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Abstract—Remote attestation is a fundamental security mech-
anism for assessing the integrity of remote devices. In practice,
widespread adoption of attestation schemes is hindered by a
lack of public verifiability and the requirement for interaction in
existing protocols. A recent work by Ebrahimi et al. (NDSS’24)
constructs publicly verifiable, non-interactive remote attestation,
disregarding another important requirement for attesting sen-
sitive systems: privacy protection. Similar needs arise in IoT
swarms, where many devices, potentially processing sensitive
data, should produce a single attestation.

In this paper, we take on both challenges. We present PIRAN-
HAS, a publicly verifiable, asynchronous, and anonymous attes-
tation scheme for individual devices and swarms. We leverage zk-
SNARKs to transform any classical, symmetric remote attestation
scheme into a non-interactive, publicly verifiable, and anonymous
one. Verifiers only ascertain the validity of the attestation, without
learning any identifying information about the involved devices.

For IoT swarms, PIRANHAS aggregates attestation proofs
for the entire swarm using recursive zk-SNARKs. Our system
supports arbitrary network topologies and allows nodes to dy-
namically join and leave the network. We provide formal security
proofs for the single-device and swarm setting, showing that our
construction meets the desired security guarantees. Further, we
provide an open-source implementation of our scheme using the
Noir and Plonky2 framework, achieving an aggregation runtime
of just 356ms.

I. INTRODUCTION

Remote Attestation (RA) is an essential security service for
ensuring the integrity of remote devices when trusting them
with sensitive tasks or data. While traditional RA schemes
consider a single device setting, the advent of the Internet
of Things (IoT) and the increasing adoption of distributed
services have led to the development of swarm attestation
protocols able to attest multiple devices in a complex network.
These protocols allow to efficiently attest a swarm of devices

§Equal contribution.

such that the overall communication and computation com-
plexity for an attestation of the entire network is significantly
lower than attesting each device individually. They achieve this
by either aggregating the attestation results to a single proof
or by letting the devices directly attest each other.

However, existing swarm attestation protocols suffer from
shortcomings. (i) They require interaction with the manufac-
turer or another trusted party, preventing fully non-interactive
(or: asynchronous) attestations that also work in offline set-
tings. This is especially problematic in IoT settings, where
devices may be intermittently offline or unreachable. (ii) Most
protocols lack transparency, as attestation results can only
be verified by entities with privileged knowledge about the
device, limiting interoperability and placing undue trust in a
central authority. (iii) They usually do not consider privacy
protection (or: anonymity) for the attested device as they reveal
device identifiers that allow tracking devices across different
attestations. This is increasingly concerning in data-sensitive
environments such as smart homes, critical infrastructure, or
medical systems. (iv) They cannot deal well with dynamic
networks and complex topologies, where devices frequently
join or leave, or where multiple IoT vendors are involved.

In this work, we present the first swarm attestation protocol
that achieves all four properties simultaneously. To this end,
our starting point is the recent work of Ebrahimi et al. [1], who
introduce an approach to transform a traditional interactive RA
scheme to a non-interactive scheme with public verifiability.
We improve upon this work to achieve better efficiency,
flexibility and allow for anonymous attestations. The main
contribution of our work is then to lift our results from
the single-device setting, to support general swarm networks.
Our protocol allows a swarm of devices to generate a single
aggregated attestation proof that ensures that every device
in the swarm has been correctly attested without revealing
anything more than the number of devices in the swarm. In
addition to its strong privacy guarantees, our protocol works
for any network topology, which includes non-hierarchical
swarms, and supports dynamic networks. The final attestation
proof can be verified by anyone without interaction with the
manufacturer or the devices, achieving full offline verifiability.

At a technical level our construction needs to resolve
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the seemingly contradictory requirement of simultaneously
providing anonymity for all devices in the swarm, ensuring that
no identifiers are revealed in an attestation, while guaranteeing
that the single swarm attestation certifies the claimed number
of unique and correctly attested devices. We achieve this
leveraging recent advances in recursive zk-SNARKs, which
allows us to aggregate individual device attestations into a
single proof at each step of the swarm protocol. The circuits
for the zk-SNARKs have to be carefully designed to enable
efficient attestations on IoT devices, while still allowing for
the recursive aggregation of the attestation proofs.

A. Our Contributions

We summarize our main contributions below.
1) Transparent Anonymous Swarm Attestation: We present

a transformation that transforms any classical remote attes-
tation (RA) scheme using symmetric keys into a publicly
verifiable, non-interactive, and anonymous attestation scheme
for swarms, which we call ΠRANHAS. While our compiler is
generic (i.e., it can be applied to any traditional, symmetric RA
scheme), we are the first to realize any such scheme (whether
constructed directly or via transformation) that simultaneously
achieves all these properties. In ΠRANHAS, devices recursively
aggregate their attestation proofs to eventually output a single
proof that can be verified offline by any party only using
the manufacturer’s verification key. We are among the first
to consider swarm attestation with privacy guarantees; that is,
verifiers only learn the number of attested devices in the swarm
but are unable to link attestations to specific devices across
different attestations. In contrast to previous and concurrent
work, our scheme is agnostic to the network topology, publicly
verifiable, and supports dynamic networks.

2) Transparent Anonymous Single-Device Attestation: As
a building block of our swarm attestation scheme, we extend
the non-interactive remote attestation scheme of Ebrahimi et
al. [1] in two key directions. First, we generalize the scheme
with respect to the employed cryptographic accumulator and
eliminate the need of a global accumulator for all devices of
a manufacturer, enabling flexibility for adding new devices.
In contrast to [1], our constructions allows the manufacturer
to add new devices without having to communicate with
all other existing devices. Second, we add anonymity to
the construction of Ebrahimi et al. by leveraging the zero-
knowledge property of the employed zk-SNARKs. To prevent
a malicious device from producing multiple attestations for the
same challenge, we introduce a so-called linkage tag, which is
computed from the challenge and allows linking attestations
without revealing the identity of the device. To the best of
our knowledge, this yields the first publicly verifiable, non-
interactive RA scheme with anonymity.

3) Formal Security Analysis: We provide a formal security
analysis of our constructions, proving that it achieves the
key properties of correctness, unforgeability, anonymity, and
linkability. We do this by defining security games for the
desired properties that may be of independent interest.

4) Implementation and Benchmarks: We implement our
constructions with the corresponding zero-knowledge circuits
for the attestation and recursive aggregation using the Noir
language [2] and Plonky2 [3]. We provide an open-source
implementation1 and detailed benchmarks of our construc-
tions, including an analysis of potential bottlenecks and future
improvements. Our Noir implementation computes single-
device attestations in just 305ms on a consumer-grade laptop,
while Plonky2 aggregates attestations in 356ms after an offline
phase of 2s, which the devices execute in parallel. The proofs
can be verified in just 30ms and 2.7ms, respectively.

B. Technical Overview

In the following, we give a high-level overview of our
single-device and swarm attestation constructions. Our con-
struction for single devices, ΠRANHA, is based on the recent zRA
scheme by Ebrahimi et al. [1], which we extend to achieve
anonymity and add flexibility by combining a generic signature
scheme with a generic cryptographic accumulator.

On a high level, our construction works as follows: First,
the manufacturer initializes the device (host), which contains
a trusted component that is either hardware- or software-
based. During the initialization, the manufacturer generates a
symmetric key and an initial state of a traditional, symmetric
remote attestation scheme and stores both in the trusted
component. It then pre-generates the attestation responses for a
large set of future challenges, and adds commitments to these
responses in an accumulator. The accumulator represents the
set of all response commitments in a single value and allows
for efficient membership proofs for the attestation phase. The
resulting accumulator value is then signed by the manufacturer
and stored on the device.

New challenges can be distributed via a public bulletin
board or a blockchain. When a device attests itself for a
given challenge, it first lets the trusted component compute
the attestation response using the key and state. The device
then computes a zero-knowledge proof of knowledge that the
signed accumulator contains a commitment to the attestation
response. The proof does not reveal any information about the
actual accumulator or signature, hiding the device’s identity. In
addition, the device computes a so-called linkage tag from the
challenge using a pseudorandom function, allowing verifiers
to link attestations by the same device for the same challenge,
in order to prevent Sybil attacks. The attestation proof can be
verified offline only with the knowledge of the manufacturer’s
verification key and the current public challenge.

Our swarm attestation construction ΠRANHAS builds upon the
single-device construction ΠRANHA by allowing a swarm of
devices to jointly attest anonymously. Independent of the
network topology, each device in the swarm computes an
attestation proof as in ΠRANHA while recursively aggregating the
attestation proofs of its neighbors. If a proof does not verify,
a device can discard it and continue the protocol without the

1GitHub: https://github.com/AppliedCryptoGroup/piranhas Zenodo: https:
//doi.org/10.5281/zenodo.17879096
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invalid proof, effectively preventing DDoS attacks. In the end,
the swarm outputs a single attestation proof with an aggregated
linkage tag and a list of n unique tags, where n is the number
of devices in the swarm. Verifying this proof ensures that the
swarm consists of n correctly attested devices.

While we aim to preserve device’s anonymity and, in
particular, reveal no identifying information, we still need
to guarantee that the swarm attestation corresponds to the
claimed number of unique, honestly attested devices. A key
challenge is to prevent an adversary from producing a different
list of tags that verifies for more honest devices than actually
participated. A naive approach would be to enforce correctness
of the linkage tag list by including it as an input to the zero-
knowledge proof. However, this would require fixing a maxi-
mum list size in the proof circuit and result in highly inefficient
proving due to the large input size. We solve this problem
by recursively aggregating the linkage tags using recursive
zero-knowledge proofs at each step of the swarm attestation,
allowing the verifier to perform a single product check against
the final aggregated tag. Moreover, our construction employs
recursive zk-SNARKs to aggregate the attestation proofs at
each step of the swarm protocol, which must be carefully
designed to enable efficient attestations on IoT devices.

C. Related Work

In this section, we discuss related work regarding remote
attestation, anonymous attestation and swarm attestation. We
provide an overview in Table I.

Remote Attestation. Existing remote attestation (RA) pro-
tocols differ widely in their design goals, use cases, security
guarantees, and efficiency [4], [5], [6], [7], [8]. A property that
all these protocols share is their interactivity, as well as the
requirement for a verifier to know a set of trusted device states,
making them non-transparent. Some approaches [9], [10] build
on a blockchain to avoid interaction between the device and the
verifier, which allows verification of the attestation response
through interaction with the blockchain instead of the device.

Anonymous Attestation. Anonymous attestation protocols
mostly revolve around the idea of Direct Anonymous Attes-
tation (DAA) [11], a standardized protocol for anonymously
establishing trust in a TPM. The DAA protocol was initially
implemented in the TPM 1.2 standard [12] and has evolved
to support stronger security definitions [13], rely on weaker
assumptions [14], [15], and provide additional functionality,
such as attributes [16]. DAA protocols merely allow anony-
mous authentication of a device, which does not fully solve
the problem of remote attestation, which includes evidence
collection, packing, and verification [17]. In addition to DAA
solutions, a recent work by Dushku et al. [18] introduces a
privacy-preserving remote attestation protocol based on zero-
knowledge proofs, which is interactive and requires additional
trust assumptions for designated worker devices.

Swarm Attestation. Swarm attestation protocols offer better
scalability in a setting with multiple devices and are designed
to be efficient in terms of communication and computation.

TABLE I
COMPARISON OF OUR RESULTS WITH RELATED WORK.

Scheme Sw An Tr Ni Top

SeED [7] ✗ ✗ ✗ ✔ -
PROVE [6] ✗ ✗ ✓trust ✓✸ -
zRA [1] ✗ ✗ ✔ ✔ -
ZEKRA [18] ✗ ✔ ✓trust ✗ -
SEDA [19] ✔ ✗ ✗ ✗ Spanning tree
Leg-IoT [10] ✔ ✗ ✓trust ✔ Pub-sub
SCRAPS [9] ✔ ✗ ✓trust ✗ Pub-sub
Privé [24] ✔ ✓†,✛ ✗ ✗ Hierarchical
SPARK [26] ✔ ✓† ✔ ✔ Hierarchical
This Work ✔ ✔ ✔ ✔ Any

Sw: Swarm Attestation, An: Anonymity, Tr: Transparency, Ni:
Non-interactive, Top: Supported topology.
trust Requires trusting a third party for verifying an attestation.
✸

Involves communicating with a trusted broker.
†

No anonymity within the swarm.
✛ Verification requires knowledge of device identity.

Early works consider devices organized in a spanning tree
fashion [19], [20], [21], [22], [23] or using the publish-
subscribe approach (pub-sub) [10], [9], while more recent
schemes apply to hierarchical swarms [24], [25]. Protocols
typically allow for aggregating attestation responses, meaning
that an attestation of the entire network requires less commu-
nication and computational effort than individually attesting
all devices. However, none of these systems offer both public
verifiability and non-interactiveness.

Anonymous Swarm Attestation. Two concurrent works,
SPARK [26] and PRIVÉ [24], also explore the setting of
privacy-preserving swarm attestation. Both consider edge de-
vices, equipped with a trusted component, that are connected
to a swarm of multiple untrusted IoT devices. In contrast to
our work, where each device in a swarm is able to produce
a publicly verifiable and anonymous attestation by itself, their
schemes rely on the edge device to authenticate and anonymize
the attestation responses. Consequently, SPARK and PRIVÉ
do not provide anonymity between edge- and IoT devices.

While PRIVÉ combines Direct Anonymous Attestation
(DAA) with short-term keys to achieve anonymity against
external parties, its approach requires the verifier to know
the set of valid IoT device states. This approach renders the
scheme non-transparent and requires the verifier to know the
identities of all devices involved in attestation, thus violating
anonymity. Additionally, both constructions are tailored to a
hierarchical organization of edge devices and lack a means
to aggregate attestation proofs, resulting in an overall proof
size and verification time that grow linearly with the number
of edge devices. We compare the efficiency of both schemes
with our work in Section V-E.

D. Paper Organization

The rest of the paper is organized as follows: In Section II,
we introduce the necessary preliminaries for our construc-
tions. In Section III we present our first construction, ΠRANHA,
achieving anonymous, publicly verifiable remote attestation
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in the single-device setting. In Section IV we then expand
this construction to the swarm setting, yielding ΠRANHAS, an
anonymous, publicly verifiable swarm attestation scheme. We
finally present implementation details for both constructions,
including efficiency improvements in Section V, presenting
detailed benchmarks.

II. PRELIMINARIES

We now present the notation and background for our work.

A. Notation

We denote the security parameter by λ, let [n] denote the
set {1, . . . , n} and use (ai)i∈[n] to represent the list of n
elements (a1, . . . , an). For a list L, we write |L|U to denote
the cardinality of the set of unique elements in L. We use
y $← S to denote that y is sampled uniformly at random from
a set S. By y ← A(x) we denote that variable y is assigned the
output of algorithm A on input x, and by y $← A(x) we denote
the same for a randomized algorithm A. A table summarizing
the notation used in our work can be found in Appendix A.

B. Remote Attestation Schemes

We consider a symmetric remote attestation scheme RA,
where a trusted component of a device computes the attestation
given a challenge after being initialized by the manufacturer.
We define RA as a tuple of the following algorithms:

• pp ← RA.Setup(λ): The setup algorithm generates the
public parameters pp.

• (dk, st) $← RA.TCSetup(pp): The trusted component
setup algorithm generates a device key dk and an initial
device state st.

• rsp← RA.Attest(dk, st, chall): The attestation algorithm
takes as input the device key dk, the device state st and
a challenge chall. It outputs an attestation response rsp.

• 1/0 ← RA.Verify(dk, st, rsp, chall): The verification al-
gorithm outputs 1 if the attestation response rsp is valid
for the device key dk and state st for the challenge chall,
and 0 otherwise.

We require that a secure remote attestation scheme RA
fulfills correctness and unforgeability. Correctness implies
that an attestation computed honestly for a challenge must
always successfully verify. Unforgeability ensures that without
knowledge of the device key, it is hard to produce a verifying
attestation for a fresh challenge.

C. Cryptographic Prerequisites

In the following, we introduce cryptographic primitives used
in our construction. As these schemes are relatively standard,
we only give a high level overview and present Syntax and
detailed definitions of properties in Appendix B.

1) Non-Interactive Zero-Knowledge Proofs: A non-
interactive zero-knowledge proof system NIZK is defined for
a polynomial-time verifiable binary relation R and consists
of algorithms (Setup,Prove,Verify). We require that a NIZK
proof system satisfies completeness, knowledge soundness,
and zero-knowledge, meaning that honestly computed proofs

should verify, proofs should not be forgeable and should not
reveal information about the witness.

2) Cryptographic Accumulators: An accumulator scheme
ACC represents a set of elements as a single value and
allows efficient membership proofs. It is defined as a tuple
of algorithms (Setup,AccSet,Wit,Verify) and should fulfill
correctness and collision-resistance, meaning that membership
proofs for included elements verify but it is hard to create
proofs for elements that are not included.

3) Commitment Schemes: Commitment schemes CO are
defined as tuples of algorithms (Com,Verify) and allow com-
mitting to a chosen value. They should be correct, hiding,
and binding, meaning that they don’t reveal anything about
committed values, but are bound to them.

4) Signature Schemes: Signature schemes SIG allow parties
to ensure the authenticity of messages. They are defined as
tuples of algorithms (KeyGen,Sign,Verify) and should fulfill
correctness and unforgeability, implying that honest signatures
should verify, while signatures are hard to forge without
knowledge of the signing key.

5) Pseudo-Random Functions: A keyed pseudorandom
functions PRF is a tuple of algorithms (KeyGen,F), required
to be pseudorandom, i.e. their output distributions are indis-
tinguishable from uniform randomness.

III. ZERO-KNOWLEDGE REMOTE ATTESTATION

In this section, we present our construction for transparent,
asynchronous anonymous attestation (ΠRANHA) of individual
devices. We will use this construction as a building block for
our swarm attestation construction in Section IV. First, we
present our system and threat model, then the construction
itself, and finally, a detailed security analysis.

A. System and Threat Model

In our system model, we consider four entities: a manufac-
turer, a host, a trusted component, and a verifier.

Devices to be attested consist of two entities: a trusted
component responsible for computing the attestation response
and the host, the untrusted rest of the device. The trusted
component can be a hardware component (e.g., a TPM),
but might also be a trusted software component running the
attestation code. Note that our model does not consider the
host and trusted component to be the same party, but as
independent entities. If clear from the context, we refer to
the host as the device.

The manufacturer is responsible for initializing the trusted
component. This process involves the generation of crypto-
graphic keys that the trusted component will use for attestation.
Given a challenge published by the manufacturer, the device
(i.e., the host) forwards the challenge to its trusted component,
which computes the attestation response. Using the attestation
response, the device generates an attestation proof and sends
it to the verifier, who verifies the proof.

Our ΠRANHA system must ensure correctness, unforgeability,
anonymity, and linkability of attestations. In the context of
our model, this means that an attestation of an honest host
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should verify (correctness), an attestation of a compromised
host should not verify (unforgeability), an attestation should
not reveal any identifying information of the host (anonymity),
and two attestations of the same device for the same challenge
should be linkable (linkability).

In more detail, anonymity implies that attestations by the
same host for different challenges are unlinkable, ensuring that
verifiers only learn the validity of the attestation but no infor-
mation about the host’s identity. At the same time, linkability
ensures that two attestations from the same host for the same
challenge can always be linked. This property is required to
prevent Sybil attacks, where a single host attempts to produce
multiple attestations while posing as distinct devices.

For unforgeability and linkability, we consider a malicious
host device. For anonymity, we consider the host to be honest,
but the verifier to be malicious. We also show how to adapt
our construction to ensure anonymity, even against malicious
manufacturers in Appendix E. Our threat model encompasses
only adversaries, for which the building blocks used in our
construction remain secure. For instance, if the underlying
remote attestation scheme is secure against physical attacks
(e.g., passive or invasive side-channel attacks), unforgeability
of our construction also holds against such attacks. Consider-
ing anonymity, we note that there are currently no practical
provably leakage-resilient generic zero-knowledge proof sys-
tems. Hence, we do not consider physical adversaries in this
case. Due to the non-interactive nature of our protocol, it is
inherently resilient against network attacks, such as man-in-
the-middle or DDoS attacks.

B. Constructing ΠRANHA

In this section, we present our ΠRANHA scheme based on
the zRA construction by Ebrahimi and Hassanizadeh [1]. We
first give an overview, then present the construction in detail,
and finally present a full security analysis. From any tradi-
tional, symmetric remote attestation scheme RA, we construct
our transparent, asynchronous, anonymous attestation scheme
ΠRANHA using a commitment scheme CO, a pseudorandom func-
tion PRF, a signature scheme SIG, and an accumulator ACC.
Additionally, we use a non-interactive zero-knowledge proof
system NIZK. Our system is generic and can be constructed
from any such building blocks that satisfy the required security
properties. However, in Section V we present a concretely
efficient instantiation using the Pedersen commitment scheme
[27] for CO, a hash-based PRF, the Schnorr signature scheme
[28] for SIG, and a Merkle tree [29] for ACC. Lastly, we
instantiate NIZK using zk-SNARKs [3], [30].

High-Level Overview. Our construction ΠRANHA is based on
the zRA scheme by Ebrahimi et al. [1], but makes use
of the zero-knowledge property of the proving system to
achieve anonymity of the attesting device. Without revealing
any identifying information, such as the device’s public key,
multiple attestations of the same device for the same challenge
are linkable. Additionally, we introduce several generalizations
and efficiency improvements, allowing for more flexibility, as,

in contrast to the original construction, new devices can be
added at any time by the manufacturer.

Internally, ΠRANHA builds upon a symmetric remote attesta-
tion scheme RA (see Section II-B) supported by the trusted
component. The manufacturer first generates the symmetric
key and initial state for the trusted component of a device.
For m of future attestations, the manufacturer generates a
set of challenges and pre-computes the attestation responses
for them. These challenges are periodically published and are
not known to the hosts beforehand. The manufacturer then
inserts commitments to all responses into an accumulator
and signs the accumulator value. The accumulator, list of
commitments, and the signature are provided to the device
host, while the trusted component is initialized with the device
key and initial state. When a challenge is published, the trusted
component computes the attestation response, from which the
host generates a publicly verifiable attestation proof. To do so,
the host proves knowledge of an accumulator witness for the
commitment to the response, while also proving knowledge
of a signature by the manufacturer on the accumulator value.
Note that by leveraging the NIZK proof system, the device
does not need to interact with either the manufacturer or the
verifier. Further, the verifier does not need to know anything
about the internal device states, such as the symmetric key,
and the proof does not reveal anything about the accumulator,
the response, or the signature.

Additionally, we require that a device cannot create multiple
unlinkable attestation proofs for the same challenge. To this
end, we introduce a linkage tag computed by evaluating PRF
on the challenge under a unique key provided to the host.
The host must also prove correct evaluation of the PRF in
zero-knowledge with respect to the challenge and the key,
which the manufacturer also signs. The linkage tag is included
in the attestation proof and allows the verifier to check the
uniqueness of the attestation.

Zero-Knowledge Proof Relation. In our construction, we
employ a non-interactive zero-knowledge proof system NIZK
for the following relation RΠRANHA:
”For the statement ϕ = (vk, chall, t), consisting of a manu-
facturer verification key vk, challenge chall, and a linkage tag
t, I know a witness w = (rsp, v, wACC, k, σ) consisting of a
response rsp, accumulator value v, accumulator witness wACC,
PRF key k, and a signature σ such that:

• σ is a valid signature on v and k under verification key
vk such that: SIG.Verify(vk, (v, k), σ) = 1.

• wACC proves inclusion of a commitment com in v such
that: ACC.Verify(v, com, wACC) = 1.

• com can be opened to chall with rsp such that:
CO.Verify(com, chall, rsp) = 1.

• t is computed as t = PRF.F(k, chall).”

The Construction in Depth. In the following, we
will present the full details of our ΠRANHA construction,
which consists of a tuple of four algorithms ΠRANHA =
(ManSetup,DevSetup,AttProve,Verify).
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Fig. 1. Overview of the attestation procedure of our ΠRANHA construction
using a Merkle tree for ACC. A rectangle enframes computations performed
as part of a zero-knowledge proof. Witness inputs to the circuit are marked
in blue. Public inputs/outputs of the circuit are marked in green.

1) Manufacturer Setup: The manufacturer setup algo-
rithm (pp, sk, vk) $← ManSetup(λ) is run by the manufac-
turer to generate the public parameters and the manufacturer
key-pair. The manufacturer generates all public parameters
ppRA

$← RA.Setup(λ), ppACC
$← ACC.Setup(λ), crs $←

NIZK.Setup(λ) and sets pp := (ppRA, ppACC, crs), and gen-
erates a signing key pair (sk, vk) ← SIG.KeyGen(λ). Also, it
samples a list of challenges (challi)i∈[m] uniformly at random
for a number m of supported attestations. While the public
parameters and verification key are published, the challenge
set and signing key remain private.

2) Device Setup: The manufacturer runs the device setup
algorithm (dk, st, cfg) $← DevSetup(sk, (challi)i∈[m]) to gen-
erate the device key and initial state for the trusted component,
as well as the attestation configuration for the host device,
allowing it to create up to m future attestations. The man-
ufacturer generates a device key and an initial state for the
trusted component as (dk, st) $← RA.TCSetup(ppRA). Given
these values, the manufacturer pre-computes all attestation
responses, that is, rspi ← RA.Attest(dk, st, challi) for all
challenges i ∈ [m]. Then, it commits to each challenge-
response pair as comi ← CO.Com(challi, rspi) and inserts
the commitments into the accumulator: v $← ACC.AccSet(C)
with C = (com1, . . . , comm) being the list of commitments.
The manufacturer generates a PRF key k $← PRF.KeyGen(λ)
and computes a signature on the accumulator and PRF key
σ $← SIG.Sign(skSIG, (v, k)). Lastly, the manufacturer stores
the accumulator value, commitment list, PRF key, and signa-
ture as the device configuration cfg := (v, C, k, σ) on the host
device, while storing the device key and initial state in the
trusted component.

3) Attestation: The device runs the attestation algorithm
(t, π) $← AttProve(rsp, cfg, chall, vk) to create a linkage tag
and an attestation proof for a given challenge. We give a
pictorial representation of the attestation procedure in Figure 1.

The device first retrieves the current challenge chall, which
the manufacturer periodically publishes on a medium acces-
sible to all hosts and verifiers such as a public bulletin board
or a blockchain as suggested in [1]. The device first forwards

the challenge to its trusted component, which computes the
attestation response as rsp ← RA.Attest(dk, st, chall) using
the underlying remote attestation procedure. Given the attes-
tation response rsp, the device first recomputes the commit-
ment to the response as com ← CO.Com(chall, rsp). Then,
it computes the witness for the accumulator as wACC ←
ACC.Wit(v, com, C), where C is the list of all commit-
ments in the accumulator as given in the device configu-
ration cfg. The device computes the linkage tag using the
PRF key as t ← PRF.F(k, chall). Lastly, the device com-
putes the zero-knowledge proof for the relation RΠRANHA as
π $← NIZK.Prove(RΠRANHA, (vk, chall, t), (rsp, v, wACC, k, σ)).
The proof proves knowledge of a correct attestation response
for chall under the manufacturer verification key vk and
correctness of the tag t. The final attestation is the tuple (t, π).

4) Verification: The verifier runs the verification algorithm
1/0← Verify(vk, chall, t, π) to check the validity of an at-
testation proof and linkage tag for a challenge. The verifier
checks the validity of the attestation tuple (t, π) for a current
challenge chall, by verifying the zero-knowledge proof via
NIZK.Verify(RΠRANHA, vk, chall, t, π). If the algorithm outputs
1, the attestation is considered valid.
Linkable Anonymity. Our construction provides anonymity
to attesting devices, i.e., the attestation reveals no identi-
fiers of the devices. This property follows from the zero-
knowledge property of the employed zero-knowledge proof
system, revealing nothing beyond the validity of the attestation
and the linkage tag. At the same time, we require that if a
cheating device attempts to create multiple attestations for the
same challenge, the linkage tag ensures that these attestations
can be linked, as the tag will be the same. In cases where
devices should be able to create more than one unlinkable
attestation per challenge, one might also require further input
information when computing the linkage tag, such as the name
of the verifier or some context information for the attestation.
Thus, one could extend the computation of the linkage tag
to t ← PRF.F(k, chall, ctx), where ctx is some additional
information and included as public input to the proof.

C. Security Analysis of ΠRANHA

We now turn to a security analysis of our ΠRANHA construc-
tion, which correspond to the security properties of the system
model from Section III-A.
Correctness. We require our ΠRANHA scheme to be correct.
As this property is rather straightforward, we omit a formal
definition. We say the scheme is correct if a correctly com-
puted attestation of an honest host verifies. This property holds
because the underlying scheme RA must be correct, the signa-
ture scheme SIG and accumulator ACC fulfill correctness, and
because the non-interactive proof system NIZK is complete.
Unforgeability. For security, we require our ΠRANHA scheme
to be unforgeable, meaning that a valid attestation cannot be
produced for a new challenge without access to the device key.

Theorem III.1. Assuming SIG and RA are unforgeable, CO
is hiding and binding, ACC is collision-resistant, and NIZK is
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GameUnforgeA(λ):

1 : (pp, sk, vk) $← ManSetup(λ)

2 : m $← A(pp, vk)
3 : for i ∈ [m] : challi

$← {0, 1}λ

4 : (dk, st, cfg) $← DevSetup(sk, (challi)i∈[m])

5 : S← ∅

6 : (π, t, chall) $← AOAtt

(cfg, (challi)i∈[m])

7 : return Verify(vk, chall, t, π) ∧ (chall /∈ S)

OAtt(chall):

1 : S← S ∪ {chall}
2 : return RA.Attest(dk, st, chall)

Fig. 2. Game-based definition of unforgeability for our ΠRANHA scheme.

knowledge-sound, our construction ΠRANHA is unforgeable w.r.t.
GameUnforge in Figure 2. It holds that:

AdvGameUnforge
A (λ) ≤ negl(λ)

Here, we give only a sketch of the formal analysis proving
the theorem. For a full proof, refer to Appendix C.

By the unforgeability of RA, an adversary cannot produce
an attestation response rsp without compromising the trusted
component. Further, the hiding property of CO ensures that
the commitments sent by the manufacturer do not reveal any
valid responses either. Therefore, any forgery output by the
adversary must use an invalid rsp value (in the sense of RA).
By the binding property of CO, the adversary cannot open
the commitments provided by the manufacturer to an invalid
rsp, and by the collision-resistance of ACC, the adversary
cannot prove membership of a commitment of its choice in
the accumulator. Further, using a different accumulator to
produce the proof is infeasible, as this would involve forging
a signature on the accumulator value. Therefore, no adversary
can produce a valid ΠRANHA witness without knowing the device
key. By the soundness of NIZK, this prevents them from
generating a valid attestation proof.

Anonymity. In addition, the ΠRANHA scheme must be anony-
mous, meaning that an adversary cannot distinguish between
the attestations of two different devices. Our definition also
implies that an adversary cannot link attestations of the same
device across different challenges. We note that in our setting,
the manufacturer is assumed to be honest (i.e., does not collude
with the adversary). However, in Appendix E, we will show
how to adapt our construction to achieve anonymity even in
the case of a malicious manufacturer.

Theorem III.2. Assuming that PRF is a pseudorandom
function and the NIZK proof system is zero-knowledge, our
construction ΠRANHA fulfills anonymity w.r.t. GameAnon in
Figure 3. More precisely, it holds that:

AdvGameAnon
A (λ) ≤ negl(λ)

GameAnonA(λ):

1 : (pp, sk, vk) $← ManSetup(λ)

2 : m $← A(pp, vk)
3 : for i ∈ [m] : challi

$← {0, 1}λ

4 : (dk0, st0, cfg0)
$← DevSetup(sk, (challi)i∈[m])

5 : (dk1, st1, cfg1)
$← DevSetup(sk, (challi)i∈[m])

6 : S← ∅

7 : chall $← AOAtt

((challi)i∈[m])

8 : b $← {0, 1}
9 : rspb ← RA.Attest(dkb, stb, chall)

10 : (πb, tb)
$← AttProve(rspb, cfgb, chall, vk)

11 : b∗ $← AOAtt

(πb, tb)

12 : return (b∗ = b) ∧ (chall /∈ S)

OAtt(chall, i):

1 : S← S ∪ {chall}
2 : rsp← RA.Attest(dki, sti, chall)

3 : return AttProve(rsp, cfgi, chall, vk)

Fig. 3. Game-based definition of anonymity for our ΠRANHA scheme.

We give a security sketch as to why anonymity holds and
present a full proof in the Appendix C.

Recall that we need to prove that two valid attestations
of two different devices, which are generated for the same
challenge chall, are indistinguishable. By the zero-knowledge
property of the NIZK proof system, an attestation proof reveals
nothing but the statement used to generate the proof. For any
value of bit b corresponding to the two devices, the statement
of the proof is the same except for the linkage tag tb. Thus, an
adversary can only use the tags to differentiate between two
attestations. Since the tags are generated using a PRF on a
challenge for which the adversary has not seen an attestation
yet, the pseudorandomness property of the PRF implies that
the tags of the two devices are indistinguishable. This implies
the anonymity of the scheme.
Linkability. Finally, we require that our scheme ΠRANHA is
linkable, implying that an adversary cannot create two valid
attestations with different tags for the same challenge.

Theorem III.3. Assuming the NIZK proof system is sound
and the signature scheme SIG is unforgeable, our construction
ΠRANHA fulfills linkability w.r.t GameLink in Figure 4. More
precisely, it holds that:

AdvGameLink
A (λ) ≤ negl(λ)

We only sketch the argument in the following and refer to
Appendix C for the full proof.

To prove that our construction provides linkability, we
need to show that no adversary can produce two verifying
attestations with different linkage tags t0 and t1 for the same
challenge chall when given only a single device configuration
cfg. By the soundness of the NIZK proof system, the validity
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GameLinkA(λ):

1 : (pp, sk, vk) $← ManKeyGen(1λ)

2 : m $← A(pp, vk)
3 : for i ∈ [m] : challi

$← {0, 1}λ

4 : (dk, st, cfg) $← DevSetup(sk, (challi)i∈[m])

5 : ((π0, t0, π1, t1), chall)
$← AOAtt

(cfg, (challi)i∈[m])

6 : return (t0 ̸= t1) ∧
(∀b ∈ {0, 1} : Verify(vk, chall, tb, πb))

OAtt(chall):

1 : return RA.Attest(dk, st, chall)

Fig. 4. Game-based definition of linkability for our ΠRANHA scheme.

of an attestation implies that its tag was correctly computed
using the PRF with a key for which the adversary has proven
knowledge of a corresponding signature. Since the adversary is
given only one signature σ on a single k, generating a second
valid but different tag for the same challenge would require
producing a new key k′ along with a signature σ′ valid under
the manufacturer verification key vk. Doing so would break
the unforgeability of the underlying signature scheme SIG.

IV. ZERO-KNOWLEDGE SWARM ATTESTATION

In this section, we present our construction of privacy-
preserving attestation in the setting of IoT swarm networks.
We first describe our system model, then the construction itself
and lastly, provide a formal security analysis.

A. System and Threat Model

Similarly to the single-device system model given in Sec-
tion III-A, our model contains a manufacturer, a verifier, and
devices consisting of a trusted component and a host. In
this setting, we consider multiple devices forming a swarm
network, where each device is connected to one or more
neighboring devices. We support dynamic swarms, meaning
that devices can join and leave the swarm at any time. The
goal is to enable a verifier to verify the integrity of all devices
in the swarm network without having to verify the attestation
of each device individually. The aggregated attestation of the
swarm network is a single proof convincing the verifier that
the swarm network consists of n devices that are all in a valid
state. An overview of the system model is given in Figure 5.

As for the ΠRANHA system model, the ΠRANHAS system also
has to fulfill correctness, unforgeability, and anonymity. Cor-
rectness means that for a swarm network with n honest
devices, the final attestation of the swarm network should
verify with respect to n devices. Unforgeability guarantees
that if at least one device is faulty or compromised (i.e.,
cannot produce a valid attestation), the final swarm attestation
at most verifies for n′ devices, with n′ < n. Observe
that n′ does not necessarily correspond to the number of
remaining honest devices as compromised devices may also
decide not to include honest attestations in the processed

Verifier

attestation
proof

Fig. 5. System model of our ΠRANHAS construction. Swarm devices can, but
do not have to, be organized in a spanning tree.

proof. The number of swarm devices attested is determined
by the number of distinct linkage tags that are included
in the attestation. This unforgeability property for swarms
captures the notion of linkability we have defined for single-
device remote attestation (see Section III-A). The reason is
that if an adversary can break linkability for single-device
attestations, it can also produce a swarm attestation with more
distinct linkage tags than the actual number of honest devices,
which would break unforgeability. Even if the swarm network
contains dishonest hosts, the final attestation should not reveal
any identifying information about honest hosts guaranteeing
their anonymity. Attestations have to remain unlinkable across
different challenges. Lastly, we aim to build a robust system
that can identify defect or corrupted devices. In our setting,
this is enabled by sending verifiable proofs in each round
of the protocol. Devices can verify these proofs, potentially
disconnecting from its neighbor if the proof is invalid.

The threat model of ΠRANHAS is the same as for ΠRANHA,
considering only adversaries against which all used primi-
tives are secure. We additionally consider malicious devices
within the swarm that conduct network-based attacks. Besides
influencing correctness (i.e., by dropping messages), such
attacks have no impact on the unforgeability or anonymity
of attestations. DDoS attacks can be prevented by upper-
bounding the number of attestation proofs to accept from each
neighboring device.

B. Constructing ΠRANHAS

Now, we present our ΠRANHAS construction, based on our
single-device construction ΠRANHA in Section III. For simplic-
ity, we assume that all devices are produced by the same
manufacturer (i.e., they share the same manufacturer verifi-
cation key vk). We show how to eliminate this assumption in
Appendix F. independent of the concrete network topology,
there are two aggregation strategies that can be employed to
attest a swarm. The most efficient strategy would have devices
build a minimum-height spanning tree of the network in
advance. This can be done in distributed fashion, e.g. using the
Gallager-Humblet-Spira (GHS) algorithm [31]. Then, devices
can aggregate proof along the spanning tree, until the root
device obtains the attestation proof for the entire network.
Alternatively, all devices can create, aggregate and propagate
proofs to their neighbors in a gossip-style fashion. In this
scenario, each device obtains a full attestation proof. We
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evaluate the two strategies in Section V-D and provide a
strategy-agnostic protocol description below.

Our protocol can be initiated by a verifier sending a request
to a device in the swarm, by an external event, or be triggered
periodically. As in ΠRANHA, we assume that all devices have
access to some public bulletin board or public ledger for
retrieving the latest attestation challenge, or learn the challenge
from other devices in the swarm during the attestation.

High-Level Overview. Let i be the index of a device starting
with the attestation in a swarm of n devices. Obtaining
the attestation response rsp for a challenge from its trusted
component, a device computes the attestation similarly to
the ΠRANHA protocol, but additionally computes and initial
aggregated linkage tag by hashing the linkage tag ti to a group
G as ati ← H(ti). All devices in the swarm can perform this
initial step in parallel. The devices then send (πi, ati, Li) to
their neighboring devices, where Li = {ti} is a list of linkage
tags that initially contains only ti. A device j that receives
an attestation tuple (πi, ati, Li) from its neighbor device, first
checks if its linkage tag tj is already in the list Li, if so it only
forwards this tuple to its neighbors. Note that this scenario
does not apply if the swarm is organized in a spanning tree, as
then the device only receives attestation tuples from its child
devices and sends a single processed attestation tuple to its
parent device. Otherwise, it computes its own attestation and
linkage tag (πj , tj), computes the aggregated linkage tag as
atj ← ati ·H(tj), and composes the neighbor attestation proof
recursively with its attestation proof to π′

j . Lastly, it forwards
(π′

j , atj , Lj) to its neighbors, where Lj = Li ∪ {tj}. Once
the linkage tag list contains all n tags, or the root device of
a spanning tree has received the final attestation, the swarm
outputs the final attestation proof π, aggregated linkage tag
at, and the list of linkage tags L. The verifier then verifies the
proof π and the correctness of the aggregated linkage tag at
by comparing the product of all individually hashed tags in L
with the aggregated tag at. The number of correctly attested
devices is then given by n = |L|U , where |L|U = |L| if the
swarm is organized in a spanning tree, since in this case the
list L never contains duplicate tags.

A key challenge in our construction is preventing an ad-
versary from producing an attestation that verifies for more
honest devices than are part of the swarm. In particular, this
involves producing a different list L′ of linkage tags with
|L′|U > |L|U for which the product of all tags in L′ still
equals the aggregated tag at. Since the attestation proof is
tied only to the aggregated tag at and not directly to the list
L, due to its variable length, the adversary has some freedom
in choosing the list. In our security proof, we prove that an
adversary that can produce such a list L′ can solve the discrete
logarithm problem.

Zero-Knowledge Proof Relations. The construction makes
use of two relations Ratt and Ragg for the zero-knowledge
proof system NIZK. Relation Ratt is used to prove knowledge
of a valid ΠRANHA attestation and the correctness of the initial
aggregated tag. Relation Ragg is used to prove knowledge of

two valid proofs for Ratt or Ragg and the correct aggregation
of two aggregated tags.

1) Attestation Relation: RelationRatt is defined as follows:
”For the statement ϕ = (vk, chall, at) consisting of a manu-
facturer verification key vk, challenge chall, initial aggregated
tag at, I know a witness w = (rsp, v, wACC, k, σ, t) consisting
of a response rsp, accumulator value v, accumulator witness
wACC, PRF key k, signature σ, and linkage tag t such that:

• ((vk, chall, t), (rsp, v, wACC, k, σ)) ∈ RΠRANHA is a valid
ΠRANHA attestation, as defined in Section III-B.

• The initial aggregated tag is computed as at = H(t).”
2) Aggregation Relation: Relation Ragg is defined as:

”For the statement ϕ = (vk, chall, at) consisting of a manu-
facturer verification key vk, challenge chall, and an aggregated
tag at, I know a witness w = (at0, at1, π0, π1) consisting of
two aggregated tags at0, at1 and two proofs π0, π1 such that:

• The two proofs verify for b ∈ {0, 1}:
NIZK.Verify(RΠRANHAS, vk, chall, atb, πb) = 1.

• The tags are aggregated as at = at0 · at1.”
When only writing the relation RΠRANHAS, we refer to the

disjunction of the two relations, i.e., RΠRANHAS = Ratt ∨Ragg.
Thus, NIZK.Verify(RΠRANHAS, vk, chall, at, π) checks whether π
is valid for the relation Ratt or Ragg.
The Construction in Depth. We now describe our construc-
tion ΠRANHAS in detail, which extends ΠRANHA by two algorithms
(SwarmAtt,SwarmVrfy). We refer to Fig. 6 for a visual
overview of the construction.

We differentiate between devices that start the attestation
process (first devices) and have not received any attestation
tuples from neighboring devices and devices that have received
one or more attestation tuples (intermediate devices). In Fig. 6,
devices 2 and 3 represent first devices, while device 1 is
an intermediate device. In the following, we will use a hash
function H : {0, 1}∗ → G, where G is a group of prime order
p with generator g.

1) Swarm Attestation: The swarm attestation algorithm
(π′, at′, L′)← AttProve(rsp, cfg, chall, vk, (πi, ati, Li)i∈[c])
is run by a device in the swarm, which gets a list of c
previous swarm attestation tuples, and computes the new
swarm attestation proof.

a) First Device: The device first forwards the chal-
lenge chall to its trusted component to get the attesta-
tion response rsp ← RA.Attest(dk, st, chall). It then com-
putes the commitment com ← CO.Com(chall, rsp), and
accumulator witness wACC ← ACC.Wit(v, com, C). Also,
it computes the linkage tag as t ← PRF.F(k, chall). Us-
ing the relation Ratt, it computes the attestation proof as
π $← NIZK(Ratt, (vk, chall, at), (rsp, v, wACC, k, σ, t)). Lastly,
it sends the attestation tuple (at, π, {t}) to its neighbor devices.

b) Intermediate Device: We distinguish cases where the
intermediate device with index i receives a single or multiple
attestation tuples by its neighbors. In both cases, given a tuple
(atj , πj , Lj) by a neighbor, the device first checks whether its
own linkage tag ti is already in the list Lj of linkage tags. If
it is, the device only forwards the tuple to all neighbors except
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Fig. 6. Overview of the attestation procedure of our ΠRANHAS construction. The diagram depicts an attestation procedure involving three devices and a verifier.
Zero-knowledge proof relations are marked by dashed lines. Witnesses in the proof circuits are marked in blue. Public inputs are marked in green.

the one from which it was received. Note that if the swarm
is organized as a spanning tree, intermediate devices do not
need to check whether their linkage tag is part of the linkage
tag list and only need to forward the resulting attestation tuple
to their parent device.

Assume a device only receives a single attestation tu-
ple from a neighbor. As before, the device follows the
ΠRANHA.AttProve algorithm in which it computes its tag ti
and then computes its attestation proof using relation Ratt

to obtain (πi, ati). Next, it combines the atj with its own
aggregated tag at′i = atj · ati, extends the list Li ←
Lj ∪ {ti}, and computes the aggregated proof π′

i
$←

NIZK(Ragg, (vk, chall, at
′
i), (ati, atj , πi, πj)). Lastly, the de-

vice outputs the attestation tuple (at′i, π
′
i, Li).

If the device receives two or more attestation tuples, it pro-
cesses them pairwise. Given two attestation tuples (atj , πj , Lj)
and (atk, πk, Lk), it first checks whether Lj ∩ Lk ̸= ∅, i.e,
whether the lists share any tags (which cannot happen for
spanning trees). If they do, the device only aggregates its
own attestation to both tuples as shown before and broadcasts
them to its neighbors. Otherwise, it first combines the two
aggregated tags at′ = atj · atk and computes the proof
π′ $← NIZK(Ragg, (vk, chall, at

′), (atj , atk, πj , πk)). If the
individual proofs πj or πk do not verify, the device considers
device j or k, respectively, as faulty and disconnects from
it. It then also combines the two tag lists into a single list
L′ = Lj ∪ Lk. The composed proof π′ and aggregated tag
at′ can now be combined with another neighbor’s attestation
or with the device’s own attestation. Lastly, it forwards the
attestation proof (at′, π′, L′) to its neighbor device.

2) Verification: The verifier runs the verification al-
gorithm 1/0← SwarmVrfy(vk, chall, at, L, π) to check the
validity of the swarm attestation for a given chal-
lenge. The verifier first checks the attestation proof as
NIZK.Verify(RΠRANHAS, vk, chall, at, π) = 1. Given the list
L = (t1, . . . , t|L|), it then checks the correctness of the
aggregated tag as

∏
ti∈L H(ti) = at. The number of attested

devices is then given by n = |L|U . For a spanning tree swarm,

the list never contains duplicate tags such that n = |L|.
Linkable Anonymity. While the anonymity of all devices in a
swarm is preserved, the aggregated linkage tag at of a swarm
attestation allows a verifier to link attestations of the same
swarm for the same challenge. Attestations under different
challenges, however, remain unlinkable. As with the ΠRANHA

scheme described in Section III-B, if an application requires
multiple unlinkable attestations for the same challenges, the
construction can be adapted by including additional context
information in the PRF evaluation, such as the verifier’s
identity. The tag list L serves two purposes: first, it allows a
verifier to detect whether a device appears in multiple swarm
attestations by comparing the tag lists; second, the size of the
list allows the verifier to determine the size of the swarm. We
can guarantee that the swarm network consists of at least as
many attested devices as there are unique tags in the list.

Full Node and Light Node. Most swarm networks consist of a
variety of devices with different computational power. While
some devices are fast at performing the proof computation,
others might be bottlenecks when attesting the entire swarm.
To improve the entire system’s runtime, we propose distin-
guishing between full nodes and light nodes. While light nodes
only attest themselves and forward received proofs alongside
their own, full nodes additionally aggregate the proofs. This
introduces some communication overhead, but does not affect
the security or anonymity of the system and could drastically
improve the runtime in real-world scenarios.

C. Security Analysis of ΠRANHAS

We now present the security analysis of our ΠRANHAS scheme,
which aligns with the security properties defined in the sys-
tem model in Section IV-A. Our analysis considers adaptive
corruptions, where the adversary can corrupt devices during
protocol execution. This models dynamically changing IoT
swarms more accurately than assuming static corruptions. For
each property, we provide an argument of security for our
construction, and refer to Appendix D for the full proofs.
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Correctness. Correctness of a ΠRANHAS scheme requires that an
honestly generated swarm attestation produced by n honest
devices, i.e., from n correct responses rspi and configurations
cfgi, always verifies. As correctness is trivial to define and
directly follows in our construction, we omit its analysis.
Unforgeability. Unforgeability of a ΠRANHAS scheme requires

GameUnforgeA(λ):

1 : (pp, sk, vk) $← ManSetup(λ)

2 : (n,m) $← A(pp, vk)
3 : for i ∈ [m] : challi

$← {0, 1}λ

4 : for j ∈ [n] :

5 : (dkj , stj , cfgj)
$← DevSetup(sk, (challi)i∈[m])

6 : // Set of queried device attestations per challenge. Corruption set.

7 : S← [∅]; C← ∅

8 : (π, at, L, chall) $← AOSwarm

((challi)i∈[m])

9 : return SwarmVrfy(vk, chall, at, L, π) ∧
10 : (|L|U > |S[chall] ∪ C|)

GameAnonA(λ):

1 : (pp, sk, vk) $← ManSetup(λ)

2 : (n,m) $← A(pp, vk)
3 : for i ∈ [m] : challi

$← {0, 1}λ

4 : for j ∈ [n] :

5 : (dkj , stj , cfgj)
$← DevSetup(sk, (challi)i∈[m])

6 : // Set of queried device attestations per challenge. Corruption set.

7 : S← [∅]; C← ∅

8 : (chall, i0, i1, π, at, L)
$← AOSwarm

((challi)i∈[m])

9 : b $← {0, 1}
10 : rspb ← RA.Attest(dkib , stib , chall)

11 : (π′
b, at

′
b, L

′
b)

$← AttProve(rspb, cfgib , chall, vk, π, at, L)

12 : b∗ $← AOSwarm

(π′
b, at

′
b, L

′
b)

13 : return (b∗ = b) ∧ (i0, i1 /∈ (C ∪ S[chall]))

OCorr(i):

1 : C← C ∪ {i}
2 : return cfgi

OAtt(chall, i):

1 : if i /∈ C : return ⊥
2 : return RA.Attest(dki, sti, chall)

OSwarmAtt(chall, i, (πj , atj , Lj)j∈[c]):

1 : if i /∈ S[chall] : S[chall]← S[chall] ∪ {i}
2 : rsp← RA.Attest(dki, sti, chall)

3 : return SwarmAtt(rsp, cfgi, chall, vk, (πj , atj , Lj)j∈[c])

Fig. 7. Game-based definition of unforgeability and anonymity for our
ΠRANHAS scheme. Oracle OSwarm denotes the set of oracles OCorr , OAtt,
and OSwarmAtt.

that an adversary cannot generate a swarm attestation for a
challenge chall that verifies with respect to n′ devices, while
the adversary only has access to n < n′ honest devices.

Theorem IV.1. Assuming the underlying RA scheme is un-
forgeable, the SIG scheme is unforgeable, and the NIZK proof
scheme is knowledge-sound, our construction ΠRANHAS fulfills
unforgeability w.r.t. GameUnforge in Figure 7. It holds that:

AdvGameUnforge
A (λ) ≤ negl(λ)

Here, we only give a sketch of why unforgeability holds
and refer to Appendix D for the full proof.

We show that no adversary can output a valid swarm
attestation with accompanying tag list that contains more
unique tags than devices corrupted or attestations queried by
the adversary. This would entail outputting a tuple (π, at, L)
for a challenge chall such that at =

∏
ti∈L H(ti) and |L|U > n

for n = |C∪S[chall]|. First, observe that by Theorem III.1 and
Theorem III.3, the assumptions made in Theorem IV.1 imply
both unforgeability and linkability of construction ΠRANHA,
which we use as part of ΠRANHAS. Unforgeability of ΠRANHA

implies that the adversary can only obtain valid attestation
proofs of devices it has queried or corrupted. Linkability of
ΠRANHA means that any such attestation proof must have a
unique tag, meaning that the adversary can only obtain up to n
valid tags. Further, knowledge-soundness of NIZK ensures that
at, which is output as part of the forgery, must be a correct
aggregation of valid tags. It follows that the aggregated tag
at can only be aggregated from n individual, unique tags.
What remains to show is, that the list L consists of exactly
the tags aggregated in t, since L itself is not verified inside the
proof. We show that an adversary cannot add invalid tags to
L that would still lead to the same aggregated tag. Intuitively,
this attack is infeasible because finding such invalid tags that
yield the same aggregated tag is as hard as solving the DLOG
problem in the group G we are hashing to. We provide a formal
proof for this in the random oracle model in Appendix D. In
summary, the unforgeability and linkability of ΠRANHA and the
hardness of finding collisions for the aggregated tag ensure
the unforgeability of ΠRANHAS.

Anonymity. Anonymity of a ΠRANHAS ensures that no internal
or external adversary can distinguish which device or swarm
generated a given attestation.

Theorem IV.2. Assuming the PRF is a pseudorandom func-
tion and the NIZK proof scheme is zero-knowledge, our
construction ΠRANHAS fulfills anonymity w.r.t. GameAnon in
Figure 7. It holds that:

AdvGameAnon
A (λ) ≤ negl(λ)

Intuitively, the anonymity of ΠRANHAS follows from the
anonymity of the underlying ΠRANHA scheme. Recall that
anonymity of ΠRANHA attestations ensures that the proof and
linkage tag of an individual device are indistinguishable be-
tween devices. Since the final swarm attestation corresponds
to the aggregation of multiple individual attestations, the
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indistinguishability follows directly from the anonymity of
ΠRANHA. We provide a full proof in Appendix D. As with ΠRANHA,
we assume an honest manufacturer to achieve anonymity.
However, the same extension presented in Appendix E can be
applied to ΠRANHAS to obtain anonymity even in the presence
of a malicious manufacturer.

V. IMPLEMENTATION AND EVALUATION

In this section, we discuss our implementation of ΠRANHAS

and provide an evaluation of its performance. We first dis-
cuss the rationale behind choosing recursive zkSNARKs over
folding-based approaches and present the implementation,
circuit designs, and the effect of different network topologies.
Finally, we evaluate our system’s performance in detail.

A. Rationale for Proving Backend

For our recursive proof construction, we consider three
distinct classes of techniques that enable proof combination.
We provide an overview of each and discuss their trade-offs.

1) Proof Aggregation: Certain SNARK systems, such as
Halo [32], [33] allow for efficient proof aggregation. However,
intermediate proofs are often not individually verifiable, which
we require to detect adversarial or malfunctioning devices.

2) Folding Schemes: Folding schemes, such as Nova [34],
merge multiple R1CS instances by folding their NP statements
into a single relation, which are later proven by a SNARK.
In these systems, zero-knowledge and correctness are only
guaranteed at the final folding step, leaving intermediate states
unverified. This however is a requirement in our setting.

3) Recursive SNARKs: Recursive SNARKs, such as
Plonky2 [3], embed a proof as part of the witness of another
proof, allowing each proof to attest to the correctness of all
preceding steps. This enables incremental proof composition
while preserving zero-knowledge and soundness at every step.

Given these trade-offs, we adopt recursive SNARKs as our
proving technique. This approach ensures completeness and
zero-knowledge guarantees at each recursive step, supports
modular and trustless verification, multi-prover systems and is
suited to the adversarial and dynamic setting of our protocol.

B. Circuit Construction and Recursive Composition

We implement the NIZK relations Ratt and Ragg using
Noir [2] and Plonky2 [3]. Noir is a DSL that targets
modular backends via the Abstract Circuit Intermediate Rep-
resentation (ACIR). It uses the Barretenberg backend,
based on the PLONK protocol [35] and developed by Aztec
Labs. Plonky2 is a Rust library developed by Polygon
that combines PLONK and FRI [36]. Both libraries offer
transparent proofs without a trusted setup, along with recursion
and low verification costs. We chose these two mainly for their
support for recursive proof composition.

We implement both Ratt and Ragg in Noir and Plonky2.
On a high level, the implementation follows the description
of the relations in Section IV-B. To instantiate the required
components, we use a Schnorr signature for SIG, a hash-
based PRF, a Pedersen commitment and a Merkle tree for

TABLE II
PERFORMANCE ANALYSIS OF PIRANHAS USING DIFFERENT RECURSIVE

PROVING BACKENDS

UltraHonk Plonky2
Ratt Ragg Laptop R/Pi 4

Ratt Ragg Ratt Ragg

proof
size (KB)

14.5 14.5 145(130) 130 145(130) 130

proving
time (s)

0.305 6.42 1.3(+0.7) 0.36 12.3(+8.5) 5.5

verification
time (s)

0.031 0.032 0.0027 0.0023 0.056 0.055

circuit
size

24 K✸ 1,448 K✸ ∼175 K ∼280 K ∼175 K ∼280 K

✸ Indicates number of ACIRs reported by Barretenberg.

ACC. We rely on Noir libraries for signatures and commit-
ments, and rely on libraries for hashing and group operations
in Plonky2, implementing the Merkle tree, PRF, signatures
and commitments ourselves. Recall that by the security of
the Pedersen commitment scheme, a corrupt device cannot
learn the attestation response corresponding to a commitment
nor open it to a different value. Further, by the collision-
resistance of the Poseidon hash function implying collision-
resistance of the Merkle tree, a corrupt device cannot create a
verifying membership proof for a different commitment (i.e.,
a different attestation response). Note that the authenticity of
the verfication key of the signature scheme (a public input to
the circuit) must be checked externally by the verifier.

C. System Setup

We benchmark our implementation on a consumer-grade
laptop (MacBook Pro with an Apple M4 chip) and a Raspberry
Pi 4. Recursive proofs are generated using both Plonky2,
and Barretenberg’s ultra_honk proving backend. At
the time of writing, Noir does not support certain ARM64
architectures, which prevented us from running Noir on the
Raspberry Pi. We detail our experimental setup in Appendix G

D. Computational Complexity

UltraHonk vs. Plonky2. Table II presents the perfor-
mance analysis of our implementation with Noir using the
UltraHonk proving backend and Plonky2. A key ob-
servation from these experiments is that in UltraHonk,
the computational overhead of proof recursion dominates the
relatively low cost of generating a local attestation proof. In
contrast, in Plonky2, is significantly more efficient at per-
forming proof recursions, while the cost of generating a local
attestation proof is higher. Therefore, Plonky2 outperforms
UltraHonk in scenarios with larger swarms requiring many
recursion steps, while UltraHonk is more suitable for single
device attestations or smaller swarms.
Verification Time. It is important to note that the verification
time remains consistent across all cases, regardless of circuit
complexity. Verification takes less than 30 ms, and the size
of the proof also remains nearly constant (14.5 KB) using
UltraHonk, and around 130 KB using Plonky2.
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for common group setups.

Circuit Optimizations. Beyond our baseline experiments, we
explore circuit-level optimizations in Noir. Since recursive
proof verification dominates proving time in Noir-based
circuits, we design custom relations capable of aggregating
more than two proofs in a single step. Usually, one would
invoke Ragg twice when receiving two proofs and aggregating
them with one’s own (e.g., Device 1 in Fig. 6). This roughly
requires 13s using the Barretenberg backend on a laptop.
Instead, we implement a custom relation that merges two Ratt

instances into a single circuit. This reduces the number of
recursive verifications from four to three and brings the total
proving time down to around 9.5s, a 25% improvement.

In Plonky2, group operations are much more costly than
recursion. Since the prover is built upon FRI, verification
times are circuit-specific. The prover runtime further depends
on the use of zero-knowledge, as the Plonky2 framework
is not optimized for this property. In effect, it is more ef-
ficient for single devices to add two recursive wrappers to
their Ratt proof to optimize the aggregation efficiency. After
proving RΠRANHA in zero-knowledge, devices recursively verify
the proof and compute the remainder of Ratt without zero-
knowledge. This change does not influence anonymity, since
the output of RΠRANHA does not reveal information about the
witness. Devices then again recursively prove the validity of
their proof, which simplifies the circuit to be proven over (not
containing anyRΠRANHA logic), improving aggregation runtime.
The optional runtime of wrapping the proof to optimize for
aggregation is denoted in brackets in Table II.

Further Implementation Optimizations. We briefly describe
two implementation optimizations for attestation proof gen-
eration. We give more details in the full version of this
paper [37]. First, we introduce a signature-number/tree depth
trade-off, where the manufacturer provides multiple signatures
on intermediate Merkle tree nodes instead of only signing
the root, reducing proving time due to shorter authentication
paths at the cost of storing additional signatures. Second, we
consider truncating Merkle tree hashes, which truncates the
256 bit Poseidon hash outputs to reduce the per-device storage
while maintaining an equivalent 128 bit security level.

Dependence on Topology. In Figure 8, we present an

overview of the runtime of the ΠRANHAS protocol for different
network topologies. The runtime is extrapolated from indi-
vidual prover runtimes, as well as an artificial network delay
based on the communication size and a throughput of 24 Mbps
(Bluetooth 3.0). Benchmarks for random topologies are done
by choosing a random number of edges in a connected graph
and uniformly drawing nodes to connect, without accounting
for duplicates. We generate data for both aggregation strategies
detailed in Section IV-B. In the first, parties pre-compute a
spanning-tree along which proofs are aggregated, building a
complete proof at the root. In the second, a decentralized at-
testation scenario, parties distribute proofs by sending updates
to their neighbors, meaning that each party finally obtains
a complete proof. Building a spanning tree is vastly more
efficient, achieving the best performance on networks that
already have a spanning tree structure. Least efficient is the
gossip strategy for chain-shaped networks.
Evaluation of ΠRANHA. In the full version of our paper [37],
we give additional benchmarks comparing our single-device
remote attestation scheme to zRA [1] using the Groth16
backend. The results demonstrate that our method achieves
similar performance as zRA, indicating that it is as scalable
and efficient in terms of prover runtime. Recall that by signing
individual device tree roots instead of constructing a Merkle
tree over all device roots (as in zRA), our scheme provides
greater flexibility and updatability. We note that the on-chain
verification results presented in [1] also apply to our scheme,
as it uses the same Groth16 verifier.

E. Comparison with Related Work
We compare the performance of our PIRANHAS construc-

tion with the two recent privacy-preserving swarm attestation
schemes SPARK [26] and PRIVÉ [24].

The system model of SPARK and PRIVÉ differs strongly
from ours, as they assume a setting in which many IoT
devices are connected to a stronger parent (edge) device.
Privacy guarantees only hold between edge devices, making
it a fair comparison to compare nodes in our protocol with
edge devices in theirs. Unfortunately, we were unable to
reproduce the experimental results of these works ourselves,
either because the source code was not publicly available, or
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not executable in our environment. Hence, we compare our
results given the values presented in their paper. The proving
time per edge device (R/Pi 4) of SPARK and PRIVÉ is 200ms
and 280ms respectively, while our single-prover time in Noir
is around 2.5s (estimated on R/Pi 4). A comparison of final
proof sizes and verification time for increasing number of edge
devices is depicted in Figure 9. As the latter also depends
on the number of IoT devices per-edge, we assume at least
one IoT device per edge device. We find the aggregation of
proofs to be advantageous, which SPARK and PRIVÉ do not
support for edge device proofs. Moreover, ΠRANHAS supports
almost constant-time verification of proofs, which is especially
beneficial for large swarms or for verification on a blockchain.

Also related is the first swarm attestation scheme
SEDA [19], which does not offer any privacy guarantees,
requires interaction, and additional trust assumptions between
neighbors. Each device attests its neighbors using a pre-shared
MAC key; which results in attestation and verification times
several orders of magnitude faster than for privacy-preserving
constructions.
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APPENDIX

A. Notation Table

We give an overview of the variables used in our work in
Table III.

B. Preliminaries Expanded

We now give more detailed definitions of the primitives
used, including syntax.

a) Non-Interactive Zero-Knowledge Proofs: A non-
interactive zero-knowledge proof system NIZK is defined for
a polynomial-time verifiable binary relation R and consists of
the following algorithms:

TABLE III
A SUMMARY OF THE NOTATION USED IN OUR WORK.

Notation Meaning Notation Meaning

λ Security parameter chall Attestation challenge
pp Public parameters rsp Attestation response
crs Common reference string σ Signature
ϕ Statement sk Signing key
w Witness vk Verification key
v Accumulator value cfg Device configuration

com Commitment t Linkage tag
dk Device key at Aggregated tag
st Device state L Tag list

• crs $← NIZK.Setup(λ): The setup algorithm takes as
input the security parameter λ and outputs a common
reference string crs.

• π $← NIZK.Prove(crs, ϕ, w): The prove algorithm takes
as inputs the common reference string crs, a statement
ϕ, and a witness w such that (ϕ,w) ∈ R and outputs a
proof π.

• 0/1← NIZK.Verify(crs, ϕ, π): The verification algorithm
takes as input the common reference string crs, a state-
ment ϕ, and a proof π and outputs 1 if the proof is valid
and 0 otherwise.

We require that the NIZK proof system satisfies completeness,
knowledge soundness, and zero-knowledge. By completeness,
an honestly generated proof of (ϕ,w) ∈ R always verifies.
Knowledge soundness requires the existence of an extractor
Ext that can efficiently extract a witness from a verifying
proof. Zero-knowledge ensures that a proof does not reveal any
information beyond the statement’s validity. More formally, a
NIZK is zero-knowledge if there exists a simulator algorithm
Sim that, given the setup and statement, can generate an
honest-looking proof without knowing a witness.

b) Cryptographic Accumulator: We consider a static
accumulator scheme ACC without a secret key and create
witnesses using knowledge of all added elements.

• pp $← ACC.Setup(λ): The setup algorithm generates the
public parameters pp.

• v $← ACC.AccSet(S): The accumulate algorithm accu-
mulates a set of elements S into an accumulator value v.

• w ← ACC.Wit(v, x, S): The witness generation algo-
rithm takes as input an accumulator value v, an element
x and a set of elements S and outputs a witness w.

• 0/1← ACC.Verify(v, x, w): The verify algorithm outputs
1 if w is a valid witness w.r.t. x and v, and 0 otherwise.

We require ACC to fulfill correctness and collision-resistance.
By correctness, a tuple of an accumulator value v accumulating
the set S, and an honestly generated witness w for x ∈ S
always verifies. Collision-resistance ensures that it is hard
to create a verifying witness for an element x′ not in the
accumulator.

c) Commitment Schemes: We use the following syntax
for a commitment scheme CO:
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• com← CO.Com(x, r): The commit algorithm generates
a commitment com for a value x with randomness r.

• 0/1← CO.Verify(com, x, r): The verify algorithm takes
as input com, x, and r and outputs a bit b.

Commitment schemes should fulfill correctness, hiding, and
binding. Correctness guarantees that an honestly generated
commitment successfully verifies . Hiding ensures that com
does not reveal anything about x, while binding ensures
openings to values other than x are hard to find.

d) Signature Schemes: We define a signature scheme SIG
as a tuple of algorithms:

• (sk, vk) $← SIG.KeyGen(λ): The key generation algo-
rithm generates signing key sk and verification key vk.

• σ $← SIG.Sign(sk,m): The signing algorithm computes a
signature σ for a message m using the signing key sk.

• 0/1 ← SIG.Verify(vk,m, σ): The verification algorithm
outputs 1 if the signature σ is valid for the message m
under verification key vk, and 0 otherwise.

Signature schemes must fulfill correctness and unforge-
ability. While correctness means that an honestly generated
signature verifies for the corresponding message with respect
to the verification key, unforgeability ensures that it is hard to
forge a valid signature without knowledge of the signing key.

e) Pseudo-Random Functions: For a keyed pseudoran-
dom function (PRF), we use the following syntax:

• k $← PRF.KeyGen(λ): The key generation algorithm
generates a key k.

• y ← PRF.F(k, x): The PRF takes a key k and a value x
as input and outputs an evaluation y.

We require PRFs to be pseudorandom, meaning that one
cannot differentiate between an evaluation of the PRF and
a value sampled uniformly at random.

C. Full Proofs of ΠRANHA

In this section, we will give more formal proofs of
Theorems III.1, III.2, and III.3, proving the unforgeability,
anonymity and linkability of our ΠRANHA construction.
Unforgeability. We start by proving Theorem III.1.

Proof. We prove the theorem via a series of game hops.
By Advi,A = Pr[Gamei,A = 1] we denote the adversary’s
advantage in Gamei. Assuming there exists an adversary with
non-negligible success probability in GameUnforge, we show
how to break the unforgeability of the underlying signature
scheme with non-negligible probability.

Game0: Define Game0 to be GameUnforge. Then, trivially
Adv0,A = AdvΠRANHA

GameUnforge,A.

Game1: In this game, an adversary B must return the
witness w = (rsp, v, wACC, k, σ) instead of the attestation
proof. Let Ext be the knowledge extractor of the underlying
NIZK for RΠRANHA. We can construct B from A by computing
w = Ext(π). It holds that Adv0,A = Adv1,B + negl(λ).

Game2: Now, the commitments added in the accumulator
are replaced by commitments to random values in the device

setup. Note that by the unforgeability of the underlying
RA scheme, A can only produce a valid RA response with
negligible probability. Therefore, if B only has negligible
success for randomized commitments, B may be used to
distinguish commitments to different values, breaking the
commitment’s hiding property. As we require this property to
hold, it follows that Adv1,B = Adv2,B + negl(λ).

Game3: Now, the challenger additionally returns ⊥ if
the accumulator witness wACC output by an adversary B
indeed proves inclusion of one of the commitments in the
commitment list C that are included into the accumulator v. As
B cannot forge an attestation response and the commitments
are randomized, this can only occur if B produces a second
opening to the randomized commitments that are included in
v. In this case they would break the binding property of CO.
It holds that Adv2,B = Adv3,B + negl(λ).

Game4: In this game, the challenger additionally returns
⊥ if the accumulator value v, PRF key k and signature σ
output by the adversary are the same as given with the device
configuration cfg during the device setup. It follows that in
the failure case, the witness output wACC must be inconsistent
with the actually added elements in v. Then, B would output a
different, valid accumulator witness for the same v, breaking
the unforgeability of the accumulator. Since we require the
accumulator to be unforgeable, B’s success probability can
only change by a negligible amount compared to Game3. In
consequence, it holds that Adv3,B = Adv4,B + negl(λ).

Finally, we obtain an adversary B that can produce a tuple
(v, k, σ) for which at least one of the elements is inconsistent
with cfg. As σ is a signature on v and k, this tuple presents
a signature forgery for SIG. Because we require SIG to be
unforgeable, it follows that

Adv4,B ≤ negl(λ)⇒ AdvΠRANHA

GameUnforge,A ≤ negl(λ)

Anonymity. We give a proof for Theorem III.2.

Proof. In order to prove anonymity, we provide a series of
game hops and for each Gamei, we define the advantage of
A as Advi,A =

∣∣Pr[Gamei,A = 1]− 1
2

∣∣.
Game0: This game is equivalent to GameAnon, thus we

have that Adv0,A = AdvΠRANHA

GameAnon,A.

Game1: In this game, the proof πb that
is computed within the AttProve algorithm is
simulated. That is, instead of computing πb

$←
NIZK.Prove(RΠRANHA, (vk, chall, tb), (rspb, vb, wACC,b, kb, σb)),
it simulates the proof as πb

$←
NIZK.Sim(RΠRANHA, (vk, chall, tb)). The computational
indistinguishability of this game to the previous one follows
from the zero-knowledge property of the NIZK proof system,
thus we have that Adv0,A ≤ Adv1,A + negl(λ).
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Game2: This game is the same as before with the only
difference that the linkage tag is sampled uniformly at
random tb

$← {0, 1}k, where k is the output length of the
PRF. By the pseudorandomness of the PRF, this game
hop is computationally indistinguishable, implying that
Adv1,A ≤ Adv2,A + negl(λ).

As Game0 is computationally indistinguishable from
Game2, we have that AdvΠRANHA

GameAnon,A ≤ Adv2,A+negl(λ). Note
that in Game2 the challenge (πb, tb) given to A is independent
of the chosen bit b. It follows that:

Adv2,A ≤ negl(λ)⇒ AdvΠRANHA

GameAnon,A ≤ negl(λ)

Linkability. We give a proof for Theorem III.3.

Proof. In order to prove linkability, we provide a series of
game hops and for each Gamei, we define the advantage of A
as Advi,A = Pr[Gamei,A = 1]. Assuming there exists an ad-
versary with non-negligible success probability in GameLink,
we show how to break the unforgeability of the underlying
signature scheme SIG with non-negligible probability.
Game0: This game is equivalent to GameLink, thus we

have that Adv0,A = AdvΠRANHA

GameLink,A.

Game1: In this game, an adversary B must return the
witnesses of the two proofs π0 and π1 along with the linkage
tags t0 and t1. That is, B returns (rspb, vb, wACC,b, kb, σb) for
b ∈ {0, 1}. We can construct B from A by computing Ext(πb),
where Ext is the knowledge extractor of the underlying NIZK.
It holds that Adv0,A = Adv1,B + negl(λ).

With Game1, we obtain an adversary B that outputs
two distinct linkage tags t0, t1 where tb = PRF(kb, chall)
for b ∈ {0, 1} along with the signatures σb, where
SIG.Verify(vk, σb, (vb, kb)) = 1. Because the PRF is deter-
ministic, if t0 ̸= t1, it must be that k0 ̸= k1. Since B is only
given a single signature σ on (v, k), B must have forged a
signature on a different PRF key. Using the unforgeability of
SIG, it follows that:

Adv1,B ≤ negl(λ)⇒ AdvΠRANHA

GameLink,A ≤ negl(λ)

D. Full Proofs of ΠRANHAS

In this section, we will give more formal proofs of Theo-
rem IV.1, and Theorem IV.2, proving the unforgeability and
anonymity of our ΠRANHAS construction.
Unforgeability. We start by proving Theorem IV.1.

Proof. We prove the theorem via a game hop to Game1 of
the ΠRANHA unforgeability proof (Appendix C), which in turn
can be reduced to the unforgeability of the signature scheme.
By Advi,A = Pr[Gamei,A = 1] we denote the adversary’s
advantage in Gamei. Assuming there exists an adversary with
non-negligible success probability in GameUnforge, we show

how to break Game1 for unforgeability in Appendix C with
non-negligible probability.
Game0: Define Game0 to be GameUnforge. Then, trivially

we have that Adv0,A = AdvΠRANHA

GameUnforge,A.

Game1: In this game, an adversary B must output a list
of valid witnesses wi = (rspi, vi, wACC, i, ki, σ) alongside
L, such that each tuple is valid in the sense of ΠRANHA.
We can reduce to this game by recursively using the
knowledge extractor of NIZK to extract the witnesses from
the recursive proof. It follows that Adv0,A = Adv1,B+negl(λ).

Game2: In this game, we additionally restrict the adversary
to output a list of tags L that are produced by the witnesses
(rsp, cfg). This means that for every tag in L there exists a
witness w that produces said tag. We show a reduction to the
DLOG game in the random oracle model. Assume there exists
an adversary B with non-negligible advantage in Game2, but
negligible advantage in Game3. We now build an adversary
C with non-negligible advantage in the DLOG game from B.
Let q be the number of oracle queries of B. For each of B′s
queries, C answers with its previous response if the value has
been queried before. It not, C samples a random ri ∈ F and
additionally flips a coin. With probability 1

2 it returns gri as its
response. With the same probability it returns Xri , where X
is the DLOG challenge. Knowing which terms B used for the
forgery and knowing the corresponding ri values, C can then
reconstruct the discrete logarithm of X by solving a linear
equation of exponent terms. The equation contains a single
unknown, the secret exponent, and by the linkability of ΠRANHA

at least two terms. The reduction is successful if the equation
contains at least one Xri term and at least one gri term. Lower
bounding the probability for the general case, this occurs with
probability 1

2 in the case of two forgery terms. Since C can
only have negligible advantage and

AdvDLOG,C ≥
Adv2,B − Adv3,B

2
,

it follows that Adv2,B = Adv3,B + negl(λ).
Game3: By the restrictions of Game2, it must hold that
B has output n + 1 witnesses, where n = |C ∪ S[chall]|
is the number of attestations to B. Now, we additionally
restrict the witness list to produce pairwise distinct tags
t← PRF(k, chall) for the rsp. Observe that if B can find two
valid proofs that generate the same tag, they may break the
linkability of the underlying ΠRANHA construction. As we have
shown in Appendix C, this is only possible with negligible
probability, implying: Adv1,B = Adv2,B + negl(λ).

Game4: This game is identical to Game1 in the unforge-
ability proof in Appendix C. The adversary B must output a
single valid forgery for a given rsp. As A can only obtain up
to |C∪S[chall]| attestations, but has output strictly more valid
witnesses, one of the outputs must be a forgery for an uncor-
rupted and unqueried device. It holds that Adv3,A = Adv4,B.
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From Game4, unforgeability of ΠRANHAS can be reduced to the
unforgeability of SIG using the hiding and binding properties
of CO, the unforgeability of RA, and the collision resistance
of ACC similar as in Appendix C. It follows that

Adv1,B ≤ negl(λ)⇒ AdvΠRANHAS

GameUnforge,A ≤ negl(λ)

Anonymity. We now prove Theorem IV.2. The property fol-
lows similarly to ΠRANHA due to the zero-knowledge property
of the proof system and the pseudo-randomness of the PRF.

Proof. We prove anonymity via a series of game hops. For
each Gamei, we define adversary A’s advantage as Advi,A =∣∣Pr[Gamei,A = 1]− 1

2

∣∣.
Game0: This game is equivalent to GameAnon, thus we

have that Adv0,A = AdvΠRANHA

GameAnon,A.

Game1: In this game, the challenger simulates all proofs
sent to the adversary, both as part of the challenge and in
oracle responses. It follows by the zero-knowledge property
of the NIZK, that Adv1,A = Adv0,A.

Game2: Now, the challenger samples the tag of honest
attestations uniformly at random, instead of computing it
using the PRF. By the pseudo-randomness of the PRF this
step is computationally indistinguishable to the adversary. It
holds that Adv2,A = Adv1,A.

As Game0 is computationally indistinguishable from
Game2, we have that AdvΠRANHAS

GameAnon,A ≤ Adv2,A + negl(λ).
Note that in Game2 the challenge given to A is independent
of the chosen bit b. It follows that:

Adv2,A ≤ negl(λ)⇒ AdvΠRANHAS

GameAnon,A ≤ negl(λ)

E. Anonymity in the Presence of a Malicious Manufacturer

We now show how to adapt our ΠRANHA construction pro-
posed in Section III to achieve anonymity even in the presence
of a malicious manufacturer. First, observe that the original
construction cannot provide anonymity if the manufacturer
is malicious as it knows the device’s PRF key k that is
used to compute the linkage tag as t ← PRF.F(k, chall).
Therefore, given an attestation (t, π) for a challenge chall,
the malicious manufacturer can recompute the linkage tag t′

for the same challenge using the PRF key k′ of the presumed
device t′ ← PRF.F(k′, chall) and check if the tags are equal
t = t′. This would mean that the attestation belongs to the
presumed device.

It is necessary to hide the PRF key from the manufacturer
during the device setup to address this issue, which then
requires interaction. After the setup of the trusted component,
the host samples a random key part k1

$← K and computes
the commitment com′

k ← CO.Com(k1, r1) using an additively
homomorphic commitment scheme CO and randomness r1.

The commitment is sent to the manufacturer, who also sam-
ples a random key part k2

$← K and computes comk2 ←
CO.Com(k2, r2) for randomness r2. Then, the manufacturer
signs the accumulator value v and PRF key commitment comk1

as σ $← SIG.Sign(skSIG, (v, comk1)) and sends the signature σ
and randomness r2 to the host. The host can now compute
the complete PRF key k = k1 + k2 and the commitment
randomness r = r1 + r2. During the attestation, the host uses
the PRF key k to compute the linkage tag as before, but now
proves knowledge of the PRF key k in the commitment comk

using the randomness r, which is signed with the signature σ.
As the commitment com′

k is hiding the committed key part
k1, the malicious manufacturer cannot learn the PRF key k1
and therefore remains oblivious to the complete PRF key k.
Following, it can also not recompute linkage tags in order to
link attestations to specific devices.

F. Swarm Attestation with Multiple Manufacturers

In our ΠRANHAS construction proposed in Section IV-B, we
assume that all devices are made by the same manufacturerm
meaning that every signature σ contained in the device’s attes-
tation configuration cfg verifies under the same manufacturer
verification key vk.

Let M be the list of accepted manufacturer verification keys.
If the number of manufacturers is small, a straightforward
approach is to include M as a public input to the proof
and have each device perform an OR proof proving that its
signature verifies under one of the keys in M . For a larger
number of manufacturers, we can improve efficiency by using
an accumulator. The list M is first accumulated into a value
vM

$← ACC.AccSet(M), which is then included as a public
input to the proof. Each device proves that its signature verifies
under a verification key contained in vM . The verifier checks
that vM correctly accumulates the set M and verifies the proof.
With this extension, one can ensure that all devices in a swarm
network are from a set of accepted manufacturers without
revealing the manufacturer of specific devices.

G. System Setup

We detail the system configuration used for our experimen-
tal evaluation for the different proving systems in Table IV.

TABLE IV
EXPERIMENTAL SETUP CONFIGURATION

MacBook Pro M4 Raspberry Pi Zero 2W Raspberry Pi 4

Memory 16.0 GiB 512MB SDRAM 4.0 GiB

Processor Apple Sillicon M4
1GHz, 64-bit Arm

Cortex-A53

1.5 GHz, 64-bit Arm

Cortex-A72

Storage 512 GB 16 GB SD Card 16 GB SD Card

OS MacOS Sequoia Ubuntu 22.04 Ubuntu 22.04

Proof System

Barretenberg (Noir),

Groth16 (Circom),

Plonky2

Groth16 (Circom) Plonky2
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ARTIFACT APPENDIX

In this paper, we address two key challenges in remote attes-
tation (RA) protocols: (1) public verifiability and (2) privacy
protection. We present PIRANHAS, a publicly verifiable,
asynchronous, and anonymous attestation scheme for both
individual devices and swarms. Our approach leverages zk-
SNARKs to transform any classical symmetric RA scheme
into a non-interactive, publicly verifiable, and anonymous
construction. Verifiers can confirm the validity of attesta-
tions without learning any identifying information about the
participating devices. PIRANHAS supports aggregation of
RA proofs across the entire network using different types
of recursive zk-SNARKs. We present an open-source im-
plementation using both Noir and Plonky2 frameworks,
comparing them in terms of practicality. We achieve an
aggregation runtime of 356 ms. An open-source prototype
implementation of PIRANHAS is available at: https://github.
com/AppliedCryptoGroup/piranhas. The repository contains
the complete implementation required to reproduce the full
protocol and experimental results presented in Section V.

A. Description & Requirements

1) How to Access: Our implementation is publicly available
on GitHub2 and using a permanent DOI via Zenodo3.

2) Hardware Dependencies: None.
3) Software Dependencies: All experiments conducted in

this work are reproducible using standard commodity hardware
and Linux-based operating systems. To simplify benchmark-
ing, we provide scripts and pre-configured inputs for all ZK
circuits in the repository. The only prerequisites are the prov-
ing backends: Circom, Noir/Ultra_Honk, and Plonky2.

4) Benchmarks: To run the benchmarks, simply execute the
benchmark.sh script in each corresponding directory.

B. Artifact Installation & Configuration

The only required setup involves installing the proving
backends. This can be done on any Unix-based operating
system (including macOS) as follows:

• Install Node.js:

1 curl -o- https://raw.
githubusercontent.com/nvm-sh/nvm
/v0.39.3/install.sh | bash

2 source ˜/.bashrc
3 nvm install v22

• Install snarkjs:

1 npm install -g snarkjs

• Install Rust:

1 curl --proto '=https' --tlsv1.2
https://sh.rustup.rs -sSf | sh

• Install Circom:

2https://github.com/AppliedCryptoGroup/piranhas
3https://doi.org/10.5281/zenodo.17879096

1 git clone https://github.com/iden3/
circom.git

2 cd circom
3 cargo build --release

• Install Noir:

1 curl -L https://raw.
githubusercontent.com/noir-lang/
noirup/refs/heads/main/install |
bash

2 noirup -v 1.0.0-beta.3

• Install Barretenberg:

1 curl -L https://raw.
githubusercontent.com/
AztecProtocol/aztec-packages/
refs/heads/next/barretenberg/
bbup/install | bash

2 bbup -v 0.82.0

C. Experiment Workflow

We implemented the proposed protocol using three differ-
ent zk-SNARK proving backends: Groth16 (Circom), Ul-
tra Honk (Noir), and Plonky2. To ensure reproducibility
of all results presented in the evaluation section (Section V),
we provide benchmark scripts for each backend.

D. Major Claims

We benchmarked our implementations on commodity hard-
ware. Here, we focus on the quantitative results reported in
Table II in Section V.

• (C1): The performance of the proposed Πranha protocol,
when implemented using the Groth16 backend, is sub-
second on a laptop and remains practical on constrained
hardware such as the Raspberry Pi Zero 2W. Its perfor-
mance matches the state-of-the-art protocol [1], as backed
in Experiment (E1).

• (C2): The proposed Πranhas protocol leveraging recursive
zk-SNARKs proofs is practical on commodity hardware,
with results reported in Table II. This claim is supported
by Experiments (E2) and (E3), corresponding to the
Ultra Honk and Plonky2 proving backends, respectively.

E. Evaluation

1) Experiment (E1): [Groth16 performance] [∼1 human-
minute + 1–2 compute-minutes]:

[How to] Using the provided benchmark scripts.
[Preparation] Ensure that Circom and SnarkJS are

installed.
[Execution] Navigate to the circom directory and run the

benchmark:

1 cd circom
2 ./benchmark.sh
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[Results] The output should resemble the following, includ-
ing additional information such as circuit compilation details
and other standard Circom logs:

Step 1: Install NPM dependencies
Step 2: Compile circuit (attest.circom)
Step 4: Generate witness using input.json
Witness generated in 129 ms
Step 5: Generate new Powers of Tau
Step 6: Prepare phase 2 for Groth16
Step 7: Setup Groth16 proving key
Step 8: Export verification key
Step 9: Prove using Groth16
Proof generated in 841 ms
Step 10: Verify the proof
[INFO] snarkJS: OK!
Verification completed in 466 ms

The performance metrics can be directly observed in these
logs, including the witness generation, proof generation, and
verification times. We refer to our full paper [37] for a direct
comparison of our numbers against zRA.

2) Experiment (E2): [Ultra Honk performance] [1 human-
minute + 2–5 compute-minutes]:

[How to] Using the provided benchmark scripts.
[Preparation] Ensure that bb and nargo are installed with

the following versions:

bb --version ==> 0.82.0
nargo --version ==> 1.0.0-beta.3

If the versions do not match, update them using the follow-
ing commands:

1 noirup -v 1.0.0-beta.3
2 bbup -v 0.82.0

[Execution] Navigate to the Noir directory and run the
benchmark by passing a number from 1 to 5 as an argument:

1 cd noir
2 ./run_benchmark.sh [1-5]

The argument specifies which testing scenario to bench-
mark:

1) attest-(Pi-zkRA)
2) recurse-(R1)
3) aggregate-(R2)
4) optimized-(R2+R1)
5) optimized-(2xR2+R1)

Results corresponding to benchmarks 1, 3, and 5 are
reported in the Ultra Honk section of Table II, under the
columns Ratt, Ragg, and 2×Ragg, respectively.

[Results] The output includes detailed information from
four main phases:

Step 1 | Executing Nargo
Step 2 | Writing Verification Key
Step 3 | Proving
Step 4 | Verifying Proof

Performance metrics such as proving and verification times
can be found in log messages like "Proving phase
took 12588 ms" or "Verification phase took
40 ms".

3) Experiment (E3): [Plonky2 performance] [∼1 human-
minute + 2–15 compute-minutes]:

[How to] Using the provided benchmark scripts.
[Preparation] Navigate to the plonky2 directory and build

the project using cargo:

1 cd plonky2/plonky2-examples/examples
2 rustup override set nightly
3 cargo build --release

[Execution] Run the benchmark script with an optional
number of runs (default is 100). We recommend starting with
a small number of runs (e.g., 5 or 10) for faster initial results:

1 ./benchmarks.sh [optional # of runs]

[Results] The output should look similar to the following:

./benchmarks.sh 3
Running 3 iterations...
Completed 1 run...
Completed 2 runs...
Completed 3 runs...

Averages after 3 runs
(successful runs per label shown):
dev 1 (3 runs): avg = 1.7196s
dev 2 (3 runs): avg = 1.4318s
dev 1 optional (3 runs): avg = 0.5328s
dev 1 optional 2 (3 runs): avg = 0.4922s
dev 2 optional (3 runs): avg = 0.5458s
dev 2 optional 2 (3 runs): avg = 0.4941s
dev 3 aggr (3 runs): average = 0.5196s
Verification time = 0.0047s

The performance metrics corresponding to Table II (under
the Plonky2 section) can be directly observed in these outputs.
Specifically, the columns Ratt and Ragg correspond to the
reported averages such as dev 1/2 (avg = 1.7196s /
1.4318s) and dev 3 aggr (avg = 0.5196s), with
the verification time reported as 0.0047s.
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