemma [61].

Lemma 2 (Schwartz-Zippel). Let F be any field, and let g :
Fm → F be a nonzero polynomial of total degree at most
d. Then, on any finite set S ⊆ F and for any x ← Sm,
Pr[g(x) = 0] ≤ d

|S| .

An implication of the Schwartz-Zippel lemma is that for any
two distinct (univariate) polynomials ϕ1 and ϕ2 of total degree
at most d over F, they agree (i.e., ϕ1(x) = ϕ2(x)) mostly at
d/|F| fraction of inputs. So, one could verify that a polynomial
relation holds with overwhelming probability by evaluating it
at a random point.

Logarithmic Derivatives. As in basic calculus, the logarith-
mic derivative of a polynomial ϕ(X) over a field F is defined
as ϕ′(X) · ϕ(X)−1. Further, the logarithmic derivative of a
product function ϕ(X) =

∏n
i=1(X + zi), where zi ∈ F, is

equal to the sum of its reciprocals, i.e., ϕ′(X) · ϕ(X)−1 =∑n
i=1(X+zi)

−1. Further if two normalized polynomials have
the same logarithmic derivative, they are equal, as stated by
the following lemma [30].

Lemma 3. Let a, b ∈ Fn
p with p > n. Then,

∏n
i=1(X+ai) =∏n

i=1(X + bi) if and only if
∑n

i=1(X + ai)
−1 =

∑n
i=1(X +

bi)
−1.

Further, Haböck [30] shows that it is possible to obtain the
unique fractional decomposition of the logarithmic derivative

4

of a product function ϕ(X) =
∏n

i=1(X + zi) via ϕ′(X) ·
ϕ(X)−1 =

∑
z∈F m(z) · (X + z)−1 where m(z) ∈ [n] is the

multiplicity of the value z in z1, . . . , zn.

III. CRYPTOBAZAAR

In this section we present Cryptobazaar, our private
scalable sealed-bid auction protocol. Section III-A discusses
system and threat models, Section III-B presents our main
design goals, Section A provides formal auction definitions,
and Section III-C discusses the protocol details.

A. System and Threat Models

In Cryptobazaar we assume that there are m bidders, an
untrusted auctioneer, and one or more auditors with access
to an append-only public log (e.g., a public ledger) and a
price range of n values. Each bidder communicates with the
auctioneer through a public authenticated channel. We do
not assume any point-to-point channel (and thus interaction)
between bidders as they might have no information about
the number of protocol participants or their identities. Our
communication pattern resembles a star topology with the
auctioneer being the coordinator. Cryptobazaar can also work
in a peer-to-peer setting without an auctioneer but we prefer
the auctioneer-based mode henceforth due to its lower band-
width consumption and since auctioneers are usually present
in practice [60]. We model bidders and auctioneer as malicious
adversaries who may arbitrarily deviate from the correct
execution of the protocol. As required in a private auction [60],
we implicitely assume all the parties involved are authorized
so that they can be subject to penalties (e.g., financial or
reputational). We assume that authentication between bidders
and auctioneer and the penalizing of misbehaving parties is
handled out of band and discuss this further in Section V.
The auditor gets involved at the end of the auction to validate
the outcome using the information posted on the public log.

B. Design Goals

Cryptobazaar aims to achieve the following design goals:

• Privacy: The protocol discloses the first and second highest
bids and protects the privacy of (losing) bidders.

• Verifiability: If any participant misbehaves during the pro-
tocol execution, verification fails and the cheating party is
detected with overwhelming probability. All protocol steps
are publicly verifiable and auditors could verify the protocol
run using the data posted on a public log.

• Trust minimization: The protocol runs in a decentralized
fashion where bidders do not necessarily know each other
and there is no trust on the auctioneer as a coordinator.

• Scalability: The protocol supports a large number of bid-
ders and price ranges while having low computation and
bandwidth overheads for bidders and auctioneer.

We provide the formal security definitions in Appendix A.

Preprocessing phase
Each bidder i ∈ [m] executes the following steps:

1) Sample random non-zero vectors xi, ri ∈ Fn.
2) Create polynomial commitments xi of xi and ri of ri.
3) Compute vector Xi such that Xi = xi ·G.
4) Create a proof πxi showing that xi and Xi both encode

the same vector xi.
5) Create a proof πri showing that rj ̸= 0 for each j ∈ [n].
6) Decide on bid bi and compute its unary encoding bi.
7) Compute a (blinded) polynomial commitment bi of bi.
8) Create a proof πbi that bi is a valid unary encoding.
9) Append (xi, ri, bi,Xi, πxi , πri , πbi) to the public log.

Once all bidders are done, the auctioneer executes:
10) Load row-vectors Xi to compute m×n matrix Y = M·X

where M is the matrix as specified in Section II-D.
11) Append row-vector Yi to the public log for each i ∈ [m].

Bidding phase
Each bidder i ∈ [m] executes the following steps:

1) Load row-vector Yi and compute vector Zi such that
Zi = (xi + bi ◦ ri) ◦ Yi.

2) Create a proof πZi showing that Zi is of the above form.
3) Append (Zi, πZi) to the public log.

Once all bidders are done, the auctioneer executes:
4) Compute vector R s.t. Rj =

∑m
i=1(Zi)j for j ∈ [n].

5) Append R to the public log.
The highest bid is defined by the highest index w with Rw ̸= 0.

6) The candidate winner constructs a proof πw to demon-
strate their eligibility.

Fig. 2: The Cryptobazaar protocol

C. Protocol Description

Figure 2 presents an overview of Cryptobazaar which
consists of the two phases of preprocessing1 and bidding.
Below we focus on the core protocol and present the necessary
validity proofs only abstractly. We defer the discussion of the
proofs’ details to Section IV.

Preprocessing phase. Each bidder initially samples two vec-
tors x, r ∈ Fn, and computes X = x ·G ∈ Gn. Suppose all
the input values (i.e., bids) are integers in the range [0, n]. Each
bidder encodes their bid as a unary vector b = (b1, . . . , bn),
where bj = 1 if and only if j ≤ b. For example, for
n = 5 the bid b = 3 is represented as 11100. Observe
that the values in X are randomly sampled and thus are
independent from the bids. Furthermore, each bidder computes
the polynomial commitments x, r, b, constructs three validity
proofs πx, πr, πb, and appends (x, r, b,X, πx, πr, πb) to the
public log.

The auctioneer carries out n runs of the AV protocol (first
round) in parallel on the values received from the bidders and
computes the vectors Yi for i ∈ [m] as the row-vectors of a
m×n matrix Y = M ·X, where M is the AV matrix (Section

1This should not be confused with the similar notion in the MPC literature
where the inputs are not available, although the computation here is merely
on random values.

5

II-D), and X contains row-vectors X . Finally, the auctioneer
appends the row-vectors Yi to the public log and optionally
sends Yi to bidder i for all i.

Bidding phase. After a bidder received its individual vector
Yi, they compute Zi = (xi+bi◦ri)◦Yi. The values of random
vector ri are enabled depending on the values of the unary
vector bi. So, for each j ∈ [n] we have either Zij = (xij +
rij)Yij if bij = 1 or Zij = xijYij if bij = 0. Each bidder
computes a validity proof πZi showing the well-formedness
of the vector Zi, i.e., its consistency with their committed
vectors xi, ri, bi and vector Yi. Then, the auctioneer completes
the AV protocols and determines the outcome by computing
R =

∑m
i=1(Zi). The highest index w of a non-zero value in

R indicates the highest bid.
To find the winner in a first-price auction, we simply

determine the highest bid and the corresponding bidder wins.
After the winning price has been announced, a candidate
winner can claim their win by providing a proof πw showing
that they have indeed bid one at position/index w. Given that
the AV computes a logical-OR across all bids and thus only
distinguishes whether there is at least one bid for a certain
value or not, there might actually be multiple bids at the
same price. In this case, the auctioneer can use public ran-
domness [35] to choose among the set of candidate winners.

For a first-price auction, we are done at this point. In
Section V, we discuss how to run a second-price auction and
further propose a variant that efficiently supports second-price
and more generally (p+1)st-price (i.e., uniform) auctions [36]
without having to re-run the protocol.

Theorem 1. The Cryptobazaar protocol (Figure 2) achieves
completeness, soundness, and privacy.

We provide the proof to Theorem 1 in Appendix A1.

IV. VALIDITY PROOFS

In this section we present the technical details of the validity
proofs used in Cryptobazaar. In Section IV-A we discuss the
preprocessing phase proofs πxi

(Step 4), πri (Step 5), and πbi

(Step 8) and in Section IV-B we discuss the bidding phase
proofs πZi (Step 2) and πw (Step 6).

A. Preprocessing Phase

Proof πxi
[Step 4]. The goal of this validity proof is to link a

KZG polynomial commitment with a vector of elliptic curve
points X to show that they both encode the same vector x.
More precisely, we need to develop an argument of knowledge
for the following relation Rpv:

Rpv =


 (SP, G),

(x,X);
(x)

 f(X) = x̃
x = [f(τ)]1

Xi = xiG,∀i


Here x̃ is the low degree extension (LDE)2 of x. We provide

the corresponding argument Πpv in Figure 3 which proves

2It refers to the process of extending a function defined on a small domain
(like a finite field subset) to a larger domain as a low-degree polynomial.

Round 1 Verifier: Send random challenge γ ∈ F.
Round 1 Prover:

1) Compute q(X) = f(X)−f(γ)
X−γ

.
2) Send q = [q(τ)]1.

Round 2 Verifier:
1) Compute [y]1 ←

∑n
i=1 Li(γ)Xi.

2) Assert e(x− [y]1 + γq, [1]2) = e(q, [τ]2).

Fig. 3: Interactive zero-knowledge argument of knowledge
protocol Πpv for relation Rpv.

that X and polynomial commitment x encode the same vector
x. The intuition is as follows: After receiving the challenge
γ from the verifier, the prover computes and sends a KZG
opening proof q for the evaluation of f at γ back to the verifier.
In the second round, instead of obtaining an evaluation claim
from the prover, the verifier computes [y]1 as a multi-scalar
multiplication (MSM) between the committed values X and
the Lagrange basis evaluations Li(γ). It then uses [y]1 to check
the given pairing equation via a standard KZG opening check
to verify the overall claim.

Lemma 4. The protocol Πpv for relation Rpv, see Figure 3,
satisfies completeness, soundness, and zero-knowledge.

We provide the proof for Lemma 4 in Appendix A2.

Proof πri [Step 5]. The goal of this proof is to show that
ri ̸= 0 for the following two reasons. First, these random
values are enabled according to the values of unary bid vector
bi and vice-versa. That is, setting ri = 0 essentially prevents
verifying if the bidder used the same bid that they committed
earlier. Second, we later show how the candidate winner can
use these random values to construct a proof of eligibility.
Before we proceed with describing the relation, it is helpful
to state a simple but crucial technique.

Blinding. Constructing succinct arguments often requires the
prover P to open some committed polynomial f(X) at some
random point γ (which is due to the Schwartz-Zippel Lemma 2
that facilitates efficient equality check of polynomials). To
show that the relation R(f1(X), f2(X), . . . , fn(X)) holds
over subgroup H of field F, one could instead show that
R(f1(h), f2(h), . . . , fn(h)) = 0, ∀h ∈ H. This is equivalent
to demonstrating the knowledge of some quotient polynomial
q(X) such that R(f1(X), f2(X), . . . , fn(X)) = q(X)zH(X),
where zH(X) is a vanishing polynomial of H [34]. Since
sending plain evaluations may leak information, one can blind
the (witness) polynomial to achieve zero-knowledge. To do
so, we follow the approach used in Marlin [16] where the
prover P samples a random polynomial r(X) of degree (at
least) equal to the number of openings they have to provide
during the protocol and send f̂(X) = f(X) + r(X)zH(X).
So, f̂(X) does not leak information on f(X) up to a cer-
tain number of openings, i.e., zero-knowledge is provided
up to a query bound [16]. Further, the use of vanishing
polynomial makes the evaluations of f̂(X) be equal to those

6

Round 1 Prover:
1) Sample random degree-1 blinding polynomial b(X).
2) Compute s(X) such that s(wi) = r(wi)−1,∀wi ∈ H.
3) Blind s(X) by setting ŝ(X) = s(X) + b(X)zH(X).
4) Sample a random blinding polynomial m(X) to blind

r(X) by setting r̂(X) = r(X) +m(X)zH(X).
5) Compute q(X) such that r̂(X)ŝ(X)− 1 = q(X)zH(X).
6) Send s = [ŝ(τ)]1, q = [q(τ)]1.

Round 1 Verifier: Sample and send random γ ∈ F.
Round 2 Prover: Send openings rγ = r̂(γ), sγ = ŝ(γ).
Round 2 Verifier: Sample and send random α ∈ F.
Round 3 Prover:

1) Set ϕ(X) = r(X) + αŝ(X) + α2q(X).
2) Compute (t, ·) = KZG.Open(SP, ϕ(X), γ).
3) Send t.

Round 3 Verifier:
1) Compute qγ = (rγ · sγ − 1) · zH(γ)−1.
2) Set y = rγ + αsγ + α2qγ and c = r+ αs+ α2q.
3) Assert 1 = KZG.Verify(SP, c, γ, y, t).

Fig. 4: Interactive zero-knowledge argument of knowledge
protocol Πnz for relation Rnz.

of f(X) over H and thus it does not affect the relation
R(f1(X), f2(X), . . . , fn(X)).

Now assume that the number of positions n is a power
of 2, let H be a multiplicative subgroup of size n, and let
zH(X) be a vanishing polynomial of H. Let r(X) be a low
degree extension of r, then P samples a random masking
polynomial m(X) and commits to the blinded variant of r(X),
i.e., r̂(X) = r(X) +m(X)zH(X). Then we develop a zero-
knowledge argument of knowledge for the following relation
Rnz showing that r(wi) ̸= 0 for each wi ∈ H.

Rnz =


 (SP,H),

(r);
(r(X),m(X))

 r = [r(τ) +m(τ)zH(τ)]1,
r(wi) ̸= 0 ∀wi ∈ H


We present the corresponding argument Πnz in Figure 4. The

intuition is as follows: The prover starts by sampling blinding
polynomials b(X) and m(X), to setup blinded polynomials
ŝ(X) and r̂(X), respectively, for the computation of the KZG
polynomial q(X) which encodes that r(X) is invertible over
H (round 1, step 5). The blinding process ensures that the
KZG opening proofs s and q (round 1, step 6) do not leak
information about the underlying bids. Afterwards, prover and
verifier engage with each other to batch KZG opening proofs
to reduce the proof size and the number of pairings required for
verification [27]. The verifier initiates this process by sending
a random separation challenge α in round 2 and ends it by
checking the batched KZG opening proof in round 3, step 3.

Lemma 5. The protocol Πnz for relation Rnz, see Figure 4,
satisfies completeness, soundness, and zero-knowledge.

We provide the proof for Lemma 5 in Appendix A3.

Proof πbi [Step 8]. The goal of this proof is to show that bi
is a valid unary encoding of bidder i’s bid bi. To construct
this proof we use logarithmic derivatives, see Section II-E,

and translate the problem to an equality of sum of reciprocals.
To do this, we first re-formulate the problem to make it more
amenable to logarithmic derivatives, show its equivalency with
the problem of unary encoding and then present the proof
system for this re-formulated problem. Given a positive integer
n, the unary representation for a value b ∈ [0, n] includes an
array of |b| ‘ones’ and |n− b| ‘zeroes‘. To prove that a vector
b of length n is a valid unary encoding of b, consider the
following lemma:

Lemma 6. There are 1 ≤ i < n and 0 ≤ j < n such that
i + j = n and b is a vector of i ‘ones’ concatenated with j
‘zeros’ if and only if b starts with ‘1’ and vector ∆ defined
as below consists of all ‘zeros’ except a single ‘one’, i.e.,
∆i = bi − bi+1 if i < n and ∆i = bi if i = n.

We provide the proof for Lemma 6 in Appendix A4.
To prove the correct form of ∆, we use logarithmic deriva-

tives [30]. Due to the unique fractional decomposition of
logarithmic derivatives, see Section II-E, we need to prove that∑n

i=1
1

X+∆i
= n−1

X+0 + 1
X+1 . Logarithmic derivatives allow

us to check that, given the vectors t,f , and m, each value
fi appears exactly mi times in t which can be expressed
via

∑n
i=1

1
X+fi

=
∑n

i=1
mi

X+ti
. To prove this, we turn the

fractional expression into a polynomial one via low degree
extensions 3 of the functions t|K, f|H,m|K over multiplicative
subgroups H and K of size n. The prover can show that the
equality holds at a random challenge γ as per Lemma 2, i.e.,
that

∑n
i=1

1
γ+f(wi) =

∑n
i=1

m(wi)
γ+t(wi) . With that in mind, the

relation Runary for which we need to develop an argument of
knowledge is as follows:

Runary =


 (SP,H),

(u);
(u(X),m(X))

 u = [u(τ) +m(τ)zH(τ)]1
u(X) is LDE of
unary encoded b


We present the corresponding argument Πunary in Figure 5.

The intuition is as follows: In round 1, the prover computes
the difference polynomial f(X) and uses it to implicitly show
that u(X) extends a valid unary encoding, as stated in Lemma
6. The whole process is blinded to ensure zero-knowledge.
In round 2, the prover interpolates a polynomial B(X) that
is used in a log derivative proof, and it computes a witness
polynomial QB(X) to show the well-formedness of B(X). In
round 3, the prover computes witness polynomials R(X) and
Q(X) to prove the univariate sumcheck relation. In round 4,
the verifier sends a batching challenge v so that the prover
can aggregate all KZG instances. The verifier then checks if
u(1) = 1 in the final round as required by Lemma 6. Finally,
in round 5, the verifier checks the log derivative relation and
the batched KZG opening proof.

Lemma 7. The protocol Πunary for relation Runary, see Fig-
ure 5, satisfies completeness, soundness, and zero-knowledge.

3Let ϕ1 : {0, 1}v → F be any function mapping a v-dimensional Boolean
hypercube to F. A v-variate polynomial ϕ2 over F is said to be an extension of
ϕ1 if ϕ2 agrees with ϕ1 for all x ∈ {0, 1}v . We can think of a (low-degree)
extension ϕ2 of ϕ1 as an error-corrected encoding, amplifying the distance
between the original polynomials according to Schwartz-Zippel lemma. We
refer the reader to [50] for more details.

7

Round 1 Prover:
1) Compute f(X) such that f(wi) = u(wi) −

u(wi+1),∀wi ∈ H \ wn−1.
2) Sample blinding polynomials m(X), b(x) to blind u(X)

by setting û(X) = u(X) + m(X)zH(X) and f(X) by
setting f̂(X) = f(X) + b(X)zH(X).

3) Compute (·, u1) = KZG.Open(SP, û(X), 1).
4) Compute Qf (X) such that f̂(X)− (u(X)− u(wX)) =

Qf (X)zH(X).
5) Send f = [f̂(τ)]1, u1, qf = [Qf (τ)]1.

Round 1 Verifier: Sample and send random γ.
Round 2 Prover:

1) Compute B(X) such that B(wi) = 1
γ+f(wi)

,∀wi ∈ H.
2) Sample random r(X) and compute blinded B̂(X) =

B(X) + r(X)zH(X).
3) Compute QB that B̂(X)(f(X) + γ) − 1 =

QB(X)zH(X).
4) Sample random S(X) and set s =

∑
h∈H S(h).

5) Send b = [B̂(τ)]1, qb = [QB(τ)]1, s = [S(τ)]1, s.
Round 2 Verifier: Sample and send random α.
Round 3 Prover:

1) Set v = 1
γ
+ n−1

γ+1
.

2) Compute R(X) and Q(X) such that S(X) + αB̂(X) =
s+α·v

n
+XR(X) +Q(X)zH(X).

3) Send r = [R(τ)]1, q = [Q(τ)]1.
Round 3 Verifier: Sample and send random β.
Round 4 Prover: Send openings uβ = u(β), uw,β = u(wβ),
fβ = f̂(β), Qf,β = Qf (β), Bβ = B̂(β), sβ = S(β), QB,β =
QB(β), Rβ = R(β), and Qβ = Q(β).
Round 4 Verifier: Sample and send random v.
Round 5 Prover:

1) Compute A(X) = (u(X) + vf(X) + v2Qf (X) +
v3B̂(X)+v4S(X)+v5QB(X)+v6R(X)+v7Q(X)) ·
(X + β)−1.

2) Compute Aw(X) = u(X) · (X − wβ)−1.
3) Send a = [A(τ)]1 and aw = [Aw(τ)]1.

Round 5 Verifier:
1) Assert that 1 = KZG.Verify(SP, u, 1, 1, u1) and fβ −

(uβ − uw,β) = Qf,βzH(β)
2) Set v = 1

γ
+ n−1

γ+1
.

3) Assert that S(β) + αBβ = s+α·v
n

+ βRβ +QβzH(β).
4) Set C = u+ vf+ v2qf + v3b+ v4s+ v5qb + v6r+ v7q

and y = uβ +vfβ +v2Qf,β +v3Bβ +v4sβ +v5QB,β +
v6Rβ + v7Qβ .

5) Assert that 1 = KZG.Verify(SP, C, β, y, a) and 1 =
KZG.Verify(SP, u, wβ, uw,β , aw).

Fig. 5: Interactive zero-knowledge argument of knowledge
protocol Πunary for relation Runary.

We provide the proof for Lemma 7 in Appendix A5.

B. Bidding Phase

Proof πZi [Step 2]. The goal of this proof is to enable a
bidder to show that Z = (x + b ◦ r) ◦ Y . More generally,
given the message received after the preprocessing phase Y ,
the bidder has to prove that their message sent in the bidding
phase is of the form Z = aY , where a = x+b◦r. To ensure
a = x+b◦r, each bidder runs a check of polynomial equalities

Verifier: Send a random scalar c.
Prover and Verifier:

1) Compute c = (1, c, c2, . . . , cn−1) and C = ⟨c,Y⟩.
2) Set C′ = C and n′ = n.
3) Rescale the basis X by computing Xc = c ◦ X .

Prover: Set a′ = a and X′ = Xc and initialize r = 0.
Until n′ = 1 do:

1) Set n′ = n′

2
, L = ⟨a′

lo,X′
hi⟩, and R = ⟨a′

hi,X′
lo⟩.

2) Sample random rl and rr .
3) Send L+ rlH and R+ rrH .

Verifier:
4) Sample and send a random challenge α.
5) Compute C′ = α−1L+ C′ + αR.

Prover:
6) Compute C′ = α−1L+ C′ + αR.
7) Set a′ = ⟨a′

lo, a′
hi

α⟩ and X ′ = ⟨X′
lo,X′

hi
α−1

⟩.
8) Compute r = r + α1rl + αrr .

When n′ = 1:
Prover and Verifier:

1) Compute f(X) =
∏l=logn

i=0 (1 + αl−iX
2i).

2) Interpolate f̃(X) from f(X).
Verifier:

1) Compute X ′ = ⟨Xc, f⟩, where vector f denotes coeffi-
cients of f(X).

2) Invoke Rpse((pp, srs, X ′, H); (qa, f̃(X), C′); (a(X),
a′, r)).

Fig. 6: Interactive zero-knowledge argument of knowledge
protocol Πsum for relation Rsum.

at a random point which is a standard technique [50] and we
thus do not make it explicit below. We prove Z = aY by
an inner product argument (IPA) showing that ⟨⟨r ◦ a⟩,Y ⟩ =
⟨r,Z⟩, where r = (r, r2, . . . , rn) for a (separation) challenge
r. This random linear combination of terms guarantees that
the equivalency holds for all j ∈ [n] and no terms cancel out.
This way, the verifier computes C =

∑
rjZj and the prover

is left to show it is indeed equivalent to a generalized IPA [14]
between a and Y . Thus, we need to develop an argument of
knowledge for the following relation:

Rsum =


 (SP, G,H,H),

(a,Y ,Z);
(a)

 a(X) is LDE of a,
a = [a(τ)]1,

a(wj)Yj = Zj ∀wj ∈ H


We present the corresponding argument Πsum in Figure 6.

The intuition is as follows: The protocol is similar to a
generalized inner-product argument [14]. At each round, the
prover folds its witness vectors by half, given a random verifier
challenge α. At the end, the verifier obtains a link between
a Pedersen commitment (i.e., masked vector of length 1) and
a univariate sumcheck claim. Prover and verifier then engage
with each other in proving the relation Rpse.

Lemma 8. The protocol Πsum for relation Rsum, see Figure 6,
satisfies completeness, soundness, and zero-knowledge.

We provide the proof for Lemma 8 in Appendix A6.

8

Removal of one inner product. As part of the argument for
the above relation, we introduce a technique that could be of
independent interest. We observe that when running an IPA
between vectors of a and Y with the verifier having access
to the polynomial commitment qa of a, one can replace an
instance of IPA with an instance of univariate sumcheck [7].
As we describe next, it reduces the computation cost of the
prover and the proof size. We first build an intuition on why
this works followed by our full argument protocol for Rsum.

Assume that a prover P wants to convince a verifier V that
C = ⟨a,X⟩, where a ∈ Fn and X ∈ Gn

1 is a set of random
generators. Let F = ⟨a,G⟩ be a commitment to the vector a
using some basis G ∈ Gn

1 . Then, P and V should run two
IPAs in parallel for F and C which matters security-wise,
as we need to use the same set of challenges for both [24].
The former is needed to convince V that P is indeed using a.
Following the IPA protocol [13], [14], at each round the prover
folds in half the vectors a,G and X and both P and V derive
updated commitments F ′, C ′. In the last round, P sends a fully
folded a′, and V computes the fully folded values G′, X ′. The
verifier then checks if a′G′ = F ′ and a′X ′ = C ′. It turns
out that computing a′ from a is a multi-scalar multiplication
of size n where the scalar factors are the coefficients of the
polynomial f(X) =

∏l=logn
i=0 (1 + αl−iX

2i), and αi are the
random challenges picked by the verifier [12], [14].4 So, we
have a′ = ⟨a,f⟩ where f are the coefficients of polynomial
f(X). Further, let f̃(X) denote a polynomial such that its
evaluations are equal to f . Therefore, instead of running the
IPA for F the prover needs to show that

∑n
i=0 a(X)f̃(X) =

a′ using an instance of univariate sumcheck. This way, the
prover no longer needs to compute the folding for G which is
genuinely expensive, overall improving run time. Note that we
instantiate the polynomial commitment scheme with KZG to
show that

∑
h∈H a(h)f̃(h) = a′, where H is a multiplicative

subgroup of F of order n.
So far, we have not considered zero-knowledge. To make

IPA zero-knowledge, the prover first forms the perfectly
blinded commitment Cb = C + rH and then samples random
scalars rl, rr to compute the left and right blinded commit-
ments Li,b = Li + rlH , Ri,b = Ri + rrH . One subtlety we
need to get around is to avoid sending a′ in plain at the last
round while allowing the verifier to check that a′X ′ = C ′

holds. We tackle this by having the prover show knowledge
of opening of a Pedersen commitment that is defined by the
folded basis X ′ and blinder H . Thus, we should develop an
argumentRpse to link an instance of the Pedersen commitment
with a univariate sumcheck showing that given a Pedersen
commitment P = xG + rH , we have

∑n
i=0 a(X)f̃(X) = x

without leaking any information about x.

Remark 1. The auditor is not computationally restricted thus
we assume they can interpolate f̃(X) from f(X). How-
ever, this part can be verifiably delegated. Let W denote a

4In the non-interactive variant the challenges are computed by applying a
hash function modeled in random oracle on the messaged received from the
prover in each round of IPA for C = ⟨a,X⟩ which is running in parallel.

set of n-th roots of unity, then the prover can show that∑
wi∈W f̃(wi)p(wi) = f(α) for a random α such that

p(wi) = αi. Note that evaluating f(X) at α takes O(logn)
field operations, and validity of p(X) can be proved by
showing that p(w0) = 1 and that p(wX) = αp(X) when
X ∈W \ wn−1.

Remark 2. We develop Rpse as a generic independent rela-
tion where both a(X), b(X) are witnesses. However, in the
last round of our inner product protocol we use the public
polynomial f̃(X), thus we slightly abuse notation and we put
f̃(X) directly in the instance instead of committing to it.

Linking Pedersen commitment to univariate sumcheck.
We now develop a zero knowledge argument of knowledge
for proving the equality of Pedersen commitment [44] and
univariate sumcheck [7] that may be of independent interest.
Given a Pedersen Commitment P = xG + rH , the prover
P aims to prove the knowledge of a, b ∈ Fn such that∑n

i=0 aibi = x, without leaking any information about x.
We define the relation Rpse as follows:

Rpse =


 (SP, G,H,H);

(a, b, P);
(a(X), b(X), x, r);

 a = [a(τ)]1
b = [b(τ)]1

P = xG+ rH∑
h∈H a(h)b(h) = x


We present a zero-knowledge argument realizing the re-

lation Rpse in Figure 7. At a high level, there are two
protocols that run in parallel: one for proving knowledge of a
Pedersen commitment and one for a zero-knowledge univariate
sumcheck. The prover P computes and commits to a(X)
and b(X), low degree extensions of a and b over H. Then
the prover P and the verifier V engage in a (public coin)
interactive argument for proving knowledge of x and that∑

h∈H a(h)b(h) = x. This is done by invoking both (zero-
knowledge) arguments for proving the opening of Pedersen
commitment and univariate sumcheck. Note that proving the
knowledge of opening of Pedersen Commitment is done by
providing two Schnorr proofs of knowledge of discrete loga-
rithm. However, P should take additional care when sampling
blinders for the univariate sumcheck instance. The key insight
is that in the first round P samples a blinder B(X) for zero-
knowledge univariate sumcheck such that its sum over H
is equal to the randomness/blinder used in the first instance
of the underlying Schnorr proof, denoted by p. Then in the
second round after receiving challenge c from V , P shows that∑

h∈H B(h) + ca(h)b(h) = cx+ p. As mentioned earlier, we
make use of this argument as a sub-argument of the protocol
realizing the relation Rpse. So, we slightly modify the relation
and assume that P already committed to a(X), b(X). This,
however, leads to the following issue: At the last round of the
zero-knowledge univariate sumcheck, P has to send openings
of a(X), b(X) at a random challenge, potentially introducing
a leakage affecting zero-knowledge. One way to deal with
this is to assume that witness polynomials a(X), b(X) are
already properly blinded and thus openings do not produce
any leakage. By looking closely at the protocol we notice that
in our case a(x) is properly blinded and b(x) is a public

9

Round 1 Prover:
1) Sample random p, s and compute Q = pG+ sH .
2) Compute b0 = p

n
and sample random b1, b2, b3, b4, b5, b6,

then compute B(X) = b0+b1X+b2X
2+b3X

3+b4X
4+

(b5 + b6X)zH(X), observe that
∑

h∈H B(h) = p.
3) Sample random r0, r1, r2, r3 and compute s1(X) = (r0+

r1X)·ZH(X) and s2(X) = (r2+r3X+r4X
2)·ZH(X).

4) Send Q, B = [B(τ)]1, s1 = [s1(τ)]1, s2 = [s2(τ)]1.
Round 1 Verifier: Send random challenges c and α.
Round 2 Prover:

1) Compute z1 = cx+ p and z2 = cr + s.
2) Compute R(X), q(X) such that B(X) + c(a(X) +

s1(X))(b(X)+s2(X)) = z1
|H| +XR(X)+q(X)zH(X).

3) Compute D(X) = R(X) ·XN−1−(n−2) where N is the
length of SP proving key.

4) Compute Qs(X) such that s1(X) + αs2(X) =
Qs(X)ZH(X).

5) Send z1, z2, R = [R(τ)]1, q = [q(τ)]1, D = [D(τ)]1, Qs =
[Qs(τ)]1.

Round 2 Verifier: Sample and send a random opening chal-
lenges γ ∈ F∗ \H, β.
Round 3 Prover: Send openings asγ = a(γ) + s1(γ),
bsγ = b(γ) + s2(γ), Bγ = B(γ), Rγ = R(γ), s1,β = s1(β),
s2,β = s2(β).
Round 3 Verifier: Send random separation challenge v.
Round 4 Prover:

1) Set W (X) = (a(X) + s1(X) + v(b(X) + s2(X)) +
v2B(X) + v3R(X) + v4q(X)) · (X − γ)−1.

2) Set T (X) = (s1(X)+ vs2(X)+ v2Qs(X)) · (X−β)−1

3) Send W = [W (τ)]1, T = [T (τ)]1.
Round 4 Verifier:

1) Check that cP +Q = z1G+ z2H .
2) Compute QS,β = (s1,β + αs2,β) · zH(β)−1.
3) Assert 1← KZG.Verify(s1+vs2+v2Qs, β, s1,β+vs2,β+

v2QS,β , qT).
4) Compute qγ = (Bγ + caγbγ − z1

n
− γRγ) · zH(γ)−1.

5) Set C = a+ s1 + v(B+ s2) + v2B+ v3R+ v4q.
6) Compute y = asγ + vbsγ + v2Bγ + v3Rγ + v4qγ .
7) Assert 1 = KZG.Verify(SP, C, γ, y, W).
8) Set degree bound d = N − 1− (n− 2), where N is the

length of SP proving key.
9) Assert e(R, [xd]2) = e(D, [1]2).

Fig. 7: Interactive zero-knowledge argument of knowledge
protocol Πpse for relation Rpse.

polynomial, guaranteeing zero-knowledge. So, we state the
relation assuming the openings of a(X), b(X) do not affect
zero-knowledge. That said, we present a generalized argument
to cover the situations where the witness polynomials are
committed without blinders. We handle this by committing
two blinding polynomials s1(X), s2(X) and proving that these
polynomials are multiples of ZH(X) and they do not affect
the sumcheck, thus

∑
h∈H si(h) = 0. In the last round, the

prover batches all openings. The verifier checks the Pedersen
opening and all KZG openings and runs one pairing-based
degree check and one KZG verification to check the univariate
sumcheck relation. The argument is agnostic to the polynomial
commitment scheme, but we instantiate it with KZG.

Lemma 9. The protocol Πpse for relation Rpse presented

in Figure 7 satisfies completeness, soundness, and zero-
knowledge.

We provide the proof for Lemma 9 in Appendix A7.

Proof πw [Step 6]. After determining the highest bid w, the
winner can simply open their bid vector at the corresponding
position showing that bw = 1. We can further preserve the
privacy of candidate winners, particularly in case there is a
tie and only one of them should be picked. We now develop
another zero-knowledge argument to enable the candidate
winner to show their eligibility while preserving their privacy.
Before describing the relation, recall that the followings hold:
(1) X = xG, (2) b is a vector with valid unary encoding, (3)
a = x+b◦r, and (4) Z = aY . We observe that the candidate
bidder can demonstrate their eligibility if they manage to
prove that the discrete logs of Xw and Zw are different,
ensuring that bw = 1. So, it is enough to prove knowledge
of x, and r such that Xw = xG, (x + r)Yw = Zw, and
r ̸= 0. To preserve privacy, we follow the standard approach
in the literature [48] to have auctioneer/auditor compute a
public vector commitment C (e.g., using a Merkle Tree) of all
triples (Xw,Zw,Yw) and then each candidate winner proves
knowledge of satisfying x and r for some pair in the vector.
Further, each candidate winner has to compute a nullifier [48]
nul to ensure that they cannot submit multiple proofs. The
corresponding relation Rwin is as follows:

Rwin =


(

C, nul;
x, r,X, Y, Z, π

) r ̸= 0,
xG = X,

(x+ r)Y = Z,
nul = H(x, r),

Verify(C; (X,Y, Z);π) = 1


Observe that it is enough to prove knowledge of some x,

and r and not the ones committed in the first place. This
follows from the fact that the bidder already proved connection
between vectors x and r with X and Y . Should the bidder
provide any other satisfying x′ and r′, it would break the
discrete logarithm assumption. If there is a tie we can utilize
public randomness [35] to break the tie and choose among
the submitted proofs fairly. We highlight that preserving the
privacy of the winner is important in applications where the
winner could be subject to attacks like briberies [5].

V. EXTENSIONS AND DEPLOYMENT CONSIDERATIONS

In this section we present two extensions to our main
protocol and discuss considerations for practical deployments.

A. Efficient Second-price Auctions

Our main protocol in Figure 2 can support both first- and
second-price auctions. However, in the latter case, we need to
re-run the protocol without the winner to detect the second
highest price, as with other private auctions [60]. A caveat
is that if multiple bidders collude to bid the maximum but
remain unresponsive, the protocol may not terminate as there
is no way to exclude all the colluding parties. We now show
how to modify the Cryptobazaar protocol to support second-
price and generally (p + 1)st-price auctions more efficiently

10

without having to re-run the protocol. In this variant, the set
of bidders who propose the top p bids will win and purchase
the (identical) goods at the (p+ 1)st price.

Preprocessing. This phase is mostly as before, with the only
exception being that each bidder uses a Boolean encoding for
their bid b such that b = (0, . . . , bj , . . . , 0), where bj = 1 if
and only if j = b. To construct validity proof πbi , we can use
similar techniques based on log derivatives as before.

Finding the highest bid. This step is as before, and the highest
bid is defined by the highest position w such that Rw ̸= 0.

Finding the winner. This step is as before, except that we now
have a possible set of winners bidding at positions [w,w−p+
1], with the sale price being the highest position w′ such that
Rw′ ̸= 0 and w′ < w − p+ 1.

In case multiple bids are placed at the same price we choose
one with public randomness similar to the main protocol.
We remark that the efficiency gained in this variant comes
with some privacy leakage. That is, one can learn all the bids
submitted in the auction protocol by examining the protocol
transcript, but without linking the bids to the corresponding
bidders. This variant still offers a decent amount of privacy
(i.e., unlinkability of bidders and their bids [19]) and could be
of interest depending on the applications, e.g., when moving
from single-item to multi-item NFT auctions [39].

B. Sequential First-price Auctions

An inherent limitation of the AV protocol is that the winner
can examine the protocol transcript and check if they were
the only winner. In particular, they can try inputting x in the
second round and see if the output is still random, implying
another party has vetoed. Consequently, the winner of a
Cryptobazaar auction can learn the second-highest price of
a given run. A similar issue has been observed in Addax [60].
Although this might not be problematic in a Vickery auction
or when the participating bidders frequently change, it might
result in a strategic advantage to the current winner when
choosing their bids for future runs of iterative/sequential first-
price auctions, e.g., when several items are sold one after
the other to the same group of buyers [23]. For example,
the winner who learns the second-highest price might choose
their bid in the next run slightly above the previous second-
highest price to minimize the amount they have to pay while
maximizing their winning chances.

Before we describe how to address this issue below, observe
that there is a conflict of interest between the seller and the
winner. Thus our solution aims to take advantage of such
collusion disincentivization between the seller and a bidder
preventing them from winning at a lower price. So, we assume
the auctioneer has common interest with the seller (e.g.,
auctioneer is the seller).

Preprocessing. This step is as before, except that the auc-
tioneer also acts as a bidder and submits their own bid. In
particular, for their own bid they choose the maximum price,
i.e., b0 = n. Moreover, there is no need for the bidders to

decide and commit to their bid in this phase, allowing them
to adaptively decide on their bids in the bidding phase. This
further allows running the pre-processing in an offline phase
as common in the MPC literature [21].

Finding the highest bid. This step is as before. However,
since the auctioneer bid the maximum price b0 = n the leakage
of the second-highest price to the winner is prevented. The
auctioneer then computes Y0 with b0 = 0 locally to find the
highest position w such that Rw ̸= 0 and announces this value.

Finding the winner. This step is as before, except that we
might need to add a fraud proof. That is, if the auctioneer
announces a bid w′ that is lower than the actual highest bid
w, the honest winner could present a fraud proof showing that
bw = 1 to slash the cheating auctioneer.

Another option to relax the assumption on the auctioneer is
to have multiple auctioneers and assume that at least one of
them is honest in line with the anytrust threat model [52].

Re-using the preprocessing phase. To reduce the overheads
for bidders in the iterative variant of Cryptobazaar, it is useful
to explore whether bidders could re-use the values they com-
puted in the preprocessing phase for future runs of the auction
(besides the option of pre-computing k sets of these values in
advance as soon as they know that they will participate in k
auctions). With that in mind, note that re-using the random
matrix Y for multiple runs of the auction is not secure, as one
can learn information about the bids by comparing the protocol
transcripts. Interestingly, we can efficiently re-randomize the
matrix Y by re-randomizing only a single row-vector Xi in
the matrix X. Given this, we can essentially make the protocol
non-interactive. However, we need to be careful regarding the
possible collusion between the party who re-randomizes the
matrix Y and the bidders. We can either sample a small subset
of bidders for re-randomization or make a threshold/anytrust
security assumption on the auctioneer’s side. In case some
bidders wish to leave the auction, one could also on-board
new bidders to the protocol and use their contributions for
re-randomization without the need for bidders who remain to
re-do their preprocessing. Moreover, observe that if we allow
the winner to open its bid vector at the winning index w to
announce its eligibility (instead of using a set membership
proof), the winner is incentivized to re-do the preprocessing
phase to protect its privacy for future runs of the auction.

C. Non-Responsive Participants

An inherent challenge of commit-reveal style protocols in a
practical deployment is the risk of participants aborting during
the protocol execution. Since Cryptobazaar implements a
private commit-reveal variant, it is also susceptible to this issue
which we address by incorporating slashing, a widely-used so-
lution in practice, to disincentivize parties from misbehaving.
Further, due to the privacy properties of the AV protocol, there
is no way to determine the winner if they do not come forward
voluntarily. Although winners have no incentive to not claim
their wins, we recommend to include a timeout until which the

11

highest bidder can claim their win. If they do not, the second-
highest bidder gets a chance. This process then continues until
some bidder presents a valid proof for the currently eligible
slot ensuring that the protocol terminates eventually.

VI. EVALUATION

We implemented Cryptobazaar in Rust using the cryptog-
raphy framework arkworks [62].5 The implementation is
generic and supports any pairing-friendly curve. We run our
benchmarks on an Apple MacBook Pro with an M1 Max chip
with 10 cores and 64GB memory. For the benchmarks we
instantiated our implementation with the BN254 curve and
we focus on the main computational overheads for individual
bidders and the auctioneer. We notice that the most demanding
computation for both bidder and auctioneer is running multi-
scalar multiplications (MSM) which are implemented in the
arkworks module VariableBaseMSM. The arkworks
code is not particularly optimized and switching to hardware-
specialized libraries such RapidSnark [45] or gnark [11]
may further improve performance obviously.

Bidder overheads. The preprocessing phase of an individual
bidder i is dominated by the computation of the validity proofs
πxi

, πri , and πbi for relations Rpv,Rnz, and Runary, respec-
tively. All proofs require O(1) elliptic curve points and field
elements except the proof for Rpv. Thus, the amount of data
each bidder has to send is m + O(1) elliptic curve elements
and O(1) field elements. For example, given a price range of
n = 1024 the overall amount of data an individual bidder has
to send is about 32KB assuming a single elliptic curve point is
32 bytes. The bidding phase of a bidder i is dominated by the
computation of the validity proof πZi

for the relation Rsum.
We provide the computational overheads to compute the above
proofs for price ranges n ∈ {128, 1024, 8192} in Table IIIa.

Note that the computation of the validity proofs is not on
the critical path for certain deployment scenarios, like running
an auction via optimistic roll-ups [46].

Auctioneer overheads. The preprocessing phase of the auc-
tioneer is dominated by the computation of the vectors Yi

requiring 1 MSM and m − 1 elliptic curve additions per AV
and thus n MSMs of size m and n · (m − 1) elliptic curve
additions in total. We provide the running times to compute
vectors Yi for the number of bidders m ∈ {32, 128, 256} and
price ranges n ∈ {128, 1024, 8192} in Table IIIb. Each vector
Yi contains n elliptic curve points for i ∈ [m] and assuming
an elliptic curve point is 32 bytes, the auctioneer thus sends
m vectors of size 32n bytes. For example, for n = 1024 and
m = 128 this amounts to 32KB per bidder or 4.2MB in total.

After the bidding phase, the auctioneer needs to add n
elliptic curve points per AV. It starts from the highest price
and runs until it finds the first non-zero point. In the worst
case where all bidders bid the minimal price, it runs m · n
elliptic curve additions. We report the (worst case) running
times for computing vector R for the number of bidders

5We provide our implementation at https://github.com/akinovak/
cryptobazaar-impl.

m ∈ {32, 128, 256} and price ranges n ∈ {128, 1024, 8192}
in Table IIIc. In practice, the expected running time to compute
R should be much lower since the auctioneer stops as soon
as the first non-zero entry is found.

Reducing Computational Overheads. The original AV pro-
tocol has linear O(n) communication cost (assuming broad-
cast) and quadratic O(n2) computational cost. However, it is
possible to reduce the computational overhead to determine
the values Yi to O(n) group operations from the naive
computation M · X requiring O(n2) group operations. We
observe that by utilizing the relationship between consecutive
rows of M, we have Yi+1 = Yi + Xi + Xi+1. Note that
Y0 can be computed by a single multiscalar multiplication
(MSM) [20] of size n between the first row of M and X .

Practical deployment considerations. To shed some more
light on the practical usefulness of Cryptobazaar, we take
a closer look at Ethereum and its proposer-builder separation
(PBS) architecture [25] which heavily relies on auctions. A
practically efficient sealed-bid auction would reduce the trust
assumptions on the relay (as auctioneer) while preventing
intense competition among builders (as bidders). In the current
realization [23], builders take part in an auction to bid for their
prepared block and the one with the highest bid is chosen to be
proposed by the proposer. This approach reveals the complete
bid vector to the relay, though, thereby leaking information
about builders’ bids and bidding strategies. A more privacy-
friendly mechanism would minimize this leakage and reveal
only the winning builder and its corresponding bid. However,
simply eliminating the relay and allowing all builders to submit
bids directly to the proposer is not viable: such a naive design
would create a denial-of-service vulnerability, as adversaries
could flood proposers with spurious bids from many fake
“builders” and thereby disrupt block production. Any relay-
free or improved PBS design must therefore simultaneously
address the challenges around bid privacy and DoS resilience.
Cryptobazaar provides such a solution where a trustless
coordinator, which can be the relay or the proposer itself,
verifiably computes the winning bid in a privacy-preserving
and DoS-resilient manner. According to recent a analysis [56],
the block preparation is dominated by 25 builders ([56], Table
5). Moreover, the authors collected 191 builder public keys
([56], Table 2), which means that the number of bidders is
likely lower given that each could hold several public keys
(e.g., Titan builder has disclosed 12 public keys in their official
document). Thus, our experiments with 32, 128, and 256 bid-
ders reflect well what currently deployed large-scale systems
like Ethereum require. When a validator is chosen to propose a
block, it has only a few seconds to find the auction winner, and
broadcast the block. Thus, ensuring a low latency execution
for the auction protocol is critical. Our basic protocol variant
with 128 bidders and a price range of 1024 values terminates in
less than 0.5 second easily satisfying the latency requirement.
If needed this could be further reduced to a few hundred
milliseconds in an optimistic mode (with asynchronous proof
generation). Furthermore, bids range usually from cents to

12

https://github.com/akinovak/cryptobazaar-impl
https://github.com/akinovak/cryptobazaar-impl

TABLE I: Cryptobazaar microbenchmarks (in ms) for number of bidders m and price ranges n.

(a) Individual bidder overheads to
compute validity proofs.

n 128 1024 8192

πxi 13.59 101.51 807.21
πri 2.38 10.25 58.38
πbi 2.53 10.68 62.03
πZi

27.28 141.38 953.36

(b) Auctioneer overheads to compute
AV matrix Y.

m / n 128 1024 8192

32 1.84 14.19 112.12
128 4.29 38.87 286.60
256 7.75 59.00 552.24

(c) Auctioneer overheads to compute
results vector R.

m / n 128 1024 8192

32 0.30 6.36 50.48
128 1.95 26.83 145.06
256 4.01 32.90 265.14

TABLE II: A high-level comparison among state-of-the-art sealed-bid auction protocols. A black (white) circle states that the protocol does
(does not) provide a given property and a half circle states that the protocol provides the property with some restrictions. Privacy refers
to the confidentiality of bids during and after protocol execution. Scalability refers to having low computation and communication costs.
Trust minimization states whether the protocol makes trust assumptions or not. Versatility captures the ability to (securely) support different
protocol variants without major modifications.

Protocols Privacy Scalability Trust minimization Versatility

Riggs [51]
Cicada [28]
SEAL [3]
Addax [60]
Cryptobazaar

tens of dollars and a realistic deployment would likely have
a price range of 1000 ≤ n ≤ 10000 depending on the
application [60]. We further remark that services like Flashbots
that offer sealed-bid auctions typically have off-chain bidding
processes (e.g., submitting bids, determining winners, etc.) on
their own servers and only the actual transaction execution
happens on-chain [1]. Finally, the material for an auction run
such as validity proofs need not to be stored permanently and
could be deleted after some time, e.g., once auditing is done,
reducing overall storage requirements.

VII. RELATED WORK

Riggs [51] realizes decentralized sealed-bid auctions using
time-based cryptography. The protocol has bidders commit
to their bids which are then either self-opened by bidders
or force-opened through (sequential) computation. This work
particularly addresses the practical details of the deployment
setting [18], [55] including running auctions in parallel while
locking up enough collateral without privacy leakage. Ci-
cada [28] is another recent auction protocol that differs from
Riggs by proposing a non-interactive protocol via homomor-
phic time lock puzzles [38] that pack many puzzles (i.e.,
bids) into a single one. None of the aforementioned protocols
offer privacy for bids after the protocol execution, though,
making them unsuitable for an iterative auction mode due
to the leakage of the bids in each run. In Cicada, there is
an on-chain coordinator (as auctioneer) and off-chain solver.
The solver needs to present the outcome to the auctioneer
(with proofs) to let the auctioneer announce the winner.
One can use Cryptobazaar in a similar fashion by having
an on-chain auctioneer (i.e., smart contract) and off-chain
coordinator to help with the computation. Since an auction can
be considered an evaluation of a function of the bids, a natural
approach to achieve (full) privacy is to encode the auction
as a generic MPC among the bidders [41]. Despite recent
advances in efficiency of generic MPC, it is still impractical

when there are many bidders due the the inherent need for
rounds of communication among them. An alternative is to
use a delegated MPC setting whereby two parties (i.e., non-
colluding auctioneers) run the MPC on behalf of others, with
bidders sending the shares of their bids. However, this setting
lacks trust minimization and also integrity: either party is free
to provide bogus to the MPC causing the result of the auction’s
run to be undetectably incorrect [60]. With Cryptobazaar, we
can efficiently support auction variants with a practical system
design (coordinated by an untrusted auctioneer), and public
verifiability to ensure the integrity of all protocol steps.

One of the early works on private auction is due to
Sako [47]. It associates each admissible price with a distinct
(threshold) public encryption key. Each bidder then submits
a ciphertext encrypted under the key corresponding to their
chosen price. During the opening phase, a committe of auc-
tioneers trial decrypt all of the submitted ciphertexts starting
with the decryption key of the highest price and stop as
soon as there is at least one ciphertext on a given level that
decrypts successfully. Thereby the auctioneers only learn the
maximum bid and the bidders who placed it. However, Sako’s
protocol relies on a threshold security assumption whereas
Cryptobazaar works with minimal trust assumptions. Two
recent stand-alone and private auction protocols are SEAL [3],
and Addax [60]. The SEAL protocol is auctioneer-free and the
bidders themselves jointly compute the highest bid by inter-
acting with each other, leading to a communication bottleneck.
Similar to ours, they also make use of anonymous veto [31] as
their underlying primitive but in a quite different way. First,
they modify the original AV protocol where each bidder needs
to commit to two random values for each run of the protocol.
Second, bidders must remain online during the auction to
dynamically update their inputs to ensure correctness (i.e., ,
that the output reflects the highest bid), limiting the usability of
the system. A major issue of this approach is that whenever
a bidder realizes they are not the winner (because another

13

bid is higher), they must voluntarily adjust their remaining
inputs, so that the final output corresponds to the winning
bid. Moreover, SEAL uses traditional Sigma protocols instead
of more efficient succinct validity arguments. Addax [60] is
a private online ad exchange that has a sealed-bid auction
protocol at its core. The protocol adopts an affine aggregatable
encoding (AFE) introduced in Prio [17] allowing an auction
to be conducted over secret-shared bids. Cryptobazaar shares
some common properties with Addax including using price
range and performing bitwise OR on inputs. However, the
crucial advantage of our design is its more relaxed threat model
of only requiring a single untrusted auctioneer as coordinator
while Addax needs at least two non-colluding auctioneers
due to their adoption of Prio-based techniques, particularly
Affine-aggregatable encodings (AFE). Although a side-by-side
comparison between Cryptobazaar and Addax is difficult due
to the different settings (e.g., threat models), we provide some
concrete numbers for intuition: Addax (Cryptobazaar) incurs
a computational overhead of 1802ms (1880ms) per bidder per
auction run and terminates in 440ms (431ms) for 96 (128)
bidders and a price range of 10000 (8192). This shows that
the performance of Cryptobazaar and Addax is in the same
ballpark while Cryptobazaar provides a better threat model
and more versatility in terms of deployment.

ACKNOWLEDGEMENTS

We thank Guillermo Angeris and Rex Fernando for con-
structive discussions on auction theory. This work was partially
done while Andrija Novakovic and Kobi Gurkan were working
at Geometry Research. This work has been supported by a
grant from the Ecosystem Support Program of the Ethereum
Foundation (ID FY24-1539).

REFERENCES

[1] Flashbots, 2022.
[2] R. ALVAREZ AND M. NOJOUMIAN, Comprehensive survey on privacy-

preserving protocols for sealed-bid auctions, Computers & Security, 88
(2020), p. 101502.

[3] S. BAG, F. HAO, S. F. SHAHANDASHTI, AND I. G. RAY, Seal: Sealed-
bid auction without auctioneers, IEEE Transactions on Information
Forensics and Security, 15 (2019), pp. 2042–2052.

[4] S. BAYER AND J. GROTH, Efficient zero-knowledge argument for cor-
rectness of a shuffle, in Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Springer, 2012, pp. 263–
280.

[5] J. BEARER, B. BÜNZ, P. CAMACHO, B. CHEN, E. DAVIDSON,
B. FISCH, B. FISH, G. GUTOSKI, F. KRELL, C. LIN, ET AL.,
The espresso sequencing network: Hotshot consensus, tiramisu data-
availability, and builder-exchange, Cryptology ePrint Archive, (2024).

[6] E. BEN-SASSON, I. BENTOV, Y. HORESH, AND M. RIABZEV, Fast
reed-solomon interactive oracle proofs of proximity, in 45th international
colloquium on automata, languages, and programming (icalp 2018),
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[7] E. BEN-SASSON, A. CHIESA, M. RIABZEV, N. SPOONER, M. VIRZA,
AND N. P. WARD, Aurora: Transparent succinct arguments for r1cs,
in Advances in Cryptology–EUROCRYPT 2019: 38th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings, Part
I 38, Springer, 2019, pp. 103–128.

[8] E. BEN-SASSON, A. CHIESA, AND N. SPOONER, Interactive oracle
proofs, in Theory of Cryptography: 14th International Conference, TCC
2016-B, Beijing, China, October 31-November 3, 2016, Proceedings,
Part II 14, Springer, 2016, pp. 31–60.

[9] E.-O. BLASS AND F. KERSCHBAUM, Strain: A secure auction for
blockchains, in Computer Security: 23rd European Symposium on
Research in Computer Security, ESORICS 2018, Barcelona, Spain,
September 3-7, 2018, Proceedings, Part I 23, Springer, 2018, pp. 87–
110.

[10] J. BOOTLE, A. CERULLI, P. CHAIDOS, J. GROTH, AND C. PETIT, Effi-
cient zero-knowledge arguments for arithmetic circuits in the discrete log
setting, in Advances in Cryptology–EUROCRYPT 2016: 35th Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part
II 35, Springer, 2016, pp. 327–357.

[11] G. BOTREL, T. PIELLARD, Y. E. HOUSNI, A. TABAIE, G. GUTOSKI,
AND I. KUBJAS, Consensys/gnark-crypto: v0.11.2, Jan. 2023.

[12] S. BOWE, J. GRIGG, AND D. HOPWOOD, Recursive proof composition
without a trusted setup, Cryptology ePrint Archive, (2019).

[13] B. BÜNZ, J. BOOTLE, D. BONEH, A. POELSTRA, P. WUILLE, AND
G. MAXWELL, Bulletproofs: Short proofs for confidential transactions
and more, in 2018 IEEE symposium on security and privacy (SP), IEEE,
2018, pp. 315–334.

[14] B. BÜNZ, M. MALLER, P. MISHRA, N. TYAGI, AND P. VESELY, Proofs
for inner pairing products and applications, in Advances in Cryptology–
ASIACRYPT 2021: 27th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, Decem-
ber 6–10, 2021, Proceedings, Part III 27, Springer, 2021, pp. 65–97.

[15] D. CATALANO AND D. FIORE, Vector commitments and their ap-
plications, in Public-Key Cryptography–PKC 2013: 16th International
Conference on Practice and Theory in Public-Key Cryptography, Nara,
Japan, February 26–March 1, 2013. Proceedings 16, Springer, 2013,
pp. 55–72.

[16] A. CHIESA, Y. HU, M. MALLER, P. MISHRA, N. VESELY, AND
N. WARD, Marlin: Preprocessing zksnarks with universal and updatable
srs, in Advances in Cryptology–EUROCRYPT 2020: 39th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39,
Springer, 2020, pp. 738–768.

[17] H. CORRIGAN-GIBBS AND D. BONEH, Prio: Private, robust, and scal-
able computation of aggregate statistics, in 14th USENIX symposium
on networked systems design and implementation (NSDI 17), 2017,
pp. 259–282.

[18] D. DEUBER, N. DÖTTLING, B. MAGRI, G. MALAVOLTA, AND S. A. K.
THYAGARAJAN, Minting mechanism for proof of stake blockchains, in
Applied Cryptography and Network Security: 18th International Con-
ference, ACNS 2020, Rome, Italy, October 19–22, 2020, Proceedings,
Part I 18, Springer, 2020, pp. 315–334.

[19] J. DREIER, P. LAFOURCADE, AND Y. LAKHNECH, Formal verification
of e-auction protocols, in International Conference on Principles of
Security and Trust, Springer, 2013, pp. 247–266.

[20] Y. EL HOUSNI AND G. BOTREL, Edmsm: multi-scalar-multiplication
for snarks and faster montgomery multiplication, Cryptology ePrint
Archive, (2022).

[21] D. ESCUDERO, V. GOYAL, A. POLYCHRONIADOU, AND Y. SONG,
Turbopack: honest majority mpc with constant online communication, in
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 951–964.

[22] A. FIAT AND A. SHAMIR, How to prove yourself: Practical solutions to
identification and signature problems, in Conference on the theory and
application of cryptographic techniques, Springer, 1986, pp. 186–194.

[23] FLASHBOTS, Introduction to mev-boost. https://docs.flashbots.net/
flashbots-mev-boost/introduction, 2024.

[24] E. FOUNDATION, Curdleproofs: A shuffle argument protocol. https://
github.com/asn-d6/curdleproofs/tree/main, 2022.

[25] , Proposer builder separation (pbs) - ethereum roadmap. https:
//ethereum.org/en/roadmap/pbs/, 2024.

[26] G. FUCHSBAUER, E. KILTZ, AND J. LOSS, The algebraic group model
and its applications, in Advances in Cryptology–CRYPTO 2018: 38th
Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 19–23, 2018, Proceedings, Part II 38, Springer, 2018, pp. 33–62.

[27] A. GABIZON, Z. J. WILLIAMSON, AND O. CIOBOTARU, Plonk: Permu-
tations over lagrange-bases for oecumenical noninteractive arguments
of knowledge, Cryptology ePrint Archive, (2019).

[28] N. GLAESER, I. A. SERES, M. ZHU, AND J. BONNEAU, Cicada: A
framework for private non-interactive on-chain auctions and voting,
Cryptology ePrint Archive, (2023).

14

https://docs.flashbots.net/
https://docs.flashbots.net/flashbots-mev-boost/introduction
https://docs.flashbots.net/flashbots-mev-boost/introduction
https://github.com/asn-d6/curdleproofs/tree/main
https://github.com/asn-d6/curdleproofs/tree/main
https://ethereum.org/en/roadmap/pbs/
https://ethereum.org/en/roadmap/pbs/

[29] O. GOLDREICH, Foundations of cryptography: volume 2, basic appli-
cations, Cambridge university press, 2009.

[30] U. HABÖCK, Multivariate lookups based on logarithmic derivatives,
Cryptology ePrint Archive, (2022).

[31] F. HAO AND P. ZIELIŃSKI, A 2-round anonymous veto protocol, in
International Workshop on Security Protocols, Springer, 2006, pp. 202–
211.

[32] J. HORWITZ AND K. HAGEY, Google’s secret ‘project
bernanke’revealed in texas antitrust case, Wall Street Journal,
(2021).

[33] J.-H. IM, T.-Y. YOUN, AND M.-K. LEE, Privacy-preserving blind
auction protocol using fully homomorphic encryption, Advanced Science
Letters, 22 (2016).

[34] A. KATE, G. M. ZAVERUCHA, AND I. GOLDBERG, Constant-size
commitments to polynomials and their applications, in Advances in
Cryptology-ASIACRYPT 2010: 16th International Conference on the
Theory and Application of Cryptology and Information Security, Singa-
pore, December 5-9, 2010. Proceedings 16, Springer, 2010, pp. 177–194.

[35] A. KAVOUSI, Z. WANG, AND P. JOVANOVIC, Sok: Public randomness,
in 2024 IEEE 9th European Symposium on Security and Privacy
(EuroS&P), IEEE, 2024, pp. 216–234.

[36] H. KIKUCHI, (m+ 1) st-price auction protocol, IEICE TRANSAC-
TIONS on Fundamentals of Electronics, Communications and Computer
Sciences, 85 (2002), pp. 676–683.

[37] M. KRÓL, A. SONNINO, A. TASIOPOULOS, I. PSARAS, AND
E. RIVIÈRE, Pastrami: privacy-preserving, auditable, scalable & trust-
worthy auctions for multiple items, in Proceedings of the 21st Interna-
tional Middleware Conference, 2020, pp. 296–310.

[38] G. MALAVOLTA AND S. A. K. THYAGARAJAN, Homomorphic time-
lock puzzles and applications, in Annual International Cryptology Con-
ference, Springer, 2019, pp. 620–649.

[39] J. MILIONIS, D. HIRSCH, A. ARDITI, AND P. GARIMIDI, A framework
for single-item nft auction mechanism design, in Proceedings of the 2022
ACM CCS Workshop on Decentralized Finance and Security, 2022,
pp. 31–38.

[40] J. A. MONTENEGRO, M. J. FISCHER, J. LOPEZ, AND R. PERALTA,
Secure sealed-bid online auctions using discreet cryptographic proofs,
Mathematical and Computer Modelling, 57 (2013), pp. 2583–2595.

[41] M. NAOR, B. PINKAS, AND R. SUMNER, Privacy preserving auctions
and mechanism design, in Proceedings of the 1st ACM Conference on
Electronic Commerce, 1999, pp. 129–139.

[42] V. NIKOLAENKO, S. RAGSDALE, J. BONNEAU, AND D. BONEH,
Powers-of-tau to the people: Decentralizing setup ceremonies, in In-
ternational Conference on Applied Cryptography and Network Security,
Springer, 2024, pp. 105–134.

[43] A. NITULESCU, zk-snarks: A gentle introduction, Ecole Normale Su-
perieure, (2020).

[44] T. P. PEDERSEN, Non-interactive and information-theoretic secure ver-
ifiable secret sharing, in Annual international cryptology conference,
Springer, 1991, pp. 129–140.

[45] RAPIDSNARK. https://github.com/iden3/rapidsnark, 2021.
[46] E. RESEARCH, Nft auction. https://ethresear.ch/t/

off-chain-l2-nft-auction-protocol-idea/12930, 2024.
[47] K. SAKO, An auction protocol which hides bids of losers, in International

workshop on public key cryptography, Springer, 2000, pp. 422–432.
[48] E. B. SASSON, A. CHIESA, C. GARMAN, M. GREEN, I. MIERS,

E. TROMER, AND M. VIRZA, Zerocash: Decentralized anonymous
payments from bitcoin, in 2014 IEEE symposium on security and
privacy, IEEE, 2014, pp. 459–474.

[49] J. C. SCHLEGEL, Transaction ordering auctions, arXiv preprint
arXiv:2312.02055, (2023).

[50] J. THALER ET AL., Proofs, arguments, and zero-knowledge, Foundations
and Trends® in Privacy and Security, 4 (2022), pp. 117–660.

[51] N. TYAGI, A. ARUN, C. FREITAG, R. WAHBY, J. BONNEAU, AND
D. MAZIÈRES, Riggs: Decentralized sealed-bid auctions, in Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2023, pp. 1227–1241.

[52] D. I. WOLINSKY, H. CORRIGAN-GIBBS, B. FORD, AND A. JOHNSON,
Scalable anonymous group communication in the anytrust model, in
European Workshop on System Security (EuroSec), vol. 4, 2012.

[53] F. WU, T. THIERY, S. LEONARDOS, AND C. VENTRE, Strategic bidding
wars in on-chain auctions, arXiv preprint arXiv:2312.14510, (2023).

[54] P. XIA, H. WANG, Z. YU, X. LIU, X. LUO, AND G. XU, Ethereum
name service: the good, the bad, and the ugly, arXiv preprint
arXiv:2104.05185, (2021).

[55] J. XIONG AND Q. WANG, Anonymous auction protocol based on
time-released encryption atop consortium blockchain, arXiv preprint
arXiv:1903.03285, (2019).

[56] S. YANG, K. NAYAK, AND F. ZHANG, Decentralization of ethereum’s
builder market, arXiv preprint arXiv:2405.01329, (2024).

[57] S. YUAN, J. WANG, B. CHEN, P. MASON, AND S. SELJAN, An
empirical study of reserve price optimisation in real-time bidding, in
Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2014, pp. 1897–1906.

[58] A. ZAPICO, V. BUTERIN, D. KHOVRATOVICH, M. MALLER, A. NIT-
ULESCU, AND M. SIMKIN, Caulk: Lookup arguments in sublinear time,
in Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 3121–3134.

[59] H. ZHANG, M. YEO, V. ESTRADA-GALINANES, AND B. FORD, Ze-
roauction: Zero-deposit sealed-bid auction via delayed execution, Cryp-
tology ePrint Archive, (2024).

[60] K. ZHONG, Y. MA, Y. MAO, AND S. ANGEL, Addax: A fast, private,
and accountable ad exchange infrastructure, in 20th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI’23),
2023, pp. 825–848.

[61] R. ZIPPEL, Probabilistic algorithms for sparse polynomials, in Inter-
national symposium on symbolic and algebraic manipulation, Springer,
1979, pp. 216–226.

[62] ZKSNARK ECOSYSTEM, arkworks contributors. https://arkworks.rs,
2024.

APPENDIX

A. Auction Definitions and Proofs

An auction protocol takes as input bids b1, . . . , bm in a
domain χ and outputs the highest bid bw = max{b1, . . . , bm}
as winner. Inspired by [28], we now provide a formal definition
for a (verifiable and private) sealed-bid auction ΠAuction.

Definition 2 (Selead-bid auction). A sealed bid auction
ΠAuction = (Setup,Seal,Eval,Verify) is defined with the
following algorithms:
• (SP) ← Auction.Setup(1λ): Takes as input a security

parameter λ, and outputs system parameters SP.
• (ci, πi)← Auction.Seal(SP, i, b): Takes as input the system

parameters SP and submission b of user i ∈ [m], and outputs
a sealed bid ci and a proof of well-formedness πi.

• (y, π) ← Auction.Eval(SP, {ci, πi}i∈[m]): Takes as input
the system parameters SP, the sealed bid ci together with
their corresponding proof πi for i ∈ [m], and outputs the
final result y and a validity proof π.

• (1/0)← Auction.Verify(SP, y, πw): Verifies if the output y
is indeed the correct result of the auction bw.

Definition 3 (Completeness). A sealed-bid auction ΠAuction

satisfies completeness if the algorithm Eval outputs the highest
bid bw assuming all parties follow the protocol and any setup
phase is performed correctly. More formally, for all λ ∈ N
and for all b1, . . . , bm ∈ χ, we have:

Pr

y = bw

∣∣∣
(SP)← Auction.Setup(1λ)

(ci, πi)← Auction.Seal(SP, i, b) ∀i ∈ [m]

(y, π)← Auction.Eval(SP, {ci, πi}i∈[m])

Auction.Verify(SP, y, πw) = 1

 = 1

Definition 4 (Soundness). Let bw denote the highest (honest)
bid and assume the adversary A corrupts the auctioneer and

15

https://github.com/iden3/rapidsnark
https://ethresear.ch/t/off-chain-l2-nft-auction-protocol-idea/12930
https://ethresear.ch/t/off-chain-l2-nft-auction-protocol-idea/12930
https://arkworks.rs

Input: h bids b1, . . . , bh from honest bidders and k bids
b′1, . . . , b

′
k from malicious bidders (the exact order is irrelevant).

Output: (b∗, sp), where
• Compute b∗ = max(b1, . . . , bh, b′1, . . . , b′k).
• Find w, such that bw = b∗

• Compute sp = max(b1, . . . , bw−1, bw+1, . . . , bh).
F outputs (b∗, sp) at the end.

Fig. 8: Ideal Functionality F for Cryptobazaar
k ≤ m − 2 bidders. A sealed-bid auction ΠAuction satisfies
soundness if there is a negligible function negl such that for
all PPT adversaries A and for all λ ∈ N, we have:

Pr

Auction.Verify(SP, y, πw) = 1

∧ y ̸= bw

∣∣∣
(SP)← Auction.Setup(1λ)

(cj , πj)← A(SP) ∀j ∈ [k]

(c, π)← Auction.Seal(SP, ·, b)
(y, πw)← Eval(SP, {ci, πi})

 ≤ negl

Definition 5 (Privacy). The sealed-bid auction ΠAuction sat-
isfies privacy if for all PPT adversaries A corrupting the
auctioneer and k ≤ m − 2 bidders and for all λ ∈ N, there
exists a PPT simulator S and a negligible function negl s.t.:∣∣∣∣∣Pr

[
A(SP, c, π) = 1

∣∣∣ (SP)← Auction.Setup(1λ)

(c, π)← Auction.Seal(SP, ·, b) ∀i /∈ [k]

]
−

Pr

[
A(SP, c, π) = 1

∣∣∣ (SP)← Auction.Setup(1λ)

(b, c, π)← S(SP, ·) ∀i /∈ [k]

] ∣∣∣∣∣ ≤ negl

1) Proof for Theorem 1: Completeness. Follows directly
from the underlying AV protocol. The value Z = (x+b◦r)◦Y
sent by each bidder in the bidding phase, see Figure 2, is
the same as the one sent in the original AV, where here the
randomness r comes into play depending on the bid value.

Soundness. Follows from the underlying argument of knowl-
edge protocols. We now go over the possible situations
that may lead to an incorrect outcome and argue that all
are captured by the soundness of the arguments systems.
The scenarios are: (1) the auctioneer is honest and some
bidders are malicious, (2) the auctioneer is malicious and
all bidders are honest, (3) the auctioneer is malicious and
colludes with some bidders. A malicious bidder may (A1)
provide inconsistent values for the first round of AV conflicting
with their commitments, (A2) provide invalid unary encoding,
(A3) provide inconsistent values for the second round of AV
conflicting to their initial commitments, (A4) wrongly claim
they are the candidate winner. All of the aforementioned items
will lead to the failure of the verification of Rpv, Runary,
Rsum, and Rwin with overwhelming probability. A malicious
auctioneer may (B1) send incorrect value after the first round
of AV, (B2) output a wrong bid as the winner. Both of the
aforementioned items will be detected publicly. A malicious
auctioneer which is colluding with some malicious bidders
could do a combination of the cases mentioned above that
lead to failure in verification and are detected publicly.

Privacy. Before describing our formal privacy analysis we
argue about the privacy of the underlying AV protocol. When
xi is sampled randomly by an honest bidder i, the adversary
controlling all but one other bidder (i.e., that is k ≤ m − 2)

cannot break the privacy of the bidder i (Theorem 4, [31])
and the confidentiality of its input. This is because the value
Yi has a uniform distribution (Lemma 3, [31]) and under the
DDH assumption one cannot distinguish between xiYi and a
random group element riYi. It is straightforward to extend
this to a vector of values xi, ri, and Yi as in our case. We
now proceed to prove Cryptobazaar’s privacy using real/ideal
simulation paradigm [29]. A protocol is said to be secure if
what the adversary can learn from the interaction with protocol
(and output) could also be learned from the interaction with
the ideal functionality. This is formally shown by constructing
a simulator S that can generate a simulated view for the
adversary which is indistinguishable from the actual protocol
transcript without having access to the honest parties’ inputs.

Let b1, . . . , bh denote the set of honest bids and without loss
of generality assume the adversary A corrupts the auctioneer
and k ≤ m − 2 bidders, with h + k = m. Further, let out
= (b∗, sp) denote the set of outputs, including the highest
bid, and second highest (honest) bid. The description of
ideal functionality F and simulator S are given in Figure 8
and Figure 9, respectively. We define a sequence of hybrid
distributions starting from the actual protocol transcript and
ending with the simulated transcript. We argue that each
two consecutive hybrids are computationally indistinguishable,
implying the indistinguishably of the real and ideal distribu-
tions. Note that we exploit the zero-knowledge property of
the underlying validity arguments, the privacy guarantees of
the underlying AV protocol, and the hiding property of the
underlying polynomial commitment to simulate the views.

Hybrid0 This is the actual view of Cryptobazaar.
Hybrid1 The same as Hybrid0, except that the simulator S

does the following on behalf of each honest bidder i ∈ [h].
It computes and appends (x̃, q̃, b̃, X̃, π̃x, π̃r, π̃b) to the public
log. This view is indistinguishable from the last one due to
the uniform random distribution of x̃, r̃, the zero-knowledge
property of the underlying proofs for π̃x, π̃r, π̃b, and the
hiding property of the polynomial commitment b̃. Note that
the original KZG commitment is deterministic in the sense
that the same polynomials have the same commitments. So,
for the indistinguishably to hold we need to use blinded KZG.

Hybrid2 The same as Hybrid1, except that the matrix Y is
computed with respect to the simulated row-vectors X̃i for
i ∈ [h] and the ones from adversary X′

j for j ∈ [k]. This
is computationally indistinguishable from Hybrid1 due to the
privacy guarantee of AV under the DDH assumption. That is,
having one honest row-vector X included in the matrix Y, its
row-vectors Yi have uniform distribution (Lemma 3, [31]).

Hybrid3 The same as Hybrid2, except that the simulator S
computes the vectors Z̃i on behalf of honest bidders using
its chosen bids. It also computes the validity proofs π̃Zi

for i ∈ [h]. The indistinguishability of this hybrid from the
previous one stems from the security guarantee of the AV
protocol under the DDH assumption and the zero-knowledge
property of the π̃Zi .

Hybrid4 The same as Hybrid3, except that the output vector

16

S({x′
j , r

′
j}j∈[k], {b′j}j∈[k],out)

1) Receive the output out = (b∗, sp) from F .
2) Sample random non-zero vectors x̃i, r̃i ∈ Fn for i ∈ [h].

It also computes their corresponding commitments x̃i, r̃i
and validity proofs π̃xi , π̃ri .

3) Sample random bid bi for i ∈ [h] such that one of them
is equal to b∗ and others are smaller. Set one of the bids
to sp such that others (excluding b∗) are smaller or equal.

4) Compute the polynomial commitment to unary encoding
of the bids bi for i ∈ [h]. It also computes their
corresponding validity proofs π̃bi .

5) Knowing the description of AV, compute Y = M · X
including row-vector X ′

i for i ∈ [k] received from A.
6) Compute vector Zi = (xi + bi ◦ ri) ◦ Yi on behalf of

honest bidders with validity proofs π̃Zi for i ∈ [h].
7) Receive the values Z′

j for j ∈ [k] from A. If Z′ is not
of valid form, it aborts.

8) Compute the vector R =
∑h

i=1(Zi) +
∑k

j=1(Z
′
j). Note

that A can also compute the same vector at this point.
9) The highest bid is highest position w such that Rw ̸= 0.

Check if Rw = b∗; otherwise, it aborts.
10) Set b∗ = 0 and compute its corresponding vector Z =

(x+ b∗ ◦ r) ◦ Y .
11) Compute the vector R =

∑h
i=1(Zi) +

∑k
j=1(Z

′
j).

12) The second highest bid is highest position w such that
Rw ̸= 0. Check if Rw = sp; otherwise, it aborts.

Fig. 9: Simulator for Cryptobazaar

is computed as R =
∑h

i=1(Z̃i) +
∑k

j=1(Z
′
j), where the

highest position w should equal b∗. Otherwise, the simulator
aborts. Observe that due to the unary encoding and the way AV
works, a valid unary proof for the highest bid π̃b∗ is enough
to ensure the privacy of honest bidders and failure to do so
by A does not affect the security of the view. Thus, this view
is indistinguishable from the previous one.

Hybrid5 The same as Hybrid4, except that the simulator
computes an eligibility proof π̃w on behalf of the candidate
honest winner. This view is computationally indistinguishable
form the previous due to the zero-knowledge property of π̃w.

Hybrid6 This is the view of A simulated by S. Further,
the simulator sets b∗ = 0 and sends the corresponding Z̃
to the adversary. The adversary can now learn the second
highest price sp by determining the highest non-zero position
at R =

∑h
i=1(Z̃i) +

∑k
j=1(Z

′
j). So, the adversary learns

nothing beyond the output (b∗, sp) at the end of the protocol.
2) Proof for Lemma 4: Completeness is immedi-

ately followed by writing out the verification equation as
e(G,H)f(τ)−f(γ)+γq(γ) = e(G,H)τq(τ).

Soundness. Suppose that malicious P commits to f(X),X
such that there exists i for which Xi ̸= f(wi). Denote
f(γ) = y. Then, except with negligible probability we have∑n

i=0 Li(γ)Xi = [y′]1 ̸= [y]1. Finally, from soundness of
the KZG commitment the malicious P has only negligible
probability in constructing an accepting opening proof that
f(γ) = y′ ̸= y.

Zero knowledge. We construct Spv such that given in-
stance x,X, toxic waste τ , and verifier’s challenge produces

a transcript that is identically distributed to the transcript
obtained from interaction with the honest prover. Given γ,
we have [y]1 ←

∑n
i=0 Li(γ)Xi that looks random given DDH

assumption. Simulator then computes q = (f − [y]1)(τ − γ)
which is randomly distributed over γ. It is easy to check that
q satisfies verifier’s pairing check and therefore Spv is able to
produce a valid transcript which is indistinguishable from the
one in the actual protocol.

3) Proof for Lemma 5: We show knowledge soundness by
building an efficient extractor E that extracts the witness and
zero-knowledge by building a simulator.

Knowledge soundness. As adversary A is algebraic, when-
ever it sends a commitment to some polynomial it also sends
the actual polynomial. Further, if the verifier V does not accept
then A clearly does not win the game, thus further assume that
V accepts. Then, since A is algebraic, it sends ŝ(X) and q(X)
together with s and q. E then reconstructs r(X) from ŝ(X),
q(X), and (publicly-known) zH(X) in polynomial time.

Zero knowledge. We construct Snz that, given instance r,
trapdoor τ and verifier randomness, produces a transcript
that is equally distributed as the transcript obtained from
the interaction with the honest prover that has a witness.
Note that Snz samples all values s, q, rγ , sγ , qγ uniformly at
random. In the real execution r(X) and s(X) are blinded
with m(X) and b(X), respectively, thus commitments and
evaluations also look random. The simulator then computes
c = r + αs + α2q and y = rγ + αŝγ + α2qγ as in the
real protocol execution. Finally, by knowing trapdoor τ , it
computes t = (c− [y]1)(τ − γ).

4) Proof for Lemma 6: If b is a valid unary encoding, then
it is straightforward to see that ∆ has the defined structure.
In particular, it consists of all zeros except a one at index i.
From the other side, suppose that ∆ has defined structure and
that b starts with one. Let set index i such that ∆i = 1 and
i ̸= n. From this we have bi − bi+1 = 1. Given that all the
other values of ∆ are zero we can derive that bj = bi+1 for
j ∈ [i+1, n] and that bj = bi for j ∈ [1, i]. Since b1 = 1, thus
bj = 1 for j ∈ [1, i] and from this bj = 0 for j ∈ [i+1, n], the
claim is proved. In case that i = l, with the same reasoning
we can conclude that ∆n = bn = 1 and thus for j ∈ [1, n−1]
we have bj = bn = 1.

5) Proof for Lemma 7: We show how to build an efficient
extractor E and then proceed to build a simulator.

Knowledge soundness. If V does not accept then A clearly
does not win the game, thus further assume that V accepts.
By the knowledge soundness of the log derivative argument
we know that if verifier accepts then evaluations of f(X)
indeed consists of one ‘1’ and all zeroes except with negligible
probability. Then from knowledge soundness of KZG we argue
that u(1) = 1 except with negligible probability. Finally, as
A is algebraic, whenever it sends a commitment to some
polynomial it also sends the actual polynomial. Therefore, A
sends polynomial f(X). Then, E computes u(w) from f(1)
and u(1) and all u(wi) from f(wi−1) and u(wi−1).

Zero knowledge. We construct Sunary which, given instance
u, toxic waste τ and the verifier’s challenge, produces a tran-

17

script that is identically distributed to the transcript obtained
from the interaction with an honest prover that has a witness.
Polynomials u(X), f(X), B(X) are masked such that their
commitments and openings have random distributions. Snz can
then simply sample random elliptic curve and field elements
and with knowledge of τ it can simulate correct opening
proofs. Further, by the definition of zero-knowledge univariate
sumcheck R(X), Q(X) at round 3 are also random.

6) Proof for Lemma 8: Given that our protocol is closely
similar to the generalized IPA introduced in Bunz et al. [14],
we just give a high level intuition and refer the reader to [14]
for more details. Completeness is straightforward. Given that
we use the same form of blinding the zero knowledge can be
proven with the identical method of [14]. Soundness can be
proven as follows. The extractor first runs the extractor ofRpse

to extract a′, r. Then in the similar fashion, the extractor builds
a tree of transcripts by rewinding and recursively extracts
vectors ai ∈ F

n

2i for i ∈ (logn, logn− 1, . . . , 0).
7) Proof for Lemma 9: We argue that our protocol is

knowledge sound in the Algebraic Group Model by building
an efficient extractor E that extracts the witness.

Knowledge soundness. We define a game involving an
algebraic adversary A and an efficient extractor E . Given
SP, A produces the instances a, b, P and produces an in-
teractive argument for the verifier. Then, the goal of the
extractor is to interact with A and at the end to output
the witness x, r, a(X), b(X). We say that A wins the game
if V accepts and one of the following relations is false:
a = [a(τ)]1, b = [b(τ)]1, xG+ rH = P,

∑
h∈H a(h)b(h) = x.

The protocol has knowledge soundness if there is efficient
E and that A cannot win the game except with negligible
probability. If V does not accept then A clearly does not
win the game, thus further assume that V accepts. As A is
algebraic, whenever it sends a commitment to some polyno-
mial it also sends the actual polynomial. Therefore, during
the protocol execution A sends s1, s2, B, R, q, D, Qs together
with s1(X), s2(X), B(X), R(X), q(X), D(X), Qs(X). First,
by the knowledge soundness of the proof of opening of
Pedersen commitment there exists extractor EPedersen such that
except with a negligible probability it extracts x, p, r, s, where
z1 = cx + p and z2 = cr + s. Further, the passing of all
KZG checks implies that by the knowledge soundness of KZG
and Schwartz-Zippel all polynomial identities hold except with
negligible probability. Since the zero knowledge sumcheck
relation also passes, we conclude that

∑
h∈H B(h)+c(a(h)+

s1(h))(b(h)+s2(h)) = z1, except with negligible probability.
From the check that ZH(X) divides both s1(X) and s2(X) we
know that they do not affect the sum since ZH(h) = 0, ∀h ∈
H, thus

∑
h∈H si(h) = 0. Thus,

∑
h∈H B(h) + ca(h)b(h) =

z1. Now suppose that
∑

h∈H a(h) · b(h) = x′ ̸= x and
that P commits to B(X) such that

∑
h∈H B(h) = p′ ̸= p.

Then, we have that cx + p = cx′ + p′ which is true only
if c = p′−p

x−x′ happening with probability 1
|F| . Thus we have

shown that if V accepts then
∑

h∈H a(h)b(h) = x holds with
overwhelming probability. The last ambiguity we have to deal
with is extracting a(X), b(X). Even though A is algebraic it

does not send a(X), b(X) since commitments a, b are already
in the instance. However, E has access to s1(X), s2(X) and
from asγ , bsγ it can compute aγ and bγ . Thus rewinding
A n times and obtaining different opening challenges γi
enables E to interpolate a(X), b(X). From witness extended
emulation [50] we know that E is efficient and fails only with
negligible probability.

Zero knowledge. We construct Spse such that given instance
P, a, b, toxic waste τ and verifier’s challenge, produces a tran-
script that is identically distributed to the transcript obtained
from interaction with honest prover that has a witness. In
Figure 10, we outline the steps of the simulator and then argue
that simulator produces an accepting transcript and that all
messages are correctly distributed. It can be seen that all KZG
checks are passing and that by definition cX+Q = z1G+z2H ,
therefore V accepts. We now argue about the indistinguisha-
bility of the real and simulated transcripts:

1) z1, z2 are uniformly sampled, thus Q matches the actual
distribution. 2) s1, s2 are blinded with r0, r2 for prover and
a2, a3 for simulator respectively. 3) B is blinded with b1 for
prover and a1 for simulator. 4) R is blinded with b2 for prover
and a4 for simulator. 5) q is blinded with b5 for prover and
a5 for simulator. 6) Qs is blinded with r4 for prover and
a6 for simulator. 7) Bγ is blinded with b3 for prover and
uniformly sampled for simulator. 8) Rγ is blinded with b4 for
prover and uniformly sampled for simulator. 9) qγ is blinded
with b6 for prover and uniformly sampled for simulator.
10) s1,β , s2,β are blinded with r1, r3 for prover and uniformly
sampled for simulator. 11) asγ is uniformly distributed since
it has random contribution from both a(X) and s1(X) for
prover and it is uniformly sampled for simulator. 12) bsγ is
uniformly distributed since it has random contribution from
both b(X) and s2(X) for prover and it is uniformly sampled
for simulator. 13) W, T uniquely satisfy the KZG openings.

Spse((G,H), P, a, b, τ, c, γ, v)

1) Sample random z1, z2 and compute Q = z1G+z2H−cX .
2) Sample random a1, a2, a3 and send Q, B = [a1]1, a2 =

[a2]1, a3 = [a3]1.
3) Sample random a4, a5, a6 and send z1, z2, R = [a4]1,

q = [a5]1, D = τN−1−(n−2)[a4]1, and Qs = [a6]1.
4) Sample random Bγ , asγ , bsγ , Rγ , s1,β , ss,β and send

them together with qγ , qS,β such that Bγ + caγbγ =
z1
n

+ γRγ + qγZH(γ) and QS,βzH(β) = s1,β + αs2,β .
5) Compute

a) q1 = (τ − γ)−1 · (qa + qs1 − [asγ]1)
b) q2 = (τ − γ)−1 · (qb + qs2 − [bsγ]1)
c) q3 = (τ − γ)−1 · (qB − [Bγ]1)
d) q4 = (τ − γ)−1 · (qR − [Rγ]1)
e) q5 = (τ − γ)−1 · (qq − [qγ]1)
f) q6 = (τ − β)−1 · (qs1 − [s1,β]1)
g) q7 = (τ − β)−1 · (qs2 − [s2,β]1)
h) q8 = (τ − β)−1 · (qS − [QS,β]1) .

6) Compute and send qW = q1 + vq2 + v2q3 + v3q4 + v4q5
and qT = q6 + vq7 + v2q8.

Fig. 10: Simulator for Rpse

18

B. Artifact Evaluation

In this section, we provide all of the necessary information
to set up and evaluate the artifact associated with the paper
Cryptobazaar: Private Sealed-bid Auctions at Scale and verify
the presented results.

1) Description & Requirements:
a) How to Access: The Cryptobazaar artifact can be

downloaded from the following locations:
• Zenodo: https://doi.org/10.5281/zenodo.17817520
• GitHub: https://github.com/akinovak/cryptobazaar-impl
We recommend using the code archived on Zenodo to ensure
that you are using the correct version. If you prefer using
GitHub, please make sure to checkout GitHub Release v1.0.0
which corresponds to the artifact on Zenodo.

b) Hardware Dependencies: None.
c) Software Dependencies: Mandatory: Rust. Optional:

Git and Docker.
d) Benchmarks: None.

2) Artifact Installation & Configuration: To prepare your
system for evaluating the Cryptobazaar artifact, consider the
following steps.

a) Install Rust: Cryptobazaar is written in the pro-
gramming language Rust. To install Rust, please refer to the
following website: https://rust-lang.org/tools/install/. Rust will
download and install all of the additional artifact dependencies
automatically during the artifact build process.

b) Install Git (Optional): To retrieve the Cryptobazaar
source code from GitHub, we recommend using Git. In case
Git is not already installed on your system, please refer to
your system’s package manager or to the following website:
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git.

c) Install Docker (Optional): The Cryptobazaar artifact
benchmarks can also be executed via the container platform
Docker. In case Docker is not already installed on your system,
please refer to your system’s package manager or to the
following website: https://docs.docker.com/get-started/.

d) Download Repository: Download the repository con-
taining the Cryptobazaar artifact from Zenodo or GitHub. To
clone the repository with Git and checkout the correct version,
execute:

git clone https://github.com/akinovak/cryptobazaar-impl
cd cryptobazaar-impl
git checkout -b cryptobazaar v1.0.0

e) Build Artifact (Optional): To build the Cryptobazaar
artifact and all of its dependencies, execute:

cd cryptobazaar-impl
cargo build --release

This step is optional since the benchmarking process de-
scribed in the next section will automatically build the artifact
and download and install all of the dependencies.

3) Major Claims: In the paper, we claim the following
contributions:

C1 We propose Cryptobazaar, a private scalable sealed-bid
auction protocol that supports first- and second-price auc-

TABLE III: Cryptobazaar microbenchmarks (in ms) for
number of bidders m and price ranges n.

(a) Individual bidder overheads to
compute validity proofs.

n 128 1024 8192

πxi 13.59 101.51 807.21
πri 2.38 10.25 58.38
πbi 2.53 10.68 62.03
πZi

27.28 141.38 953.36

(b) Auctioneer overheads to compute
AV matrix Y.

m / n 128 1024 8192

32 1.84 14.19 112.12
128 4.29 38.87 286.60
256 7.75 59.00 552.24

(c) Auctioneer overheads to compute
results vector R.

m / n 128 1024 8192

32 0.30 6.36 50.48
128 1.95 26.83 145.06
256 4.01 32.90 265.14

tions and relies only on an untrusted auctioneer for coordi-
nation.

C2 We co-design various novel (public coin) zero-knowledge
succinct arguments of knowledge to ensure soundness and
privacy of the different protocol steps.

C3 We present two extensions of Cryptobazaar showing how
to run uniform auctions and sequential/iterative auctions
efficiently without having to re-execute the full protocol.

C4 We demonstrate the practicality of our system by evaluating
an open-source implementation of Cryptobazaar in Rust.
We show that Cryptobazaar scales to hundreds of bidders
and large price ranges while remaining efficient enough for
a practical deployment.

While claims C1-C3 are supported by the design details and
security proofs presented in the paper, we aim to substantiate
C4 through the artifact evaluation.

4) Evaluation: There are six different microbenchmarks
that we report in the Cryptobazaar evaluation section. These
benchmarks were generated on an Apple MacBook Pro with
an M1 Max chip with 10 cores and 64GB memory. For the
sake of being self-contained, we re-report the evaluation results
in Table III. Note that the benchmarks are platform-dependent
and thus the total running time may vary on different systems.
For example, Intel platforms can utilize AVX instructions
(enabled by default via the asm feature in the Cargo.toml
file) to speed up certain cryptographic operations.

a) Experiment: [1 human minute + 60 compute minute]
This experiment computes all of the microbenchmarks mea-
suring the computational overheads (in ms) of the four validity
proofs, the AV protocol, and the creation of the auction results
vector.

[Preparation] None.

19

https://doi.org/10.5281/zenodo.17817520
https://github.com/akinovak/cryptobazaar-impl
https://rust-lang.org/tools/install/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.docker.com/get-started/

[Execution] From the Cryptobazaar directory, execute

./run-benchmarks.sh

Alternatively, the benchmarks can be run via Docker by
executing docker build . in the repository root folder.

[Results] As presented in Table III. To provide a brief
interpretation of the results: For example, for 128 bidders
and a price range of 8192, Cryptobazaar incurs a compu-
tational overhead of 1880ms per bidder per auction run and
the protocol terminates in 431ms. All of the benchmarked
configurations of Cryptobazaar are practical enough to sat-
isfy the requirements of real-world systems. A run of the
Cryptobazaar auction protocol with 128 bidders and a price
range of 1024 completes in less than 0.5 seconds which,
for example, satisfies the requirement of terminating within
Ethereum’s block time window of 12 seconds.

20

	Introduction
	Background
	Notation
	Bilinear Groups
	Commitment Schemes
	Anonymous Veto
	Zero-knowledge Argument of Knowledge

	Cryptobazaar
	System and Threat Models
	Design Goals
	Protocol Description

	Validity Proofs
	Preprocessing Phase
	Bidding Phase

	Extensions and Deployment Considerations
	Efficient Second-price Auctions
	Sequential First-price Auctions
	Non-Responsive Participants

	Evaluation
	Related Work
	References
	Appendix
	Auction Definitions and Proofs
	Proof for Theorem 1
	Proof for Lemma 4
	Proof for Lemma 5
	Proof for Lemma 6
	Proof for Lemma 7
	Proof for Lemma 8
	Proof for Lemma 9

	Artifact Evaluation
	Description & Requirements
	Artifact Installation & Configuration
	Major Claims
	Evaluation

