
Hiding an Ear in Plain Sight:
On the Practicality and Implications of Acoustic
Eavesdropping with Telecom Fiber Optic Cables

Youqian Zhang∗§, Zheng Fang∗§, Huan Wu∗‡�, Sze Yiu Chau†, Chao Lu∗, and Xiapu Luo∗�
∗The Hong Kong Polytechnic University †The Chinese University of Hong Kong

‡ Technological and Higher Education Institute of Hong Kong

Abstract—Optical fibers are widely regarded as reliable com-
munication channels due to their resistance to external interfer-
ence and low signal loss. This paper demonstrates a critical side
channel within telecommunication optical fiber that allows for
acoustic eavesdropping. By exploiting the sensitivity of optical
fibers to acoustic vibrations, attackers can remotely monitor
sound-induced deformations in the fiber structure and further
recover information from the original sound waves.

This issue becomes particularly concerning with the prolif-
eration of Fiber-to-the-Home (FTTH) installations in modern
buildings. Attackers with access to one end of an optical fiber can
use commercially available Distributed Acoustic Sensing (DAS)
systems to tap into the private environment surrounding the other
end. However, because the optical fiber alone is not sensitive
enough to airborne sound, we introduce a “Sensory Receptor”
that improves acoustic capture. Our results demonstrate the
ability to recover critical information, such as human activities,
indoor localization, and conversation contents, raising important
privacy concerns for fiber-optic communication networks.

I. INTRODUCTION

An optical fiber, a flexible, transparent medium made from
glass or plastic, is widely known for its ability to transmit light
across long distances with minimal loss. It has revolutionized
modern communications, enabling rapid data transmission
over extended ranges, and now forming the backbone of
high-speed internet, connecting regions, and continents across
long distances [1]. Unlike electrical cables, which can emit
radio-frequency (RF) signals that might be intercepted (e.g.,
TEMPEST attacks [2], [3] and crosstalks [4], [5]), optical
fibers do not produce any RF emissions, thus making people
believe that optical fibers are inherently more reliable trans-
mission medium that poses fewer side-channel risks than their
electrical counterparts [6], [7].

This study will challenge the assumption by showing a
critical privacy problem within optical fibers that can be ex-
ploited to eavesdrop on personal information, including human
activities and private conversations. The inherent sensitivity of
optical fibers to external vibrations [8] provides a potential
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attack surface: Sound waves could cause tiny deformations in
the optical fiber’s structure; these deformations further result
in slight phase shifts in the laser signals transmitted back and
forth through the optical fiber; as a result, it is possible to
recover acoustic information from these phase changes.

Indeed, the widespread adoption of Fiber-to-the-Home
(FTTH) technology [9] in modern buildings across many coun-
tries/places1 could intensify this concern. FTTH installations
wire optical fibers directly into residential and commercial
spaces to provide high-speed internet access. While one end
of a fiber resides within the user’s room, the other end is
situated remotely at an optical distribution point [11], [12],
[13]. By connecting the other end to a commercially off-
the-shelf Distributed Acoustic Sensing (DAS) system (see de-
tailed explanation in Section II-B), an attacker could remotely
capture acoustic information from the victims’ premises. It
is essential to mention that, in many cases, multiple optical
fibers are installed, each belonging to different internet service
providers (ISPs). Usually, only one fiber is in active use,
while the others remain unused (which are also known as
“dark fibers” [14], [15]), running along walls, ceilings, and
other interior structures. These fibers could potentially serve
as unintended channels for eavesdropping.

Yet, implementing such an optical-fiber-based eavesdrop-
ping attack in practical scenarios is far from straightforward
as described above. While the concept of acoustic information
leakage through optical fibers has been qualitatively discussed
since 2012 by Grishachev [16], [17] and others [18], these
studies largely remain theoretical. More recently, in 2022, Hao
et al. [19] demonstrated such an attack where both the optical
fiber and the sound source were placed in close proximity on
the same stainless steel experimental plate, and even in such an
idealized setting, recovering meaningful acoustic information
proved highly challenging. Additionally, this setting does not
reflect practical conditions, where sound propagates through
air or standard building materials rather than being directly
coupled to the optical fiber. The attenuation in the propagation
may make the attack more difficult. To date, the question

1In 2024, the penetration rate, defined as the proportion of households that
have actively subscribed to and are using FTTH services, varied: United Arab
Emirates (99.5%), South Korea (96.6%), China (93.6%), Hong Kong (89.9%),
Singapore (87.5%), United States (28.7%), United Kingdom (26.3%) [10].
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of whether such attacks can be successfully realized in real-
world scenarios remains unanswered, leaving a critical gap in
understanding its practical feasibility.

In this work, we will fill the gap by demonstrating the
attacks under more practical scenarios. To better understand
the potential threat, we present a threat model that is abstracted
from realistic optical fiber network scenarios, detailing system
functionality as well as the capabilities and limitations of an
attacker (Section III). We then ask a yet unanswered question:
“Can linearly laid fibers hear well enough?” To explore this,
we conduct preliminary experiments to demonstrate both the
capabilities and limitations of the optical fibers in an indoor
context, and we find that a linearly laid optical fiber alone
can hardly capture fine-grained acoustic information such
as human speech (Section IV). Based on our observations
from the preliminary experiments, to achieve effective acoustic
monitoring, we identify the following four challenges (denoted
as C1–C4) that need to be addressed.

C1: An Effective Structure to Capture Sound: As sound
waves propagate through the air to reach the optical fiber,
they attenuate rapidly, making it difficult for the sound waves
to cause any sufficient deformation in the optical fiber. A
primary challenge lies in developing a physical structure
(which we call a “Sensory Receptor”) that can amplify subtle
pressure fluctuations, thereby enhancing the fiber’s sensitivity
to acoustic vibrations.

C2: Sound Recovery from Fiber Deformations: Even
with a sensory receptor that enhances sensitivity, recovering
sound waves from the resulting structural deformations in
the fiber presents its own difficulties. The challenge lies in
understanding the limits of this approach, including identifying
the maximum range and volume of sound that can be captured
with sufficient clarity.

C3: Evaluating Adequacy for Sound Recovery: A key
technical question is how to assess the performance of the
amplification structure itself. For successful eavesdropping,
the sensory receptor must be sufficient to capture signals of
interest, such as speech or specific sound patterns. It is crucial
to use appropriate metrics and methods for evaluating whether
the structure consistently captures usable audio signals.

C4: Practical Performance and Usable Information:
Testing the practical performance of this eavesdropping ap-
proach in realistic settings is crucial. This challenge entails
determining the specific types of information that can be
consistently and reliably extracted. Understanding the limits
of data fidelity, such as clarity of speech or detail of sound
sources, helps to determine the overall effectiveness and the
privacy implications.

Further, we provide detailed solutions, namely, S1–S4, to
tackle corresponding challenges, guiding through our approach
from principles to experimental validation.

S1 and S2: We introduce an effective sensory receptor
to tackle the challenges of capturing and recovering acoustic
signals. We quantitatively model and parameterize the process
of eavesdropping through optical fibers, laying the ground-

work for further research into the risks, as well as potential
mitigation strategies. (Section V)

S3: We characterize a practical implementation of the
proposed sensory receptor and demonstrate the fidelity of the
recovered acoustic signals by comparing them with reference
signals across different cases. (Section VI)

S4: By employing our proposed sensory receptor, or a
combination of them, we can effectively recover multiple types
of information. Additionally, integrating state-of-the-art deep
learning algorithms allows us to push the limits of this attack
further, uncovering detailed relationships between the amount
of recoverable information, sound source volume levels, and
distance. (Section VII and Section VIII).

Note that the goal of our work is to turn the interesting
physical phenomena (i.e., optical fibers as sensors capturing
vibrations) into a practical, end-to-end privacy attack, and
demonstrate for the first time the success as well as limitations
of such attacks through thorough and realistic experiments.
We demonstrate that it is possible to infer human activi-
ties with performance exceeding that of random guessing,
localize sound sources with an average error on the order
of tens of centimeters, and capture spoken conversations by
retaining over 80% of the information within 2m. These
findings illustrate the fine-grained level of information that can
potentially be recovered through such an optical-fiber-based
method. Some reconstructed audio samples can be found at
https://osf.io/wna5d/overview?view only=c4203a45b5ae4238
904d0627ebe8a561

II. BACKGROUND

This section provides background on optical fiber sensing
(OFS), and a type of OFS known as Distributed Acoustic
Sensing (DAS).

A. Optical Fiber Sensing

When an optical fiber is subjected to external interference,
the light wave transmitted in it will be modulated by external
fields so that its characteristic parameters, such as intensity,
phase, and polarization state, change accordingly. As a result,
there is an opportunity to detect the changes in these charac-
teristic parameters and further restore the external variations
to achieve the sensing function. Optical fiber sensing can be
classified into two categories: one is based on specialty optical
fibers, and the other is based on standard optical fibers.

Specialty optical fibers are those carefully engineered to
enhance sensing sensitivity or enable new sensing parameters
and applications [20], [21]. They are not utilized for data trans-
mission in telecommunication networks due to high loss or
incompatibility with standard transmission equipment. In this
study, since we are considering the scenario of telecommunica-
tions, we do not use specialty optical fibers for the purpose of
eavesdropping. On the other hand, utilizing standard telecom-
munication optical fibers as sensing media is attractive because
they have been extensively laid both underground and under
the sea, connecting buildings and spanning continents. As of
2025, there are nearly 1.4 million kilometers of submarine
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Fig. 1: Diagram of the DAS system. CIR: circulator, PD:
photo-detector, FUT: fiber under test.

cables in service [22]. These telecommunication cables have
already demonstrated capabilities for seismic detection [23],
wildlife monitoring [24], traffic flow estimation [25], etc.

B. Basics on Distributed Acoustic Sensing

The most widely used sensing technology based on stan-
dard optical fibers is called Distributed Optical Fiber Sensing
(DOFS). In DOFS, laser lights propagate through an optical
fiber, and because of inherent scattering phenomena [8], such
as Rayleigh scattering, the lights scatter everywhere along the
optical fiber and reflect back to the transmitter. This unique
scattering property allows for “distributed” sensing signals to
be collected along the entire length of the optical fiber.

DAS is a typical example of DOFS. The structure and
principles of the DAS system are briefly illustrated in Figure 1.
Probe pulses from a laser are pumped through a circulator
(CIR) into the fiber under test (FUT). When external vibrations
induce stress on the fiber, changes in the phase of Rayleigh
backscattering occur, in response to strain variations. This
phase shift pattern is captured by a photo-detector (PD),
enabling the system to retrieve acoustic wave parameters, such
as frequency and amplitude, through phase restoration. Since
DAS can detect real-time strain changes by demodulating the
phase change of Rayleigh scattering, potentially allowing for
the detection of sound waves occurring in the vicinity of the
optical fiber, effectively turning the optical fiber into a covert
listening device. In our study, we employ a commercial DAS
system. Our work is the first to demonstrate the potential
of using DAS in conjunction with telecommunication optical
fibers to extract fine-grained information, such as human con-
versations, beyond the coarse, large-scale vibrations targeted
in previous applications (e.g., [23], [24], [25]).

III. THREAT MODEL

In this section, we introduce a system model that illustrates
the eavesdropping scenario, and an attacker model.

A. System Model

A common Fiber-to-the-Home (FTTH) network is estab-
lished using a point-to-multipoint infrastructure, which is also
known as a passive optical network (PON), as depicted in
Figure 2. This type of network originates from the Optical
Line Terminal (OLT), managed by the ISPs. From the OLT,
a fiber optic cable extends to a splitter, which distributes
optical signals to various customers, and which is known as

Fig. 2: The optical fiber network starts from OLT, extending to
a splitter (ODN), and further connecting to an optical modem
at the users’ home (ONU).

the Optical Distribution Network (ODN). At the customer end,
the Optical Networking Unit (ONU) interfaces with the ODN
through optical fibers, receiving and processing signals to
provide services to individual customers. Within the ONU, the
fiber connection terminates at an optical modem, where optical
signals are converted into Ethernet signals. For example, a
router will disseminate data across local networks.

The wiring of optical fiber in a room can vary depending on
the layout and design of the space. In modern buildings, it is
common for the optical fiber to be channeled within the walls
or run overhead along the ceilings, offering a concealed route.
Alternatively, the fiber can be routed along the baseboards,
providing an unobtrusive pathway. The wiring typically ends
at an optical fiber outlet, as shown in Figure 2. Additionally,
any excess length of optical fiber outside the outlet is usually
gathered into an optical fiber box, as shown in Figure 2.

B. Attacker Model

In our model, we assume that an attacker has access to
both the victim’s premises (i.e., ONU) and the ODN. Such
access can realistically be achieved, as FTTH deployments
often involve physical access during installation, upgrades, or
troubleshooting [26]. For example, this access may be obtained
by an insider within the ISP, such as a technician or subcon-
tractor, or alternatively, by attackers impersonating these roles,
or through compromised third-party service providers, which
are approaches that have been observed and documented in
prior incidents [27].

To achieve effective eavesdropping, the attacker must over-
come a key limitation: standard optical fibers may not be
sensitive enough to air-borne sounds like human speech (see
details in Section IV). To address this, the attacker can
construct a sensory receptor, onto which the optical fiber is
wound. This structure can enhance the fiber’s ability to capture
sound vibrations. Details of the sensory receptor’s design
and functionality will be discussed in subsequent sections.
Note that the attacker can disguise the sensory receptor as
the ordinary optical fiber box, as shown in Figure 2. This
subtle camouflage allows the sensory receptor to blend in
with other networking equipment for home/business, reducing
the risk of raising suspicion. An example of the camouflage
is demonstrated in our case study later (i.e., Figure 12 in
Section VIII).
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At ODN, the attacker identifies the specific fiber connected
to the victim’s room and links it to their own equipment,
i.e., a Distributed Acoustic Sensing (DAS) device, which as
mentioned before is capable of measuring the phase shift of
light traveling through the fiber. With the fiber connection
established, the attacker can use the available signal processing
techniques for the phase-shift data, reconstructing the captured
sound waves. By applying deep learning models, the attacker
might even recognize speech content and other information.

Optical Fiber versus Other Sensors: Given a threat model
where the attacker has physical access to the victim’s premises,
indeed, the attacker can perform other privacy attacks, such
as wiretapping potentially sensitive network traffic. Directly
listening to voice-based conversations through optical fibers is
a new possibility enabled by our proposed attack; however,
we acknowledge that it is not the only nor the most powerful
one (see Section X for a discussion of other side-channel
eavesdropping methods). Further, one might question why an
attacker would not use conventional sensors such as micro-
phones or cameras. Unlike microphones, which require elec-
tricity and may emit detectable radio-frequency (RF) signals
(e.g., during analog-to-digital conversions [28], whether wired
or wireless), optical fibers operate without electricity and do
not emit RF signatures, making them invisible to standard RF
scanners and electromagnetic detection tools [28]. Moreover,
while hidden microphones and cameras have become common
focal points in privacy audits and surveillance countermea-
sures [29], such as Technical Surveillance Countermeasures
(TSCM) sweeps or bug sweeps, the acoustic sensing capability
of optical fiber is relatively obscure to the public, or even pro-
fessionals, and this obscurity increases the stealth of such at-
tacks. In addition, defenders can deploy ultrasonic jammers to
disrupt the microphones, while the performance of the optical-
fiber-based method is not significantly affected (see more
details in Section VIII-B3). Although this optical-fiber-based
method may appear niche, it has value in high-stakes settings,
such as corporate boardrooms, government and diplomatic
facilities, where the use of conventional surveillance devices
is heavily scrutinized and tightly controlled. In such contexts,
the undetectable and unconventional nature of optical-fiber-
based eavesdropping makes it a strategically potent tool for
adversaries seeking to extract sensitive information without
raising alarms.

IV. CAN LINEARLY LAID FIBERS HEAR WELL ENOUGH?

What remains untested yet is whether these standard optical
fibers, which are used for telecommunications in indoor en-
vironments, can capture detailed sound information, such as
identifying the nature of the sounds, or any sensitive/critical
information they may carry. To explore this, we conducted
preliminary experiments.

A. Preliminary Experimental Setup

Our experiments were in a room with a wood floor. The
total length of the standard telecommunication optical fiber is
more than 5 km, coiled on a big optical fiber spool designed

for collecting kilometer-length optical fibers. Note that the
total length of the optical fiber does not directly correspond
to the distance between the attacker and the victim. To avoid
confusion, the maximum distance we will evaluate in this
work is around 50m, as demonstrated by the case study in
Section VIII. As shown in Figure 3, we arranged the last 4
meters of the fiber along the baseboard of the room in an
L-shaped configuration. The fiber was securely fixed to the
baseboard using adhesive tape.

The other end of the fiber was connected to a DAS.
The data gathered by the DAS system was then processed
through a computer to reconstruct the audio signal (the specific
method for signal reconstruction is discussed in Section V).
We selected three equidistant points on the fiber within the
room for signal analysis, located at 5014m, 5016m, and 5018m
from the DAS system. It is worth noting that the optical fiber
functions as thousands of independent sensing points, each
capturing only local vibrations that deform a specific segment
of the optical fiber. Our sensing points are within the 4m
tail of the optical fiber. Vibrations elsewhere along the fiber
(including those on the spool) do not affect or interfere with
the deformations measured at the tail.

B. Capturing Sound from Loudspeaker

A loudspeaker, on an acoustic foam that prevents sound
propagation through the ground, is placed around 1m away
from the optical fiber, and plays a sound at 80 dB2 (approxi-
mately the volume of normal human loud speech [30], [31])
within the frequency range of 100Hz to 1000Hz (within
the range of frequency of human speech [31]). However, no
discernible audio signal could be recovered from the data
collected by the DAS system. This failure is attributed to the
fact that sound, as a pressure wave propagating through air, is
attenuated quickly. Also, the thickness of the optical fiber is
at a micrometer scale, and the sound wave induces insufficient
deformation in the optical fiber.

C. Capturing Sound of Walking

We marked 12 points along the fiber, as shown in Figure 3,
and a leather shoe hit these points 10 times, involving a “heel-
to-toe” pattern. The sound levels of the footsteps, measured
with a decibel meter, are 76 dB on average. We collected sig-
nals at the three selected points along the fiber and from each
point, we successfully reconstructed the footstep vibrations.

The reconstructed time-domain and frequency-domain sig-
nals are shown in Figure 3. We observed 12 steps, and
the frequency-domain analysis revealed that the vibrations
primarily occurred in the 10Hz to 100Hz range. This ex-
periment demonstrates that walking-induced vibrations can be
captured well. This is because the vibration from footsteps

2The sound pressure level in dB is defined and explained in Section V-A. We
did experiments and found that the sound level of human speech is 83.8dB
on average (ranging from 51.1dB to 97.2dB), and more details are presented
in Appendix A. In addition, most previous studies, as discussed in Section X,
used sound levels higher than 80dB. While internet searches may suggest that
normal speech is between 60 and 70dB, these measurements are typically
taken from a distance and do not reflect the actual sound level at the source.
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Fig. 3: Preliminary experimental setup. An optical fiber is
deployed along the baseboard of a room. A DAS is used to
collect vibration caused by sound sources, and a computer
(PC) is used to recover the acoustic sound, as shown on the
left.

transmits through the floor to the baseboard, causing sufficient
deformations for the optical fiber to capture.

D. Observations

As shown above, the linearly laid optical fibers are effective
at capturing structure-borne mechanical vibrations (e.g., walk-
ing), but inadequate for capturing air-borne acoustic signals
like human speech. This limitation suggests that, to achieve
finer sensitivity to sound waves, especially for applications
including human speech, it is necessary to modify the system
in a way that enhances its responsiveness to air-borne acoustic
waves. Hence, we design the sensory receptor as follows.

V. DESIGN OF SENSORY RECEPTOR

To address C1 and C2, we begin by finding a structure of
the sensory receptor to capture the sound and recover it.

Although the sound pressure on a small segment of optical
fiber in the perpendicular direction is minimal, if it can
be converted into a longitudinal strain along the fiber and
accumulated, it could result in a more noticeable deformation.
Inspired by previous designs of fiber-optic microphones [32]
and accelerometers [33], which used specialty optical fibers
(see details in Section II-A), a similar effect can be achieved
by winding the telecommunication optical fiber around a
cylindrical hollow structure, as illustrated in Figure 2. This
approach achieves both a directional transformation and an
accumulative effect: changes in the cylinder’s diameter (caused
by sound waves) translate into stretching and contracting
forces along the fiber’s length, while the coiling allows a
longer fiber segment to be subjected to the strain. In the
following subsections, we will model and explain how acoustic
information is recoverd.

A. Sound Propagation

For a point source with sound pressure of p, its sound pres-
sure level (SPL) P in dB can be represented by P = 20 log p

p0
,

where p0 = 20 × 10−6Pa is the reference sound pressure in
air. Let d represent the distance between the sound source
and the receiver, i.e., sensory receptor. The attenuation in

sound pressure level, ∆P , due to spreading over a spherical
surface [34] is given by: ∆P = 10 log( 1

4πd2 ). This relationship
shows that if the distance d is doubled, the sound pressure level
decreases by approximately 6 dB. The sound pressure level at
the receiver is then Pr = P+∆P. Note that the pressure pr on
the receiver can be expressed as: pr = p010

Pr
20 . Substituting

the previous equations into the equation of pr, we obtain

pr =
p

d
· 1

2
√
π

(1)

Equation 1 indicates that the sound pressure pr at the sensory
receptor is directly proportional to the initial sound pressure
p at the source, and conversely, inversely proportional to the
distance d.

B. Deformation and Phase Change

Consider a hollow cylinder with an external radius ra and
an internal radius rb. When a change in sound pressure, ∆pr,
is applied, it causes a small expansion in the hollow cylinder’s
outer radius. The change in ra is given by [35]:

∆ra =
∆pr · ra

E
(
r2a + r2b
r2a − r2b

− v) (2)

where E is Young’s modulus of the material, describing its
elasticity; v is the Poisson ratio, which measures the tendency
of the material to expand in directions perpendicular to the
applied force.

Now, let’s consider a fiber of length L wound tightly around
this cylinder. The pressure-induced expansion of its outer
radius ∆ra results in a proportional change in the length
of the fiber, denoted ∆L. This relationship is expressed as
∆ra
ra

= ∆L
L . Note that the phase of the light propagating the

fiber with refractive index n is ϕ = 2π
λ nL, where λ is the

optical wavelength in vacuum [36]. A change in the fiber’s
length ∆L will cause a corresponding change in the phase of
light, ∆ϕ, given by ∆ϕ = 2π

λ n∆L. Substituting ∆L = L∆ra
ra

into the equation of ∆ϕ, we get ∆ϕ = 2π
λ n′L∆ra

ra
, where

n′ = 1− n2

2 (p12 − vf (p11 + p12)). Note that p12 and p11 are
the strain-optic coefficients, which describe how the refractive
index n changes with strain, and vf is the Poisson ratio
of the fiber [36]. Substituting the expression for ∆ra from
Equation 2, we obtain ∆ϕ = 2π

λ n′L∆pr

E (
r2a+r2b
r2a−r2b

− v). Finally,

according to Equation 1, we can express ∆pr = ∆p
d · 1

2
√
π

,
assuming d is not changed, and substitute it into the equation
of ∆ϕ above and get:

∆ϕ =

√
π

λ
n′L

∆p

d · E
(
r2a + r2b
r2a − r2b

− v) (3)

C. Sound Information Recovery

As indicated by Equation 3, each phase change corresponds
directly to a change in the sound pressure at that moment, so
tracking these phase changes over time essentially captures the
oscillating pattern of the original sound wave.

The phase change sequence [∆ϕ0,∆ϕ1, ...,∆ϕi] represents
the sound-induced variations in the fiber length caused by the
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original sound signal, each corresponding to a specific point
in time. Note that these values are sampled at a consistent
interval. To avoid aliasing error, according to the Nyquist-
Shannon sampling theorem [37], we assume that the sampling
rate is greater than or equal to twice the highest frequency
component in a sound wave to be measured. To recover
the sound signal, we can calculate the cumulative sum of
these incremental phase changes over time. Let us denote the
recovered signal as s = [s0, s1, ..., si], where

si = Σi
k=0∆ϕk.

Note that to mitigate the impact of external vibrations
introduced during the return path of the reflected light to the
DAS, we can select a reference point on the optical fiber that
is physically close to the sensing point but located outside
the sensory receptor. Supported by our prior experiments,
vibrations at such a reference point cause minimal mechanical
deformation, resulting in an extremely small phase shift. As
a result, the phase difference measured between the sensing
point and the reference primarily captures the signal of in-
terest. More importantly, when the light scattered from both
points travels back to the DAS through the same optical fiber,
since the speed of light is orders of magnitude faster than
any mechanical vibration, any external vibration affecting the
return path tends to be common-mode. Thus, by measuring the
differential phase between two adjacent points, such common-
mode noise naturally cancels out in the subtraction, making
the return-path impacts negligible in the sound information
recovery. In Section VIII-B1, we experimentally demonstrate
and analyze that the effects of external interference on the
optical fiber as conduit are minimal.

D. Limitations Due to Noise and Saturation

To make the attack practical, we need to carefully consider
the effect of noise, which inevitably affects the phase change
measurements used to recover sound signals. Various factors,
such as environmental and system noise, introduce noise into
the phase changes, which we denote as ϕnoise ≥ 0. The
maximum phase change measurable by the system is limited
to 2π. The maximum sound pressure is denoted as pmax, and
the maximum distance between the receptor and the furthest
sound source allowed in the space is denoted as dmax.

For the proposed method to work reliably, the phase changes
must lie within the range ϕnoise < ∆ϕ ≤ 2π. By substituting
Equation 3 into the inequality, and introducing a constant
C =

√
π
λ n′L 1

E (
r2a+r2b
r2a−r2b

− v), where C > 0, we can rewrite the
inequality as:

ϕnoise

C
<

∆p

d
≤ 2π

C

where 0 < ∆p ≤ pmax and 0 < d ≤ dmax.
This relationship, illustrated in Figure 4a, defines a bounded

region (the shaded area) within which the attack is feasible.
Below the curve ∆p = ϕnoise

C d, the sound pressure is too
weak for the system to distinguish it from noise, making sound
recovery unreliable. Above the curve ∆p = 2π

C d, the phase
changes exceed 2π, leading to saturation, and preventing sound

(a) (b)

Fig. 4: (a) Within the shaded region (red), an attacker can
achieve effective sound capture and recovery. (b) A testbed
for the characterization.

recovery. This analysis reveals how the attack is limited by the
laws of physics. A resourceful attacker can attempt to adjust
C by tuning system parameters such as the fiber length L or
the material properties to affect n′. Nevertheless, even with
these limitations, a meaningful privacy attack can be achieved
with off-the-shelf commodity optical fibers.

VI. CHARACTERIZING SENSORY RECEPTOR

To address C3, we assess the performance of the sensory
receptor across various cases, demonstrating its consistent
capability to recover high-quality signals. We start by selecting
an appropriate material for the sensory receptor. We considered
different types of materials, including polyethylene terephtha-
late (PET), resin, polyamide (PA), etc. By experiments, PET
(as shown in Figure 4b) was ultimately chosen for two reasons:
first, its transparency, which helps concealment, and second,
its ability to capture high-quality sound signals, as further
discussed in this section.

A. Sensory Receptor Performance

To demonstrate the performance and discuss the impact of
associated parameters, we evaluated the quality of the restored
signals by comparing them with sinusoidal signals at different
frequencies.

1) Testbed: A testbed is shown in Figure 4b. Both the
loudspeaker and the sensory receptor are placed on acoustic
foams to ensure that the sound waves travel through the air.
The ambient noise level in the room is between 50 dB and
60 dB. The loudspeaker volume ranges from 60 dB to 90 dB,
and the frequency of the sound varies from 100Hz to 1000Hz,
which include the human speech volume range and frequency
band as discussed in Section IV-B. The distance between the
loudspeaker and the sensory receptor varies from 10 cm to
200 cm, and the angle between them spans from 0◦ to 90◦.
Note that all these parameters will be varied so as to study
their impacts. The optical fiber is wrapped on the sensory
receptor manually, and one end is connected to a DAS. Note
that the laser’s wavelength used in the experiments is 1550 nm,
per the norms for telecommunications. The impacts of optical
wavelength on performance will not be further discussed in
this paper because the optical wavelength and optical network
structure used in the communication system are well-matched
and cannot be changed arbitrarily.
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(a) (b)

Fig. 5: SNR and CC versus (a) outer diameter; (b) wrapping
fiber length.

(a) (b)

Fig. 6: SNR and CC versus (a) volume; (b) distance.

2) Metrics for Evaluation: Two commonly used metrics
were selected to quantitatively assess signal quality: the signal-
to-noise ratio (SNR) and the correlation coefficient (CC).
SNR (in dB) compares the level of a desired signal to the
level of background noise [38]. The higher the SNR value,
the better the signal quality, meaning that there is more
useful information (signals) than unwanted data (noise). CC
is a numerical measure of linear correlation, representing the
similarity between two signals [39]. The value of CC ranges
between -1 and 1, with values closer to 1 representing a higher
similarity.

3) Intrinsic Parameters: The analysis focused on two
parameters related to the fiber-wrapped cylinder: the outer
diameter of the cylinder and the length of the wrapping fiber.

Outer Diameter: Three sizes were chosen, which are
65mm, 85mm, and 100mm. Note that all cylinders have the
same thickness, i.e., ra−rb = 0.2mm. So this is equivalent to
studying the impacts of (

r2a+r2b
r2a−r2b

− v). In Figure 5a, averaged
results of various (other) parameters are presented, and they
indicated that both SNR and CC levels were highest at an outer
diameter of 85mm. However, according to Equation 3, the
introduced phase variation should be more significant under a
bigger outer diameter. To explain this result, we analyzed the
noise level in the three groups of data. It was found that the
root mean square (RMS) rises from 0.12 to 3.96 as the outer
diameter increases from 65mm to 100mm. The result could
be explained by the fact that the larger the outer diameter,
the greater the air mobility inside the hollow cylinder, which
also introduces a greater noise level. In addition, satisfactory
performance was also observed with an SNR of 18 dB and
a CC of 0.92 at a diameter of 65mm. Considering the
stealthiness of the sensory receptor, the 65mm cylinder was
selected for subsequent experiments.

(a) (b)

Fig. 7: SNR and CC versus (a) angle; (b) frequency.

Length of Wrapping Optical Fiber: 5m, 10m, and 15m of
fibers were wrapped for comparison; the results are shown in
Figure 5b. It can be seen that the longer the fiber, the better the
quality of signal restoration. When L is 15m, CC can be as
high as 1 across all frequencies. This is because more points
on the fiber experience the pressure of sound waves, matching
our modeling in Equation 3.

4) External Parameters: Regarding the sound source, we
picked volume, distance, angle, and frequency for evaluation.

Volume: It can be noticed in Figure 6a that the SNR and CC
improve as the volume increases. Beyond 80 dB, the mean of
SNR and CC deteriorate slightly; however, they are still high
enough to indicate a good enough sound recovery quality.

Distance: In Figure 6b, it can be seen that as the distance
increases, the SNR and CC decrease as well. Even at 2m away,
SNR and CC maintain around 20 dB and 0.9 , respectively.

Angle: We placed the loudspeaker 1m away from the
sensory receptor and moved it around the sensory receptor
to vary the angle at which the sound waves reach it. It can be
noticed from Figure 7a that the SNR is better when the angle
is smaller. It can be construed that the smaller the angle, the
larger the area of contact between the sound wave and the
cylinder, and the more intense the pressure introduced. There
is no obvious trend with respect to CC. Overall, the results
indicate that signal capture and restoration perform well across
different angles.

Frequency: The frequency response is shown in Figure 7b,
and the SNR can be maintained above 25 dB in the tested
frequency range while the CC is consistently above 0.95.

The results above prove that the crafted optical fiber sensory
receptor matches our modeling, and it can capture and restore
the signal well in various cases. We decided to wrap 15m
of optical fiber around a 65mm outer diameter PET hollow
cylinder as a discrete sensory receptor for further experiments.

VII. EXPERIMENTS OF EAVESDROPPING

In this section, we aim to address C4, assessing the range of
information our approach can capture in practical settings. We
begin with sound event detection, which involves analyzing
collected sounds to identify domestic activities or events
occurring in the environment. This step provides a broad
overview of the sounds present without focusing on precise
details. Building on this, we proceed to indoor localization,
where we determine the spatial origin of detected sounds.
By identifying the approximate location of sound sources,
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Fig. 8: In our experimental setup, A, B, and C are receptors.
There are multiple points where a loudspeaker is placed to
play sound. The scattered lights are then collected by a DAS
and reconstructed into sound waves and further processed, and
finally, information is retrieved.

it allows an adversary to map the layout of activity within
the monitored space. Finally, we focus on the most privacy-
critical level of information extraction: speech eavesdropping.
Here, we aim to identify specific speech content, allowing the
recovery of actual spoken words or phrases.

A. Setup

We first present the layout of our experimental environment,
and then the workflow of data collection.

1) Layout: The experiment was conducted in a room mea-
suring approximately 8m in length and 6m in width. As
shown in Figure 8, three receptors were positioned along one
of the shorter walls, equally spaced at intervals of 2.6m. With
three receptors, it is possible to triangulate the position based
on the time or phase differences in the signals detected at
each receptor, providing a spatial estimate. We utilized a single
optical fiber over 4.8 km in length. On each receptor, 15m of
fiber was tightly wound to form the sensing structure, while
an additional 5m segment of fiber remained uncoiled between
adjacent receptors to maintain separation. The distances from
the measurement points on the receptors to the DAS system,
are 4840m, 4820m, and 4800m, respectively, labeled as
points A, B, and C.

We marked 25 positions at intervals of 1.2–1.3m to place
the sound sources (i.e., loudspeakers), as shown in Figure 8,
numbered 0 to 24. We defined point A as the origin, with

Fig. 9: Precision, recall, and F-1 score of detection results of
different sound events.

the x-axis running along the width of the room and the y-
axis along its length. Using this coordinate system, we could
express the positions of the measurement points and sound
sources in the room. For instance, the coordinates of points
A, B, and C are (0, 0), (2.6, 0), and (5.2, 0), respectively.
Similarly, the coordinates of the 25 sound source locations
could be defined. Note that the loudspeaker was maintained
at a constant volume of approximately 80 dB hereafter, unless
stated otherwise.

2) Workflow: After the scattered light is captured by the
DAS, the system follows a structured workflow to extract
information from the collected signals. As shown in Figure 8,
the process begins with “Signal Collection”. In this stage,
the DAS detects phase variations, which are induced by
sound waves interacting with the optical fiber as discussed
previously. A computer then processes these phase variations
to reconstruct the corresponding sound waves.

Following the signal collection stage, the reconstructed
sound waves proceed to the “Processing” stage, where they
first go through a “Filtering” step to remove unwanted high-
frequency and low-frequency noise components. A Butter-
worth filter is used to keep the frequency band between
50Hz and 3000Hz. After filtering, the signals may undergo
“Denoising & Enhancement”, where techniques are applied to
further reduce noise that overlaps with the frequency band of
the sound source, so as to further enhance sound quality.

The final stage is “Information Retrieval”, where the pro-
cessed sound waves are analyzed to extract specific types of
information for sound event detection, indoor localization, and
speech eavesdropping.

B. Sound Event Detection

We begin by introducing the sound source used in our
experiments, followed by a brief introduction to the detection
models employed for this task. Next, we describe the metrics
used for evaluation, and finally, we present a detailed analysis
of the results.

1) Sound Sources of Domestic Activities: The loudspeaker
was used to play 14 selected sound clips from the ESC-50 [40]
dataset, which is commonly used for sound event classifica-
tion, focusing on sounds associated with domestic activities
such as clock alarms, coughing, keyboard typing, washing

8



TABLE I: Sound Event Detection Accuracy of Different
Models at Different Distances

Models Accuracy
Ref 0.1m 1m 2m

BEATs [42] 0.96 0.53 0.11 0.06
HTS-AT [43] 0.97 0.39 0.06 0.05
Efficient-AT [45], [46] 0.97 0.44 0.11 0.07
Our Fine-tuned 0.97 0.83 0.50 0.43

machines, etc. Each sound category included 40 individual
sound clips. We positioned the loudspeaker at distances of
0.1m, 1m, and 2m from point A.

2) Detection Models: Sound event classification begins
with transforming audio into mel spectrograms, creating a
time-frequency representation that captures the audio’s key
characteristics, and further being processed by deep learning
models. The most advanced methods for analyzing these
spectrograms fall into two categories. The first category uses
Transformer-based architectures [41], e.g., the state-of-the-art
models BEATs [42] and HTS-AT [43]. The second category,
uses Convolutional Neural Network (CNN) [44], specifically
a model called Efficient-AT [45], [46]. We selected the
three aforementioned state-of-the-art sound event classification
models: BEATs, HTS-AT, and Efficient-AT. Importantly, we
used these models in their original form, without any fine-
tuning on the dataset ESC-50 [40].

3) Detection Evaluation Metrics: We use three com-
mon metrics to evaluate detection results. Precision mea-
sures the proportion of correctly predicted positives out of
all predicted positives: True Positives

True Positives+False Positives . Recall mea-
sures the proportion of actual positives correctly identi-
fied: True Positives

True Positives+False Negatives . F1-Score is the harmonic mean
of precision and recall, balancing the above two metrics:
2 · Precision×Recall

Precision+Recall . In addition, to compare the performance
of different models on our data, and the benchmark, we
also include the accuracy, which represents the proportion of
correctly classified samples (both positive and negative) out of
the total samples: True Positives+True Negatives

Total Number of Samples .
4) Results and Analysis: We began by using the BEATs

model for sound event classification on the reconstructed
sounds from fiber vibration.

Performance of BEATs: Figure 9 presents precision, re-
call, and F1 scores for each class. The “clock alarm”, “cry-
ing baby”, and “snoring” classes achieve high scores across all
three metrics, indicating high accuracy and consistency in clas-
sification. On the other hand, classes like “keyboard typing”
and “mouse click” exhibit low recall. This discrepancy is
likely due to these sounds’ power being approximately 10 dB
weaker than others, resulting in weaker vibrations captured
by the fiber. This lower signal-to-noise ratio (SNR) affects
the recall for these classes. A more detailed confusion matrix
on the classification results is presented in Figure 16 in
Appendix B.

Performance across Different Models: Next, we extended
the experiment to include the other two models and tested data
collected at various speaker-to-fiber distances. Additionally,
we used the original dataset as a reference and employed

(a) (b)

Fig. 10: With the distance between the sound source and
the fiber increases, (a) the estimation error of time difference
increases, and (b) the estimation error of localization increases.

accuracy as the evaluation metric. The results are shown in
Table 1. It can be observed that these models perform well on
the original audio data; however, classification accuracy halves
when applied to sound reconstructed from fiber vibrations,
especially when the event happens at distances greater than
1 m, where accuracy falls to 0.05. This decline can be
attributed to two main factors. First, these models were not
fine-tuned on the dataset, so they lack familiarity with the
characteristics of sounds collected and reconstructed through
fiber optics. Second, as the distance increases, the signal-to-
noise ratio (SNR) decreases, leading to poor recognition of
certain features in the spectrogram.

Finetuning to Improve Accuracy: To address the issues
above, we fine-tuned the Efficient-AT model on our dataset,
using 80% of the data for fine-tuning and the remaining
20% for testing; we repeat this process with five-fold cross-
validation and report the averaged results in Table 1 under
the row labeled “Our Fine-tuned”. After the fine-tuning (200
epochs), the accuracy improved to 0.83. Although this accu-
racy is still lower than that achieved with the original audio
data, it is sufficient for an attacker to infer information about
the activities occurring within a room. At farther distances,
the accuracy drops to 0.43, but this still surpasses the random-
guessing probability of 0.07 for 14 classes, indicating adequate
performance.

C. Indoor Localization

With the reconstructed sound from our sensory receptor,
placing three receptors can be used to locate the sound’s
position in a room using the time difference of arrival. The
detailed description of the localization method is presented in
Appendix C.

1) Localization Error Metric: We use Euclidean distance
between the estimated position (xS , yS) and the ground
truth (xS , yS) to measure the performance of the local-
ization method, and the metric is calculated as: ∆d =√
(xS − xS)2 + (yS − yS)

2. A smaller Euclidean distance
indicates a more accurate estimate.

2) Results and Analysis: We began with the time difference
estimation and then the location estimation.

Time Difference Estimation: Apart from the sound source
at location 1, where the time estimation is far beyond a
normal value, the averaged absolute estimation error of time
difference for all other locations is 1.19ms, with a standard
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error of 0.14ms. With the sound source leaving the fiber, the
estimation of time becomes less and less accurate, as shown in
Figure 10a. This is due to lower sound pressure on the receptor
and reduced SNR at greater distances, making it harder to
detect the sound’s onset. The details on the estimation of the
time difference are shown in Table III in Appendix C.

Location Estimation: Based on the estimation of the time
difference, the position of the sound source can be further
solved as explained in Appendix C, and the estimation of the
position of the sound source is presented in Table IV. The
averaged estimation error of localization is 0.77m, with a
standard error of 0.17m. From Figure 10b, it can be found that
the estimation error becomes larger while the sound source is
moving away from the fiber. This is attributed to the increase
in estimation error in time difference. However, in an area of
27.04m2(= 5.2m× 5.2m), the error of localization is below
1m, which still presents a significant privacy risk in an indoor
setting.

D. Speech Eavesdropping

This section further demonstrates the feasibility and the
limitations of eavesdropping on human speech.

1) Sound Sources of Human Speech: For the eavesdropping
on human speech, the loudspeaker played audio samples from
the Librispeech [47] dataset, which is widely used in automatic
speech recognition research. From the training subset of this
dataset, we randomly selected 15 male and 15 female speech
clips, and a matching set of clips was also selected from the
testing subset. Thus, in total 60 clips were chosen. In addition,
we extended the loudspeaker placement from 2m to distances
of 3m and 4m (for more discussion on increased distance and
obstacles, please see Appendix E).

2) Speech Recognition Principles and Models: Note that
the goal of the attacker is to learn the speech contents of the
victim. Automatic speech recognition (ASR) using transformer
models has become a dominant approach in recent years due to
its ability to transcribe spoken language into text. Transformer-
based ASR leverages the self-attention mechanism, which
allows the model to focus on relevant parts of an audio
sequence, regardless of distance in time. State-of-the-art ASR
models, such as whisper-large-v3 [48], canary-1b [49], and
parakeet-tdt-1.1b [50], employ transformers that are trained
on massive amounts of unlabeled audio data, learning robust
audio representations before fine-tuning on labeled datasets
for transcription. Note that these models have already learned
features from the speech clips in the training dataset of
Librispeech. However, they have not been exposed to, nor
have they learned features from, the speech clips in the testing
dataset.

3) Speech Recognition Evaluation Metrics: Word Error
Rate (WER) is one of the most common metrics for evaluating
the accuracy of automatic speech recognition systems [51]. It
is calculated as the sum of substitutions (S), deletions (D),
and insertions (I) divided by the total number of words in
the reference transcript (N ): WER = S+D+I

N . A lower WER
indicates better accuracy.

(a) (b)

(c) (d)

Fig. 11: Combined analysis of Word Error Rate (WER): (a)
WER vs. distance, (b) WER by gender, (c) WER by training
vs. testing, and (d) WER with and without denoising.

4) Results and Analysis: We first applied the ASR models
on the selected clips (clean audios) from Librispeech, and the
WER corresponds to “Ref” in the x-axis tick in Figure 11.
The averaged WER value of these clips is around 0.07.

Effectiveness of Different Models: From the experimental
results, as shown in Figure 11a, we observe that up to 1
meter, these models can achieve a WER below 0.1, meaning
only 10 incorrect words per 100 words. At 3 meters, the
WER remains at approximately 0.3, while at 4 meters it
increases to around 0.5. These results indicate that our system
can achieve relatively reliable eavesdropping within a 3-meter
range. Among the models tested, parakeet-tdt-1.1b consistently
achieves the lowest WER, making it a prime choice for
attackers looking to maximize transcription accuracy.

Impacts of Voice Pitch: We further analyze the impact of
voice pitch, broken down by speaker gender, by averaging
results across all models, and the results are presented in
Figure 11b. In our dataset, male voices are between 100Hz to
150Hz, while female voices are in the 150Hz to 300Hz range.
Across most distances, including 1m, 2m, and 4m, female
voices tend to have lower WER, suggesting more accurate
recognition. This may be due to the lower frequencies of male
voices, which are more likely to overlap with low-frequency
system noise, thereby reducing recognition accuracy.

Impacts of Familiarity with Speech: Next, we consider the
models’ performance based on familiarity with the data source,
distinguishing between training and testing data results. Since
the training data has been previously learned by the model, it
tends to achieve lower WER with this data compared to the
testing data, particularly as the distance increases, as shown in
Figure 11c. This result implies that if the attacker can obtain
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Fig. 12: The optical fiber with yellow coating is wound in
an optical fiber box in a meeting room (Room B), and in the
other room (Room A), the sound signal is reconstructed.

TABLE II: WER of Speech Recognition in Office Scenario.

WER↓ Min Max Mean Std Dev
Wall 0.13 0.31 0.22 0.07
Ground 0.11 0.29 0.20 0.08
Desk 0.04 0.15 0.09 0.05

some voice recording from the victim so as to finetune their
models, it is more effective to recognize the contents at a
distance.

Impacts of Denoising and Speech Enhancement
We applied a state-of-the-art AI noise reduction tool,

ensemble-enhance [52], to perform denoising and speech
enhancement on our audio data. The spectrograms of before
and after noise removal are shown in Figure 17 in Appendix D.
Speech recognition results, as shown in Figure 11d, indicate
that denoising has minimal impact on performance. This is
likely because these models are trained to be inherently robust
to noise, effectively integrating denoising and enhancement
within their architecture. For an attacker, this is advantageous,
as it eliminates the need for additional signal processing to
achieve effective information extraction using the latest speech
recognition models in our proposed system.

VIII. CASE STUDY: EVALUATION IN OFFICE SCENARIO

To further evaluate the effectiveness of our optical fiber-
based eavesdropping approach in real-world scenarios, we
deployed standard telecommunication optical fiber across two
office rooms separated by more than 50m as shown in
Figure 12.

In Room B, around 3m of optical fiber is coiled around
a sensory receptor (diameter: 65mm, height: 25mm, made
of PET material) and housed within a typical fiber optic box,
commonly used in FTTH installations for excess fiber storage,
as mentioned in Section III-A. Note that the optical fiber
wound on the sensory receptor is much shorter (than 15m that
is used for performance measurement) because the receptor
itself is smaller, allowing it to be concealed within the optical
fiber box. As shown in Section VI-A3, a shorter fiber degrades
the quality of the recovered sound, and it is therefore expected

and reasonable that the recovered sound quality here may not
be as good as in the earlier measurements. This optical fiber
box is affixed to the base of the wall. A loudspeaker is placed
on a table near the center of Room B, approximately 2m away
from the box. The sound volume is set at 80 dB, playing the
human speech as that used in Section VII-D.

The two rooms are connected via a corridor, through which
the optical fiber is routed. In Room A, at the other end of
the optical fiber, we conduct the data collection and speech
retrieval.

A. Impacts of Optical Fiber Box Placements

We consider three different placements. One is that there is
no direct contact between the loudspeaker and the fiber box to
avoid direct mechanical coupling. We refer to this arrangement
as the “Wall” configuration. For comparison, we also place
both the loudspeaker and the optical fiber box directly on
the floor, maintaining the same 2-meter separation. This is
referred to as the “Ground” configuration. Additionally, we test
a “Desk” configuration, where the loudspeaker remains on the
table while the optical fiber box is attached to the underside
of the table. During the experiments, the corridor experiences
regular foot traffic and is adjacent to an active construction
site, introducing considerable ambient noise and contributing
to the non-trivial acoustic environment.

The speech recognition results are shown in Table II.
Among them, the “Desk” configuration achieved the best per-
formance, with a mean WER of 0.09, and the lowest minimum
and maximum WERs (0.04 and 0.15, respectively). In contrast,
the “Wall” and “Ground” setups exhibited higher WERs. The
“Desk” setup also had the lowest standard deviation (0.05),
indicating more consistent recognition results compared to
the other two configurations. The key reason for the Desk
configuration’s superior performance lies in the way acoustic
signals are transmitted. When the optical fiber box is attached
under the desk, vibrations from the loudspeaker are efficiently
transmitted through the desk surface, which can conduct
vibrations more directly and with less attenuation than air or
other structures, resulting in a stronger and clearer acoustic
signal being coupled to the fiber. This efficient transmission
leads to a higher signal-to-noise ratio and, consequently, better
speech recognition accuracy.

These results indicate that, in the office scenario, the av-
eraged WER is approximately 0.17, suggesting that around
80% of the original speech information can be successfully
preserved and recognized.

B. Impacts of Noise and Ultrasound Jamming

Keeping the “Wall” configuration, we conducted additional
experiments using controlled acoustic noise sources, including
loudspeakers and a commercial off-the-shelf ultrasonic jam-
mer. We examined the following three experimental condi-
tions.

1) Noise along the Optical Fiber as Conduit: Nine noise
sources (generated by loudspeakers) were placed at roughly
equal intervals along the optical fiber routed through the
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(a) (b)

Fig. 13: (a) WER at different numbers of noise sources along
the optical fiber as the conduit. (b) WER at different noise
levels for the optical-fiber-based method and the microphones.

Fig. 14: WERs of sound captured by microphones and the
optical fiber under ultrasonic jamming.

corridor, as illustrated in Figure 12. They are labeled from #1
to #9 from Room B to Room A. The optical fiber was taped
to the loudspeaker diaphragms. A tenth loudspeaker (#10) was
placed on the blue optical fiber spool (in Room A), holding
the excess optical fiber. All the loudspeakers play white noise,
and their volumes are set at their maximum (> 90 dB).

The experiments were conducted when no pedestrians were
present. We activated the noise sources in groups: first (#1,
#4, #7), then (#2, #5, #8), and finally (#3, #6, #9), increasing
the number of active sources from 3 to 9 in steps of 3. To
ensure that the noise sources indeed affect the optical fiber
conduit, we used DAS to verify that they increased the noise
power by approximately 33 dB at each point, relative to the
condition without any noise sources activated. As shown in
Figure 13a, under the impacts of controlled noise sources, the
average WER remained approximately 0.19. Adding the tenth
source (#10) on the spool yielded a WER of 0.15± 0.08. We
tested statistical significance with the Mann–Whitney U test
(a t-test is not chosen because normality may not hold), using
a 99% confidence level. The null hypothesis was that “the
WER under n controlled noise sources (n = 3, 6, 9, 10) on
the conduit is the same as the WER with no controlled noise
(n = 0)”. The p-values were 0.46, 0.28, 0.57, and 0.46, all
above 0.01. Thus, we do not have sufficient evidence to reject
the null hypothesis. This indicates that external noise along
the optical fiber conduit has only a small impact on the WER,
thereby supporting our theoretical explanation in Section V-C.

2) Noise around the Sensory Receptor: A loudspeaker was
placed near the sensory receptor to generate white noise at

70, 80, and 90 dB, with the sound pressure level measured
at the sensory receptor instead of the loudspeaker. Note that
the ambient noise is around 60 dB as mentioned previously.
For comparison, we also evaluated five microphone-equipped
devices: an iPhone 13, a Huawei Mate 30, a Xiaomi Note 9
Pro, and two mini voice recorders (denoted as VR-1 and VR-
2). The microphones are placed where the sensory receptor is,
and tested one by one.

As shown in Figure 13b, increasing environmental noise
near the sensory receptor increases WER. At 70 dB, WER
remains at 0.19. At 90 dB, WER rises up to 0.93, indicating
severe information loss. Microphones exhibit a similar trend,
except for the VR-1, which outperforms the optical-fiber-based
method under noisy conditions. When the noise level is 70 dB,
the smartphones’ microphones achieve an averaged WER be-
low 0.1, which is about half of the optical-fiber-based method.
However, when the noise is increased to 80 dB, the optical-
fiber-based method exhibits a WER of 0.3, while most of the
microphones rise above 0.4. When the noise level reaches
90 dB, WER values for microphones greater than 1 arise
because the ASR system inserts words that are not present
in the original speech, whereas the WER of the optical-fiber-
based method remains below 1. This suggests that, in general,
microphones perform better in low-noise environments, but
the optical fiber approach has a slight advantage in high-noise
conditions.

3) Ultrasonic Jamming: In addition to TSCM sweeps, de-
fenders can deploy ultrasonic jammers to disrupt microphones.
The jammers are effective because most commercial micro-
phones and their front-end amplifiers exhibit nonlinearity.
Strong ultrasonic inputs can intermodulate into the audible
band via these nonlinearities, producing in-band interference
that obscures speech [53], as shown in Figure 18 of Ap-
pendix F. We are interested in whether such jamming affects
our optical-fiber-based method. To evaluate this, we used a
commercially available ultrasonic jammer and placed it 1m
from both the sensory receptor and the microphones. Figure 14
shows that microphones are highly sensitive to ultrasonic
jamming: their WERs reach or exceed 1 under jamming. In
contrast, the optical-fiber-based system shows no significant
change in WER, even when the ultrasonic jammer is placed
as close as 10 cm away from the sensory receptor in our
experiments. This implies that our approach of eavesdropping
can effectively evade active ultrasonic jamming.

Under jamming, a determined microphone-based attacker
might attempt to remove the jamming-induced noise by any
available means. Whether the noise can be effectively removed
to recover intelligible audio remains an open question. Some
studies report no improvement in WER after applying noise-
reduction techniques such as deep neural networks or Wiener
filtering [54], [55], whereas more recent work shows that noise
removal still leaves average WER above 0.29 [53] or 0.50 [56].
On the other hand, our optical-fiber-based method, without
electrical stages at the sensory receptor, is inherently much less
susceptible to ultrasonic jamming. The results here suggest that
the optical-fiber-based method remains viable even when the
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potential victims of eavesdropping are cautious and equipped
with commercial off-the-shelf jammers.

IX. POTENTIAL MITIGATION METHODS

Mitigation strategies can focus on controlling both laser
light reflections and cable installations to reduce the risks
of eavesdropping through optical fibers. One approach is to
minimize the detectability of Rayleigh backscattering, which
the eavesdropping relies on, by increasing Fresnel reflections
that can saturate the photodetector (see Figure 1) and create a
“dead zone” where DAS cannot detect anything [57], [58].
Using polished connectors [59] can be an effective means
to introduce significant Fresnel reflections. Additionally, for
systems using separate fibers for transmitting and receiving,
users can install optical isolators [1] on each channel, allowing
light to travel in only one direction, preventing scattered light
from returning to potential attackers. In terms of weakening
the sensitivity of optical fiber to vibrations, several installation
practices are recommended. Users should ensure that fiber
cables are installed in a way that avoids excess length within
rooms or keeps them from looping around or touching objects,
which can unintentionally amplify vibrations. Adding sound-
proofing materials to walls and ceilings, especially in areas
where fiber optic cables run, can help block external sounds
from reaching the cables.

X. RELATED WORK

We review state-of-the-art acoustic eavesdropping via op-
tical, motion, and radio-frequency (RF) side channels, with
discussions on practical constraints such as distance, line of
sight, and recognition quality. Because prior work reports
the recognition quality using different metrics, it is difficult
to make direct comparisons; we will present comparisons in
terms of intelligibility [60] (ranging between 0 and 1; the
higher, the better), accuracy, and WER.

Optical. Early work used high-speed cameras to capture
minute object vibrations induced by sound and reconstruct
audio from the video signal, up to about 2m away and, for
short utterances, near-perfect transcription (WER = 0) [61].
Subsequent methods improved efficiency by up to around 100
times, with a trade-off in the recovery quality [62], [63]. More
work further showed that commodity cameras can recover
intelligible speech (intelligibility > 0.8) [64], [65], [66], [67].
Electro-optical sensing extends range to roughly 35m but
with reduced intelligibility (< 0.5) [68], [69], [70]. Another
approach illuminates a target (or a nearby proxy) using laser
beams and demodulates the reflected beam to audio [71], [72],
[73], [74]. Some lab studies reported WER = 0 at 10m [73],
and commercial devices even claim up to 500m [75]. A
common limitation across optical methods is the need for a
line of sight between the attacker and the target surface, which
is difficult to achieve under our threat model.

Motion. Micro-Electro-Mechanical Systems (MEMS) sen-
sors (e.g., accelerometers and gyroscopes) can leak speech
through vibration coupling, allowing eavesdropping with ac-
curacy often below 0.8 in early work [76], [77], later improved

to accuracy > 0.8 [78], [79] or WER < 0.1 [80] with stronger
coupling assumptions and advanced models. However, Anand
et al., [81] pointed out that unless a strong loudspeaker shares
the same surface with the sensors (creating a strong me-
chanical path), inference is not practical in typical real-world
conversation scenarios. Additionally, actuators themselves can
act as unintended sensors: vibration motors [82], read/write
heads of hard disks [83], and camera stabilizers [84] have
been exploited, reaching speech-recognition accuracy up to
0.88 [82]. These attacks typically require close proximity
between the sound source and sensor, which is suitable if the
attacker can run an application on the victim device.

RF. Wi-Fi signals, for example, have been utilized to
profile mouth movements [85] and detect loudspeakers’ vi-
brations [86], where the distance between the sound source
and the signal transmitter is around 2m and the accuracy is
above 0.8. More recent work has focused on millimeter-wave
(mmWave) radar [87], [88], [89], [90], [91], [92], [93], [94],
Radio Frequency Identification (RFID) [95], or by collecting
RF emanations from a microphone [96]. Across these studies,
the average source-to-attacker distance is about 3.6m, with
some systems reaching up to 8m [88], [92]. The accuracy of
the speech recognition can be as high as 0.94 at 1m [95] or
WER = 0.06 at 2m [96]. Because RF can penetrate common
building materials, many setups operate through walls; how-
ever, they still require a direct propagation path, which is often
achieved by steering a directional antenna or beam toward the
source, even through a wall.

Comparison and Limitations Our method can recover
speech at a source-to-receptor distance of 2m with WER
around 0.2. This performance is not as good as the best prior
results of the state-of-the-art side-channel methods, but it can
be regarded as a trade-off of attack distance, line-of-sight
requirements, and stealthiness. Our attack leverages telecom
optical fibers as a passive, low-profile conduit: the attacker
can be 50m away, requires no line of sight to the victim
environment, and resists commercial ultrasonic jammers, as
demonstrated in our case study.

Regarding the limitations of our method, the acoustic sensi-
tivity of optical fibers depends on the design of sensory recep-
tors, while other sensors, like microphones, are commercially
available and readily capable of capturing airborne sound with
high fidelity. Another limitation is the reliance on expensive
and specialized equipment, i.e., DAS systems (ranging from
several thousand to tens of thousands USD), creating a higher
barrier to entry compared to cheaper microphones and other
sensors. Moreover, fiber-optic cables are fragile and prone to
accidental damage. If a cable is broken, the eavesdropping will
immediately cease to operate, and restoring the attack would
require physical re-installation.

XI. CONCLUSION

The work presents a study on how standard telecommunica-
tion optical fibers can be exploited for acoustic eavesdropping.
We not only discuss the theoretical basis for detecting sound-
induced deformations in optical fibers, but also propose a phys-
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ical “sensory receptor” structure to amplify airborne sounds for
more effective eavesdropping. Our experimental results show
that one can recover detailed information, from human activi-
ties and indoor localization to recognizable speech. Our work
also emphasizes the need for continuous security assessments
of widely deployed technologies like FTTH and motivates the
development of stronger protections to counteract emerging
side-channel threats.

XII. ETHICAL CONSIDERATION

In this section, we present a discussion of the ethical
considerations for this work, structured around the four key
principles outlined in the Menlo Report [97].

Respect for Persons: To measure the sound intensity of hu-
man speech, we recruited 11 volunteers who orally consented
to the use of their sound intensity data for research purposes.
Only the intensity of their everyday speaking voices is mea-
sured by a sound level meter, and no sensitive information is
recorded. Additionally, the sound sources, including human ac-
tivities and speech, are derived from publicly available datasets
that have been carefully curated and reviewed to ensure
compliance with ethical standards and privacy considerations.
All experiments are conducted within a controlled laboratory
environment, ensuring that no individuals are directly impacted
by the research. To safeguard the well-being of our researchers
during the experiments, strict safety protocols are followed.
Essential protective equipment, including earmuffs with a
noise reduction function, is provided to mitigate potential
hazards.

Beneficence: Regarding the benefits, this work provides
valuable insights and potential mitigation methods that can
lead to improved privacy measures and better protection
against eavesdropping attacks through optical fibers. By quan-
tifying range, WER, and environmental constraints, we reduce
uncertainty, promote defensive investments, and help prevent
misuse. Revealing the feasibility and limits of optical-fiber
acoustic eavesdropping enables stakeholders (e.g., ISPs, enter-
prises, standards bodies) to assess risk and adopt mitigations
(e.g., installation practices, optical isolation, managed reflec-
tions, policy, and audit controls), which can in turn improve the
trust in optical communication infrastructures and thus benefit
society as a whole.

Regarding the risks or adverse effects of this work, the
technique could be misused by personnel with physical access
to fiber endpoints (e.g., rogue insiders) to covertly extract
speech or activities. We therefore omit implementation details
that would materially lower the barrier to weaponization (e.g.,
exact DAS devices). Although telecom operator practices are
outside users’ control, we also provide home-applicable miti-
gations, such as minimizing in-room fiber slack and preventing
contact with resonant structures, which users can readily adopt
and effectively mitigate the risk.

Justice: The research is conducted in an equitable and
unbiased manner, including the selection of the volunteers,
and focuses solely on the technical properties of optical fiber
systems. It does not target or involve any specific groups,

organizations, or individuals. By employing a controlled ex-
perimental setup, the study ensures that no one is unfairly
exposed to risks or burdens resulting from the research.
The design of the project prioritizes fairness and seeks to
distribute the benefits of the findings broadly, without favoring
or disadvantaging any particular group.

Respect for Law and Public Interest: This study is carried
out in full compliance with all relevant laws and regulations
governing scientific research, data collection, and cyberse-
curity. No unauthorized access to communication networks
or private data is involved at any stage of the research. No
unethical/illegal voice recorders were purchased. The use of
a controlled experimental environment ensures that the study
does not infringe upon privacy laws, wiretapping regulations,
or any other legal protections related to communication sys-
tems.
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Fig. 15: Sound intensity of human speech: (a)mean and
standard deviation of the sound level of different volunteers,
(b) a distribution of all recorded samples.
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APPENDIX

A. Sound Level of Human Speech

To measure the sound intensity of human speech, we
recruited 11 volunteers who orally consented to the use of their
sound intensity data for research purposes. We then recorded
the intensity of their everyday speaking voices. A sound level
meter was used for these measurements, with a sampling
frequency of 1Hz. Each volunteer was asked to count from 1 to
10 at their normal speaking volume. During the recording, the
microphone of the sound level meter was positioned 1–2 cm
from the volunteer’s mouth to ensure accurate measurement
of the speech sound pressure level.

For each volunteer, we recorded the sound intensity over a
5-second interval. The statistical analysis of the collected data
shows that the average intensity was 83.8 dB. The maximum
recorded value was 97.2 dB, and the minimum value was
51.1 dB. We further visualize the sound intensity of all vol-
unteers in Figure 15a, and a distribution of all sound intensity
samples in Figure 15b. It can be observed that the most sound
intensities fall within the range above 80 dB. These results
provide a representative range and average for normal human
speech intensity.

B. Confusion Matrix of Sound Event Detection

The confusion matrix shown in Figure 16 provides a detailed
view of the classification results. The x-axis represents the
predicted classes, while the y-axis represents the true classes.
Each class contains 40 samples, so the total count in each
row sums up to 40. Notably, some output labels do not fit
into the selected 14 categories, leading to the inclusion of an
“others” category to capture instances that were not classified
into any of the predefined classes. The model performs well in

Fig. 16: Confusion matrix of the sound event detection results.

certain categories, achieving high counts along the diagonal,
which indicates correct predictions. However, there are several
off-diagonal values that reflect misclassifications. For example,
the “keyboard typing”, “mouse click”, and “vacuum cleaner”
classes show some level of confusion with other classes,
suggesting that the model might have difficulty distinguishing
between similar sound features in these categories.

C. Localization Methods

When sound signals are located within the radial distance
of 2×d2

λ , where λ is the wavelength of the sound signal, and d
is the distance between sound source and the receptor, this is
a near-field scenario, and a spherical sound wave needs to be
considered [98], [99], [100], [101]. Our setup is a near-field
scenario.

The distance between the receptors is denoted as dR, and
the distances from the sound source S, at (xS , yS) to points
A, B, and C are dA, dB , and dC , respectively. Let u represent
the speed of sound in air. The time difference for the sound to
travel between point A to point B, and between point C and
B can be expressed as:

τAB =
dA − dB

u
, τCB =

dC − dB
u

.

Let the angle between the line connecting the point of the
sound source to B and the x-axis be denoted as θB . Using the
law of cosines, we can derive the following equations:

d2A = d2R + d2B − 2× dR × dB × cos(θB)

d2C = d2R + d2B − 2× dR × dB × cos(π − θB).

Given τAB , τCB , d, and u, solving these four equations above
allows us to determine dA, dB , dC , and θB . It’s important to
note that we only retain the solution where θB is less than π.
Knowing the coordinates of point B as (xB , yB), the estimated
position of the sound source can then be determined as:

(xS , yS) = (xB − dB × cos(θB), dB × sin(θB)) .

Thus, accurately estimating τAB and τCB from the signals
measured at points A, B, and C is sufficient for determining
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TABLE III: Estimation of Time Difference of Arrivals
Sound
Loc.

Ground Truth Estimation
τAB (ms) τCB (ms) τAB (ms) τCB (ms)

0 -7.36 7.64 -7.9 7.7
1 0.00 7.64 -1.1 0.3
2 7.36 7.36 6.5 7.2
3 7.64 0.00 7.3 0.2
4 7.64 -7.36 7.5 -6.5
5 -4.73 7.22 -5.5 5.3
6 0.00 6.68 -0.4 7
7 4.73 4.73 4.3 4.8
8 6.68 0.00 5.9 0.3
9 7.22 -4.73 7.3 -4.7
10 -3.17 6.28 -2.4 7.8
11 0.00 5.24 -0.4 5.5
12 3.17 3.17 2.7 3.2
13 5.24 0.00 4 0.1
14 6.28 -3.17 5.9 -2.7
15 -2.32 5.33 -2.3 7.6
16 0.00 4.13 0.6 2.7
17 2.32 2.32 1.7 2.9
18 4.13 0.00 3.1 0
19 5.33 -2.32 5.2 -2.6
20 -1.81 4.53 -3 5.1
21 0.00 3.35 1.7 3.6
22 1.81 1.81 2.1 3.4
23 3.35 0.00 3.1 -0.2
24 4.53 -1.81 3.7 -2.7

TABLE IV: Estimation of Sound Sources’ Locations
Sound
Loc.

Ground Truth (m) Estimation (m, except θB in rads)
∆d (m)

xS yS xS yS dA dB dC θB
0 0 0.1 -5.28 0.00 5.14 7.88 10.54 0.26j NA
1 1.3 0.1 4.86 -24.00 -24.49 -24.11 -24.00 1.48 NA
2 2.6 0.1 2.48 0.20 2.49 0.23 2.73 1.02 0.16
3 3.9 0.1 3.86 0.53 3.90 1.37 1.44 2.74 0.43
4 5.2 0.1 5.04 0.11 5.04 2.44 0.19 3.10 0.16
5 0 1.3 36.46 -32.61 -48.92 -47.01 -45.17 0.77 NA
6 1.3 1.3 1.21 0.92 1.53 1.67 4.09 0.59 0.38
7 2.6 1.3 2.50 1.35 2.84 1.35 3.02 1.50 0.11
8 3.9 1.3 3.81 1.80 4.22 2.17 2.28 2.16 0.51
9 5.2 1.3 4.94 0.81 5.01 2.48 0.85 2.81 0.55
10 0 2.6 1.12 0.00 0.64 1.48 4.18 0.47j NA
11 1.3 2.6 1.15 2.39 2.65 2.79 4.70 1.03 0.26
12 2.6 2.6 2.47 2.79 3.73 2.79 3.90 1.53 0.23
13 3.9 2.6 3.85 3.89 5.47 4.08 4.12 1.88 1.29
14 5.2 2.6 5.11 2.88 5.86 3.82 2.88 2.29 0.30
15 0 3.9 0.98 0.00 0.82 1.62 4.25 0.26j NA
16 1.3 3.9 1.75 5.44 5.72 5.51 6.45 1.42 1.61
17 2.6 3.9 2.23 3.80 4.40 3.82 4.82 1.47 0.38
18 3.9 3.9 3.90 5.61 6.83 5.76 5.76 1.80 1.71
19 5.2 3.9 5.56 4.34 7.05 5.25 4.35 2.17 0.57
20 0 5.2 -1.05 5.26 5.36 6.40 8.17 0.96 NA
21 1.3 5.2 2.08 3.12 3.75 3.16 4.41 1.41 2.22
22 2.6 5.2 2.25 3.02 3.77 3.04 4.22 1.46 2.20
23 3.9 5.2 4.06 5.97 7.23 6.15 6.08 1.81 0.79
24 5.2 5.2 9.44 14.32 17.16 15.87 14.94 2.02 NA

the location of the sound source. We used the Generalized
Cross-Correlation (GCC) method [102], together with a careful
manual check, to obtain τAB and τCB , and further, estimate
the ground truth on the sound source’s position.

As shown in Table III, it presents the ground truth values
of the time difference of arrivals, i.e., τAB and τCB , and
their estimations τAB and τCB . In Table IV, it presents the
ground truth values of the coordinates of sound sources (xS

and xS), and the estimation (xS , yS , dA, dB , dC , and θB). The
estimation error is presented in the column labeled ∆d (m),
where NA indicates the estimation is not a valid solution of
the method.

D. Impacts of Denoising and Speech Enhancement

Figure 17 shows (a) the spectrogram of the original audio,
(b) the spectrogram of the audio recovered from optical fiber
vibration, and (c) the spectrogram after denoising and speech
enhancement applied to (b). The processed signal appears
more prominent in the spectrogram.

E. Increased Distance and Obstacles

We investigated the maximum effective eavesdropping
range, finding that at 8m, WER approaches 1, indicating

(a) (b)

(c)

Fig. 17: The spectrogram of an (a) original audio, and a
recovered audio (b) without denoising, and (c) with denoising.

(a) (b)

(c)

Fig. 18: (a) Spectrogram of a female voice snippet recorded on
an iPhone 13 with no jamming (b) Spectrogram of the same
snippet recorded on the iPhone 13, and ultrasonic jamming
began around 14.0s. (c) Spectrogram of the same snippet
recorded by the optical fiber while the ultrasonic jamming is
always on.

nearly complete transcription failure. This is primarily due
to an increased insertion count I , resulting in high word
misrecognition. We also experimented with placing receptors
within a ceiling 3 meters above the ground or in partitioned
areas. The ceiling or partition material was approximately 3-
5 cm thick and made of wood. In this setup, the WER for
all models exceeded 0.9, indicating that it is very challenging
to extract meaningful information from the recovered audio
signal. This is due to the walls or ceiling absorbing most of the
energy, causing severe attenuation of the sound signal, which
leaves the recovered audio dominated by noise. It also shows
that trivially hiding behind ceilings/walls is unlikely to work
effectively, and how to hide the sensory receptor remains an
open problem.

F. Impacts of Ultrasonic Jamming

We visualized the effect of ultrasonic jamming on the
microphone signal, as shown in Figure 18. When the jamming
begins at approximately 14.0 s (Figure 18b), the original
sound becomes masked by the jamming. The optical fiber is
also affected (Figure 18c), but its low-frequency components
are preserved, remaining sufficiently informative for speech
recognition.

18


	Introduction
	Background
	Optical Fiber Sensing
	Basics on Distributed Acoustic Sensing

	Threat Model
	System Model
	Attacker Model

	Can Linearly Laid Fibers Hear Well Enough?
	Preliminary Experimental Setup
	Capturing Sound from Loudspeaker
	Capturing Sound of Walking
	Observations

	Design of Sensory Receptor
	Sound Propagation
	Deformation and Phase Change
	Sound Information Recovery
	Limitations Due to Noise and Saturation

	Characterizing Sensory Receptor
	Sensory Receptor Performance
	Testbed
	Metrics for Evaluation
	Intrinsic Parameters
	External Parameters


	Experiments of Eavesdropping
	Setup
	Layout
	Workflow

	Sound Event Detection
	Sound Sources of Domestic Activities
	Detection Models
	Detection Evaluation Metrics
	Results and Analysis

	Indoor Localization
	Localization Error Metric
	Results and Analysis

	Speech Eavesdropping
	Sound Sources of Human Speech
	Speech Recognition Principles and Models
	Speech Recognition Evaluation Metrics
	Results and Analysis


	Case Study: Evaluation in Office Scenario
	Impacts of Optical Fiber Box Placements
	Impacts of Noise and Ultrasound Jamming
	Noise along the Optical Fiber as Conduit
	Noise around the Sensory Receptor
	Ultrasonic Jamming


	Potential Mitigation Methods
	Related Work
	Conclusion
	Ethical Consideration
	References
	Appendix
	Sound Level of Human Speech
	Confusion Matrix of Sound Event Detection
	Localization Methods
	Impacts of Denoising and Speech Enhancement
	Increased Distance and Obstacles
	Impacts of Ultrasonic Jamming


