Artifact
Evaluated

ANDss

Action Required: A Mixed-Methods Study of [
Security Practices in GitHub Actions

Reproduced

Yusuke Kubo*¥, Fumihiro Kanei*, Mitsuaki AkiyamaT, Takuro Wakait and Tatsuya Morit8¥
*NTT DOCOMO BUSINESS, Inc.
Email: yuusuke.kubo@ntt.com, fumihiro.kanei@ntt.com
INTT, Inc.
Email: mitsuaki.akiyama@ntt.com
fWaseda University
Email: ykubo@nsl.cs.waseda.ac.jp, wakataku@nsl.cs.waseda.ac.jp, mori@nsl.cs.waseda.ac.jp
§ NICT ¥ RIKEN AIP

Abstract—GitHub Actions has become a dominant Continuous
Integration/Continuous Delivery (CI/CD) platform, yet recent
supply chain attacks like SolarWinds and tj-actions/changed-files
highlight critical security vulnerabilities in such systems. While
GitHub provides official security practices to mitigate these risks,
the extent of their real-world implementation remains unknown.
We present a mixed-methods study analyzing 338,812 public
repositories and surveying over 100 developers to understand
security practice implementation in GitHub Actions. Our findings
reveal alarmingly low implementation rates across five key
security practices, ranging from 0.6 % to 52.9%. We identify three
primary barriers: lack of awareness (up to 71.6% of non-adopters
were unaware of practices), misconceptions about applicability,
and concerns about operational costs. Repository characteristics
such as organization ownership and recent development activity
significantly correlate with better security practice implemen-
tation. Based on these empirical insights, we derive actionable
recommendations that align intervention strategies with appro-
priate levels of automation, improve notification design to support
awareness, strengthen platform- and IDE-level assistance, and
clarify documentation on risks and applicability.

I. INTRODUCTION

Continuous Integration and Continuous Delivery (CI/CD)
has become fundamental pillars of modern software develop-
ment. By automating code integration, testing, and deployment
processes, these methodologies enable development teams to
deliver software updates more frequently and reliably, with
notable improvements in development efficiency and faster
product releases. As software systems grow increasingly com-
plex and development cycles shorten, CI/CD has evolved from
an optional enhancement to an essential practice across the
industry.

However, the widespread adoption of CI/CD has introduced
new attack vectors that adversaries actively exploit. Supply
chain attacks targeting CI/CD pipelines have emerged as a

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240483
www.ndss-symposium.org

critical security concern, as demonstrated by high-profile inci-
dents such as the 2020 SolarWinds attack [1], where attackers
compromised the software build process to distribute malware
through legitimate software updates, affecting approximately
18,000 organizations including US government agencies and
major corporations. Among various CI/CD platforms, GitHub
Actions has emerged as a dominant solution due to its seamless
integration with GitHub repositories and ease of configu-
ration [2], [3], yet this widespread adoption has exposed
platform-specific vulnerabilities. The 2025 tj-actions/changed-
files incident [4] exemplified these risks, where a compromised
personal access token was used to retroactively modify release
tags, injecting malicious code that extracted CI/CD secrets
from memory and printed them in workflow logs, impacting
numerous public repositories and prompting GitHub’s emer-
gency intervention.

These incidents highlight the urgent need to understand and
address security challenges specific to GitHub Actions. Recent
studies have systematically identified several vulnerabilities
in the platform, including excessive permission grants, inade-
quate secret management, and risks associated with third-party
action execution [5], [6]. In response to these concerns, GitHub
has published official security practices and recommenda-
tions [7]. However, despite the availability of these guidelines,
there remains a significant gap in our understanding: to what
extent are these security practices actually adopted in real-
world development, and what factors influence their implemen-
tation? Without empirical evidence of implementation patterns
and barriers, security guidelines remain theoretical constructs
that may fail to protect the millions of projects relying on
GitHub Actions, leaving the software supply chain vulnerable
to preventable attacks.

To address this gap, we present a comprehensive investiga-
tion of security practice implementation in GitHub Actions.
Our study aims to systematically evaluate the current state
of security practice implementation, identify the factors that
influence implementation, and understand the barriers that pre-
vent developers from implementing recommended practices.
Specifically, our research addresses three key questions:

o RQ1: To what extent are GitHub Actions security practices

implemented in real-world repositories?

« RQ2: What repository characteristics are associated with
the implementation or non-implementation of security prac-
tices?

« RQ3: What factors prevent developers from implementing
security practices?

We employ a mixed-methods approach, combining quanti-
tative analysis of repository data with qualitative insights from
developer surveys, to answer these questions. For the measure-
ment study, we analyzed 338,812 public GitHub repositories
that use GitHub Actions, collected from the SEART-GHS [8]
dataset. We developed automated detection methods to assess
the implementation of five key security practices and employed
statistical modeling techniques to examine the relationships
between repository characteristics and practice implementation
patterns. For the user study, we surveyed over 100 developers
working with GitHub Actions recruited from our repository
dataset through an online questionnaire, capturing diverse
perspectives across different experience levels, organizational
contexts, and geographical regions. This combination of quan-
titative repository analysis and qualitative developer insights
provides both empirical evidence of implementation patterns
and detailed insights into the human factors influencing secu-
rity practice implementation.

This paper makes the following contributions:

+ Methodological framework: We develop and validate au-
tomated detection methods to identify whether GitHub
Actions security practices are implemented in repositories,
achieving 100% accuracy on manual validation. Our detec-
tion techniques provide a reusable framework for continuous
monitoring and are publicly available as the artifacts [9].

o Large-scale empirical analysis: Through analysis of
338.8K public repositories, we provide the first quantitative
assessment of security practice implementation rates in
GitHub Actions, revealing critically low implementation
(0.6%-52.9%). We identify statistically significant rela-
tionships between repository characteristics (e.g., recent
development activity, number of workflows, organization
ownership) and practice implementation across five key
security practices.

« Developer perspectives and barriers: Based on surveys
with 102 developers working with GitHub Actions, we
uncover that the primary barriers to implementation are lack
of awareness (21.3%-71.6% were unaware of practices),
lack of understanding and misconception (four participants
did not implement practices due to misconception), and
concerns about operational costs (25.3% cited maintenance
burden). These findings suggest that improving security re-
quires not only technical solutions but also better developer
education and tool support.

« Actionable recommendations: Drawing from our findings,
we propose concrete improvements including: aligning in-
tervention strategies with appropriate levels of automation,
introducing well-designed notifications to raise awareness,
strengthening platform- and IDE-level assistance, and clar-

ifying documentation on risks and applicability We have
shared these insights with GitHub to inform platform im-
provements (see Appendix A for details).

II. BACKGROUND
A. GitHub Actions

1) Overview: GitHub Actions [10] is a CI/CD platform
provided by GitHub, characterized by its native integration
with GitHub repositories. Other widely used CI/CD platforms
include GitLab CI/CD [11], CircleCI [12], and Travis CI [13].
Since its general availability at the end of 2019, GitHub
Actions has rapidly dominated the CI/CD market. Golzadeh
et al. conducted a quantitative analysis of approximately 90K
OSS projects on GitHub from 2012 to 2021, reporting that
GitHub Actions achieved 51.7% market share by 2022 and
reached usage levels comparable to the previously leading
Travis CI within just 18 months of its release [2]. This
success is attributed to its bundling strategy with GitHub
services and its ecosystem of reusable actions [3], establishing
GitHub Actions as a central infrastructure in modern software
development.

2) Workflow Syntax: The core functionality of GitHub
Actions is based on workflows, which are defined in the
repository and used to automate various parts of the devel-
opment process [14]. Figure 1 shows an example workflow.
Workflows are written in YAML format and stored in the
repository’s .github/workflows directory. They are trig-
gered by events such as pushes or pull requests. Each workflow
consists of one or more jobs, with each job representing
a distinct unit of execution. Each job consists of multiple
steps, which are the smallest units of execution that describe
operations such as running shell commands (via the run field)
or invoking actions (via the uses field).

In automation scenarios where runtime information is re-
quired, developers can refer to the github context [15],
which provides a set of built-in variables. The github con-
text provides access to metadata during workflow execution,
such as the event type or repository name, via the syntax
${{ github.xxx }}. This mechanism enables conditional
branching and dynamic command execution based on runtime
context. The github context has a hierarchical structure that in-
cludes github.event and github.env, allowing various
properties to be controlled in great detail.

3) Actions: In GitHub Actions, an action [16] is a reusable
component that encapsulates a specific process or task. Devel-
opers can invoke an action within a workflow step using the
uses field. There are three types of action implementations:
JavaScript action, Docker action, and composite action, which
combine multiple steps. Actions can be defined locally within
a repository, retrieved from public GitHub repositories, or
executed by referencing a container image directly. When
referencing an action from a public repository, use the format
owner/repol@ref, where ref can be a tag, branch name,
or commit SHA. In this study, we refer to publicly available
actions as public actions. GitHub provides a platform called
GitHub Marketplace [17] for discovering and sharing public

name:
on:
pull_request: #
branches:

Example Workflow # Workflow Name

jobs:
build:
runs-on:
steps:
- name:
uses:
— name:
env:
PR TITLE: S${{
— github.event.pull_request.title }} #
— Access github context
run: echo "SPR_TITLE"

Job Name
ubuntu-latest # Running Environment
Check out code

actions/checkout@v4 # Using action
Show Pull Request Title

Fig. 1. Example of GitHub Actions Workflow.

actions. This platform includes both officially maintained
actions (e.g., actions/checkout) and actions published
by external developers or organizations. In this study, actions
developed by neither GitHub nor end users themselves are
referred to as third-party actions.

4) Events Log: GitHub provides logging features, such
as Security Log [18] and Audit Log [19], which record
activity history. These logs also include events related to
GitHub Actions. For example, when a workflow is enabled, the
workflows.enable_workflow event is logged. These
logs can be searched and reviewed through the Web UI,
allowing developers to track configuration changes and use
them for auditing and security purposes.

B. Related Work

1) Security Risks in CI/CD Platforms: Several measure-
ment studies have systematically analyzed security vulnerabil-
ities in CI/CD platforms, particularly GitHub Actions. Koishy-
bayev et al. conducted a comprehensive analysis revealing
that 99.8% of workflows operate with excessive privileges
and 23.7% are vulnerable to malicious pull request attacks,
highlighting fundamental security gaps in current CI imple-
mentations [5]. Gu et al. examined token management across
major CI platforms, identifying four novel attack vectors
and demonstrating that token leakage and excessive privilege
configurations affect repositories even in large-scale organiza-
tions including GitHub, Google, and Microsoft [6]. Benedetti
et al. developed GHAST (GitHub Actions Security Tool)
and identified 24,905 security issues across 50 open-source
projects [20], while Muralee et al. introduced ARGUS, the
first static taint analysis framework specifically designed for
GitHub Actions, analyzing over 2.7 million workflows from
1 million repositories [21]. While these studies effectively
identify and categorize security risks in CI/CD environments,
they primarily focus on vulnerability detection rather than
examining the preventive security practices that development
teams actually implement to mitigate these risks.

2) GitHub Security Features and User Perspectives: Re-
search on GitHub’s security features from a user perspective

remains limited. Ayala et al. conducted multiple user studies
with OSS maintainers, including 80 survey responses and 22
interviews. Their study examined perceptions and utilization
of GitHub’s security features, identifying supply chain trust
issues and lack of automation as primary challenges, while
also highlighting insufficient awareness and feature complexity
as barriers to adoption [22]. However, this user study focuses
on general repository security rather than CI/CD-specific se-
curity practices, leaving unaddressed the unique challenges of
continuous integration workflows such as secret management
in automated environments, dependency security in build pro-
cesses, and access control for automated deployments.

3) Research Gap and Contribution: As discussed above,
existing research primarily focuses on either identifying CI/CD
vulnerabilities [5], [6], [20], [21] or examining general GitHub
security features [22], but none specifically investigates secu-
rity practices within GitHub Actions. In contrast, this study
presents the first empirical investigation that focuses not
on detecting vulnerabilities, but on the preventive measures
officially recommended by GitHub, examining both their im-
plementation in practice and the factors that hinder broader im-
plementation. Furthermore, no study combines measurement
and user study methodologies to provide a holistic under-
standing of CI/CD security. Our research addresses these gaps
by systematically examining the implementation of security
practices in GitHub Actions through a dual approach that
quantifies practice implementation while understanding practi-
tioner challenges and decision-making processes, bridging the
gap between risk identification and practice implementation.

III. MIXED-METHOD STUDY DESIGN
A. Overview of Mixed-method Approach

Our goal is to understand how security practices for GitHub
Actions are implemented by software developers and what
barriers hinder their implementation. To this end, we adopted
a mixed-methods approach that combines a measurement
study and a user study. The measurement study quantitatively
analyzes a large-scale dataset of GitHub repositories using
GitHub Actions. We examine how widely security practices
are implemented (RQ1) and how repository characteristics
associate to their implementation (RQ2). The user study com-
plements this by investigating the understanding and attitudes
of developers working with GitHub Actions toward security
practices. Through this analysis, we aim to identify perceived
barriers to implementation (RQ3), and to better understand the
factors that influence developers’ security-related behaviors.

B. Security Practices

As part of its security measures for GitHub Actions, GitHub
publishes a set of security practices [7]. In this study, we refer
to these practices as security practices in GitHub Actions.
These practices are updated periodically. For this study, we
used publicly available information as of June 12, 2025'.

'A minor revision to the security practices was made after July 11, 2025.
However, we confirmed that the change does not affect this study. See
Appendix B for details.

1) Practice Selection: GitHub’s security practices cover
topics such as workflow configuration, secret management,
and environment protection. In total, 16 practices are rec-
ommended. They span the entire GitHub Actions life cycle,
from workflow design to operation and monitoring. However,
covering all 16 practices is not feasible from our study
design perspective. In our measurement study, settings that
are only visible to repository owners cannot be analyzed.
In our user study, accounting for differences in developers’
knowledge and access privileges would complicate the design
and burden participants. Given these constraints, we narrowed
the scope of our investigation to focus on practices applicable
to both studies. This approach allows for an integrated analysis
of the results from our measurement and user studies. We
decided not to select practices based on their perceived security
importance, because no objective criteria exist for comparing
the relative importance of individual practices. In the absence
of such criteria, any prioritization would rely on subjective
judgment and could introduce arbitrary biases.

The selection of target practices was based on the following
four criteria: (1) The practice involves the concrete configura-
tion, implementation, or use of a feature or tool, rather than
merely supporting developers’ understanding or awareness; (2)
Its implementation status (i.e., whether it is implemented) can
be determined using publicly available data; (3) Whether the
practice is applicable to a given repository can be identified
based on publicly available data; (4) It does not require high-
level privileges, meaning it can be implemented by users other
than repository owners or admins.

Based on the above criteria, we selected five practices (IDs
2,4,6, 8, and 11 in Table VI in Appendix C) as the common
targets of both the measurement and user study. The following
practices were excluded from the scope: those consisting
primarily of knowledge or informational items rather than
actionable practices (IDs 3, 12, and 14); those that cannot
be analyzed using open data (IDs 1, 5, 9, 13, 15, and 16); and
those for which only individuals with administrative privileges
can provide responses (ID 10). In addition, one practice (ID 7)
was excluded because it overlaps with the target practice (ID
6). The rationale for these selections is further discussed in
Appendix C. Note that we included supplementary questions
about two additional practices (IDs 9 and 16) in our user study,
which was not constrained by public data availability. These
practices were selected and added based on feedback from our
pilot interviews conducted during the survey design phase.

2) Selected Practices: We provide an overview of the five
practices selected for analysis. In this study, each practice is
assigned a unique identifier and name.

P1: CODEOWNERS. CODEOWNERS [23] feature enables
the assignment of responsibility for specific files or directories
to individuals or teams. This mechanism enforces proper
review procedures for code changes, helping to prevent mali-
cious modifications or accidental errors. To configure CODE-
OWNERS, create a CODEOWNERS file in the appropriate
repository location and list the file paths along with their
corresponding reviewers. Consequently, the designated review-

ers are automatically requested to review any changes made
to the specified files or directories. The 2025 GhostAction
incident [24], in which malicious workflow additions led to
attacks, highlights the important role that CODEOWNERS
plays in discouraging such modifications.

P2: Mitigating Script Injection. A script injection attack
can occur when an attacker adds malicious commands and
scripts to github context, and the workflow interprets those
strings as code which is then executed on the runner. To
mitigate this type of attack, the following two approaches
to implementing workflows are recommended: (1) Use a
JavaScript action that processes the github context value, and
pass the context value to the action as an argument; (2) Assign
the github context value to an environment variable, and use
the environment variable in the script. Both approaches aim
to avoid handling the github context directly within scripts.
The 2025 Slngularity attack [25], in which a script directly
processed the PR title, demonstrates the importance of safe
context handling to eliminate this injection vector.

P3: OpenSSF Scorecard. Scorecard [26] is a tool that
analyzes repositories and generates a score representing a
repository’s security risk. It evaluates repositories from various
perspectives, such as risky workflow configurations, the use of
dependency management tools, and branch protection settings.
This enables developers to assess the security posture of a
repository and identify areas for improvement. Scorecard is
available as an action [27] and a workflow template [28], both
of which can be executed within the user’s own repository.
The results can be viewed in the repository’s security tab or
in the logs of the corresponding workflow run. Past security
incidents suggest that weak configurations often serve as entry
points for attacks. Continuous assessment with Scorecard is
therefore essential for identifying such risks at an early stage.
P4: Pinning Third-party Actions. Executing third-party ac-
tions created or compromised by malicious actors may result
in the leakage of sensitive information or the unauthorized
manipulation of the repository. To mitigate these risks, two
recommended practices focus on how actions are referenced,
specifically, the ref in the owner/repo@ref format’.

o P4-1: Pinning to SHA. Pin actions to a full commit hash
(SHA). This ensures that the exact same code is always
executed, protecting against future changes or tampering.
Although this is the most reliable method, it requires
additional effort to verify and specify the hash value.

e P4-2: Pinning to TAG. Pin actions to a tag if the creator
is trusted. This method offers better readability and ease of
use. However, because tags can be reassigned to different
commits, there is a risk that a compromised action could
maliciously alter the tag to point to a harmful commit.

The 2025 tj-actions/changed-files incident [4] highlights the
importance of appropriate reference methods against supply-
chain risks. In this case, P4-1 would have been effective.

2In our user study, practice P4 is divided into P4-1 and P4-2 for analysis
purposes; therefore, sub-identifiers are assigned accordingly.

P5: Dependabot. Continuously managing and updating the ac-
tion versions in workflows is essential for maintaining security.
In GitHub Actions, using Dependabot [29] is recommended as
a way to automate this process. When github-actions
is specified as the package ecosystem in the configuration
file, Dependabot automatically creates pull requests when
action updates are available, prompting developers to upgrade
to newer versions. Thus, Dependabot enables the automatic
management of action dependencies in GitHub Actions. This
practice is recommended for all repositories using public
actions, regardless of the programming language used. To
avoid using outdated action versions that contain vulnerabili-
ties reported in the GitHub Advisory Database [30], managing
updates with Dependabot is effective.

IV. MEASUREMENT STUDY METHODOLOGY

This section presents the methodology designed to address
RQ1 and RQ2 through open data analysis.

A. Repository Dataset

To minimize the load on the GitHub platform and facilitate
reproducibility through precise data specification, this study
leverages existing datasets rather than collecting repositories
directly. Among the major GitHub datasets, we use SEART-
GHS [8], which has been widely used in software engineering
research [31], [32]. SEART-GHS is a structured dataset that
includes repository-level metadata, such as the number of con-
tributors and commits. It is provided in a format suitable for
large-scale analysis, enabling multifaceted investigations based
on repository attributes. However, it is limited to repositories
with at least 10 stars, introducing a bias toward relatively
popular projects. This bias is acceptable for our study because
repositories with more stars are more likely to use GitHub
Actions [33], making this dataset particularly relevant for
analyzing GitHub Actions security practices. As SEART-GHS
does not directly indicate whether repositories use GitHub
Actions, we extended the dataset by querying the GitHub
API and cloning repositories to identify and analyze GitHub
Actions usage, as described in the following section.
Dataset Enhancement Procedure. To supplement SEART-
GHS with GitHub Actions usage information, we enhanced
the dataset through the following procedure:

1) Generate a list of GitHub repositories using the SEART-
GHS. Forked repositories are excluded to avoid duplicate
analysis, as they often contain content similar to their
upstream sources. Archived repositories are also excluded,
as they are read-only and pose no active security risk.

2) Use the GitHub API® to check whether each repository
contains any workflow files.

3) If workflows are detected, classify the repository as using
GitHub Actions and clone it to a local server.

4) Examine the contents of each cloned repository and exclude
those that do not contain workflow files. This step is
necessary because some GitHub features, such as GitHub

3We used the Enterprise plan, which has a higher rate limit.

Pages [34], may trigger a positive response from the GitHub
API even if the repository contains no actual workflow files.

We collected 1,675,884 repository records from SEART-
GHS on May 12, 2025. The dataset contains repositories
created before December 31, 2024. From this dataset, we
identified those that use GitHub Actions, and between June 6
and 7, 2025, we cloned a total of 338,812 repositories, which
included 861,680 workflows and 3,424,855 actions. This cor-
responds to approximately 20.2% of the entire SEART-GHS.

B. Framework for Automated Detection of Security Practices

To address RQ1, we constructed an automated framework
to detect the implementation status of GitHub Actions security
practices. This framework is based on patterns defined accord-
ing to GitHub’s official documentation and the specifications
of related features and tools. Each detection method specifies
both the applicability criteria (which repositories are subject
to the practice) and the detection procedure (how to identify
actual implementation).

1) Security Practice Detection Schemes:

P1: CODEOWNERS Detection.

Applicability: P1 applies to all repositories.

Detection: We detect P1 implementation by verifying three
conditions: (1) a CODEOWNERS file exists; (2) the file is in
a valid location (.github/, repository root, or docs/); and
(3) the file contains at least one rule. All three conditions must
be met.

P2: Mitigating Script Injection Detection.

Applicability: P2 applies to repositories containing workflow
steps that use the github.event context*. Specifically, reposi-
tories with at least one step using the github.event context in
certain patterns shown below are applicable for P2.
Detection: We parse all workflow files and classify each step
into four categories: (1) use of github.event in the run;
(2) use of an environment variable set from github.event
in the run; (3) use of github.event or an environment
variable set from github.event in the with; (4) all other
cases. Repositories with steps in categories (1), (2), or (3) are
applicable for P2. Among these applicable repositories, those
that do not include any steps in category (1) are detected as
implementing P2.

P3: Scorecard Detection.

Applicability: P3 applies to public repositories only, as this
practice is designed for open-source projects.

Detection: We detect P3 implementation through three steps:
enumerate all workflow files, parse the uses fields, and check
for the ossf/scorecard action. Any repository using this
action implements P3.

P4: Pinning Detection.

Applicability: P4 applies to repositories using third-party ac-
tions—those created by entities other than GitHub or the
repository owner. We determine whether an action is third-
party by examining the owner component (i.e., the owner

4The github.event context within the github context, as this is most relevant
to injection risk

in owner/repo@ref), which requires identifying official
GitHub accounts. For this, we use GitHub’s verified do-
main mechanism [35], recognizing accounts registered under
github.com as official. Repositories using at least one third-
party action are applicable for P4.

Detection: We detect P4 implementation in three steps. First,
we extract all third-party actions from workflow files. Second,
we verify each action meets one of two criteria: (1) referenced
by a full 40-character commit hash, or (2) has a verified badge
and is referenced by a tag. We determine reference types
and verification status using GitHub API data and GitHub
Marketplace information (see Appendix D). Third, we confirm
P4 implementation only when all third-party actions meet
these criteria.

P5: Dependabot Detection.

Applicability: PS5 applies to repositories using public actions
(owner/repo@ref). Due to Dependabot’s specifications,
only public actions are subject to dependency management.
Repositories using only local actions (. /path/to/dir) or
container images (docker://image:tag) are not applica-
ble for P5.

Detection: We detect P5 implementation by checking
three conditions: (1) a dependabot.yml or
dependabot .yaml file exists; (2) the file is in the
.github directory and has valid YAML syntax; and (3) the
file specifies github—-actions as a managed ecosystem.
All conditions must be satisfied.

2) Validation of the Framework Implementation: The
framework developed in this study employs the two-aspect
approach described above: determining applicability and de-
tecting implementation for each security practice. Since these
methods are based on clearly defined patterns from official
documentation, they should theoretically produce accurate
results without false positives or false negatives. However,
coding errors could potentially introduce inaccuracies in the
analysis. To ensure reliability, we manually validated the
framework outputs by inspecting the code, workflows, and
configuration files of randomly selected repositories. Specifi-
cally, we examined 100 repositories containing 250 workflows
and 981 actions. We verified both applicability decisions and
implementation detection for each practice. All validation
cases yielded the expected results, confirming the reliability
of our framework for subsequent analyses.

C. Statistical Modeling

To address RQ2, we conducted logistic regression analy-
sis to identify repository characteristics associated with the
implementation of security practices. For this analysis, we
converted the implementation status of each relevant security
practice identified in Section IV-B into a binary variable
(1: implemented, O: not implemented), which we use as
the dependent variable. In addition, we use repository-level
features as independent variables as shown in Table I. These
include project popularity and activity indicators (e.g., stars,
contributors, commits, and recent update), code characteristics
(e.g., codebase size and repository age), workflow attributes

TABLE I
INDEPENDENT VARIABLES USED IN LOGISTIC REGRESSION ANALYSIS.

Independent Variables [Source [Type
Number of Stars SEART-GHS Continuous
Number of Contributors SEART-GHS Continuous
Number of Commits SEART-GHS Continuous
Codebase Size SEART-GHS Continuous
Repository Age SEART-GHS+ Continuous
Recent Activity SEART-GHS+ Binary
Number of Workflow Files Cloned Repository | Continuous
Number of Workflow Developers | Cloned Repository | Continuous
Owner Type GitHub API Categorical

SEART-GHS+ indicates that the SEART-GHS metadata has been processed.
Repository Age: Days between repository creation and repository collection.
Recent Activity: Whether the repository had commits after 2025-01-01,
which is approximately five months before repository collection. Owner
Type: Whether the repository owner account is User or Organization.

(e.g., number of workflow files and workflow developers),
and owner type (e.g., whether the repository owner is a user
account or an organization account). These variables were not
predetermined, but rather, were selected through an iterative
process during the analysis. As in previous studies [36], [37],
[38], we assessed multicollinearity using the variance inflation
factor (VIF), and excluded variables with high correlations
(see Appendix E). Additionally, statistical significance and
practical interpretability were considered during the selection
process.

We examined how these variables relate to the implementa-
tion of security practices using odds ratios, which indicate the
direction and strength of association. The interpretation of the
odds ratio depends on the type of independent variable. In this
analysis, an odds ratio greater than 1 for a continuous variable
indicates a positive association between the variable and the
likelihood of implementing the security practice. An odds ratio
greater than 1 for categorical or binary variables indicates that
the security practice is more likely to be implemented than in
the reference category. Importantly, the magnitude of an odds
ratio does not necessarily correspond to statistical significance.
In particular, when the sample size is large, even minor
effects may yield p-values below the significance threshold.
Therefore, it is inappropriate to rely solely on p-values when
evaluating statistical validity. In this study, both p-values
and 95% confidence intervals were used to assess statistical
significance. A result is considered statistically significant if
the p-value is below 0.05 and the 95% confidence interval does
not include 1.

V. MEASUREMENT STUDY RESULT
This section presents the results related to RQ1 and RQ2.

A. Implementation Rates of Security Practices

We define the implementation rate of a security practice
as the proportion of repositories that actually implement the
practice, after excluding those for which the practice is inap-
plicable. For example, a repository is considered applicable
to the security practice PS (Dependabot) when it uses public

TABLE II
IMPLEMENTATION RATES OF EACH SECURITY PRACTICE.

Security practice Target repo. Implementation rate

P1 CODEOWNERS 338,812 7.1% (23,890)
P2 Mitigating Script Injection 43,516 52.9% (23,005)
P3 OpenSSF Scorecard 338,812 0.6% (1,965)
P4 Pinning Third-party Actions 233,124 16.2% (37,693)
P5 Dependabot 332,928 10.7% (35,588)

actions; therefore, repositories that do not use public actions
are excluded from the P5 implementation rate calculation.
Using our framework described in Section IV-B, we first filter
out inapplicable repositories, then determine which of the
remaining repositories have implemented the practice. Based
on this, we calculate the implementation rate.

Table II presents the implementation rates for each se-
curity practice. None of the security practices were widely
implemented, despite a wide variation in implementation rates,
ranging from 0.6% to 52.9%. In particular, practices involving
the use of security features and tools, such as P1 (CODE-
OWNERS), P3 (OpenSSF Scorecard), and P5 (Dependabot),
showed notably low implementation rates, each below 11%.

We further analyzed incomplete or incorrect configurations
found in non-implementation cases where configuration files
were present. This analysis focused on P1 and PS5, for which
specification compliance can be evaluated based on the pres-
ence, location, and content of the configuration file. For P1,
among 314,922 non-implementation repositories, 1,287 had
a configuration file. These included invalid file placement
(873, 0.28% of all non-implementation cases), and file lacking
ownership rules (414, 0.13%). For P5, among 297,340 non-
implementation repositories, 21,061 had a configuration file.
These included invalid file placement (757, 0.25%), syntax
errors (134, 0.05%), and configurations that did not include the
github-actions ecosystem (20,170, 6.78%). These cases
do not meet the required specifications and thus cannot be
regarded as implementing the practices.

Answer to RQ1: The implementation rates of all prac-
tices ranged from 0.6% to 52.9%, indicating that none are
widely implemented. In particular, practices involving the
use of security tools and features (P1: CODEOWNERS,
P3: Scorecard, P5: Dependabot) showed low imple-
mentation rates between 0.6% and 10.7%, suggesting
significant gaps in implementation.

B. Repository Characteristics Associated with Security Prac-
tice Implementation

We applied logistic regression to assess associations be-
tween repository characteristics and the implementation of
security practices. The results of logistic regression analysis
are shown in Table IIl. The listed values represent the odds
ratios for each independent variable. We consider an effect
statistically significant when the p-value is below 0.05 and the
95% CI does not include 1 as described in Section IV-C.

Number of Stars, Commits, Codebase Size, and Reposi-
tory Age. Number of stars and commits, codebase size, and
repository age rarely had a statistically significant impact on
the implementation of each security practice. Even when a
significant impact was observed, the effect size was minimal.
In other words, these characteristics did not substantially
influence whether security practices were implemented. It was
shown that high repository popularity (Stars), scale (Code
base size, Commits), or maturity (Repository Age) do not
necessarily imply the implementation of security practices.
Number of Contributors. Number of contributors had a sta-
tistically significant impact on P1, P2, P3, and P5. Repositories
with more contributors were more likely to implement P1 and
P3, but less likely to implement P2 and P5. However, since
the odds ratios were close to 1, representing the effect of a
single additional contributor, the overall impact was limited.
This suggests that an increased number of contributors does
not necessarily mean a greater proportion of them are directly
involved in implementing security practices.

Recent Activity. Recent activity had a statistically significant
impact on P1, P3, P4, and P5. Repositories with recent activity
were more likely to implement these practices compared to
those without. As expected, repositories with recent activity
reflecting continued maintenance were more likely to imple-
ment security practices.

Number of Workflow Files. Number of workflow files had a
statistically significant impact on all security practices. Specif-
ically, repositories with more workflow files were more likely
to implement P1, P3, and PS5, but less likely to implement
P2 and P4. P2 and P4 are practices related to the writing of
workflow files (see Section III-B2). These results suggest that,
as the number of workflows increases, it may become more
difficult to consistently apply these practices.

Number of Workflow Developers. Number of workflow
developers had a statistically significant impact on all security
practices. Specifically, repositories with more workflow au-
thors were more likely to implement P1, P3, P4, and PS5, while
less likely to implement P2. Unlike the number of contributors,
which showed no clear trend, the number of workflow develop-
ers exhibited consistent patterns. This suggests that developers
involved in implementing and maintaining workflows may
play a central role in the implementation of security practices.
Owner Type. Owner type had a statistically significant impact
on all security practices. Specifically, repositories owned by
user accounts were more likely to implement P2 and P4,
whereas those owned by organization accounts were more
likely to implement P1, P3, and P5. This suggests that
repositories under organizational ownership tend to adopt
security-related features and tools such as P1, P3, and P5
(see Section III-B2). In other words, these results imply that
organizational governance may encourage the implementation
of security practices.

Answer to RQ2: Repositories with recent activity re-
flecting ongoing maintenance were more likely to im-

TABLE III

LOGISTIC REGRESSION RESULTS FOR REPOSITORY CHARACTERISTICS AND SECURITY PRACTICES.

Independent Variables [P1 P2 P3 P4 P5

Number of Stars .99998**3* 1.00000+ 1.00000+ 1.00001%*** 9999973
’ [0.99997, 0.99998] [0.99999, 1.00000] [1.00000, 1.00001] [1.00000, 1.00001] [0.99999, 1.00000]

Number of Contributors 1.00167%%* 99895#:#:* 1.00232%#* .99956* 99825 #:*
[1.00135, 1.00198] [0.99856, 0.99934] [1.00164, 1.00300] [0.99921, 0.99991] [0.99792, 0.99858]

Number of Commits 1.00000%** 1.00000+ 1.00000%*%* 1.00000+ 999993
[0.99999, 1.00000] [1.00000, 1.00000] [1.00000, 1.00000] [1.00000, 1.00000] [0.99999, 0.99999]

Codebase Size 1.00000* 1.00000%%* 1.00000%** 1.00000%** 1.00000%**
) [1.00000, 1.00000] [1.00000, 1.00000] [1.00000, 1.00000] [1.00000, 1.00000] [1.00000, 1.00000]

Repository Age .99989%#* 1.00007%*** 1.00002+ .99999%** 1.0001 1%**
[0.99987, 0.99990] [1.00006, 1.00009] [0.99999, 1.00006] [0.99998, 1.00000] [1.00010, 1.00012]

Recent Activity 1.41553%%* 98246+ 2.69133%** 1.07503*%%* 2.33900%**
[1.37468, 1.45758] [0.94361, 1.02291] [2.41585, 2.99821] [1.05091, 1.09971] [2.28188, 2.39755]

Number of Workflow Files 1.05185%%* 97287 %% 1.03052%%* 97246%** 1.05856%#*
[1.04799, 1.05572] [0.96831, 0.97745] [1.02526, 1.03581] [0.96803, 0.97691] [1.05475, 1.06238]

Number of Workflow Developers 1.10088##* 98085%** 1.04417%#%* 1.01408%** 1.12425%%*
[1.09676, 1.10502] [0.97661, 0.98511] [1.03814, 1.05024] [1.01041, 1.01776] [1.12001, 1.12849]

Owner Type 24995 %% 1.05489* 35556%%* 1.06167*%* .89690%#*
[0.24078, 0.25947] [1.00966, 1.10216] [0.31570, 0.40044] [1.03721, 1.08672] [0.87462, 0.91974]

The listed values indicate the odds ratio. Brackets show the 95% confidence interval. Significance levels are + p > .05; * p < .05; ** p < .01; **%*

p < .001. Values are shown in bold when the odds ratio is statistically significant and differs from 1.000 by at least 0.001. For binary variables such as
Recent Activity, the odds ratio compares cases with value 1 against those with value 0. For categorical variables such as Owner Type, User is treated as the
reference category, and the odds ratio for Organization is interpreted relative to it. For all other (continuous) variables, the odds ratio represents the change

in odds associated with a one-unit increase in the variable.

plement security practices. In contrast, high repository
popularity (number of stars), scale (codebase size and
number of commits), maturity (repository age), or avail-
able developer resources (number of contributors) did
not necessarily lead to greater implementation of security
practices. As the number of workflows increases, it may
become more difficult to consistently apply practices
related to workflow configuration, specifically P2 (Miti-
gating Script Injection) and P4 (Pinning). The develop-
ers who implement and maintain workflows (workflow
authors) may play a more central role in implementing
these practices than the overall number of contributors.
Finally, the type of repository ownership showed a
notable correlation with the implementation of security
practices. Repositories owned by organization accounts
were more likely to implement P1 (CODEOWNERS), P3
(Scorecard), and P5 (Dependabot), which involve using
security-related features and tools. This suggests that
organizational governance may encourage the implemen-
tation of security practices.

VI. USER STUDY METHODOLOGY

This section presents the methodology designed to address
RQ3 through an online survey. The full text of the question-
naire used in our survey is available in the supplementary
materials included in the artifacts [9].

A. Survey Design

Our survey included questions about GitHub repositories
contributed to, their use of GitHub Actions, and their atti-
tudes toward security practices. For GitHub repositories, we
asked about basic statistics (e.g., stars, contributors), repository
ownership, participants’ roles, and configuration. For GitHub

Actions, we asked about their usage and operation, including
the types of tasks they automate and the sources of information
they refer to when configuring GitHub Actions. Questions on
security practices included whether participants implemented
each practice, the reasons for not implementing practices, and
factors considered important when implementing practices.
Implementation status and its reasons were asked for each
practice (P1-P5) described in Section III-B. For P4, we further
distinguished between two variants: P4-1 (Pinning to SHA)
and P4-2 (Pinning to TAG). While both address the same secu-
rity risks (i.e., securely referencing third-party actions), their
operational details differ, and we expected these differences
to influence developers’ perceptions. We recruited developers
with experience using GitHub Actions and collected their
responses. Note that we intentionally avoided linking user
study responses to identifiable public repositories to preserve
participant privacy and anonymity. The details of the question-
naire are described in Section VI-B, the recruitment procedure
in Section VI-C, and the analysis methods in Section VI-D.

Designing Questionnaire and Piloting. To design the ques-
tionnaire, we conducted pilot interviews with five developers
who had experience using GitHub Actions. These developers,
with 3 to 12 years of development experience, were recruited
through snowball sampling via the authors’ professional con-
tacts. Although all participants worked at the same company,
they were involved in different development projects. In the
pilot interviews, we asked participants about how they use
GitHub Actions in practice and how they perceive the security
practices recommended by GitHub. Although we did not give
monetary compensation to the participants, they were offered
a summary of the study findings as an incentive. Based on
the interview results and existing research [22], [39], [40],

[41], [42], [43], we developed an initial questionnaire. We
then conducted multiple rounds of pilot surveys and revisions.
Revisions included clarifying ambiguous wording, deleting du-
plicate questions/options, and ensuring that the questionnaire
was of an appropriate volume. In total, three rounds of pilot
surveys were conducted with eight professional developers be-
fore finalizing the instrument. The questionnaire was initially
written in the authors’ native language and translated into
English. To ensure linguistic clarity and accuracy, the English
version was reviewed by two pilot participants, one a native
English speaker and the other bilingual.

Summarizing Documentation of Security Practices. Before
asking questions about security practices (e.g., implementation
status), we provided a brief explanation of the correspond-
ing practice. Instead of directly quoting GitHub’s official
documentation on GitHub Actions security practices [7], we
prepared summarized descriptions for each practice. This ap-
proach was based on feedback from the pilot interviews, where
participants noted that the official documentation was lengthy
and difficult to read (i.e., it contained unfamiliar technical
terms and assumed prior knowledge of security concepts,
which some developers lacked). To minimize participants’
cognitive loads and avoid misinterpretation of the practices, we
developed concise and accessible explanations that preserve
the key points of the original content. These explanations were
repeatedly reviewed and revised by two security experts to
ensure consistency with the official documentation. Details of
the development process are available in Appendix F.

B. Questionnaire

The questionnaire included four sections: questions about
GitHub repositories, GitHub Actions, security practices, and
participant demographics. The demographic section covered
general demographic information, years of experience in soft-
ware development and GitHub Actions, and questions on
vulnerability identification and mitigation from the Secure
Software Development Self-Efficacy Scale (SSD-SES) [40].
Questions about GitHub Repository. We asked participants
to provide basic information about the repositories they were
involved in, including the primary programming language,
the number of stars, contributors, and commits, as well as
the date of the most recent commit. Additionally, we asked
about the type of owner account for the repository (i.e., user
or organization) and the participant’s role in the repository
(e.g., admin/owner, collaborator, contributor). For participants
with admin or owner roles, we asked whether they had
configured GitHub Actions to allow the creation/approval of
pull requests, which corresponds to practice ID 9 in Table VI
in Appendix C. Because these settings are only visible to users
with administrative privileges, we asked these questions only
to participants with the appropriate level of access.
Questions about GitHub Actions. We asked participants
about their use of GitHub Actions, including the types of tasks
they automate (e.g., build, test, deployment), the information
sources they refer to when configuring workflows (e.g., official
documentation, web articles, developer forums), the perceived

severity of the negative impact on development if GitHub
Actions were to become temporarily unavailable (measured on
a 4-point Likert scale), whether their workflow files contain
sensitive information, and whether they use third-party actions.
These questions were designed based on existing studies [41],
[39] that examined how GitHub Actions are used in practice.
Questions about Security Practices. For each security prac-
tice (P1-P5), we asked participants whether they currently
implement the practice. Before each question, we presented a
brief explanation of the practice described in Section VI-A.
Participants selected from options indicating whether they
implement the practice, do not implement it (either never
or no longer), use an alternative approach to achieve the
same goal, or are uncertain about its use or meaning. Those
selecting an alternative approach were asked to describe it
briefly in an open-ended format. Participants who did not
implement the practice were asked to select the reason for not
implementing it from a list of options, including an “Other”
option with an open-ended answer form. These options were
developed based on the results of our pilot interviews and
existing studies [42], [22], [41]. We also asked participants
who indicated they were not aware of the practice whether they
would be willing to implement it. Additionally, participants
were asked to select up to three factors they considered
important for implementing security practices from a list of
options. Unlike earlier questions, this question targeted general
perceptions across practices, rather than individual ones.

We also asked about log auditing in GitHub Actions,
corresponding to practice ID 16 in Table VI in Appendix C.
GitHub provides event logs related to GitHub Actions (see
Section II-A4). Participants were asked whether they regularly
audit these logs, and those who did not were asked to select
the reasons for not auditing these logs in a multiple-choice
format. We also asked participants to indicate the extent to
which the platform (i.e., GitHub) should autonomously support
or take actions for log auditing. This was measured using a 6-
level scale based on the automation levels described in existing
research [43]. We designed these questions based on feedback
from pilot interviews, which highlighted the challenges of log
auditing (e.g., implementation cost, the need for automation).

C. Recruitment

Our survey was conducted in July 2025 using the
Qualtrics [44]. We recruited participants by sending emails
containing a link to the questionnaire. The contact information
of developers was collected from GitHub. Because mass email-
ing a large number of developers could result in reaching non-
eligible participants (e.g., developers with no experience using
GitHub Actions) and cause survey fatigue, we applied criteria
to narrow down the target population. First, we retrieved
the top 100 contributors (ranked by number of contributions)
from each repository in our dataset (Section IV-A), resulting
in a total of 1,439,072 unique GitHub accounts. We further
selected 3,405 accounts that met the following criteria: (1)
publicly listed an email address on their GitHub profile page;
(2) were involved in configuring GitHub Actions; and (3)

were not bots. From these accounts, we randomly sampled
1,800 accounts, with half primarily contributing to repositories
owned by user accounts and the other half to repositories
owned by organizations. As a result, recruitment emails were
sent to 1,800 developers whose email addresses were publicly
available. While no monetary compensation was provided, we
offered participants a summary of the survey results as an
incentive. We describe the details of the filtering criteria for
participants in Appendix G and ethical considerations related
to recruitment, informed consent, privacy, and anonymity, as
well as incentives, in Appendix A2.

D. Data Analysis

For the close-ended questions, we calculated the number
and proportion of responses for each option. Blank responses
were excluded from the denominator when calculating pro-
portions. Due to the limited number of participants, we did
not perform statistical hypothesis testing in our quantitative
analysis; instead, we focused on reporting and comparing raw
counts and proportions. This approach was taken to avoid the
issue of low statistical power in hypothesis testing [45].

Open-ended responses in the questionnaire, specifically
those describing alternative approaches to security practices
and those provided under “Others” when explaining reasons
for not implementing practices, were coded by two coders.
Each coder independently created a codebook by assigning
codes to the responses. After this initial coding, the coders
compared their respective codebooks and resolved any coding
conflicts through discussion. This interactive process resulted
in a finalized codebook that reflected consensus between the
coders. Because the coding was conducted through consensus
rather than statistical agreement, reporting inter-coder relia-
bility was not required, following established guidelines in
qualitative research [46]. Some responses initially describ-
ing alternative approaches were actually reasons for non-
implementation, and vice versa. Therefore, coding was con-
ducted in two stages. First, coders classified each response
as either describing an alternative approach or explaining a
reason for not implementing the practice. Second, they applied
thematic codes to each classified response.

VII. USER STUDY RESULT

This section presents the results related to RQ3. The com-
plete set of responses to each question in our questionnaire
is available in the supplementary materials included in the
artifacts [9].

A. Farticipant Statistics

1) Demographics: Of the 151 survey accesses, 102 par-
ticipants completed the questionnaire. The remaining 49 in-
complete responses were excluded from all analyses in this
paper. Participants were overwhelmingly male (Male: N=92,
Female: N=4, Non-binary: N=1, Prefer not to say: N=5).
This distribution is consistent with existing studies targeting
developers such as OSS maintainers [22], [47], [48]. Their
countries of residence covered 28 nations. The top four were

10

TABLE IV
IMPLEMENTATION RATES OF SECURITY PRACTICES AND THE TOP 3
REASONS NOT IMPLEMENTING SECURITY PRACTICES.

SPs Implementation
rates

Reasons not implementing SPs % of participants

(by reason)

P1 17.6% Lack of awareness 41.4% (29/70)
(18/102) Unnecessary/overly strict 40.0% (28/70)
Maintenance/operational costs 4.3% (3/70)
P2 46.1% Lack of awareness 50.0% (19/38)
(47/102) Unnecessary/overly strict 31.6% (12/38)
Maintenance/operational costs 5.3% (2/38)
Unclear risks or benefits 5.3% (2/38)
P3 5.9% Lack of awareness 71.6% (63/88)
(6/101) Unnecessary/overly strict 20.5% (18/88)
Maintenance/operational costs 1.1% (1/88)
Requires learning effort 1.1% (1/88)
Cannot get approval from team 1.1% (1/88)
P4-1 19.4% Unnecessary/overly strict 30.7% (23/75)
(19/98) Maintenance/operational costs 25.3% (19/75)
Lack of awareness 21.3% (16/75)
P4-2 61.2% Lack of awareness 38.7% (12/31)
(60/98) Unnecessary/overly strict 22.6% (7/31)
Maintenance/operational costs 12.9% (4/31)
P5 43.4% Lack of awareness 36.2% (17/47)
(43/99) Unnecessary/overly strict 25.5% (12/47)
Maintenance/operational costs 8.5% (4/47)

SPs: Security practices. Implementation rates represent the proportion of respondents
who reported currently implementing each practice. Percentages of reasons for not
implementing a practice are calculated only among respondents who indicated that they
do not currently implement the practice. Parentheses show raw counts: for
implementation rates, (number of implementers/total respondents); for reasons, (number
selecting the reason/number of non-implementers). When multiple reasons are tied
within the top 3, all tied reasons are presented.

the United States (IN=22), Japan (N=11), Germany (N=8),
and France (N=8). Participants were nearly evenly divided
between company employees (N=47) and freelancers or inde-
pendent developers (N=43). The average years of experience
in software development was 12.3 (M d=8.5), and the average
SSD-SES score was 26.3. This score is comparable to that
reported in existing research [49] on recruiting developers
through a freelancing platform (i.e., Freelancer.com [50]).
On average, participants took 32.6 minutes (M d=20.1) to
complete the questionnaire. We analyzed responses from 102
completed questionnaires.

2) Characteristics of Repository: The repositories that par-
ticipants were involved in developing were almost evenly
owned by user and organization accounts (User: N=53,
52.0%, Organization: N=49, 48.0%). A majority of partic-
ipants (/N=88, 86.3%) reported that the latest commit in
their repository was within the past month, suggesting that
many were involved in actively maintained repositories. Most
participants (N=90, 88.2%) held an admin or owner role.

3) Usage of GitHub Actions: The most common tasks
automated with GitHub Actions were build (N=92, 90.2%),
testing (N=83, 81.4%), and linting (N=60, 58.8%). Most par-
ticipants (N=97, 95%) reported referring to GitHub’s official
documentation when configuring GitHub Actions. Nearly all
participants (IN=99, 97.1%) reported using third-party actions.

B. Quantitative Analysis

1) Implementation Rate of Security Practices: Table IV
presents the implementation rates of each security practice,

along with the top three reasons for not implementing them.
Implementation rates varied by practice, ranging from 5.9%
(N=6) for P3 (Scorecard) to 61.2% (IN=60) for P4-2 (Pin-
ning to TAG). Compared to the measurement study results
(Table II), the user study participants reported higher imple-
mentation rates for P1 (CODEOWNERS), P3, P4-2, and P5
(Dependabot). This may be due to the recruitment criteria of
the user study, which targeted developers with many contri-
butions related to GitHub Actions and relied on voluntary
participation, potentially resulting in higher implementation
rates.

2) Reasons Not Implementing Security Practices: As
shown in Table IV, the most common reason for not imple-
menting each security practice, except P4-1 (Pinning to SHA),
was lack of awareness (21.3%-71.6%). This suggests that
overall awareness of security practices in GitHub Actions re-
mains low. In particular, for P3, 71.6% (/N=63) of participants
who did not implement the practice reported being unaware of
it, highlighting the particularly low awareness of the OpenSSF
Scorecard. Among participants who had been unaware of a
practice, an average of 46.8% (27.3%-76.5% for each prac-
tice) indicated they would implement it after learning about
it through this survey. This positive reaction suggests that
increasing developers’ awareness could substantially promote
their implementation. Additionally, for P4-1, concern about
increased maintenance or operational costs was the second
most selected reason (N=19, 25.3%). Participants in the pilot
interviews mentioned that pinning third-party actions using
SHA (P4-1) increases maintenance costs, as manual updates
are required when an action is updated. These findings suggest
that developers tend to view P4-1 as burdensome in terms of
maintenance effort.

3) Important Factors when Implementing Security Prac-
tices: The factor most commonly perceived as important
when participants implement security practices was “Low
maintenance and operational overhead” (N=81, 79.4%), se-
lected at a notably higher rate than the other factors. This
aligns with earlier results showing that, for certain security
practices, maintenance or operational costs were a major
barrier to implementation (see Section VII-B2). The second
most selected factor was “Easy to set up and quick to adopt”
(N=47, 46.1%), followed by “Clearly effective in mitigating
relevant risks” (N=38, 37.3%). Regarding “Clearly effective in
mitigating relevant risks”, participants in the pilot interviews
mentioned that it is unclear which specific risks each security
practice addresses. These results suggest that clarifying the
types of risks addressed by each security practice is important
for encouraging their implementation.

4) Log Auditing in GitHub Actions: A majority of par-
ticipants (/N=80, 81.6%) reported that they do not audit the
event log in GitHub Actions. The top three reasons for not
conducting log audits were: “I do not see the need for
auditing” (IN=36, 45%), “I was not aware of security logs
or audit logs” (N=35, 43.8%), and “Our team lacks sufficient
personnel or time resources” (N=22, 27.5%). These reasons
reflect trends similar to those observed for not implementing

11

security practices (Section VII-B2). The most preferred level
of automation in log auditing was “Human Approval”, selected
by 58 participants (59.2%). In contrast, very few participants
supported “Fully Automated” (N=1, 1.0%) or “Execute and
Inform” (N=2, 2.0%). These results indicate that while devel-
opers are receptive to automated support for log auditing in
GitHub Actions, they generally prefer to retain final control
over decision-making.

C. Qualitative Analysis

1) Alternative Approaches to Security Practices: We ana-
lyzed open-ended responses regarding alternative approaches
to security practices with the procedure described in Sec-
tion VI-D. A total of 28 valid responses were analyzed,
and two responses were excluded as invalid (i.e., responses
unrelated to the question).

For P3, P4-1, and P5, many participants referred to the use
of alternative tools in place of the practices (14 responses). For
example, some participants noted using static analysis tools
instead of the OpenSSF Scorecard (P3), or using Renovate [51]
to manage dependency updates instead of Dependabot (P5).
In the case of P2 (Mitigating Script Injection) and P4-2,
several participants (7 responses) indicated that they used
alternative security features to mitigate related risks. For
example, instead of implementing P4-2, some participants
specified action versions with SHA, meaning that they were
intentionally implementing P4-1 as an alternative to P4-2.
Others mentioned restricting the use of third-party actions
using an allowlist as an alternative to P4-2. Note that this
allowlist feature [52] is available only to organization accounts
on GitHub, not to individual user accounts. For P1, some
participants (7 responses) reported not using CODEOWNERS
but ensuring that all workflow file updates are reviewed as part
of their development process.

2) Reasons Not Implementing Security Practices: We an-
alyzed the open-ended responses regarding reasons for not
implementing security practices, using the same approach in
Section VII-C1. A total of 35 valid responses were analyzed,
and two invalid responses were excluded.

The most frequent reason was that the practice was “Not
Applicable” to the participants’ repository (22 responses).
Many noted that the practice was not relevant to their context
(i.e., for P1, a participant answered “I am the sole main-
tainer.””) On the other hand, we observed some responses
that included misconceptions about the applicability of the
practices. For example, three participants indicated that they
do not implement P5 because Dependabot does not support
the programming language they use. However, this practice
involves updating dependencies in GitHub Actions workflows
and is applicable to any repository that uses third-party actions,
regardless of the programming language used.

Three responses expressed concerns about the potential
negative impact on software development. For instance, one
participant mentioned that P1 could act as a barrier to entry
for new contributors, while another indicated a preference

for updating dependencies manually through community dis-
cussion rather than relying on automation (P5). Additionally,
similar to the misconception mentioned earlier, a participant
mistakenly interpreted P5 as language-specific tooling, rather
than its intended focus on GitHub Actions.

Three responses raised concerns about the potential negative
impact on security. Notably, one participant commented on P4-
1 (Pin actions to a full commit hash (SHA)) as follows: “This
could make us more vulnerable by not automatically using the
latest version of an action that might have important security
fixes.” While P4-1 ensures that actions are immutable and not
tampered with, it requires explicit updates to receive patches.
This concern can be addressed by combining P4-1 with P5
(Dependabot), which detects and notifies about updates. In this
case, the participant had not implemented P5 and was unaware
of its existence, suggesting that the benefits of using P4-1 and
PS5 together may not be well understood among developers.
We note that the official GitHub documentation on security
practices does not currently explain such complementary use.

Two participants indicated a lack of resources as the reason
they did not implement P4-1, which is consistent with the
concern about maintenance and operational costs reported in
Section VII-B2. Other responses (5 total) included concerns
such as high learning cost (P4-1), the difficulty in configuration
(P3), and a lack of a specific reason for not implementing (P4-

1.

Answer to RQ3: Three key barriers to implementing
security practices in GitHub Actions were identified.
Lack of Awareness. Many developers were unaware of
the practices. Between 21.3% and 71.6% of participants
who had not implemented specific practices reported not
knowing about them. Additionally, 43.8% of those not
performing log auditing were unaware that GitHub Ac-
tions generates audit logs (Sections VII-B2 and VII-B4).
Lack of Understanding and Misconceptions. Some
participants misunderstood the applicability or benefits
of practices. In open-ended responses, participants stated
that certain practices were not relevant to their projects
or might negatively affect development processes. In four
cases, non-implementation was clearly due to miscon-
ceptions about the practice’s purpose or applicability
(Section VII-C2). Although few, these examples suggest
that misunderstanding can hinder implementation.

Cost and Resource Concerns. Concerns about opera-
tional overhead and limited resources were common. For
example, 25.3% of participants not implementing P4-1
(Pinning to SHA) cited maintenance burden. Open-ended
responses echoed resource constraints as a barrier to P4-1
implementation (Sections VII-B2 and VII-C2). Similarly,
27.5% of participants not performing log auditing cited
insufficient resources (Section VII-B4). These findings
align with prior research [53], [54], confirming that
security often receives lower priority under resource
constraints, even in GitHub Actions environments.

12

VIII. RECOMMENDATIONS AND IMPLICATIONS

Action is required to address the challenges developers face
in implementing security practices in GitHub Actions. Based
on the findings from our measurement and user studies, we
first discuss appropriate levels of automation in developer
interventions and recommend suitable intervention strategies.
We then propose improvements to the documentation of secu-
rity practices. Finally, we discuss the limitations of our study.

A. Levels of Automation in Developer Interventions

Interventions targeting developers can vary in their level
of automation, ranging from informational prompts to fully
automated enforcement. While some security practices are
difficult or risky to apply through complete automation due
to possible side effects, higher levels of automation can still
be desirable when aiming to reduce developers’ workload and
cognitive burden in implementing security practices.

Developers’ Preference for Human-Approved Automation.
A large majority of participants expressed a desire for auto-
mated platform support when performing remediation actions,
such as configuration changes to repositories or workflow code
(Section VII-B4). However, regarding the preferred level of
such automation, the most common choice was “Human Ap-
proval”, where developers retain the final decision. In contrast,
only a small fraction favored fully automated approaches (i.e.,
“Fully Automated” and “Execute and Inform™). This tendency
likely reflects developers’ concerns about potential malfunc-
tions or unintended side effects of automated remediation,
as well as uncertainties regarding the operational impacts of
configuration changes. In particular, participants emphasized
the importance of maintaining human oversight to ensure
accountability for security and operational decisions.

Potential Drawbacks of Fully Automated Interventions.
Fully automated interventions for practice implementation
have several potential drawbacks. For P1 (CODEOWNERS),
each repository has a different development structure (e.g.,
responsibility for configuring and reviewing GitHub Actions),
which makes it difficult to automatically determine and apply
an appropriate CODEOWNERS configuration. For P2 (Mitigat-
ing Script Injection) and P4 (Pinning), automatically modify-
ing code in workflow files could cause workflow malfunctions
or introduce latent bugs. For P3 (Scorecard), applying this
practice would require running the OpenSSF Scorecard as
a workflow, thereby consuming the repository’s limited free
GitHub Actions runtime minutes and storage [55] and poten-
tially leading to unintended usage of paid resources. For P5
(Dependabot), since this configuration automatically generates
Pull Requests (PRs) for updating the versions of Actions, fully
automating the configuration without considering developers’
awareness or understanding of security practices may cause
annoyance or frustration among them. This type of annoyance
is often referred to as notification fatigue, which we further
discuss in the next subsection.

B. Recommended Developer Interventions

Technical support from development platforms and tools can
reduce the development and maintenance burden on projects,
as well as the cognitive load on individual developers. How-
ever, as shown in Section VIII-A, developers have different
preferences regarding automation, and there are potential
drawbacks to excessive automation. Therefore, we recommend
that relevant stakeholders adopt suitable intervention strategies
that balance automation with developer autonomy.
Notification of Security Practices. Our measurement study
revealed that security practices are generally underutilized
across GitHub projects, regardless of contributor count. In
addition, our user study found that the most common reason
for not implementing security practices was simply a lack of
awareness and that on average, about 46.8% of participants
who became aware of the practices indicated willingness to
implement them (Sections VII-B2 and VII-B4). These find-
ings suggest that increasing developers’ awareness is key to
improving implementation. One promising approach is to au-
tomatically detect whether security practices are implemented
in a given project and notify developers accordingly. This
kind of feedback could help even less experienced developers
become aware of relevant practices. The security practices we
analyzed in our measurement study can be detected using open
data such as code artifacts and repository metadata. Therefore,
the detection methods we developed can be readily applied to
build such automated support systems. We plan to release our
detection tools as publicly available artifacts.

However, excessive notifications can lead to notification
fatigue, where developers become overwhelmed and start
ignoring alerts, reducing their overall effectiveness. Existing
studies [56], [57], [58] have pointed out that both the design
of notification messages (e.g., use of examples, indication of
importance, clear language) and their alignment with develop-
ment workflows (e.g., context-aware notifications, appropriate
timing) significantly influence developers’ acceptance and un-
derstanding of notifications. Rather than issuing notifications
indiscriminately, notification systems (i.e., platform) should
be carefully designed with these factors in mind. As a basic
design principle, limiting notifications to repositories where
the relevant security practices are applicable (as described in
Section IV-B1) could enhance notification effectiveness and
help mitigate fatigue.

Platform-level Support. Existing work [22] has identified
the large number of manual steps required to configure such
features as a barrier to adoption. Similarly, in the context of
GitHub Actions, simplifying configuration steps or introducing
partial automation can facilitate the practical implementation
of recommended security practices. The configuration required
to implement each practice varies according to its characteris-
tics. For example, P1 requires assigning appropriate reviewers
according to each repository’s development structure. In con-
trast, P3 and P5 can be easily applied to most repositories
by using configuration templates that are already available
through the Web UI. Based on these observations, for P1, we

13

recommend partially automating the currently manual process
of configuring the CODEOWNERS file (e.g., enabling configu-
ration file generation via the Web UI and providing reviewer-
assignment suggestions based on repository structure). For
P3 and PS5, we further recommend enhancing the existing
template-based support by introducing a “one-click activa-
tion” mechanism that enables developers to easily implement
practices such as running the OpenSSF Scorecard or enabling
Dependabot for managing GitHub Actions dependencies.
IDE-level Support. While platform-based support, such as
automated checks and notifications on GitHub, can help de-
velopers implement security practices, it typically occurs after
code is committed. This post-hoc support can be inefficient
for mitigating script injection (P2) and pinning third-party
actions (P4), especially in large repositories with many actions.
Our measurement study revealed that repositories with more
workflows were less likely to implement P2 and P4, suggesting
that maintenance burdens increase with scale (Section V-B).
Similarly, for P4, our user study indicated concerns about the
effort required to maintain pinned SHAs (Section VII-C2).
This is because pinning requires developers to specify a
commit ID (SHA) for each third-party action used, and
maintaining these pins can become time-consuming and error-
prone, especially when actions are frequently updated. Real-
time support within an integrated development environment
(IDE) is essential to reduce this burden and avoid costly
rework. Integrating assistance for script injection prevention
and pinning third-party actions into the development workflow
would enable developers to adopt the practice naturally as
they code. For P2, tools that automatically suggest code
that prevents script injection risks can support developers in
writing secure workflow configurations. For P4, tools that
automatically suggest available references (i.e., the candidate
ref components in owner/repo@ref) could streamline
pinning. Such support can be implemented as an extension in
Visual Studio Code (an IDE tightly integrated with GitHub)
and enhanced with Al tools, which approximately one-third of
our user study participants reported using.

C. Improvements for Documentation

Regardless of the level of interventions or automation pro-
vided to developers, documentation of security practices re-
mains essential, as it explains the role and significance of each
practice. However, our study revealed that such documentation
contains several issues that hinder developers’ understanding
and implementation of these practices. Our user study revealed
that awareness of GitHub Actions security practices was gen-
erally low. Participants also indicated uncertainty about which
risks each practice addresses, difficulty understanding which
practices apply to their own projects, and misconceptions
that discouraged implementation. To address these issues, we
propose improvements to documentation.

Mapping Security Practices to Risks. In our user study, ap-
proximately one-third of participants indicated that a key factor
in implementing a security practice is its clear effectiveness
in mitigating relevant risks (Section VII-B3). Additionally, in

TABLE V
RECOMMENDED SCOPE FOR EACH SECURITY PRACTICE.

Security practice Target

P1 CODEOWNERS All Repositories

P2 Mitigating Script Injection Workflows using github context

P3 OpenSSF Scorecard All public repositories

P4 Pinning Third-party Actions All repositories using third-party actions

PS5 Dependabot All repositories using public actions

(for dependency management)

our pilot study, some participants noted that it was unclear
which risks each practice addressed. These findings highlight
the importance of explicitly mapping each security practice to
the specific risks it mitigates. Such clarity helps developers
understand the value of each practice and make informed
decisions about implementation. As shown in Section III-B2,
referencing actual security incidents helps make these risks
more concrete and clarifies the importance of each practice.
Guidance Feature Indicating Who Should Use Each Prac-
tice. Our findings suggest that misconceptions can hinder the
implementation of security practices. In our user study, several
participants mentioned their project’s programming language
as a reason for not using Dependabot (Section VII-C2).
However, in the context of GitHub Actions, Dependabot auto-
matically updates public actions regardless of the project’s lan-
guage. Therefore, any repository using public actions should
benefit from enabling this feature. GitHub’s documentation
for the platform’s built-in features (e.g., branch protection
rules [59]) includes a “Who can use this feature?” section
that clearly specifies applicable users and conditions. While
this guidance applies to built-in features, a similar format
could help clarify when each security practice is relevant,
reducing misconceptions and aiding implementation decisions.
For reference, Table V outlines the recommended scope for
each security practice examined in this study.

D. Limitations

Generalizability and Applicability. This study analyzed 5 of
the 16 security practices, with two additional practices exam-
ined in the user study, selected based on their observability
and the participant burden and feasibility of obtaining valid
responses. Because each practice has distinct use cases and
implementation procedures, the findings may not fully gen-
eralize to the excluded ones. Additionally, while our mixed-
methods approach provides a comprehensive understanding of
the current state of security practice, it necessarily constrained
the set of practices that could be analyzed. Conducting the
measurement or user study independently would allow the
scope of practices to be expanded.

Sample Size of Participants. Recruiting expert participants,
particularly software developers, remains a well-known chal-
lenge in empirical software engineering research. Generally,
studies involving software developers tend to have smaller
sample sizes than those involving end-users. However, our
sample size (N=102) exceeds that of prior comparable studies
involving software developers on GitHub (e.g., N=80-90 [22],

14

[60]). Accordingly, our analysis is based on descriptive statis-
tics and qualitative coding of open-ended responses, which are
standard practices in studies with limited samples.

Analysis of the Developers’ Roles and Responsibilities.
Our user study targeted developers with experience config-
uring GitHub Actions, but it did not distinguish participants’
specific roles or responsibilities related to GitHub Actions.
Although most participants (88.2%) were repository owners
or admins, suggesting that they had particular responsibility
for configuration and operation, their actual responsibilities
in practice may vary. Accounting for more fine-grained roles
and responsibilities (e.g., security decision-making authority
and role division within the team) may yield more profound
insights into factors that hinder the implementation of security
practices and represent an important direction for future work.

IX. CONCLUSION

Modern CI/CD pipelines have become both critical in-
frastructure and attractive targets for supply chain attacks.
Our mixed-methods study combining quantitative analysis of
GitHub repositories with qualitative developer surveys reveals
critically low security practice implementation in GitHub
Actions. The quantitative analysis identified repository char-
acteristics associated with implementation, while developer
surveys uncovered three primary barriers: lack of awareness,
misconceptions about applicability, and maintenance concerns.
These complementary findings form the basis for our conclu-
sion that improving security requires intervention strategies
aligned with appropriate levels of automation, the introduction
of well-designed notifications to raise awareness, strengthened
platform- and IDE-level assistance to support practical imple-
mentation, and clearer documentation that maps practices to
risks and applicability. Future work should leverage mixed-
methods approaches to track adoption longitudinally, expand
to other CI/CD platforms, and evaluate proposed interven-
tions.

REFERENCES

[1] SolarWinds, “Solarwinds security advisory,” (2025-08-02 ac-
cessed). [Online]. Available: https://www.solarwinds.com/sa-overview/
securityadvisory

[2] M. Golzadeh, A. Decan, and T. Mens, “On the rise and fall of CI services
in GitHub,” in Proceedings of the 29th IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), 2022, pp.
679-690.

[3] H. Sheth, “How GitHub Actions won CI” May 2024, blog post.
[Online]. Available: https://harshal.sheth.io/2024/05/13/github-actions.
html

[4] GitHub Advisory Database, “CVE-2025-30066: tj-actions/changed-
files Compromised by Malicious Code Injection,” March 2025,
accessed: 2025-08-06. [Online]. Available: https://github.com/advisories/
GHSA-mrrh-fwg8-r2c3

[5] 1. Koishybayev, A. Nahapetyan, R. Zachariah, S. Muralee, B. Reaves,
A. Kapravelos, and A. Machiry, “Characterizing the security of github
CI workflows,” in 31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, Aug. 2022, pp. 2747-2763.

[6] Y. Gu, L. Ying, H. Chai, C. Qiao, H. Duan, and X. Gao, “Continuous
intrusion: Characterizing the security of continuous integration services,”
in 2023 IEEE Symposium on Security and Privacy (SP), 2023, pp. 1561—
1577.

[71 GitHub, “Secure use reference,” (2025-08-03 accessed). [Online]. Avail-
able: https://docs.github.com/en/actions/reference/security/secure-use

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]

[29]

[30]

[31]

O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github for
MSR studies,” in 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. 1EEE, 2021, pp. 560-564.

Y. Kubo, F. Kanei, M. Akiyama, T. Wakai, and T. Mori,
“Artifact - action required: A mixed-methods study of security
practices in github actions,” Dec. 2025. [Online]. Available: https:
//doi.org/10.5281/zenodo.17916232

GitHub, “About github actions,” (2025-08-02 accessed). [Online].
Available: https://docs.github.com/en/actions/about-github-actions
GitLab, (2025-08-02 accessed). [Online]. Available: https://about.gitlab.
com/

CircleCI, (2025-08-02 accessed). [Online]. Available: https:/circleci.
com/

TravisCI, (2025-08-02 accessed). [Online]. Available: https:/www.
travis-ci.com/

GitHub, “About workflows,” (2025-08-02 accessed). [Online]. Available:
https://docs.github.com/en/actions/writing- workflows/about-workflows

_ “Context reference,” (2025-08-05 accessed).
[Online]. Available: https://docs.github.com/en/actions/reference/
workflows-and-actions/contexts

_— “About custom actions,” (2025-08-05 accessed).
[Online]. Available: https://docs.github.com/en/actions/concepts/
workflows-and-actions/custom-actions

——, “Marketplace,” (2025-08-02 accessed). [Online]. Available:
https://github.com/marketplace

e “Security log events,” (2025-08-06 accessed).
[Online]. Available: https://docs.github.com/en/authentication/

keeping-your-account-and-data-secure/security-log-events

——, “Reviewing the audit log for your organization,”
(2025-08-06 accessed). [Online]. Available: https:
//docs.github.com/en/organizations/keeping- your-organization-secure/
managing-security-settings- for-your-organization/
reviewing-the-audit-log-for-your-organization

G. Benedetti, L. Verderame, and A. Merlo, “Automatic security assess-
ment of github actions workflows,” in Proceedings of the 2022 ACM
Workshop on Software Supply Chain Offensive Research and Ecosystem
Defenses, 2022, pp. 25-34.

S. Muralee, I. Koishybayev, A. Nahapetyan, G. Tystahl, B. Reaves,
A. Bianchi, W. Enck, A. Kapravelos, and A. Machiry, “Argus: A
framework for staged static taint analysis of github workflows and
actions,” in 32nd USENIX Security Symposium (USENIX Security 23),
2023, pp. 2391-2408.

J. Ayala, Y.-J. Tung, and J. Garcia, “A mixed-methods study of open-
source software maintainers on vulnerability management and platform
security features,” in 34th USENIX Security Symposium (USENIX Secu-

rity 25), 2025.
GitHub, “About code owners,” (2025-08-02 ac-
cessed). [Online]. Available: https://docs.github.com/en/

repositories/managing-your-repositorys- \ \ settings-and-features/
customizing-your-repository/about-code-owners

GitGuardian, “The ghostaction = campaign: 3,325 secrets
stolen through compromised github workflows,” (2025-11-
18 accessed). [Online]. Available: https://blog.gitguardian.com/

ghostaction-campaign- 3-325-secrets-stolen/

GitHub, “Malicious versions of nx and some supporting plugins
were published,” (2025-11-18 accessed). [Online]. Available: https:
//github.com/nrwl/nx/security/advisories/GHSA-cxm3-wv7p-598c
OpenSSEF, “Openssf scorecard,” (2025-08-02 accessed). [Online].
Available: https://openssf.org/projects/scorecard/

GitHub, “Scorecards’ github action,” (2025-08-02 accessed). [Online].
Available: https://github.com/marketplace/actions/ossf-scorecard-action
——, “Starter workflows,” (2025-08-05 accessed). [Online]. Available:
https://github.com/actions/starter- workflows

——, “Keeping your supply chain secure with dependabot,” (2025-08-02
accessed). [Online]. Available: https://docs.github.com/en/code-security/
dependabot

——, “Github advisory database,” (2025-11-18 accessed). [Online].
Available: https://github.com/advisories

P. Valenzuela-Toledo, A. Bergel, T. Kehrer, and O. Nierstrasz, “ The
Hidden Costs of Automation: An Empirical Study on GitHub Actions
Workflow Maintenance ,” in 2024 IEEE International Conference on
Source Code Analysis and Manipulation (SCAM). Los Alamitos, CA,
USA: IEEE Computer Society, Oct. 2024, pp. 213-223.

15

[33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

A. Decan, T. Mens, P. R. Mazrae, and M. Golzadeh, “On the use of
github actions in software development repositories,” in 2022 [EEE
International Conference on Software Maintenance and Evolution (IC-
SME), 2022, pp. 235-245.

T. Chen, Y. Zhang, S. Chen, T. Wang, and Y. Wu, “Let’s supercharge the
workflows: An empirical study of GitHub actions,” in 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security
Companion (QRS-C). 1EEE, Dec. 2021, pp. 01-10.

GitHub, “Getting started with github pages,” (2025-08-02
accessed). [Online]. Available: https://docs.github.com/en/pages/
getting-started- with-github-pages

GitHub, “Verifying or approving a domain for your
organization,” (2025-08-05 accessed). [Online]. Available: https:
//docs.github.com/en/organizations/managing-organization-settings/
verifying-or-approving-a-domain-for-your-organization

S. Katcher, L. Wang, C. Yang, C. Messdaghi, M. L. Mazurek, M. Chetty,
K. R. Fulton, and D. Votipka, “A survey of cybersecurity professionals’
perceptions and experiences of safety and belonging in the community,”
in Proceedings of the Twentieth USENIX Conference on Usable Privacy
and Security, ser. SOUPS "24. USA: USENIX Association, 2024.

C. Guo, B. Campbell, A. Kapadia, M. K. Reiter, and K. Caine, “Effect
of mood, location, trust, and presence of others on Video-Based social
authentication,” in 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, Aug. 2021, pp. 1-18.

W. Cao, C. Xia, S. T. Peddinti, D. Lie, N. Taft, and L. M. Austin, “A
large scale study of user behavior, expectations and engagement with
android permissions,” in 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, Aug. 2021, pp. 803-820.

T. Kinsman, M. Wessel, M. A. Gerosa, and C. Treude, “How do
software developers use github actions to automate their workflows?”
in 2021 IEEE/ACM 18th International Conference on Mining Software
Repositories (MSR), 2021, pp. 420-431.

D. Votipka, D. Abrokwa, and M. L. Mazurek, “Building and validating
a scale for secure software development self-efficacy,” in Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems,
2020, pp. 1-20.

S. G. Saroar and M. Nayebi, “Developers’ perception of github actions:
A survey analysis,” in Proceedings of the 27th International Conference
on Evaluation and Assessment in Software Engineering, ser. EASE *23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
121-130.

M. Wessel, I. Wiese, 1. Steinmacher, and M. A. Gerosa, “Don’t disturb
me: Challenges of interacting with software bots on open source soft-
ware projects,” Proc. ACM Hum.-Comput. Interact., vol. 5, no. CSCW2,
Oct. 2021.

N. Roch, H. Sievers, L. Schoni, and V. Zimmermann, “Navigating auton-
omy: unveiling security experts’ perspectives on augmented intelligence
in cybersecurity,” in Proceedings of the Twentieth USENIX Conference
on Usable Privacy and Security, ser. SOUPS ’24. USA: USENIX
Association, 2024.

Qualtrics XM, (2025-08-03 accessed).
/Iwww.qualtrics.com/

A.-M. Ortloff, C. Tiefenau, and M. Smith, “Sok: i have the (developer)
power! sample size estimation for fisher’s exact, chi-squared, mcnemar’s,
wilcoxon rank-sum, wilcoxon signed-rank and t-tests in developer-
centered usable security,” in Proceedings of the Nineteenth USENIX
Conference on Usable Privacy and Security, ser. SOUPS "23. USA:
USENIX Association, 2023.

N. McDonald, S. Schoenebeck, and A. Forte, “Reliability and inter-rater
reliability in qualitative research: Norms and guidelines for cscw and hci
practice,” Proc. ACM Hum.-Comput. Interact., vol. 3, no. CSCW, Nov.
2019.

J. T. Liang, T. Zimmermann, and D. Ford, “Understanding skills for oss
communities on github,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2022. New York, NY, USA:
Association for Computing Machinery, 2022, p. 170-182.

Y. Huang, D. Ford, and T. Zimmermann, “Leaving my fingerprints:
Motivations and challenges of contributing to oss for social good,” in
2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing (ICSE), 2021, pp. 1020-1032.

H. Kaur, S. Klivan, D. Votipka, Y. Acar, and S. Fahl, “Where to recruit
for security development studies: Comparing six software developer

[Online]. Available: https:

samples,” in 31st USENIX Security Symposium (USENIX Security 22).
Boston, MA: USENIX Association, Aug. 2022, pp. 4041-4058.
“Freelancer.com,” (2025-08-06 accessed). [Online]. Available: https:
/Iwww.freelancer.com/

“Renovatebot / renovate,” (2025-08-05 accessed). [Online]. Available:
https://github.com/renovatebot/renovate

GitHub, “Disabling or limiting github actions for your
organization,” (2025-08-05 accessed). [Online]. Available: https:
//docs.github.com/en/organizations/managing-organization-settings/
disabling-or-limiting- github-actions-for- your-organization

M. Tahaei and K. Vaniea, “A survey on developer-centred security,” in
2019 IEEE European Symposium on Security and Privacy Workshops
(EuroSPW), 2019, pp. 129-138.

A. Poller, L. Kocksch, S. Tiirpe, F. A. Epp, and K. Kinder-Kurlanda,
“Can security become a routine? a study of organizational change in
an agile software development group,” in Proceedings of the 2017
ACM Conference on Computer Supported Cooperative Work and Social
Computing, ser. CSCW ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 2489-2503.

GitHub, “Github actions billing,” (2025-10-24 accessed). [Online].
Available: https://docs.github.com/en/billing/concepts/product-billing/
github-actions

M. Tahaei, K. Vaniea, K. K. Beznosov, and M. K. Wolters, “Security no-
tifications in static analysis tools: Developers’ attitudes, comprehension,
and ability to act on them,” in Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, ser. CHI °21. New York,
NY, USA: Association for Computing Machinery, 2021.

A. Danilova, A. Naiakshina, and M. Smith, “One size does not fit all:
a grounded theory and online survey study of developer preferences for
security warning types,” in Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering, ser. ICSE *20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 136-148.
M. Wessel, I. Wiese, 1. Steinmacher, and M. A. Gerosa, “Don’t disturb
me: Challenges of interacting with software bots on open source soft-
ware projects,” Proc. ACM Hum.-Comput. Interact., vol. 5, no. CSCW2,
Oct. 2021.

GitHub, “Managing a branch protection rule,” (2025-08-
05 accessed). [Online]. Available: https://docs.github.com/en/
repositories/configuring-branches-and-merges-in-your-repository/
managing-protected-branches/managing-a-branch-protection-rule

S. G. Saroar and M. Nayebi, “Developers’ perception of github actions:
A survey analysis,” in Proceedings of the 27th International Conference
on Evaluation and Assessment in Software Engineering, ser. EASE °23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
121-130.

C. Utz, S. Amft, M. Degeling, T. Holz, S. Fahl, and F. Schaub, “Privacy
rarely considered: Exploring considerations in the adoption of third-party
services by websites,” Proc. Priv. Enhancing Technol., vol. 2023, no. 1,
pp. 5-28, 2023.

GitHub, “Towards a secure by default github actions,” (2025-11-
20 accessed). [Online]. Available: https://github.com/orgs/community/
discussions/179107

[63] ——, “Configuring default setup for code scanning,’
(2025-08-06 accessed). [Online]. Available: https://docs.
github.com/en/code-security/code-scanning/enabling-code-scanning/
configuring-default-setup- for-code-scanning

L. K. Organization, “gitrevisions(7) manual page,” (2025-08-06
accessed). [Online]. Available: https://www.kernel.org/pub/software/
scm/git/docs/gitrevisions.html

[50]
[51]
[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[64]

APPENDIX
A. Ethical Considerations

We designed and conducted both the measurement study and
user study in accordance with the ethical guidelines outlined
in the Menlo Report and the research ethics policies of the
authors’ affiliated institutions. We confirmed that both studies
are exempt from Institutional Review Board (IRB) review.

1) Measurement Study: The measurement study was con-
ducted with minimal ethical risk by employing non-intrusive
methods and reducing load on target servers.

Minimizing Server Load. To avoid exceeding GitHub API
rate limits, our study controlled the number of API requests
sent to target repositories. Specifically, we monitored the
rate limit information included in API responses and paused
requests once fewer than 100 requests remained until the rate
limit reset (which occurs every hour). Moreover, we limited
the collected data to the minimum necessary for analysis. We
utilized a public dataset (SEART-GHS) for regression analysis
metadata to minimize additional data collection.

Non-intrusive Testing. We cloned target repositories locally
for code and file analysis without making any direct modifi-
cations or writes to the repositories on GitHub.

2) User Study: In the user study, we carefully considered
reducing participant burden, obtaining informed consent, and
protecting participant privacy and anonymity.

Recruiting. Mass emailing by mechanically harvesting devel-
oper emails from platforms raises ethical concerns [61] and
can cause survey fatigue. To mitigate this, we filtered potential
participants based on specific criteria to target developers
appropriate for our study. Specifically, we selected developers
involved in repositories using GitHub Actions who publicly
disclosed their email addresses (identified via GitHub REST
API). Consequently, recruitment emails were sent to 1,800
developers, yielding 102 valid responses (5.7%). Although
direct comparison with prior work is difficult due to inconsis-
tent reporting of recruitment volumes, our targeted approach
helped avoid unnecessary contact with developers unlikely to
participate, reducing survey fatigue.

Informed Consent. Participants were provided with informa-
tion about the study’s purpose, target audience, data handling,
incentives (summary of results shared upon request), and the
option to withdraw at any time. We obtained consent via a
checkbox before proceeding with the questionnaire.

Privacy and Anonymity. We did not collect personally iden-
tifiable or sensitive information. Participants were encouraged
to skip any questions they preferred not to answer due to their
roles or affiliations. We securely stored collected data with
access restricted to the authors.

Incentive. We provided no monetary compensation. Partic-
ipants were offered a summary of the survey results as an
incentive. This non-monetary approach aligns with common
practice in professional studies and relies on voluntary partic-
ipation. Positive feedback from participants indicated that the
study itself served as a learning opportunity about security
practices, acting as an intrinsic incentive.

3) Disclosure and Feedback from GitHub: We shared our
findings and recommendations with GitHub in October 2025.
GitHub provided high-level feedback in November 2025 that
our results, particularly RQ3 on barriers to implementing secu-
rity practices, align with their ongoing shift toward strengthen-
ing default security protections in GitHub Actions rather than
relying solely on individual developer effort. They noted that
several areas identified in our study correspond with features
already planned or under development, such as automated
security warnings and improved workflow linting. These topics
are also being actively discussed in their community forum,

particularly in a community discussion on making GitHub
Actions more secure by default, which began in November
2025 [62]. GitHub further expressed appreciation for research
that raises awareness of Actions security and indicated that our
insights may help inform future platform-level improvements.

Conversely, notifying individual repositories about missing
security practices remains impractical due to the absence
of immediate critical vulnerabilities in most cases and the
large number of repositories involved. Therefore, our dis-
closure engagement focuses on contributing to ecosystem-
wide, platform-level improvements through GitHub rather than
targeting individual repositories.

B. Updates in GitHub’s Security Practice Documentation

The contents of the security practices published by GitHub
were updated after July 11, 2025. However, the practices
investigated in this study remain unchanged, and therefore,
the update does not affect our study. The main changes are:
(1) modification of the web page’s file path, (2) categorization
of practices into two types (workflow writing and security
features), (3) addition of practices related to dependency
management, and (4) removal of several items (ID 3, 12, and
13 in Table VI). The version of the documentation used in
this study can be accessed from the following Web Archive:
https://web.archive.org/web/20250701141038/https://docs.
github.com/en/actions/how-tos/security-for- github-actions/
security-guides/security-hardening-for- github-actions

C. Rationale for Security Practice Selection

Table VI presents the evaluation results for each practice
based on the criteria in Section III-B1. The excluded practices
and the reasons for their exclusion are as follows:

IDs 3, 12, and 14: These practices correspond to background
explanations or developer warnings (e.g., the mechanism of
script injection or the behavior of GitHub-hosted runners).
Since their purpose is to provide knowledge rather than
concrete actions, they do not satisfy criteria 1.

IDs 9 and 16: These practices are configurable from the
repository’s settings page and are not visible in the codebase.
Therefore, their implementation cannot be observed from open
data, and they do not satisfy criteria 2.

ID 15: While the use of self-hosted runners can be analyzed,
it is not possible to assess the use of JIT runners or runner
management strategies from open data. Hence, this practice
does not meet criteria 2.

IDs 1 and 5: The implementation of practices related to
Secrets and OpenlID Connect can be observed using open data.
However, it is not possible to identify repositories that are
expected to implement these practices but do not, meaning
that we cannot know the target population required to analyze
implementation rates. Therefore, these practices do not satisfy
Criterion 3.

ID 10: Code scanning can be enabled by adding a workflow
file, even without elevated privileges. However, GitHub’s
official documentation [63] notes that high privileges are
required and assumes privileged users for setup. Thus, it does

17

not satisfy criteria 4. In addition, a review of the practice
history using Web Archive shows that this item was introduced
between December 17 and 22, 2024. Because our dataset
consists of repositories created before December 31, 2024, and
our studies were conducted in May—July 2025, the practice had
been available for too short a period for meaningful adoption
or developer experience, making it unsuitable for analysis.

D. P4: Action-Level Detection Method

The method for determining action reference strings in the
analysis is shown in Table VII, and the method for determining
practice implementation is shown in Table VIII.

E. Variance Inflation Factor (VIF)

We assessed multicollinearity among the independent vari-
ables used in our regression analysis by calculating their
Variance Inflation Factor (VIF) values. Table IX presents the
VIF values for each independent variable used in the logistic
regression models. Each column corresponds to a model built
for a different security practice, and each row represents a
specific independent variable. Although there is no universally
accepted threshold for VIF values, prior studies [36], [37],
[38] have often regarded a range below 3 or 5 as acceptable,
considering values exceeding that range as indicative of exces-
sive correlation among independent variables. In this study, all
independent variables had VIF values below 2, suggesting that
multicollinearity is not a concern.

FE. Summarizing Documentation of Security Practices

We developed the descriptions of each security practice
(Section III-B) through the following procedure, and used
them in the questionnaire for the user study.

First, one of the authors drafted the descriptions by summa-
rizing the official documentation on GitHub Actions security
practices [7], based on the following policies: (1) quoting
original text from the official documentation as much as
possible; (2) supplementing the explanations by including
information from documents linked within one hop of the orig-
inal page (e.g., definitions of technical terms or explanations
of features that the practice depends on); (3) incorporating any
descriptions of the practice’s effectiveness or the threats/risks
it is intended to mitigate, if such information was provided
in the source. The drafted descriptions were then reviewed
and revised iteratively by two security experts with experience
using GitHub Actions. Their review focused on ensuring that
the descriptions did not contain overstatements (i.e., informa-
tion not present in the original sources) or understatements
(i.e., omission of important information), and that a wide
range of participants would be able to answer subsequent
questions about security practices after reading the text. Each
expert independently conducted the review. When one expert
proposed a revision, the final version was confirmed only after
the other expert agreed with the proposed change. This process
of review and revision was repeated a total of four times until
both experts fully agreed on the final set of descriptions.

TABLE VI
CRITERIA-BASED SELECTION OF GITHUB-DEFINED SECURITY PRACTICE.

ID | Security Practice Select | Type Detectability | Eligibility | High Privilege
1 | Using Secrets Setting True False True
2 | Using CODEOWNERS to monitor changes v Feature True True False
3 | Understanding the risk of script injections Knowledge | - - -
4 | Good practices for mitigating script injection attacks v Coding True True False
5 | Using OpenID Connect to access cloud resources Setting True False False
6 | Using third-party actions v Coding True True False
7 | Reusing third-party workflows Coding True True False
8 | Using Dependabot version updates to keep actions up to date v Tool True True False
9 | Preventing GitHub Actions from creating or approving pull requests Setting False - True
10 | Using code scanning to secure workflows Tool True True True
11 | Using OpenSSF Scorecards to secure workflow dependencies v Tool True True False
12 | Potential impact of a compromised runner Knowledge | - - -
13 | Considering cross-repository access Setting False - True
14 | Hardening for GitHub-hosted runners Knowledge | - - -
15 | Hardening for self-hosted runners Setting False - True
16 | Auditing GitHub Actions events Feature False - True
TABLE VII TABLE IX
CRITERIA FOR DETERMINING HOW ACTIONS ARE REFERENCED. VIF VALUES ACROSS FIVE LOGISTIC REGRESSION MODELS.
Reference [Criteria Independent Variables P1 P2 P3 P4 P5
SHA 40-character hash. Number of Stars 123 127 123 126 123
Tag Matches a tag in the action repository. Number of Contributors 175 191 175 183 1.76
Branch Matches a branch in the action repository. Number of Commits .13 117 113 114 113
Default Not specified; defaults to the repository’s default branch. Codebase Size 1.04 1.08 1.04 1.03 104
ShortSHA | Prefix of a valid commit hash, verified via GitHub API. Repository Age 1.07 1.10 1.07 1.08 1.07
NotFound | No match above, or the action repository not found. Recent Activity 1.06 1.03 1.06 1.05 1.06
. :) Number of Workflow Files 1.16 1.13 1.16 1.16 1.17
To ensure accuracy, the classification for Tag Aand Branch is bas_ed on the Number of Workflow Developers 158 1.65 158 1.64 1.60
actual list of releases (tags) and branches retrieved from the action Owner Type 110 111 110 111 110

repository. If a reference string matches both a tag and a branch, it is
classified as a Tag in accordance with Git’s specification [64].

TABLE VIII
P4: ACTION-LEVEL IMPLEMENTATION CRITERIA.

Verification Status | Reference Type [Implemented

SHA True
Verified Tag True

Others False

SHA True
Not Verified Tag False

Others False

Others includes reference patterns such as Branch, Default, ShortSHA, and
NotFound (references to non-existent actions).

G. Recruitment Criteria

During the recruitment process for the user study, we
collected contact information for eligible developers from
GitHub. To avoid potential negative effects (e.g., recruiting
developers who are not relevant to the study objectives or
causing survey fatigue by sending invitations to a large number
of developers), we employed the following filtering procedure
to narrow down the target population.

First, we retrieved the top 100 contributors (ranked by
number of contributions) from each repository in our dataset
(Section IV-A). This process yielded a total of 1,439,072
GitHub accounts. Next, we applied the following three criteria
to filter the extracted accounts:

18

(1) Accounts that explicitly publish a contact email address
on their profile: We retrieved the profile information of
each candidate account and included only those that explicitly
displayed a contact email address. Prior research has raised
ethical concerns regarding the use of email addresses collected
automatically from Git commit logs for recruitment pur-
poses [61]. In consideration of this, we limited our recruitment
targets to developers who had intentionally made their contact
information publicly available.
(2) Accounts involved in configuring GitHub Actions:
We identified accounts that were actively involved in con-
figuring GitHub Actions based on their contribution history.
Specifically, we included accounts that had made 50 or more
contributions related to GitHub Actions (e.g., commits to
workflow files) and had contributed to GitHub Actions at least
once after January 1, 2025.
(3) Accounts that are not bots: Since some GitHub accounts
are operated automatically via the API (i.e., bots), such ac-
counts were excluded as inappropriate for participation in the
study. Specifically, we excluded accounts that either contained
the string “bot” in the username or were labeled as type “Bot”
in metadata retrieved via the GitHub REST APL

From the 3,405 eligible accounts, we randomly sampled
1,800 accounts, with half primarily contributing to individual-
owned repositories and the other half to organization-owned
repositories, and sent recruitment emails to their publicly listed
email addresses.

APPENDIX A
ARTIFACT APPENDIX

This study conducted a mixed-method study to investigate
the implementation status of security practices in GitHub
Actions and identified the challenges associated with their
use. Specifically, we combined a measurement study analyzing
public repositories using open data with a user study based on
a developer survey.

This artifact provides the scripts used in the measurement
study. These include the scripts used for dataset creation (Sec-
tion IV-A) and for analyzing security practices (Sections IV-B
and V-A). We also describe how to use these scripts. These
scripts can be used not only to reproduce the measurement
study presented in this research but also as a foundation for
future studies on GitHub Actions. Furthermore, developers can
use them to evaluate their own repositories and to assess and
improve the implementation of security practices.

A. Description & Requirements

Our artifact consists of a set of Python and Shell scripts that
run on a local machine to collect and store data from GitHub
and perform subsequent analyses on the collected data.

1) How to access: Our artifact is available at https://github.
com/yksec14/gha_security_research and citable via the DOI
https://doi.org/10.5281/zenodo.17916232.

2) Hardware dependencies: The artifact has no specific
hardware requirements. It can be run on commodity hardware.

3) Software dependencies: The following software require-
ments are based on the verified environment.

¢ OS: Ubuntu 22.04. The scripts are expected to work on
other Unix-based systems such as macOS as well.

o Python: Version 3.13.9. All required Python packages
are listed in requirements.txt.

« API Key: Fine-grained Personal Access Token (GitHub).
If you do not have a GitHub account, please create one
first.

4) Benchmarks: We provide benchmark repositories that
reproduce typical implementation patterns of the security
practices analyzed in experiment E2. A small example dataset,
including five repositories and their corresponding analysis
results, is available in the example_data directory in the
artifact. The analysis workflow of experiment E2 can be tested
by running the provided script test_example.sh. For
detailed descriptions and usage instructions, please refer to
the README . md.

B. Artifact Installation & Configuration

Clone the artifact from the GitHub repository (https://
github.com/yksec14/gha_security_research) or Download zip
file from DOI link (https://doi.org/10.5281/zenodo.17916232).
The repository contains a README . md file with step-by-step
instructions for installation and dependency setup.

19

C. Experiment Workflow

The artifact consists of two experiments: (E1) repository
dataset creation and (E2) analysis of security practices. In E1,
repositories using GitHub Actions are collected through the
GitHub API, and the resulting dataset is stored locally. E2
analyzes the collected repositories to examine the adoption of
five security practices. Both experiments are implemented as
Python scripts that can be executed sequentially.

The experiments in this artifact are designed as minimal
examples to satisfy the requirement that experiments should
complete within one day and run on a commodity desktop
machine, while still allowing verification of the main results.
Specifically, the target repositories are limited to those created
in 2024, and up to 50 repositories created in each month are
analyzed, resulting in at most 600 repositories included in the
analysis.

D. Major Claims

This artifact supports the following claims made in our
paper:

e (C1): Based on SEART-GHS (SEART GitHub Search
Engine), we constructed a dataset of repositories that use
GitHub Actions (Section IV-A).

(C2): We developed an analysis framework that deter-
mines, for five security practices observable from public
data, whether a given repository is subject to each practice
and whether it is actually implemented (Section IV-B).
(C3): The analysis shows that the implementation rates
of the examined security practices are low among public
repositories (Section V-A, Table II).

E. Evaluation

All evaluation procedures are performed via the terminal
application, with the working directory set to the root directory
of the artifact. Please refer to the README . md file for detailed
instructions on each step.

1) Experiment (EIl): [repository dataset creation] [5
human-minutes + 50 compute-minutes]: This experiment col-
lects repositories created in 2024 and identifies those that use
GitHub Actions by querying the GitHub API. The identified
repositories are cloned to the local environment, producing a
dataset that includes both a list of repositories using GitHub
Actions and their cloned copies, which are used for subsequent
analysis in Experiment 2.

[Preparation] Access SEART-GHS® and specify the “Cre-
ated Between” period as January 1, 2024 to December 31,
2024 to search for repositories. This fixed period defines the
scope of repositories analyzed in this evaluation. Once the
search results are displayed, click “Download CSV” to down-
load the results in CSV format. The file will be downloaded
as a tar.gz archive; please extract it and save the resulting file
as ./data/raw/results.csv.

[Execution] Run the following command.

$./create_dataset.sh 2024-01 2024-12

Shttps://seart-ghs.si.usi.ch/

[Results] When executed, the script outputs debug messages
during the process, and a brief summary is displayed at the
end.

GitHub Actions Usage Summary
Total Repositories: 596
Repositories Using GitHub Actions: 192
GitHub Actions Usage Percentage: 32.21%

The collected data are stored locally. The list of repos-
itories identified as using GitHub Actions is saved in
JSON format under ./data/dataset/gha_check/, or-
ganized by month. Each repository is cloned follow-
ing the structure ./data/dataset/cloned_repos/
{owner}/{repository}.

2) Experiment (E2): [analysis of security practices] [l
human-minutes + 15 compute-minutes]: This experiment an-
alyzes the repositories collected in experiment El to evaluate
the adoption of five security practices. For each repository,
the analysis framework inspects relevant configuration and
workflow files to determine whether each practice is applicable
and whether it is actually implemented. The resulting data
represent the implementation rates of the five practices, which
serve as the basis for Table II in the paper.

[Preparation] Run the following command in the terminal
from the project’s root directory.

./pre_analysis.sh 2024-01 2024-12

[Execution] Run the following command.

./analyze_security_practices.sh 2024-01
2024-12

[Results] When executed, the script outputs debug messages
during the process, and a brief summary is displayed at the
end. The resulting data represent the implementation rates of
each security practices.

Security Practice Implementation Results
practicel:

Target Repositories: 192

Implemented Repositories: 17

Implementation Rate: 8.85%
practice2:

Target Repositories: 39

Implemented Repositories: 18

Implementation Rate: 46.15%

The results are stored locally under . /data/analyzed_
data/. Each security practice has its own directory (e.g., ./
data/analyzed_data/practicel) where the results
are organized by month.

E. Customization

The experiment is designed with a minimal configuration
that satisfies the requirements of the Artifact Evaluation. By
modifying several options, it is possible to run large-scale

experiments comparable to those conducted in the main study.
(1) Setting the value of the DEBUG variable in settings.py
to False removes the limit of 50 repositories per month. (2)
The parameter specifying the target period can be changed
from the fixed year 2024 to any arbitrary time range.

Note that these modifications increase both hardware and
API requirements. In our main study, analyzing 338,812 repos-
itories required approximately 30 TB of storage. Additional
attention is needed regarding the GitHub API. The standard
rate limit for general users is 5,000 requests per hour, which
results in extremely long execution times. For large-scale
experiments, we recommend using the enterprise plan, which
increases the rate limit to 15,000 requests per hour.

G. Notes

This artifact package additionally contains supplemen-
tary materials for our user study, such as the re-
cruitment email, questionnaire, and the complete set of
study results. These materials are available under the
supplementary_materials directory within the artifact
package.

20

