LatticeBox: A Hardware-Software Co-Designed
Framework for Scalable and Low-Latency
Compartmentalization

Zhanpeng Liu*T, Chenyang Li*f, Wende Tan®, Yuan Li¥=,
Xinhui Han*”@, Xi Caoll, Yong Xiet, Chao ZhangT'HH
*Wangxuan Institute of Computer Technology (WICT), Peking University
TInstitute for Network Sciences and Cyberspace (INSC), Tsinghua University,
9Zhongguancun Laboratory, $Imperial College London, *Qinghai University,
lcss, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.

Abstract—Modern software systems increasingly rely on com-
partmentalization to isolate untrusted or potentially vulnerable
components, such as third-party drivers and JIT-compiled code.
However, existing hardware isolation techniques suffer from
scalability constraints, high switching latency, and inadequate
security guarantees. In particular, permission-changing instruc-
tions used by some compartmentalization technology, such as
Intel MPK’s WRPKRU, can be exploited by untrusted code, which
complicates the secure deployment process.

In this paper, we introduce LatticeBox, a hardware-software
co-designed framework that addresses these limitations using
a lattice-based access control model. LatticeBox encodes per-
missions and memory regions as compact, hierarchical N-bit
vectors. This design enables a hardware architecture that reduces
domain-switching latency to a single CPU cycle and inherently
prevents misuse of permission-switching instructions. Addition-
ally, LatticeBox employs a customized instruction (1p_land)
to enforce strict cross-domain control-flow integrity, effectively
preventing unauthorized indirect function calls. We implement
LatticeBox on a RISC-V BOOM core and evaluate it using
both microbenchmarks and real-world applications, including
WebAssembly runtimes and Linux kernel modules. Our results
show that LatticeBox achieves domain switching up to 180x
faster than Intel MPK while supporting fine-grained, scalable
isolation. Evaluation on real-world workloads demonstrates only
a modest performance impact, with only 2% slowdown for
enhanced WebAssembly runtimes and just 3% lower throughput
for ApacheBench running isolated Linux kernel modules.

I. INTRODUCTION

Modern software systems are increasingly dependent on
isolation mechanisms to securely execute untrusted or poten-
tially vulnerable components. In web browsers, sandboxing
is crucial to confine JavaScript and WebAssembly execution,
as well as to isolate components like image or video codecs

= Corresponding authors: lydorazoe @ gmail.com, hanxinhui@pku.edu.cn

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240515
www.ndss-symposium.org

that are frequently targeted by exploits [1], [2], [3]. Operating
systems, especially those based on microkernel architectures,
isolate device drivers and kernel services to minimize the
trusted computing base (TCB) [4], [5], [6]. Similarly, server-
less computing platforms and multi-tenant web services rely
on isolation to protect per-user data [7], [8]. Reliable fine-
grained isolation is thus indispensable, yet current mechanisms
impose difficult trade-offs between security, performance, and
scalability. For decades, isolation has relied on segmenta-
tion and paging. Segmentation is now deprecated [9], while
paging-based schemes incur performance penalties from fre-
quent privilege-level transitions and TLB flushes [10]. Other
approaches such as page-table-switching or Software Fault
Isolation (SFI) [11], [12], [3] incur high runtime or memory
overhead and often require compiler-level instrumentation or
binary rewriting, limiting their practicality and compatibility
with legacy systems.

However, more recent hardware-assisted isolation mecha-
nisms have attempted to overcome these shortcomings. Among
these mechanisms, Intel MPK [9] is widely used due to
its lower performance cost and its ability to efficiently sup-
port intra-address space isolation without requiring significant
modifications to existing hardware architectures or software
toolchains. Nevertheless, MPK itself suffers from several
critical limitations [13], [14]. Firstly, its design only permits
sixteen protection domains due to the two-bit allocation per
key in the PKRU register. This scale is insufficient for browsers
or serverless runtimes, which typically require hundreds of
compartments. Attempts to raise this limit, such as EPK [15],
VDom [16], Donky [17] and BULKHEAD [18], rely on a two-
level isolation scheme which increases the number of keys.
However, each additional indirection lengthens a switch and
latency grows rapidly as the domain count rises. Secondly,
the MPK security model is weakened by the unprivileged
permission-switching instruction (i.e. the WRPKRU instruc-
tion), which allows user code to modify permissions at will.
Practical defenses require binary scanning and rewriting to
prevent sandboxed code from executing such instructions.
However, this introduces execution latency, which is partic-

ularly fragile for JIT scenarios. Thirdly, every permission
change must be followed by a serialising memory barrier,
which introduces delays of hundreds of cycles and renders
MPK unsuitable for workloads involving frequent switching.
The limitation has led high-performance engines such as V8
to avoid MPK for sandbox isolation [19].

To overcome these shortcomings, we introduce LatticeBox,
a hardware—software co-design framework that replaces MPK-
style key lookup with the principled Lattice-Based Access
Control (LBAC) model [20]. In LBAC, both code compart-
ments and data pages are labelled with an N-bit vector drawn
from a Boolean lattice, and memory access is permitted only
when the execution label dominates the target label.

This representation encodes permissions and domains
within the same space, yielding three key benefits. @ Scalable
isolation: It removes the scalability limitations of traditional
Access Control Lists (ACLs) by reducing metadata size from
linear to O(log N) relative to the number of system domains.
For instance, with a 10-bit label, it can support hundreds of
mutually isolated domains. @ Single-cycle domain switches:
Permission checks and updates become simple local bitwise
operations on compact bit sets, enabling architectures where
permissions are directly tied to pipeline instructions. This
eliminates memory barriers during context switches, reducing
latency to a single cycle. ® Secure-by-design: Since privilege
escalations are expressed solely as bounded label updates
performed by a dedicated instruction, there is no unprivileged
analogue to the WRPKRU instruction. Consequently, Lattice-
Box is immune to gadget-style permission forgery and does
not require binary scanning. Labels are stored in page-table
entries and cached in the TLB, adding only a few tag bits
of metadata. Meanwhile, the 1p_1and instruction, a minimal
ISA extension, atomically raises privilege and validates cross-
domain control transfers. These features, together, provide
scalable, single-cycle, and security-hardened compartmental-
ization at negligible hardware cost.

We implement a prototype of LatticeBox on a RISC-
V BOOM [21] core and evaluate it using both synthetic
microbenchmarks and real-world workloads, including SPEC
CPU 2006 running on an enhanced WebAssembly runtime
(wasm2c) and Apache benchmark tests with isolated IPv6
Linux kernel modules. Experimental results demonstrate that
LatticeBox achieves domain switching up to 180x faster
than Intel MPK while maintaining near-native performance in
practical deployments: the enhanced wasm2c runtime exhibits
only 2% runtime overhead, and the isolated IPv6 modules
reduce Apache server throughput by just 3%. Furthermore,
LatticeBox supports an order of magnitude more compart-
ments than conventional approaches while providing stronger
isolation guarantees through its robust security semantics.

In summary, this paper makes the following contributions:

e We introduce Lattice-Based Access Control (LBAC)
model into memory access that scales to thousands of
domains while eliminating access-control lists and key
virtualization requirements.

o We design a lightweight instruction set architecture (ISA)
and microarchitectural extension that implements LBAC
with single-cycle domain switches and built-in cross-
domain control-flow integrity, while requiring only mini-
mal changes to existing operating systems and toolchains.

o We prototype the full stack and conduct a comprehen-
sive evaluation against state-of-the-art isolation schemes,
demonstrating that strong security guarantees can be
achieved with negligible performance and hardware cost.

II. BACKGROUND
A. WebAssembly

WebAssembly (Wasm) [22] is a binary instruction for-
mat designed to execute code at near-native speeds within
web browsers, providing a secure and efficient platform-
independent runtime. It has become a popular method for
isolating sensitive or potentially vulnerable modules in web
applications due to its strong sandboxing capabilities and
lightweight execution environment [3].

However, WebAssembly isolation also has notable limita-
tions. WebAssembly provides efficient sandboxing, especially
in the 32-bit wasm32 mode, where guard pages can be
used to enforce memory isolation with minimal performance
overhead. However, this model is fundamentally limited to a
4 GB linear memory space due to its 32-bit address space.
More critically, the safety guarantees rely heavily on the cor-
rectness of the compiler and runtime [23]. A miscompilation
or validation bug can allow memory accesses to escape the
intended sandbox. With the introduction of wasm64 or support
for multiple linear memories [24], guard pages are no longer
sufficient, and explicit bounds checking must be inserted. This
adds significant runtime overhead and can degrade perfor-
mance, especially in memory-intensive applications.

B. Monolithic Kernels and Microkernels

Operating system kernel architectures can be broadly clas-
sified into monolithic kernels and microkernels [25]. Mono-
lithic kernels, such as Linux, integrate core functionali-
ties—including device drivers, file systems, and network
stacks—directly into the kernel space. This design offers
high performance and low communication overhead between
kernel components. However, it also results in a large trusted
computing base (TCB), which increases the attack surface.
In practice, many security vulnerabilities have been found
in kernel subsystems such as device drivers and networking
stacks, making them common targets for privilege escalation
attacks. In contrast, microkernels aim to minimize the kernel’s
responsibilities by moving most services, such as drivers and
network protocols, to user space. This architectural separation
reduces the TCB and can improve fault isolation. Nevertheless,
the performance cost of frequent inter-process communica-
tion (IPC) between user-space services and the microkernel
remains a significant challenge [26]. These IPC costs are
especially problematic in high-throughput or latency-sensitive
scenarios, limiting the practical adoption of microkernels in
performance-critical systems.

C. Intel MPK

Intel Memory Protection Keys (MPK) is a hardware feature
that provides efficient and flexible memory access control at
the user level. It repurposes unused bits in page table entries
(PTEs) to embed memory keys that distinguish different data
regions in memory. These keys are used as indices into a
special CPU register called PKRU (Protection Key Rights for
User pages, and PKS for kernel space [9]), which defines
the access rights for each region. Each thread can change
its own permissions using the WRPKRU instruction. This does
not require modifying page tables or invoking the operating
system, making it significantly faster than traditional isolation
schemes. Despite its advantages, MPK has several limitations.
Its scalability is constrained by the metadata used for access
control, which grows linearly with the number of supported
domains. Currently, MPK supports only 16 protection keys,
making it unsuitable for applications that require many isola-
tion domains, such as web browsers or serverless platforms.
Performance is also affected. WRPKRU instruction updates
PKRU register with values drawn from general-purpose regis-
ters. While this design offers flexibility, it negatively impacts
instruction pipeline efficiency. Since memory access permis-
sions change with each PKRU update, the processor must stall
the pipeline to wait for the update to complete before executing
subsequent memory access instructions. This restriction pre-
vents out-of-order execution, introducing noticeable pipeline
latency on the order of hundreds of CPU cycles. Security is
also a concern: the WRPKRU instruction is unprivileged and
executable in user space, allowing untrusted code to arbitrarily
change permissions. Preventing such misuse typically requires
static binary scanning and rewriting to ensure that isolated
code contains no hidden WRPKRU instructions, which compli-
cates deployment in adversarial environments.

D. Lattice-Based Access Control (LBAC)

Lattice-Based Access Control (LBAC) [27], [28] leverages
the lattice structure to enforce strict, hierarchical security poli-
cies. In LBAC, subjects (e.g., processes or users) and objects
(e.g., memory pages or files) are labeled with security labels
organized into a lattice. Access is permitted if and only if the
subject’s label dominates the object’s label within the lattice.
This dominance reflects the partial order relation intrinsic to
lattices. The lattice structure also supports operations like meet
(A, greatest lower bound) and join (V, least upper bound),
which are useful for defining shared access. For example,
if two subjects, A and B, both need access to an object,
the object’s label can be set to the meet (A) of A and B’s
labels to ensure it remains accessible to both while preserving
containment guarantees.

Despite these properties, LBAC has historically received
limited attention in the computer systems community and
has rarely been applied to memory isolation or protection
contexts. Traditional memory access management approaches
commonly rely on Access Control Lists (ACLs), which scale
poorly with increasing numbers of isolated domains. In this

work, we identify that lattice structures offer unique ad-
vantages for memory isolation: they can compactly encode
hierarchical permissions using concise N-bit vectors, allowing
rapid permission checks through simple bitwise comparisons.
This characteristic enables exceptionally efficient hardware
implementations, significantly reducing the complexity and
overhead associated with managing permissions at runtime.

III. MOTIVATION AND THREAT MODEL

LatticeBox is motivated by the observation that the perfor-
mance and scalability bottleneck of Intel MPK stems from its
ACL-style design: permissions are stored in dedicated registers
that must be updated and serialized, complicating hardware,
increasing switching overhead, and creating misuse opportuni-
ties. We adopt a Lattice-Based Access Control (LBAC) model
for memory protection, where permissions are encoded as
compact, hierarchical N-bit vectors matching memory region
lengths. This design reduces domain-switching latency to a
single CPU cycle, prevents misuse of permission-switching
instructions and Spectre-v1 attacks, and offers scalability.

We adopt a threat model that is at least as strong as
those used in most MPK-based solutions and aligns with
the native isolation model of HFI. We assume an attacker
capable of executing arbitrary code, including self-modifying
code, within a designated compartment. This model applies
to both user-space and kernel-space contexts. The attacker
may attempt to exploit memory vulnerabilities—such as buffer
overflows or use-after-free bugs—to escalate privileges or ac-
cess unauthorized memory within or beyond the compartment.
However, the attacker’s ability to read or write memory is
strictly confined by the hardware-enforced virtual memory
protection model. Specifically, the system ensures that the
attacker cannot access memory regions outside the permitted
domains, as defined by the LBAC policy.

We consider the following attacks out of scope: 1) Physical-
level attacks, including Direct Memory Access (DMA)-based
probing; 2) Microarchitectural side channels, such as cache
timing or speculative execution except Spectre-v1; 3) Denial-
of-service (DoS) attacks, which target system availability
rather than isolation guarantees.

The goal of this work is to ensure that even a fully
compromised compartment cannot breach the confidentiality
or integrity of other compartments, under the enforcement of
LBAC at the hardware level.

IV. DESIGN
A. System Overview

LatticeBox is a hardware-software co-designed system that
provides fast, scalable, and secure memory compartmentaliza-
tion through a Lattice-Based Access Control (LBAC) memory
access model. At the core of LBAC is the concept of a lattice,
which is a partially ordered set equipped with two fundamental
binary operations: meet (A), representing the greatest lower
bound, and join (V), representing the least upper bound. This
mathematical structure is particularly well-suited for modeling
hierarchical, sparse, and composable access relationships.

() LatticeBox

Runtime Shared Memory

(TCB)

e A

LatticeBox A

Private Memory

LatticeBox B LatticeBox C

—

LatticeBox C-b

Only available for A&

LatticeBox C-a

V

Shared Memory
Between C-a&
Cb

Shared Memory
BetweenA&B

(a) Isolation Model

Sandboxed Lattice
Box 1

Sandboxed Lattice
Box 2

Sandboxed Lattice
Box...

User mode LatticeBox Runtime (TCB)

Linux kernel with Lattice-Box support

Linux kernel modules isolated
by as lattice boxes

RISCV BOOM wtih LatticeBox Extension

Memory
Data X ves Valid
Access J—) Data Label Lattice Perm (—) all
5 TLBand Check
Page Table >
_ »
. Walker Does executiaon
Instruction 5 codeavel label dominate
Fetching data label? Invalid
Update No
Yes LQ
Ip_land — Set to
i ion? code label
instruction? j.) Execution
E—
Label
Meet code_j_)
N label

(b) Architecture Overview

Fig. 1: The overview of LatticeBox design.

As illustrated in Figure la, LatticeBox supports the creation
of multiple “lattice boxes”, which are specialized sandboxes
with isolated memory regions. Each lattice box has private
memory that is accessible only to itself and to compartments
with a higher label in the lattice hierarchy, such as the trusted
computing base (TCB). It is protected from access by other
lattice boxes that do not have a dominating label. To facilitate
inter-sandbox communication, lattice boxes can share memory
corresponding to their meet (A) in the lattice, ensuring that
only mutually authorized interactions occur.

Figure 1b presents the system overview. The underlying
hardware enforces access control based on labels during mem-
ory access. Above this, the operating system kernel manages
the virtual memory system and, consequently, the associated
labels. Any code that does not require direct management
of virtual memory can be moved out of the core kernel and
executed within a lattice box, such as Linux kernel modules.
At the user level, a user-mode lattice box runtime allows
multiple lattice boxes to execute within a shared address space,
while enforcing strict and controlled memory access patterns.

To make the labels enforceable in hardware, three minimal
hardware extensions are introduced. First, page-table entries
and TLB entries are extended to include the labels. For data
TLB, the label specifies the required permission level to access
the corresponding memory region. Second, each CPU core
maintains a dedicated control register that holds the current
execution label. On every memory access, the system checks
whether this label dominates the label of the accessed memory.
If not, a custom exception is raised. In the instruction TLB,
the label represents the upper bound on the permission level
of the code. When control flow enters a new page with a
different label, the core’s execution label is lowered to the
meet (A) of the previous label and the new page’s label.
Third, LatticeBox introduces a new instruction, 1p_land,

to securely manage cross-domain transitions. When control
is transferred between compartments, 1p_land verifies the
validity of the transition and updates the core’s execution label
to match the label stored in the instruction TLB entry of the
target page. This mechanism supports controlled permission
escalation. The 1p_1land instruction eliminates the need for
expensive memory fences and prevents unauthorized privilege
escalation by design, which addresses a critical weakness of
MPK’s unprivileged instruction model.

The software layer of LatticeBox requires minimal mod-
ification to existing systems. The operating system merely
assigns permission labels when mapping pages into memory
and manages stack transitions when crossing privilege bound-
aries. Existing programs and runtimes, including dynamically
generated JIT code, remain fully compatible after minor ad-
justments to memory allocation calls. The result is a practical,
drop-in approach to secure compartmentalization that requires
no invasive binary scanning, rewriting, or extensive toolchain
modifications. In summary, LatticeBox significantly surpasses
prior isolation technologies such as Intel MPK by addressing
their key limitations explicitly: (1) Low Latency: Single-
cycle compartment transitions replace MPK’s costly memory
fences, reducing latency from hundreds of cycles to just
one cycle. (2) Scalability: Compact lattice labels support
billions of compartments, eliminating MPK’s severe limit of
sixteen domains. (3) Security: Built-in cross-domain control-
flow integrity enforced by the dedicated 1p_land instruction
inherently prevents gadget-style permission forgery without
expensive binary rewriting.

By combining these novel architectural strategies with mini-
mal hardware and software modifications, LatticeBox provides
a practical, secure, and highly performant compartmentaliza-
tion framework suitable for modern software environments.

B. Lattice-Based Access Control in Memory

Traditional memory access permission mechanisms often
rely on Access Control Lists (ACLs) [29], [13], [30], which
can incur substantial complexity during permission manage-
ment—particularly when updating or verifying access rights.
This complexity grows linearly with the number of memory
regions and access relationships, making such designs non-
scalable. However, in practice, the memory access patterns in
many systems are highly sparse. Most code modules require
access to only a small subset of all available memory regions.
This sparsity is especially evident in sandboxed execution
environments. In a typical setup, a trusted host runtime (i.e.,
external code) requires broad access to every sandbox’s mem-
ory, whereas each untrusted sandbox module (i.e., internal
code) only accesses its own isolated memory region. In a
system with [V sandboxes, the effective permission model boils
down to just two meaningful relationships:

e The host has access to all sandbox memory regions.
e Each sandbox has access only to its own memory region.

Despite this simple structure, encoding it via ACLs requires
storing N + 1 entries—one for the host and one for each
sandbox. Worse yet, any update to code or memory requires
revisiting and potentially modifying this list, introducing inef-
ficiencies and increasing the chance for error.

One potential simplification involves encoding permissions
using a global “host” privilege along with one privilege
per sandbox. This compact representation uses approximately
log, N bits per permission and is sufficient to express the
desired access control relationships for N sandboxes. How-
ever, this scheme eliminates the possibility of memory sharing
between non-host components. Since non-host modules cannot
directly share memory, any inter-sandbox communication must
be routed through the host using memory copies—a process
that incurs considerable overhead when communication is
frequent or performance-critical.

Figure 1 illustrates how we model memory access per-
missions with lattice structure. In our model, both code and
memory regions are assigned permission levels drawn from
the same lattice. A code component with permission level a
is allowed to access a memory region with permission level b
if and only if @ >= b in the lattice ordering. This single-
rule access control model enables a simple yet expressive
framework for enforcing permissions.

We designate the host runtime as part of the system’s trusted
computing base (TCB). Because it must access all memory
regions, we assign it the top element of the lattice—formally,
the join (V) of all other permission levels. This guarantees that
the host can access any memory region without exception.
Sandboxes in this model can be made mutually isolated by
construction: their permission levels are incomparable in the
lattice (i.e., there is no ordering between sandbox ¢ and
sandbox j when i # j). This ensures that no sandbox can
directly access another’s memory. However, if communication
is required, it can be achieved through memory regions placed
at the meet (A) of the corresponding permissions. These
shared regions act as controlled junctions for data exchange.

Because these sandboxes are isolated based on lattice-encoded
permissions, we refer to them as “lattice-boxes”.

Beyond simple isolation, lattice-boxes naturally support
nesting and composition, thanks to the hierarchical nature
of the underlying permission lattice. A lattice-box can en-
capsulate other lattice-boxes, each inheriting a constrained
subset of the parent’s permissions, thereby enabling modular
organization and fine-grained delegation of access. Likewise,
multiple lattice-box systems can be composed into a larger
system by ensuring their upper bounds remain distinct, while
the host runtime is granted access via the join (V) of all
participating subsystems’ permissions. This structural flexi-
bility makes lattice-boxes well-suited for a wide range of
compartmentalization patterns, from flat isolation schemes to
deeply nested or collaborative module arrangements.

C. Architecture Design

001 011

‘ 000 ‘ 010 101 ‘ 111 ‘

100 110

Fig. 2: Subset Lattice with Bit Vector Encoding.

1) Bit Vector Encoding: To support efficient implemen-
tation—especially in hardware—we encode permission lev-
els as bit vectors. The lattice ordering is defined such that
a >= b if and only if every bit in a is greater than or
equal to the corresponding bit in b. As shown in figure 2,
this encoding naturally forms a subset lattice (also known
as a Boolean lattice), which offers exponential scalability in
creating mutually isolated lattice-boxes. For example, using a
10-bit encoding, we can select all vectors with exactly five bits
set. These vectors are pairwise incomparable, and thus define
C(10,5) = 252 mutually isolated lattice-boxes.

However, introducing shared memory between sandboxes
reduces the total number of mutually isolated boxes that can
be supported. This is because the meet (A) of two permissions
may inadvertently intersect with other sandboxes’ meets or
permission levels. For example, in a 4-bit encoding system,
the meet (A) of 1100 and 0011 reaches the lowest bound.
In the worst-case scenario, where all possible communication
patterns must be supported, the number of supported lattice-
boxes scales linearly with the number of bits, rather than
exponentially. However, such dense communication require-
ments are rare in practice; most compartmentalization systems
require only localized or structured sharing.

To balance isolation and flexibility, the bit vector can be
partitioned to support nesting and composition. For example,
a 10-bit vector can be split into two segments:

o The first 5 bits define C'(5,2) = 10 outer lattice-boxes,
which are fully isolated from one another.

« The remaining 5 bits define 5 nested lattice-boxes within
each outer box, supporting arbitrary memory sharing
among them.

For N bits encoding, LatticeBox supports at most

C (N,[5]) isolated lattice-boxes. If memory sharing is

needed, split IV into M + K, supporting C' (M , [%D outer

lattice-boxes and K nested ones, totaling K * C (M, [4])
lattice-boxes with elaborated access permissions. This ap-
proach provides a scalable, structured mechanism to support
both strict isolation and efficient communication. In contrast,
MPK’s ACL-based design has scalability limits: the ACL size
doubles with each added label bit. For example, at n=10, Intel
MPK supports 1024 memory regions but needs a 2048-bit
PKRU register, which is hard to maintain.

2) Memory Data Permission Level Management: Lattice-
Box embeds lattice permission keys (LPKs) into unused PTE
bits, which is similar to Intel MPK but with richer semantics.
LPKs encode permission levels directly, eliminating the need
for external lookup structures. While this richer encoding
requires more bits per key, a 10-bit vector is feasible across
major architectures, including x86, ARM, and RISC-V. To
support more bits, alternatives include reallocating part of the
physical address space for permission metadata or extending
the page table, such as by adding a shadow table for larger
encodings.

On each memory access at the data cache, LatticeBox per-
forms an additional permission check alongside the standard
read/write validation based on PTE flags. It verifies whether
the processor holds a permission level that dominates the
memory’s label in the lattice. If the check fails, a custom
exception is raised to prevent unauthorized access.

To preserve backward compatibility and enforce secure
defaults, we define the all-zero bit vector as the top of the
permission lattice—the most privileged level. This ensures
that, by default, only code running at the highest privilege level
can access untagged or default memory regions. As a result,
we adopt a counterintuitive but intentional ordering: in our
lattice, a bit value of 0 is greater than 1. This inversion aligns
with conservative security principles, enabling safe defaults
while supporting expressive and scalable access control.

3) Core Permission Management: To reduce permission
switching latency and provide enhanced security, we propose a
permission control mechanism that leverages LPKs embedded
in the PTEs of executable pages to restrict processor execution
rights. As illustrated in figure 3, when the processor dispatches
an instruction, it checks whether the instruction originates
from an executable page with a different LPK. If so, it
computes the meet (A) between the current permission state
and the LPK of the new page, reducing access rights accord-
ingly. Controlled permission escalation is achieved through a
special instruction, 1p_land, which can optionally escalate
the lowered permission. Crucially, the escalation is strictly
bounded by the LPK of the page containing the 1p_land
instruction. The instruction is named to reflect its intended

Permission
jump to Lowered
0000 _— LPK: 0001 _—

Core with high
permission level

LPK: 0000 0000
jumpto
T Ip_land (lift) Core with greater
permission level
Ip_land (no-lift) 1

Core with low
permission level

Core with lower
permission level

Code with lower
lattice permission key (LPK)

Not allowed
Core with low
permission level

non-lp_land

Code with greater
lattice permission key (LPK)

Fig. 3: Core Permission Management.

role as the entry point for cross—lattice-box invocations. In
addition to managing permission escalation, 1p_land also
records the caller’s permission level, enabling the callee to
adapt its behavior based on the origin of the call.

This approach offers several advantages. At the microar-
chitectural level, it allows permission transitions to occur
during instruction dispatch, fully decoupled from the execution
pipeline. As a result, permission changes no longer block out-
of-order execution, significantly reducing latency. For permis-
sion lowers, even no extra instruction is actually executed.
Moreover, this design strengthens security guarantees: even
if a binary contains 1p_land instructions, it cannot elevate
permissions beyond what is permitted by the code segment’s
PTE. As long as potentially untrusted code is mapped with a
low-permission LPK, it is confined by default.

A simpler alternative would be to treat the LPK in each
executable page as the sole determinant of execution per-
mission. However, this rigid model makes it difficult to
support shared code across different compartments or threads
with varying privileges. To address this, LatticeBox separates
the processor’s current execution permission from a code
segment’s upper-bound permission. This separation enables
safe and efficient code reuse. For example, commonly reused
library functions like memset or memcpy can reside in high-
permission regions without performing permission escalation
on entry. When executed from a lower-permission context,
they run with reduced privileges, automatically respecting the
caller’s restrictions.

Furthermore, this model naturally extends to thread-level
isolation. Each thread can be assigned its own thread-specific
permission level, and the effective access permission is deter-
mined as the meet (/) of the executing code’s permission and
the thread’s assigned level. The hardware should keep thread
permissions immutable in user space, ensuring strong isolation
across threads without compromising flexibility or security.

4) Reduced Privilege for Non-TCB Code: While the pro-
posed permission management scheme effectively restricts
permission escalation via the 1p_land instruction, it does

not eliminate all potential vectors for privilege abuse. A
binary may still contain other instructions that can compromise
system security. For instance, in user mode, an attacker could
invoke system calls to escape sandbox constraints. In kernel
mode, more severe threats exist—for example, an attacker
might directly modify control status registers such as CR3,
which holds the base address of the page table, thereby
bypassing the permission model entirely.

To address these residual risks, LatticeBox reduces each
processor mode’s privilege based on the current lattice per-
mission level. Certain ISA-level sensitive instructions, like
syscalls or machine state change instructions, can only execute
at the highest permission. Their classification is inherent to
the ISA design, requiring no manual annotation. This ensures
sensitive transitions or privileged operations are gated to the
TCB, enabling safe execution of arbitrary binaries.

5) Cross Compartment Control Flow Integrity: Beyond
direct memory access attempts, attackers can also manipulate
control flow to launch attacks. Specifically, we must consider
these two attack approaches:

o If an attacker can jump into the middle of a privileged
function, they may exploit indirect calls within that
function to escalate privileges. For example, the attacker
could redirect an indirect call to a high-permission service
function and manipulate callee-saved registers. This al-
lows the attacker to re-enter the privileged function using
attacker-controlled register context, and execute sensitive
code with elevated permissions.

o Another related threat arises when a low-permission
compartment calls a privileged function using a forged
return address. Once the privileged function completes,
it may return to an attacker-controlled address, resuming
execution with a tampered register context.

To prevent these attacks, LatticeBox must enforce that low-
permission lattice boxes may only enter service functions
in higher-permission compartments through pre-defined entry
points. And, the service functions should not easily trust the
return address provided by the caller.

We extend the semantics of 1p_1land to solve these issues.
Specifically, we require that: (1) if the jump occurs from a
code segment whose permission is not greater than or equal
to the destination’s, then the first instruction at the target must
be 1p_land; and (2) the instruction immediately preceding
lp_land must be a call instruction that explicitly writes
the return address. This ensures that all permission-escalating
transitions are intentional and verifiable, with 1p_1and acting
as both the semantic and structural gatekeeper.

With the above design, LatticeBox enforces strict privilege
escalation control by restricting permission changes exclu-
sively to 1p_land instructions. These instructions serve as
secure gatekeepers at the entry points of designated high-
permission service functions, ensuring full visibility of call
origins to prevent confused deputy attacks. Specific software-
based strategies to protect processor registers during these
transitions are discussed in Section IV-D.

D. Software Design

To ensure secure compartment transitions, the software layer
creates lattice boxes and manages secure and efficient transi-
tions between them, into the runtime or across components
operating under different permission levels. This leverages the
hardware features provided by LatticeBox.

The first step in creating a lattice-box is to place the
code requiring isolation into a memory region marked with
a designated permission level. For precompiled binaries, these
permissions can be applied at load time or immediately
afterward. In the case of JIT-compiled code, the runtime can
allocate a writable and executable memory region applied with
appropriate permissions, and then populate it with generated
code. To execute within a lattice-box, the module must not
reuse the runtime’s stack. Instead, a separate stack with the
same permission level as the code must be initialized. A
dedicated heap is also required for memory allocation. How-
ever, because the 1p_land instruction records the caller’s
permission level, a shared runtime allocator can safely manage
all heap memory by dynamically provisioning permission-
specific ranges on demand.

When invoking an untrusted module (i.e., one with lower
or non-comparable permissions), the caller must switch to a
new stack, since the callee cannot operate on the caller’s stack.
Before switching, the caller must save all callee-saved registers
to prevent them from being tampered with. Optionally, regis-
ters may also be cleared to avoid leaking sensitive data into
the untrusted context. A stack switch is also required when
invoking a trusted module. In this case, it is not necessary to
protect the caller’s registers, but the system must ensure the
trusted module is protected from tampered stack pointers or
forged return addresses supplied by an untrusted caller.

This design can sandbox untrusted code at the binary level
without instrumentation. For trusted code, trampoline func-
tions can be introduced to handle stack switches and register
protections, remaining binary compatible. To minimize per-
formance overhead, we recommend recompiling trusted code
with minor modifications for direct lattice-box transitions.

V. IMPLEMENTATION

A. Processor Core

We extend the BOOM (Berkeley Out-of-Order Machine)
core to support LatticeBox. BOOM is an open-source RISC-
V processor that implements out-of-order execution, providing
a more realistic model of pipeline behavior compared to in-
order cores such as Rocket. While our prototype targets RISC-
V, the LatticeBox design is architecture-agnostic and can be
implemented on any platform that supports virtual memory
and page tables. RISC-V was chosen primarily for its openness
and the maturity of its surrounding ecosystem.

1) Page Table Walker and TLB Extensions: We modified
the Page Table Walker (PTW) and TLB to support LPKs.
During page table walks, LPKs are read from PTEs and stored
in TLB entries. On TLB hits, the response includes LPKs for
permission management. We use the 7 reserved bits in RISCV

PTEs and repurpose two PPN bits plus the top bit for a 10-bit
LPK, preserving about 2 PB of addressable memory.

2) Fetch and Instruction Dispatch Modifications: During
fetch, LPKs from the instruction TLB are transmitted with the
instruction packet and attached as metadata during dispatch.
Although BOOM supports out-of-order execution, instructions
are dispatched in-order to the Re-Order Buffer (ROB), which
allows us to focus on permission updating at dispatch time,
correctly set the code permission for instruction, and do not
invade into the execution pipeline.

In BOOM, CSR instructions are treated as “unique” and
require exclusive access to the execution pipeline. If code per-
missions were updated using CSRs, frequent changes would
degrade concurrency. To avoid this, we introduce a microar-
chitectural register, reg_eclp, which tracks the last dispatched
instruction’s effective code permission. During dispatch, each
instruction’s permission is computed using previous instruc-
tion’s permission and the new instruction’s LPK, following
Equation 1 for regular instructions and Equation 2 for the
special 1p_land instruction. The result is used to update
reg_eclp for the next instruction.

Pnew = Lpre A LPKnew (1)

Pnew = (Ppre A LPKnew) \ (Immne'w A LPKnew) (2)

In addition, the 1p_land instruction is converted to an
addi instruction at dispatch time, which avoids introducing
additional pipeline complexity while enabling software to track
the pre-jump permission level.

These design choices minimize the overhead of cross-
domain control flow. Permission reduction occurs directly at
the jump instruction itself, incurring no additional latency.
When permission escalation is required, it behaves identically
to an addi instruction in terms of execution cost.

3) Branch Misprediction and Exception Handling: BOOM
supports branch prediction, and on a misprediction, the pro-
cessor must revert to the pre-branch permission state. When
a misprediction occurs, the pipeline is flushed, and reg_eclp
is restored to the permission level associated with the mis-
predicted branch instruction. In the case of exceptions (traps
or interrupts), the pipeline is also flushed, and control is
transferred to the exception handler, which begins execution
in kernel mode. To support this transition, the current value of
reg_eclp must be saved to a CSR (CSR_LP_U for user mode
and CSR_LP_S for kernel). We then set reg_eclp to 0, the
lattice upper bound, allowing the exception handler to execute
with maximum privilege. Upon returning from the exception,
reg_eclp is restored from the saved CSR value.

4) Memory Access Module: During memory access, the
system verifies whether the instruction has sufficient per-
mission to access the target memory region. The minimum
required permission corresponds to the LPK assigned to the
memory page. Determining the processor’s effective permis-
sion is context-dependent. In user mode, it is computed as

the meet (A) of the instruction’s permission and the thread’s
permission. In kernel mode, the behavior differs based on
the type of memory being accessed. If the kernel accesses
a user page, the effective permission is the meet (A) of the
permission stored in CSR_LP_U and the thread’s permission.
If it accesses a kernel page, the effective permission is simply
the instruction’s permission. Because this check is performed
concurrently with standard page table validations, it introduces
no additional overhead. Moreover, this design naturally en-
forces privilege isolation during system calls—calls made from
a low-permission context cannot be exploited to access high-
permission memory, thus preserving security boundaries.

B. Kernel

We modify the Linux kernel to support embedding LPKs
into PTEs and to manage the saving and restoring of lattice-
permission-related CSRs. For CSR_LP_U, which tracks user-
mode permissions, the kernel must save and restore its value
during context switches between user tasks. Signal handling
presents a special case, as it creates a new control flow and
execution context. To maintain compatibility with the existing
signal handling mechanism, we require the signal handler to
manage the permission state of the interrupted control flow.
As a result, the signal handler must be part of the runtime’s
trusted code. When delivering a signal, the kernel copies the
value of CSR_LP_U into the signal handling context and resets
CSR_LP_U to 0, effectively elevating the signal handler to the
runtime’s full permission level. For CSR_LP_S, which tracks
previous kernel-mode control flow permission, the kernel must
handle nested exceptions correctly. To support this, the kernel
saves and restores CSR_LP_S to and from the trap frame on
the kernel stack during exception handling.

VI. CASE STUDY

A. WebAssembly Runtime

WebAssembly runtimes typically assume that the stack is
safe and rely on guard pages to detect overflows in linear
memory. However, this approach implicitly trusts the compiler
to generate safe code. If the compiler contains vulnerabilities,
it may emit code that accesses memory outside of the intended
stack or linear memory regions. Moreover, guard pages are
only effective for the 32-bit WebAssembly (wasm32) model.
In the 64-bit variant (wasm64), explicit memory bounds check-
ing is required, which can significantly degrade performance.

LatticeBox offers a more secure and efficient alternative. By
placing the compiled WebAssembly code into a lattice box, we
can isolate it from the rest of the system even if the compiler
is buggy. This containment ensures that wasm code cannot
access memory outside its designated region, reducing the
reliance on code validation at load time and thereby improving
startup performance. Additionally, since LatticeBox enforces
memory isolation at the hardware level, it eliminates the need
for software-based bounds checks, even in the wasmo64 setting,
resulting in improved runtime performance.

To demonstrate our approach, we build a LatticeBox run-
time that runs WebAssembly-WASI applications within iso-
lated compartments. The runtime is based on two components:
wasm?2c, which compiles Wasm bytecode into C source code,
and uvwasi, which provides system call support for command-
line arguments, I/O, etc. Importantly, integrating LatticeBox
support into the existing runtime requires minimal changes.
Wasm already provides a structured and sandboxed execution
model, with a well-defined separation between code and data,
and explicit function entry points. These properties align well
with LatticeBox’s label-based isolation.

1) LatticeBox Runtime Initialization: Before launching a
Wasm application, the runtime sets up an isolated execution
environment. It maps the compiled Wasm code with a non-
zero lattice label, allocates a fresh stack, and labels both the
stack and linear memory with the same lattice label. It then
saves its own register state—including ra (return address) and
sp (stack pointer)—and sets the return address to a designated
exit entry point in the trusted root compartment. This ensures
a secure transition back after the application finishes.

2) Service Function Invocation: For system services such
as memory growth or I/O (via uvwasi), we introduce wrapper
functions that act as trusted gateways. Each wrapper begins
with an 1p_land instruction to escalate permissions and
switch to the trusted stack. The wrapper then invokes the actual
service function and, upon return, restores the original stack
before transferring control back to the Wasm code.

Thanks to LatticeBox’s hardware support for return address
integrity, the ra register at the return site can be trusted, ensur-
ing control returns only to the legitimate call site. Additionally,
because these service functions do not support callbacks, they
do not need to preserve callee-saved registers, which simplifies
their implementation and reduces overhead.

3) libc Integration: We also make minimal changes to
libc by inserting an 1p_land instruction before functions
that are directly invoked by wasm2c-generated code. These
include floating-point operations and memory utility functions.
Although no permission escalation occurs in these cases, the
1p_land instruction still serves as a controlled entry point
into shared runtime code, ensuring consistent enforcement of
LatticeBox’s execution model.

4) Application Termination: When the Wasm application
completes, it must call the exit entry in the trusted root com-
partment. This exit function restores the original register state,
tears down the Wasm application’s resources, and securely
dismantles its lattice box.

5) Containment and Security Assurance: Even if an at-
tacker gains full control over the Wasm application—for
example, by exploiting a vulnerability in the compiler or
injecting malicious bytecode—they remain confined within
the lattice box. They cannot access memory outside of the
compartment, since all memory loads and stores are hardware-
checked against the current lattice label. They also cannot call
privileged functions directly, as any attempt to jump across
compartments without going through a valid 1p_land entry
will either lower the execution label or raise an exception.

Return address forgery is prevented through hardware enforce-
ment, and since the application cannot change its own label or
map memory, privilege escalation is fundamentally blocked.

B. Kernel Module Isolation

In Linux, dynamically loadable kernel modules extend the
base kernel’s functionality after boot, providing support for
device drivers, file systems, and other components. While
modular and pluggable by design, these modules still execute
with full kernel privileges once loaded. This broad access far
exceeds what most modules require for their functionality and
introduces substantial risk. Notably, drivers are responsible
for a significant portion of kernel vulnerabilities. Microkernel
architectures have shown that much of this code can operate
safely with reduced privileges.

To address this over-privileging, we propose isolating kernel
modules using lattice boxes. Our approach confines modules
within restricted permission domains enforced at the hardware
level. As a proof of concept, we implement a lattice-boxed
version of the IPv6 kernel module. More generally, LatticeBox
supports isolating any kernel code that does not directly
manage memory or processor state, making this approach
widely applicable within the kernel.

The implementation is conceptually similar to the user-mode
WebAssembly runtime described earlier. The module’s code is
mapped with a non-zero (low-privilege) label, and it runs on
a private stack. Trampolines are used to switch stacks during
control transfers. However, the kernel context introduces two
additional challenges:

o Interleaved Call Stack: The call stack interaction between the
IPv6 module and base kernel is more complex than user-space
wasm runtimes. Many network-related functions are shared
between IPv4 and IPv6, leading to frequent transitions between
base kernel and IPv6-specific code. For example, IPv6 code
invokes helper routines in the kernel, and kernel functions later
invoke callbacks into the [Pv6 module. To preserve correctness
and security during such transitions, any base kernel function
calling into the IPv6 module must save callee-saved registers
before the call and restore them on return.

o Buffer Sharing: The IPv6 module occasionally accesses
memory buffers allocated by the base kernel. Ideally, we would
identify which of these allocations are later used by the module
and allocate them from a dedicated low-security-level heap.
However, performing such identification requires non-trivial
pointer analysis, which is complex and outside the scope of
this work. As a prototype, we forgo fine-grained heap isolation
and instead map the entire kernel heap with a low-permission
label, allowing the IPv6 module to access shared buffers safely.
We leave automated pointer analysis and heap isolation to
future work.

C. Compatibility and Porting Effort

The hardware design is fully forward-compatible, allow-
ing unmodified operating systems and software to run on a
LatticeBox-enabled processor without changes or performance
overhead. Enabling LatticeBox functionality requires minimal

effort. Porting the kernel takes fewer than 500 lines of code,
covering page table management and context-switching mod-
ifications. Porting a wasm2c runtime requires under 1,000
lines of changes, including adding a reusable lattice box
runtime library and using macros to annotate and wrap service
functions called by WebAssembly code.

VII. EVALUATION
A. Security Analysis

1) Permission Monotonicity: LatticeBox enforces permis-
sion monotonicity, meaning no compartment can escalate its
permission or create a new one with a higher level, even with
arbitrary code execution. This is ensured by restricting two
key capabilities to the most privileged level (the lattice upper
bound): executing sensitive instructions and modifying PTEs.
Without syscall or page table modifications, lattice-boxed code
cannot escalate its permission in our threat model. To perform
sensitive operations that could break permission monotonicity,
such as modifying or creating page table entries, the code
must call wrapper functions in the TCB. The lp_land instruc-
tion records the caller’s permission level, and the remaining
enforcement is handled by software.

2) Cross-Domain Control-Flow Integrity: Another poten-
tial attack vector involves sandboxed code tricking a trusted
compartment into following an incorrect control flow to per-
form operations on its behalf. To prevent this, LatticeBox
enforces cross-domain control-flow integrity. This has two key
aspects. First, a lower-privileged compartment can only jump
to designated service function entry points, not internal labels
or mid-function addresses. Hardware ensures that all cross-
permission jumps target an Ip_land instruction. Second, when
a privileged compartment finishes a service function, it must
securely return to the caller to prevent Return-Oriented Pro-
gramming (ROP) attacks. Hardware enforces this by requiring
the instruction before Ip_land to write to a return address (RA)
register, preventing return path forgery. The system also tracks
the last committed instruction’s permission level and return
address to restore it after interruptions. Regarding callbacks,
the TCB does not support arbitrary callbacks from untrusted
domains. If needed, callbacks must go through an explicit
indirection that transitions to a lower-privileged compartment,
preventing control-flow hijacks into privileged code.

3) Multi-Core Synchronization: Updating a Lattice Per-
mission Key requires modifying the PTEs, which triggers a
TLB flush to prevent cores from using stale LPKs, similar to
updating basic read, write, or execute permissions. Although
TLB flushes are costly, their frequency is minimized by design,
as memory regions with distinct labels are long-lived, keeping
the performance overhead low.

4) Spectre: LatticeBox is invulnerable to Spectre-class at-
tacks discussed in HFI [31] and SpecMPK [32] because it
enforces correct memory permissions even during transient
execution. Permissions are bound to each instruction at issue
time and then validated at the point of memory access. Within
the LatticeBox, malicious code cannot access higher-level
memory. Even if a cross-compartment jump is speculatively

10

executed before a memory access, the memory instruction still
enforces its original permissions. This design also defends
against attacks where the attacker tricks the trusted runtime
into speculatively executing malicious code. The moment the
runtime jumps to malicious code—speculatively or not—its
permissions are immediately lowered.

B. Experimental Setup

We instantiated a BOOM core and additional system-on-
chip (SoC) components using the Chipyard [33] framework.
Due to FPGA resource constraints and to reflect realistic yet
practical hardware configurations, we selected the SmallConfig
preset, which retains key out-of-order execution features with
manageable resource overhead. Unused interfaces and the 1.2
cache were removed to further reduce resource usage and
ensure stable operation at 100 MHz.

For LatticeBox, we allocated 10-bit LPKs to encode per-
mission levels. The system runs Linux kernel version 6.1,
compiled with LLVM 15.0.7. User-space binaries were com-
piled with the same compiler and linked against LLVM
runtime components—compiler-rt, libc++, libc++abi, and li-
bunwind—along with musl libc version 1.2.5. The target
FPGA platform is a Xilinx Kintex UltraScale (XCKU060)
development board with 4 GB of onboard RAM.

C. Hardware Resource Usage

Table I summarizes LatticeBox’s FPGA resource overhead.
Lookup tables (LUTs) increased by 0.68%, and flip-flops
(FFs) by 3.03%, which are comparable to overheads reported
in prior work. For instance, Donky, which extends Intel MPK,
reports +1.8% LUT and +0.9% FF increases. XPC, a design
aimed at accelerating inter-process communication (IPC), re-
ports a 2.0% increase in LUTS. SecureCells reports a reduction
in FPGA resource usage; however, this is due to its removal
of the paging subsystem, which renders it incompatible with
virtual memory and existing software stacks. Additionally, un-
like these prior works, which are based on in-order processor
cores, our design uses a realistic out-of-order BOOM core.
This more closely reflects industrial-grade architectures and
highlights the practical viability of LatticeBox.

Finally, LatticeBox has minimal impact on timing: both
the baseline and LatticeBox-enhanced BOOM designs meet
timing closure at 100 MHz. The worst negative slack in both
cases was observed in the branch predictor module, which
remains unmodified in our implementation.

D. System Performance

1) Microbench: To evaluate the efficiency of LatticeBox
during compartment transitions, we conducted a series of
microbenchmark experiments and compared the results with
prior work, as shown in Table II. We measured the latency
introduced in four scenarios: (1) permission switching only,
(2) permission switching with stack switching, (3) full context
switching, and (4) full context switching with register clearing.
Each scenario was executed in a loop 1,000 times, and the

TABLE I: Hardware resource cost of the baseline and LatticeBox when synthesized on an FPGA.

RISC-V Boom Cores
#LUT

#BRAM ‘ #LUT

Whole Systems

% #FF % % #FF % #BRAM Worst Neg Slack (ns)
baseline 75,968 _ 47,325 _ 11 99,454 _ 81,059 _ 106 0.021
LatticeBox | 76,483 +0.68% 48,759 +3.03% 11 99,974 +0.52% 82,520 +1.80% 106 0.001

average of the last 500 iterations was used as the final result
to minimize warm-up effects and measurement noise.

We report round-trip latency for all transitions. For prior
work that only reports one-way transition latency, we double
the published value to estimate a round-trip comparison.
As shown in Table II, LatticeBox achieves extremely low
switching latency. In the simplest case where only permission
switching is required, the overhead is just 1 cycle. This
significantly outperforms Intel MPK-based designs such as
ERIM (approximately 99 cycles) and BULKHEAD (approx-
imately 408 cycles). Even in the most demanding scenario,
which includes full context switching and register clearing,
the round-trip latency is only 94 cycles. This performance
surpasses prior Intel MPK-based solutions, which incur higher
cycle counts for basic permission updates. While XPC and
SecureCells achieve competitive latency, LatticeBox maintains
an advantage through its non-blocking pipeline architecture
that eliminates stalling during permission transitions.

2) Macrobench: We evaluate the performance impact of in-
tegrating LatticeBox into the system using the SPEC CPU2006
benchmark suite. Although SPEC CPU2017 is more modern,
it demands 16GB of memory, which exceeds the capacity of
our FPGA development board. Therefore, we use CPU2006
instead. In the SPEC CINT2006 subset, benchmark 400.perl-
bench is excluded due to compilation issues. All benchmarks
are compiled with -O2 optimization and statically linked. To
eliminate I/O effects, all executables and input data are loaded
onto a tmpfs (in-memory file system) prior to execution.

Each test program is run on two configurations: the baseline
system (unmodified BOOM and Linux) and the LatticeBox-
enhanced system. The enhanced configuration includes hard-
ware support for label enforcement and kernel modifications
for managing execution labels and memory mapping with
lattice labels. However, for this evaluation, no actual lattice
boxes are instantiated; we measure only the baseline overhead
introduced by the underlying support.

Performance is measured using BOOM’s performance coun-
ters, specifically by recording the total number of cycles per
benchmark. All benchmarks complete successfully, demon-
strating that LatticeBox maintains full backward compatibility.
For all tested workloads, the slowdown is less than 0.2%,
indicating that LatticeBox introduces negligible performance
overhead for systems not actively using its security features.

E. Wasm

For the WebAssembly (Wasm) runtime enhancement eval-
uation, we also use the SPEC CPU2006 benchmark suite.
However, Wasm remains significantly less performant than
native execution. Running the full reference workload under

11

the baseline WebAssembly configuration would require ap-
proximately three weeks. To accelerate the evaluation while
preserving representative behavior, we instead use the smaller
train workload. Benchmarks are executed under three config-
urations: (1) baseline WebAssembly, (2) WebAssembly with
bounds-checking instrumentation, and (3) WebAssembly pro-
tected by LatticeBox. Figure 4 presents normalized results
for configurations (2) and (3) relative to the baseline. The
LatticeBox-enhanced Wasm runtime successfully completes
all test cases, demonstrating that our modifications maintain
full execution compatibility. Performance analysis reveals con-
sistently low overhead, with all test cases showing less than
2% slowdown and a geometric mean of just 0.3%, significantly
outperforming the bounds-checking instrumentation approach,
which incurs near 20% overhead on average. One bench-
mark, 464.h264, shows unexpected performance improvement,
which we tentatively attribute to cache line alignment effects
introduced by our code modifications.

The performance cost of LatticeBox primarily comes from
the added trampolines invoked during service calls made by
Wasm applications. Each trampoline introduces one 1p_land
instruction, two stack switches, and a function call round-
trip. As shown in our microbenchmark results, these oper-
ations take fewer than 100 cycles. Since service calls are
relatively infrequent, the overall performance impact remains
negligible. Furthermore, memory access checks within lattice
boxes execute entirely in hardware, eliminating instrumenta-
tion overhead. This combination of rare trampoline costs and
hardware-accelerated memory protection makes LatticeBox
both performant and practical for building compartmentalized
systems. The binary size overhead for all WASM executables
targeting LatticeBox is under 1%, significantly less than the
5-10% overhead from bounds-checking instrumentation.

F. Apache Bench

We also evaluate the performance impact of isolating the
ipv6 kernel modules with LatticeBox using ApacheBench.
Specifically, we use ApacheBench to retrieve files of sizes
100KB, 1MB, and 10MB. Each file is requested 1,000 times,
and the data transfer rate is recorded. To reduce variability,
each experiment is repeated 10 times and averaged. We test
with (1) the base kernel with IPv6 support, and (2) the
LatticeBox support kernel with the IPv6 module isolated into
a lattice box. The results of isolated module normalized to the
base kernel are shown in Figure 5, along with comparisons to
BULKHEAD and HAKC.

LatticeBox achieves 97.1%, 97.3%, and 97.7% of baseline
performance on file sizes of 100KB, 1MB, and 10MB, re-
spectively. These results are comparable to BULKHEAD and

TABLE II: The micro-benchmark test results of LatticeBox and comparison with related works.

Latency in Cycles (Round Trip) Platform
Permission Switch Stack Switch Full Context Switch ~ Register Clear Processor oS Method
ERIM 99 / / / Xeon Gold 6142 Linux v4.9 Fabricated
Donky / 2136 / / Rocket Linux v5.1 FPGA
Donky / 428 / / Xeon 8275CL Linux v5.3 Fabricated
XPC 41 66* 162* / Rocket seL4 FPGA
SecureCells 16 / / / Rocket sel.4 QEMU/FPGA
BULKHEAD 408%* 447* / / Intel Core i7-12700H Linux v6.1 Fabricated
LatticeBox 1 39 82 94 BOOM Linux v6.1 FPGA
*: Obtained via double the provided single trip latency
] I 1 wasm-boundcheck
30]] EEE wasm-lattice
25
g
o
E 20 —
2
o 15
g
c
©
E 10
£
E [L
a5
. [] i l m
- L] ks % 5} o € © T S
g £ £ £ 5 2 § 2 g
Q o o £ o 5 Q T €
o § = < @ 3 < 2 @
N 3 2 < g 3 5 g
S
<

Fig. 4: Relative runtime overhead of LatticeBox on SPEC CINT2006

Method

LatticeBox Bulkhead . HAKC

1.2

0.977 0.986 0.980

T I
1MB

Fig. 5: Normalized throughput of isolated IPv6 module (via
LatticeBox), compared with BULKHEAD and HAKC.

0.971 0.980 0.973 0.975

g
o
L

0.880

T I

100KB
File Size

0.800

Normalized Transmit Rate
o o o
S~ o (o<}

I
N

0.0

T
10KB

significantly outperform HAKC. In theory, LatticeBox should
provide even better performance than BULKHEAD due to its
lower-latency domain transitions and avoidance of page faults
during memory sharing. The slight performance gap may stem
from platform differences or implementation details.

12

Regardless, LatticeBox offers significantly stronger security
guarantees. BULKHEAD focuses primarily on preventing sim-
ple memory read/write violations and assumes that attackers
cannot control registers or execute arbitrary code. In contrast,
LatticeBox adopts a much stronger threat model, defending
even against attackers who achieve arbitrary code execution
within an isolated kernel module. It enforces strict hardware-
level boundaries, ensuring that critical parts of the kernel
remain protected regardless of compromises within isolated
components.

VIII. RELATED WORK
A. Software Fault Isolation

Software Fault Isolation (SFI) is a software-based isolation
technique initially proposed by Wahbe et al. [11]. It inserts
dynamic safety checks to prevent untrusted code from ac-
cessing memory beyond a designated sandbox region. While
this approach avoids the need for hardware modifications or
specialised OS support, it suffers from several critical limita-
tions. First, the injected checks slow programs; even highly
optimized deployments such as Google Native Client report
slowdowns between 5-20% on SPEC workloads [34]. Second,
most SFI implementations rely on masking each address with a

fixed base and size [12], [35], which confines every sandbox to
a power-of-two memory region. This constraint wastes address
space and is especially restrictive on 32-bit systems. Third, SFI
guards are not fool-proof. Real-world exploits against Native
Client and the Chrome V8 sandbox have used corner-case
instruction sequences and compiler omissions to bypass the
checks and escape the sandbox [36], [37].

B. Intel MPK Improvements

As discussed, Intel Memory Protection Keys (MPK) face
inherent limitations in scalability, security, and performance.
Prior work has attempted to address these issues through
software and hardware extensions. To overcome MPK’s 4-key
hardware limit, systems such as libmpk [13] and VDom [16]
introduce a virtual key mechanism to map more memory do-
mains in software. EPK [15] and BULKHEAD [18] use paging
as the second isolation layer. Regarding security, ERIM [38]
mitigates the requirement of CFI by introducing call gates to
enforce entry points, using the WRPKRU/RDPKRU instruction
pair—which validate permission transitions at runtime. This
design has been widely adopted in subsequent work.

While these approaches improve scalability or security, they
inevitably introduce more overheads, degrading performance.
Fundamental optimizations remain impossible without hard-
ware modifications. Donky [17] proposes a hardware redesign,
extending the key bitwidth to 10 bits. However, it can hold at
most 4 keys at any given time. When the accessed key is not
loaded, the system needs to trap and fetch the required key
value from protected memory, introducing a significant miss
penalty. Although Donky introduces a monitor state to manage
PKRU updates, which achieves good security. But it comes at
a cost, trap is less performant than jump as it is hard to predict
in execution, hampering high-performance processors.

C. Isolation based on other Existing Hardware Primitives

Several recent systems retrofit existing hardware security
primitives to enforce intra-process isolation. SEIMI [39],
PANIC [40], and CETIS [41] repurpose widely available
CPU features such as Supervisor Mode Access Prevention
(SMAP), Privileged Access Never (PAN), and Intel Control-
flow Enforcement Technology (CET). Although these solu-
tions achieve low runtime overhead by cleverly repurposing
existing hardware features, their effectiveness is inherently
limited by the granularity and semantics of the original mech-
anisms; thus, they cannot support arbitrary isolation policies or
provide comprehensive memory protection without additional
performance or complexity trade-offs.

Other work has explored combining existing hardware prim-
itives with software-level techniques to strengthen isolation
guarantees. HIVE [42] employs ARM Pointer Authentication
(PA) instructions to sandbox eBPF programs within the Linux
kernel, reducing privilege by embedding authentication codes
directly into kernel pointers. HAKCs [29] implement a two-
layer isolation scheme by encoding capability-like tokens into
pointer metadata, using these tokens to validate each memory
access efficiently. While these approaches improve isolation

13

without requiring dedicated hardware modifications, they in-
troduce overhead proportional to the frequency of pointer
validations. In contrast, LatticeBox significantly reduces run-
time overhead while maintaining strong security guarantees,
overcoming the granularity and efficiency limitations inherent
in prior hardware-primitive-based isolation solutions.

D. Hardware-Software Co-design Approaches

Recent isolation frameworks are increasingly leveraging
hardware-software co-design to achieve security and perfor-
mance. CODOMs [43] introduces hardware-supported, code-
centric memory domains that bind permissions directly to code
segments rather than processes. Each domain is associated
with code boundaries, with permissions being enforced by
custom hardware logic to ensure that memory operations can
only access permitted regions. Similarly, SecureCells [30]
proposes a compartmentalised architecture that uses hardware
extensions to enforce strong isolation between compartments
at memory granularity. SecureCells achieves this by asso-
ciating separate hardware-enforced permission tables with
each compartment, effectively preventing unauthorised cross-
compartment access.

Another notable example of hardware-software co-design
is XPC [44], which specifically targets efficient and secure
inter-process communication (IPC). XPC introduces dedicated
hardware support that facilitates rapid context switching and
zero-copy message passing between isolated processes without
kernel intervention. At its core, XPC introduces ’relay-seg”,
which are special memory segments that are mapped directly
to physical memory for inter-process message transfers. This
design substantially reduces the overhead associated with
traditional IPC mechanisms involving kernel mediation and
data copying, achieving significant performance improvements
for cross-domain communication.

Although these co-designed hardware-software systems sig-
nificantly advance isolation technology, each approach in-
troduces non-trivial hardware modifications and increased
complexity. CODOMs and SecureCells require customised
permission-checking hardware and extended memory manage-
ment structures. Similarly, XPC relies on specialised memory
mappings and additional hardware logic to manage mes-
sage passing and context switches. LatticeBox also follows
a hardware-software co-design philosophy, but its footprint
is deliberately modest. It minimises architectural complexity
and hardware changes by leveraging compact, lattice-based
permission labels that are embedded directly within standard
page-table entries. This enables LatticeBox to provide scal-
able, low-overhead isolation while striking a balance between
hardware simplicity and strong security guarantees.

E. Isolation Beyond Memory

Recent studies have explored isolation mechanisms
that extend beyond traditional memory protection. While
uSwitch [45] and ISA-grid [46] target resource-level and
instruction-level isolation, respectively, LatticeBox offers a
general, scalable memory-isolation framework that could be

integrated with such complementary isolation solutions to
provide holistic security guarantees across multiple system
dimensions.

IX. CONCLUSION

We have presented LatticeBox, a hardware-software co-
designed framework that introduces lattice-based access con-
trol into memory protection to address the limitations of exist-
ing isolation mechanisms. By representing access permissions
as hierarchical N-bit vectors and embedding them into page
table entries, LatticeBox enables fine-grained, scalable, and
secure compartmentalization with single-cycle privilege tran-
sitions and minimal hardware overhead. Our RISC-V imple-
mentation and evaluation on real-world workloads demonstrate
that LatticeBox achieves domain switching up to 180x faster
than Intel MPK, while supporting significantly more isolation
domains. LatticeBox offers a practical and robust foundation
for next-generation isolation in browsers, operating systems,
and secure runtimes.

ACKNOWLEDGMENT

We would like to thank the shepherd and anonymous
reviewers for their insightful comments and suggestions that
greatly improved the quality of this paper. This work was
supported by the National Natural Science Foundation of
China (No0.62502468, No.U24A20337), the Zhongguancun
Laboratory and the Joint Research Center for System Security
(JCSS), Tsinghua University (Institute for Network Sciences
and Cyberspace) - Science City (Guangzhou) Digital Technol-
ogy Group Co., Ltd.

REFERENCES

[1] A. Barth, C. Jackson, C. Reis, and the Google Chrome Team, “The secu-
rity architecture of the chromium browser,” Dec. 2008. [Online]. Avail-
able: https://seclab.stanford.edu/websec/chromium/chromium-security-
architecture.pdf

[2] “Security/Sandbox - MozillaWiki.” [Online]. Available:
https://wiki.mozilla.org/Security/Sandbox
[3] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm,

S. Lerner, H. Shacham,
grain isolation in the firefox renderer,” in
Security ~ Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 699-716. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/narayan
[4] J. Liedtke, “On micro-kernel construction,” SIGOPS Oper. Syst.
Rev., vol. 29, no. 5, p. 237-250, Dec. 1995. [Online]. Available:
https://doi.org/10.1145/224057.224075
G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “sel4: formal verification of an os kernel,”
in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, ser. SOSP "09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 207-220. [Online]. Available:
https://doi.org/10.1145/1629575.1629596
M. A. M. Vieira, M. S. Castanho, R. D. G. Pacifico, E. R. S. Santos,
E. P. M. C. Junior, and L. F. M. Vieira, “Fast packet processing
with ebpf and xdp: Concepts, code, challenges, and applications,”
ACM Comput. Surv., vol. 53, no. 1, Feb. 2020. [Online]. Available:
https://doi.org/10.1145/3371038
A. Agache, M. Brooker, A. lordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). Santa Clara, CA:
USENIX Association, Feb. 2020, pp. 419-434. [Online]. Available:
https://www.usenix.org/conference/nsdi20/presentation/agache

and D. Stefan, “Retrofitting fine

29th USENIX

[5]

[7]

14

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]

Y. Li, A. Bhattacharyya, M. Kumar, A. Bhattacharjee, Y. Etsion,
B. Falsafi, S. Kashyap, and M. Payer, “Single-address-space faas with
jord,” in Proceedings of the 52nd Annual International Symposium
on Computer Architecture, ser. ISCA ’25. New York, NY, USA:
Association for Computing Machinery, 2025, p. 694-707. [Online].
Available: https://doi.org/10.1145/3695053.3731108

Intel Corporation, Intel® 64 and IA-32 Architectures Software
Developer’s Manual, 2024, volume 3A, Section 3.5: 64-Bit Mode. [On-
line]. Available: https://www.intel.com/content/www/us/en/architecture-
and-technology/64-ia-32-architectures-software-developer-manual-
325462.html

V. Narayanan, Y. Huang, G. Tan, T. Jaeger, and A. Burtsev, “Lightweight
kernel isolation with virtualization and vm functions,” in Proc. 16th
ACM SIGPLAN/SIGOPS Int. Conf. on Virtual Execution Environments
(VEE °20), 2020, pp. 157-171, table 1 shows page-table-switch
IPC costs 834 cycles even with tagged TLBs. [Online]. Available:
https://arkivm.github.io/publications/2020-vee-lvds.pdf

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Efficient software-based fault isolation,” SIGOPS Oper. Syst. Rev.,
vol. 27, no. 5, p. 203-216, Dec. 1993. [Online]. Available:
https://doi.org/10.1145/173668.168635

Z. Yedidia, “Lightweight fault isolation: Practical, efficient, and secure
software sandboxing,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ser. ASPLOS ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 649-665.
[Online]. Available: https://doi.org/10.1145/3620665.3640408

S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software
abstraction for intel memory protection keys (intel MPK),” in 2019
USENIX Annual Technical Conference (USENIX ATC 19). Renton,
WA: USENIX Association, Jul. 2019, pp. 241-254. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/park-soyeon

E. Connor, T. McDaniel, J. M. Smith, and M. Schuchard,
“PKU pitfalls: Attacks on PKU-based memory isolation systems,”
in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 1409-1426. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/connor
J. Gu, H. Li, W. Li, Y. Xia, and H. Chen, “EPK: Scalable
and efficient memory protection keys,” in 2022 USENIX
Annual Technical Conference (USENIX ATC 22). Carlsbad, CA:
USENIX Association, Jul. 2022, pp. 609-624. [Online]. Available:
https://www.usenix.org/conference/atc22/presentation/gu-jinyu

Z. Yuan, S. Hong, R. Chang, Y. Zhou, W. Shen, and K. Ren,
“Vdom: Fast and unlimited virtual domains on multiple architectures,”
in Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 2, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 905-919. [Online].
Available: https://doi.org/10.1145/3575693.3575735

D. Schrammel, S. Weiser, S. Steinegger, M. Schwarzl,
M. Schwarz, S. Mangard, and D. Gruss, “Donky: Domain
keys — efficient In-Process isolation for RISC-V and x86,”

in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 1677-1694. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/schrammel
Y. Guo, Z. Wang, W. Bai, Q. Zeng, and K. Lu, “BULKHEAD:
secure, scalable, and efficient kernel compartmentalization with
PKS,” in 32nd Annual Network and Distributed System
Security Symposium, NDSS 2025, San Diego, California, USA,
February 24-28, 2025. The Internet Society, 2025. [On-
line]. Available: https://www.ndss-symposium.org/ndss-paper/bulkhead-
secure-scalable-and-efficient-kernel-compartmentalization-with-pks/
saclo@, “V8 Sandbox - Hardware Support,”
https://docs.google.com/document/d/12MsaG6B YRB-
JQWNKZiuM3bY8X2B2cAsCMLLdgErvK4c/, February 2024.

R. Sandhu, “Lattice-based access control models,” Computer, vol. 26,
no. 11, pp. 9-19, 1993.

J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The
3rd generation berkeley out-of-order machine,” May 2020.

A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web up
to speed with webassembly,” SIGPLAN Not., vol. 52, no. 6, p. 185-200,
Jun. 2017. [Online]. Available: https://doi.org/10.1145/3140587.3062363

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

D. Lehmann, J. Kinder, and M. Pradel, “Everything old
is new again: Binary security of WebAssembly,” in 29th
USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 217-234. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann

“WebAssembly Core Specification.” [Online]. Available:
https://www.w3.org/TR/wasm-core-2/

A. S. Tanenbaum and H. Bos, Modern Operating Systems, 4th ed. Pear-
son, 2015, chapter 2 “Operating-System Structures” discusses mono-
lithic and microkernel designs.

G. Heiser and K. Elphinstone, “L4 microkernels: The lessons from 20
years of research and deployment,” ACM Transactions on Computer
Systems, vol. 34, no. 1, pp. 1:1-1:29, 2016, §4 compares IPC latency
to Linux syscalls in high-throughput workloads.

R. S. Sandhu, “Lattice-based access control models,” IEEE Computer,
vol. 26, no. 11, pp. 9-19, Nov. 1993.

D. E. Denning, “A Lattice Model of Secure Information Flow,”
in Proceedings of the Fifth ACM Symposium on Operating
Systems Principles, Nov. 1976, pp. 236-243. [Online]. Available:
http://faculty.nps.edu/dedennin/publications/lattice76.pdf

D. P. McKee, Y. Giannaris, C. Ortega, H. E. Shrobe, M. Payer,
H. Okhravi, and N. Burow, “Preventing kernel hacks with hakcs.” in
NDSS. The Internet Society, 2022.

A. Bhattacharyya, F. Hofhammer, Y. Li, S. Gupta, A. Sanchez, B. Falsafi,
and M. Payer, “Securecells: A secure compartmentalized architecture,”
in 2023 IEEE Symposium on Security and Privacy (SP), 2023, pp. 2921-
2939.

S. Narayan, T. Garfinkel, M. Taram, J. Rudek, D. Moghimi,
E. Johnson, C. Fallin, A. Vahldiek-Oberwagner, M. LeMay, R. Sahita,
D. Tullsen, and D. Stefan, “Going beyond the limits of sfi:
Flexible and secure hardware-assisted in-process isolation with hfi,”
in Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 3, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 266-281. [Online].
Available: https://doi.org/10.1145/3582016.3582023

D. Adak, H. Zhou, E. Rotenberg, and A. Awad, “Specmpk: Efficient
in-process isolation with speculative and secure permission update in-
struction,” in 2025 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2025, pp. 394-408.

A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt,
J. Wright, J. Zhao, Y. S. Shao, K. Asanovi¢, and B. Nikoli¢, “Chipyard:
Integrated design, simulation, and implementation framework for custom
socs,” IEEE Micro, vol. 40, no. 4, pp. 10-21, 2020.

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox
for portable, untrusted x86 native code,” in 30th IEEE Symposium on
Security and Privacy (SP 2009), 17-20 May 2009, Oakland, California,
USA. IEEE Computer Society, 2009, pp. 79-93. [Online]. Available:
https://doi.org/10.1109/SP.2009.25

V8 Developers. (2024, Apr.) The V8 Sandbox. [Online]. Available:
https://v8.dev/blog/sandbox

G. P Zero, “CVE-2021-30551: V8 sandbox
https://googleprojectzero.github.io/Odays-in-the-wild/Oday-
RCAs/2021/CVE-2021-30551.html, 2021, accessed 3 Aug. 2025.
“cve-2011-3020,” https://nvd.nist.gov/vuln/detail/cve-2011-3020, 2011.
A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “ERIM: Secure, efficient in-process
isolation with protection keys (MPK),” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA:
USENIX Association, Aug. 2019, pp. 1221-1238. [Online]. Available:

escape,”’

https://www.usenix.org/conference/usenixsecurity 19/presentation/vahldiek-

oberwagner

Z. Wang, C. Wu, M. Xie, Y. Zhang, K. Lu, X. Zhang, Y. Lai, Y. Kang,
and M. Yang, “Seimi: Efficient and secure smap-enabled intra-process
memory isolation,” in 2020 IEEE Symposium on Security and Privacy
(SP), 2020, pp. 592-607.

J. Xu, M. Xie, C. Wu, Y. Zhang, Q. Li, X. Huang, Y. Lai, Y. Kang,
W. Wang, Q. Wei, and Z. Wang, “Panic: Pan-assisted intra-process
memory isolation on arm,” in Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
919-933. [Online]. Available: https://doi.org/10.1145/3576915.3623206

15

[41]

[42]

[43]

[44]

[45]

[46]

M. Xie, C. Wu, Y. Zhang, J. Xu, Y. Lai, Y. Kang, W. Wang,
and Z. Wang, “Cetis: Retrofitting intel cet for generic and
efficient intra-process memory isolation,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 2989-3002. [Online]. Available:
https://doi.org/10.1145/3548606.3559344

P. Zhang, C. Wu, X. Meng, Y. Zhang, M. Peng, S. Zhang, B. Hu,
M. Xie, Y. Lai, Y. Kang, and Z. Wang, “HIVE: A hardware-assisted
isolated execution environment for eBPF on AArch64,” in 33rd
USENIX Security Symposium (USENIX Security 24). Philadelphia,
PA: USENIX Association, Aug. 2024, pp. 163—180. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity24/presentation/zhang-
peihua

L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and M. Valero,
“Codoms: protecting software with code-centric memory domains,” in
Proceeding of the 41st Annual International Symposium on Computer
Architecture, ser. ISCA "14. 1EEE Press, 2014, p. 469—480.

D. Du, Z. Hua, Y. Xia, B. Zang, and H. Chen, “Xpc: Architectural sup-
port for secure and efficient cross process call,” in 2019 ACM/IEEE 46th
Annual International Symposium on Computer Architecture (ISCA),
2019, pp. 671-684.

D. Peng, C. Liu, T. Palit, P. Fonseca, A. Vahldiek-Oberwagner, and
M. Vij, “uSwitch: Fast Kernel Context Isolation with Implicit Context
Switches,” in 2023 IEEE Symposium on Security and Privacy (SP),
2023, pp. 2956-2973.

S. Fan, Z. Hua, Y. Xia, H. Chen, and B. Zang, “ISA-Grid:
Architecture of Fine-grained Privilege Control for Instructions and
Registers,” in Proceedings of the 50th Annual International Symposium
on Computer Architecture, ser. ISCA ’23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589050

