Artifact
Evaluated

ANDss

Available

ProtocolGuard: Detecting Protocol
Non-compliance Bugs via LLM-guided
Static Analysis and Dynamic Verification

Xiangpu Song!, Longjia Pei', Jianliang Wu?", Yingpei Zeng?, Gaoshuo He', Chaoshun Zuo*, Xiaofeng Liu'",
Qingchuan Zhao’ and Shanqing Guo'6”"
'School of Cyber Science and Technology, Shandong University
2Simon Fraser University 3Hangzhou Dianzi University “Independent Researcher
SCity University of Hong Kong ®Shandong Key Laboratory of Artificial Intelligence Security
’State Key Laboratory of Cryptography and Digital Economy Security, Shandong University

Abstract—Network protocol implementations are expected
to strictly comply with their specifications to ensure reliable
and secure communications. However, the inherent ambiguity
of natural-language specifications often leads to developers’
misinterpretations, causing protocol implementations to deviate
from standard behaviors. These deviations result in subtle non-
compliance bugs that can cause interoperability issues and critical
security vulnerabilities. Unlike memory corruption bugs, these
bugs typically do not exhibit explicit error behaviors, resulting
in existing bug oracles being insufficient to thoroughly detect
them. Moreover, existing works require heavy manual effort to
verify findings and analyze root causes, severely limiting their
scalability in practice.

In this paper, we present ProtocolGuard, a novel framework
that systematically detects non-compliance bugs by combining
LLM-guided static analysis with fuzzing-based dynamic verifica-
tion. ProtocolGuard first extracts normative rules from protocol
specifications using a hybrid method, and performs LLM-guided
program slicing to extract code slices relevant to each rule. It then
leverages LLMs to detect semantic inconsistencies between these
rules and code logic, and dynamically verify whether these bugs
can be triggered. To facilitate bug verification, ProtocolGuard
first uses LLMs to automatically generate assertion statements
and instrument the code to turn silent inconsistencies into
observable assertion failures. Then, it produces initial test cases
that are more likely to trigger the bug with the help of LLMs
for dynamic verification. Lastly, ProtocolGuard dynamically tests
the instrumented code to confirm bug identification and generate
proof-of-concept test cases. We implemented a prototype of
ProtocolGuard and evaluated it on 11 widely-used protocol
implementations. ProtocolGuard successfully discovered 158 non-
compliance bugs with high accuracy, 70 of which have been con-
firmed, and the majority of which can be converted into assertions
and dynamically verified. The comparison with existing state-of-
the-art tools demonstrates that ProtocolGuard outperforms them
in both precision and recall rates in bug detection capabilities.

*Corresponding authors.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240521
www.ndss-symposium.org

I. INTRODUCTION

Network protocols are the backbone of digital communi-
cation, enabling billions of devices to exchange data reli-
ably. Given their widespread deployment, even minor bugs
in protocol implementations can cause serious security and
interoperability issues. These implementations are expected to
strictly conform to specifications (e.g., RFCs), which define
precise behavioral rules such as state transitions and message
formats. However, natural-language specifications are often
lengthy and complex, which can lead to misunderstandings
and cause implementations to silently deviate from standard
behaviors, thereby introducing non-compliance bugs.

Protocol non-compliance bugs are widespread in real-world
implementations, causing incorrect behaviors, interoperability
failures, and severe security vulnerabilities [31, 32, 67]. For
example, a high-risk vulnerability in MatrixSSL (CVE-2022-
46505 [8]) stemmed from flawed validation logic in its session
resumption handling, resulting from an incorrect implemen-
tation of RFC [20]. This seemingly minor implementation
flaw allowed an attacker to use a malformed Session ID to
force the reuse of an empty master secret, leading to complete
decryption of secure communications on thousands of devices
worldwide [23]. However, unlike memory corruption bugs,
non-compliance bugs typically manifest as silent logic errors
without obvious signals, such as crashes, making them difficult
to detect using conventional methods like fuzzing [34, 49].

Recent research has proposed various approaches for de-
tecting protocol non-compliance bugs, including static anal-
ysis and differential testing, which have achieved significant
success. Unfortunately, existing bug oracles are insufficient
for the comprehensive detection of these bugs. Traditional
static approaches [31, 32] rely on heuristics that match rule-
like conditions to specific code patterns. However, their ef-
fectiveness is severely hindered by the diversity of implemen-
tation styles and the ambiguity inherent in natural language
specifications. Differential testing [54, 61, 65, 67] relies on
mutual reference oracles across multiple implementations to
detect inconsistencies, but this approach becomes ineffective

when all compared implementations exhibit the same incorrect
behavior [64]. Moreover, existing approaches require substan-
tial manual effort to verify findings and analyze root causes,
severely limiting their scalability in practice.

To address these challenges, we propose ProtocolGuard, a
novel approach that integrates static analysis with dynamic val-
idation to detect non-compliance bugs. To accurately identify
these bugs, we first extract normative requirements from proto-
col specifications and transform them into rule sets that serve
as detection standards. Leveraging the semantic understanding
capabilities of Large Language Models (LLMs), we integrate
LLMs with program slicing to extract code slices relevant to
each rule, and analyze the inconsistencies between the rules
and code implementations, thereby identifying potential non-
compliance bugs and their root causes. To efficiently validate
these potential bugs, we first leverage LLMs to generate
assertion statements for each bug and instrument them into
the program, transforming silent logical errors into observable
assertion failures. Then, we design a test case generation
method that produces high-quality initial test cases and employ
directed fuzzing to dynamically verify potential bugs and
generate proof-of-concept (PoC) test cases.

We implemented a prototype of ProtocolGuard and con-
ducted a comprehensive evaluation across 11 widely-used
implementations of 6 network protocols. ProtocolGuard dis-
covered 158 non-compliance bugs across these implementa-
tions, including 156 previously unknown bugs, and achieved
an overall precision of 90.6%. We compared ProtocolGuard
against state-of-the-art Al-powered code editors, including
Cursor [7] integrated with Claude 3.7 Sonnet and DeepSeek
R1. ProtocolGuard significantly outperformed these baselines,
achieving 86.3% precision and 81.3% recall, compared to
the best baseline performance of 71.7% precision and 76.8%
recall. Furthermore, our evaluation demonstrates the effec-
tiveness of ProtocolGuard’s key components: the assertion
generation successfully transforms a majority of silent logic
errors into assertion failures, while the test case generation
significantly improves fuzzer performance in confirming in-
consistency assertions.

Overall, we make the following contributions in this paper:

e We propose a novel hybrid approach that combines

LLM-guided static analysis with fuzzing-based dynamic
verification to systematically detect non-compliance bugs.

« We design an automated assertion generation mechanism

that transforms silent logic errors into observable asser-
tion failures, enabling conventional fuzzers to detect non-
compliance bugs.

« We implement a prototype ProtocolGuard, and evaluate it

across 11 real-world protocol implementations, success-
fully revealing 158 non-compliance bugs.

II. MOTIVATION AND CHALLENGES

In this section, we first present a real-world example to
illustrate the motivation behind our work, then discuss the
limitations of existing research as well as the challenges we
address.

struct client {

1
2 .

3 char client_id[MQTT_CLIENT_ID_LEN];

4]}

5| static int connect_handler (struct io_event xe) {
6 struct mgtt_connect *c = &e->data.connect;

7 struct client *cc = e—->client;

8

9 // BUG: Client ID truncation without validation
10 snprintf (cc->client_id, MQTT_CLIENT_ID_LEN, 7%s

”, c—>payload.client_id);

Listing 1: Simplified code of motivation example.

A. Motivating Example

Listing 1 presents a simplified code snippet from Sol [14],
an MQTTv3.1.1 protocol implementation, that contains a
critical non-compliance bug. This vulnerability enables at-
tackers to impersonate legitimate clients by exploiting the
silent truncation of oversized client identifiers, potentially
leading to denial-of-service attacks against clients with iden-
tical identifiers [1]. Specifically, when the broker receives a
CONNECT packet containing a client identifier longer than
MQTT_CLIENT_ID_LEN, the connect_handler func-
tion processes the connection request normally. At line
10, the code copies the client ID from the network pay-
load c—>payload.client_id into a fixed-size buffer
cc->client_id using snprintf. However, due to the
absence of prior length validation, the server silently truncates
characters beyond the limit without generating any error or
warning. The root cause of this bug stems from an incomplete
implementation of the specification rule. While the implemen-
tation superficially adheres to the explicit rule that states: "The
Server MUST allow Clientlds which are between 1 and 23
UTF-8 encoded bytes in length, and MAY allow Clientlds that
contain more than 23 encoded bytes’ [17], it fails to preserve
the complete client identifier when processing oversized IDs.
This silent truncation can result in multiple clients sharing
the same truncated identifier, violating the protocol’s implicit
requirement that each client must have a distinct identifier for
proper session management and message routing.

Existing protocol bug detection approaches face significant
challenges in identifying such bugs. Traditional fuzzers that
rely on memory sanitizers fail to detect such bugs, as these
bugs typically manifest as silent logic errors without causing
program crashes [34, 49]. Similarly, differential fuzzing ap-
proaches [54, 61, 67] prove ineffective for this issue, as both
vulnerable and correct MQTT protocol implementations re-
turn identical CONNACK success responses, rendering cross-
reference oracles unable to distinguish the underlying be-
havioral differences. Furthermore, conventional static analysis
approaches [31, 32] typically rely on predefined heuristic
rules derived from specifications. However, these approaches
cannot assess whether the implementation logic is semantically
correct and compliant with the specification, particularly when

specifications lack detailed guidance on field processing re-
quirements such as client identifier handling. These limitations
highlight the need for a novel detection approach capable of
accurately identifying protocol non-compliance bugs.

B. Challenges and Our Solutions

Recent advancements in LLMs have demonstrated remark-
able capabilities in understanding both source code and natural
language [33], presenting an intuitive solution to analyzing
whether protocol implementations comply with their specifica-
tions from a semantic perspective. However, directly applying
LLMs to the entire source code is impractical, as LLMs’
reasoning ability is inversely proportional to input context
length [41]. This raises several key challenges.

C1: How to provide LLMs with appropriate rule-relevant
code implementations? A natural solution is to apply program
slicing to extract only rule-relevant code statements for LLM
analysis, as large code context would reduce LLM’s perfor-
mance [41]. However, traditional slicing approaches require
manual specification of slicing criteria (i.e., the variables and
program points of interest from which slicing begins), limiting
their application [56, 63]. Moreover, even with correct criteria,
conventional slicing typically contains semantically unrelated
code fragments, leading to noisy inputs for LLMs.

Solution: To address this challenge, we propose an LLM-
guided program slicing approach that combines semantic
inference from LLMs with LLVM-based static analysis. We
first use LLMs to automatically identify rule-relevant variables
as slicing criteria. Based on this, we perform rule-oriented
forward slicing to extract relevant code, followed by a hybrid
pruning strategy that removes semantically unrelated code.
C2: How to effectively verify non-compliance bugs without
explicit error signals? Once bugs are identified through static
analysis, existing methods typically require manual construc-
tion of corresponding input messages for validation [32, 65],
which is prohibitively time-consuming and does not scale
to large codebases. A promising approach is hybrid testing,
which combines static analysis to detect vulnerabilities fol-
lowed by directed fuzzing for validation [53]. However, non-
compliance bugs often do not cause program crashes [54, 67],
rendering current memory sanitizer-based directed fuzzing
ineffective [34, 49].

Solution: To overcome this challenge, we propose using LLM
agents to automatically generate assertion statements that serve
as bug oracles for detecting non-compliance bugs. These as-
sertions are instrumented to convert silent inconsistencies into
assertion failures. When programs fail to handle malformed
requests as expected, these assertions actively abort program
execution, enabling existing fuzzing strategies to detect such
bugs and generate PoC test cases.

C3: How to provide high-quality initial test cases for
fuzzing-based dynamic verification? The effectiveness of
fuzzing campaigns heavily depends on the quality of initial test
cases [44]. Reusing existing test cases from the community is
ineffective because they typically focus on general functional-
ity testing rather than targeting the specific malformed inputs

necessary to expose non-compliance bugs. While LLMs show
great potential in message generation [47], directly prompting
them to generate binary protocol messages yields poor results,
as this requires them to perform precise calculations and
adhere to strict binary format specifications [40].

Solution: To address this challenge, we first utilize LLMs
to generate natural-language descriptions of counterexamples,
specifying input message sequences and field values that
would violate each identified rule. Then, based on these de-
scriptions, we employ LLM agents to synthesize Python scripts
that programmatically construct the required inputs as initial
test cases, rather than directly generating raw message bytes.

III. DESIGN

In this section, we present the design of ProtocolGuard,
a hybrid framework that systematically detects protocol non-
compliance bugs. Figure 1 illustrates the overall framework
of ProtocolGuard, which comprises four components: protocol
rule extraction, LLM-guided program slicing, LLM-based in-
consistency detection, and fuzzing-based dynamic verification.

A. Protocol Rule Extraction

To determine whether a protocol implementation adheres to
its specification, we first extract normative rules from spec-
ification documents (e.g., RFCs). This step is necessary be-
cause original documents typically contain substantial content
unrelated to implementation constraints, such as background
information and optional recommendations, which can reduce
the accuracy of LLM analysis [52]. Previous research [31, 32]
indicates that RFCs employ a prescriptive tone to describe
protocol behavior, typically achieved by combining modal key-
words from RFC 2119 (e.g., MUST, SHOULD), comparative
keywords (e.g., greater or less than), and protocol-specific
keywords (e.g., message and field names) to strictly constrain
how implementations process messages. Therefore, we define
sentences as potential protocol rules if they contain at least
one protocol-specific keyword and one modal or comparative
keyword. Although LLMs demonstrate strong semantic under-
standing capabilities [57], we found that directly using them
to extract rules usually produces inaccurate results [42]. To
address this issue, we design a hybrid rule extraction method
that leverages keyword matching to identify candidate rules
with high precision and employs LLMs to refine these rules.
This method consists of three main steps.

Candidate Rule Identification. We first strip irrelevant ele-
ments (e.g., directories and HTML tags) from the specification
documents, segment the text into sentences, and then group
them according to section hierarchy. To identify potential rules,
we automatically construct three categories of keyword lists
for each specification using LLMs. We did not directly apply
existing work [32] because they rely on manual construction.
For protocol-specific keywords, we employ a background-
augmented prompting [57], incorporating the corresponding
Wireshark dissector code [13] as context. These dissectors
are designed to parse protocol messages and contain detailed
information about message structure, enabling LLMs to extract

Inconsistency .

3 Rule LLM-based Report [)
—>| Protocol Rule Extraction > . ased > Test Case Generation
Inconsistency Detection ' '
Protocol - A ¢ :
. . ule SlicedCG ' 2 : s
Specification ' Directed Protocol ' @I
""""""") ANt eieiels I '] “—>.
’ p p | ! Fuzzin, i
.| Handler Identification |ConfextFuncs| Slice Code Prunin : ' - :
| and Context Collection ” £ | : T Report & PoC
Program ! l A ! ‘.| Assertion Generation | |
\ Handlers ‘ \ . '
Code i - : ' and Instrumentation | !
i | Rule-oriented Forward SlicedCG ! : |
: Slicing . L. | ' Fuzzing-based :
LLM-guided Program Slicing /' |Program * pypamic Verification
e - Code W ~mmrmmmmmmmmmmommomses i

Fig. 1: Overview of ProtocolGuard.

all message and field names comprehensively. For modal
keywords, we directly use keywords defined in RFC 2119,
excluding optional ones (e.g., MAY, OPTIONAL) as they
lack strong obligatory force [51]. For numerical comparison
keywords, we reuse existing keyword lists in [32]. To better
align with the specific terminology and phrasing conventions
used in different specifications, we then expand these initial
keywords by leveraging LLMs to identify synonyms and
alternative expressions that occur in the document. Finally,
we perform heuristic keyword matching on each sentence,
retaining only sentences containing at least one protocol-
specific keyword and one modal or numerical comparison
keyword as candidate protocol rules.

Rule Contextualization. The rule sentences extracted through
heuristic matching often suffer from incomplete semantics and
unresolved referential dependencies, as individual sentences
typically express only partial aspects of the complete rule.
For example, RFC 8446 [21] states that ’If this extension
is present in the ClientHello, servers MUST NOT use...,
where this extension implicitly refers to a specific field (i.e.,
Supported Version) mentioned in the surrounding context.
Such incomplete contexts can lead to misinterpretations during
inconsistency analysis. To address this, we employ LLMs
to analyze the surrounding section of each candidate rule,
merging logically connected clauses (e.g., those linked by
causality or coreference) to construct semantically complete
and self-contained rules.

Structured Rule Representation. To facilitate efficient pro-
cessing by downstream components, we employ LLMs to
convert rule descriptions into a structured JSON format. Each
structured object contains the original textual rule, the con-
strained request message type, its related internal fields, and
the corresponding response message type and fields when
applicable. Listing 2 presents an example corresponding to
the motivating example discussed in Section II-A. In this
structure, req_type specifies the request message type con-
strained by the rule, and req fields lists the relevant
fields mentioned in the rule, including both the target field
and its parent fields in the message hierarchy (ClientId

2 "rule": "The Server MUST allow ClientIds which
are between 1 and 23 UTF-8 encoded bytes in
length, and MAY allow ClientIds that contain
more than 23 encoded bytes",

"req type": "CONNECT",
"req fields": ["Payload", "ClientId"],
"res_type": "CONNACK",

"res_fields":

[l

-

Listing 2: Example of structured rule representation.

nested within Payload). res_type indicates the expected
response type that the protocol implementation should return,
while res_fields includes any referenced fields.

B. LLM-guided Program Slicing

With the structured rules extracted, we employ a hybrid
program slicing method that combines LLM-based source
code analysis with LLVM-based program analysis to extract
code slice relevant to each rule. Our key insight is that protocol
implementations typically follow an event-driven architecture,
dispatching various message handler functions based on in-
coming message types [28, 50]. This pattern implies that the
key processing logic related to a specific message is usually
encapsulated within the call subgraph of its handler function.
To extract precise code slices, we use LLMs to analyze source
code and automatically locate the handler functions and field
variables described in the rule, which serve as slicing targets.
We then perform forward slicing based on LLVM, leveraging
its powerful infrastructure for precise static analysis [63].
Since LLVM-based slicing tends to include code that is data-
dependent but semantically irrelevant, we further integrate
LLMs and heuristic strategies to remove unrelated logic.
Algorithm 1 outlines the overall workflow of this approach,
which consists of three phases.

Phase 1: Handler Identification and Context Collection. To
identify the message handler functions that serve as starting
points for program slicing, we construct a specialized call
graph focused on message processing, termed MessageCG

Algorithm 1 Workflow of LLM-guided Program Slicing

Input: M (LLVM Module), Rule, LLM
Output: CodeSlice
// Phase 1: Handler Identification and Context Collection
1: MessageCG <~ EXTRACTMESSAGEPROCESSINGSUBGRAPH(M)
2: Handlers <— IDENTIFYMESSAGEHANDLERS(MessageCG, Rule, LLM)
3: ContextFuncs <— IDENTIFYCONTEXTFUNCTIONS(MessageCG, Han-
dlers, Rule, LLM)
// Phase 2: Rule-oriented Forward Slicing
4: SlicingCriteria < IDENTIFYSLICECRITERION(Handlers, MessageCG,
Rule, LLM)
5: if SlicingCriteria # () then
6 InitialSlice <~ FORWARDSLICE(MessageCG, SlicingCriteria)
7 SlicedCG <~ COMPLETESLICECODE(Handlers, InitialSlice, LLM)
8: else
9
0

SlicedCG <+ MessageCG
. end if
/I Phase 3: Slice Code Pruning
11: PrunedCG < PRUNEIRRELEVANTCODE(Handlers, SlicedCG, Rule,
LLM)
12: CodeSlice <~ GENERATECODESLICE(M, PrunedCG, ContextFuncs)

(line 1 of Algorithm 1). This approach is necessary because
complete program call graphs include numerous functions
irrelevant to message processing, and performing identification
on the entire graph would significantly expand the search
space and increase the likelihood of false positives for LLMs.
We begin by locating system calls used to receive network
data, such as recv and recvmsg, as these serve as the
network interfaces for receiving messages [50]. From these
points, we perform an inter-procedural backward data flow
analysis on the message buffer parameters of these system
calls, tracking their propagation across functions until they
reach the functions where the buffer parameter is first defined
or initialized. These originating functions are designated as
the root nodes for MessageCG. Finally, starting from the root
nodes, we conduct a forward call graph traversal, including
any function that subsequently receives the message buffer or
its derived variables as an argument. The resulting MessageCG
thereby captures the complete function tree involved in mes-
sage processing, providing a relevant subgraph for identifying
the handler functions.

We next perform a breadth-first search on the MessageCG
starting from the entry function, using an LLM to identify
the handler functions (line 2 of Algorithm 1). Specifically, at
each step of the traversal, we prompt the LLM to analyze
whether the current function contains handling logic for the
input message type specified in the rule. When the LLM
returns a positive response, we consider the function as the
message handler for the corresponding message type and save
this mapping relationship to avoid redundant identification in
future iterations. To ensure completeness, the traversal does
not terminate upon finding a handler function, but continues
exploring all remaining functions at the current depth level of
the breadth-first search. This is because the processing logic
for a single message type may be distributed across multiple
sibling functions in the call graph, such as in libcoap [12].

After identifying handler functions, we further perform
contextual analysis by tracing their reverse call paths and

using LLMs to analyze whether the upstream functions contain
connection and resource management logic (line 3 of Algo-
rithm 1). This contextual analysis is essential because mes-
sage processing logic encompasses not only handler functions
but also broader contextual operations that typically occur
upstream in the call chain before handler invocation. The
omission of these functions frequently leads to incomplete
semantic understanding and incorrect LLM analysis results.
Therefore, we collect such upstream contextual functions
ContextFuncs and incorporate them into the final code slice
after forward slicing (line 12), ensuring that the extracted code
slice captures the complete message processing workflow.
Phase 2: Rule-oriented Forward Slicing. Given the handler
functions identified for a specific rule, we perform slicing in
three steps: (1) identifying the rule-relevant variables in the
source code and map them to their LLVM instructions; (2)
conducting forward data-flow analysis to extract all instruc-
tions that are transitively dependent on these target variables;
and (3) refining the resulting code slice to ensure both syntactic
correctness and interpretable.

We begin by prompting LLMs to analyze the source code of
handler functions and identify variables representing the fields
mentioned in the rule (line 4 of Algorithm 1). We choose to an-
alyze source code rather than LLVM intermediate representa-
tion (IR) in this step, as its higher-level abstraction and human-
readable structure allow LLMs to better understand program
semantics [38]. Once the relevant variables are identified,
we utilize debug information preserved during compilation to
accurately map them to their LLVM instructions, particularly
their definitions and first uses. In addition, we prompt LLMs
to identify auxiliary variables involved in message processing
logic. These variables are not explicitly mentioned in the rules
and may have no data dependencies with field variables, but
they are essential for preserving the contextual completeness
of message processing logic. For example, variables used for
message integrity check in Mosquitto [10] (e.g., pos for
tracking the parsing position and remaining_length for
the bytes left to process) are critical for the slice, as their
absence would prevent LLMs from correctly interpreting the
program logic and result in false positives. If LLMs fail to
identify field variables, including the rules that do not involve
any fields, we default to a conservative approach: the subgraph
of MessageCG originating from the handler function is treated
as the slice code SlicedCG (line 9 of Algorithm 1).

With the target instructions identified, we generate the slice
using a worklist-based forward data-flow analysis (line 6 of
Algorithm 1). We begin by initializing a worklist with the
identified instruction set. At each iteration, we dequeue an
instruction from the worklist, analyze its def-use chains [15],
and add any newly discovered dependent instructions back into
the worklist. This process continues until the worklist is empty.
To support inter-procedural slicing, we track parameter passing
by adding the corresponding formal parameters in callees to
the worklist when variables are used as function arguments.
We also handle both direct assignments, such as the store
instruction, and indirect assignments introduced by function

calls with pointer or reference arguments to ensure continuous
tracking of variable assignments. In these cases, we add the
target variables that depend on already tracked instructions to
the worklist. Once the traversal completes, the collection of all
visited instructions constitutes the instruction-level code slice
InitialSlice. For downstream LLM analysis, we maintain a
mapping from each instruction in the slice to its corresponding
source code line number through debug information, enabling
reconstruction of a human-readable code slice.

However, the initial slice InitialSlice derived from
instruction-level data dependencies is insufficient for effective
LLM analysis due to two major limitations. Firstly, it is often
syntactically incorrect because the control flow dependencies
of the code are ignored in the previous data-flow analysis
process. For example, instructions within branch statement
bodies (e.g., 1f or switch) are included if they have data
dependencies with the slicing targets. However, the conditional
expressions of these statements are often excluded from the
slice when they lack direct data flow dependencies with those
instructions. As a result, the slice includes body statements
without the condition that governs them, breaking the syntactic
and control flow structure of the original code. Similarly,
essential control-flow changing statements are frequently ex-
cluded, such as return, break, and goto statements. Sec-
ondly, the slice may lack sufficient semantic context. Crucial
statements for program understanding, such as logging calls
or error-code assignments, are usually pruned for not being
data-dependent on the target instructions. However, these
statements contain vital clues about the program’s logic and
intent [39, 59], and their presence can enhance LLM analysis.

To address these limitations, we perform slice comple-
tion combining abstract syntax tree (AST)-based structure
reconstruction with semantic enrichment (line 7 of Algo-
rithm 1). Firstly, we use ASTs to recover missing control
flow structures. We analyze each function in the source code,
mapping its LLVM instructions to their corresponding control
structures, including line numbers and scope boundaries for
branch statements. For each instruction in the slice, we check
whether it resides within the body of a control flow statement.
If so, we include the associated condition and any required
control-flow changing statements to preserve the completeness
of control flow dependencies. Secondly, to enrich the semantic
context, we prompt LLMs to analyze the original function
body and identify non-data-dependent but semantically neces-
sary informative statements that were pruned during slicing.
These include logging calls and error-code assignments, which
offer valuable clues about control logic and program intent. We
recover such statements to improve the interpretability of the
final code slice.
Phase 3: Slice Code Pruning. Although the generated slice
SlicedCG is significantly smaller than the original MessageCG,
we apply a pruning strategy that combines heuristic filtering
with semantic analysis to further reduce the length of the slice
(line 11 of Algorithm 1), which is beneficial for improving the
performance of LLM analysis [41].

Firstly, we apply coarse-grained heuristics to prune irrel-

evant response sending functions. For rules that specify ex-
pected response types, we remove the internal implementations
of functions that send irrelevant responses, along with their
callees. Notably, we retain the call sites to these response send-
ing functions to preserve the visibility of all response behaviors
for analysis. Only their internal implementations are removed
to reduce slice length. This pruning is effective because most
protocols send only a few types of responses during single
message processing, making the detailed implementations of
functions sending other response types irrelevant to the current
rule analysis. To support this pruning, we trace backward
from network send system calls (e.g., send, sendto) and
use LLMs to map each sending function to its corresponding
response type. This mapping enables us to discard functions
that generate responses not required by the rule.

Secondly, we perform fine-grained semantic pruning to
address limitations of LLVM-based slicing. Traditional slicing
approaches tend to indiscriminately retain all code that ac-
cesses the same field variables, regardless of whether the logic
is actually relevant to the rule. For instance, in Mosquitto, the
variable topic_filter is used both for topic parsing and
for permission checking. For rules targeting only topic parsing,
functions involved solely in access control are irrelevant and
should be removed. We address this issue by leveraging LLMs
to evaluate the semantic relevance of each function to the rule
context and exclude rule-irrelevant functions from the slice. To
preserve the structured integrity of the slice, we only prune a
function if it does not serve as a critical intermediary in the
call paths.

Finally, we combine the pruned code slice PrunedCG
with the collected contextual functions ContextFuncs that
reside along the upstream call paths before the handler
function to construct the final code slice CodeSlice (line 12
of Algorithm 1).

C. LLM-based Inconsistency Detection

After extracting the code slice for each rule, we employ
LLMSs to analyze inconsistencies between the rules and their
code implementations. Unlike heuristic-based approaches [31,
32], LLMs can analyze the underlying semantics of code and
identify deeper semantic inconsistencies between the imple-
mented code and the prescribed rule.

We design a structured prompt that instructs the LLM to
act as a protocol compliance auditor, providing both the rule
description and the corresponding code slice as input. The
prompt guides the LLM through a systematic analysis process:
firstly, understanding the specific requirements of the rule;
secondly, examining the control flow and data processing
logic of the code slice; and finally, determining whether the
implementation satisfies the rule’s requirements or exhibits
inconsistencies. To ensure structured and machine-parsable
output, we require the LLM to respond in JSON format with
results indicating whether an inconsistency was detected, and
the specific location (function name and line numbers) of
any identified issues. Due to space constraints, the complete
prompt template is provided in the Appendix A. Listing 3

presents an example of the LLM-based inconsistency detection
results, corresponding to the motivating example described in
Section II-A. To enhance the reliability of the analysis, we
query LLMs three times for each rule-slice pair and apply
a self-consistency strategy [58], where the LLM analyzes its
previous outputs to converge on a conclusion.

1 1

2| "result":

3] "reason": "..., the critical violation occurs in
‘connect_handler' where externally provided

client IDs are truncated.",

4| "wviolations": [

5 {"function_name": "connect_handler",

": "/path/handlers.c", "code_lines":

"violation found!",

"filename
(3941}
6| 1
7| }

Listing 3: Example of inconsistency analysis result for the
motivating example.

D. Fuzzing-based Dynamic Verification

We employ fuzzing to automatically confirm the inconsis-
tencies identified by LL.M-based static analysis and to generate
corresponding PoCs. To achieve effective dynamical verifi-
cation, we design two complementary approaches: assertion
generation and instrumentation, and test case generation.
Assertion Generation and Instrumentation. We automati-
cally generate assertion statements from inconsistency reports
to serve as bug oracles for fuzzing-based dynamic verification.
Our key insight is that non-compliance bugs typically stem
from implementations failing to properly validate external
inputs, leading to unexpected program behaviors that devi-
ate from specification requirements [30, 32, 65]. Based on
this observation, we can proactively synthesize the expected
validation logic by analyzing both the protocol rules and their
corresponding implementation, and instrument the synthesized
logic as assertions at points of inconsistency. When fuzzing
inputs trigger unexpected behavior, these assertions detect the
deviation from expected protocol semantics and intentionally
abort program execution, which enables detection of such bugs
by mainstream fuzzers [34, 49].

We employ an LLM agent to perform this complex genera-
tion and instrumentation task through an iterative process. We
design a structured prompt based on multi-step instructions to
guide the agent, which is primarily divided into four steps:
(1) analyzing the inconsistency report and the protocol rule
to extract the expected validation constraints and conditions,
(2) examining the code implementation to identify where the
validation is missing or incorrectly implemented, (3) gen-
erating assertion statements with appropriate help functions
and instrumenting them at the identified locations, and (4)
invoking compilation tools to verify the correctness of the
generated code. If compilation errors are detected, the agent
collects the error messages and performs iterative refinement
until syntactically correct code is produced. We employ LLM
agents for this task because they can autonomously utilize

static int connect_handler (struct io_event xe) {

1
2 /).

3 // Generated assertion to validate client ID

4 assert (client_id_length_validation(c));

5 snprintf (cc->client_id, MQTT_CLIENT_ID_LEN, “%s

»

, c—>payload.client_id);

6 }

7| // Generated helper function

8| static int client_id_length_validation (struct

mgtt_connect xc) {

9 size_t original_len =
.client_id);

return (original_len < MQTT_CLIENT_ID_LEN) ;

strlen((char x)c->payload

S

1| }

Listing 4: Instrumented assertion for motivating example.

various programming tools, such as code search tools to gather
surrounding context and compilation tools to ensure code
correctness, thereby enhancing both the accuracy of assertion
logic and the reliability of code generation [60].

Figure 4 shows an example of assertion generation corre-

sponding to the motivating example shown in Section II-A.
The LLM agent generates a validation helper function
client_id_length_validation that checks whether
the incoming client ID exceeds the buffer capacity. The
assertion statement is then instrumented at line 4 before the
problematic snprintf operation. When fuzzers supply a
client ID longer than MOQTT_CLIENT_ID_LEN, the assertion
triggers a program crash, transforming the silent bug into
assertion failures with explicit crash signals.
Test Case Generation. To improve the effectiveness of
fuzzing-based dynamic verification, we use LLMs to generate
initial test cases that are both syntactically valid and inten-
tionally violate specific protocol rules. These test cases are
designed to drive execution toward the code paths associated
with inconsistencies, thereby increasing the likelihood of trig-
gering assertion failures.

We design two structured prompts to guide LLMs in syn-
thesizing executable scripts rather than raw message bytes.
This approach ensures that the generated inputs conform to
protocol syntax, without requiring LLMs to reason about low-
level packet encodings or boundary constraints. Instead, LLMs
only need to understand high-level APIs, which significantly
improves the accuracy of test case generation [40]. Specifi-
cally, we first provide an LLM with rule descriptions and in-
consistency analysis reports, prompting it to generate natural-
language descriptions of structured message sequences that are
likely to trigger the identified inconsistencies as counterexam-
ples. These counterexamples specify the message types, their
ordering, and the key field values that intentionally violate
the rule constraints. Subsequently, we use the counterexamples
as input to our second prompt, which guides an LLM agent
to synthesize executable Python scripts capable of generating
the corresponding packets in PCAP format. Additionally, the
second prompt instructs the agent to automatically execute
the generated script and invoke traffic analysis tools to verify
that the packet trace matches the expected messages. If the

verification fails, the agent collects the feedback and iteratively
refines the script until it produces a correct test case.

Directed Protocol Fuzzing. With the generated assertions
and initial test cases, we perform directed protocol fuzzing
to confirm the identified inconsistencies and generate PoCs.
We collect the code locations of all instrumented assertions as
directed targets for fuzzers. To enhance efficiency, we employ
the path pruning strategy [37, 46], focusing the fuzzer’s explo-
ration on code paths related to inconsistencies while avoiding
unnecessary exploration of unrelated program regions.

IV. IMPLEMENTATION

We implemented a prototype of ProtocolGuard comprising
approximately 9k lines of C++ and 2.9k lines of Python code.
The implementation consists of two primary components: a
static analysis module for identifying protocol inconsisten-
cies and a dynamic verification module for confirming them
through directed fuzzing.

Static Analysis Component. The static analysis module
encompasses protocol rule extraction, LLM-guided program
slicing, and LLM-based inconsistency detection. We imple-
mented the rule extraction component in Python using the
Ixml library [16] for document parsing. The program slic-
ing component is built on LLVM passes using C++. We
used GLLVM [27] to generate whole-program LLVM IR and
Clang’s AST library [3] to preserve control flow informa-
tion for slice completion. Additionally, we used SVF [55]
to address the challenge of indirect function calls in static
analysis. We employed DeepSeek series models for their state-
of-the-art performance and cost efficiency [18]. To optimize
for different task requirements, we employed the powerful
DeepSeek R1 [36] for inconsistency detection, while the more
efficient DeepSeek V3 [45] was used for program slicing,
where low latency is critical for an iterative workflow. Due
to space limitations, all complete prompt templates used in
ProtocolGuard are included in our repository.

Dynamic Verification Component. The dynamic verification
module integrates assertion generation and instrumentation,
test case generation, and directed protocol fuzzing. For as-
sertion and test case generation, we used Cursor [7] as an
LLM agent platform, automated through cursorkleos [5] to
minimize manual intervention and enable batch processing.
We selected Claude 3.7 Sonnet provided by Cursor for its
superior performance in the code generation task compared
to DeepSeek series models. For test case generation, we
employed Scapy [22], a widely-used Python library for packet
manipulation and generation, to synthesize executable test
scripts. The generated packets are saved in PCAP format and
validated using tshark [26] to verify message sequence correct-
ness. We built our fuzzing framework upon AFLNet [49], the
state-of-the-art gray-box fuzzer for network protocols. We also
integrated SelectFuzz’s [46] selective instrumentation strategy
to optimize directed fuzzing performance.

V. EVALUATION

To evaluate the effectiveness of ProtocolGuard, we con-
ducted comprehensive experiments on real-world protocol
implementations and aim to answer the following questions:
« RQ1. Can ProtocolGuard effectively detect non-compliance

bugs in real-world protocol implementations? (Section V-A)
« RQ2. How does ProtocolGuard compare to existing state-

of-the-art tools in detecting protocol inconsistencies? (Sec-

tion V-B)

« RQ3. Can the generated assertions effectively serve as
oracles for fuzzing to verify non-compliance bugs? (Sec-
tion V-C)

« RQ4. Can the generated test cases improve the efficiency
of dynamic verification? (Section V-D)

Dataset. We selected 11 open-source protocol implementa-
tions written in the C language, covering six widely adopted
network protocols, as shown in Table I. Our selection criteria
were: (1) Protocol significance: We chose protocols critical to
modern network infrastructure, covering IoT communication
(MQTT, CoAP), secure transport (TLS 1.3), file transfer
(FTP), and network services (DHCPv6); (2) Implementation
diversity: We selected implementations with varying scales
(4.4K-1456.3K LoC), architectural approaches, and target de-
ployment environments; (3) Community activity: All projects
and their developers show active development with recent
community engagement. This diverse benchmark enables com-
prehensive evaluation of ProtocolGuard’s effectiveness across
different protocol complexities and implementation styles.

Subject Version LoC Protocol | Specification

Sol 373d8 44K | MQTT 3.1.1 | OASIS MQTT 3.1.1
TinyMQTT | 6226ad 11.5K | MQTT 3.1.1 | OASIS MQTT 3.1.1
Mosquitto 849e0f 46.2K MQTT 5.0 | OASIS MQTT 5.0
libcoap 17c3fe 45.3K CoAP | RFC 7252
FreeCoAP 3adc2e 26.6K CoAP | RFC 7252
pure-ftpd 381857 222K FTP | RFC 959 et al.*
uFTP 646404 6.7K FTP | RFC 959 et al.
TLSE laf154 41.8K TLS 1.3 | RFC 8446

wolfSSL 76750 1456.3K TLS 1.3 | RFC 8446
Dnsmasq 291 33.4K DHCPv6 | RFC 8415

NDHS 4b2728 5.6K DHCPv6 | RFC 8415

TABLE I: Protocol implementations used for evaluation.

Environment. We conducted all experiments in Docker im-
ages on a local machine with one Intel(R) Xeon(R) Gold
6226R CPU and 256 GB RAM, and a Ubuntu 22.04 LTS
system. We used default parameters for the DeepSeek model
for our analysis.

A. Discovered Real-world Non-compliance Bugs

Table II shows the bug discovery effectiveness of Protocol-
Guard in 11 open-source protocol implementations. Overall,
ProtocolGuard extracted 420 rules from the official specifi-
cations and systematically analyzed these implementations,
detecting 181 inconsistencies with an overall precision rate
of 90.6%. After verification, we confirmed 158 unique non-
compliance bugs, of which 156 were previously undiscovered

*RFC 959, 2228, 2389, 2428, 3659

new bugs, and 2 were known but not yet fixed bugs. At the time
of writing, we reported all 158 bugs to the relevant vendors,
with 70 confirmed and 17 fixed.

The discrepancy between detected inconsistencies (181) and
bugs (158) stems from three factors. Firstly, some imple-
mentations intentionally deviate from specifications to provide
extended functionality (e.g., Mosquitto plugins), which we
classify as functional features rather than bugs. Secondly,
multiple inconsistencies often point to the same underlying
issue in the code. Thus, we merge these related findings into
one single bug. Lastly, certain behaviors violate the RFC
specifications used in our evaluation but have been permitted
in updated standard drafts, so we do not include them in the
final bug statistics after discussing with the vendors.

. Inconsistencies Non-compliance
Subject Rules TP FP Precision Bugs
Sol 83 39 2 95.1% 39
TinyMQTT 83 29 3 90.6% 27
Mosquitto 118 15 2 88.2% 4
libcoap 30 4 1 80.0% 2
FreeCoAP 30 2 0 100.0% 2
pure-ftpd 54 17 2 89.5% 13
uFTP 54 18 1 94.7% 15
TLSE 58 25 2 92.6% 25
wolfSSL 58 7 1 87.5% 7
Dnsmasq 77 12 2 85.7% 11
NDHS 77 13 1 92.9% 13
Total 420 | 181 17 90.6 % 158

TABLE II: Bug discovery results of ProtocolGuard. The Rules
indicates the total number of valid rules identified by Protocol-
Guard, Inconsistencies indicates the total number of inconsis-
tencies found between rules and codes, Non-compliance Bugs
indicates the number of bugs after verification.

To better understand the diversity of these bugs, we clas-
sified the 158 discovered non-compliance bugs by their root
causes, as shown in Table V in Appendix B. The most common
bug category is related to message parsing (labeled as Parsing),
which accounts for approximately 37% of the total bugs.
These bugs primarily result from the inappropriate validation
of input messages. Protocol state violations (State) are the
next most common and account for 22%, typically associ-
ated with improper maintenance of the state machine. The
remaining bugs are distributed across error handling (Error,
16%), session management (Session, 13%), and security mech-
anisms (Security, 12%). This distribution reveals an important
insight: while network message parsers have been shown to
be prone to errors [65, 66], there are more bugs occurring
in the deeper protocol processing logic, demonstrating the
necessity of comprehensive testing of protocol implementation
compliance beyond parser-level validation.

These non-compliance bugs not only compromise program
robustness but also pose severe security risks, enabling attack-
ers to bypass access controls, launch denial-of-service attacks,
or compromise communication integrity and confidentiality.
Together, these findings highlight the critical importance of
protocol compliance testing for software security [54]. To
further illustrate the security impact of these discoveries, we

discuss three representative bugs as case studies.

Case Study 1: TLS 1.3 Downgrade via Version Negotiation
Flaw in wolfSSL. This bug, identified as ID 61 in Table V,
demonstrates a critical flaw in wolfSSL’s TLS version negoti-
ation mechanism. Listing 5 presents the vulnerable code seg-
ment. RFC 8446 [21] mandates that ’If a Supported Versions
extension is present in the ClientHello, servers MUST NOT
use the ClientHello.legacy_version value for version negoti-
ation and MUST use only the supported_versions extension
to determine client preferences’. This rule ensures a reliable
mechanism for negotiating TLS 1.3, preventing inadvertent or
malicious downgrades. However, wolfSSL’s implementation
violates this requirement by prematurely triggering a down-
grade decision based solely on the legacy_version field
(lines 4-7) before processing the supported_versions
extension (line 11), ignoring the priority specified in the RFC.
Specifically, in scenarios where both legacy_version
and supported_versions are set to 0x0304 (TLS 1.3),
wolfSSL erroneously forces a downgrade to TLS 1.2 (line 7)
instead of proceeding with the TLS 1.3 handshake. This vio-
lation eliminates TLS 1.3’s forward secrecy guarantees [24],
enabling attackers who later compromise the server’s private
key to retroactively decrypt all previously captured communi-
cations between the affected client and server.

1| int DoTlsl3ClientHello(...) {

2 if (!ssl->options.dtls) {

3 // RFC violation: checking legacy_version
first

4 if (args->pv.major > SSLv3_MAJOR || (args—->pv
.major == SSLv3_MAJOR &&

5 args—->pv.minor >= TLSv1_3_MINOR)) {

6 // Downgrade to TLS 1.2

7 wantDowngrade = 1;

8 }

9 }

10 if (!wantDowngrade)

11 ret = DoTlsl3SupportedVersions(ssl, ...);

12 if (wantDowngrade)

13 ret = DoClientHello(ssl, ...);

14| }

Listing 5: Simplified code of case study 1.

Case Study 2: Missing Initial CONNECT Packet Check in
Sol. This bug, identified as ID 93 in Table V, reveals a critical
protocol state machine flaw in Sol. The MQTTv3.1.1 specifica-
tion [17] explicitly requires that ’After a Network Connection
is established by a Client to a Server, the first Packet sent
from the Client to the Server MUST be a CONNECT Packet’.
This rule is fundamental to the MQTT protocol’s security
model, as the CONNECT packet contains key information for
client authentication and session state management. However,
Sol’s packet processing logic lacks state verification that would
reject non-CONNECT packets in the initial state. This allows
an attacker to bypass the server’s authorization policy by
directly sending a SUBSCRIBE packet with a specific topic
filter without completing the required initial authentication

Project Cursor (Claude 3.7) Cursor (DeepSeek R1) ProtocolGuard (DeepSeek R1)
TP/FP/FN Precision Recall TP/FP/FN Precision Recall TP/FP/FN Precision Recall
Sol 37/3/7 92.5% 84.1% 16/5/28 76.2% 36.4% 39/2/5 95.1% 88.6%
pure-ftpd 16/9/4 64.0% 80.0% 10/14/10 41.7% 50.0% 17/2/3 89.5% 85.0%
libcoap 5/3/2 62.5% 71.4% 4/7/3 36.4% 57.1% 4/1/3 80.0% 57.1%
TLSE 21/5/7 80.8% 75.0% 18/11/10 62.1% 64.3% 25/2/3 92.6 % 89.3%
Average 20/5/5 71.7% 76.8% 12/37/13 49.3% 52.0% 21/2/4 86.3% 81.3%

TABLE III: Comparison of inconsistency discovery results by ProtocolGuard and Cursor.

step, thereby obtaining sensitive messages [54].

Case Study 3: Missing Re-authorization after AUTH in
uFTP. This bug, labeled as ID 55 in Table V, shows an authen-
tication state management flaw in uFTP’s handling of secure
channel negotiation. RFC 2228 [19] requires that "The AUTH
command, if accepted, removes any state associated with prior
FTP Security commands. The server must also require that the
user reauthorize...’. This rule defines a critical security control
strategy, as the AUTH command is responsible for negotiating
and initiating a security mechanism (e.g., TLS) to encrypt the
control channel, preventing attackers from leveraging creden-
tials captured over insecure channels to hijack subsequently
established secure sessions. However, uFTP lacks logic to clear
existing authentication state during AUTH command process-
ing, leading to a session hijacking vulnerability exploitable
in Man-in-the-Middle (MitM) attacks. When a MitM attacker
observes plaintext authentication (USER/PASS commands),
they can subsequently inject an AUTH command into the
same TCP session. Due to uFTP’s failure to clear authen-
tication state during AUTH processing, the attacker inherits
the authenticated session context within the newly established
TLS tunnel. Therefore, the attacker can execute arbitrary
high-risk commands within the encrypted channel without re-
authentication, effectively bypassing network-based intrusion
detection systems that rely on plaintext traffic analysis

B. Comparison with Existing Tools

To evaluate the effectiveness of LLM-guided program slic-
ing and the inconsistency detection capability of Protocol-
Guard, we conducted a comparative analysis against existing
state-of-the-art methods.

We initially considered several related works, but found
them unsuitable for a direct comparison. The source code for
RIBDetector [32] is unavailable, while tools like Pardiff [65]
and ParCleanse [66] are focused on inconsistency bugs within
message parsers and are difficult to apply to entire protocol
implementations. Similarly, differential fuzzing lacks a general
implementation supported for diverse protocols and requires
significant manual analysis. Therefore, we selected Cursor [7],
a state-of-the-art Al code editor, as the most relevant baseline.
We chose Cursor for its advanced agentic capabilities, such
as automated context collection, which are more powerful
than those in other tools like Github Copilot [2, 11]. For the
evaluation, we employed two leading LLMs within Cursor:
DeepSeek R1, to maintain consistency with ProtocolGuard,
and Claude 3.7 Sonnet, both of which are the top coding

10

models [25]. To ensure fairness, we manually provided Cursor
with the same rules and prompts used by ProtocolGuard.

We manually analyzed the results produced by Protocol-
Guard and Cursor to determine true positives (TP), false
positives (FP), and false negatives (FN), from which we
calculated precision and recall rates. To ensure the reliability
of the evaluation, we invited two independent researchers
with experience in protocol vulnerability analysis to manually
analyze each result. We then cross-validated the results from
the two researchers, and any discrepancies were resolved by
a third researcher to eliminate potential bias. Due to the
time-intensive nature of manual analysis, we conducted this
comprehensive evaluation on four programs: Sol, pure-ftpd,
libcoap, and TLSE.

Table III shows the detailed results of ProtocolGuard and
Cursor on these four programs. Overall, ProtocolGuard outper-
forms both Cursor configurations. On average, ProtocolGuard
correctly identifies 21 inconsistencies (TP) with only 2 FP
results and 4 FN results, achieving a mean precision of 86.3%
and a recall of 81.3%. ProtocolGuard outperforms Cursor with
Claude 3.7 (71.7% precision, 76.8% recall) and is significantly
better than Cursor with DeepSeek R1 (49.3% precision, 52.0%
recall). Notably, the substantial performance gap between
ProtocolGuard and Cursor when both use the same DeepSeek
R1 model demonstrates the effectiveness of ProtocolGuard,
which achieves more accurate inconsistency detection than
general-purpose Al code editors.

We conducted an investigation into the root causes of FPs
and FNs listed in Table II and Table III produced by Protocol-
Guard. The root causes can be categorized into four primary
types. Firstly, the program slicing strategy of ProtocolGuard
may miss critical processing logic in protocol implementations
that use callback-based design patterns. For example, Sol
decouples message processing from response transmission and
connection handling, resulting in these functions not residing
on the same call path as the message handler functions.
Consequently, ProtocolGuard fails to capture the concrete
implementations of cleanup functions, such as connection
termination. For rules that depend on the correct handling of
such cleanup logic, this omission may lead LLMs to perceive
missing behavior when analyzing inconsistencies, resulting in
FPs and FNs. Secondly, certain protocol implementations (e.g.,
libcoap) support multiple transport layer protocols (e.g., UDP,
TCP, WebSocket), which involve numerous distinct processing
functions in the message handler functions. This makes Proto-
colGuard simultaneously include parsing code from different
transport layer protocols within the same slice, resulting in an

excessively large context and may even exceed the maximum
context limitation of the LLM (DeepSeek R1’s 128K token
limit), degrading the LLM’s reasoning capabilities [41]. There-
fore, compared to other subjects, ProtocolGuard exhibits lower
precision and recall on libcoap. Thirdly, when rule-relevant
variables are encapsulated within data structures and only
accessed in deeply called functions, ProtocolGuard cannot
trace across intermediate functions in the call chain when
performing data dependency analysis, resulting in code slices
that lack the concrete implementations of key processing
functions. Lastly, some errors stem from the inherent reasoning
limitations of LLMs. Even when provided with accurate code
slices, LLMs sometimes fail to fully comprehend complex
logical relationships and intricate program semantics.

We further analyzed the performance of the baseline tool,
Cursor. When using DeepSeek R1, Cursor’s performance
is significantly inferior to that of ProtocolGuard using the
same model. We observed that this disparity primarily stems
from DeepSeek R1’s unstable function-calling capabilities [9],
which prevents Cursor from using tools to retrieve relevant
code, resulting in severe hallucinations and errors. In contrast,
Cursor using Claude 3.7 demonstrated better performance,
which we attribute to this model’s superior tool invocation
capabilities, combined with high-quality prompts identical
to those used in ProtocolGuard, significantly enhancing the
completeness of its context collection [6]. Nevertheless, Cursor
relies on keyword extraction from user queries and vector
similarity search from codebases to grep relevant code snip-
pets, which cannot systematically capture cross-function data
dependencies and control flow relationships, resulting in the
underperformance of Cursor in certain scenarios.

C. Effectiveness of Assertion Generation and Instrumentation

To evaluate whether the generated assertion statements
are correct and can effectively guide fuzzing to verify non-
compliance bugs, we conducted a comprehensive evaluation
of the assertion generation and instrumentation component.

We evaluated the effectiveness from three perspectives.
Firstly, we used each project’s native compilation toolchain to
verify the syntactic correctness of the code instrumented with
assertions. Secondly, for all assertions that passed compila-
tion, we conducted a manual review to verify their semantic
accuracy, confirming whether each assertion precisely reflected
the constraints of the corresponding protocol rules and would
abort programs upon receiving non-compliant input. Finally,
for semantically correct assertions, we performed directed
protocol fuzzing with a 24-hour time budget to determine
whether these assertions could be triggered by the fuzzer,
leading to program crashes, thereby validating their utility as
effective bug oracles.

Table IV presents the detailed evaluation results. All asser-
tions generated by ProtocolGuard successfully passed compi-
lation verification, with an average implementation accuracy
of 88.9% and an average crash-triggering rate of 68.4%

11

during fuzzing-based dynamic verification. Overall, the asser-
tion generation module can accurately generate appropriate
assertion statements and can, in most scenarios, generate PoCs
that violate protocol rules, effectively assisting analysts in
confirming inconsistencies detected by static analysis.

Protocol Total Syntactic Semantic (Rate) Crash (Rate)
Sol 41 41 39 (95.1%) 32 (78.0%)
TinyMQTT 32 32 27 (84.4%) 24 (75.0%)
Mosquitto 17 17 15 (88.2%) 12 (70.6%)
libcoap 5 5 4 (80.0%) 2 (40.0%)
FreeCoAP 2 2 2 (100.0%) 2 (100.0%)
pure-ftpd 19 19 19 (100.0%) 17 (89.5%)
uFTP 19 19 18 (94.7%) 15 (78.9%)
TLSE 27 27 22 (81.5%) 15 (55.6%)
wolfSSL 8 8 6 (75.0%) 4 (50.0%)
Dnsmasq 14 14 13 (92.9%) 9 (64.3%)
NDHS 14 14 12 (85.7%) 7 (50.0%)
Average 18 18 16 (88.9%) 13 (68.4%)

TABLE IV: Results of assertion generation and instrumenta-
tion analysis. The 7ofal indicates the total number of assertions
generated, Synfactic indicates the number of assertions that
were successfully compiled, Semantic (Rate) indicates the
number and accuracy rate of semantically correct assertions
generated, and Crash (Rate) indicates the number and rate of
unique crashes triggered by the assertion failure.

We conducted a root cause analysis of failed assertion
generation and observed three primary failure reasons. Firstly,
due to the lack of a dynamic program execution context, LLMs
often make incorrect assumptions about variable states and
control flows. For example, we observed that some generated
assertions use NULL checks to detect empty fields, while
the actual protocol implementation treats empty strings as
indicators of missing values. As a result, such assertions are
never triggered during execution. Secondly, when protocol
implementations lack explicit validation logic, LLMs must
independently understand the implementation context and pro-
tocol rules to synthesize missing validation code. However,
when multiple data structures contain members with similar
names, the LLM agent (i.e., Cursor) sometimes incorrectly
selects variables and types for logic generation, as it relies on a
keyword-based tool (e.g., Grep) and vector similarity search to
infer context [4]. This deviation in context understanding can
easily lead to hallucinations during code generation, resulting
in the synthesis of semantically invalid or even completely in-
correct validation logic. Moreover, in cases where the missing
logic is inherently complex, such as logic that spans multiple
functions or involves implicit control conditions, the LLM’s
capabilities may be insufficient to accurately understand the
detailed necessary context, resulting in hallucinations or the
generation of semantically invalid validation logic.

We also investigated the root causes of assertions that fail to
trigger during dynamic verification. After excluding incorrect
results of assertions, we found that the primary reason was
that the fuzzing inputs failed to reach the execution paths
of the assertions due to the following reasons. Firstly, many
assertions are located in code modules that require specific
configurations to be activated. If the configuration is not
enabled, these code paths are inaccessible to fuzzers. Secondly,

the fuzzer (i.e., AFLNet) lacks awareness of protocol formats,
and its mutation strategy is prone to generating invalid inputs
that disrupt message structures, causing most test cases to
be rejected during early validation. This has a particularly
severe impact on highly complex and structured protocols,
making it difficult to trigger assertion statements located deep
within the protocol state path in DHCP and TLS protocol
implementations. Lastly, it is challenging for AFLNet to
trigger assertions in multi-party interaction logic because its
two-party fuzzing model limits exploration of assertions in
MQTT protocol implementations [54].

D. Effectiveness of Test Case Generation

To validate whether the test case generation component
improves the efficiency of fuzzing-based dynamic verification,
we conducted a comparative experiment. Our hypothesis is
that high-quality, rule-specific initial seeds should signifi-
cantly outperform random seeds in guiding the fuzzer toward
assertion-instrumented code paths. In this experiment, we
compared the crash discovery performance of AFLNet using
two sets of initial seeds. The experimental group used seeds
from ProtocolGuard, which produces syntactically valid and
rule-violating message sequences. The control group, as a
baseline, used randomly generated messages for each protocol
message type. To ensure a fair comparison, all other fuzzing
configurations remained identical for both groups.

Figure 2 summarizes the results of the comparative exper-
iment evaluating the impact of initial test case generation on
dynamic verification effectiveness. Across all tested programs,
AFLNet equipped with seeds generated by ProtocolGuard con-
sistently outperformed its baseline counterpart using random
seeds, discovering on average 155.2% more assertion-triggered
unique crashes. Notably, this performance gain was partic-
ularly significant for complex protocols such as DHCP and
TLS, where ProtocolGuard achieved improvements ranging
from 275% to 600%, demonstrating the clear advantage of
semantically guided test case generation in exposing non-
compliance bugs.

To understand the underlying reasons for this improvement,
we further investigated why ProtocolGuard’s test case genera-
tion approach is more effective than random seeds. We found
that ProtocolGuard can generate high-quality, syntactically
valid, and highly targeted initial seeds by leveraging proto-
col specifications and known violation patterns. These high-
quality seeds guide the fuzzer to directly explore deep and po-
tentially flawed logic paths. In contrast, a fuzzer starting with
random seeds must rely on its inefficient mutation strategies to
generate inputs that can trigger bugs, a task that is exceedingly
difficult for complex protocols. In summary, the test case
generation module of ProtocolGuard significantly enhances the
effectiveness of fuzzing, improving its capability to validate
potential non-compliance bugs in protocol implementations.

12

35 AFLNet (Random)
352 AFLNet (ProtocolGuard)
5 30
E
5 25 224
=2
< 20 -
4 17
—
O 15 4 14 15 15
(V] 12
3 11
CEY 10 H 9
7
]
5 4 4
12 22 1 2 1
O T T T T T T T T T T T
> o] O R & o & H
S L E LRSS E & & F R
©STE LSS & S
UG PN & ¢
RONERN &R Q

Fig. 2: Comparison of crash discovery results for different
initial test case selections.

VI. DISCUSSION AND LIMITATIONS

ProtocolGuard has successfully identified many non-
compliance bugs across various protocol implementations.
However, it still has certain limitations. In this section, we
discuss these limitations and potential solutions for future
improvements.

Inaccuracy of LLM-guided Program Slicing. Due to the
diversity of program design patterns and implementation styles
in protocol software, our slicing approach faces several limita-
tions that can affect its precision and completeness. Firstly, our
slicing strategy relies on identifying handler-centric call paths.
This design is less effective for protocol implementations that
adopt decoupled, callback-based architectures, where critical
logic such as connection cleanup or response transmission
is implemented outside the direct call path of the message
handler function. As a result, essential code may be excluded
from the slice, leading to an incomplete context for LLM
analysis and potential false negatives. Secondly, Protocol-
Guard leverages SVF to resolve indirect function calls during
slicing. However, SVF tends to be conservative, resolving
each indirect call to a broad set of possible targets. This
often introduces irrelevant functions into the slice process,
unnecessarily enlarging the context passed to the LLM and
potentially degrading analysis quality. Thirdly, the current
implementation of ProtocolGuard is limited to C language-
based protocol implementations. Extending support to the C++
language requires heavy engineering challenges, primarily
due to the complexity introduced by object-oriented features,
which complicate LLVM IR-based static analysis. In future
work, we plan to enhance our framework with advanced anal-
ysis techniques capable of accurately resolving virtual function
calls and recovering class hierarchies, thereby enabling robust
support for C++-based protocol implementations.

Inaccuracy in Assertion Generation. ProtocolGuard employs
LLM-generated assertion statements as bug oracles to vali-
date potential non-compliance bugs through directed fuzzing.
While this approach effectively uncovers subtle logic viola-

tions, it faces two primary limitations. Firstly, the accuracy
of assertion generation relies heavily on sufficient contextual
information and a precise understanding of the code. However,
the current LLM agent (e.g., Cursor) operates solely on static
code and lacks access to the program’s dynamic execution
state. Thus, it may misinterpret control flow or variable state,
leading to the generation of invalid or ineffective assertions.
In future work, we plan to incorporate dynamic execution
information to help LLMs better understand program behavior
and generate more precise assertions [35].

Ineffectiveness of Fuzzing-based Dynamic Verification. The
effectiveness of dynamic validation depends on the perfor-
mance of fuzzing strategies. Although ProtocolGuard adopts
fuzzers like AFLNet and SelectFuzz, these strategies often
generate syntactically invalid inputs that are rejected during
early message parsing. These inputs may fail to exercise the
intended logic paths, ultimately preventing the triggering of
assertion failures. To address this limitation, we plan to inte-
grate protocol-aware mutation strategies or symbolic execution
techniques to help fuzzers explore complex conditional paths
that are otherwise difficult to reach.

Manual Effort. While ProtocolGuard is designed to oper-
ate with a high degree of automation, certain stages of its
workflow still require manual intervention. Firstly, during
assertion and test case generation, a single LLM session
may not always complete the entire task in one pass. This
can cause the process to terminate prematurely, requiring the
user to manually prompt the agent to resume and complete
the remaining steps. Secondly, the generated assertions can
be mutually exclusive in practice. When one assertion is
frequently triggered, it may dominate the fuzzing process and
prevent the exploration of other assertion-instrumented paths.
To ensure broader coverage, users must manually comment out
the already-triggered assertions and restart fuzzing to enable
discovery of the remaining ones. However, this limitation can
be addressed by adopting a memory-based feedback, inspired
by AFL++. Specifically, we can use a shared memory region to
track the triggering status of all assertions. Once an assertion
is triggered, its state is recorded in memory, and the assertion
is automatically disabled in subsequent executions.

VII. RELATED WORK

Static Analysis. Several static analysis techniques have been
proposed to detect non-compliance bugs in protocol imple-
mentations. RIBDetector [32] extracts normative statements
from RFCs as rules and uses heuristic patterns to deter-
mine whether the corresponding condition checking logic is
present in the code. EBugDec [31] targets protocol bugs by
analyzing inconsistencies introduced during the evolution of
RFC documents. ParDiff [65] applies differential testing in
static analysis to check for inconsistencies in network proto-
col parsers. PARCLEANSE [66] leverages LLMs to extract
message formats from protocol specifications and uses them
as bug oracles to validate parser correctness. However, existing
work either relies on heuristic methods that suffer from low
precision or is limited to specific functional modules within

13

protocol implementations. Moreover, they require substantial
manual effort to verify the numerous issues identified by static
analysis.

Protocol Fuzzing. Fuzzing has been widely adopted for dis-
covering bugs in protocol implementations. AFLNet [49] is the
first gray-box protocol fuzzer that incorporates response codes
as feedback. Recent work [47] has also explored incorporating
LLMs into protocol fuzzing to improve test case generation.
However, these approaches often rely on memory sanitizers
to detect bugs, making them ineffective for identifying silent
non-compliance bugs. Differential fuzzing is another prevalent
strategy, which detects inconsistencies by cross-executing the
same input across multiple implementations. This strategy
has been applied to various protocols, including TCP [67],
DNS [61], MQTT [54], and HTTP [48]. Despite its effective-
ness, differential fuzzing has inherent limitations. If all imple-
mentations produce consistent outputs for a faulty behavior,
the inconsistency may be undetectable. Additionally, not all
inconsistencies imply actual bugs; thus, manual analysis is still
required to determine root causes, imposing a heavy burden on
developers. In contrast, ProtocolGuard unifies LLM reasoning
capability, static analysis, and directed fuzzing to enhance
detection accuracy for non-compliance bugs and minimize the
need for manual validation.

Directed Fuzzing. Directed fuzzing aims to efficiently validate
known or potential bugs by guiding input mutations toward
specific program locations or paths. AFLGo [29] is the first
directed fuzzer that uses distance metrics to guide fuzzing
toward target code locations. Subsequent approaches, such
as Beacon [37] and SelectFuzz [46], introduce path-pruning
techniques to improve guidance precision by avoiding paths
unrelated to the target. Dsfuzz [43] and SDFuzz [43] fur-
ther enhance directed fuzzing by incorporating control and
data dependencies. However, existing directed fuzzers are
not designed for network protocols. To address this gap,
ProtocolGuard integrates SelectFuzz into AFLNet, leveraging
SelectFuzz’s selected instrumentation strategy, which is readily
compatible with AFLNet’s protocol-aware execution model, to
improve directed fuzzing performance in the protocol context.

VIII. CONCLUSION

In this paper, we proposed ProtocolGuard, a novel hybrid
framework for detecting non-compliance bugs in protocol
implementations. ProtocolGuard automatically extracts proto-
col rules from specifications and uses LLM-guided program
slicing to generate rule-relevant code slices. It then analyzes
semantic inconsistencies between rules and codes with the
help of LLMs to identify potential non-compliance bugs.
To validate these findings, ProtocolGuard generates assertion
statements that convert the silent bugs into assertion failures
and uses fuzzing to trigger them and generate concrete PoCs.
In addition, ProtocolGuard incorporates a rule-specific test
case generation approach to further enhance dynamic verifica-
tion efficiency. We implemented a prototype of ProtocolGuard
and evaluated it on 11 protocol implementations. The results

demonstrate that ProtocolGuard effectively detected 158 non-
compliance bugs with high precision, significantly reducing
the manual effort required for bug validation.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their comprehensive
feedback. This work was supported by Key R&D Program
of Shandong Province, China(No. 2024CXGC010114), Na-
tional Natural Science Foundation of China under Grant(No.
62372268), Shandong Provincial Natural Science Foundation,
China (No. ZR2022LZHO013, No. ZR2021LZH007). The work
was also supported in part by the Zhejiang Provincial Natural
Science Foundation of China (No. LY22F020022), in part
by the National Natural Science Foundation of China (No.
61902098).

ETHICS CONSIDERATIONS

We conducted this study by establishing ethical guide-
lines [62], and all findings were responsibly disclosed to the
affected vendors. To prevent the discovered vulnerabilities
from being exploited, all experiments were conducted in
isolated local environments to ensure they did not affect any
production systems.

REFERENCES

[1] Aws: Conflicting mqtt client ids. https://docs.aws.amazo
n.com/iot-device-defender/latest/devguide/audit-chk-con
flicting-client-ids.html, Accessed on 2025-7-19.

[2] Battle of the ai agents: Cursor vs. copilot. https://near
form.com/digital-community/battle-of-the-ai-agents/,
Accessed on 2025-7-20.

[3] Clang 21.0.0git documentation: Introduction to the clang
ast. https://clang.llvm.org/docs/IntroductionToTheClang
AST.html, Accessed on 2025-7-14.

[4] Cursor docs: Agent tools. https://docs.cursor.com/en/age
nt/tools, Accessed on 2025-7-26.

[5] Cursor ide: Unleash lightning-fast automation. https:
//github.com/kleosr/cursorkleosr, Accessed on 2025-7-
14.

[6] Cursor prompt engineering best practices. https://forum.
cursor.com/t/cursor-prompt-engineering-best- practices/1
592, Accessed on 2025-7-23.

[7] Cursor: The ai code editor. https://cursor.com/, Accessed
on 2025-7-14.

[8] Cve-2022-46505 detail. https://nvd.nist.gov/vuln/detail
/CVE-2022-46505, Accessed on 2025-7-20.

[9] Discussion abount deepseek r1’ function calling. https:
/lgithub.com/deepseek-ai/DeepSeek-R1/issues/9,
Accessed on 2025-7-23.

[10] Eclipse mosquitto an open source mqtt broker. https:
//github.com/eclipse-mosquitto/mosquitto, Accessed on
2025-7-11.

[11] Github copilot - your ai pair programmer. https://github
.com/features/copilot, Accessed on 2025-7-26.

[12] Github repository: A coap (rfc 7252) implementation in
c. https://github.com/obgm/libcoap/blob/433f483f2c29b

14

49a292e0a368d39beb6022eft88f/src/coap_net.c#L.4383,
Accessed on 2025-7-12.

Github repository: Wireshak dissectors. https://github
.com/wireshark/wireshark/tree/master/epan/dissectors,
Accessed on 2025-7-10.

Lightweight mqtt broker, written from scratch. io is
handled by a super simple event loop based upon the
most common io multiplexing implementations. https:
//github.com/codepr/sol, Accessed on 2025-7-19.

Llvm programmer’s manual. https://llvm.org/docs/Prog
rammersManual.html#iterating-over-def-use-use-def-c
hains, Accessed on 2025-7-12.

Ixml - xml and html with python.
Accessed on 2025-7-26.

Mqtt version 3.1.1. https://docs.oasis-open.org/mqtt/mqt
t/v3.1.1/0s/mqtt-v3.1.1-0s.html, Accessed on 2025-7-19.
Nature: China’s cheap, open ai model deepseek thrills
scientists. https://www.nature.com/articles/d41586-025
-00229-6, Accessed on 2025-7-14.

Rfc 2228: Ftp security extensions. https://www.rfc-edito
r.org/rfc/rfc2228.txt, Accessed on 2025-7-22.

Rfc 5246: The transport layer security (tls) protocol
version 1.2. https://datatracker.ietf.org/doc/html/rfc5246,
Accessed on 2025-7-12.

Rfc 8446: The transport layer security (tls) protocol
version 1.3. https://datatracker.ietf.org/doc/html/rfc8
446#page-39, Accessed on 2025-7-12.

[22] Scapy: the python-based interactive packet manipulation
program & library. https://github.com/secdev/scapy,
Accessed on 2025-7-13.

Shodan: Matrixssl. https://www.shodan.io/search?query
=MatrixSSL, Accessed on 2025-7-20.

Tls 1.3 in practice:how tls 1.3 contributes to the internet.
https://dl.acm.org/doi/fullHtml/10.1145/3442381.345005
7, Accessed on 2025-7-22.

Top 5 ai coding models of march 2025: A comparative
review. https://kitemetric.com/blogs/top-5-ai-coding-m
odels-of-march-2025-a-comparative-review, Accessed
on 2025-7-22.

tshark.dev capture lifecycle with tshark. https://tshark.d
ev/, Accessed on 2025-7-26.

Whole program llvm: wllvm ported to go. https://github
.com/SRI-CSL/gllvm, Accessed on 2025-7-14.
Csfuzzer: A grey-box fuzzer for network protocol using
context-aware state feedback. Computers & Security,
157:104581, 2025.

Marcel Bohme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing.
In Proceedings of the 2017 ACM SIGSAC conference
on computer and communications security, pages 2329—
2344, 2017.

Larissa Braz, Enrico Fregnan, Giil Calikli, and Alberto
Bacchelli. Why don’t developers detect improper input
validation? In 2021 IEEE/ACM 43rd International Con-
ference on Software Engineering (ICSE), pages 499-511.
IEEE, 2021.

https://1xml.de/,

[21]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Jingting Chen, Feng Li, Qingfang Chen, Ping Li, Lili Xu,
and Wei Huo. Ebugdec: Detecting inconsistency bugs
caused by rfc evolution in protocol implementations.
In Proceedings of the 26th International Symposium on
Research in Attacks, Intrusions and Defenses, pages 412—
425, 2023.

Jingting Chen, Feng Li, Mingjie Xu, Jianhua Zhou, and
Wei Huo. Ribdetector: an rfc-guided inconsistency bug
detecting approach for protocol implementations. In 2022
IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 641-651.
IEEE, 2022.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya
Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M
Zhang. Large language models for software engineering:
Survey and open problems. In 2023 IEEE/ACM Inter-
national Conference on Software Engineering: Future of
Software Engineering (ICSE-FoSE), pages 31-53. IEEE,
2023.

Andrea Fioraldi, Dominik Maier, Heiko EiBfeldt, and
Marc Heuse. {AFL++}: Combining incremental steps of
fuzzing research. In /4th USENIX workshop on offensive
technologies (WOOT 20), 2020.

Sijia Gu, Noor Nashid, and Ali Mesbah. LIm test
generation via iterative hybrid program analysis. arXiv
preprint arXiv:2503.13580, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing
reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao,
Rongxin Wu, and Charles Zhang. Beacon: Directed grey-
box fuzzing with provable path pruning. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 36-50.
IEEE, 2022.

Hailong Jiang, Jianfeng Zhu, Yao Wan, Bo Fang, Hongyu
Zhang, Ruoming Jin, and Qiang Guan. Can large lan-
guage models understand intermediate representations?
arXiv preprint arXiv:2502.06854, 2025.

Peiling Jiang, Fuling Sun, and Haijun Xia. Log-it: Sup-
porting programming with interactive, contextual, struc-
tured, and visual logs. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems,
pages 1-16, 2023.

Yu Jiang, Jie Liang, Fuchen Ma, Yuanliang Chen, Chijin
Zhou, Yuheng Shen, Zhiyong Wu, Jingzhou Fu, Mingzhe
Wang, Shanshan Li, et al. When fuzzing meets llms:
Challenges and opportunities. In Companion Proceed-
ings of the 32nd ACM International Conference on the
Foundations of Software Engineering, pages 492-496,
2024.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task,
more tokens: the impact of input length on the reasoning
performance of large language models. arXiv preprint
arXiv:2402.14848, 2024.

15

[42]

[44]

[45]

Hui Li, Zhen Dong, Siao Wang, Hui Zhang, Liwei
Shen, Xin Peng, and Dongdong She. Extracting formal
specifications from documents using llms for automated
testing. arXiv preprint arXiv:2504.01294, 2025.
Penghui Li, Wei Meng, and Chao Zhang. Sdfuzz: Target
states driven directed fuzzing. In 33rd USENIX Security
Symposium (USENIX Security 24), pages 2441-2457,
2024.

Yang Li, Yingpei Zeng, Xiangpu Song, and Shanqing
Guo. Improving seed quality with historical fuzzing re-
sults. Information and Software Technology, 179:107651,
2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao
Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 techni-
cal report. arXiv preprint arXiv:2412.19437, 2024.
Changhua Luo, Wei Meng, and Penghui Li. Selectfuzz:
Efficient directed fuzzing with selective path exploration.
In 2023 IEEE Symposium on Security and Privacy (SP),
pages 2693-2707. IEEE, 2023.

Ruijie Meng, Martin Mirchev, Marcel Béhme, and Abhik
Roychoudhury. Large language model guided protocol
fuzzing. In Proceedings of the 31st Annual Network and
Distributed System Security Symposium (NDSS), volume
2024, 2024.

Keran Mu, Jianjun Chen, Jianwei Zhuge, Qi Li, Haixin
Duan, and Nick Feamster. The silent danger in http:
Identifying http desync vulnerabilities with gray-box
testing. 2025.

Van-Thuan Pham, Marcel Béhme, and Abhik Roychoud-
hury. Aflnet: A greybox fuzzer for network protocols. In
2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST), pages 460—
465. 1EEE, 2020.

Shisong Qin, Fan Hu, Zheyu Ma, Bodong Zhao, Tingting
Yin, and Chao Zhang. Nsfuzz: Towards efficient and
state-aware network service fuzzing. ACM Transactions
on Software Engineering and Methodology, 32(6):1-26,
2023.

Jannis Rautenstrauch and Ben Stock. Who’s breaking
the rules? studying conformance to the http specifications
and its security impact. In Proceedings of the 19th ACM
Asia Conference on Computer and Communications Se-
curity, pages 843-855, 2024.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales,
David Dohan, Ed H Chi, Nathanael Schérli, and Denny
Zhou. Large language models can be easily distracted
by irrelevant context. In International Conference on
Machine Learning, pages 31210-31227. PMLR, 2023.
Peyton Shields. Hybrid testing: Combining static anal-
ysis and directed fuzzing. PhD thesis, Massachusetts
Institute of Technology, 2023.

Xiangpu Song, Jianliang Wu, Yingpei Zeng, Hao Pan,
Chaoshun Zuo, Qingchuan Zhao, and Shanging Guo.
Mbfuzzer: A multi-party protocol fuzzer for mqtt bro-
kers. In Proceedings of the 34th USENIX Security

Symposium, 2025.

[55] Yulei Sui and Jingling Xue. Svf: interprocedural static
value-flow analysis in llvm. In Proceedings of the 25th
international conference on compiler construction, pages
265-266, 2016.

[56] Frank Tip. A survey of program slicing techniques. Cen-
trum voor Wiskunde en Informatica Amsterdam, 1994.

[57] Jincheng Wang, Le Yu, and Xiapu Luo. Llmif: Aug-

mented large language model for fuzzing iot devices. In

2024 IEEE Symposium on Security and Privacy (SP),

pages 881-896. IEEE, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc

Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery,

and Denny Zhou. Self-consistency improves chain of

thought reasoning in language models. arXiv preprint

arXiv:2203.11171, 2022.

Feifan Wu, Zhengxiong Luo, Yanyang Zhao, Qingpeng

Du, Junze Yu, Ruikang Peng, Heyuan Shi, and Yu Jiang.

Logos: Log guided fuzzing for protocol implementations.

In Proceedings of the 33rd ACM SIGSOFT International

Symposium on Software Testing and Analysis, pages

1720-1732, 2024.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi

Jin. Codeagent: Enhancing code generation with tool-

integrated agent systems for real-world repo-level coding

challenges. arXiv preprint arXiv:2401.07339, 2024.

[61] Qifan Zhang, Xuesong Bai, Xiang Li, Haixin Duan,

Qi Li, and Zhou Li. Resolverfuzz: Automated discov-

ery of dns resolver vulnerabilities with query-response

fuzzing. In 33rd USENIX Security Symposium (USENIX

Security 24), pages 4729-4746, 2024.

Yiming Zhang, Mingxuan Liu, Mingming Zhang, Chaoyi

Lu, and Haixin Duan. FEthics in security research:

Visions, reality, and paths forward. In 2022 IEEE Eu-

ropean Symposium on Security and Privacy Workshops

(EuroS&PW), pages 538-545. IEEE, 2022.

Ying-Zhou Zhang. Sympas: symbolic program slic-

ing. Journal of Computer Science and Technology,

36(2):397-418, 2021.

Zhen Zhao, Xiangpu Song, Qiuyu Zhong, Yingpei Zeng,

Chengyu Hu, and Shanqing Guo. Tls-deepdiffer: mes-

sage tuples-based deep differential fuzzing for tls proto-

col implementations. In 2024 IEEFE International Confer-
ence on Software Analysis, Evolution and Reengineering

(SANER), pages 918-928. IEEE, 2024.

Mingwei Zheng, Qingkai Shi, Xuwei Liu, Xiangzhe Xu,

Le Yu, Congyu Liu, Guannan Wei, and Xiangyu Zhang.

Pardiff: Practical static differential analysis of network

protocol parsers. Proceedings of the ACM on Program-

ming Languages, 8(OOPSLA1):1208-1234, 2024.

Mingwei Zheng, Danning Xie, Qingkai Shi, Chengpeng

Wang, and Xiangyu Zhang. Validating network pro-

tocol parsers with traceable rfc document interpreta-

tion. Proceedings of the ACM on Software Engineering,

2(ISSTA):1772-1794, 2025.

[67] Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan,

[58]

[59]

[60]

[62]

[63]

[64]

[65]

[66]

16

Chenggang Qin, and Shi-Min Hu. TCP-Fuzz: Detecting
memory and semantic bugs in TCP stacks with fuzzing.
In 2021 USENIX Annual Technical Conference (USENIX
ATC 21), pages 489-502, 2021.

APPENDIX

A. Prompt for LLM-based Inconsistency Detection

Figure 3 shows the prompt template used by ProtocolGuard
for LLM-based inconsistency detection between protocol rules
and code slices. The fields highlighted in red are automatically
filled by ProtocolGuard: protocol_name and protocol_version
specify the name and version of the protocol corresponding to
the current rule under analysis, rule_desc contains the textual
description of the protocol rule, and code_snippet contains the
extracted code slice relevant to the rule.

#Instruction

Your task is to analyze the provided code slice (#SliceCode) to determine whether it
violates the constraints or behaviors specified in the rule description (#Rule) for
{protocol_name} {protocol_version}, i.e., whether the developer's implementation
adheres to the prescribed standards.

Please follow these steps for the analysis:
1. Carefully review the specific requirements and constraints described in #Rule.
2. Examine the key logic and behavior in the code slice (#SliceCode). Note: the
numbers in the first column of each line in #SliceCode are line numbers, used to
identify the code's position in the file.
3. Determine whether the code slice violates any requirements in the rule description,
Strictly adhere to #Rule without referencing any external content.
4. If a violation is found, provide a detailed explanation, including the reason for the
violation, the relevant code lines, and their associated filenames and function names.
5. If no violation is found, explain why the code correctly complies with the rule.
6. Follow the response template below:
If a violation is found, return the following JSON response:
{
"result": "violation found!",
"reason": "detailed reasons for violations",
"violations": [{
"function_name": "function name",
"filename": "/path/filename",
"code_lines": [line_number, ...]},...]
}
If no violation is found, return the following JSON response:
{
"result": "no violation found!",
"reason": "why the code correctly follows to the rule"
}
#Rule
{rule_desc}
#SliceCode
{code_snippet}

Fig. 3: Prompt for LLM-based inconsistency detection in
ProtocolGuard.

B. Details of Non-compliance Bugs Found by ProtocolGuard

Table V shows the detailed results of 158 non-compliance
bugs discovered by ProtocolGuard, with 70 confirmed and 17
fixed. Most developers promise to fix the remaining unfixed
bugs in the future. Due to space constraints, we omit some of
the detailed descriptions of bugs. The complete table will be
presented in our artifact.

C. Artifact Appendix

The ProtocolGuard artifact comprises three major compo-
nents, each directly mirroring a core contribution of our paper:
Protocol Rule Extraction, LLM-guided Program Slicing, and
Fuzzing-based Dynamic Verification. The setup proceeds as
follows.

1) Description & Requirements: In this section, we intro-
duce how to obtain the artifact, including static analysis and
fuzzers, along with the software and hardware requirements
to run it.

a) How to access: We provide public access to our code
and experiment setups through the following Zenodo link: ht
tps://doi.org/10.5281/zenodo.17933922. You can also access
it in Github: https://github.com/songxpu/ProtocolGuard. The
artifact is licensed under the Apache License 2.0.

b) Hardware dependencies: ProtocolGuard can run on
standard commercial servers or workstations without requiring
specialized hardware. We recommend a minimum configura-
tion of a 4-core CPU, 16 GB of RAM, and 128 GB of storage.
It is important to note that resource-intensive tasks, such as
those performed by code generation agents (e.g., Cursor) or
large-scale fuzzing processes, can significantly increase system
load.

c) Software dependencies: ProtocolGuard is installed
and runs in a standalone Docker container based on Ubuntu
22.04, though it can also be deployed directly on a host
operating system. To ensure proper operation, the environment
must have LLVM 14, Python 3.10, and Go 1.18 installed.

d) Benchmarks: None.

2) Artifact Installation & Configuration: The Protocol-
Guard artifact consists of four major components, each cor-
responding to a core contribution of the paper: Protocol Rule
Extraction, LLM-guided Program Slicing, LLM-based Incon-
sistency Detection, and Fuzzing-based Dynamic Verification.
The setup follows the following steps.

a) Step 1. Environment and Dependencies Setup: Install
required system tools and third-party libraries on Ubuntu
22.04.3 LTS. Once installed, no additional system configu-
ration is required.

b) Step 2. Static Analysis Initialization: This step in-
volves preparing the target implementation for the subsequent
LLM-guided slicing. We first compile the protocol’s source
code using LLVM to generate several intermediate artifacts,
including the Control Flow Graph, SVF results, and AST
metadata. Concurrently, the config/config.toml template must
be properly filled in. The final output of this stage is the
slicing-ready LLVM Intermediate Representation (IR) and an
executable, which are used as the primary inputs for the next
stage of LLM processing.

c) Step 3. LLM-based Inconsistency Detection: With
the static analysis artifacts prepared, this step performs the
core automated analysis. First, an LLM API key must be
exported as an environment variable to authenticate requests.
Then, the analysis is launched by executing a single script,
which instructs the LLM to compare the extracted protocol
rules against the program’s behavior. Any violations found

17

during this process are automatically parsed and recorded in
an internal database. This produces the final output: a set of
validated inconsistency results, which are then used as targets
for dynamic verification.

d) Step 4. Fuzzing-based Dynamic Verification: This
final step uses dynamic analysis to confirm the findings. For
each violation detected by the LLM, the framework auto-
matically generates corresponding test inputs and assertions.
These are then fed into a directed protocol fuzzing campaign,
which we conduct using AFLNet enhanced with our selective
instrumentation.

ID Project Category | Bug Description New | Status

1 Dnsmasq Parsing Missing Multicast Destination Check in dhcp6_packet Allows Unicast Message Processing Yes Confirmed
2 Dnsmasq State Missing Rapid Commit Check in dhcp6_no_relay Allows Unauthorized Rebind Bindings Yes Confirmed
3 Dnsmasq State Unconditional Lease Creation in dhcp6_no_relay for Rebind Messages Yes Confirmed
4 Dnsmasq Parsing Missing Zero Link-Address Check in dhcp6_maybe_relay Yes Confirmed
5 Dnsmasq Parsing Incorrect Hop-Count Check in relay_upstream6 Allows HOP_COUNT_LIMIT Messages Yes Confirmed
6 Dnsmasq State Missing Interface-Id Option in relay_upstream6 for Unusable Link-Address Yes Confirmed
7 Dnsmasq Parsing Improper Interface-Id Option Inclusion in dhcp6_no_relay Non-Relay Messages Yes Confirmed
8 Dnsmasq Error Incorrect NoAddrsAvail Status Placement in dhcp6_no_relay Reply Messages Yes Confirmed
9 Dnsmasq State Missing Requested Options in dhcp6_no_relay Advertise Messages Yes Confirmed
10 Dnsmasq State Missing IA_PD Handling in check_ia and dhcp6_no_relay for Solicit Messages Yes Confirmed
11 Dnsmasq Parsing Missing Required Options in dhcp6_no_relay for Solicit Message ORO Yes Confirmed
12 NDHS Parsing Missing Unicast Destination Check in process_receive Allows Invalid Message Processing Yes Reported
13 NDHS Error Improper Reply Sending in process_receive for Invalid CONFIRM Conditions Yes Confirmed
14 NDHS Parsing Missing ORO Content Validation in process_receive for Required DHCPv6 Options Yes Confirmed
15 NDHS State Missing Information Refresh Time Option in process_receive for Information-request Replies | Yes Confirmed
16 NDHS State Unrequested Rapid Commit Option in process_receive Responses Yes Reported
17 NDHS Parsing Missing IA Content Validation in process_receive for Rebind Messages Yes Fixed

25 libcoap Parsing Missing ETag Validation in handle_request and coap_send_* for Multicast GET Requests Yes Confirmed
26 libcoap State Improper Option Retention in coap_add_data_large_response_lkd for Error Responses Yes Confirmed
27 freecoap Parsing Missing Context-Based Option Validation in coap_msg_check_critical_ops Yes Reported
28 freecoap Error Missing 4.05 Response in coap_server_exchange for Unrecognized Method Codes Yes Reported
29 PureFTPD State Missing EPSV ALL Check for PASV in parser Allows Unauthorized Connection Setup Yes Reported
39 PureFTPD State Missing PBSZ Check Before PROT in parser Yes Reported
40 PureFTPD State Missing REST Command Sequence Validation in parser Yes Reported
41 PureFTPD State Missing RNFR-RNTO Sequence Enforcement in parser and dornto Yes Reported
42 uFTP Security Missing Security Exchange Check for CCC in parseCommandCcc Yes Fixed

49 uFTP Security Missing Security Exchange and Argument Validation for PBSZ in parseCommandPbsz Yes Fixed

50 uFTP Security Missing PBSZ State Tracking for PROT in parseCommandPbsz Yes Fixed

51 uFTP Security Missing PBSZ Negotiation Check for PROT in parseCommandProt Yes Fixed

52 uFTP State Missing REST Sequence Enforcement in parseCommandRest and processCommand Yes Fixed

53 uFTP Error Missing Partial Transfer Handling in parseCommandRest and parseCommandRetr Yes Fixed

54 uFTP State Missing RNFR-RNTO Sequence Enforcement in parseCommandRnfr Yes Fixed

55 uFTP Security Missing Reauthorization Enforcement in parseCommandAuth After AUTH Command Yes Fixed

56 uFTP State Missing USERNAME-PASSWORD Sequence Enforcement in parseCommandPass Yes Fixed

57 wolfSSL Parsing Missing OID Value Validation in SendTls13Certificate for Client Certificates Yes Confirmed
58 wolfSSL Parsing Missing Extension Correspondence Check in SendTls13Certificate and ProcessPeerCerts Yes Confirmed
59 wolfSSL Parsing Missing Signature Algorithm Validation in DoTls13CertificateVerify Yes Confirmed
60 wolfSSL Security Incorrect Version Downgrade in DoTls13ClientHello Without supported_versions Yes Confirmed
61 wolfSSL Security Improper Use of legacy_version in DoTIs13ClientHello Yes Fixed

62 wolfSSL Security Missing Startup Time Check for 0-RTT in DoClientTicketCheck Yes Confirmed
63 wolfSSL Parsing Missing Duplicate Extension Detection in TLSX_Push and TLSX_Parse Yes Confirmed
64 TLSE Parsing Missing OID Value Validation in tls_parse_certificate for Client Certificates Yes Confirmed
65 TLSE Parsing Missing Extension Correspondence Check in tls_parse_certificate and tls_certificate_request Yes Confirmed
66 TLSE Parsing Incorrect Signature Parameter Validation in tls_parse_* Functions Yes Confirmed
67 TLSE Parsing Missing Signature Algorithm Validation in tls_parse_verify_tls13 and tls_parse_payload Yes Confirmed
68 TLSE Security Missing psk_key_exchange_modes Validation in tls_parse_hello Yes Confirmed
69 TLSE Error Missing Handshake Abort for Group Mismatch in tls_parse_hello Yes Confirmed
70 TLSE Security Incorrect Version Negotiation in tls_parse_hello Without supported_versions Yes Confirmed
71 TLSE Security Missing KeyShareEntry Validation in tls_parse_hello and _private_tls_parse_key_share Yes Confirmed
72 TLSE Security Missing PSK Key Exchange Mode Validation in tls_parse_hello Yes Confirmed
89 Sol Session Missing Will Message Removal in read_callback After Publication Yes Reported
90 Sol Parsing Missing Will QoS Validation in connect_handler and unpack_mqtt_connect Yes Reported
91 Sol Parsing Missing Validation for Will Fields in unpack_mqtt_connect When Will Flag is 0 Yes Reported
92 Sol Parsing Missing Prohibition of Will QoS 3 in connect_handler Yes Reported
93 Sol State Missing CONNECT Packet Enforcement in process_message and read_callback Yes Reported
94 Sol Session Missing Retain Flag in Will Message PUBLISH in connect_handler Yes Reported
95 Sol Parsing Incorrect Client ID Length Restriction in connect_handler Yes Reported
128 | TinyMQTT | Parsing Missing Will Retain Flag Validation in parse_connect_packet Yes Reported
129 | TinyMQTT | State Missing CONNACK Timeout Enforcement in parse_connect_packet and mqtt_connect Yes Reported
130 | TinyMQTT | Error Missing Rejection of Subsequent CONNECT Packets in decode_tcp_message_ Yes Reported
155 Mosquitto Parsing Missing ShareName Character Validation in sub__topic_tokenise and sub__add No Confirmed
156 | Mosquitto Parsing Missing Subscription Identifier Validation in mosquitto_property_check_command No Confirmed
157 | Mosquitto State Incorrect QoS for Overlapping Subscriptions in subs__send Yes Confirmed
158 | Mosquitto State Incorrect Topic Alias Handling in send__real_publish Yes Confirmed

TABLE V: Detail description of non-compliance bugs discovered by ProtocolGuard. The Category indicates the functional
module where the bug occurred, New indicates whether the bug is a new finding, and Starus represents the current status of
the bug.

18

