RoundRole: Unlocking the Efficiency of Multi-party
Computation with Bandwidth-aware Execution

Xiaoyu Fan*$, Kun Chenf, Jiping Yu*, Xin Liu*, Yunyi Chen*, Wei Xu*$
*Tsinghua University, §Shanghai Qi Zhi Institute, TAnt Group
{fanxy98, weixu} @mail.tsinghua.edu.cn, ck413941@antgroup.com
{yjp19, cyy23}@mails.tsinghua.edu.cn, liuxin19 @tsinghua.org.cn

Abstract—In privacy-preserving distributed computation sys-
tems like secure multi-party computation (MPC), cross-party
communication is the primary bottleneck. Over the past two
decades, numerous remarkable protocols have been proposed
to reduce the overall communication complexity, substantially
narrowing the gap between MPC and plaintext computations.
However, these advances often overlook a crucial aspect: the
asymmetric communication pattern. This imbalance results in sig-
nificant bandwidth wastage, thereby “locking” the performance.

In this paper, we propose RoundRole, a bandwidth-aware
execution optimization for secret-sharing MPC. The key idea is to
decouple the logical roles, which determine the communication
patterns, from the physical nodes, which determine the band-
width. By partitioning the overall protocol into parallel tasks
and strategically mapping each logical role to a physical node
for each task, RoundRole effectively allocates the communication
workload in accordance with the inherent protocol communi-
cation volume and the physical bandwidth. This execution-level
optimization fully leverages network resources and ‘“unlocks” the
efficiency. We integrate RoundRole on top of ABY3, one of the
widely used open-source MPC frameworks. Extensive evaluations
across nine protocols under six diverse network settings (with
homogeneous and heterogeneous bandwidths) demonstrate signif-
icant performance improvements, achieving up to 7.1x speedups.

I. INTRODUCTION

Secure Multi-party Computation (MPC) enables multiple
parties to jointly compute functions over their private inputs
while revealing only the final output. This capability has
made MPC increasingly relevant for privacy-preserving data
analysis. Applications include collaborative data analytics [/1]—
[3]], machine learning [4]—[7]], and graph analysis [[8]—[[10]. One
popular MPC scheme is secret sharing (SS) [11], which splits
data into random shares that reveal nothing individually but
can reconstruct the original data when combined. Building
upon secret sharing, joint parties can execute a series of
MPC protocols like addition, multiplication, and comparisons,
thereby enabling the computation of arbitrary functions and
achieving “general-purpose” MPC [12]-[14].

Because these protocols are executed interactively over
a network, their performance is limited by the cross-party

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240052
www.ndss-symposium.org

P,

!
Py
Fig. 1: Communication Pattern of Fixed-point Multiplication
Protocol (ABY3 [13]).

l

communications. To solve this problem, many researchers
focus on reducing the communication complexities of SS
protocols, either by reducing the communication rounds or
the amount. Representative reductions include faster matrix
multiplication [13]], [15]], [16], sort [[17], [18]], constant-round
shuffle (8], oblivious RAM (ORAM) [19]-[22] and binary
search [23]] with less communications. All of these protocols
have achieved significant improvements in communication
complexity, making MPC more practical.

However, these optimizations overlook another crucial as-
pect: bandwidth utilization during execution. In fact, we found
that the bandwidth utilization of many state-of-the-art pro-
tocols remains low because they exhibit highly asymmetric
communication, i.e., the communication requirements of dif-
ferent parties vary vastly. For example, Figure [I] shows the
communication pattern of ABY3 [13] fixed-point multipli-
cation protocol with three parties, Pi, P>, and P;. P; and
P, need to receive data from both P»/P; and Ps, while P
receives nothing but needs to send data to both P, and P,. The
asymmetry “locks” the efficiency in two ways: (1) It causes
contentions on receiving bandwidth of P;, P,, and sending
bandwidth of Ps. The slowest party bottlenecks the speed of
the entire protocol. (2) It fails to fully utilize the full-duplex
(both sending and receiving) network that widely exists today,
wasting up to 33% of the bandwidth.

The fundamental reason for asymmetric communication
is that the main focus of protocol design is to reduce the
communication complexity, i.e., the number of rounds and
amounts [8], [13], [20]—rather than achieving symmetric
communication. Section |[Ilf shows more examples of protocols
with state-of-the-art complexity but significant asymmetric
communication. In fact, designing protocols that also ensure
symmetric communication workloads among the parties is a
challenging task. Harth-Kitzerow et al. [|[16] address this by

—— Send Recv

N; (100.0 Mbps) N, (100.0 Mbps) N3 (100.0 Mbps)

100%

— 1 1
g i l
2 50%
&\0,5 I } [
c | 1 |
o 0% !
=
T 100% . . ,
N] [" !
S N R e
S9 Lk i | TR bk !
S] \ T 1
% sowi| | pax| | T hax :'" ”Ihil_zlx
g | : 1 ‘ i
0% ! I :
0 1000 2000 0 1000 2000 0 1000 2000

Time Stamps (sec)
Fig. 2: Communication Traces of Fixed-point Multiplication
Protocol (ABY3) without / with RoundRole.

designing specialized multiplication protocols to achieve high
bandwidth utilization.

On the other hand, an essential optimization in secret
sharing MPC is to use vectorized execution to amortize the
communication latency and thus improve protocol throughput.
When the vector gets large, a natural optimization is to
chop up the vector into smaller blocks and process them in
multiple parallel tasks [12]], [24]. These vectorized and data-
parallelism optimizations are prevalent in practice. Nearly all
MPC frameworks and applications adopt these optimizations
to achieve better performance [8[], [10], [[12], [13[], [23], [25]-
[27]. However, the asymmetric communication limits the gain
of parallelization. The top three plots in Figure [2] show the
network utilization of the three parties, each on a separate
node, running the vectorized and parallel ABY3 fixed-point
multiplication protocol above. We can observe that the sending
bandwidth of P; and P, is half utilized, limited by their
receiving bandwidth, while the receiving bandwidth of Pj
remains completely idle.

To address the above problem, we propose RoundRole, a
simple yet effective bandwidth-aware optimization to improve
the existing protocols with asymmetric communication and
thus “unlock” the full potential of parallelism on these proto-
cols. The key idea of RoundRole is accepting the communica-
tion asymmetry at the protocol level and trying to balance it by
carefully mapping the parallel tasks on different computation
nodes. In other words, we decouple the logical roles, whose
communication pattern is determined by the protocol, from the
physical nodes, whose network utilization determines the per-
formance. This protocol-agnostic, execution-level optimization
can be applied to any secret-sharing MPC protocol, thereby
effectively utilizing the bandwidth of physical nodes without
the need for new protocol designs as shown in [16].

As a concrete example, consider the multiplication above
using a data parallel degree of 3. We partition the input vector
of length [into three subvectors of size é, and process them
in three parallel tasks. For the three tasks, we assign the
logical MPC parties to the nodes using cyclic permutations:
Py, P, and P3;; P3, P, and P,; as well as P, P3 and
P, respectively. The benefit of this simple optimization is

apparent: although communication requirements of the three
parties are still uneven (determined by the protocol), the traffic
from the physical nodes evens out, leading to much better
utilization, as Figure [2] shows. We are free to permute roles
because, in most secret-sharing—based protocols [13[], [16],
[25]], [28]], each node holds a share of the entire input and
can therefore act as any logical party.

As a further step, RoundRole generalizes the above example
to automatically compute the optimal task splits and assign-
ments for any secret sharing protocol and network setting with
negligible overhead, even if the bandwidths are heterogeneous.
First, RoundRole profiles the protocol once to characterize its
communication pattern, i.e., the amount sent and received per
unit input for each logical party, which is independent of the
underlying network. Then, given the available bandwidths of
the nodes, it solves a tailored linear programming problem to
compute an optimal workload allocation ratio that balances
the communication workload across the physical nodes. Once
the inputs are provided, RoundRole directly partitions the input
vector into multiple subvectors and assigns each a proper
logical-to-physical mapping according to the optimal ratios,
thereby improving the bandwidth utilization (Section [V).

We implement and integrate RoundRoIeE] on the widely
used open-source ABY3 [[13[], MOTION [25] MPC frame-
work, and [16] as concrete examples. We evaluate it across
six homogeneous and heterogeneous network settings with
bandwidths varying from 100 Mbps to 10 Gbps, using nine
comprehensive and commonly-used MPC protocols and ap-
plications with different communication patterns. Section
shows that RoundRole can significantly improve the overall
bandwidth utilization to almost 100% and thereby substantially
improve the execution efficiency. Across all the 54 test cases,
RoundRole achieves an average speedup of 1.7x and up
to 7.1x. Also, the overhead introduced by the automatic
optimization is negligible, demonstrating the practical viability
of our approach.

In summary, our contributions include:

(1) We observe the asymmetric communication patterns
in secret-sharing MPC protocols, which lead to substantial
bandwidth wastage and suboptimal performance.

(2) We propose RoundRole, an automatic bandwidth-aware
optimization method for secret-sharing MPC. By decoupling
a protocol’s fixed logical roles from the physical nodes,
RoundRole effectively balances asymmetric communication,
fully leverages available bandwidth, and accelerates execution.

(3) We integrate RoundRole on real-world MPC frameworks
and conduct comprehensive evaluations on both homogeneous
and heterogeneous network settings. Our results show that
RoundRole can significantly improve the overall bandwidth
utilization and the end-to-end performance of MPC protocols.

II. MPC BACKGROUND

Secure Multi-party Computation (MPC) allows distrusting
parties to compute a function on their private inputs.

IThe code is available at |ttps://github.com/Fannxy/RoundRole-Scheduling

https://github.com/Fannxy/RoundRole-Scheduling

Secret sharing [29] is a fundamental technique in MPC, based
on which many secure applications are built [3]], [8]], [10],
[30]. Typically, for n computation parties, SS splits the input
into n shares and allocates the shares to parties, satisfying
that any ¢ parties can reconstruct the input while fewer parties
learn nothing. The above is known as the (¢, n)-secret sharing
scheme. ABY3 employs (2, 3)-SS, where data x is split into
three shares, x1, z9, z3, such that © = 1 + z2 + x5 mod 2*
(Arithmetic shares), x = x1 D x2 @ x3 (Boolean shares) or 3-
party Yao’s garbled circuit shares. Each party cyclically holds
two shares, ensuring that any two parties can reconstruct z,
while any single party remains uninformed. We denote the A-,
B- and Y-shares of x as [z]*4, [#]® and [z]", respectively.
When the specific sharing type is not important, we use [z].
With secret shares [z] and [y], the parties can collabora-
tively compute the shares of the result [z] for a variety of
operations (op) using MPC protocols (OP), e.g., XOR, AND,
OR, +, X, comparisons(>, >, =) and transformations between
the [2]* and [«]® [13], [14]. The protocols guarantee both
correctness, i.e., for z = op(x,y), [2] = OP([z],[y]), and
privacy, i.e., any parties learn nothing about the secret inputs.
During protocol execution, the parties only see random shares
of the inputs. All the intermediate communication values are
random in their view. Therefore, it is safe to decouple the
logical “parties” from the physical computation nodes.
Outsourcing computation model. Secret-sharing protocols
are frequently deployed in outsourcing scenarios where secure
computation is “outsourced” to a small set of third-party
servers. In these settings, data owners locally split their inputs
into shares and send the shares to the servers that execute the
MPC protocols and return result shares to a designated party
for reconstruction [[1], [3[I, [8]1-[10], [13], [31]. During the
process, the servers only see random shares and learn nothing
about the privacy of the data owners. The outsourcing scenar-
ios are broadly adopted by real-world applications, e.g., secure
databases [1]], [3]], graph analysis [8[]-[|10]], and secure machine
learning [13]], [31]. Because the servers execute an interactive
protocol over a network, end-to-end efficiency is largely con-
strained by communication efficiency, which includes both the
volume, the number of rounds, and the bandwidth utilization.
Vectorized execution. To improve the communication ef-
ficiency, current MPC applications often batch independent
secure operations over search-shared vectors rather than pro-
cessing individual scalars, thereby amortizing round complex-
ity. For instance, COMBINE [32] automatically combines
all the independent secure operations on secret-share scalars
into one operation on secret-share vectors, i.e., combining
! independent {OP([z;],[v:])}.¢ € {0,1,---1 — 1} into
vectorized operation OP([Z], [¢]), & = {z0,x1,...2;—1} and
¥ =1{%0,Y1,---Yi—1} This approach reduces the total number
of operations, thereby reducing the number of communication
rounds required by each OP from n - Rop to Rop, because
the parties can communicate the vectors of shares in a single
round. Rop denotes the required rounds of a single OP. In
this way, the communication overhead can be amortized over
multiple operations, significantly improving the performance.

Actually, all the current MPC frameworks and applications use
vectorized execution, including [12], [13], [25], [301], [32].

III. MOTIVATION AND ASYMMETRIC COMMUNICATION
PATTERNS IN MPC

Over the past two decades, numerous innovative MPC
protocols have been proposed, leading to the realization of
what is now referred to as “general-purpose” MPC. However,
as previously noted in Section I} several of these fundamental
protocols introduce asymmetric communication patterns, re-
sulting in inefficient utilization of communication bandwidth.
Oblivious Transfer (OT). In MPC, OT is a fundamental
primitive that typically presents asymmetric communication
patterns. Its functionality is to enable a receiver to selectively
receive messages from a sender who owns a set of messages.
The key property of OT is that the sender cannot know
which message the receiver wants, and the receiver learns
nothing about the messages they did not request [33]. OT
forms the foundation of numerous protocols, including private
set intersection (PSI) [34]-[36], private information retrieval
(PIR) [37], [38]], and many general-purpose building blocks
like boolean to arithmetic share conversion (B2A) [13]], [25].

Typically, OT involves three steps: (1) the receiver securely
sends its target key (i.e., which messages to request) to the
sender; (2) the sender encrypts all the messages using the
key and sends all the encrypted messages to the receiver; and
(3) the receiver decrypts the target messages. This process
results in a highly asymmetric communication pattern, as the
sender must transmit all messages, while the receiver only
sends the target key. Consequently, many protocols that rely
on OT inherently exhibit asymmetric communication patterns.
Although traditional OT is a two-party protocol, it can be
extended to a multi-party setting by appropriately assigning
the roles of sender and receiver [[13]].

Example protocols. We identify six representative asymmet-
ric communicating protocols based on (2,3)-secret-sharing
scheme, one of the most typical and efficient schemes:

(1) F-Mul (fixed-point multiplication) [13|] performs mul-
tiplications of two fixed-point secret numbers, a common
representation for real numbers in MPC (representing float
or double as integers with fixed decimal points). F-Mul is
fundamental in MPC and is widely used in many secure
learning algorithms [4]], [27]], [39]. The communication pattern
of F-Mul is illustrated in Section [IL

(2) AB-Mul (arithmetic and boolean shares multiplica-
tion) [13] operates on mixed shares (i.e., [2]*[y]?). This
protocol is typically used in if-else or ternary operations
in MPC. For instance, one may need to select between the
arithmetic shared values [z;]* and [x3]* based on a secret
comparison result, i.e., [¢]Z, which is a boolean shared value.
Specifically, we can select the larger value between [[J:lﬂA and
[z2]# by computing [res]* = [z1]4 [c]® + [z2]? [~c]®,
where [c]? = [21]* > [z2]*. This protocol is widely used
in numerous fields. The communication pattern of AB-Mul is
shown in Figure 3a which leverages the 3PC OT protocol [13].
In the beginning, only P> receives data from both P; and Ps,

(a) AB-Mul (b) A2B

(c) B2A

P,— @ P,
P, P,
P 3 P, 3

(d) Shuffle (e) T-Mul

Fig. 3: Communication Patterns of Basic Protocols (for F-Mul, see Figure

making its receiving bandwidth the bottleneck. Subsequently,
only P, transmits [elements to Ps, further contributing to the
asymmetric communication workload.

(3) and (4) A2B (arithmetic to boolean conversion) and
its reverse, B2A. The A2B protocol converts the arithmetic
shares into boolean shares, i.e., [z]® = A2B ([z]*), which
can be used to accelerate computations that rely heavily
on boolean operations like sorting. B2A, on the other hand,
converts boolean shares into arithmetic shares, i.e., [z]* =
B2A ([x]?). B2A is widely used in secure aggregation and
summation. These two conversions are fundamental in many
MPC applications, especially in secure databases [1], [27],
[40]. Their communication patterns are shown in Figures [3b|
and respectively. B2A is similar to AB-Mul, since it also
relies on 3PC OT protocol [13]]. A2B is relatively simple, and
its communication pattern is relatively more balanced; the only
asymmetric part is the one-way communication from P; to P,
in the beginning of the protocol.

(5) Shuffle 8] is the state-of-the-art 3PC semi-honest shuffle
protocol that randomly permutes the input secret-shared array
and outputs the shuffled result. Shuffle is widely used in
secure graph analysis [8]], [9]]. Figure 3d] shows the asymmetric
communication pattern: partyl only sends [/ elements at the
beginning and receives none, resulting in a workload that is
only 33.3% and 50% of those for P, and Ps, respectively.

(6) T-Mul (Trio multiplication) [16] is a highly unbalanced
protocol. As shown in Figure only P, and P; need to
exchange [elements, while P; does not send or receive any
data. This results in a communication workload of 0% for P;.

Similar to F-Mul discussed in Section [, all the above
protocols can benefit significantly through RoundRole. Other
protocols also include Y2A, B2A in 2PC MOTION and 4PC
Quad Multiplication in [[16]].

IV. OVERVIEW
A. Notations and Assumptions

We first introduce the notations and assumptions used in this
paper. We denote the MPC protocol with n parties as II, the
size of the input vector as [. There are n independent compu-
tation nodes carrying out the computation, each equipped with
a single full-duplex network interface card (NIC). We denote
the ¢th computation node as [V;, whose sending and receiving
bandwidth is B and B¢, respectively. Throughout this
paper, all “party” (F;) denotes the logical role defined by
the protocol, and all “node” (IV;) refers to the physical
computation node.

For each instance of executing the protocol IT with an input
vector of size [, we define it as a task T. Each T has an
associated one-to-one mapping 7 from [n] to [n], assigning
the logical roles to the physical nodes. E.g., # = (2,1,3)
means that the logical parties P», P;, and Ps are assigned to
the physical nodes Ny, Na, and N3. We denote the task with
mapping m as T11(l), and the wall-clock execution time as
t11(1). During the execution of task TX (), we denote the data
volume transmitted from party P; to P; as cg(l) i, € [n],
i # j, which is determined by the protocol. [n] denotes the
list [n] ={1,2,...n}.

Following the common assumption of MPC literature [41],
we assume that the communication constitutes the primary per-
formance bottleneck rather than computation. This assumption
is common because the joint parties are usually distributed
across different geographical locations, where the communi-
cation bandwidth is significantly lower than the computation
bandwidth. Additionally, we focus on sufficiently large inputs
[, where the transmission time dominates the communication
overhead rather than the latency. For simplicity, we omit the
superscript IT of notations like T (1), ¢, (1), and ¢; ;(I) in the
following when there is no ambiguity. When the mapping 7 is
not specified, we assume the mapping is the identity mapping,
ie, m=(1,2,...n).

B. Motivating Examples

We first clarify the goal of RoundRole and demonstrate its
effectiveness using a motivating example.

Consider the 3-party F-Mul protocol II, whose asymmetric
communication pattern is illustrated in Figure [I] If all nodes
have identical bandwidth, their bandwidth is clearly underuti-
lized. Specifically, the receiving bandwidth of the third node
(N3) remains idle, and the sending bandwidth of the first two
nodes (/N7 and N,) is approximately half utilized because the
sending rate is constrained by the receiving bandwidth of the
first two nodes. Figure [2] in Section [I[] shows the bandwidth
utilization of the three nodes.

RoundRole is designed to optimize the execution time
through improving the bandwidth utilization. Specifically, we
divide the input vector of size [into 3 equal parts, i.e., [; =
lo =13 = % and split the original task executing II into
three parallel tasks T17(17273)(é), T27(37172)(é) and T3 (2 3.1 (é)
The communication patterns for the three tasks are shown in
Figure 4] Clearly, this optimization evenly balances commu-
nication across the three physical nodes, thereby enabling full

Ty1,23) ()

Communication Diagram - of Each Task.

RN

T3231)(%)

~N

. o)~ o) ~
w X

\E/
/-

- Overall.

Fig. 4: Communication Pattern of F-Mul with RoundRole.

bandwidth utilization. The goal of RoundRole is to generalize
the above example.

C. Problem Definition

Formally, RoundRole aims to find the execution strat-
egy that minimizes the wall-clock execution time #(1)
for any vectorized secret-sharing protocol II. To achieve
this, we divide the overall task T'(I) into m parallel tasks
Ty ey o500y - -y Tn .,y » Where each task computes /; elements
with its logical role mapped to the physical nodes via the m
mappings 7y, w2, . . . Tp,. For simplicity, we directly denote the
task as T, (I;) for the ith task when there is no ambiguity.

Formally, the optimization problem is defined as follows:

minimize (1) = max{tl (I),th (I2), ..., th (In)}
+tnaggr(llvl2"”’lm) (1)
st Y L=,
i=1
where max{t}l (I1),t; (l2),...,t% (I,)} is the maximum

execution time among all parallel tasks, each of which
processes [; elements and shares the bandwidth. The term
tHeeer (11 1y, ..., 1,,) is the time to aggregate the results of each
task using the aggregation protocol Il,ge. For simplicity, we
use tP¥? and %8¢ to represent the two terms. Note that each
task T, (1;) executes the same protocol as I on a smaller input
of size I; < [, with the logical role rounded on the physical
nodes according to the mapping ;.

The objective of RoundRole is to solve this optimization
problem by determining: (1) the number of parallel tasks m;
(2) the input size I; for each task T, (I;); and (3) the mapping
m; for each task T, (l;), such that the overall execution time
(1) is minimized.

Without loss of generality, we assume the communication
complexity of the protocol II is linear to the input size [,
i.e., for each pair of logical parties, P; and P;, the communi-
cation volume c¢;;(l) can be approximated by ¢;;(I) = «j - [,
where «;; is a constant. This is a practical assumption that
holds for a wide range of MPC protocols. Specifically, all
the protocols in Section satisfy this requirement. For
protocols with higher communication complexity, e.g., sort,
we can split the protocol into multiple protocol units (shuffle,
comparison, and multiplications) and apply RoundRole to each
unit separately.

D. RoundRole Overview

RoundRole solves the above problem by generalizing the
motivating example in Section to achieve optimal per-
formance on any network topology for a given protocol II.

For n-party protocol, there are n! possible mappings
(i.e., full permutations) of the logical roles to the physical
nodes. In most MPC settings, n is moderate (often n = 2,3,
or 4) 8], [12]-[14], [20[], [21], [42]. For large n, we can adopt
the column generation technique [43] to efficiently find a near-
optimal solution without processing all n! mappings. The first
step of RoundRole is to determine the workload allocation
ratios across all possible mappings to minimize the maximum
transmission time on the underlying physical nodes, which
determines how to split the input size [for each mapping. This
optimal allocation ratio is formulated as a linear programming
problem, which can be solved efficiently. As a result, we obtain
n! ratios {rj,r3, - 77":1}72?;1 rf =1 for the n! mappings
{m1, T2, , T}, Where r} is the optimal ratio of the input
size assigned to tasks with the ith mapping 7; (Section [V-A).

Then, we determine the optimal task number m to minimize
the overall execution time t'(I). Each task is responsible for
computing % elements, and we assign the mapping to each
task according to the optimal allocation ratios obtained in the
first step. The selection of m requires careful consideration.
On the one hand, m must be sufficiently large to fully exploit
the physical network bandwidth, i.e., ensuring that enough
computation resources are used to generate to-be-transmitted
data quickly. On the other hand, m cannot be so large that the
aggregation time t*¢¥" becomes the bottleneck (Section [V-BJ.
Optimizing advanced applications. For advanced MPC ap-
plications/algorithms that are composed of multiple proto-
cols, we can optimize their performance by optimizing each
protocol unit separately. This separation offers the following
advantages: (1) The communication pattern of each protocol
unit varies, and it requires different scheduling strategies to
balance the communication workload. (2) Because the inputs
and outputs of each protocol unit are all secret shares, and
each share is randomly distributed among the logical parties,
switching the logical roles of each physical node can be
done by simply changing the roles with negligible overhead.
(3) Many MPC applications employ common protocol units,
e.g., multiplication, arith-to-boolean conversion, allowing us
to predefine and reuse the optimization strategies for these
units across different applications.

_[Protocoll’[(l’l”am’,ﬂaggr)] [Uscr givcn][Offline][Online]

l Profiling SV-A

Communication pattern
{a iSf—’mi‘ al®y; eln] Optimal workload
allocation ratio

7Y jemny

min tparal + ta99r
m

Inputs with size [

Modeling

RoundRole
Execution

—[Bandwidths {B{*"%, B]*“"}iepn)
Strategy

tparnl (ml l)
£a997 (m, 1)

Fig. 5: RoundRole Workflow

§V-B Stepl,2(1)

§V-B Step2(2),3

Security guarantee. RoundRole preserves the same security
guarantee as the original protocol II under the real-ideal
paradigm [44]], including all the adversary assumptions. In-
tuitively, RoundRole only reassigns the logical roles on the
physical nodes across independent tasks without modifying
any communication routines of II. Because the reassignment
is data-independent, the view of the adversary corrupting the
physical nodes has the same distribution as in an execution
with fixed role assignments. Formally, if there exists an
adversary corrupting at most ¢ physical nodes can distinguish
the RoundRole-optimized execution from its ideal counterpart
under the same adversary model as II, we can construct an ad-
versary that distinguishes the original protocol II from its ideal
execution, contradicting the security of II (see Appendix [A).
MPC-specific design. Conventional load-balancing methods
assume independent and flexible tasks without security con-
straints, therefore they cannot be directly applied in MPC.
RoundRole exploits three MPC characteristics to improve its
efficiency automatically: (1) profocol-fixed asymmetry in com-
munication that is non-trivial to symmetrize without protocol-
specific redesign; (2) flexible role-node mappings that permit
re-assignment of logical parties to physical nodes; and (3)
communication-dominated cost, where throughput improve-
ments directly translate to speedups. RoundRole exploits the
MPC-specific flexibility of mappings to balance bandwidth
across asymmetric protocols without changing the protocols.
Application scenarios. RoundRole is applicable in any setting
with asymmetric communication. However, it is particularly
effective in stable communication settings, such as the semi-
honest protocols listed in Section where execution paths
are fixed, and per-round traffic can be profiled and balanced to
“unlock” the underutilized bandwidth. In contrast, malicious-
security protocols often have numerous consistency checks,
making the latency the dominant bottleneck rather than band-
width utilization [42]. Consequently, RoundRole offers limited
benefits in such scenarios.

V. ROUNDROLE OPTIMIZATION

Figure [5] summarizes the workflow of RoundRole.

A. Optimal Workload Allocation Ratio

The goal in this stage is to minimize the maximum trans-
mission time executing II on the underlying network. We
achieve this in two steps: (1) we profile II to obtain its

communication pattern, i.e., the amount to be sent/received per
unit of input for each logical party. Therefore, for any logical-
to-physical mapping 7;, the per-node traffic is predictable;
(2) we formulate a linear programming problem over n!
workload allocation ratios, {r1,r,...,7m} (with r; > 0 and
> , 7 = 1), where r; is the fraction of the total inputs assigned
to mapping 7;. The objective is to minimize the maximum
transmission time, and the solution is the optimal workload
allocation ratio {r}}.
Characterizing the communication pattern of protocol II.
For each protocol II, we model its communication pattern as
n(n — 1) communication pairs, i.e., ¢;;(1),Vi,j € [n] and
i # j. Since the communication volume is linear to the
input size [, we can model the communication volume as
¢ij (1) = aj - I, where «y; is a constant factor characterizing
the unit data communication cost from P; to P;, which is
determined by the protocol II. We then use two sets of
communication coefficients, {o5™™};c,) and {aF}igpy), to
characterize the total communication volume of the ith logical
party in the sending and receiving directions, respectively.
Specifically, afnd = ;zfn] a;; and Y = ;éln] aji.
RoundRole uses a profiling method to estimate " and
o for each logical party F; in protocol II. In practice,
RoundRole automatically runs the protocol II with a set of
evenly spaced input sizes and records the communication
volume for each logical party in both sending and receiving
directions. Then, RoundRole applies the least squares method
to estimate the communication coefficients.
Optimal workload allocation problem. Given the commu-
nication coefficients {a{™};c(, and {a{*""};¢(,), We can es-
timate the communication volume of each logical party in the
sending and receiving directions given input size. Since there
are n! possible mappings of the logical roles to the physical
nodes, we define the optimal workload allocation problem
as finding the optimal input size ratios {r},r3,...,r%} for
all n! possible mappings {71, w2, ..., T}, with the objective
of minimizing the maximum transmission time across all the
physical nodes. Note that the transmission time is normalized

to the input size [. Formally, we define the problem as follows:

aral
thrans 2)
n!

send
st Y an
=1

minimize

send zparal —
'erBi 'ttrans7 2—1,2,...,7’1,

n!
recv recv pparal
§ :aﬂj(i) Ty SBz 'tlransv _]-727~ , 1,
Jj=1
n!
E r;=1, r; >0, j=12,...,nl,

j=1

. . 1 .
where another decision variable . represents the normalized

transmission time across all the physical nodes N;, i € [n]:

| C_send ey
thine = MAax 4 Max ———, Max —-— 3)
rans i€[n] B;end ’ i€[n] B’Eecv ’

where C5™ and CI*V are the normalized total transmission
volume of the physical node NN; (each node carries n! tasks,
each with one possible mapping) in the sending and receiving
directions, respectively. Specifically,

Csend Z Z Crp, ()i (g Z a:f:((iz Tk, (4)
k=1j5=1
n!l n

O;CCV = Z Z C‘n'k(j)‘n'k Z a{:}:v ()" Tk. (5)
k=1j=1

We can efficiently obtain the optimal ratios {r7, 75, ...
and 2 in Equation [2 I using the simplex algorithm.

b

B. Optimal Execution Strategy

The goal of the second stage is to find the optimal m par-
allel tasks minimizing the overall execution time. RoundRole
achieves this through the following steps:

Stepl: Deciding the m parallel tasks that can fully uti-
lize the physical bandwidth. For a given protocol II, we
assume that the bandwidth utilization is linear with the task
numbers m when the bandwidth is not saturated, i.e., less than
100%, which is a common assumption in practice with TCP
protocols [45]]. Since we mainly focus on cases where the
input size is large enough to make the transmission time the
bottleneck, we profile the maximum sending and receiving
bandwidth utilization u$*™ and 4" of a single task for a large
input size on each physwal node N;, i € [n]. Specifically,
for each mapping 7;,j € [n!], we concurrently launch a
task using an input size of 7} - L, where L is chosen to be
sufficiently large to ensure a stable transmission rate. We then
measure the stable sending and receiving bandwidth utilization
for each physical node N; as use“d and =¥ with n! concurrent
tasks. Then, we can obtain the average per task sendmg and
recelvmg bandw1dth utilization ™ = L 37" w3 and
ECCV — n' Z] : recv'

We can then 51mp1y obtain the task number m that can fully

utilize the physical bandwidth of the underlying network as:

1 1

m = max {?El[ai]{ uzend ’ {Iel[ag](U } : (6)
Step2: Reducing m to optimal m to avoid excessive
aggregation overhead. While m tasks make full use of the
bandwidth, too many tasks may lead to excessive aggregation
costs. Therefore, it is crucial to reduce the number of tasks
to balance transmission time and aggregation costs. This step
includes two sub-steps: (1) an offline, input-size-independent
modeling to approximate the parallel execution (tP*?') and ag-
gregation (¢%¢€") times; (2) an online computation to determine

the optimal m minimizing P+ #2¢given the real inputs.
(1) Offline modeling. Since the communication overhead is
the main bottleneck, we can simplify the parallel execution
time tP*¥as the maximum sending and receiving time of all
the physical nodes. The normalized transmission time, fp aral

trans

is obtained in Equation [3] of the first step (Section [V-A),

which is the ideal transmission time of the constrained link
without considering the bandwidth utilization. Assume u* is
the corresponding bandwidth utilization of the constrained
link, i.e., the argmax result in Equation E} We can then
approximate the practical parallel execution time P as

gparal . gpar al

trans

-l min(m - u*, 1), @)

where min(m - u*, 1) represents the bandwidth utilization
using m tasks.

The aggregation time ,4, is the time to aggregate the results
from all tasks. Without loss of generality, we assume the
aggregation procedure is performed in a binary tree structure,
where the results from m tasks are aggregated in pairs. The
user can also define other aggregation methods whenever
applicable. The aggregation time can be approximated as the
sum of the time taken for all the [log(m)] rounds of the
aggregations. Ignoring the variance among parallel tasks for
simplicity, the aggregation time can be approximated as:

[logy m] I tm
128 lager (90 . . {7—‘
; (m 12 ®)

~ [logy m]t" e (1),

We apply a profiling-based method to estimate the aggre-
gation cost t'e () for different input sizes I. Specifically,
we sequentially launch multiple pairs of tasks executing the
aggregation protocol II with a set of linearly spaced input
sizes, measure the execution time, and then apply the least
squares method to fit the execution time with a quadratic
polynomial function. For simplicity, all the aggregation tasks
are executed using the mapping with the highest optimal
allocation ratio, i.e., 7, 1" = argmax; ¢, (7).

(2) Online computation of optimal m. Given input size
I, we can efficiently determine the optimal task number m
minimizing tP*3 4 $3¢& by searching m € [1, min(m, Mmax)],
where mp,x is the maximum parallelism supported by all the
physical nodes.

Step3: Obtaining the optimal execution strategy for m
parallel tasks. Finally, we can obtain the optimal execution
strategy, minimizing the overall execution time #'I(1). We split
the input size [into m equal parts, ie., [; = %,i € [m],
and assign the mappings to m tasks according to the optimal
workload allocation ratios from Section [V-A] Specifically, we
allocate 7;,j € [n!] to 7} + m tasks, rounding to the nearest
integer when necessary.

Optimization cost and dynamic adaptation. The automatic
optimization includes two phases: (1) offline profiling to model
the protocol communications and the network; (2) online
phase to determine the optimal task number and execution
strategy given real inputs. Only the second sub-step in Step2
and Step3 require real-time computations, while all the other
profiling can be completed offline. Empirically, RoundRole
only requires milliseconds to configure the optimal tasks with
corresponding mappings, as shown in Section [VI-C] intro-
ducing negligible overhead during the online phase. Because
the allocation only depends on the network bandwidth and

TABLE I: Network Settings

Network Configurations ‘ N1 ‘ Ny ‘ N3
Homol | 100 Mbps | 100 Mbps | 100 Mbps

Homogeneous | Homo2 1 Gbps 1 Gbps 1 Gbps
Homo3 10 Gbps 10 Gbps 10 Gbps
Heterol 1 Gbps 2 Gbps 2 Gbps

Heterogeneous | Hetero2 1 Gbps 10 Gbps 10 Gbps
Hetero3 1 Gbps 4 Gbps 5 Gbps

the protocol communication pattern, RoundRole can adapt to
dynamic network conditions by tracing bandwidth changes and
rerunning the allocation accordingly when significant network
changes are detected without introducing extra profiling over-
head.

VI. EVALUATION

In this section, we evaluate the performance of RoundRole
on the protocols discussed in Section [lIl| and three real-world
algorithms. We want to answer the following questions:

1) How much execution time can RoundRole improve in
these protocols and algorithms?

2) How much bandwidth utilization can RoundRole im-
prove?

3) Does RoundRole automatically determine execution
strategies that provide efficient performance across var-
ious protocols, algorithms, and network settings with
negligible overhead?

A. Evaluation Setup

Implementation of RoundRole. We implement RoundRole
as a separate module that invokes the provided protocols for
profiling and execution. We integrate RoundRole on top of
ABY3 [13]], a widely used open-source MPC framework. No-
tably, using RoundRole is straightforward in practice, because
it only invokes the existing function interfaces in parallel, with
no modifications needed to the original protocol.

Testbeds. We employ six network settings with bandwidths
varying from 100 Mbps (WAN) to 10 Gbps (LAN). In order
to evaluate the performance of RoundRole across different
network settings, we consider both homogeneous (every node
has the same bandwidth) and heterogeneous settings (nodes
have different bandwidths). Table [l provides the detailed con-
figurations. Each node is equipped with 96 Intel(R) Xeon(R)
Gold 6330 CPU and 320 GB RAM. The networks are set up
using mininet [46]. By default, the network latency is set to
0.2ms unless otherwise specified.

Micro-benchmarks. We use all six basic protocols discussed
in Section as micro-benchmarks, including F-Mul, AB-Mul,
A2B, B2A, Shuffle, and T-Mul. Since Shuffle and T-Mul are not
provided in the ABY3 codebase, we implement them directly
following the original papers [8] and [16], respectively.
The other protocols are directly sourced from the ABY3
codebase [[13]] without any modifications.

Real-world algorithm benchmarks. To further validate
the practicality of RoundRole, we include three real-world
algorithms. We choose these algorithms not only because they

are widely utilized but also because they use a variety of MPC
operations that require diverse communication patterns. The
three algorithms include:

(1) The ORAM algorithm (specifically, Square-root
ORAM [19]) is a representative distributed ORAM that can
be implemented on any secret-sharing scheme. It incorporates
multiple Shuffle protocols that contribute to the asymmetric
communication patterns. We implement the ORAM algorithm
following [19] and replace its original Waksman shuffle with
the more efficient Shuffle protocol [8]].

(2) The sorting algorithm is implemented following Hamada
et al. [[17], which implements a secure quicksort that primar-
ily utilizes Shuffle, AB-Mul and greater-than comparisons.

(3) The Logistic Regression (LR) algorithm comes in the
ABY3 codebase [13]]. Each iteration of LR incorporates two
F-Mul operations and one B2A operation.

Evaluation methods and metrics. We measure the perfor-
mance of RoundRole using two metrics: (1) the makespan (i.e.,
end-to-end completion time of each protocol, measured by
wall-clock), and (2) the bandwidth utilization of each protocol
in order to evaluate the source of acceleration. To be succinct,
we report the utilization of the bottleneck node (i.e., the one
with the lowest bandwidth) in the heterogeneous settings.
While in the homogeneous settings, we report the average
utilization across all the nodes. For each measurement, we use
an input vector size of 1.4 billion 64-bit secret integers unless
otherwise specified. We use such a large input size to ensure
that the network operations are in a steady state, especially for
the 10 Gbps bandwidth (i.e., Homo3). Each protocol/algorithm
is run 5 times, and the average results are reported.
Baselines. We use the same implementations of the basic
protocols and the real-world algorithms without applying
RoundRole as baselines. Note that we allow these protocols to
use the same degree of data parallelism for a fair comparison.
The only difference between baseline and RoundRole is the
automatically defined mappings of logical roles to physical
nodes for each parallel task. For T-Mul, we also implement the
optimized high-throughput execution strategy following [16],
and use it as the T-Mul* baseline.

B. Micro-benchmark Results

In this section, we present the micro-benchmark results.
For most protocols, the aggregation cost is negligible because
it only concatenates outputs from each task, except for the
Shuffle protocol. To focus on optimizing the parallel execution
of asymmetric-communicating protocols, we omit the aggre-
gation cost of Shuffle in the main micro-benchmark results.
A complete end-to-end evaluation of Shuffle, including its
aggregation phase, is provided in Section
Homogeneous network settings. Figure[6|shows an overview
of the makespan comparison of the six basic protocols across
six network settings, with and without using RoundRole. First,
from the top row (homogeneous settings), we can see that:

(1) RoundRole significantly improves the makespan of all
the basic protocols across all the homogeneous network set-
tings. Specifically, RoundRole achieves 1.1x to 2.8 x speedups

Baseline

@& RoundRole

Homo2

EEE T-Mul™[16]

6000

4000

]
::1

2000

Ko gt

‘;w“\e 1“"“\

Heterol

Time (sec)

SO r,v\)“\e @;\\x\

Hetero2

;ﬂ-% g’LP‘ C)“\X(K\e ,(_‘I\O\

Hetero3

600

:

400

200

- o 5 - 0
P:&'N\“\ Pl% a’LP‘ 5‘(\“«\6 1&"“\ ?_g\\)\

e

l»“’”"\“\ p° b o o

600

B

400

200

o I N
e g B @b e

Fig. 6: Makespan Comparison of the Micro-benchmarks (Lower is better). (For the baseline methods on the heterogeneous settings, we
evaluate their performance on all the different n! logical-to-physical mappings and present the best, average, and worst records.)

in makespan, with an average speedup of 1.6x across all
protocols. We provide a more detailed analysis below.

(2) With all homogeneous network settings (top row),
RoundRole works best for AB-Mul, achieving up to 2.8X,
2.6x, and 2.1x speedups on Homol, Homo2, and Homo3,
respectively. The reason is that AB-Mul is highly imbalanced
in communication, where the receiving bandwidth for P;
and Ps, as well as the sending bandwidth of P, are mostly
underutilized during a large portion of the protocol execution.
Also, since both P; and P5 are sending data to P, the receiv-
ing bandwidth of P, becomes the bottleneck and therefore
constrains the sending rate of P, and Ps;, making these two
parties underutilized.

To empirically show this, we plot the bandwidth utilization
at different time points during the execution of AB-Mul in
Figure on Homol El We clearly observe that without
RoundRole, at least one sending/receiving bandwidth is idle
during the execution of AB-Mul. With RoundRole, the full
duplex bandwidths are almost 95+% utilized, resulting in a
significantly shorter makespan.

(3) In contrast, A2B has a much more balanced com-
munication pattern and thus RoundRole only improves its
performance by a small margin with a 1.1x speedup. From
Figure we can see that the original bandwidth utilization
is already high, except for a short phase where P; sends more
elements to P, (see Figure [7c|in Section [l for details). Even
in this case, RoundRole achieves improvement.

(4) While RoundRole achieves similar speedups for al-
most all protocols across different bandwidth settings, the
speedup of Shuffle gets lower with higher bandwidth. This
is because Shuffle uses many separate rounds of small-sized
communication that introduce a longer warm-up period on
higher-bandwidth networks. As a result of this fixed overhead,
RoundRole can only improve the performance by 1.3x on 10
Gbps (Homo3), while the improvement is as much as 2.6x
on 100 Mbps (Homol).

2We only include Homol here due to space limits. For other settings, see
Appendix [B]

Heterogeneous network settings. The bottom line of Fig-
ure [6] shows the makespan comparison on heterogeneous set-
tings. Since the baseline methods present varied performance
with different logical-to-physical mappings, we measure the
best, average, and worst wall-clock execution time of the
baselines across all the n! logical-to-physical mappings. We
can see:

(1) Baseline methods exhibit significant performance varia-
tion, especially for protocols with highly asymmetric commu-
nication patterns like AB-Mul and T-Mul. In Hetero2, the band-
width varies from 1 Gbps to 10 Gbps, and the makespan of
AB-Mul and T-Mul varies by 2.2x and 7.1 x, respectively. This
variation arises because the communication workload differs
across logical parties, and the performance is highly sensitive
to which party is mapped to which node. Consequently, these
asymmetric protocols require careful manual tuning to avoid
worst-case performance.

(2) In contrast, RoundRole consistently identifies the opti-
mal execution strategy and achieves an average speedup of
1.9% across all 36 baselines (6 protocols and 3! = 6 logical-
to-physical mappings). Also, by task splitting and fine-grained
workload allocation, RoundRole consistently performs better
than the best result for each protocol. On the most unbalanced
Hetero?2 setting, RoundRole achieves the best speedup of 7.1x
for T-Mul.

Comparison with the optimized T-Mul* baseline. Among all
the asymmetric basic protocols, T-Mul is designed to achieve
high throughput by Harth-Kitzerow et al. [[16]. Specifically,
as Section describes, T-Mul only involves two commu-
nications between a single pair of the parties, thereby, it
can be optimized manually to achieve high throughput by
simply letting the communication happen in every pair of the
parties. We also treat it as the T-Mul* baseline and compare
its performance with RoundRole in Figure [6] and Figure[8] We
can see that for this special protocol, RoundRole achieves the
same performance as the optimized result automatically.

Improvements on bandwidth utilization. As Figure [§] in-
dicates, RoundRole improves the overall performance by
increasing the bandwidth utilization of the basic protocols.

—— Send Recv

Ny (100.0 Mbps) N (100.0 Mbps) N3 (100.0 Mbps)

100%

1
[i
—~2 50% !
s |
<0 |
1
S 0% :
=
Eg 100% v
B o
-4
T 50% 1.4x 1.4x I “ l ||=1.4x
g i
0% ‘ .
0 1000 2000 0 1000 2000 O 1000 2000
Time Stamps (sec)
(a) F-Mul
100% N; (100.0 Mbps) N, (100.0 Mbps) N3 (100.0 Mbps)
]
‘©
s
—~5 50%
O\og’ O j‘.
<o
c
o 0% .
=1
E o 100% v
5o
Do
T 50% 1.1 1.1 1.1
3
o<
0% - !
0 2500 5000 0 2500 5000 0 2500 5000
Time Stamps (sec)
(c) A2B
100% N; (100.0 Mbps) N, (100.0 Mbps) N3 (100.0 Mbps)
(] [
[}
E :
2 50%
=
<o
C
o 0%
=
ﬁg 100% T T
=Ns]
Do
2 50% .6x 2.6X 2.6X
3
o
o L ! I
0% 0 2000 0 2000 0 2000
Time Stamps (sec)
(e) Shuffle

—— Send Recv

N; (100.0 Mbps) N, (100.0 Mbps) N3 (100.0 Mbps)

100% T
1
E i
—~2 50% !
XE !
-0 :
S 0% '
S
gﬂ 100%
=)
S
T 50% .8x .8x .8x
3
o 1
0% ! ! !
0 2500 5000 0 2500 5000 0 2500 5000
Time Stamps (sec)
(b) AB-Mul
N; (100.0 Mbps) N, (100.0 Mbps) N3 (100.0 Mbps)
100% - T - T - T
T ! ! !
9o o i i i
—_ 50% 1 1 1
O\Og 1 T L}
<o i i i
S 0% H H l
2
g o 100% T
o) I“
D
T 50% 1.5x iL.5x 1.5x
g !
0, 1
0% 0 2000 0 2000 0 2000
Time Stamps (sec)
(d) B2A
N; (100.0 Mbps) N, (100.0 Mbps) N3 (100.0 Mbps)
100% ; — T
g i ! i
—~% 50% i i i
85 : ! :
1 1 1
S 0% 1 1 H
2
Eg 100%
5o
Y4
T 50% 1.5x 1.5x i1.5x
E i
0% ! ‘ .
0 500 1000 O 500 1000 0 500 1000
Time Stamps (sec)
(f) T-Mul

Fig. 7: Communication Traces of the Micro-benchmark Protocols without / with RoundRole.

TABLE II: Workload Allocation Ratios on Heterol.

I All Mappings
1237132[213[231[312] 321
F-Mul 67% | 33%
AB-Mul | 67% 33%
A2B 100%
B2A 34% 66%
Shuffle | 87% | 9% 4%
TMul | 58% 21% 21%

Figure [§] shows the bandwidth utilization of all the basic
protocols with or without RoundRole on six network settings.
We have the following conclusions:

(1) In the first two homogeneous settings, the bandwidth
utilization is almost 100% except Shuffle on Homo2, for the

10

TABLE III: Optimization Overhead on Homol.

Overhead F-Mul | AB-Mul | A2B | B2A | Shuffle | T-Mul
Offline (sec) | 18.5 44.7 52.8 | 31.9 5.8 2.6
Online (ms) | 55.6 56.3 66.0 | 53.8 349 55.5

same reason above (i.e., the multiple rounds of small-sized
communication increase the warm-up period, especially for
networks with higher bandwidth. The empirical bandwidth
utilization figures are provided in Appendix [B).

(2) In the most constrained bandwidth setting, i.e., Homol,
which aligns with the most commonly adopted WAN setting
in MPC literature, RoundRole achieves an average of 100.0%
utilization across all the basic protocols, which is 34.3% higher
than the baseline methods. In Homo3, the average utilization

E==1 Baseline

Homol

@& RoundRole

Homo2

EEE T-Mul™[16]

Homo3

sxx““\e ot

p® gk

Heterol

Ke b

Hetero2

e\v\)“\e ﬁ"'\o\

[

00 100

Bandwidth Utilization (%)

50 50

oLk
s

R

oI 0 b
o N 7® N e o
W Pexl\“ PP ! 6‘\"«\ h@,\’\

e gt

50

ol L5 [5
3 o OIS

g o R I

Fig. 8: Bandwidth Utilization of the Micro-benchmarks (Higher is better) (The bandwidth utilization of the heterogeneous settings is
measured on the bottleneck node. Similar to Figure the records for baseline methods on heterogeneous show the best, average, and worst results on all the

different n! logical-to-physical mappings.).

— 100 - = TI =] ~ 100{EF-EF-——--EF-——- = - =)
X ,’E -P—e— Baseline X —6— Baseline
= g ~E+ RoundRole < ~EF RoundRole
o
S 80 S 80
S =
R R o oo 3

1M 16M 32M 64M 128M256M512M 10050 10 1 0.1

Input Size (M) Latency (ms)

(a) with Varied Input Size. (b) with Varied Latency.
Fig. 9: Bandwidth Utilization Analysis.

Makespan with Aggregation

103 4

102 4
Auto-
defined

Time (sec)

1 2

Parallel Tasks
Fig. 10: Auto-defined Parallelism of Shuffle with Aggregation
Cost on Homol.

4

is only 62.1% because the high-speed 10 Gbps network
transfers a significant amount of data during the warm-up
phase. Nevertheless, RoundRole still achieves nearly 100%
utilization during the steady state. Detailed communication
traces are provided in Appendix [B| As a result, the overall
bandwidth utilization appears lower, despite the network’s
capacity to support higher sustained throughput.

(3) For all the protocols except Shuffle and T-Mul, Round-
Role achieves almost full bandwidth utilization on the bottle-
neck node in the heterogeneous settings. Specifically, Round-
Role achieves 94.4% on the left four protocols in all three het-
erogeneous settings, which is 14.8% higher than the baseline
methods on average. For Shuffle and T-Mul protocols where the
communication workload varies significantly across different
logical parties, RoundRole can intelligently allocate the parties
with higher workloads to the nodes with higher bandwidth,
thereby making the bottleneck node not the bottleneck, which
we will discuss next in Section [VI=Cl

11

TABLE IV: Makespan Speedups Using RoundRole.

N Y % > v >
e o [[¢
0.2 0.3 0.3
ORAM 1.5 1.4 1.1 14+ 15+ 1.5+
0.3 0.5 0.4
0.3 0.3 0.4
Sort 1.3 13 1.2 1.2+ 12+ 1.3+
0.2 0.2 0.3
0.0 0.1 0.1
LR 1.5 1.4 1.3 14+ 14+ 1.4+
0.0 0.1 0.1

Performance with varied input sizes and latency. Figure
shows the average bandwidth utilization of all the protocols in
Figure [T6] with or without RoundRole on Homol with varied
input sizes (1M to 512M) and network latencies (100ms to
0.1ms). Figure [0a] and Figure PB| fix the latency and the input
size to the defaults in Section [VI-A] respectively. We can see
that the bandwidth utilization of RoundRole remains at the
full capacity level except for processing 1M inputs, demon-
strating the practicality of RoundRole. The 1M inputs waste
around 12.2% bandwidth because they finish execution before
reaching full capacity. In contrast, the baseline utilization is
consistently limited to around 62.6%, regardless of latency or
data volume. This is because its performance is constrained
by the bandwidths of the first two nodes.

C. Automatic Optimization

Mapping logical roles to physical nodes automatically with
negligible overhead. It is obvious that RoundRole achieves
the above improvements by automatically mapping the logical
roles to physical nodes properly. We then provide a detailed
analysis of the workload allocation ratios using Heterol setting
as an example. Table [T shows the auto-solved optimal work-
load on Heterol setting. We can see that for Shuffle where
the communication workload of P; is three times lower than
P, and P3, RoundRole allocates 96% of the tasks with P
and P5 on the nodes with larger bandwidths (i.e., N, and N3)
to make full use of the network resources. Similarly, for T-
Mul that only P, and P; need to communicate, RoundRole
allocates 58% of the tasks with P, and P5; on the nodes with

=5 Baseline

Sort

A RoundRole

0 L
oo

o

Bandwidth Utilization (%)

\,\0((\03 \,\exe‘ox Y\ene‘oi \/\e‘e(o?‘ \,\0‘(‘0&

wo o

oL

e o

39
xe© N

£ 39 £ 39 L 3>
e e wo° Q07 e e e®

Fig. 11: Bandwidth Utilization of Real-world Algorithms with and without RoundRole. (The bandwidth utilization of the heterogeneous
settings are measure on the bottleneck node, i.e., the first node with the lowest bandwidth.)

¥ RoundRole

10 E E

0
Y2A B2A Quad
Fig. 12: Performance on

[T Baseline

Y2A B2A Quad
other MPC protocols

100
75
50
25

N
o

Time (min)
Utilization (%)

—— Send Recv

N; (100.0 Mbps) N, (100.0 Mbps) N3 (100.0 Mbps)

100%

wu
o
X

Origional

0%
100%

Utilization (%)

RoundRole

1.5%

0
o
B

1.5x 1.5%

0%

0 500 0 500 0

Time Stamps (sec)
Fig. 13: ORAM Communications without / with RoundRole.

500

2 Gbps bandwidth, i.e., Ny and N3, while the other 42% of
the tasks are allocated to leverage the sending and receiving
bandwidths of Nj.

The practical automatic configuration overhead is negligi-
ble, as shown in Table [[ll Even on the slowest network,
i.e., Homol, the offline profiling cost is less than 1 minute.
All the online computation only costs about one second.
Protocols with non-negligible aggregation cost. In this sec-
tion, we evaluate the performance of RoundRole on protocols
with non-negligible aggregation costs to demonstrate that
RoundRole can obtain the optimal end-to-end performance by
automatically reducing the parallel task numbers to avoid the
aggregation cost becoming the bottleneck.

We use Shuffle protocol as an example because it is the only
protocol with a non-negligible aggregation cost in our micro-
benchmarks. Specifically, we implement the merge shuffle
protocol [47]], which merges two randomly shuffled lists into
one, guaranteeing that the final distribution of the merged
list remains random. We use this protocol as the aggregation
protocol for Shuffle. However, the aggregation cost is orders
of magnitude larger than the cost of the state-of-the-art Shuffle

12

—— Send Recv

N5 (100.0 Mbps)

N; (100.0 Mbps) N (100.0 Mbps)
1 1

100%

1
©
c
o
=D
25 i]
C 1
k) 0% !
T 100%
29 ° : I
£ : :
g 1.3x iL.3x
3 i
o 1
o 1
0, ! 4
0 2500 0 2500 0 2500

Time Stamps (sec)
Fig. 14: Sort Communications without / with RoundRole.

protocol proposed by Araki et al. [8]], any extra parallelism
harms the performance significantly. In this case, RoundRole
can automatically reduce the number of parallel tasks to 1,
obtaining the best performance, as shown in Figure
Adaptation on other MPC protocols. To validate the
generality of RoundRole, we also adapt it to two other MPC
frameworks with different numbers of parties, including the
2PC Y2A, B2A protocols through MOTION and 4PC
Quad Multiplication protocol (Quad) through . The com-
parison of the bandwidth utilization and performance of these
protocols is shown in Figure Similar to the results in
Section [VI-B] RoundRole consistently improves the end-to-
end efficiency by leveraging the wasted bandwidth.

D. Real-world Algorithms

We also evaluate RoundRole using three commonly used
real-world algorithms to demonstrate its practical utility. Ta-
ble [V] and Figure [TT] summarize the speedup and bandwidth
utilization improvements of RoundRole against the baseline on
the three algorithms across all six network settings. We can see
that RoundRole achieves speedups on all the algorithms across
all the network settings, the average speedup being 1.3 x.
ORAM (Initialization). The ORAM initialization includes
multiple Shuffle protocols that are highly imbalanced. As
shown in Figure[T3] P; and P; are mainly sending or receiving
data to/from P, and P» takes the highest communication
workload. Similar to Shuffle, RoundRole achieves significant
speedups by (1) balancing the communication workload across
all three physical nodes on the homogeneous settings, and (2)
intelligently allocating the parties with higher workloads to the

—— Send

No1l (100.0 Mbps)

Step 1 Step 1

No2 (100.0 Mbps)

Recv

No3 (100.0 Mbps)

Step 2 Step 1 Step 2 Step 3

Step 2 Step 3
'

90% " Bl 90%

Origional

0% 0%

L

Step 3
'

90% I

7

0%

0 1000 2000 3000 0 1000

Stepl Step2 Step3

Stepl Step2 Step3

2000 3000 0 1000 2000 3000

Step1l Step2 Step3

Utilization (%)

90%] 90%1 | ‘W‘ W‘ T

F“ W‘ ‘I L " | lﬂ/y“‘i‘

[1.5x

RoundRole

0% 0%

B
|

[1.5x

‘ 90% | [T \\“'[L L 1
‘ 1.5x

0%

0 1000 2000 3000 0 1000

2000 3000 0 1000 2000 3000

Time Stamps (sec)
Fig. 15: Logistic Regression Communications without / with RoundRole.

nodes with higher bandwidth on the heterogeneous settings.
This explains the lower bandwidth utilization of ORAM on
the bottleneck node (Figure [TI) and up to 1.8x speedup in
the heterogeneous settings.

Sorting. Figure [T4] shows the communication pattern of
the sorting algorithm with and without RoundRole. Unlike
ORAM, the communication pattern of sorting is more com-
plex. The imbalanced communication part happens at the
beginning of the algorithm. As shown in Figure [14] the
bandwidth is almost half-utilized except for the receiving
bandwidth of the second node. The following steps are the
log(l) rounds of comparisons and element swapping, leading
to complex communication patterns. In this case, RoundRole
can mainly improve the bandwidth utilization from the begin-
ning of the algorithm, resulting in 1.3x speedup on Homol.
Logistic regression (LR). For algorithms with multiple
asymmetric protocol components, RoundRole can significantly
improve the performance by optimizing the communication
patterns of each component. Each iteration of the LR com-
putation incorporates three steps: (1) F-Mul, (2) comparison
and B2A, as well as (3) F-Mul operations. All three steps are
asymmetric and, therefore, can be optimized by RoundRole.
As shown in Figure [I3] on the Homol setting, the bandwidth
utilization of each iteration of the LR algorithm can be
optimized to almost 100% with RoundRole, leading to a 1.5x
speedup each iteration.

VII. RELATED WORK

Load-balanced MPC is recently proposed by Lu et al. [48]],
which aims to achieve load balance on heterogeneous re-
sources for the server-aided garbled circuit (GC) settings,
where a series of parties construct a segment of the same
circuit with different sizes according to their resources,
i.e., network bandwidth, and send the circuit to the aided
server, who evaluates the circuits. As the main communication
cost of GC is the initial circuit transmission, the load balance
is achieved straightforwardly by splitting the circuit into
segments of different sizes.

Comparably, secret sharing incurs much more complicated
communication patterns, where each communication varies for

different operations, as Section [ITl] illustrates. The first step to
achieve load balance in secret sharing is presented in Harth-
Kitzerow et al. [16], who construct two protocols with simple
communication patterns for 3PC and 4PC multiplications and
optimize these two customized protocols to fit various network
settings for high throughput. As a comparison, RoundRole is
a generally applicable method that can optimize any secret
sharing protocols with asymmetric communication patterns,
including their customized protocols.

Goyal et al. [49]] theoretically define the asymmetric MPC

problem, focusing on the differing latencies among parties and
the resulting security challenges. This is orthogonal to our
work, as we focus on the communication patterns of secret
sharing protocols and varied bandwidth.
Other protocol-agnostic optimizations. Currently, there exist
many researchers focusing on optimizing the execution of
secret-sharing MPC from the system perspective, which can
be categorized into two groups: (1) Optimizations aiming to
reduce the communication rounds, such as COMBINE [32]
and MP-SPDZ [12], [50]. These methods exploit vectorization
to combine multiple independent operations into one large
vectorized operation and evaluate these operations in the same
communication round to amortize the communication latency;
and (2) Scheduling that aims to find the optimal operation
assignment graph to minimize the total execution time, such
as Silph [39]], HyCC [51]], and costCO [52]. Each opera-
tion in MPC can be implemented using different protocols,
e.g., arithmetic (A), boolean (B), and Yao’s garbled circuit
(Y), each of which has its own “comfort zone”, i.e., efficient
operations. Data can be transformed among these protocols
at an extra cost. The above efforts aim to find the optimal
protocol assignment for a given computation task, minimizing
the total execution time.

VIII. CONCLUSION

Over the years, researchers have developed ingenious proto-
cols to optimize communication complexity in MPC. However,
many of these protocol designs overlook a critical aspect:
asymmetric communication, which can severely degrade actual
network efficiency and, thus, overall performance. Since it is

13

challenging to address asymmetry at the protocol design level,
we decouple the protocol’s logical roles from the physical
nodes and optimize task split and assignment at the execution
level. This approach enables MPC designers to focus on
protocol innovation without worrying about practical commu-
nication inefficiencies, as RoundRole automatically optimizes
execution to achieve optimal performance.

We hope that our work highlights the necessity of improving
MPC efficiency from multiple angles—not just by reducing
communication rounds or volumes but also by improving
execution-level performance. In future work, we will explore
and mitigate other sub-optimal aspects of MPC execution to
further advance its practicality.

IX. ACKNOWLEDGMENTS

We thank Yusi Chen, Xiaowei Zhu and the anonymous
reviewers for their help during the design and implementation
of this paper. This work is supported in part by the National
Key R&D Program of China 2023YFC3304802, National
Natural Science Foundation of China (NSFC) Grant U2268202
and 62176135.

REFERENCES
[1] J. Liagouris, V. Kalavri, M. Faisal, and M. Varia, “{SECRECY }: Secure
collaborative analytics in untrusted clouds,” in USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2023.
R. A. Popa, C. M. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: Protecting confidentiality with encrypted query processing,”
in Proceedings of the twenty-third ACM symposium on operating systems
principles (OSDI), 2011.
N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and
A. Bestavros, “Conclave: secure multi-party computation on big data,”
in Proceedings of the Fourteenth EuroSys Conference, 2019.
N. Jawalkar, K. Gupta, A. Basu, N. Chandran, D. Gupta, and R. Sharma,
“Orca: Fss-based secure training and inference with gpus,” in [EEE
Symposium on Security and Privacy (S & P), 2023.
W.-j. Lu, Z. Huang, Q. Zhang, Y. Wang, and C. Hong, “Squirrel:
A Scalable Secure Two-Party Computation Framework for Training
Gradient Boosting Decision Tree,” in USENIX Security Symposium,
2023.
J.-L. Watson, S. Wagh, and R. A. Popa, “Piranha: A GPU platform for
secure computation,” in USENIX Security Symposium, 2022.
S. Tan, B. Knott, Y. Tian, and D. J. Wu, “CryptGPU: Fast privacy-
preserving machine learning on the GPU,” in [EEE Symposium on
Security and Privacy (S&P). 1EEE, 2021.
T. Araki, J. Furukawa, K. Ohara, B. Pinkas, H. Rosemarin, and
H. Tsuchida, “Secure graph analysis at scale,” in ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS), 2021.
K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and
E. Shi, “Graphsc: Parallel secure computation made easy,” in 2015 IEEE
symposium on security and privacy (S&P). 1EEE, 2015.
N. Koti, V. B. Kukkala, A. Patra, and B. Raj Gopal, “Graphiti: Secure
graph computation made more scalable,” in Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2024.
D. R. Stinson, Cryptography: theory and practice.
Hall/CRC, 2005.
M. Keller, “MP-SPDZ: A versatile framework for multi-party computa-
tion,” in ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2020.
P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework for
machine learning,” in Proceedings of the ACM SIGSAC conference on
computer and communications security (CCS), 2018.
D. Demmler, T. Schneider, and M. Zohner, “ABY-A framework for
efficient mixed-protocol secure two-party computation.” in The Network
and Distributed System Security Symposium (NDSS), 2015.

[2]

[3

[4

=

[5]

[6]

[7]

[8]

[9]

[10]

[11] Chapman and

[12]

[13]

[14]

14

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

Q. Pang, J. Zhu, H. Mollering, W. Zheng, and T. Schneider, “Bolt:
Privacy-preserving, accurate and efficient inference for transformers,” in
IEEE Symposium on Security and Privacy (S&P). 1EEE, 2024.

C. Harth-Kitzerow, A. Suresh, Y. Wang, H. Yalame, G. Carle, and
M. Annavaram, “High-throughput secure multiparty computation with
an honest majority in various network settings,” Proceedings on Privacy
Enhancing Technologies (PoPETS), 2025.

K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and K. Takahashi,
“Practically efficient multi-party sorting protocols from comparison sort
algorithms,” in Information Security and Cryptology—ICISC 2012: 15th
International Conference, Seoul, Korea, November 28-30, 2012, Revised
Selected Papers 15. Springer, 2013.

G. Asharov, K. Hamada, D. Ikarashi, R. Kikuchi, A. Nof, B. Pinkas,
K. Takahashi, and J. Tomida, “Efficient secure three-party sorting with
applications to data analysis and heavy hitters,” in Proceedings of 2022
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2022.

S. Zahur, X. Wang, M. Raykova, A. Gascon, J. Doerner, D. Evans, and
J. Katz, “Revisiting square-root oram: efficient random access in multi-
party computation,” in IEEE Symposium on Security and Privacy (S&P),
2016.

B. Falk, R. Ostrovsky, M. Shtepel, and J. Zhang, “GigaDORAM:
breaking the billion address barrier,” in Proceedings of the USENIX
Conference on Security Symposium (USENIX Security), 2023.

A. Vadapalli, R. Henry, and I. Goldberg, “DuORAM: A bandwidth-
efficient distributed ORAM for 2-and 3-Party computation,” in Pro-
ceedings of the USENIX Conference on Security Symposium (USENIX
Security), 2023.

X. Fan, K. Chen, J. Yu, X. Zhu, Y. Chen, H. Zhang, and W. Xu,
“Goram: Graph-oriented oram for efficient ego-centric queries on fed-
erated graphs,” arXiv preprint arXiv:2410.02234, 2024.

M. Blanton and C. Yuan, “Binary search in secure computation,” in
Network and Distributed System Security Symposium (NDSS), 2022.
X. Fan, K. Chen, G. Wang, X. Zhu, H. He, X. Yong, X. Jia, Y. Li,
and W. Xu, “Pair-then-aggregate: Simplified and efficient parallel pro-
gramming paradigm for secure multi-party computation,” in 2025 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2025.

L. Braun, D. Demmler, T. Schneider, and O. Tkachenko, “Motion: A
framework for mixed-protocol multi-party computation,” ACM Transac-
tions on Privacy and Security, 2022.

J. Feng, Y. Wu, H. Sun, S. Zhang, and D. Liu, “Panther: Practical secure
2-party neural network inference,” IEEE Transactions on Information
Forensics and Security (TIFS), 2025.

X. Fan, K. Chen, G. Wang, M. Zhuang, Y. Li, and W. Xu, “NFGen:
Automatic non-linear function evaluation code generator for general-
purpose MPC platforms,” in Proceedings of the ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS), 2022.

A. Patra, T. Schneider, A. Suresh, and H. Yalame, “{ABY2. 0}: Im-
proved {Mixed-Protocol} secure { Two-Party} computation,” in USENIX
Security Symposium (USENIX Security), 2021.

A. Shamir, “How to share a secret,” Communications of the ACM, 1979.
J. Ma, Y. Zheng, J. Feng, D. Zhao, H. Wu, W. Fang, J. Tan,
C. Yu, B. Zhang, and L. Wang, “{SecretFlow—SPU}: A performant and
user-friendly framework for privacy-preserving machine learning,” in
USENIX Annual Technical Conference (ATC), 2023.

Y. Zheng, H. Duan, C. Wang, R. Wang, and S. Nepal, “Securely and
efficiently outsourcing decision tree inference,” IEEE Transactions on
Dependable and Secure Computing, 2020.

B. Levy, M. Ishaq, B. Sherman, L. Kennard, A. Milanova, and
V. Zikas, “Combine: Compilation and backend-independent vectoriza-
tion for multi-party computation,” in Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2023.
V. K. Yadav, N. Andola, S. Verma, and S. Venkatesan, “A survey of
oblivious transfer protocol,” ACM Computing Surveys (CSUR), 2022.
B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection
based on ot extension,” in Proceedings of the USENIX Conference on
Security Symposium, 2014.

B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Spot-light: lightweight
private set intersection from sparse ot extension,” in Annual International
Cryptology Conference (CRYPTO). Springer, 2019.

M. Orrt, E. Orsini, and P. Scholl, “Actively secure 1-out-of-n ot
extension with application to private set intersection,” in Topics in
Cryptology—CT-RSA 2017: The Cryptographers’ Track at the RSA

Conference 2017, San Francisco, CA, USA, February 14-17, 2017,
Proceedings. Springer, 2017.

G. Di Crescenzo, T. Malkin, and R. Ostrovsky, “Single database pri-
vate information retrieval implies oblivious transfer,” in International
Conference on the Theory and Application of Cryptographic Techniques
(EUROCRYPT). Springer, 2000.

Y.-C. Chang, “Single database private information retrieval with loga-
rithmic communication,” in Information Security and Privacy (ACISP).
Springer, 2004.

E. Chen, J. Zhu, A. Ozdemir, R. S. Wahby, F. Brown, and W. Zheng,
“Silph: A framework for scalable and accurate generation of hybrid mpc
protocols,” in 2023 IEEE Symposium on Security and Privacy (S & P).
IEEE, 2023.

M. Islam, S. S. Arora, R. Chatterjee, P. Rindal, and M. Shirvanian,
“Compact: Approximating complex activation functions for secure com-
putation,” Proceedings on Privacy Enhancing Technologies (PoPETS),
2024.

Y. Lindell, “Secure multiparty computation,” Communications of the
ACM, 2020.

A. Dalskov, D. Escudero, and M. Keller, “Fantastic four: Honest-
majority four-party secure computation with malicious security,” in
USENIX Security Symposium (USENIX Security), 2021.

G. Desaulniers, J. Desrosiers, and M. M. Solomon, Column Generation.
Springer Science & Business Media, 2006, vol. 5.

R. Canetti, “Security and composition of multiparty cryptographic
protocols,” Journal of CRYPTOLOGY, vol. 13, no. 1, pp. 143-202, 2000.
V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM
Computer Communication Review, 1988.

K. Kaur, J. Singh, and N. S. Ghumman, “Mininet as software defined
networking testing platform,” in International conference on communi-
cation, computing & systems (ICCCS), 2014.

A. Bacher, O. Bodini, A. Hollender, and J. Lumbroso, “Mergeshuffle: A
very fast, parallel random permutation algorithm,” in CEUR Workshop
Proceedings. CEUR-WS, 2018.

Y. Lu, B. Zhang, and K. Ren, “Load-balanced server-aided mpc in
heterogeneous computing,” IEEE Transactions on Information Forensics
and Security (TIFS).

V. Goyal, C.-D. Liu-Zhang, and R. Ostrovsky, “Asymmetric multi-party
computation,” in Conference on Information-Theoretic Cryptography,
2023.

M. Keller, “How to scale multi-party computation,” Cryptology ePrint
Archive, 2024.

N. Biischer, D. Demmler, S. Katzenbeisser, D. Kretzmer, and T. Schnei-
der, “HyCC: Compilation of hybrid protocols for practical secure com-
putation,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2018.

V. Fang, L. Brown, W. Lin, W. Zheng, A. Panda, and R. A. Popa,
“Costco: An automatic cost modeling framework for secure multi-party
computation,” in 2022 IEEE 7th European Symposium on Security and
Privacy (Euro S&P). IEEE, 2022.

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]
[47]
(48]
[49]

[50]

[51]

[52]

APPENDIX

A. Security Analysis

Theorem 1 (Security Preservation of RoundRole). For any
secret-sharing protocol 1I, RoundRole preserves the same
security guarantee as 11 in the presence of any adversary that
can corrupt at most t physical nodes under the same adversary
model as II.

Proof. Assume for contradiction that there exists an adversary
A that, under the same adversary model as II, corrupts at most
t physical nodes and can distinguish the RoundRole-optimized
execution from an ideal execution with non-negligible advan-
tage.

We now construct an adversary 53 for the original protocol
IT as follows.

Construction of B:

15

1) B receives as input the common reference string and any
other public parameters of II, as in the original setting.
B simulates the execution of II from the RoundRole-
optimized execution by reassigning the logical roles
back to the original physical nodes using the inverse
logical-to-physical mappings defined in RoundRole. The
resulting process is identical to the original execution of
II because RoundRole only permutes the logical roles
across independent tasks without modifying the secret-
sharing mechanism.

B runs A on the simulated execution. Whenever A
makes a query or receives a message in the simulated
execution, B forwards this query/response faithfully to
its own interface as defined by the protocol II.

4) Finally, B outputs whatever .4 outputs.

2)

3)

Since RoundRole only permutes the logical roles across
independent tasks without modifying the secret-sharing mech-
anism, the view of each physical node in the simulated
execution is identically distributed to its view in the execution
of II. Therefore, if A distinguishes the RoundRole-optimized
execution from an ideal execution, then B will distinguish the
original protocol II from its ideal execution with the same non-
negligible advantage. This contradicts the assumed security of
II.

Thus, no such adversary A exists, and RoundRole preserves
the same security guarantee as the original protocol II. [

B. Communication Patterns on Different Network Settings

Figure [16] to Figure [20] show the communication traces of
the micro-benchmark protocols with and without RoundRole
on different network settings.

—— Send ~—-- Recv —— Send —-- Recv —— Send —-- Recv
100% N, (1 Gbps) N> (1 Gbps) N3 (1 Gbps) N (1 Gbps) N> (1 Gbps. N3 (1 Gbps) N3 (1 Gbps) N3 (1 Gbps)
T =" - e— e v S—e — m = , p
.] ' | |
5 I I
2 50% ! !
&5 | |
f= [1
s [oy73 | AN S § B S T 1 R § S—— -
© 100%
So | 1
S o
S« [
T 50% 1.5x 11.5x 1.5x 2.7x i .6x 2.6Xx 11 1.1 1.1
=]
& | f
0%9 100 0 160 0 100 0 2500 5000 O 2500 5000 0 2500 5000 O 2500 5000 0 2500 5000 O 2500 5000
Time Stamps (sec) Time Stamps (sec) Time Stamps (sec)
(a) F-Mul (b) AB-Mul (c) A2B
100% N (1 Gbps) N, (1 Gbps) N3 (1 Gbps) N, (1 Gbps) N> (1 Gbps) N3 (1 Gbps) N, (1 Gbps) N> (1 Gbps) N3 (1 Gbps)
e — = =
E I i
_S s0% b N [i
g2 ! | | i :
<o | | | | a i |
s % — . ' . .
T 100% .
So " 1
= o
S
2 50% 1.5x 1.5x 1.5 |2.0x 1.5x 1.5x 1.5%
E; i
0% i I
0 200 0 200 0 200 0 2000 0 2000 0 2000 0 500 0 500 0 500
Time Stamps (sec) Time Stamps (sec) Time Stamps (sec)
(d) B2A (e) Shuffle () T-Mul
Fig. 16: Communication Traces of the Micro-benchmark Protocols w/o RoundRole on Homo2.
—— Send — - Recv —— Send — - Recv —— Send ~— - Recv
100% N, (10 Gbps) N, (10 Gbps) N3 (10 Gbps) N1 (10 Gbps) N> (10 Gbps) N3 (10 Gbps) Ni (10 Gbps)I N> (10 Gbps) N3 (10 Gbps)I
R [o
S 500 vl : ; ! |
) 50% 1 . I |
<5 | l
P !
S 0% -
T 100%
No \
=) k A
Y4
2 50% 1.5x 1.5x 2.2X 2.2X
3 |
< I
0% :
0 20 0 20 0 20 500 0 500 0 500
Time Stamps (sec) Time Stamps (sec) Time Stamps (sec)
(a) F-Mul (b) AB-Mul (c) A2B
100% N (10 Gbps) N, (10 Gbps) N3 (10 Gbps) N; (10 Gbps) Ny (10 Gblps) N3 (10 Gblps) N; (10 Gbps) N> (10 Gbps) N3 (10 Gbps)
_ - > T v 1 e " -
5 ! [| i s
o . H
5 50% -~ b :
1= T : |
<o B | . H
c | . | |
S 0%
EE 100% = —
] i _rﬂ"”\'\]
T 50% 11.3x 14 i 1.4
0% : .
40 0 200 100 0 50 100 0 50 100
Time Stamps (sec) Time Stamps (sec) Time Stamps (sec)
(d) B2A (e) Shuffle (H) T-Mul

Fig. 17: Communication Traces of the Micro-benchmark Protocols w/o RoundRole on Homo3.

16

—— Send —-- Recv —— Send — - Recv —— Send — .- Recv
100% Ny (1 Gbps) N2 (2 Gbps) N3 (2 Gbps) Ny (1 Gbps) N> (2 Gbpls) Ns (2 Gbpls) N; (1 Gbps) N, (2 Gbps) N3 (2 Gbps)
o T = - P— . —— T | i .y
E i : ! i3
=5 50% i ol
X B |
ZO | }—-—H H
s 0% - —
EE 100% T
52
T 50% 1.5x i 1.3
5
g 1
0% 100 0 100 0 2000 0 2000 0 2000 4000 O 2000 4000 O 2000 4000
Time Stamps (sec) Time Stamps (sec) Time Stamps (sec)
(a) F-Mul (b) AB-Mul (c) A2B
100% N, (1 Gbps) N> (2 Gbps) N3 (2 Gbps) N, (1 Gbps) N, (2 Gbps) N3 (2 Gbps) N (1 Gbps) N, (2 Gbps) N3 (2 Gbps)
- : | - .
: i
2 50% '
R |
<o N]
§ oo '
T 100% :
N . !
EE | '
T 50% 1.5x | 1.5x 2.1x
0% 0 200 0 200 0 200 0 1000 0 100 0 500 0 500 0 500
Time Stamps (sec) Time Stamps (sec) Time Stamps (sec)
(d) B2A (e) Shuffle () -Mul
Fig. 18: Communication Traces of the Micro-benchmark Protocols w/o RoundRole on Heterol.
—— Send —:- Recv —— Send —-- Recv —— Send —:- Recv
100% M1 (1 (313;_;_5_)__1 N, (10 Gbps) N5 (10 Gbps) N; (1 Gbps) N (10 Gbps) N3 (10 Gbps) Ni (1 Gbps) N3 (10 Gbps) N3 (10 Gbps)
3 - o "I T. - - i
s I i i !
<5 50% I I ’ '
&5 il i ' h
s 0% S L I il -
T 100%
£ i if] [
2% 509 1.5x 1.5x 1.5x l ! 12
g : j i
0% 100 0 100 0 100 0 2000 0 2000 0 2000 4000 O 2000 4000 O 2000 4000
Time Stamps (sec) Time Stamps (sec) Time Stamps (sec)
(a) F-Mul (b) AB-Mul (c) A2B
N (1 Gbps) N, (10 Gbps) N3 (10 Gbps) Ny (1 Gbps) N, (10 Gbps) N3 (10 Gbps) Ny (1 Gbps) N (10 Gbps) N3 (10 Gbps)
100% 7~ . e 20PS)
_ FIToTY | o
g ! 1
~3 50% | li
&5 i i
= L i L= I i ——
k<l 0% e =
E . 100% m . e w Iy H
T 50% |1.4>< 1.4x i1.4x 11 | i7.1x 6.3X
S !
2 i " ! .
0%y 200 0 200 0 200 0 500 1000 O 500 1000 O 500 1000 0 500 0 500
Time Stamps (sec) Time Stamps (sec) Time Stamps (sec)
(d) B2A (e) Shuffle () T-Mul

Fig. 19: Communication Traces of the Micro-benchmark Protocols w/o RoundRole on Hetero2.

17

—— Send —:- Recv —— Send —-- Recv
100% Ny (1 szes)_ N5 (4 Gbps) N3 (5 Gbps) N (1 Gbps) N, (4 Gbps) N5 (5 Gbps) N (1 Gbps) N, (4 Gbps)I Ns (5 Gbps)I
_ | [~ = | H
[| | e
o5 50% : i ~ Ik Hi
=5 N | — | — 4 R H
S 0% 1] (et — R A I
" 100% . -~
g% o ‘m I._! W o
:Pg‘ 50% 1.5x i 1.5x 3 1.5% 1.2 :1,4,(| 1.2 1.1
2 — \ | | "
o = !
0% 0 100 0 100 0 100 0 2000 0 2000 0 2000 0 2000 4000 0 2000 4000 0 2000 4000
Time Stamps (sec) Time Stamps (sec) Time Stamps (sec)
(a) F-Mul (b) AB-Mul (c) A2B
100% N; (1 Gbps) N3 (4 Gbps) N3 (5 Gbps) N (1 Gbps) N> (4 Gbps) N3 (5 Gbps) N (1 Gbps) N> (4 Gbps) N5 (5 Gbps)
b T T
E i : Y
@I% 50% !
=5 | s i
S 0% L -~ — ¥ i ™
® 100% — . v
=0 | i)
T 50% 1.4x i 1.4x i 1.4x 1.3 | 3.9x 3.9x 3.9x
g t ' ! i
o H A I]
0% 0 200 0 200 0 200 0 500 1000 0 500 1000 0 500 1000 0 500 0 500 0 500
Time Stamps (sec) Time Stamps (sec) Time Stamps (sec)
(d) B2A (e) Shuffle () -Mul

Fig. 20: Communication Traces of the Micro-benchmark Protocols w/o RoundRole on Hetero3.

18

	Introduction
	MPC Background
	Motivation and Asymmetric Communication Patterns in MPC
	Overview
	Notations and Assumptions
	Motivating Examples
	Problem Definition
	RoundRole Overview

	RoundRole Optimization
	Optimal Workload Allocation Ratio
	Optimal Execution Strategy

	Evaluation
	Evaluation Setup
	Micro-benchmark Results
	Automatic Optimization
	Real-world Algorithms

	Related Work
	Conclusion
	Acknowledgments
	References
	Appendix
	Security Analysis
	Communication Patterns on Different Network Settings

