
DIRTYFREE: Simplified Data-Oriented Programming
in the Linux Kernel

Yoochan Lee∗, Hyuk Kwon†, and Thorsten Holz∗
∗Max Planck Institute for Security and Privacy (MPI-SP)

†Theori, Inc.
{yoochan.lee, thorsten.holz}@mpi-sp.org, pwn3r@theori.io

Abstract—With the advent of Kernel Control-Flow Integrity
(KCFI), Data-Oriented Programming (DOP) has emerged as
an essential alternative to traditional control-flow hijacking
techniques such as Return-Oriented Programming (ROP). Unlike
control-flow attacks, DOP manipulates kernel data-flow to
achieve privilege escalation without violating control-flow integrity.
However, traditional DOP attacks remain complex and exhibit
limited practicality due to their multistage nature, typically
requiring heap address leakage, arbitrary address read, and
arbitrary address write capabilities. Each stage imposes strict
constraints on the selection and usage of kernel objects.

To address these limitations, we introduce DIRTYFREE, a
systematic exploitation method that leverages the arbitrary
free primitive. This primitive enables the forced deallocation
of attacker-controlled kernel objects, significantly reducing ex-
ploitability requirements and simplifying the overall exploitation
process. DIRTYFREE provides a systematic method for identifying
suitable arbitrary free objects across diverse kernel caches and
presents a structured exploitation strategy targeting security-
critical objects such as cred. Through extensive evaluation, we
successfully identified 14 arbitrary free objects covering most
kernel caches, demonstrating DIRTYFREE’s practical effectiveness
by successfully exploiting 24 real-world kernel vulnerabilities.
Additionally, we propose and implement two mitigation tech-
niques designed to mitigate DIRTYFREE, effectively preventing
exploitation while incurring negligible performance overhead (i.e.,
0.28% and -0.55%, respectively).

I. INTRODUCTION

With the introduction of kernel control-flow integrity
(KCFI) [1, 2], the era of return-oriented programming (ROP) [3–
5] attacks in the kernel has seen a significant decline. This shift
has led to a growing interest in data-oriented programming
(DOP) [6–10]. Unlike ROP, which manipulates control-flow
to achieve privilege escalation, DOP accomplishes similar
goals through data-flow manipulation. In user-space attacks, the
ultimate goal typically involves executing attacker-controlled
code, making control-flow manipulation essential. In contrast,
kernel exploitation primarily aims at privilege escalation, which
can be achieved entirely by corrupting privilege-related data
structures, making DOP a viable and well-suited strategy for
kernel exploitation.

Despite its potential, traditional DOP approaches are overly
complex and impose significant restrictions, limiting their
practical applicability. Traditional DOP exploits typically
consist of three distinct stages: (i) leaking a heap address,
(ii) achieving arbitrary address reads [11], and (iii) enabling
arbitrary address writes [12, 13]. Each stage requires identifying
and leveraging specialized kernel objects that satisfy specific
constraints. Moreover, the conditions necessary for achieving
each primitive differ substantially, making it challenging to
satisfy all requirements simultaneously. Consequently, exploit-
ing a vulnerability through traditional DOP attacks requires
exceptionally strong exploitability to successfully fulfill the
diverse and stringent conditions across all three stages.

To address this complexity, researchers from both academia
and industry have explored simpler exploitation techniques [14–
17]. A notable example is the temporal cross-cache attack [17],
which exploits the reclaim mechanism of the Linux SLUB
allocator to control page reuse. Subsequent work [18–20] has
refined these techniques to better control which pages are
reused. However, since these techniques rely on predictable
page reuse, defenders have proposed a strong mitigation
known as SLAB Virtual [21], which decouples virtual addresses
from physical addresses. This mitigation, now adopted in
security-focused environments like Google’s kernel CTF [22]
competitions, makes cross-cache attacks no longer feasible in
practice.

In this paper, we introduce a novel and general exploitation
technique that directly targets and corrupts security-critical
kernel objects to escalate privileges. More specifically, our
approach relies on memory corruption to replace low-privilege
kernel objects with high-privilege objects, enabling attackers
to escalate privileges effectively. By combining heap spraying
with partial pointer overwrites, we reduce the number of stages
in the DOP attack from multiple to a single, streamlined
step in favorable conditions. This simplification significantly
reduces the overall complexity and enables the exploitation
of vulnerabilities that were previously considered too weak
or impractical for conventional DOP approaches. As a result,
such vulnerabilities can now be reliably exploited using our
proposed approach.

To support this technique, we introduce a novel exploitation
primitive called arbitrary free. This primitive enables attackers
to forcibly free kernel objects at attacker-controlled memory
addresses, reliably transitioning targeted kernel objects into a

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240527
www.ndss-symposium.org

use-after-free state. Using cross-cache freeing techniques, we
can even free security-critical objects that reside in dedicated
caches. A particularly notable advantage of the arbitrary free
primitive is its minimal exploitation requirement: it only
demands minimal pointer corruption—often as small as a one-
byte overwrite—to successfully trigger a use-after-free scenario.
This reduction in exploitability requirements significantly
broadens the practicality and applicability of DOP attacks,
allowing for successful exploitation in a wide range of kernel
environments and configurations.

So far, the general idea of an arbitrary free primitive has not
yet been fully explored or generalized across a wide range of
vulnerabilities. First, the specific conditions and characteristics
required for objects to qualify as arbitrary free objects have not
been clearly defined. Although arbitrary free objects have been
identified and utilized within certain caches, a comprehensive
set of arbitrary free objects suitable for every cache remains
unexplored. Second, the methodology for selecting target kernel
objects that can reliably lead to privilege escalation using the
arbitrary free primitive is largely unexplored. Consequently,
existing studies typically leverage arbitrary free primitives
merely as an intermediate step toward control-flow hijacking
methods such as ROP, rather than directly facilitating privilege
escalation purely through DOP.

To address these gaps, we present DIRTYFREE, a novel,
systematic exploitation technique that simplifies DOP attacks
by fully leveraging the arbitrary free primitive. First, we
propose a systematic approach to identify arbitrary free objects.
Specifically, we define arbitrary free objects as kernel objects
containing pointers that are used as arguments for the kernel
free function (i.e., kfree()). Using this definition, we can
systematically identify suitable arbitrary free objects across
various kernel caches, which enables us to successfully discover
applicable objects in most general caches. In addition to
identifying these objects, DIRTYFREE provides a structured
exploitation methodology that could directly achieve privilege
escalation using the arbitrary free primitive, without resorting
to traditional control-flow hijacking. We specifically target the
kernel object cred, which governs process privileges in the
Linux kernel. Our technique outlines the steps necessary to
exploit a vulnerability using arbitrary free: performing effective
object spraying, ensuring the allocation of root credentials, and
executing a reliable post-exploitation procedure that ultimately
results in privilege escalation.

To demonstrate the effectiveness of DIRTYFREE, we con-
ducted a thorough evaluation on Linux kernel v6.8, which is
widely adopted as the default kernel in Ubuntu 24.04 LTS.
We successfully identified 14 arbitrary free objects applicable
to all caches except kmalloc-8. We then tested our approach
against 31 real-world Linux kernel vulnerabilities, successfully
exploiting 24 of them, thereby highlighting the practical
applicability and reliability of DIRTYFREE. The seven failed
vulnerabilities exhibit low exploitability, making it infeasible to
leverage them to reach the arbitrary free primitive. Lastly, we
compared DIRTYFREE with other DOP techniques, confirming

that our approach significantly reduces complexity while
improving exploitability across a wider range of scenarios.

Beyond introducing DIRTYFREE, we also propose two
practical mitigation techniques to defend against arbitrary
free exploitation. The first isolates arbitrary free objects in
independent caches, ensuring they reside separately from other
general cache objects. Consequently, the majority of kernel
vulnerabilities can no longer manipulate pointers inside arbi-
trary free objects, effectively mitigating their exploitation. As
a second mitigation, we introduce verification logic directly at
the sites where kfree() operations occur, specifically checking
whether a cross-cache free is being attempted. By enforcing
this check, we ensure that kfree() operations exclusively free
objects within their corresponding kmalloc caches, thereby
preventing unintended cross-cache frees. These two mitigations
effectively prevent exploitation via the arbitrary free primitive,
while introducing minimal overhead (i.e., 0.28% and -0.55%,
respectively).

To summarize, we make the following three contributions:
• We introduce DIRTYFREE, a novel and general exploitation

technique that simplifies complex DOP attacks, enabling
reliable privilege escalation on Linux systems.

• We demonstrated the practicality of DIRTYFREE by evaluat-
ing it against 31 real-world Linux kernel vulnerabilities,
successfully exploiting 24 of them across a variety of
configurations.

• We propose and implement two effective defense mecha-
nisms against arbitrary free-based exploitation, achieving
strong protection with minimal performance overhead (i.e.,
0.28% and -0.55%).
We release the data and source code of DIRTYFREE at https:

//github.com/MPI-SysSec/DirtyFree to foster open science.

II. BACKGROUND

A. Kernel Heap Memory Management

The Linux kernel manages heap memory by subdividing
pages into smaller slots to enhance performance and minimize
memory fragmentation. Although the Linux kernel provides
three distinct heap allocators [23–25], they all follow the
same fundamental design. Specifically, each allocator uses a
caching mechanism to efficiently manage objects, categorizing
them either by object size (i.e., general caches) or by specific
object type (i.e., dedicated caches). Because each cache
exclusively uses its own set of pages, cross-cache interference
and unintended memory overlap are inherently mitigated.
General Cache. The Linux kernel uses general-purpose caches
(i.e., kmalloc-*) to efficiently manage objects of varying sizes.
When an object is allocated, the requested size is rounded up
to the nearest matching general cache. Because general caches
group diverse objects based solely on size rather than type,
unrelated objects may share the same memory region. As a
result, memory corruption affecting one object can potentially
interfere with others, making general caches a common source
of kernel heap vulnerabilities.

2

https://github.com/MPI-SysSec/DirtyFree
https://github.com/MPI-SysSec/DirtyFree

*css = leak() copy_to_user(&obj) *css_ta
sk_iter

obj

*task = AAR(css) copy_to_user(css) *task_
struct

css_task_iter

*cred = AAR(task) copy_to_user(task) *cred

task_struct

AAW(cred, 0) copy_from_user(cred) uid = 0

cred

1. Heap Address Leakage

2. Recursive Arbitrary Address Read

3. Recursive Arbitrary Address Write

User Kernel

Fig. 1: Exploit flow of traditional DOP using three exploit primitives.

Dedicated Cache. The Linux kernel uses dedicated caches
(e.g., cred_jar and task_struct) to manage security-critical
objects, thereby enhancing overall system security through
improved isolation. For instance, objects associated with
privileges or permissions are particularly sensitive: if over-
written due to memory corruption, they can directly result in
privilege escalation attacks. By placing such objects in separate,
dedicated caches rather than mixing them with general-purpose
allocations, the kernel reduces the risk of cross-object memory
corruption. Importantly, each dedicated cache is responsible
for managing a single, specific object type, further reducing
the risk of memory corruption.

B. Data-Oriented Programming

Data-Oriented Programming (DOP) [6, 7, 15–17] is a
powerful exploitation technique that allows attackers to achieve
objectives such as privilege escalation without directly ma-
nipulating the program’s control flow. Traditionally, control-
flow-based exploits, such as return-oriented programming
(ROP) [3, 4], have been the dominant attack methods. However,
the emergence of kernel control-flow integrity (KCFI) [1] has
significantly reduced the feasibility and popularity of ROP.
Unlike ROP, DOP techniques remain effective since they rely
exclusively on data manipulation, rendering them immune to
KCFI defenses. Although researchers have studied numerous
data-flow integrity mitigations [26–33] to defend against DOP
attacks, none of these techniques have been integrated into
the Linux mainline kernel. As a result, DOP continues to gain
traction as a particularly and increasingly prevalent exploitation
strategy.

Traditional DOP attacks generally follow three distinct stages:
(i) heap pointer leakage, (ii) recursive arbitrary address read
(AAR) [11], and (iii) arbitrary address write (AAW) [12, 13], as
illustrated in Figure 1. Initially, an attacker exploits a memory
corruption vulnerability to leak a pointer to a kernel heap

object. Subsequently, the attacker leverages memory corruption
again to recursively perform AAR operations using the leaked
pointer to systematically traverse kernel objects, identifying
privilege-related structures (e.g., struct cred). Finally, the
attacker uses memory corruption to employ AAW to overwrite
critical fields (e.g., setting the UID field in struct cred to
zero), thereby achieving privilege escalation.
Strength. DOP exploits provide a stable and reusable
exploit across versions and architectures. Control-flow hijacking
exploits, such as ROP, must frequently identify new gadgets
specific to each kernel version or architecture. In contrast, DOP
attacks remain largely consistent and stable across versions
and architectures, provided that the sizes of the objects used
in exploitation do not change. This consistency simplifies
adaptation and enhances the practical effectiveness of DOP
techniques.
Limitation. As explained above, traditional DOP attacks
rely on three distinct primitives, each of which requires
a corresponding special kernel object. Specifically, objects
suitable for heap leaks, AAR, and AAW each have different
constraints that must be satisfied. Successfully satisfying all
of them within a single exploit typically requires a highly
exploitable vulnerability with precise control over memory
layout and object interactions. As a result, such ideal conditions
are rare in practice, often rendering traditional DOP techniques
impractical for real-world kernel vulnerabilities.

C. Threat Model

In this paper, we use the following threat model: first, we
assume the attacker has local access to the Linux kernel
and aims to escalate privileges by exploiting a heap memory
corruption vulnerability in the kernel. Additionally, we assume
that widely-deployed exploit mitigations and kernel protection
mechanisms provided by the upstream Linux kernel are enabled.
These include KASLR [34], SMEP [35], SMAP [36], KCFI [1],
SLAB virtual [21], and KPTI [37]. These mitigations ensure
that the kernel address space is randomized, and that access
to user-space memory during kernel execution is restricted.
In addition, control-flow hijacking becomes infeasible, and
temporal cross-cache attacks are not available. Finally, we
assume no hardware side channels are available to aid kernel
exploitation.

III. DETAILS ABOUT ARBITRARY FREE PRIMITIVE

In this section, we provide a detailed explanation of the
arbitrary free primitive. We highlight the key advantages
of this primitive and outline the conditions necessary to
achieve arbitrary frees. Furthermore, we describe the underlying
mechanisms that enable cross-cache frees and discuss the
significant practical challenges associated with this technique.

A. Strength of Arbitrary Free

An arbitrary free primitive allows an attacker to forcibly
free an arbitrary kernel object of their choosing, as illustrated
in Figure 2. Specifically, by exploiting a memory corruption
vulnerability, an attacker can corrupt a particular kernel pointer

3

0xffff…ABCD

0xffff…1234

0xffff…1234

Arbitrary Free Object General Object

0xffff…0000

0xffff…1234

0xffff…0000

FREE

0xffff…1234

Fig. 2: Example of an arbitrary free primitive.

and subsequently invoke a free operation using that corrupted
pointer. Since this procedure deviates from the standard process
of freeing objects, the targeted object is freed while references
to it may still exist. This can lead to a dangling pointer, which
effectively places the object in a use-after-free state. In essence,
the arbitrary free primitive enables an attacker to change every
object into a use-after-free state.

Importantly, the arbitrary free primitive requires relatively
weak conditions for successful exploitation. Unlike primitives
such as arbitrary address read (AAR), which typically require
overwriting at least 8 bytes to fully corrupt a kernel pointer,
arbitrary free can be achieved through partial pointer corruption.
Specifically, attackers only need to slightly modify the pointer
to redirect it toward another kernel object. Consequently, in
certain scenarios, even a one-byte overflow can be sufficient to
achieve an arbitrary free primitive. This significantly lowers the
bar for exploitation and makes the primitive widely applicable
to a diverse range of kernel heap vulnerabilities.

B. Arbitrary Free Object

To be exploitable, an arbitrary free object must satisfy two
key conditions. First, it must contain at least one pointer that
references a kernel heap area, along with a method that can
invoke kfree() using this pointer. Second, the arbitrary free
object must be allocatable by an unprivileged user process,
allowing an attacker to strategically place it adjacent to, or
alias it with, a vulnerable kernel object. Additionally, the
kernel function executing the kfree() operation must also
be triggerable by an unprivileged user process. If either of
these conditions is not met, exploitation becomes generally not
feasible.

Moreover, for a kernel object to effectively serve as an
arbitrary free object, there must be a sufficient time window
between its allocation and the subsequent freeing operation.
This window is crucial, as the attacker needs enough time to
perform pointer corruption between these two events. Thus,
if object allocation and the corresponding free occur within a
single, immediate control-flow path, the available time window

is too narrow for the attacker to intervene, rendering practical
exploitation impossible.

C. Cross-Cache Free

To effectively leverage the arbitrary free primitive, an attacker
must specifically target security-critical kernel objects. As
previously discussed in §II-A, most security-critical objects
are allocated within dedicated caches, whereas the majority of
heap vulnerabilities arise from general caches. Thus, attackers
inevitably face a scenario where they must free security-critical
objects residing in dedicated caches from vulnerabilities located
in general caches, a situation referred to as cross-cache free.

However, freeing objects allocated in dedicated caches typi-
cally requires precise knowledge of their corresponding cache.
Specifically, dedicated caches mandate passing a pointer to the
appropriate struct cache when invoking kmem_cache_alloc()
and kmem_cache_free(). If an incorrect cache pointer is
provided, cache metadata corruption occurs, often leading to a
kernel panic. This limitation implies that objects allocated in a
dedicated cache typically cannot be freed using objects from
other caches.

To circumvent this constraint and perform a cross-
cache free, attackers can use the kfree() function. Unlike
kmem_cache_free(), kfree() does not require explicit infor-
mation about the target cache. This design simplifies the
management of dynamically-sized objects, such as elastic
objects [11]. Internally, kfree() determines the appropriate
cache solely from the given pointer and subsequently frees
the object. Moreover, because kfree() can handle pointers
from both general and dedicated caches, it enables attackers to
conduct cross-cache frees. This capability allows attackers to
trigger unintended use-after-free conditions on security-critical
objects, even when the initial vulnerability lies in a separate
cache.

D. Technical Challenges

Despite its powerful capability to transition arbitrary kernel
objects into a use-after-free state, the arbitrary free primitive
remains underexplored in kernel exploitation. Existing research
and publicly available exploits have identified only a limited
number of arbitrary free objects, leaving the primitive’s broader
applicability unverified. Consequently, its effectiveness for
achieving privilege escalation has not yet been convincingly
demonstrated and we tackle this open problem in this work.
More specifically, we study the following two challenges:
C1: Systematically identifying arbitrary free objects. To
facilitate more general adoption, a systematic approach to
identifying suitable arbitrary free objects is necessary. Currently,
such objects are selected in an ad-hoc manner, limiting their
scope and hindering generalization. A robust identification
methodology must consider various kernel memory allocation
strategies, object lifetimes, and reuse patterns. Only by con-
structing a diverse and well-characterized collection of arbitrary
free objects can the primitive generalize beyond isolated proof-
of-concept scenarios and become an effective tool for exploiting
a wider range of kernel vulnerabilities.

4

C2: Structured exploitation methodology. Another key
challenge is the lack of a clear exploitation methodology to
achieve privilege escalation through the arbitrary free primitive.
Due to its relatively limited exposure, there are currently
no well-established techniques for effectively leveraging this
primitive. Even prior exploits [38, 39] that use the arbitrary
free primitive typically involve complex ROP chains, adding
significant complexity to the exploitation process. To address
this issue, it is essential to first identify specific security-
critical kernel objects whose freeing directly results in privilege
escalation. Additionally, practical and reliable methodologies
must be developed to reliably achieve privilege escalation
through these objects.

IV. DIRTYFREE

In the following, we first provide a high-level overview of
DIRTYFREE through a real-world example. Then, we explain
how DIRTYFREE addresses the challenges associated with the
arbitrary free primitive.

A. Overview

We illustrate the high-level operation of DIRTYFREE using a
real-world Linux kernel vulnerability, CVE-2021-22555 [39], as
an example. This vulnerability arises due to missing boundary
checks, enabling an attacker to perform an out-of-bounds write
by overwriting two additional bytes with null bytes. Notably, the
vulnerable object is allocated within the kmalloc-512 general
cache.

As illustrated in Figure 3, DIRTYFREE comprises two main
stages: before and after executing the arbitrary free primitive.
In the first stage, DIRTYFREE begins by spraying kernel heap
memory with credential (cred) objects holding user privileges
(i.e., 1), preparing the heap for exploitation. Then, we allocate
the vulnerable object and the arbitrary free object adjacent. Note
that several existing heap manipulation techniques (e.g., heap
feng shui [40] or Pspray [41]) reliably achieve this adjacency;
thus, we consider this step outside the scope of our paper. Next,
an out-of-bounds write vulnerability is triggered to partially
overwrite (2 bytes) the pointer within the arbitrary free object
(i.e., 2). Note that an additional information leakage step may
be required when the vulnerability does not permit a partial
overwrite. Consequently, this pointer no longer points to its
original object but instead references one of the sprayed user
privilege cred objects.

In the second stage, DIRTYFREE invokes the cross-cache
free through the arbitrary free primitive (i.e., 3), transitioning
the targeted user-level cred object into a use-after-free state.
Subsequently, we spray new cred objects containing root
privileges across kernel heap memory (i.e., 4). Due to the
use-after-free condition, the previously freed user privilege
cred object’s memory slot becomes available and can thus be
reliably reclaimed by one of the newly sprayed root privilege
cred objects. Consequently, the original user privilege cred
object is overwritten with the cred object carrying elevated
privileges. As a result, the attacker’s process inherits these

overwritten credentials, successfully escalating privileges from
an unprivileged user to root.

B. Identifying Arbitrary Free Object

Tracking down free operations. Recall that an arbitrary
free primitive requires the presence of a free operation within
kernel code. Therefore, our first step is to systematically
identify and pinpoint all kernel functions that invoke free op-
erations (e.g., variations of kfree()). We specifically focus on
kfree() and its variants because, as described earlier in §III-C,
kfree() uniquely supports cross-cache frees by automatically
determining the appropriate cache from the provided pointer.
Unlike kmem_cache_free(), which explicitly requires a cache
argument and thus limits cross-cache exploitation, kfree()
allows an attacker to reliably free kernel objects allocated in
different caches.

Next, we determine whether the identified free operation
can be triggered by a user-level process. If the free operation
is not callable from userspace, it cannot be effectively used
as part of an exploitation primitive. To verify this condition,
we carefully analyze the kernel functions containing the free
operation and systematically trace their call hierarchy to locate
the root kernel function. If this root kernel function turns out
to be a system call or is reachable from a system call path, we
conclude that the corresponding free operation is callable by
an unprivileged user. Consequently, such free operations are
considered suitable for the arbitrary free primitive.

Lastly, we carefully track down the pointer that is used as
an argument of the free operation. Specifically, we analyze
whether the pointer involved is a local variable or not. If the
pointer is indeed a local variable, we further examine the
context in which it is initialized. When such initialization is
performed using kmalloc(), we consider the corresponding
object as temporary. In these cases, attackers lack a sufficient
time window to perform pointer corruption, making pointers
stored in local variables generally unsuitable for arbitrary free
primitives.
Extracting arbitrary free object candidates. For identifying
arbitrary free object candidates, we first pinpoint the origin of
the pointer used as an argument in free operations. Specifically,
starting from the taint sources indicating the corresponding
pointer, we perform a backward data-flow analysis to examine
the parent object that contains the pointer (e.g., the argument
ptr in Figure 4). If the parent object is allocated in the stack
or global memory regions, we exclude it because pointer
corruption through heap memory corruption vulnerabilities
is impractical in these regions. Conversely, if the parent object
is allocated in the heap memory region (e.g., ptr = ObjA->ptr
in Figure 4), it qualifies as a candidate arbitrary free object
due to the feasibility of pointer corruption.
Filtering out arbitrary free object candidates. With the set of
candidate objects identified, we proceed to filter them based on
their suitability for exploitation. First, we analyze the allocation
sites of each candidate object. Since our focus is specifically
on vulnerabilities within general caches, objects allocated from

5

Before After

user
cred

user
cred

user
cred

user
cred

user
cred

Vulnerable
object

*ptr
0xff….0000

User cred spray1

Partial pointer overwrite2

0xff….0000

*ptr
0xff….0000

Arbitrary Free3

freed

Root cred spray4

0xff….0000 0xff….0000

root
cred

user
cred

user
cred

> id
uid=0(root)

user
cred

user
cred

user
cred

kfree(ptr)

root
cred

root
cred

root
cred

root
cred

root
cred

Post-exploitation

Fig. 3: General overview of exploiting CVE-2021-22555 using an arbitrary free primitive.

[+]
[1] Cache
[2] offset
[3] alloc site
[4] arbitrary free site

msg_msg
kmalloc-4096
40
alloc_msg()
security_msg_msg_free()

kfree(ptr)

ptr = ObjA->buf

Sample

Fig. 4: High-level overview of a backward taint analysis starting from
the kfree() function, where the argument ptr is derived from the
field buf within the arbitrary free object ObjA.

dedicated caches are unsuitable for our exploitation scenario.
Therefore, we carefully examine the allocation function and its
return type for each candidate. If an object is allocated using
kmem_cache_alloc(), this indicates allocation from a dedicated
cache, and we exclude it from our candidate list. Conversely,
objects allocated using variations of kmalloc() (i.e., implying
general cache allocation) remain as valid candidates for further
analysis.

Second, we eliminate temporary allocations from the can-
didate set. Similar to previous considerations, if a candidate
object is allocated and deallocated within the same control-
flow path, it lacks a sufficient time window for exploitation.
In such scenarios, attackers cannot reliably corrupt the pointer
between allocation and freeing operations, making exploitation
impractical. Thus, we thoroughly analyze each candidate’s
allocation and deallocation paths, discarding those confined
to a single control-flow path. This filtering step ensures that
the remaining objects offer suitable lifetimes necessary for
successful exploitation.

However, temporary allocations may still be exploitable in
specific scenarios. Particularly, if a kernel-to-user data transfer
function (e.g., copy_to_user()) occurs between allocation
and deallocation, the previously insufficient time window
can become exploitable and these temporary objects could
become viable targets. This is because kernel-to-user data
transfer functions introduce opportunities to extend these

time windows through user-space memory access. Attackers
can leverage Linux kernel features such as FUSE [42] or
userfaultfd [43] to inject custom fault-handling logic into
these memory accesses. When the kernel accesses user-space
memory via kernel-to-user transfer functions, a user-defined
fault handler is triggered. By deliberately introducing delays
within this handler, attackers significantly extend the originally
inadequate time window, thereby transforming a non-viable
temporary object into a practically exploitable one. Apart from
such exceptional cases, all other temporary allocations remain
excluded from consideration.

Finally, we exclude candidate objects whose allocation or
deallocation requires elevated privileges. Under our threat
model, we assume an unprivileged attacker without special
capabilities or permissions. Thus, any kernel functions involved
in allocating candidate objects or performing arbitrary frees
must be accessible without privileged rights. If these functions
require elevated privileges or specific capabilities, standard
user-level attackers cannot invoke them, rendering such ob-
jects unsuitable for practical exploitation. Consequently, we
systematically remove these privilege-dependent candidates to
ensure all remaining objects are exploitable by an unprivileged
attacker.

C. Exploit Methodology

To maximize the effectiveness of the arbitrary free primitive,
the critical step is selecting the appropriate kernel object
to place into a use-after-free state. In our methodology,
we specifically target the privilege-related cred object, as
corrupting this structure directly enables privilege escalation.
Based on this choice, we developed a robust exploitation
strategy that reliably leverages the compromised cred object
to escalate privileges.
User-privilege cred spray. Our exploit method begins by
systematically spraying user credential (i.e., cred) objects
within the kernel heap to ensure predictable memory placement.
To effectively achieve this, we must allocate as many cred
objects as possible. However, the allocation process must be
selective: if other object types are allocated alongside cred,
they can interfere with our heap-spraying efforts. Thus, it is
critical to find a suitable system call that exclusively allocates

6

cred objects without introducing unrelated object allocations.
Common methods, such as using the fork system call, are
unsuitable for this purpose. This not only imposes strict process
number limits, which prevent sufficient object spraying, but
it also allocates additional object types like task_struct,
disrupting our desired heap layout.

To overcome these limitations, we instead use the io_uring
interface [44]. Specifically, invoking the capset() system call
through the IORING_REGISTER_PERSONALITY flag results in the
allocation of new cred objects by duplicating the current
credentials without additional unrelated object allocation.
Subsequently, calling io_uring_register() with the same
IORING_REGISTER_PERSONALITY flag increments the reference
counter for these credentials, effectively preventing their
immediate deallocation. This method reliably provides a dense
and predictable heap spray composed exclusively of user-level
cred objects.
Root-privilege cred allocation. The user-privilege cred object
freed via the arbitrary free primitive must be hijacked and
replaced with a root-privilege cred object to achieve privilege
escalation. To accomplish this, we need to systematically
allocate kernel objects initialized with root-level credentials.
There are multiple methods available to allocate objects
containing root privileges. First, executing a setuid-root binary
(e.g., su or sudo) triggers the kernel to allocate credential
objects initialized with root privileges. Second, interacting
with privileged daemon processes (e.g., sshd) that operate
under root permissions can similarly result in the allocation of
root credentials. Lastly, kernel workqueues can, under specific
circumstances, be leveraged as another mechanism to obtain
root privileges. Note that we chose the first method, which
allows users to easily spray root cred structures.
Post Exploitation. After exploitation, the manipulated cred
pointer now references a root-privileged credential object,
granting the attacker root-level permissions to a single io_uring
instance. However, since the process itself still lacks elevated
privileges, additional steps are required to escalate the privileges
for the entire process. First, it is necessary to identify which
of the sprayed io_uring instances now holds the escalated
privileges, and then leverage that instance to achieve complete
process-level privilege escalation.

Our approach involves systematically attempting to open
a privileged file (e.g., /etc/passwd) with write permissions
through each sprayed io_uring instance. An io_uring instance
with normal user-level privileges will fail to open this file,
while the instance holding elevated privileges will succeed.
This method allows us to pinpoint precisely which io_uring
instance possesses root privileges. Finally, by writing the string
dirtyfree:x:0:0 into the file, we effectively add a new user
with root privilege without a password. Finally, by switching
to the dirtyfree user, we obtain full root privileges.

V. IMPLEMENTATION

We implemented a prototype of DIRTYFREE on Linux
kernel v6.8 using LLVM/Clang 12, incorporating static anal-
ysis techniques to identify arbitrary free object candidates.

Specifically, we developed an LLVM pass to systematically
locate potential arbitrary free objects throughout the kernel
codebase. To facilitate comprehensive static analysis across
multiple compilation units, we utilized wllvm [45], which
combines multiple compilation units into a single LLVM IR
bytecode file. This setup streamlined our analysis, ensuring
consistent and accurate identification of candidate objects for
subsequent exploitation.
Identifying Arbitrary Free Objects. The key characteristic
of an arbitrary-free object is that it contains a pointer explicitly
used as an argument to kfree(). To identify such pointers,
we first locate all kernel instructions invoking kfree() and
extract their pointer arguments. We then perform a backward
analysis, traversing each pointer’s use–def chain until we reach
the source element of a struct type, the parent object. Next, we
locate kmalloc() calls that allocate instances of this recovered
parent object type, and select the object as a candidate only if
such an allocation is found. We limit our analysis to kmalloc()
allocations because DIRTYFREE targets arbitrary-free objects
that reside in general caches.
Filtering Temporary Objects. Temporary objects provide
almost no exploitable time window and are therefore discarded
during candidate identification. For each candidate whose
allocation and free occur within the same function, we use
standard CFG reachability analysis to determine whether the
two instructions (allocation and free) are reachable from one
another. If they are, we classify the object as temporary.
However, if a kernel-to-user data transfer function (e.g.,
copy_to_user) lies on any path between the two sites, as
verified using the same reachability check, the object remains
exploitable as we described in §IV-B and is retained rather
than discarded.

VI. EVALUATION

In this section, we evaluate the exploitation effectiveness of
DIRTYFREE through a series of experiments and case studies.
We study the following research questions:

• RQ1. How many arbitrary free objects does DIRTYFREE
collect (§VI-A)?

• RQ2. How many vulnerabilities does DIRTYFREE exploit
(§VI-B)?

• RQ3. How effective is it compared to other DOP tech-
niques (§VI-C)?

Environment Setting. All experiments were performed inside
a QEMU virtual machine (VM) running a Linux v6.8 kernel.
The VM was configured with 2 CPUs and 4GB of RAM. For
each vulnerability, we reintroduced it into the Linux v6.8 kernel
and compiled a corresponding kernel and disk image for the
VM. The host system was an Ubuntu 18.04.6 LTS machine
with an Intel Xeon Gold 6209U CPU (40 cores) and 32GB
of RAM, but all experiments were executed exclusively inside
the QEMU environment.

A. Arbitrary Free Object Collection
Table I presents 14 arbitrary free objects that can be used

for exploitation across different kernel caches. Our collected

7

TABLE I: Arbitrary free objects identified and confirmed.

Struct Name Cache Offset

Static-size objects

landlock_hierarchy kmalloc-16 0
landlock_ruleset kmalloc-96 16

async_poll kmalloc-96 64
perf_event_pmu_context kmalloc-128 96

pipe_inode_info kmalloc-192 152
mnt_idmap kmalloc-192 8, 16, 80, 88
msg_queue kmalloc-256 48, 192

io_ring_ctx kmalloc-2048 264, 288, 304, 328,
896, 1152, 1308

Dynamic-size objects

msg_msg kmalloc-64 ˜ 32, 40kmalloc-4096

msg_msgseg kmalloc-16 ∼ 0kmalloc-4096

sem_array kmalloc-512 ∼ 48kmalloc-8192

poll_list kmalloc-16 ∼ 0kmalloc-4096

callchain_cpus_entries kmalloc-16 ∼ 16, 24, ...kmalloc-4096

simple_xattr kmalloc-32 ∼ 16kmalloc-8192

objects are applicable to all general slab caches except for
kmalloc-8, which is rarely used in the kernel. Most kernel
caches contain at least one arbitrary free object, making them
viable targets for privilege escalation through DIRTYFREE. The
table also includes the offset of the critical pointer within each
object that can be leveraged by the arbitrary free primitive.
This information allows an attacker to easily match a given
vulnerability with a suitable arbitrary free object based on the
nature and size of the pointer corruption. For example, if a
vulnerability causes a 2-byte overflow within the kmalloc-4096
cache, the poll_list object—allocated from the same cache
and having a critical pointer at offset 0—would be an ideal
candidate.

We found two candidate objects with notable characteristics.
First, the object poll_list is unique in that its allocation
and deallocation occur within the same control-flow path,
classifying it as a temporary object. However, in the middle
of allocation and deallocation, it invokes copy_from_user.
As a result, we can control the time window by using
either userfaultfd or FUSE, enabling practical exploitation
despite the temporary nature of the object. Second, the object
callchain_cpus_entries is notable due to its variable size,
causing it to be allocated in different caches depending on its
actual size. However, the object’s size is directly tied to the
number of CPU cores on the target system, making it a special
case beyond user control. Thus, attackers must obtain prior
knowledge about the CPU configuration of the targeted system
to reliably use this object for exploitation.

False Positive and False Negative. As previously discussed,
we rely on static analysis techniques to systematically identify
arbitrary free objects. However, static analysis inherently comes

with limitations, which can result in false positives (i.e., objects
incorrectly identified as candidates) and false negatives, where
legitimate candidate objects are missed.

Our tool initially reported 43 candidate objects, of which
manual analysis confirmed 14 as true positives. A closer
examination of the remaining cases revealed two sources of
false positives. First, several candidate objects were manipulated
(i.e., allocated or freed) only by kernel functions that require
elevated privileges. Because such functions fall outside our
attacker model, these objects are unusable and do not represent
practical exploitation opportunities. Second, many arbitrary-
free sites appeared only in error-handling paths. These paths
are difficult (often impossible) for an unprivileged attacker to
reach in a precise and repeatable manner, which makes the
corresponding objects non-exploitable in realistic scenarios.

False negatives may also occur during our candidate identifi-
cation process. Specifically, we compile the kernel source code
with the optimization option -O2, and subsequently generate
LLVM bitcode for analysis. However, optimization passes
performed by the compiler can sometimes remove object
symbols, leading to certain objects lacking identifiable names.
Since our candidate selection heavily relies on object names,
these unnamed objects cannot be identified and consequently
result in false negatives. To mitigate this issue, compiling the
kernel with the -O0 optimization level could help preserve
object symbols, thereby significantly reducing false negatives.
Applicability of Arbitrary Free Objects. We evaluated the
applicability of our collected arbitrary free objects across Linux
kernel versions v5.0 to v6.16, as summarized in Table IV in the
appendix. Among the 14 objects, six are usable only starting
from specific kernel versions, while one is usable only in
versions below a certain threshold. Nevertheless, the remaining
objects work across all tested versions and span allocations
from kmalloc-16 to kmalloc-8192, covering all general caches
except kmalloc-8. These results demonstrate that our collected
arbitrary free objects are broadly applicable across Linux kernel
versions, offering reliable coverage over almost all general
caches.

B. Effectiveness on Real-World Vulnerabilities

To further demonstrate the effectiveness of DIRTYFREE, we
evaluate our method using real-world vulnerabilities.
Dataset. We collected a total of 31 Linux kernel vulnerabilities
that were submitted to Google’s Kernel Capture The Flag
(KCTF) [46] over the past two years (2023–2024). Each of
these vulnerabilities has publicly available exploits, making
them particularly suitable for a practical and realistic evaluation.
Note that these vulnerabilities were originally exploited using
common exploit techniques such as ROP, which are invalid
under our threat model (e.g., due to KCFI). Moreover, five of
the vulnerabilities used arbitrary-free only for minor exploitabil-
ity upgrades [12, 47], rather than as a primary exploitation
technique. This insight underscores that DIRTYFREE is the
first to use it effectively for privilege escalation. By selecting
these publicly documented vulnerabilities, we ensure trans-

8

TABLE II: Exploitation on real-world vulnerabilities.

Traditional DOP DirtyCred DIRTYFREE

CVE Type Cache Exploitability Leak AAR AAW Exploit w/o Leak Exploit

CVE-2023-3390 Use-After-Free kmalloc-* [*:*)=* ✔ ✔ ✔ ✗ ✗ ✔
CVE-2023-3611 Out-Of-Bounds kmalloc-8192 [0x1d78:0x1d80)=bitflip ✔ ✔ ✔ ✗ ✔ ✔
CVE-2023-3776 Use-After-Free kmalloc-128 Read ✗ ✗ ✗ ✗ ✗ ✗
CVE-2023-3777 Use-After-Free kmalloc-128 [0x58:0x5c)-=1 ✗ ✗ ✗ ✔ ✗ ✔
CVE-2023-4004 Double-Free kmalloc-* [*:*)=* ✔ ✔ ✔ ✗ ✔ ✔
CVE-2023-4015 Use-After-Free kmalloc-128 [0x58:0x5c)-=1 ✗ ✗ ✗ ✔ ✗ ✔
CVE-2023-4147 Use-After-Free kmalloc-128 [0x58:0x5c)-=1 ✗ ✗ ✗ ✔ ✗ ✔
CVE-2023-4206 Use-After-Free kmalloc-512 Read ✗ ✗ ✗ ✗ ✗ ✗
CVE-2023-4207 Use-After-Free kmalloc-512 Read ✗ ✗ ✗ ✗ ✗ ✗
CVE-2023-4208 Use-After-Free kmalloc-512 Read ✗ ✗ ✗ ✗ ✗ ✗
CVE-2023-4244 Use-After-Free kmalloc-128 [0x58:0x5c)-=1 ✗ ✗ ✗ ✔ ✗ ✔
CVE-2023-4569 Use-After-Free kmalloc-256 [0x30:0x34)-=1 ✔ ✔ ✗ ✔ ✗ ✔
CVE-2023-4622 Use-After-Free skbuff_head_cache Read ✗ ✗ ✗ ✗ ✗ ✗
CVE-2023-4623 Use-After-Free kmalloc-1024 Read ✗ ✗ ✗ ✔ ✗ ✔
CVE-2023-5197 Use-After-Free kmalloc-128 [0x58:0x5c)-=1 ✗ ✗ ✗ ✔ ✗ ✔

CVE-2023-52620 Use-After-Free kmalloc-128 [0x58:0x5c)-=1 ✗ ✗ ✗ ✔ ✗ ✔
CVE-2023-5345 Double-Free kmalloc-* [*:*)=* ✔ ✔ ✔ ✗ ✔ ✔
CVE-2023-6111 Double-Free kmalloc-* [*:*)=* ✔ ✔ ✔ ✗ ✔ ✔
CVE-2023-6817 Use-After-Free kmalloc-192 [0x34:0x38)-=1 ✔ ✔ ✔ ✔ ✗ ✔
CVE-2023-6931 Out-Of-Bounds kmalloc-2048 [0x810:0x818)+=1 ✗ ✗ ✗ ✔ ✗ ✗
CVE-2024-0193 Use-After-Free kmalloc-256 [0x34:0x38)-=1 ✔ ✔ ✗ ✔ ✗ ✔
CVE-2024-1085 Double-Free kmalloc-256 [*:*)=* ✔ ✔ ✗ ✗ ✔ ✔
CVE-2024-1086 Double-Free kmalloc-256 [*:*)=* ✔ ✔ ✗ ✗ ✔ ✔

CVE-2024-26581 Double-Free kmalloc-256 [*:*)=* ✔ ✔ ✗ ✗ ✔ ✔
CVE-2024-26642 Use-After-Free kmalloc-256 [0x34:0x38)-=1 ✔ ✔ ✗ ✔ ✗ ✔
CVE-2024-26809 Double Free kmalloc-256 [*:*)=* ✔ ✔ ✗ ✗ ✔ ✔
CVE-2024-26925 Double Free kmalloc-256 [*:*)=* ✔ ✔ ✗ ✗ ✔ ✔
CVE-2024-36972 Double Free skbuff_head_cache [*:*)=* ✗ ✗ ✗ ✗ ✔ ✗
CVE-2024-39503 Use-After-Free kmalloc-192 Read ✔ ✔ ✔ ✔ ✗ ✔
CVE-2024-41010 Use-After-Free kmalloc-2048 [0:8)=pointer or [0:8)=0 ✗ ✗ ✔ ✗ ✗ ✔
CVE-2024-53141 Out-Of-Bounds kmalloc-* [0:8)=value or [0:8)=pointer ✗ ✗ ✔ ✔ ✗ ✔

parency and reproducibility of our evaluation process, clearly
demonstrating the practical effectiveness of DIRTYFREE.

Result. Table II summarizes our evaluation results against
real-world vulnerabilities. As demonstrated, DIRTYFREE suc-
cessfully achieved privilege escalation on 24 out of 31 vulner-
abilities, highlighting its effectiveness as a robust and general
exploitation technique. Among these, only 10 vulnerabilities
can be exploited without information leakage because they
support partial pointer overwrites. This overwrite capability
enables DIRTYFREE to complete the exploitation in a single
step without relying on any address disclosure. All remaining
vulnerabilities lack such capability and therefore require an
information leak. In cases where vulnerabilities were success-
fully exploited, some required only their inherent exploitability.
However, in cases where a single vulnerability was insufficient
for direct exploitation, we utilized its exploitability to trigger
a secondary vulnerability, ultimately achieving successful
exploitation.

Case Studies. CVE-2024-53141 is an out-of-bounds write
vulnerability. Interestingly, this vulnerability triggers out-of-
bounds conditions in two distinct ways. One overwrites a
pointer value, while the other overwrites a user-controlled
value. However, the value overwrite is performed as an 8-byte
operation, making partial overwrites infeasible. We utilized
the pointer overwrite capability to leak a heap address, from
which we inferred the location of sprayed cred objects. Then,
leveraging the value overwrite, we replaced the inferred cred

location with an address for an arbitrary free. Consequently, this
reliably resulted in targeting a cred object, ultimately achieving
privilege escalation with high probability.

CVE-2023-6817 and CVE-2024-26642 are use-after-free
write vulnerabilities involving the nft_chain object, and
thus share the same exploitability characteristics. Specifically,
these vulnerabilities enable attackers to decrement a reference
counter within the object, allowing controlled modification of
internal values. Exploiting this property, we targeted an object
containing a size field, repeatedly decreasing the reference
counter to trigger an integer underflow. We then leveraged the
corrupted size value to trigger an out-of-bounds write, which
enabled us to overwrite an arbitrary free object involved in an
arbitrary free operation. Consequently, we achieved privilege
escalation by targeting and freeing a carefully positioned cred
object.

CVE-2024-39503 is a use-after-free vulnerability that does
not involve any write operation. However, it leverages a read
operation to retrieve a value subsequently used as an offset.
Specifically, it reads a pointer at an offset from another object’s
base pointer, and then invokes kfree on the retrieved pointer An
attacker who controls the offset can hence trigger an arbitrary
free operation at a desired memory address. We exploited this
behavior to leak a heap pointer, and based on this information,
successfully performed an arbitrary free targeting a previously
sprayed cred object, ultimately achieving privilege escalation.

We employed an identical exploitation approach for all
double-free vulnerabilities. The exploitation consisted of two

9

distinct stages, triggering the double-free condition twice.
In the first stage, we leveraged the double-free to place an
object capable of leaking memory into a use-after-free state,
subsequently aliasing it with an object containing a heap pointer
to leak a heap address. In the second stage, we again used
the double-free to place an arbitrary-free object into a use-
after-free state and allocated an object allowing user-controlled
writes into the freed slot. Finally, we triggered the arbitrary free
primitive targeting a cred object, achieving privilege escalation.
Failure Cases. The failure cases can be broadly classified into
two categories. The first category involves vulnerabilities that
lack sufficient exploitability to meet the conditions required
for arbitrary free. Despite an in-depth analysis, these cases
were unexploitable since overwriting pointers within the
arbitrary free object was infeasible. The second category
comprises vulnerabilities involving use-after-free conditions
within dedicated caches. While prior exploits successfully
leveraged temporal cross-cache attacks, our assumed threat
model explicitly excludes temporal cross-cache attacks, making
exploitation impossible under these constraints.

C. Comparison with other DOP techniques
To compare DIRTYFREE with other DOP techniques, we first

surveyed real-world exploitation methods that fall within the
DOP paradigm. Most candidate techniques (e.g., core_pattern)
do not clearly describe the exploitation requirements or
object constraints needed for reproduction. Only traditional
DOP [11, 12] and DirtyCred [16] provide sufficient detail to
evaluate applicability. We therefore excluded the remaining
techniques from our comparison, since they cannot be assessed
in a systematic or reproducible way. For traditional DOP and
DirtyCred, we assessed applicability by checking whether each
vulnerability satisfied the object requirements defined in their
respective work. This approach is necessary because none
of these three techniques provides proof-of-concept code for
their identified objects, which makes empirical reproduction
challenging.
Traditional DOP. Among the tested vulnerabilities, only six
satisfied the three primitives that constitute traditional DOP. The
first limitation arises from the strict preconditions associated
with each primitive. Since every vulnerabilities typically show
a limited exploitability, it is rare for any single vulnerability to
satisfy all three primitive conditions simultaneously. In contrast,
DIRTYFREE requires meeting only a single primitive in special
case, allowing it to apply to a significantly broader set of
vulnerabilities.

The second limitation is that Eloise and BridgeRouter
identify objects only in specific caches. As a result, several
vulnerabilities became unexploitable regardless of their inher-
ent exploitability because the required objects were simply
unavailable in the caches they exercised. DIRTYFREE, by
contrast, identifies arbitrary-free objects across all caches
used by vulnerabilities, thereby eliminating failures caused
by incomplete object coverage.
DirtyCred. Our evaluation shows that 14 vulnerabilities can
be exploited using the DirtyCred technique. For out-of-bounds

and use-after-free cases, its performance closely matches that of
DIRTYFREE, demonstrating that both techniques are effective
in these scenarios. The only deviation is CVE-2023-3611,
which occurs in kmalloc-8192. In this case, DirtyCred was
unable to identify a suitable object within the same cache,
whereas DIRTYFREE succeeded. A more notable distinction
emerges for double-free vulnerabilities. DirtyCred depends on
cross-cache behavior to exploit such cases, but this strategy
is incompatible with our threat model, which incorporates
slab-virtual as defense and therefore prevents cross-cache
interactions. As a result, DirtyCred cannot exploit any of
the double-free vulnerabilities, while DIRTYFREE remains
effective under the same constraints.

VII. DEFENSE AGAINST DIRTYFREE

In this section, we propose a set of defense mechanisms
aimed at mitigating the exploitation capabilities of DIRTYFREE.
Recall that DIRTYFREE exploits two primary factors within
the Linux kernel’s memory management. First, arbitrary free
objects are currently not isolated, allowing vulnerabilities occur-
ring in general caches to directly utilize and manipulate these
objects. Consequently, attackers can exploit these vulnerabilities
to transition security-critical objects, typically managed in
dedicated caches, into vulnerable use-after-free states. Second,
the kfree function does not perform cache validation checks,
enabling attackers to perform cross-cache frees. As a result,
objects allocated within dedicated caches can inadvertently
be freed through general cache vulnerabilities, significantly
increasing exploitability.

Considering these factors, one might consider adopting one
of the following two approaches:

1) Allocate arbitrary free objects in isolated, dedicated caches
to prevent their exploitation by DIRTYFREE.

2) Enforce strict cache validation checks prior to calling
kfree(), effectively preventing unintended cross-cache
frees.

We explore both approaches. Importantly, each mitigation is
sufficient on its own to block DIRTYFREE, so deploying either
one is enough to prevent exploitation.

A. Mitigation #1: Isolating Arbitrary Free Object

Design. To mitigate the threat posed by arbitrary free objects,
we isolate these objects into dedicated caches. Specifically, we
create a new dedicated cache for each type of object, such
as io_uring_ctx_cache. In other words, each of our newly
created dedicated caches exclusively manages a single object
type. This approach is intended to prevent scenarios where
exploitation becomes feasible due to different types of objects
coexisting within a single cache.

For static-sized objects, creating new dedicated caches
is sufficient; however, dynamic-sized objects require a dif-
ferent approach due to their variable sizes. This limitation
occurs because standard dedicated caches, allocated via
kmem_cache_alloc, can only handle fixed-size objects. To
address this issue, we adopt the slab bucket approach [48],
a mitigation specifically designed to allow dedicated-cache

10

/* Implemented Code Begin */
void validate_af(void *obj)
{

if (virt_addr_valid(obj))
{

struct slab *slab = virt_to_slab(obj);
if(strstr(slab->slab_cache->name, "kmalloc"))
{

panic("Cross-Cache Free is detected!");
}

}
}
/* Implemented Code End */

void free_msg(struct msg_msg *msg)
{

...
validate_af(msg);
kfree(msg); // Arbitrary Free Primitive
...

}

Fig. 5: An example code of cache validation mitigation.

allocation for dynamic-sized kernel objects. When utilizing
the slab bucket mechanism, the kernel creates dedicated
caches of varying sizes at cache initialization time through
the kmem_buckets_create function, making it highly suitable
for handling dynamic-sized arbitrary free objects. Note that
enabling this feature requires compiling the Linux kernel with
the CONFIG_SLAB_BUCKET configuration option.
Implementation. For static-sized arbitrary free objects, we
directly modified the Linux kernel source code to allocate
these objects into dedicated caches. Specifically, we introduced
new dedicated caches by invoking kmem_cache_create for
each static-sized arbitrary free object type. To ensure proper
allocation, we replaced the original allocation routines with
kmem_cache_alloc, explicitly placing objects within their
corresponding dedicated caches. Likewise, we updated relevant
kernel code paths to use kmem_cache_free for object dealloca-
tion, thus effectively enforcing the isolation of arbitrary free
objects.

In contrast, for dynamic-sized arbitrary free objects, we
modified the kernel source code to utilize bucket caches. Specif-
ically, we introduced a new function that creates bucket caches
by calling kmem_buckets_create during kernel initialization.
Additionally, we changed the object allocation function from
kmalloc to kmem_buckets_alloc. Note that we did not modify
the deallocation logic, as the bucket cache mechanism currently
lacks a dedicated free function.

B. Mitigation #2: Cache Validation

Design. The second method focuses on preventing cross-cache
frees. Recall that cross-cache free exploits rely on the fact that
kfree determines the appropriate cache based solely on the
pointer provided as input, allowing attackers to illegally free
objects allocated in dedicated caches. To address this issue,
we add validation logic immediately before invoking kfree,
ensuring the object being freed indeed belongs to a general
cache. Specifically, our validation checks the associated cache
metadata for the object to confirm it matches an expected

general cache structure, thereby preventing unintended or
malicious cross-cache operations. If the kernel is structured
correctly, kfree should only free objects allocated within
general caches. As a result, any attempt to free objects residing
in dedicated caches can be detected and blocked by our
validation logic, significantly reducing exploitability.
Implementation. As shown in Figure 5, we implemented a
prototype of the proposed cache validation mitigation in the
Linux kernel. To implement this method, we insert a validation
step before each call to kfree on arbitrary free objects. We
begin by using virt_to_slab to retrieve the corresponding
slab structure from the object’s pointer. From this structure,
we extract the slab_cache field to identify the cache the object
belongs to. We then examine the cache name to determine
whether the object resides in a general cache or a dedicated
cache. This check allows us to enforce that only general cache
objects are passed to kfree, preventing potential cross-cache
free.

C. Evaluation for Mitigations

To demonstrate that our proposed mitigations are effective
in multiple aspects (i.e., security, performance, and regression),
we conducted a comprehensive evaluation.
Security Evaluation. We evaluated whether the two pro-
posed mitigations could effectively prevent exploitation via
DIRTYFREE. In conclusion, we found that all 24 vulnerabilities
previously exploitable using DIRTYFREE were successfully
mitigated, effectively blocking privilege escalation through this
approach.

Specifically, Mitigation #1 prevents arbitrary free objects
from being utilized with vulnerabilities arising in general
caches. In other words, arbitrary free objects can no longer
be aliased or positioned adjacent to vulnerable objects. This
is because each arbitrary free object now resides in its own
dedicated cache, preventing them from sharing memory pages
with general cache objects. Previously, temporal cross-cache
attacks could circumvent such limitations, but under our
defined threat model—where cross-cache attacks are explicitly
disallowed—no alternative bypass methods remain.

Mitigation #2 specifically blocks cross-cache free operations.
Unlike Mitigation #1, arbitrary free objects can still be aliased
or adjacent to vulnerable objects. However, it prevents cross-
cache frees targeting dedicated caches containing security-
critical objects by enforcing additional verification checks. As
cross-cache free is a critical component of DIRTYFREE, this
mitigation directly undermines its effectiveness. Consequently,
attackers can no longer leverage the efficiency offered by
DIRTYFREE and must resort instead to more complex and less
efficient traditional DOP techniques.
Performance Evaluation. We evaluate the performance
impact of our mitigations across three classes of workloads.
First, we use systemd-analyze [49] to measure any overhead
during kernel and user-space initialization. Second, we run
LMbench [50] to quantify microarchitectural latency across
core kernel operations such as system calls, file I/O, and IPC.

11

TABLE III: Performance comparison of the Linux kernel without
mitigation and with our two proposed mitigations applied. For
latency metrics, lower values indicate better performance, whereas
for throughput metrics, higher values indicate better performance.

Test w/o miti Miti #1 Overhead Miti #2 Overhead

Systemd-Analyze (s)

Kernel 1.210 1.265 +4.55% 1.225 +1.24%
User 1.005 1.009 +0.40% 1.006 +0.10%

Geomean +2.46% +0.67%

LMBench - latency (ms)

syscall 0.8737 0.8869 +1.52% 0.8802 +0.75%
read 0.8971 0.8953 -0.20% 0.8716 -2.85%
write 0.5536 0.5422 -1.98% 0.5438 -1.77%
stat 0.9503 0.9496 -0.07% 0.9698 +2.05%
fstat 0.7658 0.7602 -0.74% 0.7411 -3.25%
open/close 1.7740 1.7853 +0.64% 1.7825 +0.48%
select (10 fd) 0.5834 0.5857 +0.40% 0.5884 +0.86%
select (100 fd) 1.4468 1.5038 +3.95% 1.4326 -0.98%
pipe 8.4400 8.4365 -0.04% 8.3035 -1.60%
fork+exit 104.5472 104.8061 +0.25% 105.6737 +1.07%
fork+execve 338.5625 339.9375 +0.41% 340.2286 +0.50%
fork+/bin/sh 867.8571 855.7143 -1.41% 868.3077 +0.05%
UNIX sock 11.8290 11.9978 +1.43% 11.7161 -0.99%
UDP 9.0979 9.0724 -0.28% 9.3117 +2.36%
TCP 12.7894 12.7601 -0.23% 12.8181 +0.22%

Geomean +0.23% -0.22%

Application Benchmarks - Throughput

Nginx (req/s) 26054.9 26949.7 -3.43% 26971.3 -3.52%
Apache (req/s) 12913.9 12691.8 +1.72% 13299.6 -2.99%
lighttpd (req/s) 28435.29 29274.00 -2.95% 28673.51 -0.84%
Redis - Set (ops/s) 94744.10 96525.09 -1.88% 96525.09 -1.88%
Redis - Get (ops/s) 93766.61 96153.85 -2.55% 95057.03 -1.38%
memcached (ops/s) 91721.80 93340.85 -1.77% 93467.88 -1.90%

Geomean -1.80% -2.08%

Finally, we assess end-to-end application performance using
five macrobenchmarks (i.e., Nginx, Apache, lighttpd, Redis,
and memcached), reporting their throughput under static or in-
memory workloads. All experiments are repeated three times,
and we report the geometric mean. The results are summarized
in Table III.

Overall, we observe that both mitigations introduce negli-
gible performance overhead. Boot-time measurements using
systemd-analyze show only minor increases in kernel and user-
space initialization times. The small kernel-side overhead in
Mitigation #1 simply comes from creating dedicated caches for
arbitrary-free objects during boot. LMbench results show that
all measured latency values remain within normal measurement
noise. In addition, all application benchmarks also show no
meaningful throughput degradation. Together, these results
confirm that our mitigations are practical, as the added logic
applies only to identified objects and therefore does not interfere
with common fast paths in the kernel.

Regression Evaluation. To verify that our proposed miti-
gations do not affect overall system stability, we performed
stress tests using the Linux Test Project (LTP) [51]. These tests
are designed to stress various kernel subsystems and detect
potential regressions. We ran the full LTP test suite on two
kernels, each incorporating one of our proposed mitigations.
All tests completed successfully without any kernel crashes,
hangs, or mitigation-induced functional deviations. This result
is consistent with the design of both mitigations. Mitiga-

tion #1 merely changes the allocation site from kmalloc()

to kmem_cache_alloc(), following the standard kernel practice
used when moving objects from general caches to dedicated
slab caches. Therefore, it does not alter object semantics or
introduce unintended side effects. Mitigation #2 adds a cache-
identifier lookup before kfree(), but this operation relies solely
on slab metadata that the kernel already maintains for pointer-
to-cache resolution, and thus does not introduce new behavior
or additional failure modes.

VIII. DISCUSSION

Next, we discuss additional issues that have not yet been
addressed and outline potential directions for future work.

A. Noise

Like other exploitation techniques, DIRTYFREE is also
susceptible to interference caused by system noise. First, inter-
ference may occur during the layout manipulation phase, where
the attacker attempts to place the vulnerable object adjacent
to or aliased with the arbitrary-free object. In such cases,
concurrent memory allocations by other processes may disrupt
the intended memory layout. Second, after the arbitrary free
of a user-level cred structure is triggered, privilege escalation
may fail if another process allocates a cred object before a
root cred allocation occurs. Although various techniques, such
as CPU pinning, can be used to avoid such interference, we
did not cover them in this work. Nonetheless, applying these
techniques could further reduce the impact of noise and improve
the reliability of DIRTYFREE-based exploitation.

B. Other Security-Critical Objects

We believe that other security-critical objects can also
serve as potential targets for DIRTYFREE. In this paper, we
focused on the cred structure as our security-critical object and
demonstrated a reliable method to achieve privilege escalation
through its corruption. However, the same methodology could
be applied to alternative objects whose compromise similarly
enables privilege escalation. For instance, security-critical
objects identified in DirtyCred [16], which allow arbitrary file
writes via file name swapping, could also be targeted. More
broadly, we anticipate that both publicly known and yet-to-be-
discovered security-critical objects may be viable targets for
DIRTYFREE, provided that suitable arbitrary-free primitives
can be identified or constructed.

C. Other Operating Systems

We expect that DIRTYFREE can also be applied to UNIX-
based systems such as macOS and FreeBSD. Both platforms
already feature arbitrary-free primitives, and their heap man-
agement designs are similar to Linux’s SLUB allocator. A
notable difference is their use of zones instead of caches:
security-critical objects are isolated in dedicated zones, yet
cross-zone frees via kfree or free remain possible. Thus,
adapting DIRTYFREE would primarily require identifying
suitable security-critical objects for privilege escalation. In
such cases, cross-zone frees could offer a practical path to
elevated privileges.

12

D. Limitations

Static Analysis. Although our identification procedure is
systematic, it is intentionally conservative. In particular, our
temporary-object filtering relies on a reachability heuristic that
may over-approximate certain cases, potentially leading to false
negatives. This limitation stems from the analysis design rather
than implementation details. Incorporating more path-sensitive
reasoning could further broaden the set of arbitrary-free objects
supported by DIRTYFREE.
Applicability of Attack. DIRTYFREE shares the same
general limitation with all exploitation techniques: successful
exploitation requires a match between the conditions of the
target object and the exploitability constraints of the underlying
vulnerability. If this matching does not hold, the vulnerability
cannot be exploited using DIRTYFREE. This limitation is
inherent to any technique that relies on object reallocation
semantics and is not unique to our approach.
Defenses. The limitations of our mitigations stem from their
reliance on identifying arbitrary-free objects. Our defenses
assume that all such objects are known so they can either be
isolated into dedicated caches or validated through additional
checks; if new arbitrary-free objects are discovered in the
future, further updates would be required to extend protection.
However, this maintenance requirement is not unique nor
unusual—OS defenses commonly rely on incremental updates.
For example, zone_require [52], which prevents temporal
cross-zone attacks in macOS and iOS, must be updated as
new security-critical objects are identified. Our mitigations
fall into the same category: practical, incremental defenses
whose effectiveness depends on periodically incorporating
newly discovered objects.

IX. RELATED WORK

Control-Flow Exploits. Many existing works [13, 53–61]
have explored how to achieve privilege escalation when control-
flow hijacking is possible. For instance, FUZE [13] automated
the analysis of exploitability for use-after-free vulnerabilities
to determine whether they could lead to control-flow hijacking.
Koobe [53] automated the analysis of out-of-bounds vulnera-
bilities, identifying precisely which memory regions could be
overwritten and with what values. Retspill [54] demonstrated
that, given a control-flow hijacking primitive, userspace data
could persist in the kernel stack and leveraged this property for
privilege escalation. Finally, SRH [55] identified exploitable
system registers and devised methods for achieving privilege
escalation by utilizing gadgets capable of controlling these
registers. However, these techniques have all been mitigated
following the introduction of kernel control-flow integrity [1].
Data-Flow Exploits. Existing works have explored diverse
techniques [11, 12, 16–20, 62] related to data-oriented pro-
gramming. Traditional DOP (as instantiated by Eloise [11] and
BridgeRouter [12]) reconstructs a three-stage exploitation chain
consisting of an information leak, an arbitrary read primitive,
and an arbitrary write primitive. In practice, however, it is
rare for a single vulnerability to satisfy all three prerequisites,

which fundamentally limits the applicability of traditional
DOP. In contrast, DIRTYFREE does not require building a
full multi-stage chain. Instead, DIRTYFREE often requires only
a single primitive (arbitrary free) when partial overwrites are
available, enabling exploitation of vulnerabilities that cannot
meet all three traditional DOP prerequisites. DirtyCred [16]
demonstrated that the file structure can be repurposed to achieve
privilege escalation using a data-flow-oriented approach. While
its technique is applicable to certain OOB and UAF cases,
it fundamentally relies on temporal cross-cache behavior to
exploit double-free bugs, which is incompatible with hardened
settings such as slab-virtual. Roughly 30% of recent kCTF
vulnerabilities fall into this category, placing them outside
of DirtyCred’s scope. In contrast, DIRTYFREE remains appli-
cable even under slab-virtual: because DIRTYFREE performs
cross-cache frees via kfree() rather than relying on temporal
allocator behavior, it can exploit double-free vulnerabilities
that DirtyCred cannot handle under the same threat model.
Reliability of Exploits. Various studies [40, 41, 63–65]
have been conducted to improve exploit reliability. Heap feng
shui [40] proposed techniques to precisely control the heap
layout, positioning the vulnerable and target objects adjacent
to each other by performing heap grooming and intentionally
creating holes. Kyle et al. [64] recognized reliability issues
associated with kernel heap exploitation and systematically
studied combinations of various exploit techniques to determine
the most effective methods across different environments.
Pspray [41] employed timing side-channels to detect when
new memory pages are allocated, significantly increasing
the reliability of exploiting out-of-bounds and use-after-free
vulnerabilities. ExpRace [63] addressed scenarios where certain
race conditions fail to trigger due to very short race windows; it
leveraged performance degradation attacks to extend these race
windows, thus improving exploitation success rates. All these
techniques aim at enhancing vulnerability reliability, making
them orthogonal and complementary to our research.

X. CONCLUSION

Until now, the arbitrary free primitive has primarily served
as an auxiliary technique used to enhance the exploitability
of vulnerabilities with very limited inherent exploitability. As
a result, publicly known arbitrary free objects have remained
scarce, and the full potential of the arbitrary free primitive
has not been widely recognized. In this paper, we conducted a
systematic analysis to identify arbitrary-free objects in general
kernel caches and introduced DIRTYFREE, demonstrating that,
under suitable conditions, privilege escalation can be achieved
with only a single arbitrary free primitive. Upon examining
existing kernel defense mechanisms, we found that none
provide an effective or practical mitigation against the threat
posed by DIRTYFREE. To address this gap, we proposed
two targeted mitigations specifically designed to mitigate
DIRTYFREE. We conclude that, by effectively preventing the
misuse of arbitrary free objects and eliminating cross-cache free
behavior, these defenses can significantly reduce the overall
threat surface and impact of DIRTYFREE.

13

XI. ETHICAL CONSIDERATIONS

The exploitation technique presented in this paper is intended
solely to advance the security of the Linux kernel and is
not meant to support or enable malicious activity. All kernel
vulnerabilities used in our experiments were obtained from
Google’s Kernel CTF [46] repository and have already been
patched prior to our evaluation. No public disclosure occurred
prior to our evaluation. Furthermore, all experiments were
conducted within isolated virtual environments, ensuring that
no public or live systems were affected. We intentionally avoid
disclosing any details that could pose a security risk to the Linux
kernel or its users. Finally, we release all data and source code
used in this study at https://github.com/MPI-SysSec/DirtyFree
to facilitate reproducibility and responsible research.

ACKNOWLEDGEMENT

We thank all reviewers for their thoughtful feedback. This
work was supported by the European Research Council (ERC)
under the consolidator grant RS3 (101045669) and by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy (EXC 2092
CASA – 390781972).

REFERENCES

[1] Google, “Kernel control flow integrity,” 2022,
https://source.android.com/docs/security/test/kcfi.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti,
“Control-flow integrity,” in Proceedings of the 12th ACM
Conference on Computer and Communications Security
(CCS), Alexandria, VA, Nov. 2005.

[3] H. Shacham, “The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the x86),”
in Proceedings of the 21st ACM Conference on Computer
and Communications Security (CCS), Scottsdale, Arizona,
Nov. 2007.

[4] R. Roemer, E. Buchanan, H. Shacham, and S. Savage,
“Return-oriented programming: Systems, languages, and
applications,” ACM Transactions on Information and
System Security (TISSEC), vol. 15, no. 1, pp. 1–34, 2012.

[5] V. van der Veen, D. Andriesse, M. Stamatogiannakis,
X. Chen, H. Bos, and C. Giuffrdia, “The dynamics of
innocent flesh on the bone: Code reuse ten years later,” in
Proceedings of the 24th ACM Conference on Computer
and Communications Security (CCS), Dallas, TX, Oct.–
Nov. 2017.

[6] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and
Z. Liang, “Data-oriented programming: On the expres-
siveness of non-control data attacks,” in Proceedings of
the 37th IEEE Symposium on Security and Privacy (S&P),
San Jose, CA, May 2016.

[7] S. Chen, J. Xu, and E. C. Sezer, “Non-Control-Data
attacks are realistic threats,” in Proceedings of the 14th
USENIX Security Symposium, Baltimore, MD, Aug. 2005.

[8] B. Johannesmeyer, A. Slowinska, H. Bos, and C. Giuffrida,
“Practical data-only attack generation,” in Proceedings of

the 33rd USENIX Security Symposium, Philadelphia, PA,
Aug. 2024.

[9] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang,
“Automatic generation of data-oriented exploits,” in Pro-
ceedings of the 24th USENIX Security Symposium, Wash-
ington, DC, Aug. 2015.

[10] J. Pewny, P. Koppe, and T. Holz, “Steroids for doped
applications: A compiler for automated data-oriented
programming,” in IEEE European Symposium on Security
and Privacy (EuroS&P), 2019.

[11] Y. Chen, Z. Lin, and X. Xing, “A systematic study of elas-
tic objects in kernel exploitation,” in Proceedings of the
27th ACM Conference on Computer and Communications
Security (CCS), Nov. 2020.

[12] D. Xie, D. He, W. You, J. Huang, B. Liang, S. Gan, and
W. Shi, “Bridgerouter: Automated capability upgrading of
out-of-bounds write vulnerabilities to arbitrary memory
write primitives in the linux kernel,” in Proceedings of
the 46th IEEE Symposium on Security and Privacy, San
Francisco, CA, May 2025.

[13] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou,
“Fuze: Towards facilitating exploit generation for kernel
use-after-free vulnerabilities,” in Proceedings of the 27th
USENIX Security Symposium, Baltimore, MD, Aug. 2018.

[14] J. Hu, J. Zhou, Q. Tang, and W. Shen, “Pagejack: A
powerful exploit technique with page-level uaf,” 2024,
https://i.blackhat.com/BH-US-24/Presentations/US24-
Qian-PageJack-A-Powerful-Exploit-Technique-With-
Page-Level-UAF-Thursday.pdf.

[15] Theori, “Reviving the modprobe_path technique:
Overcoming search_binary_handler() patch,” 2025,
https://theori.io/blog/reviving-the-modprobe-path-
technique-overcoming-search-binary-handler-patch.

[16] Z. Lin, Y. Wu, and X. Xing, “Dirtycred: Escalating
privilege in linux kernel,” in Proceedings of the 29th ACM
Conference on Computer and Communications Security
(CCS), Nov. 2022.

[17] W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu,
“From collision to exploitation: Unleashing use-after-free
vulnerabilities in linux kernel,” in Proceedings of the
22nd ACM Conference on Computer and Communications
Security (CCS), Denver, Colorado, Oct. 2015.

[18] L. Maar, S. Gast, M. Unterguggenberger, M. Oberhuber,
and S. Mangard, “Slubstick: Arbitrary memory writes
through practical software cross-cache attacks within the
linux kernel,” in Proceedings of the 33rd USENIX Security
Symposium, Philadelphia, PA, Aug. 2024.

[19] G. Ziyi, D. K. Le, Z. Lin, K. Zeng, R. Wang, T. Bao,
Y. Shoshitaishvili, A. Doupé, and X. Xing, “Take a
step further: Understanding page spray in linux kernel
exploitation,” in Proceedings of the 33rd USENIX Security
Symposium, Philadelphia, PA, Aug. 2024.

[20] N. Wu, “Dirty pagetable: A novel exploitation technique
to rule linux kernel,” 2024, https://yanglingxi1993.github.
io/dirty_pagetable/dirty_pagetable.html.

14

https://github.com/MPI-SysSec/DirtyFree
https://i.blackhat.com/BH-US-24/Presentations/US24-Qian-PageJack-A-Powerful-Exploit-Technique-With-Page-Level-UAF-Thursday.pdf
https://i.blackhat.com/BH-US-24/Presentations/US24-Qian-PageJack-A-Powerful-Exploit-Technique-With-Page-Level-UAF-Thursday.pdf
https://i.blackhat.com/BH-US-24/Presentations/US24-Qian-PageJack-A-Powerful-Exploit-Technique-With-Page-Level-UAF-Thursday.pdf
https://theori.io/blog/reviving-the-modprobe-path-technique-overcoming-search-binary-handler-patch
https://theori.io/blog/reviving-the-modprobe-path-technique-overcoming-search-binary-handler-patch
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

[21] M. Rizzo, “introduce config_slab_virtual.” 2023,
https://lore.kernel.org/lkml/20230915105933.495735-9-
matteorizzo@google.com/#r.

[22] Google, “Kernel exploits recipes notebook.”
2022, https://docs.google.com/document/d/
1a9uUAISBzw3ur1aLQqKc5JOQLaJYiOP5pe_
B4xCT1KA/edit.

[23] “Slab allocator,” https://www.kernel.org/doc/gorman/html/
understand/understand011.html.

[24] Corbet, “The slub allocator,” 2007, https://lwn.net/
Articles/229984/.

[25] M. Mackall, “slob: introduce the slob allocator,” 2005,
https://lwn.net/Articles/157944/.

[26] J. Kim, J. Park, Y. Lee, C. Song, T. Kim, and B. Lee,
“Petal: Ensuring access control integrity against data-
only attacks on linux,” in Proceedings of the 31st ACM
Conference on Computer and Communications Security
(CCS), Oct. 2024.

[27] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee,
“Enforcing kernel security invariants with data flow
integrity.” in Proceedings of the 2016 Annual Network
and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb. 2016.

[28] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim,
W. Lee, and Y. Paek, “Hdfi: Hardware-assisted data-flow
isolation,” in Proceedings of the 37th IEEE Symposium
on Security and Privacy (S&P), San Jose, CA, May 2016.

[29] M. Castro, M. Costa, and T. Harris, “Securing software
by enforcing data-flow integrity,” in Proceedings of the
7th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Seattle, WA, Nov. 2006.

[30] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Cas-
tro, “Preventing memory error exploits with WIT,” in
Proceedings of the 29th IEEE Symposium on Security
and Privacy, Oakland, CA, May 2008.

[31] G. Li, H. Zhang, J. Zhou, W. Shen, Y. Sui, and Z. Qian, “A
hybrid alias analysis and its application to global variable
protection in the linux kernel,” in Proceedings of the 32nd
USENIX Security Symposium, Anaheim, CA, Aug. 2023.

[32] D. P. McKee, Y. Giannaris, C. Ortega, H. E. Shrobe,
M. Payer, H. Okhravi, and N. Burow, “Preventing kernel
hacks with hakcs.” in Proceedings of the 2022 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2022.

[33] K. Dinh Duy, K. Cho, T. Noh, and H. Lee, “Capacity:
Cryptographically-enforced in-process capabilities for
modern arm architectures,” in Proceedings of the 30th
ACM Conference on Computer and Communications
Security (CCS), Nov. 2023.

[34] K. Cook, “Kernel address space layout randomization,”
Linux Security Summit, 2013.

[35] Intel, “Supervisor mode execution prevention,”
https://edc.intel.com/content/www/us/en/design/ipla/
software-development-platforms/servers/platforms/intel-
pentium-silver-and-intel-celeron-processors-datasheet-
volume-1-of-2/005/intel-supervisor-mode-execution-

protection-smep/.
[36] J. Corbet, “Supervisor mode access prevention,” 2012,

https://lwn.net/Articles/517475/.
[37] Jonathan Corbet, “The current state of kernel page-table

isolation,” 2017, https://lwn.net/Articles/741878/.
[38] h0mbre, “Escaping the google kctf container with a data-

only exploit,” https://h0mbre.github.io/kCTF_Data_Only_
Exploit/.

[39] Nguyen, “Cve-2021-22555: Turning \x00\x00 into
$10000,” https://google.github.io/security-research/pocs/
linux/cve-2021-22555/writeup.html#vulnerability.

[40] A. Sotirov, “Heap feng shui in javascript,” Black Hat
Europe, vol. 2007, 2007.

[41] Y. Lee, J. Kwak, J. Kang, Y. Jeon, and B. Lee, “Pspray:
Timing side-channel based linux kernel heap exploitation
technique,” in Proceedings of the 32nd USENIX Security
Symposium, Anaheim, CA, Aug. 2023.

[42] Linux, “Fuse’s introduction in the linux kernel user’s and
administrator’s guide.” 2022, https://www.kernel.org/doc/
html/latest/filesystems/fuse.html.

[43] Linux, “Userfaultfd’s introduction in the linux
kernel user’s and administrator’s guide.” 2022,
https://www.kernel.org/doc/html/latest/admin-
guide/mm/userfaultfd.html.

[44] pql, “Fourchain - kernel.” 2022, https://org.anize.rs/
HITCON-2022/pwn/fourchain-kernel.

[45] “Whole-program llvm,” https://github.com/travitch/whole-
program-llvm.

[46] Google, “Google kernel ctf,” https://github.com/google/
security-research/tree/master/kernelctf.

[47] H. Zhang, J. Liu, J. Lu, S. Chen, T. Han, B. Zhang, and
X. Gong, “Reviving discarded vulnerabilities: Exploiting
previously unexploitable linux kernel bugs through control
metadata fields,” in Proceedings of the 32nd ACM
Conference on Computer and Communications Security
(CCS), Oct. 2025.

[48] A. M. Kees Cook, “Introduce dedicated bucket allo-
cator.” 2024, https://lore.kernel.org/lkml/202403251609.
1F681B5D@keescook/t/.

[49] “Systemd-analyze,” https://www.freedesktop.org/software/
systemd/man/systemd-analyze.html.

[50] L. W. McVoy, C. Staelin et al., “lmbench: Portable tools
for performance analysis.”

[51] P. Larson, “Testing linux with the linux test project,” in
Ottawa Linux Symposium, vol. 108, 2002.

[52] B. Azad, “The core of Apple is PPL:
Breaking the XNU kernel’s kernel,” 2020,
https://googleprojectzero.blogspot.com/2020/07/the-
core-of-apple-is-ppl-breaking-xnu.html.

[53] W. Chen, X. Zou, G. Li, and Z. Qian, “Koobe: Towards
facilitating exploit generation of kernel out-of-bounds
write vulnerabilities,” in Proceedings of the 29th USENIX
Security Symposium, Boston, MA, Aug. 2020.

[54] K. Zeng, Z. Lin, K. Lu, X. Xing, R. Wang, A. Doupé,
Y. Shoshitaishvili, and T. Bao, “Retspill: Igniting user-
controlled data to burn away linux kernel protections,” in

15

https://lore.kernel.org/lkml/20230915105933.495735-9-matteorizzo@google.com/#r
https://lore.kernel.org/lkml/20230915105933.495735-9-matteorizzo@google.com/#r
https://docs.google.com/document/d/1a9uUAISBzw3ur1aLQqKc5JOQLaJYiOP5pe_B4xCT1KA/edit
https://docs.google.com/document/d/1a9uUAISBzw3ur1aLQqKc5JOQLaJYiOP5pe_B4xCT1KA/edit
https://docs.google.com/document/d/1a9uUAISBzw3ur1aLQqKc5JOQLaJYiOP5pe_B4xCT1KA/edit
https://www.kernel.org/doc/gorman/html/understand/understand011.html
https://www.kernel.org/doc/gorman/html/understand/understand011.html
https://lwn.net/Articles/229984/
https://lwn.net/Articles/229984/
https://lwn.net/Articles/157944/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/servers/platforms/intel-pentium-silver-and-intel-celeron-processors-datasheet-volume-1-of-2/005/intel-supervisor-mode-execution-protection-smep/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/servers/platforms/intel-pentium-silver-and-intel-celeron-processors-datasheet-volume-1-of-2/005/intel-supervisor-mode-execution-protection-smep/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/servers/platforms/intel-pentium-silver-and-intel-celeron-processors-datasheet-volume-1-of-2/005/intel-supervisor-mode-execution-protection-smep/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/servers/platforms/intel-pentium-silver-and-intel-celeron-processors-datasheet-volume-1-of-2/005/intel-supervisor-mode-execution-protection-smep/
https://edc.intel.com/content/www/us/en/design/ipla/software-development-platforms/servers/platforms/intel-pentium-silver-and-intel-celeron-processors-datasheet-volume-1-of-2/005/intel-supervisor-mode-execution-protection-smep/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/741878/
https://h0mbre.github.io/kCTF_Data_Only_Exploit/
https://h0mbre.github.io/kCTF_Data_Only_Exploit/
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html#vulnerability
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html#vulnerability
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/userfaultfd.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/userfaultfd.html
https://org.anize.rs/HITCON-2022/pwn/fourchain-kernel
https://org.anize.rs/HITCON-2022/pwn/fourchain-kernel
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm
https://github.com/google/security-research/tree/master/kernelctf
https://github.com/google/security-research/tree/master/kernelctf
https://lore.kernel.org/lkml/202403251609.1F681B5D@keescook/t/
https://lore.kernel.org/lkml/202403251609.1F681B5D@keescook/t/
https://www.freedesktop.org/software/systemd/man/systemd-analyze.html
https://www.freedesktop.org/software/systemd/man/systemd-analyze.html
https://googleprojectzero.blogspot.com/2020/07/the-core-of-apple-is-ppl-breaking-xnu.html
https://googleprojectzero.blogspot.com/2020/07/the-core-of-apple-is-ppl-breaking-xnu.html

Proceedings of the 32nd USENIX Security Symposium,
Anaheim, CA, Aug. 2023.

[55] J. Miller, M. Ghandat, K. Zeng, H. Chen, A. H. Benchikh,
T. Bao, R. Wang, A. Doupé, and Y. Shoshitaishvili,
“System register hijacking: Compromising kernel integrity
by turning system registers against the system,” in
Proceedings of the 34th USENIX Security Symposium,
Aug. 2025.

[56] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis,
“ret2dir: Rethinking kernel isolation,” in Proceedings of
the 23rd USENIX Security Symposium, San Diego, CA,
Aug. 2014.

[57] W. Yong, “Ret2page: The art of exploi4ng use-after-free
vulnerabili4es in the dedicated cache,” Black Hat USA,
2022.

[58] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis,
“kguard: Lightweight kernel protection against return-to-
user attacks,” in Proceedings of the 21st USENIX Security
Symposium, Bellevue, WA, Aug. 2012.

[59] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and
D. Boneh, “Hacking blind,” in Proceedings of the 35th
IEEE Symposium on Security and Privacy, San Jose, CA,
May 2014.

[60] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi,
T. Kim, M. Peinado, and B. B. Kang, “Hacking in
darkness: Return-oriented programming against secure
enclaves,” in Proceedings of the 26th USENIX Security
Symposium, Vancouver, BC, Canada, Aug. 2017.

[61] W. Wu, Y. Chen, X. Xing, and W. Zou, “Kepler: Facilitat-
ing control-flow hijacking primitive evaluation for linux
kernel vulnerabilities,” in Proceedings of the 28th USENIX
Security Symposium, Santa Clara, CA, Aug. 2019.

[62] S. Han, S.-J. Kim, W. Shin, B. J. Kim, and J.-C.
Ryou, “Page-oriented programming: Subverting control-
flow integrity of commodity operating system kernels
with non-writable code pages,” in Proceedings of the
33rd USENIX Security Symposium, Philadelphia, PA, Aug.
2024.

[63] Y. Lee, C. Min, and B. Lee, “Exprace: Exploiting kernel
races through raising interrupts,” in Proceedings of the
30th USENIX Security Symposium, Online, Aug. 2021.

[64] K. Zeng, Y. Chen, H. Cho, X. Xing, A. Doupé, Y. Shoshi-
taishvili, and T. Bao, “Playing for K(H)eaps: Understand-
ing and improving Linux kernel exploit reliability,” in
Proceedings of the 31st USENIX Security Symposium,
Aug. 2022.

[65] Y. Chen and X. Xing, “Slake: facilitating slab manipula-
tion for exploiting vulnerabilities in the linux kernel,” in
Proceedings of the 26th ACM Conference on Computer
and Communications Security (CCS), London, UK, Nov.
2019.

APPENDIX

A. Reliability of DIRTYFREE

To demonstrate the reliability of DIRTYFREE, we conducted
additional experiments that measure its success rate in isolation.
To this end, we constructed a synthetic arbitrary-free object.
For this purpose, we add a dedicated system call that provides
three controlled operations as shown in Figure 6. The first
operation allocates a synthetic object and sets its pointer field
to the address of another allocated object. The second operation
overwrites the lower two bytes of the corresponding pointer.
Lastly, we validate that the corrupted pointer now refers to
the sprayed user-privilege cred object. We intentionally avoid
triggering the actual arbitrary free to prevent a kernel panic,
which would interfere with the success-rate measurement. Each
experiment consists of 10 rounds, and each round performs
10,000 exploit attempts under two conditions: an idle system
and a busy system stressed using stress-ng.
Result. We observe that DIRTYFREE achieves a success rate
of 95.6% in the idle state and 87.4% in the busy state. Our
manual analysis of the failure cases reveals two primary reasons.
First, in both settings, some failures occur when the corrupted
pointer happens to land on the same page as the original pointer,
which prevents the intended redirection. Second, in the busy
environment, we confirmed that continuous process creation
can temporarily interfere with credential spraying, although this
effect is limited and does not lead to substantial degradation.
Discussion. Note that we intentionally do not evaluate
reliability using real-world CVE exploits. Such exploits often
fail for reasons that are orthogonal to the correctness of
DIRTYFREE, such as stabilization effects, object-placement
randomness, or inherent unpredictability of race conditions.
Moreover, end-to-end exploits are typically executed repeatedly
until they succeed without triggering a kernel panic. As long as
eventual success is possible, their practical reliability does not
strongly depend on how many intermediate attempts fail. For
these reasons, end-to-end exploit outcomes do not provide a
meaningful or precise measure of the reliability of DIRTYFREE
itself.

TABLE IV: Applicability of arbitrary free objects across Linux kernel
versions from v5.0 to v6.16.

Struct Name Effective Version

landlock_hierarchy v5.13 ∼ v6.16
landlock_ruleset v5.13 ∼ v6.16

async_poll v5.7 ∼ v6.16
perf_event_pmu_context v6.2 ∼ v6.16

pipe_inode_info v5.0 ∼ v6.16
mnt_idmap v6.2 ∼ v6.16
msg_queue v5.0 ∼ v6.16
io_ring_ctx v5.1 ∼ v6.16
msg_msg v5.0 ∼ v6.10

msg_msgseg v5.0 ∼ v6.16
sem_array v5.0 ∼ v6.16
poll_list v5.0 ∼ v6.16

callchain_cpus_entries v5.0 ∼ v6.16
simple_xattr v5.0 ∼ v6.16

16

struct arbifree { char *ptr; };
struct arbifree *syn;

SYSCALL_DEFINE2(dirtyfree_test, int, cmd, int, id)
{

if(cmd == 0)
{

syn = kzalloc(sizeof(struct arbifree), GFP_KERNEL);
syn->ptr = kzalloc(128, GFP_KERNEL);

}
else if(cmd == 1)
{

syn->ptr = (char *)((unsigned long)syn->ptr & ~0xFFFFUL);
}
else if(cmd == 2)
{

struct slab *slab = virt_to_slab(syn->ptr);
if(slab && strstr(slab->slab_cache->name, "cred_jar"))
{

struct cred *tmp = (struct cred *)syn->ptr;
if(__kuid_val(tmp->uid) == id)

return 1;
}

}
return 0;

}

Fig. 6: A synthetic arbitrary free object code.

17

	Introduction
	Background
	Kernel Heap Memory Management
	Data-Oriented Programming
	Threat Model

	Details about Arbitrary Free Primitive
	Strength of Arbitrary Free
	Arbitrary Free Object
	Cross-Cache Free
	Technical Challenges

	DirtyFree
	Overview
	Identifying Arbitrary Free Object
	Exploit Methodology

	Implementation
	Evaluation
	Arbitrary Free Object Collection
	Effectiveness on Real-World Vulnerabilities
	Comparison with other DOP techniques

	Defense against DirtyFree
	Mitigation #1: Isolating Arbitrary Free Object
	Mitigation #2: Cache Validation
	Evaluation for Mitigations

	Discussion
	Noise
	Other Security-Critical Objects
	Other Operating Systems
	Limitations

	Related work
	Conclusion
	Ethical Considerations
	Appendix
	Reliability of DirtyFree

