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Abstract—Internet services and applications depend critically
on the availability and accuracy of network time. The Network
Time Protocol (NTP) is one of the oldest core network protocols
and remains the de facto mechanism for clock synchronization
across the Internet today. While multiple NTP infrastructures
exist, one, the “NTP Pool,” presents an attractive attack target
for two basic reasons, it is: 1) administratively distributed and
based on volunteer servers; and 2) heavily utilized, including
by IoT and infrastructure devices worldwide. We gather the first
direct, non-inferential, and comprehensive data on the NTP Pool,
including: longitudinal server and account membership, server
configurations, time quality, aliases, and global query traffic load.

We gather complete and granular data over a nine month
period to discover over 15Kk servers (both active and inactive) and
shed new light into the NTP Pool’s use, dynamics, and robustness.
By analyzing address aliases, accounts, and network connectivity,
we find that only 19.7% of the pool’s active servers are fully
independent. Finally, we show that an adversary informed with
our data can better and more precisely mount ‘“monopoly
attacks” to capture the preponderance of NTP pool traffic in
90% of all countries with only 10 or fewer malicious NTP servers.
Our results suggest multiple avenues by which the robustness of
the pool can be improved.

I. INTRODUCTION

Accurate time is critical to the function and security of
distributed systems. The Network Time Protocol (NTP) is the
long-standardized and well-adopted protocol for synchronizing
time between systems on the Internet [1]. The security of the
protocol itself has been well-studied, with prior work demon-
strating e.g., time-shifting and denial of service attacks [2], [3],
[4], while recent efforts standardize NTP security mechanisms
for authentication and integrity [5]. However, these NTP
security mechanisms do not fully protect against malicious
time servers or availability attacks.

In part due to outstanding security concerns, and to mitigate
potential risk, several commercial operating system vendors
and network providers operate their own NTP infrastructure,
including Microsoft, Apple, Cloudflare, and Google [6], [7].
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However, open source operating system distributions based on
Linux and BSD utilize the NTP Pool project [8] for time
synchronization by default. In addition to the prevalence of
these operating systems in server and network infrastructure,
embedded Linux is widely deployed on Internet of Things
(IoT) devices such as printers, webcams, WiFi routers, and
home automation. Thus, the NTP Pool (herein referred to
simply as the “pool”) is well-used and critical to the operation
of a large number of in-the-wild Internet devices and services.

This work develops new measurements to shine new light
on the NTP Pool and bring new insights into its overall
robustness. Whereas prior efforts to characterize the NTP Pool
rely on indirect inferences, e.g., via large-scale querying of
the DNS [9], [10], [11], we develop a means for direct (non-
inferential) measurement. Our method permits exhaustive and
longitudinal measurement of the pool, and affords insight into
previously unavailable information including: 1) all servers
that are members of the pool, including poor-quality, offline,
and “monitor-only” servers not returned in query responses;
2) query traffic volume and distribution; 3) server speed and
configuration; 4) aliased servers that distort the perceived
diversity; 5) accounts controlling a large number of servers;
and 6) server lifetime. In sum, we make the following primary
contributions:

1) Development and validation of a custom scraper to
exhaustively and longitudinally gather granular data on
the pool, including servers, accounts, zones, addresses,
scores, traffic, and popularity (§III).

2) Fingerprinting to identify and characterize NTP server
“aliases” present in the pool, including across IP protocol
versions (§III-F).

3) Measurement-based characterization of the pool, includ-
ing showing an inferred global pool rate of about 100k
DNS queries per second (§IV).

4) Analysis and evaluation of pool server independence,
including account owners, network diversity, aliases, and
lifetimes, showing that only approximately 20% of the
active servers are independent (§V).

5) Demonstration and validation of how the netspeed data
we gather can be utilized to better and more precisely
mount targeted “monopoly attacks” [4] whereby the at-



tacker captures the preponderance of NTP pool traffic
in 90% of all countries with 10 or fewer attack servers
(§VI).

The remainder of the paper is organized as follows. We
briefly review NTP and the NTP Pool in §1I, while §III details
our methodology. §IV describes our datasets and important
macro characteristics of the pool. We then investigate the
degree to which participating pool servers are independent
from one another in §V. Next, we explore the feasibility
of the monopoly attack using our data in §VI. Finally, we
conclude with a discussion on ethical considerations and
recommendations for improving the robustness of the pool.

II. BACKGROUND

NTP, standardized in 1985, is a protocol to synchronize
system clocks among a distributed set of servers across a
variable latency, best effort packet switched network [12], [1].
NTP organizes distributed devices into a hierarchy, rooted
in a reference clock (stratum O, with high-precision time
sources). Stratum 1 servers synchronize with stratum 0 time
sources, while stratum 2 servers synchronize with stratum 1
servers, and so on. The history and evolution of NTP over
its four-decade lifespan has been described in detail by prior
research [13], [14], [15], [16].

Significant prior work has demonstrated attacks against the
NTP, e.g., time shifting [2], [17], [11], [18]. A wide-ranging
host of applications and services rely accurate time, from TLS
certificate validation [19], [2] to authentication [2], [20]. It is
well-accepted that inaccurate or incorrect time synchronization
can enable multiple attacks including e.g., denial of service or
incorrect trust calculations.

NTP can also be used as a means for network reflection
and amplification attacks [21], [3], [22], [23], [24], [25] due
to its use of connectionless UDP as its transport-layer protocol.
Certain NTP message types (such as the monlist request,
which induces servers to provide NTP client statistics) have
amplification factors ranging from 100s to 1000s of times
the size of the request. While monlist in particular has
been deprecated since 2014 [26], other NTP queries (such as
version and showpeers) are also well-suited for amplifi-
cation attacks [3].

Rather than developing new attacks, this effort instead
focuses on characterizing the NTP Pool through new mea-
surements and understanding the robustness, resilience, and
independence of its volunteer-operated, distributed network of
NTP servers.

A. The NTP Pool

The NTP Pool is a system to coordinate queries to a
distributed set of volunteer-run NTP servers; in particular, the
NTP Pool itself does not operate NTP servers. Instead, the
NTP Pool provides a public website with information, statis-
tics, and the ability for volunteers to register their own servers.
Servers are assigned to one or more “zones” based on their
geographic location; these zones consist of country codes and
continents, as well as a global “@” zone. The availability and

quality of time provided by participating servers is monitored
by the pool, via a distributed set of dedicated “monitors,” to
form a “score.” The monitoring and scoring algorithm has been
described in detail in prior work [10], [27]. In short, however,
scores are initially set to O and can range from -100 to 20. A
server’s score increases when it responds with accurate time
to a monitor’s queries, and decreases when it is unresponsive
or provides inaccurate time.

The NTP Pool then apportions servers to clients using
the Domain Name System (DNS) based on multiple fac-
tors, including the server’s score, registered “netspeed,” and
geographic zone. The NTP Pool further uses the client’s
geolocation to prefer servers from the same or nearby zones.
Clients from countries with no NTP Pool servers receive
DNS responses with servers from their continent zone. To
ensure high-quality, reliable servers are provided to clients,
only “active” servers — those with a score greater than 10
— are included in responses provided by the NTP Pool.
Server operators can influence the frequency with which their
server (and, hence, the traffic load) is provided by adjusting
their netspeed value. By using hierarchical geographic server
zones, a continuous monitoring and scoring system, and server
administrator query load tuning, the NTP Pool is designed for
dynamic allocation, load-balancing, robustness, and resilience
to failures.

B. Prior Work on The NTP Pool

Prior work has sought to characterize the NTP Pool. Ry-
tilahti et al. [11] scanned the entire IPv4 address space for
responsive NTP hosts, and further used a crawler to repeatedly
query the NTP Pool’s DNS and query the returned NTP
servers. Similarly, the work of Moura et al. subsequently used
the RIPE Atlas infrastructure to issue DNS queries against the
NTP Pool from a wider geographic region, again to discover
NTP Pool servers [9]. These studies used large volumes of
active DNS measurements to indirectly infer properties of
the NTP Pool. Thus, if a participating server is in the pool,
but not served in the DNS (e.g., because it is offline, not
providing incorrect time, or configured to receive no NTP
query load), these DNS-based methods will not discover the
server. In contrast, our approach does not use the DNS, but
rather directly queries the NTP Pool web site to produce more
accurate and complete information, as well as a rich set of
additional data including accounts, scores, and DNS answer
rates crucial to our analysis.

Most closely related to our exploration of the feasibility
of monopoly attacks against the NTP Pool, Perry et al.
demonstrated the potential for malicious time servers to join
the NTP Pool and carry out time shifting attacks by using
large netspeed values [4]. Whereas their approach empirically
determined the number of NTP servers an attacker would need
to impact five large pool zones, our data affords new insights
into the broader feasibility of these attacks and the NTP
Pool’s robustness. In particular, we mathematically deduce the
number of servers required to monopolize the traffic of any
zone — without needing to add servers to the zone a priori.



Measurement Infrastructure

servers
: accounts
: addresses
t! netspeed =

WWW. ntppool org

NTP Pool NTP Clients

NTP

: APl '
: zones =4 4—’ scraper Web _’ E D
vy  scores o w— 2 xxpoolorg” pool.org [ ]

answers

Fig. 1: Methodology: The NTP Pool website maintains statistics and APIs (green box) that we periodically query (blue box) to
exhaustively enumerate participating servers and their properties. We gather multiple longitudinal datasets described in Table II.

Finally, studies have used the NTP Pool as a vehicle to
measure other network properties. For instance, Durairajan et
al. used data collected by NTP Pool server operators to
measure one-way delays at scale on the Internet [28]. Rye
and Levin subsequently used the NTP Pool to collect active
IPv6 addresses, particularly from clients, which are difficult to
discover using active measurements [29]. And Syamkumar et
al. used data collected by NTP Pool server operators to detect
network events, such as route changes or outages [30].

C. Motivation

A key motivation of our work is the widespread use of, and
dependence on, the NTP Pool, effectively rendering it critical
infrastructure. While many desktop and mobile operating
systems utilize different closed NTP servers, e.g., NTP servers
operated by Apple, Google, and Microsoft, a large number of
Internet of Things (IoT) and infrastructure devices utilize the
NTP Pool. We base this assertion on three observations:

o Data from the IPv6 Observatory [29], which collects
IPv6 addresses from NTP Pool clients, supports the NTP
Pool’s use by many embedded Linux and IoT devices.
For example, during the week beginning on April 20,
2025, the IPv6 Observatory was visited by over 5.5M
unique Fritz!Box routers, 1.6M Amazon devices, and
289k Sonos speakers, all identified through their use
of Extended Unique Identifier-64 (EUI-64) addresses in
IPv6, which embed an interface’s Media Access Control
(MAC) address. Of note, end users typically do not
(or cannot) reconfigure the chosen NTP server for such
devices.

o Prior work from Moura et al. [9] examined DNS queries
at root name servers to estimate the popularity of the NTP
Pool, and find that, in their dataset, the NTP Pool receives
90M of the 126M total NTP DNS queries. Thus, the NTP
Pool is the most popular time provider by a large margin.

e As we will show in §V, the DNS “answer” statistics
maintained by the NTP Pool show a global DNS query
rate to the pool of over 100k queries per second. Given
DNS caching, the number of unique clients utilizing the
NTP Pool is orders of magnitude higher.

This large-scale use, combined with the unique volunteer
nature of the NTP Pool implies that traffic capture and time
manipulation attacks would be highly impactful. Our work
represents a comprehensive characterization of the pool’s
robustness to such attacks.

III. METHODOLOGY

Figure 1 provides an overview of our measurement infras-
tructure in relation to the NTP Pool, while Table II summarizes
the data we collect with our infrastructure. Our methodology
is primarily based on: 1) probing APIs of the public NTP
Pool website; 2) a custom NTP Pool website scraper; 3) an
NTP server fingerprinter; and 4) continuous measurements. We
discuss each of these in turn, but first present the threat model.

A. Threat Model

Within the confines of the existing NTP Pool, we consider
an attacker that seeks to capture a preponderance of NTP
traffic in a country or region. The ultimate goal of the attack
could be either passive surveillance and monitoring (e.g.,
collecting live IP addresses [29]), active back-scanning (e.g.,
port scanning live hosts) [31], [32], or time skew (e.g., to
incorrectly influence clients’ notion of time [10]).

We assume the adversary is capable of: 1) setting up
hosts running NTP servers physically in a particular country
or region, e.g., using cloud providers, tunnels, or virtual
private servers; 2) configuring both IPv4 and IPv6 server
reachability; and 3) joining the NTP Pool and accessing its
public services, e.g., by creating accounts, adding servers,
and viewing statistics. However, we assume that the adversary
cannot circumvent the NTP Pool’s access controls, DNS and
load balancing mechanisms, or scoring algorithms. Further, the
adversary cannot control the servers or behavior of other NTP
Pool participants.

B. Historic Score Data

The only dataset we analyze that was not collected using
our measurement infrastructure is the historic per-server score
data. The NTP Pool maintainers archive complete historic
score data within Google’s cloud-based BigQuery, with per-
year tables from 2008 to the present day [33], [34]. These
tables contain approximately 12B rows (~710GB) and include
per-server timestamp and score rows with a distinct server ID
column. Notably, however, this data does not contain the IP
addresses of the servers or any other meta-data. Because of
its longitudinal coverage, we use this historic data to infer
both participating server lifetimes as well as server availability
(fraction of time the server is a member of the pool and has
a score that allows it to participate in serving queries to the
pool).



TABLE I: HTTP and API endpoints provided by https://www.ntppool.org. The server ID is an internal monotonically
increasing integer. By querying the space of server IDs, we obtain all server IPs.

Endpoint Parameters  Response Type  Returns

/scores/{%d} Server ID  HTTP 301 Redirect to /scores/{ip}

/scores/{%s} Server IP HTML Server Info

/scores/{%s}/json Server IP JSON Server Scores
/api/data/server/dns/answers/{%s}  Server IP JSON Per-zone DNS answers that include the server IP
/api/data/zone/counts/{%s} Zone JSON Per-zone server counts and aggregate “netspeed”

C. Scraper

Prior efforts to characterize and understand the NTP
Pool have relied on issuing large numbers of DNS queries
from multiple geographic locations to discover participating
servers [9], [11]. In addition to being inefficient, potentially
inaccurate, and inducing undue operational load on the produc-
tion system, this DNS-based probing approach cannot discover
servers in the pool that are inactive, have a low score, or are
in monitor mode, as these will never be returned in a DNS
response.

In contrast, we discover the ability to exhaustively
enumerate all servers, past and present, active and inactive,
by directly HTTP querying the NTP Pool website. For each
server, the NTP Pool website provides a “score” history
page that plots the accuracy of the timing information from
that server as observed by a network of sentinel monitors.
The public URL to issue an HTTP GET for these server
statistic pages requires the NTP server’s IP address — which
we do not know a priori. However, in examining the NTP
Pool backend infrastructure, we observe that each server is
assigned a monotonically increasing integer identifier. We
then find a URL endpoint that maps (via an HTTP-level
redirection) NTP Pool internal server integer identifiers
to their corresponding IP address. Table I provides the
specific endpoints our scraper and measurement infrastructure
query. For example, to map the server with identifier
59105, we HTTP query: ntppool.org/scores/59105
which returns an HTTP 301 response with the URL:
/scores/2001:470:1£07:¢c21:1::123. Once we
have this ID to IP mapping, we can query the other endpoints
to obtain score and answer data.

We leverage the relatively small and monotonically increas-
ing integer NTP server identifier space to create an NTP Pool
website scraper (Figure 1) to enumerate all NTP Pool servers
and then query for the next unused identifier every 90 minutes
on average. Thus, we discover new servers shortly after they
are added to the system. In addition, we use a separate scraper
to query the website for statistics, scores, and metadata of all
servers every day. The retrieved metadata includes the user
account associated with the server, the country and region
zones served, the server’s score, and the server’s netspeed. We
are also able to detect when servers are deleted. Note that a
server may have a low score, and thus not be included in NTP
Pool responses, but servers are only deleted if a user requests
deletion, or the server is offline or otherwise unresponsive to
NTP requests for an extended period of time.

We began collecting the pool-scrape data in October

2024 and continued collecting through July 2025, representing
approximately 9 months.

D. Netspeed

The NTP Pool management interface allows volunteers to
specify a “netspeed” for each server with discrete values in the
set: 0, 512kbps, 1.5Mbps, 3Mbps, 6Mbps, 12Mbps, 25Mbps,
50Mbps, 100Mbps, 250Mbps, 500Mbps, 1Gbps, 1.5Gbps,
2Gbps, and 3Gbps. The intent of the netspeed setting is
to allow server operators to participate in the pool while
providing a coarse-grained method to control the received
query rate. A common point of confusion on the discussion
boards surrounds how these netspeed settings affect the actual
data rate of received NTP queries.

Despite the data rate (e.g., Mbps) labels for netspeeds,
the setting is instead a relative weighting'. The NTP Pool
determines the aggregate netspeed of all servers actively
participating in the zone and then apportions a relative frac-
tion based on each server’s netspeed. As a result, while the
netspeed will change the received query rate, it may bear no
relationship to the true rate.

Consider, for example, a zone with five total servers: four
servers set to a netspeed of 25Mbps and one server with a
netspeed of 100Mbps. The aggregate netspeed in this hypo-
thetical zone is 200Mbps. Thus, the first four servers will each
receive approximately one eighth (12.5%) of the total query
traffic for the zone while the fifth will receive half (50%).
Of course, this is an approximation as the NTP Pool can only
control how frequently it includes a particular server in a DNS
query for a given zone, but the final traffic rate is proportional.

E. Pool DNS answers

We find an additional NTP Pool web server API endpoint,
“answers,” that takes a server’s IP address as input and
returns a JSON object containing a count of per-zone DNS
responses, i.e., how many times the server was included in
response to a client’s DNS query to the pool for a given
zone. While the JSON does not contain a timestamp, by
querying the API endpoint for 100 different servers every
minute, we experimentally determine that the NTP Pool web
server updates the returned JSON data every 30 minutes.

Therefore, in addition to periodically probing the NTP Pool
web server for servers and accounts, we query this answers
API endpoint for all of the active servers (those with score

IThe NTP Pool server management page states that “this speed does
not mean the wire speed of your server, it’s just a relative value to other
servers.” [35]



TABLE II: Overview of datasets, sources, and tools: we gather and use the first five datasets in this work; the last two datasets

(shaded) represent prior work and are included for comparison.

Dataset Period Source Addresses (v4/v6) Description

bg-scores (§11I-B) 05-Sep-2008 — 01-Jun-2025 BigQuery 39,756 Server scores

pool-scrape (§1II-C) 22-Oct-2024 — 10-Jul-2025 scraper 9,955 /5,725 Servers, accounts, and metadata scraped from public website
pool-answers (§11I-E) 28-Jul-2025 scraper 3,867 / 2,228 Per-server, per-zone DNS response rates

server-fp (§I1I-F) 23-Jul-2025 fingerprinter 3,967 / 2,275 IPv4 and IPv6 aliased servers

ntp-residual (§1II-G) 08-Dec-2024 — 24-Jul-2025 NTP Pool Server | 198,787,734 / 109,930,726 | IPv4 and IPv6 client IPs

Prior Work:
pool-web [8] 10-Jul-2025 \ Web page \ 3,434 / 1,926 \ Aggregate counts published on public web page
deep-dive [9] | 26-Aug-2021 — 31-Aug-2021 | Moura et al. | 3,056 / 1,479 | Discovered via RIPE Atlas active DNS probing

> 10) every 30 minutes over the course of one day on July
28, 2025 to obtain the pool-answers dataset.

F. Server Fingerprinting

A host running an NTP server application may have multiple
physical or virtual network interfaces. These interfaces can
be numbered with one or more IPv4 and IPv6 addresses.
Whereas a single NTP application may listen and respond to
NTP queries sent to different addresses, the pool has a strict
one-to-one mapping between an address and a server, i.e., a
“server” is an instance of an NTP server daemon bound to a
single IP address. We term two IP addresses with the same
NTP server application as “NTP aliases.”

The NTP protocol defines a mode for control messages [1].
These control messages permit management and diagnosis, for
instance “read variables” [36]. However, for privacy and secu-
rity reasons, this functionality may be disabled or blocked by
the network, especially for remote connections. To understand
the ability to leverage NTP control messages for fingerprinting,
we queried IPv6 addresses active in the pool in May, 2025.
Of the 1,658 IPv6 NTP servers in the pool that respond to
an NTP time client query, only 28 (1.7%) also respond to a
read variables request. Manual investigation of the responses
indicates that these few responding servers are running quite
old versions of NTP server implementations.

We therefore do not use control messages to find aliases, but
rather implement active server fingerprinting starting with the
open-source “ntpdedup” code [37]. (We forked this codebase
which we keep anonymous for submission, but will make
public and will contribute our modifications back via merge
requests.)

Instead, we leverage unique features and fields of stan-
dard NTP time (mode 4) response packets to provide a
fingerprint and identify aliases. In particular, our modified
version of the fingerprinting tool ntpdedup collects several
NTP time response fields that identify the server’s version,
time source, the server’s last synchronization time, and its
precision and maximum allowable polling interval. The time
source data includes the reference identifier (“refid”), stratum,
and dispersion. The refid is a 32-bit field that identifies the
reference clock for stratum-1 servers (analyzed in §IV-B) or
the synchronization peer IP address for stratum-2 and higher
servers. The stratum field is a single byte; we identify 7 unique
stratum values among NTP servers in our data. Similarly,
polling interval and precision fields are each one byte. While

there are only 11 unique poll and 22 unique precision values
within our data, these fields are static and provide course-
grained differentiation to identify clear non-aliases.

The “reference timestamp” contains the time since the
system’s clock was last set or corrected and is represented
in “NTP timestamp format:” seconds since January 1, 1900
with 32 bits encoding the integer component of seconds and
32 additional bits encoding the fractional seconds. While NTP
server applications synchronize time, their individual internal
update intervals are not — hence the precision of this field
affords strong discrimination power and, naturally, is the field
that exhibits the largest number of unique values in our data.

When these fields are collected from a server over a short
time interval, they will be consistent, even across different
aliases of the same physical server. Thus, we can identify po-
tential aliases among NTP Pool servers by comparing whether
these values are equal across multiple server responses.

Our alias resolution technique can suffer from both false
positives and false negatives. Two non-alias server IP ad-
dresses are more likely to be incorrectly identified as aliases
if they synchronize with the same upstream NTP server; this
problem is particularly acute for stratum 1 NTP servers, which
synchronize time with a limited number of stratum 0 time
sources (e.g., GPS) and therefore have a small set of refids. We
examine the distribution of stratum 1 server refids in §IV-B.
For this reason, and to focus on alias precision rather than
recall, we do not attempt to de-alias 830 active stratum 1
NTP servers. Conversely, two server IP addresses may be
erroneously misidentified as non-aliases. For example, in the
event that an NTP server resynchronizes its time between
queries to two IP addresses assigned to it, its reference
timestamp would differ in the two NTP responses. We use
ground-truth servers to validate our fingerprinting method in
§III-H and further use account owner and ASN as proxies to
evaluate the discovered aliases across the entire pool in §V-A.

Other potential NTP protocol features are available for de-
aliasing, such as the root delay and root dispersion; however,
these can vary significantly between probes and cause false
negatives. Similarly, IP-layer features such as IPv4 TTL and
DSCP, and IPv6 hop limit and traffic class, can provide intra-
protocol alias hints, but are too unreliable as discriminators,
especially for identifying cross-protocol aliases. We added
collection and correlation of these weak identifiers, as well
as the server’s polling interval, to ntpdedup, but do not use
them by default. To obtain a weaker alias inference for stratum



1 servers, we could omit the refid field as part of the alias
determination. However, we opted to exclude stratum 1 servers
from alias consideration rather than include false positives.

G. Residual NTP Client Traffic

The NTP Pool warns prospective operators that running an
NTP server as part of the pool is a long-term commitment.
The pool further indicates that a server operator may continue
to receive NTP traffic to their servers “weeks, months, or even
YEARS before the traffic goes completely away” due to NTP
server IP address caching [38]. This means that an adversary
that joins the NTP Pool to receive potential victims in the
form of NTP clients may be able to continue to attack those
victims (e.g., by shifting their clocks) even if detected and
evicted from the pool.

In order to understand the quantity and duration of client
requests to a pool server after it has been evicted, we conduct
some small-scale experiments with an NTP server under our
control. We add and remove this server from the NTP Pool,
but continue to monitor received traffic levels for months after
it was evicted. This helps us understand how long and how
many clients may be at risk even in the event that a malicious
NTP server is removed from the NTP Pool.

H. Validation

For the purposes of validation, we configured eight virtual
private servers (VPS) in various geographic regions. We added
both the IPv4 and IPv6 address of one of the VPS to the
NTP Pool. For the remaining seven VPSes, we configured
two IPv6 addresses each and added them to the NTP Pool.
Thus, we added a total of 16 servers to the NTP Pool. We
then examined the operation of our scraper and measurement
infrastructure by validating: 1) presence of the server in our
database; 2) correct zones and meta-data; and 3) the inferred
server age, i.e., the duration of time it was participating in
the NTP Pool. For all 16 servers, across these three metrics,
we achieve perfect accuracy, providing an additional degree
of confidence in the correctness and completeness of the data
we gather.

We next evaluated the accuracy of our NTP server finger-
printing code in identifying NTP aliases. In addition to the
eight different pairs of aliases in our ground truth set of servers
(one mixed IPv4/IPv6 alias, and seven IPv6 pair aliases), we
selected 100 active servers with a score > 10 at random.
We then used our fingerprinter to probe all 116 addresses.
Within this sample experiment, our alias detection correctly
identified all eight aliases and did not produce any additional
false positive aliases.

On one of our ground truth VPSes, we then added 10
different IPv6 addresses to a single interface and again ran
our fingerprinting code. The fingerprinter correctly identified
this cluster of 10 addresses as belonging to a single server.
Finally, we experimented with running stock configurations of
two popular NTP server applications, ntpd and chronyd,
both running on the same physical VPS, but with nt pd bound
and listening to two different IPv6 addresses and chronyd

TABLE III: NTP Pool Summary Statistics
dataset) as of July 10, 2025

(pool-scrape

IPv4 | IPv6
Servers (IP addresses) | 9,955 | 5,725
Autonomous Systems 2,107 841

Zones 29 29

Active Servers 3,967 | 2,275
Servers w/ Accounts 4,277 2,948
Stratum 1 Servers 548 282
Monitor-only Servers 1,672 1,007
Anycast Servers 7 5

bound to a third address. In this instance, our fingerprinter
identified one cluster of two addresses and one cluster of
a single address, indicating that NTP server implementation
plays a role in cluster determination.

1. Limitations

While we believe our dataset represents the most accurate
characterization of the NTP Pool to-date, we note several
limitations of our methodology. First, the public webpages
for each server do not contain account names or organization
information in cases where the user has configured their ac-
count to be private. While we discover 1,332 unique accounts
and 15,680 servers, we are only able to infer the accounts
responsible for 7,225 (46%) of the servers. Thus, our account
visibility is limited.

Second, while the BigQuery data include historic scores
dating back to 2008, this data can only be used for inferring
server lifetimes. The remainder of our analyses are based on
the scraping and measurement infrastructure which includes
only 9 months of longitudinal data.

Finally, while we perform multiple experiments to validate
the accuracy of our fingerprinting, we note that corner cases
may exist that lead to false positive or false negative aliases.
For instance, in the case that two different NTP server appli-
cation implementations are running on different interfaces of
the same physical machine, our fingerprinter cannot ascertain
that these are aliases. However, we believe such instances to
be uncommon.

IV. PoOL CHARACTERIZATION

Because NTP Pool membership requires only that a vol-
unteer have a publicly accessible NTP server, many types
of individuals, institutions, and organizations might consider
adding their server. To characterize the types of servers and
server operators that make up the NTP Pool, we analyze both
current and historical IP addresses that comprise the NTP Pool
as well as the accounts linked to those IPs over several axes.

A. Server Lifetimes

We first consider the “lifetime” of the servers in the pool and
analyze the bg-scores data covering 17 years and nearly
40,000 servers. Figure 2 shows the cumulative fraction of
servers as a function of their lifetime, as inferred by the pres-
ence of scores in the dataset. We see that the median lifetime
is approximately one year, while more than 10% of servers
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Fig. 3: Distribution of the netspeeds of the 5,333 servers with
nonzero netspeed in the NTP Pool. Another 57,049 servers
have zero netspeeds, either because they are set to “monitor-
only” or have been deleted.

participate for less than 10 days. Conversely, approximately
20% of the servers have been participating in the pool for 3
or more years. Based on this analysis, the pool might consider
prioritizing returning servers with higher uptimes to improve
the pool stability, as well as mitigate short-lived or ephemeral
attacks.

B. Clock sources

As described in §II, each NTP server synchronizes with
servers at a lower stratum and serves servers with higher
stratum. Within our data, we find 830 stratum 1 servers, 548
of which are IPv4 and 282 IPv6. Stratum 1 servers depend on
stratum O high-precision time sources for their reference clock.
Per the NTP protocol, the reference identifier (“refid”’) in NTP
packets from stratum 1 servers encode their clock source in
ASCII [39]. Table IV provides the distribution of the top 10
most common reference clock identifiers. Global Navigation
Satellite System (GNSS) sources are by far the most common,
including the PPS, GPS, and GNSS identifiers. However, there

TABLE IV: Top 10 Most Common NTP Pool Stratum 1 Server
Reference Clocks

Clock IPv4 Count | IPv6 Count
PPS 200 (36.5%) | 105 (37.2%)
GPS 151 (27.6%) 63 (22.3%)
GNSS 25 (4.6%) 16 (5.7%)
MRS 19 (3.5%) 10 (3.5%)
PPSO 18 (3.3%) 14 (5.0%)
MBGh 15 (2.7%) 0 (0.0%)
PTPO 9 (1.6%) 14 (5.0%)
PHCO 6 (1.1%) 2 (0.7%)
kPPS 6 (1.1%) 3 (1.1%)
DCF 5 (0.9%) 2 (0.7%)

is a large range of identifiers with 59 unique refids across all
servers, many of which are not standardized.

The small number of false positives we find in our NTP
server dealiasing (§III-F) are due to collisions among stratum
1 servers caused by the limited number of refids. We therefore
exclude stratum 1 servers from the dealiasing component of
our analysis.

C. Netspeeds

The “counts” API endpoint (see Table I) provides a direct
means to query the pool on a per-zone basis for the count
of active IPv4 and IPv6 servers, as well as the aggregate
netspeed. Using our ground-truth servers in sparsely populated
zones, we modified the server’s netspeed and experimentally
verified the effect on the reported aggregate netspeed, as well
as the received query volume.

Figure 3 displays a CDF of the 5,333 NTP Pool servers
with nonzero netspeed. More than half of all NTP servers
have a netspeed of 500 Mbps or less, which may permit an
attacker with a significantly higher rate to dominate a zone’s
NTP queries (§VI).

D. Traffic Load

Our pool-answers dataset allows us to compute the
aggregate rate of DNS responses the NTP Pool returns for
different zones. Note that this rate is distinct from the number
of NTP queries arriving at a pool server or the servers within a
zone due to DNS caching effects. Thus, the rates we compute
are a strict lower bound of the total number of actual NTP
queries.

Figure 4a displays the number of servers participating in
each pool zone for both IPv4 and IPv6. Note that a server may
belong to more than one zone, hence the total sum of counts in
the plot is larger than the number of active servers. Consistent
with prior work, we also find that the distribution of servers
across zones is highly skewed and that many zones remain
underserved. As a result, the global “@” zone experiences a
very high query rate and the operators have sought to include
anycast servers in the pool. We analyze anycast servers in the
next subsection.

Figure 4b provides the distribution of inferred DNS response
rates per zone, while Table V shows the number of servers
for the top 10 highest DNS answer rate zones, where “@” is



TABLE V: NTP Pool DNS answer aggregate rates across the
top 10 zones. While the rates vary significantly by zone, we
infer a large aggregate system rate of over 100k DNS queries
/ second (each DNS response contains up to 4 NTP servers).

IPv4 IPv6
Zone | Servers | Rate (servers/sec) | Servers | Rate (servers/sec)
@ 3,211 194,653 1,941 17,201
us 677 54,924 428 4,804
br 29 15,608 20 1,454
de 562 8,599 496 914
cn 34 8,238 43 768
uk 216 7,235 122 611
ru 404 6,917 77 509
in 45 6,244 29 658
fr 219 5,122 138 487
ca 119 4,473 71 402
[ Total [ 3,867 | 389,257 [ 2228 ] 34,399 |

the global zone. We estimate that the entire pool system is
returning approximately 390k and 34k IPv4 and IPv6 servers
in DNS responses per second. Since the pool returns up to
four addresses per DNS query, this equates to a global rate of
approximately 106k queries per second.

We see an order of magnitude higher rate for IPv4 as
compared to IPv6, likely due to the fact that the pool will
only return a DNS response containing an IPv6 server if the
“2.xxx.pool.ntp.org” name is queried. We see that the global
zone and the United States and Brazil zones account for
approximately 68% of all DNS answers.

E. Anycast

Among the servers we discover in pool-scrape, we
find 12 registered in two or more different continent zones.
Seven of these servers have IPv4 addresses, while five have
IPv6 addresses. Two of these servers are located in Tiirkiye
and are in both the Asia and Europe continent zones, which
is consistent with Tiirkiye’s physical location. Four servers,
consisting of two IPv4/IPv6 aliases belong to the same account
— a regional ISP. The remaining six servers are all IP anycast,
as determined by looking up their addresses in the MAnycast
anycast census [40]. Four of these anycast servers belong to
Cloudflare, while two are within a Dutch academic network.

We again use the pool—-answers dataset to examine the
rate of NTP DNS answers for these multiple continent anycast
servers. We find that the IPv4 anycast servers are returned
at a rate of 41.8k DNS responses per second (approximately
11% of the global traffic), while the five IPv6 anycast servers
are returned at a rate of 4.0k DNS responses per second
(approximately 12% of the global traffic). In investigating
these anycast servers, we find an online discussion including
the pool operators who emphasize that these servers help
provide service for zones with few or no servers [41]. Thus,
this small set of servers are disproportionately important in
the pool.
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V. SERVER INDEPENDENCE

In this section, we analyze the structure and composition
of the NTP Pool as inferred from our measurements. The
primary contribution of this analysis is to demonstrate the
ways that the seemingly large number of servers within the
pool are not independent. In other words, we find that many
of the servers have correlated behaviors and share fate in the
event of a failure. To better understand correlations between
servers and how servers may share fate, we employ a series of
independence reduction steps using tools and data described
in the previous sections.

As illustrated in Figure 5, we begin with the full set of
servers from the pool-scrape dataset. We then consider
the snapshot of 6,242 servers that had a score > 10 on
July 10, 2025 and count this set as the full set (100%) of
servers available on that day. We then use our fingerprinting
method to dealias these to unique hosts (§V-A). Next, we
examine account uniqueness in detail to further winnow the set
(§V-B). Finally, we examine the server network connectivity
and Autonomous System (AS) Numbers (ASNs) (§V-C). As
we will show, while our dataset includes 6,242 active pool
servers, only 1,227 of these are fully independent servers — a
reduction of more than 80%.

A. Server Aliases

Recall that a “server” registered within the pool is identified
by its IP address. Thus, the IPv4 address and the IPv6 address
of a server may correspond to the same physical machine, or
the same physical machine may have multiple IP addresses
within the same protocol family assigned to its interfaces. In
this subsection, we turn to identifying these “NTP aliases”
using our fingerprinting method of §III-F.

We define “NTP aliases” as two IP addresses that respond to
NTP queries from the same NTP daemon running on a single
host. Let an “NTP alias cluster” be the set of IP addresses
that are NTP aliases, and the “cluster size” be the number of
addresses in the alias set. Let a “singleton cluster” be a single
IP address with no identified aliases, i.e., a cluster with size
one. Last, we refer to the cluster “covering prefix length” as
the longest IPv4 or IPv6 network prefix mask such that the
prefix encompasses all IPv4 or IPv6 addresses within the set.
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Fig. 6: NTP Alias Clusters: while 69% of addresses belong to
a singleton cluster, there are a significant number of clustered
IPv4 and IPv6 pairs, and there exist large IPv6 clusters.

For example, if an alias cluster contains three IPv4 addresses:
1.2.1.10,1.2.3.200, 1.2.14.30, the covering prefix
is 1.2.0.0/20 and the covering prefix length is 20.

We probed 6,242 servers (3,967 IPv4 and 2,275 IPv6) within
the pool—-scrape data with score > 10 on July 23, 2025. Of
these, a total of 5,687 responded (91.1%) to our fingerprinter.
We identify 4,123 NTP alias clusters, 2,860 (69%) of which
are singletons (i.e., a cluster with a single address and no
aliases). We exclude from analysis 74 clusters containing one
or more stratum 1 servers (a total of 160 addresses).

Figure 6 displays the cumulative fraction of clusters as a
function of their size, both for all clusters and IPv6-only
clusters. 29% of the clusters are of size two, and 90% of these
consist of an IPv4 and IPv6 pair. However, the distribution has
a long tail; for instance we find larger IPv6 clusters containing
as many as 13 addresses.
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Fig. 7: NTP Cluster Covering Length (Clusters of size > 2):
50% of the addresses in IPv6 alias clusters are within the same
164.

We then examine cluster covering sizes; Figure 7 displays
the CDF of alias clusters as a function of their cover size for
IPv4 and IPv6 (note, it is not possible to obtain a prefix that
covers the mixed protocol clusters). Approximately 40% of
IPv4 clusters have a covering prefix length of /20 or longer
(more specific), while the 50% of IPv6 clusters have a covering
prefix length of /64 or longer.

While this largely maps to our intuition that aliases in
the same address family should be numerically close, as
they represent addresses on the same host, the smaller prefix
covering lengths were unexpected. To better understand these
results and measure inter-cluster consistency, we examined
both the account owner and the ASN to which the servers
in the clusters belong.

Among the 1,264 non-singleton clusters, we find that, for all
servers within the cluster, 1,160 have consistent, i.e., matching,
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account owners and ASNs. A further 90 have consistent
account owners, but inconsistent ASNs, and 7 have match-
ing ASNs but inconsistent account owners. Only 6 clusters
have both inconsistent ASNs and account owners. Thus, we
believe our cluster inferences to be largely correct. Among
the inconsistent ASNs, we find that some providers have
two different ASNs for their IPv4 and IPv6 networks. Even
within the same ASNSs, that network may own and advertise
multiple different prefixes that are not numerically close in the
address space. Finally, we find examples of IPv6 tunnels from
third-party providers that account for some of the inconsistent
ASNs as well as small covering prefix lengths. Among the
inconsistent account owners, we discover instances of accounts
with different names that are, however, clearly related. For
instance, one account uses an individual’s full name, while a
second account uses the individual’s abbreviated name.

B. Server Control

While the bg-scores dataset provides an extended his-
torical view, the data only includes server IDs and scores. We
next turn to our gathered pool-scrape dataset to examine
accounts registering and controlling the participating servers.
Figure 8 displays the cumulative distribution of accounts as
a function of the number of servers they control, broken into
IPv4 and IPv6 servers.

While the median number of servers per account is approx-
imately two, the distribution has a long tail. In particular, we
find one account that controls over 340 servers, while the top
10 accounts control nearly 1,300 servers in total — a significant
overall fraction of the entire pool’s active servers. Note that
this concentration is a lower bound; as noted in the limitations
($III-I), we are unable to map anonymous servers to their
account owners.

C. Server Networks

We next consider the networks of the participating pool
servers by mapping the IP addresses of all of the servers
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TABLE VI: NTP Pool Server Classification: the majority of
servers in the pool are within cloud hosting or service provider
infrastructures.

AS Type Count %
Hosting 8,500 | 54.2
ISP 6,036 | 38.5
Education 476 3.0
Business 395 2.5
Unknown 189 1.2
Government 84 0.5
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Fig. 9: Server AS distribution: the majority of servers are
located within a small number of networks, while IPv6 does

not substantially contribute to the network diversity.

we discover in pool-scraper to the Autonomous System
(AS) to which they belong. For this, we utilize a complete
Routeviews BGP table snapshot from July 23, 2025 [42]
and perform longest prefix matching. Figure 9 shows the
cumulative distribution of servers as a function of the total
number of ASes to which they belong. We further separate
the analysis between IPv4 and IPv6 servers, as well as those
servers that are active (score > 10) or inactive. We find that
the servers are concentrated in a small number of networks,
with 50% of the servers belonging to fewer than 100 ASes.
Restricting the scope to just those servers that are active
reduces the overall ASN diversity. Further, the addition of the
IPv6 servers does not add additional AS diversity, as evidenced
by the intersection of the IPv4 and IPv6 lines.

We used IPinfo.io [43] to categorize the types of ASes that
the NTP Pool’s servers are located within. Of the 15k total
servers our enumeration discovered (§III-C), slightly more
than half (8,500, 54%) were located in cloud hosting providers.
Over 800 hosting companies are represented in this count, but
the NTP server IPs in cloud providers are disproportionately
concentrated in only a few providers. Hetzner has hosted 1,049
unique NTP IP addresses, or nearly 7% of all NTP Pool IP
addresses. Similarly, OVH hosts or has hosted nearly 5% (732)
of all NTP Pool IPs; Vultr, DigitalOcean, Akamai, Oracle and
Amazon all contribute more than an additional 1% each as
well.



An additional 6,036 (38%) NTP server IPs were labeled
with IPInfo’s “ISP” category, which encompasses both large
transit providers like Hurricane Electric, but also customer
ASes like Comcast, KPN, and Vodafone. Of these, Hurricane
Electric is most common (397 NTP Pool IPs), with Comcast
(331) and Deutsche Telekom (237) rounding out the top three.

The remaining 8% of NTP Pool server IPs belong to
educational networks (476), businesses (395) such as Alibaba,
Apple, and Facebook, and governmental networks (84) such as
Hungary’s KIFU Governmental Information Technology De-
velopment Agency and the US National Institute of Standards
and Technology (NIST). One-hundred eighty-nine server IPs
could not be categorized by IPInfo.

These results indicate that NTP Pool servers are being
run predominantly in cloud hosting networks. While the high
availability of most cloud providers might be viewed as a boon
to the NTP Pool’s resilience, the fact that large swathes of
server IPs are found in only a small number of ASes indicates
that the NTP Pool relies heavily on a few underlying providers.

Finally, note that because most of the 15k NTP Pool
addresses are no longer active NTP servers, it is possible that
the IP addresses formerly in the NTP Pool have since been
reassigned to a different AS. This might confound our AS
type analysis if the new AS is of a different type. However,
we believe that this type of error is relatively uncommon and
does not meaningfully affect the overall distribution of NTP
Pool server ASes.

D. IPv6 Servers

Next, we examine the IPv6 servers within the pool, their
connectivity, and inferences we can make from the addresses.
First, we note that one method for obtaining IPv6 connectivity
in the absence of native IPv6 is to utilize an IPv6-in-IPv4 tun-
nel, and a popular service provider of this is Hurricane Elec-
tric’s “Tunnel Broker” [44]. We identify Hurricane Electric
tunnels via their registered IPv6 prefix of 2001:470::/32.
A total of 337 servers are within this prefix and likely
connected via this tunnel broker.

Next, we use the addr6 tool to characterize the interface
identifiers (IIDs) of the IPv6 server addresses. Table VII shows
the distribution of IIDs, across both active (score > 10)
and inactive IPv6 servers. Approximately 5% of the servers
use EUI-64 and embed their interface’s MAC address, while
over 20% have random, Privacy Extension (PE) addresses.
Approximately 50% of the addresses are “low-byte,” where
the most significant bytes of the IID are zero indicating that
the address was likely manually configured.

PE and EUI-64 addresses are more typical of client hosts,
whereas low-byte and embedded are more typical of long-lived
infrastructure hosts. Interestingly, the active servers are more
likely to use a low-byte address, while the inactive servers
are more likely to use PE and EUI-64. However, server AS-
specific nuances are at play here, as well: for instance, 169 of
205 (82%) of the hosting provider Vultr’s (AS20473) IPv6 1P
addresses are EUI-64. On the other hand, O of the 89 Ionos
(AS8560) IPv6 IP addresses are EUI-64.
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TABLE VII: Pool IPv6 Server Address IID Categorization:
Low score servers are more likely to use EUI64 and Privacy
Extension (PE) addresses.

Type All | score>10 | score<10
Low-Byte 48.1% 50.7% 46.5%
Embed-I1Pv4 8.2% 8.5% 8.1%
Embed-port 8.8% 12.0% 6.8%
EUI64 5.4% 3.1% 6.8%
PE 21.0% 16.7% 23.7%
Other 8.5% 9.0% 8.1%

VI. POOL MONOPOLIZATION

The canonical NTP Pool definition of a “server” is an IP
address. A single physical machine may have multiple network
interfaces, both physical and virtual, and may have multiple
IP addresses assigned to an interface. Thus, there is a many-
to-one mapping of NTP Pool server IP addresses to hosts. For
example, an NTP host may have a single interface with one
IPv4 address and two IPv6 addresses assigned to it — if the
operator of this host registers all three addresses in the NTP
Pool, the NTP Pool sees these as three servers.

A. Monitor Only Mode

Of note, one of the netspeed rates is zero, which corresponds
to a “monitor only” mode. In this mode, the server is a member
of the pool, but will not be included in any DNS responses
(and, hence, should not receive any client NTP queries as a
result of the pool). However, monitor only mode servers are
queried by the pool monitors to determine the quality of time
they are providing.

The IP addresses of the pool’s monitoring infrastructure
are not published. However, as described in prior works [10],
monitor only mode permits a server to readily determine the
pool’s current monitors. With knowledge of the monitors, a
malicious server can selectively respond, providing good time
to the pool monitors, while sending a different time to other
clients, e.g., as a part of a time skew attack.

Our scraper finds all instances of servers with a netspeed
of zero. We find that 2,679 of the 15,680 servers (17.1%) in
our dataset are operating in monitor only mode. Among these,
1,672 are IPv4 servers (62.4%) while 1,007 are IPv6 servers
(37.6%). While these monitor only mode servers may be
innocuous, adopting prior recommendations to use ephemeral
addresses for the monitors is necessary to defend against
attacks that rely on discovering the monitors.

B. Residual Traffic

Our work demonstrates that an attacker need not even keep
their server active in the NTP Pool to mount some attacks
against NTP clients. The NTP Pool indicates that running
an NTP server is a long-term commitment and that traffic
may persist long after a server’s removal from the pool. To
understand the contours of this “residual” NTP traffic after
a server has been removed from the pool, we provisioned a
new, dual-stacked NTP server in a US cloud hosting provider.
Figure 10 depicts the course of our experiment, displaying the
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total number of IPv4/IPv6 NTP requests and number of unique
IPv4/IPv6 clients in per-day bins.

Before adding our NTP server to the NTP Pool, it received
some intermittent NTP scanning on IPv4. Several days after
configuring our NTP server, we added it to the NTP Pool
(time A). Our server quickly reached a steady state rate of
IPv4 and IPv6 NTP requests (~350M IPv4/7M IPv6 requests
per day). At time B, we scheduled our server for removal from
the NTP Pool via the NTP Pool’s web interface. Although the
deletion date was set four days in the future, it immediately
began receiving fewer NTP requests. At time C, we canceled
the impending deletion for our server. It soon returned to the
steady state rate of NTP requests. We again scheduled our NTP
server for deletion at time D, this time with a deletion date of
two weeks in the future (time E). At time E, our server was
no longer associated with the NTP Pool system, but continued
to receive a reduced steady state number of NTP requests over
the course of the next month (~25M IPv4/200k IPv6). This is
likely due to NTP clients that had obtained our server’s address
continuing to keep it cached for unexpectedly long periods
of time. Because our server still served accurate time, these
clients were unaware of the server’s removal from the NTP
Pool. Finally, at time F, we stopped our NTP daemon. This
caused another significant decrease in the number of requests
and clients.

Our results show that many clients will cache an NTP
server’s IP address and continue to use the server for time
synchronization even months after removal from the NTP
Pool. Continuing to provide time suffices for hundreds of
thousands of clients to keep using our NTP server. This fact
enables an attacker interested in e.g., skewing the time of their
victims, to do so days or weeks after they are no longer being
monitored by the NTP Pool’s monitors.
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C. Monopolization Attack

Finally, we consider the power of an informed adversary
to execute a monopolization attack. Prior work also observed
that some zones are well populated, while others contain few
servers — as a result, an adversarial node could join and
potentially “take over” these zones [4], [9]. In particular, Perry
et al. empirically determined the number of NTP servers an
attacker would need to contribute to five large pool zones (US,
CA, UK, DE, and FR) to reach 50% of the total traffic for those
zones [4]. In these zones, they discovered that an adversary
need contribute 50-250 servers to reach the 50% threshold. In
contrast, we use the computed netspeed values derived from
the “counts” API endpoint (§III-D) to mathematically deduce
the number of servers required to monopolize the traffic of any
zone — without needing to add servers to the zone a priori.

More precisely, for a given country or zone, let n represent
the current aggregate netspeed as gathered via the NTP Pool
API and m be the maximum possible netspeed of any indi-
vidual server; currently m = 3000000. Assuming an attack to
capture a fraction f of total NTP queries, then the number of
attack servers S required is:

il
m(1—J)

We posit an adversary that wishes to receive at least half
of the traffic for a particular country, i.e., contribute at least
half of the aggregate netspeed. Further, we assume that the
adversary sets their netspeed to the maximum possible speed
(3Gbps). Figure 11 displays, across all country zones, the
number of servers the adversary would require to capture
half of the traffic. More than half of the countries would be
compromised in this fashion by a single attacking server, while
the next 40% of countries would require only 10 attack servers.

We conclude that the per-zone robustness to such attacks
is relatively low for 90% of all countries. Further, an attacker
with the ability to create IPv6 aliases can today effectively
create an arbitrary number of servers to perform the traffic
monopolization attack on any country.

(D

D. Monopolization Attack in Practice

Last, we execute a limited version of the monopolization
attack in practice to demonstrate its feasibility in the wild, as
well as to validate our findings. Note that while we “attack”
the zone, all of the servers we use in the experiment return
good, valid time — hence, we did not disrupt the NTP Pool, its
clients, or any host’s notion of time. Instead, we demonstrate
the ability to gain the preponderance of traffic within a zone
via a capacity informed adversary.

We performed our experiment on August 5, 2025. We
elected to target the .hu zone (Hungary) as it contained six
IPv6 active (score > 10) servers. To understand our effect on
clients within the zone, we examine both the “counts” and
the “answers” pool API endpoints (Table I). Recall that the
“answers” endpoint reports the total count of times that each
server was included in DNS answers — thereby allowing us to
observe how the pool shifts traffic.
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As a baseline, prior to the attack, we observe that the zone
has a combined reported aggregate netspeed of 4.101Gbps.
Among the six participating servers, four of the servers were
apportioned for 24.4% of the DNS responses each (~71,000
answers per hour), one server apportioned 2.4% (~13,600
answers per hour) and one server apportioned less than 0.1%
(134 responses per hour).

We then configured and added two IPv6 servers in the . hu
zone to mimic a monopoly attack. Each attacking server was
set to the maximum netspeed of 3Gbps. After approximately
one day, we re-examined the distribution of netspeed and DNS
answer counts. The two attack servers were each apportioned
29.7% of the netspeed and were included in ~61,000 DNS
answers per hour. The previous six servers went down to 9.9%
for four (~36,000 answers per hour), 1.0% for one (~4,500
answers per hour), and almost 0% (45 answers per hour)
for the last. By DNS answer count, the attack servers were
each included in 23.4% of the total DNS answers within the
period, for a total of 46.8%. Through manual investigation,
we find that this answer fraction was slightly lower than
expected as the two servers are also included in the global and
continent zones, thereby lowering their overall contribution to
the country zone. However, this small experiment validates the
ability for a weak adversary to obtain a large fraction of the
total country’s pool query traffic with only minimal resources
(two servers in-country). This problem is particularly acute
in IPv6, as obtaining large quantities of IPv6 addresses to
volunteer as NTP servers is trivial (some VPS providers assign
as much as /64 prefixes to individual servers).

VII. CONCLUSIONS

g In this work, we take a fresh look at the NTP Pool — a
volunteer driven and widely used NTP infrastructure, by gath-
ering more complete and rich data than previously possible.
By analyzing aliases, accounts, and network connectivity, we
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find that only approximately 20% of the participating servers
are truly independent, and that the NTP Pool is less robust
than previously believed. We then examine monopoly attacks,
wherein the adversary captures the preponderance of NTP
traffic in a particular country or region, and show that most
zones in the pool are readily vulnerable to such attacks by a
capacity informed adversary.

Our results suggest that the pool should consider longevity
and reputation, as well as server independence, in the scoring
algorithm. As a first step, the pool’s backend DNS server
selection algorithm could be modified to consider the account
owner, protocol family, lifetime, and ASN in its decision
process. We have shared our findings and recommendations
with the NTP Pool operators.

VIII. ETHICS

Our measurements require continued periodic polling of
the NTP Pool website, including both an API end-point and
per-server status web pages that we scrape. We reviewed our
web scraping methodology with our institute’s digital librarian
who provided several guiding principles: 1. scrape only public
data; 2. ensure data is not covered by copyright; 3. obey
any terms of service; 4. obey any rules provided to scrapers
via robots.txt; 5. use the minimal query load possible; 6. use
APIs when available; and 7. do not redistribute the data. We
followed these principles and note that the NTP Pool website is
publicly available, does not contain any personally identifiable
information or information on individuals and is not covered
by copyright. Further, we follow the terms of service and the
robots.txt rules, and the API for data available via an API.

The website primarily provides statistics and is decoupled
from the operation of the pool’s time service — i.e., if the
website were to fail, the pool’s DNS and NTP servers would
continue to operate and provide time. We followed estab-
lished best practices for ethical network measurements and
minimized instantaneous load or any potential service impact
on the website by querying for new servers on average once
every 90 minutes and gathering updated statistics on existing
servers only once a day, where we wait an average of 5 seconds
between any two queries.

Because our findings have potential security implications
for the pool, we do not make our complete dataset publicly
available and have shared our findings with the NTP Pool
project operators such that they can make informed decisions
on improving the project’s resilience.
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