
PORTRUSH: Detect Write Port Contention
Side-Channel Vulnerabilities via Hardware Fuzzing

Peihong Lin, Pengfei WangB, Lei Zhou, Gen Zhang, Xu Zhou, Wei Xie, Zhiyuan Jiang, Kai LuB
National University of Defense Technology

{phlin22, pfwang, zhoulcs, zhanggen, zhouxu, xiewei, jzy, kailu}@nudt.edu.cn

Abstract—CPU vulnerabilities pose ongoing security challenges
in modern CPU architectures. Among the CPU vulnerabilities,
write port contention—caused by multiple functional modules
simultaneously competing for a limited number of shared write
ports—remains insufficiently studied. In this paper, we study
write port contention side-channel vulnerabilities in CPUs and
propose PORTRUSH, a novel fuzzing framework designed to
detect and validate such vulnerabilities at the register-transfer
level (RTL). First, PORTRUSH constructs a Write Request Graph
(WRG) to statically identify potential write port contention
instances by modeling write paths and priority relationships
among functional modules that target shared storage elements.
Second, within the WRG, PORTRUSH implements a Hierarchical
Aggregation and Decoding method to efficiently detect write port
contention by monitoring relevant hardware signals across design
hierarchies. Third, PORTRUSH employs a Contention-guided
Hardware Fuzzing approach to trigger write port contention
and automatically combine contention-triggered instruction se-
quences with transient execution attack patterns, enabling vali-
dation of write port contention side-channel vulnerabilities. We
evaluate PORTRUSH on three RISC-V CPUs (BOOM, NutShell,
and Rocket Core) and demonstrate its effectiveness in identifying
and triggering write port contention. Furthermore, we validate
that the discovered vulnerabilities can be exploited in realistic
write port contention attack scenarios. Based on these vulnera-
bilities, we present two novel attack vectors: Birgus-variant,
which exploits contention at the physical register file in the
Reorder Buffer, and MSHRush, which leverages contention be-
tween the Load/Store Unit (LSU) and Miss Status Handling
Register (MSHR) at the L1 data cache to induce secret-dependent
execution delays. We also propose mitigation strategies for CPU
developers to prevent such vulnerabilities.

I. INTRODUCTION

The increasing complexity of modern CPU architectures has
led to the emergence of various micro-architectural vulner-
abilities, including speculative execution attacks [14], [25],
[27], [29] and privilege escalation exploits [6], [8], which
pose serious threats to both hardware and software security.
Among these, cache-based side-channel attacks have been
the most widely studied and exploited in practice. Attacks
such as FLUSH+RELOAD [21], PRIME+PROBE [31], and

B
Corresponding author(s).

Evict+Time [32] leverage subtle differences in cache access
times to extract sensitive information from victim processes.
As a result, most existing detection and mitigation efforts,
including Kernel Page-Table Isolation [20] and various cache
partitioning and randomization techniques [18], [38], have
focused primarily on defending against cache-based side chan-
nels.

In contrast, port contention side-channel attacks, especially
those caused by write port contention, have received far less
attention from the research community and industry. In modern
CPUs, different functional modules (i.e., write entities) often
share a limited number of write ports to access storage ele-
ments such as register files or caches. When multiple entities
issue write requests in the same cycle that exceed the number
of available write ports, contention occurs. To arbitrate access,
most CPUs employ priority-based mechanisms, such as fixed-
priority or first-come-first-served policies [1], [5], [43], which
can cause lower-priority instructions to be delayed by higher-
priority ones, resulting in observable timing differences.

Recent works [2], [12], [23] have shown that timing dif-
ferences, when combined with transient or speculative ex-
ecution, can form the basis of powerful side-channel at-
tacks. Specifically, attackers can craft gadgets that deliberately
trigger write port contention by manipulating control-flow
or data dependencies, causing high-priority instructions to
compete with low-priority victim instructions for write port
access. If the victim’s execution time varies depending on
secret-dependent conditions (e.g., whether a specific secret
bit matches an attacker-controlled probe), attackers can infer
sensitive information based on measured timing differences.
Write port contention that can be exploited in this manner is
termed write port contention side-channel vulnerability.

Despite their threat, existing vulnerability detection ap-
proaches, including both static analysis (e.g., formal ver-
ification [17], [22]) and dynamic testing (e.g., hardware
fuzzing [13], [16], [24], [28], [35], [39]), do not specifically
target write port contention side-channel vulnerabilities. As
a result, hidden instances of write port contention may go
undetected, and it remains unclear whether and how these
cases can be exploited in real-world attacks.

In this paper, we present PORTRUSH, a novel hardware
fuzzing framework designed to detect write port contention
side-channel vulnerabilities. PORTRUSH combines four es-
sential stages: (i) static identification of potential write port
contention instances, (ii) dynamic monitoring of contention

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240587
www.ndss-symposium.org

instances, (iii) triggering write port contention through a
hardware fuzzing approach, and (iv) automated validation
by combining write port contention with transient execution
attack patterns to assess the feasibility of real side-channel
attacks. Moreover, based on the detection and validation of
these vulnerabilities, we propose mitigation strategies for CPU
designers.

However, realizing this framework presents several chal-
lenges. (i) Statically identifying potential write port con-
tention is challenging. Modern RISC-V CPUs [10], [15],
[43] feature deeply nested, modular structures with complex
arbitration logic, making it difficult to extract all write paths
and priority relationships among write entities for comprehen-
sive static analysis. (ii) Real-time monitoring of write port
contention is non-trivial. Out-of-order execution in modern
CPUs [4], [15], [43] decouples programmed instruction order,
making it infeasible to monitor which entities issue write
requests (i.e., detect write request behaviors) based on instruc-
tion order. Thus, PORTRUSH must monitor internal signals at
runtime, but the large signal space makes it challenging to
efficiently identify relevant signals and design scalable, low-
overhead detection mechanisms. (iii) Dynamically triggering
and validating write port contention is challenging. Current
dynamic validation approaches, such as hardware fuzzing [23],
[24], [39], are not specifically designed to target write port
contention. These methods lack contention-aware feedback
and do not guide the generation of simultaneous write requests
from multiple entities. Moreover, they do not support the
automatic combination of triggered contention instances with
transient execution attack patterns, thus failing to validate
the exploitability of port contention through real side-channel
attacks.

PORTRUSH solves the aforementioned challenges by fol-
lowing three approaches. (i) We propose a Write Request
Graph (WRG) abstraction that models arbitration logic and
priority relations in RTL, enabling automated extraction of all
write paths and their associated priorities, thereby identifying
potential write port contention (§IV-B). (ii) We design a
Hierarchical Aggregation and Decoding mechanism that
collects relevant signals across module boundaries and effi-
ciently reconstructs write request behaviors and contention in-
stances in real time (§IV-C). Write port contention is detected
when the number of write requests issued by write entities
exceeds the number of available write ports associated with the
target storage element. (iii) We develop a Contention-guided
Hardware Fuzzing approach that automatically triggers write
port contention by maximizing write request coverage, actively
generating simultaneous requests from multiple entities, and
seamlessly combining these with transient execution attack
patterns to validate write port contention side-channel attacks
(§IV-D).

In summary, we make the following contributions:
• We conduct the study of write port contention side-

channel vulnerabilities in CPU microarchitectures. Our
work covers static identification, monitoring, triggering,
and validation of these vulnerabilities, providing compre-

hensive understanding of their root causes and impact.
• We design and implement PORTRUSH, a novel fuzzing

framework to detect write port contention side-channel
vulnerabilities. PORTRUSH is evaluated on three real-
world RISC-V CPUs (BOOM [43], NutShell [15], and
Rocket Core [5]), identifying 177 distinct instances of
potential write port contention and successfully triggering
35 of them. Among these, three instances are verified to
be exploitable in conjunction with transient or speculative
execution as side-channel attack vectors.

• We validate the feasibility of write port contention side-
channel attacks. By combining contention-triggering in-
struction sequences with transient or speculative exe-
cution patterns, we discover three side-channel attack
vectors, including two novel variants (MSHRush on
BOOM and Birgus-variant on NutShell) and the
known Spectre-STC attack on BOOM. Compared
to traditional cache-based attacks, write port contention
side-channel attacks enable information leakage even in
processors with secure or partitioned caches.

II. BACKGROUND

Hardware Fuzzing. Hardware fuzzing is an automated
dynamic testing technique designed to explore the functional
boundaries of hardware designs and identify potential vulnera-
bilities by iteratively generating and executing test cases [13],
[16], [24], [28], [35], [39]. Typically, the hardware fuzzer gen-
erates a set of test cases, known as seeds, which are executable
programs composed of instruction sequences. These seeds are
then executed on the DUT using hardware simulation tools,
such as open-source Verilator [34] or commercial simulators
such as Synopsys VCS [9]. During execution, coverage feed-
back is collected in one of two ways: actively by instrumenting
the DUT with dedicated logic to monitor specific behaviors
or passively via built-in metrics provided by the simulation
tools [24], [28]. Common coverage metrics include the finite
state transitions of control registers (i.e., register coverage)
[13], [24], multiplexer pattern coverage [28], or accessed
register states [35]. These coverage insights guide further test
case mutations, such as bit flips or instruction substitutions,
strategically driving the testing towards improved hardware
design coverage.

To further enhance vulnerability detection, differential test-
ing and assertion-based verification are often integrated into
hardware fuzzing workflows. Differential testing identifies
vulnerabilities by comparing outputs or states (e.g., regis-
ter values, memory consistency, exception handling) of the
DUT against those of a known-correct golden reference
model [23], [24], [39]. Assertion-based verification encodes
expected hardware properties as assertions within the DUT,
and violations of these assertions indicate potential vulnera-
bilities [13], [30]. However, despite the effectiveness of these
techniques in detecting hardware vulnerabilities, systematic
analysis of hardware fuzzing methods targeting write port
contention remains limited. On one hand, current hardware
fuzzing techniques lack appropriate methods to monitor write

2

Functional Modules

ALU (2) DIV (3)CSR (1) ……

Arbiter

Register File

Port

req 1 req 3req 2

Issue

 Same

 Cycle

Write Requests

(req 1, req 2, req 3) >
Write Port

(Port)

Port Contention !

Fig. 1: An illustration of the write port contention

request behaviors, which would provide useful feedback for
optimizing mutation strategies. On the other hand, existing
assertion-based verification approaches are not suited to detect
write port contention side-channel vulnerabilities, as these
are essentially non-functional, resource-related concerns rather
than functional correctness errors.

Timing Side-channel Attacks. Time side-channel attacks
are a powerful form of information leakage that exploits
subtle timing differences observed during a system’s execution
to uncover secret or sensitive data. Typically, these attacks
analyze measurable differences in execution time stemming
from the internal microarchitectural behavior of CPUs. One
prominent category of timing side-channel exploits is cache-
based attacks, such as PRIME+PROBE [31], Evict+Time [32],
and FLUSH+RELOAD. Classical examples, such as Spec-
tre [27] and Meltdown [29], exploit speculative execution by
manipulating cache states to leak sensitive information. More
recent studies have revealed timing side channels based on
port contention within CPU functional modules. For example,
the attack named SMoTherSpectre [12] leverages contention
on CPU execution ports. By strategically causing a conflict
at the hardware execution-resource level during speculative
execution, adversaries measure timing differences induced by
resource contention to reconstruct sensitive information.

III. MOTIVATION

1) Causes of Write Port Contention: Write port contention
arises in modern CPUs when, within a single clock cycle, the
number of write requests issued by functional modules (e.g.,
CSR, ALU, and DIV) exceeds the number of available shared
write ports to storage elements such as register files, memory,
or caches. This situation is common in practical designs [1],
[5], [15], [43], where cost and area constraints often limit the
number of write ports. To resolve such contention, designers
implement arbitration mechanisms, such as fixed-priority or
first-come, first-served (FCFS) schemes, that determine which
request is granted access in each cycle. For example, in a

1 attacker:
2 rdcycle x10
3 call victim
4 rdcycle x11
5 sub x11, x11, x10
6 /* Use timing difference in x11 to infer secret bit */
7 victim:
8 ...
9 /* low-priority div is data-dependent on beq branch */

10 div x18, x15, x14
11 ...
12 /* Branch predictor misprediction setup */
13 beq x16, x18, L1 /* Branch mispredicted as not taken */
14 transient:
15 /* Begin transient window */
16 la x19, secret /* Load address of secret */
17 ld x20, 0(x19) /* Load secret value */
18 andi x20, x20, 0x1 /* Extract secret bit */
19 beqz x20, L1 /* If secret bit = 0, skip alu storm */
20 alu_storm:
21 /* multiple alu instructions within 1 cycle */
22 add x24, x15, x14
23 ...
24 L1:
25 ...
26 ret

Listing 1: An example of combining a speculative attack with
write port contention to leak secret information

[Line 2] Victim & Time T0

[Line 10] Long-latency Division

[Line 13] Mispredicted Branch

[Lines 16-18] Load Secret & Extract Secret Bit

[Line 19] if (secret bit == 1)

[Lines 20-22] ALU Storm: multiple ALU instrs

[DIV and ALU Storm execute concurrently]

(OOO window)

[ALU Storm creates write port contention]

(blocking DIV write)

[Line 4] End & Time T1, ΔT = T1 - T0

(ΔT is larger if contention)

Fig. 2: Motivation example

fixed-priority scheme, each module is assigned a predefined
priority, and the highest-priority request is served first, while
lower-priority requests are deferred to subsequent cycles.

However, this arbitration introduces timing discrepancies:
lower-priority or later-arriving write-eliciting instructions may
experience observable delays when they contend for the same
port as higher-priority instructions. Crucially, these timing
delays are not just a performance artifact—they can be ex-
ternally observed and exploited by attackers. By carefully
orchestrating contention, an attacker can induce measurable
timing differences in the execution of victim instructions,
thereby constructing side-channel attacks that leak sensitive
information via write port contention.

2) Security Risks of Write Port Contention: Write port con-
tention introduces exploitable security risks when an attacker

3

STATIC ANALYSIS

HARDWARE

FUZZING

DUT
Source Code

of DUT

Graph

Analyzer

Write

Request Graph

Priorities

Selection
elements

Target values

Signal

Aggregation

Engine

3

DUT

Simulation

Seed Corpus

Instrument

1

2

Exploration Exploitation

add x1,x2,x3

div x3,x4,x5

.....

add x1,x2,x3

div x3,x4,x5

.....

PSO Optimizer

Opcodes Distribution

Instruction Length

Instruction Order

Mutator

Input Mutation

Interpretation

Data

SimInputSeeds

1

Optimized

Strategy

Signal

Decoder

2

Signal

Sequences

Register

Coverage

4
Target Signal

Sequence Values

3

Identified Signal

Sequence Values
4

Write Request

Behaviors

5

Monitor

7

8

VULNERABILITY VALIDATION

+

Exploitable

Seeds Behavior

Coverage

+

Diagnoser

PSO Optimizer

Write Port

Contention

Transient

Execution

Attack

Pattern Can be Port

Contention

Side Channel?

Write Port Contention

Side-channel Vulnerability!

6

9

Fig. 3: The overview of PORTRUSH.

can deliberately delay lower-priority instructions through
bursts of high-priority instructions, resulting in measurable
timing differences. This timing side-channel becomes a practi-
cal vulnerability when combined with transient or speculative
execution attack patterns, enabling attackers to leak sensitive
information that would otherwise be protected by software-
level checks.

In a typical attack scenario, the victim function contains
a long-latency, low-priority division instruction div (Line
10) whose result determines the outcome of a conditional
branch (Line 13). As shown in Listing 1 and Figure 2,
the attacker first poisons the branch predictor to ensure the
branch is mispredicted. When the attack is triggered, the CPU
speculatively enters a transient window (Lines 14-23) before
the true branch outcome is known. During this window, the
victim function loads the secret (Lines 16-18) and checks
whether a specific secret bit matches an attacker-controlled
probe value (Line 19). If the condition is met, the code
speculatively executes a burst of high-priority alu instructions,
intentionally issuing multiple write requests to the register
file and creating intense write port contention (Lines 20-
23). The div instruction and the speculative alu instructions
can overlap in execution due to the out-of-order scheduling
capabilities of modern CPUs. Specifically, while div is still
pending and its result is needed for the branch in Line 13,
the processor may speculatively execute instructions in the
transient window, such as the alu storm containing mul-
tiple alu instructions, before actual branch resolution. This
behavior allows speculative alu instructions to contend for
the write port at the same time as the div is completing. As
a result, significant write port contention occurs only when
the secret bit matches the probe value. Although speculative

instructions are eventually squashed after branch misprediction
is resolved, the contention they cause delays the write-back
of the division result. This microarchitectural delay persists
and can be detected by the attacker through precise timing
measurements of the victim function’s execution. This case
demonstrates that write port contention, when combined
with transient execution attack patterns, creates a novel
and exploitable side-channel vulnerability.

IV. DESIGN OF PORTRUSH

A. A High-Level Overview

PORTRUSH detects write port contention side-channel vul-
nerabilities by static identification, real-time monitoring, and
dynamic fuzzing combined with side-channel attack valida-
tion. Specifically, PORTRUSH first extracts the Write Request
Graph to model arbitration and priority relations and identify
potential write port contention instances (§IV-B). It then em-
ploys a lightweight Hierarchical Aggregation and Decoding
mechanism to monitor real-time write request behaviors and
write port contention instances (§IV-C). Third, a Contention-
guided Hardware Fuzzing approach is introduced to automat-
ically trigger write port contention (§IV-D). Finally, write port
contention side-channel attacks are constructed by combining
write port contention with transient execution. Contention
instances that can be exploited in this manner are validated
as write port contention side-channel vulnerabilities.

As depicted in Figure 3, PORTRUSH comprises three
integrated modules: static analysis, hardware fuzzing, and
vulnerability validation. Blue numbers indicate steps in the
static analysis phase, while red numbers indicate steps in the
hardware fuzzing phase.

4

Static Analysis and Monitoring Instrumentation. The
Graph Analyzer extracts the WRG, calculates priorities of
write entities, and identifies selection elements and their target
values required for successful write requests. The Signal
Aggregation Engine then defines instrumentation rules to ag-
gregate selection signals, mapping each write request to a
unique signal sequence (i.e., target signal sequence values).
The map containing target signal sequence values is stored
locally and retrieved during fuzzing to reconstruct and identify
write request behaviors.

Hardware Fuzzing. The Seed Corpus of fuzzing is or-
ganized into two pools: the exploration pool and the ex-
ploitation pool. The exploration pool leverages a dictionary
derived from the RISC-V ISA [3], mapping valid opcodes to
their operand formats and enabling the generation of diverse
instruction templates. During exploration, the Mutator selects
opcodes and fills in operand fields (e.g., rd, rs, imm), without
strictly constraining memory or control flow targets, allowing
PORTRUSH to explore a wide range of architectural excep-
tions (e.g., misaligned accesses and out-of-bounds reads and
writes). During exploitation, the Mutator selects seeds from
the exploitation pool to construct new instruction sequences
that can trigger write port contention.

Vulnerability Validation and Feedback. During DUT
simulation, the signals of selection elements are aggregated
and encoded into signal sequences to the Signal Decoder.
The Signal Decoder reconstructs write request behaviors from
the signal sequences, and the Diagnoser identifies contention
instances. The exploitability is assessed by correlating detected
contention with transient execution attack patterns, and con-
tinuously feeding coverage and contention information back to
the PSO optimizer. This feedback loop allows the optimizer
to adapt its fuzzing strategies, such as opcode selection,
instruction sequence length, and instruction ordering, thereby
enabling the automated discovery of write port contention side-
channel vulnerabilities.

B. Write Request Static Profiling

We first construct the WRG to model the arbitration and
priority relationships of write entities and identify potential
write port contention.

1) Write Request Graph Construction: Given a CPU RTL
design, PORTRUSH abstracts the WRG from its RTL code. In
the WRG, each node represents a hardware element involved
in the generation or transmission of write requests, such
as functional modules (e.g., ALU), selection elements (e.g.,
multiplexers, arbiters), and storage elements (e.g., registers,
caches, and memory). Each edge denotes a possible data or
control dependency between these elements, indicating how
a write request traverses from its source to its destination.
Formally, we define the WRG as follows:

Definition 1 Given the RTL of DUT D, the WRG is
defined as Gw(D) = (V,E), where V is the set of elements
in D, including write entities, selection elements, and storage
elements. E is the set of directed edges (vi, vj), where each
edge indicates that a write request can propagate from vi

to vj in the RTL. Each edge may be annotated with its
corresponding arbitration or selection condition.

The construction of the WRG includes three steps:
(1) Extracting the graph structure from the DUT. We

first extract the necessary structural information directly from
the DUT. All elements in the RTL design involved in write
operations are identified as nodes in the graph, including 1)
functional modules that generate write requests, 2) elements
such as wires, registers, ports, and multiplexers that propagate
write requests, and 3) storage elements with write ports
that receive write requests. Each directed edge in the graph
represents a possible data flow or control dependency between
these elements.

(2) Identification and simplification of write paths.
Starting from each write entity in the DUT, we perform
a depth-first search to enumerate all possible paths leading
to the storage elements. During this process, only elements
directly involved in arbitration, such as selection elements
with multiple inputs and a single output (e.g., multiplexers,
priority arbiters), are retained in the graph. This results in
a simplified representation that highlights the essential arbi-
tration logic, filtering out micro-events or transitions that do
not impact write port contention. Formally, a path path = <
(e, s1), (s1, s2), . . . , (sn, se) > denotes the sequence of nodes
and edges from a write entity e to a storage element se, with
intermediate nodes si representing only selection or arbitration
logic.

(3) Normalization of multi-input selection elements. In
RTL designs, write arbitration is typically implemented using
selection elements such as multi-input priority arbiters, mul-
tiplexers, or priority encoders. To facilitate priority extraction
and analysis, each multi-input selection element is normalized
by decomposing it into a cascade of two-input selection
elements. Given a selection element with inputs I1, I2, . . . , Ik
(k ≥ 3) and a priority order I1 > I2 > . . . > Ik, we construct
a cascade of k − 1 two-input selection elements. At each
stage i, the selection element receives Ii and the previous
stage’s output Oi−1, producing output Oi, thereby ensuring
that higher-priority inputs are selected first. The selection logic
is defined as follows:

• The first stage output is O1 = I1.
• For stage i (2 ≤ i ≤ k), the output is:

Oi =

{
Ii, if Ii = True
Oi−1, otherwise

(1)

After this transformation, the path of a write request
from a write entity to the write port can be represented as:
WP =< (e, s′′1), (s

′′
1 , s

′′
2), . . . , (s

′′
t−1, s

′′
t), (s

′′
t , se) >, where e

is the write entity, se is the storage element, and each s′′i
denotes a two-input selection element. The union of all such
nodes and edges forms the WRG, as illustrated in Figure 4.

2) Priority Calculation: In the WRG, as outlined in For-
mula 1, a write entity attains higher priority if its write request
is arbitrated by a selection element closer to the write port.
Therefore, we first assign priorities to all selection elements
in the WRG based on their shortest path distances to the write

5

1

[CONST]

4

2

3

Write Entities: 1 2 3 4

Selection Element: Storage Element:

[CONST]

[CONST]

[CONST]

[CONST]

[CONST]

Fig. 4: An illustration of the Write Request Graph

port, and then use these priorities to determine the priorities
of the write entities.

By treating each edge traversal as a unit distance, the
priority of a selection element s is defined as:

priority(s) = maxD − d(s, se) (2)

Where d(s, se) is the shortest path length from the selection
element s to the storage element se, and maxD is the
maximum such distance among all selection elements. Thus,
selection elements closer to the write port are assigned higher
priorities.

Subsequently, the priority of a write entity e is the average
priority of all selection elements along its write path:

priority(e) =

∑
si∈S

priority(si)

|S|
(3)

Where S denotes the set of all selection elements along e’s
write path, and |S| denotes the number of selection elements in
S. This approach ensures that write entities traversing higher-
priority selection elements are assigned higher priorities.

3) Identification of Potential Write Port Contention: For a
given storage element se, if the number of write entities Ne

simultaneously issuing write requests to the storage element
exceeds the available number of write ports Nport, it indicates
the presence of potential write port contention instances. The
number of such potential contention instances is calculated as:

C Num(se) =

Ne∑
k=Nport+1

(
Ne

k

)
(4)

Where C Num(se) denotes the total number of potential
write port contention instances that may occur at se. According
to Formula 4, when the number of entities attempting to issue
write requests exceeds the number of available write ports, the
number of potential contention instances is determined by the
combinations of these write entities.

C. Monitoring Write Port Contention

Given the WRG, PORTRUSH employs a Hierarchical
Aggregation and Decoding method to monitor write port
contention.The key idea is to monitor the signals of selection

Algorithm 1: Monitoring write port contention
Input: WRG of the DUT
Output: Potential Write Port Contention Instances

1 M← Prioritize_Modules(DUT)
2 foreach D ∈M do
3 seqD,map1 ← Collect_Signals(D)
4 E ← Prioritize_Entities(D)
5 U ← Get_SubModules(D), seq′D = seqD
6 foreach Di ∈ U do
7 seq′i ← Collect_SubSequences (Di)
8 seq′D,map2 ← Concatenate(seq′D, seq′i)

9 foreach ei ∈ E do
10 Tseqi ← Construct_Target_Seq(map1,map2)
11 Update((ei, T seqi))

12 seqt ← seqDt // Dt is the top-level module
13 foreach D ∈M do
14 seqD ← Extract_SubSequence(seqt), WD ← ∅
15 foreach ei ∈ E do
16 if Match_Target_Values(Tseqi, seqD) then
17 WD ←WD ∪ ei // Record write request
18 seqD ← seqD \ Si // Remove bits

19 if |WD| > Nport then
20 Identify_Contention (WD)

elements across RTL modules and determine whether the
number of write requests simultaneously issued by write
entities exceeds the number of write ports of the target storage
element. The main challenge lies in efficiently collecting and
integrating signals from nested modules into the top-level
module and accurately identifying write request behaviors
from the aggregated signal sequence. PORTRUSH addresses
these challenges in three steps: 1) Statically identify the
expected signal values of all selection elements along each
write entity’s write path when its request is accepted by
the write port. 2) Collect and hierarchically aggregate these
signals from all relevant selection elements into the top-level
RTL module. 3) Design a Signal Decoder to interpret the
aggregated signal sequence, thereby identifying write request
behaviors and monitoring write port contention. The complete
detection algorithm is presented in Algorithm 1.

1) Static Analysis for Instrumentation: Given the WRG of
the DUT, PORTRUSH first statically prioritizes RTL modules
according to their hierarchical dependencies, reflecting the
layered structure typical in RISC-V CPUs, where modules
are instantiated within one another (Line 1). This ensures that
lower-level modules are processed before their parent modules.

For each RTL module D in the prioritized list M,
PORTRUSH identifies all relevant selection elements in the
WRG and their associated signals. Specifically, it determines
the necessary signal conditions, referred to as target values,
that must be satisfied for each write entity to issue a valid
write request. This results in a signal sequence seqD for each
module and a mapping map1 that associates each write entity
ei with its dependent selection signals and their required values
(Line 3):

map1=
{
(ei, smi)|ei ∈ E , smi=(sj , vj)|sj ∈ Si, vj ∈ Vi

}
(5)

6

Where E is the set of write entities in module D, Si is
the set of selection elements along the write path of ei, and
Vi is the set of target values for these signals. This mapping
enables precise identification of the conditions under which
write requests are triggered, forming the basis for subsequent
decoding and contention detection.

Subsequently, PORTRUSH enumerates and prioritizes the
write entities in D according to their write priorities, en-
suring that entity-specific triggering conditions are accurately
captured (Line 4). The set of all sub-modules instantiated
within D is denoted as U , and the local signal sequence
seqD is initialized for hierarchical aggregation (Line 5). Signal
sequences are aggregated in a bottom-up manner: for each
sub-module Di in U , its signal sequence seq′i is concatenated
with seq′D to form the new aggregated sequence (Lines 6-8).
During each concatenation, a global offset mapping map2 is
maintained, recording the position of each monitored signal
within seq′D. The offset for each signal is computed as:

offseti =

i−1∑
k=1

|seqk|+ i− 1 (6)

map2={(si, offseti)| si ∈ S, offseti ∈ N, 1 ≤ i ≤ n} (7)

Where offseti is the offset of element i in seq′D, seqk is
the signal sequence of the k-th sub-instance, and S is the set
of elements.

Upon completion of hierarchical aggregation, for each write
entity ei in E , PORTRUSH constructs a global target signal
mapping Tseqi that associates each relevant selection signal
with its required value at the corresponding global offset
(Lines 9-11):
Tseqi = {(offsetj ,vj) | (sj , vj) ∈map1(ei), offsetj =map2(sj)} (8)

Where map1(ei) provides the monitored signal-value pairs
for ei, and map2(sj) gives the global offset of sj in the
concatenated sequence. Tseqi thus specifies the target value
assignment for each relevant signal in ei.

After all modules are processed, the aggregated sequence
seqt for the top-level module Dt is constructed, representing
the unified runtime state of all monitored signals (Line 12).

2) Decoding Aggregated Sequence and Monitoring Write
Port Contention: With the aggregated signal sequence,
PORTRUSH designs a Signal Decoder to identify write request
behaviors and monitor write port contention as follows:

(1) Signal subsequence extraction. For each module D, the
decoder uses map2 to extract the relevant signal subsequence,
ensuring accurate tracking of signal paths for all write entities
(Line 14).

(2) Decoding and comparison. Write entities are processed
in priority order (Line 15). For each entity ei, the decoder
retrieves Tseqi and compares the target values against the
corresponding bits in seqD (Line 16). If all values match, ei
is identified as issuing a write request in the current cycle.
Moreover, once a write entity is matched, the associated signal
bits (e.g., si at offseti in map2) are excluded from further
comparisons for the remaining lower-priority write entities

(Lines 17-18). This ensures that signal bits already claimed by
higher-priority entities are not incorrectly attributed to others,
reflecting the arbitration mechanism in RTL designs.

(3) Contention monitoring. The decoder records each write
request. If the number of write entities issuing write requests
to the same storage element exceeds the number of available
write ports in the same cycle, write port contention is triggered
(Lines 19-20).

Steps (1)—(3) are repeated for all modules, ensuring that
all write request behaviors and potential contentions are accu-
rately identified.

D. Hardware Fuzzing for Triggering Write Port Contention

We propose an efficient hardware fuzzing framework for
triggering write port contention, driven by a PSO optimizer
and proceeding in two phases. We first formalize seed gen-
eration and PSO optimization. Then, we optimize mutation
strategies by tuning mutation parameters to improve register
coverage and write request behavior coverage (Phase 1).
Finally, we minimize and reorder instruction sequences to
trigger write port contention efficiently (Phase 2).

1) Formalization of Seed Generation and PSO Optimiza-
tion: Let X denote the instruction space, the instruction set
is I = {ik | k ∈ [1, Nop]}, where each instruction ik is
defined by a tuple (opk, Dk, wk), representing the opcode,
operand domain, and weight, respectively. The probability of
generating opcode opk is:

P (op = opk) =
wk∑Nop

m=1 wm

(9)

Where Nop is the number of opcode types in the RISC-V
architecture. The mutator is modeled as a stochastic process
M : Θ → X , with parameter space Θ = [lmin, lmax]× RNop

+ ,
where:

• Ninst ∈ [lmin, lmax] is the instruction sequence length,
uniformly sampled from the interval [lmin, lmax].

• θ⃗ = [w1, . . . , wNop] ∈ RNop

+ is the opcode weight vector,
controlling P (op = opk).

• The output space is X =
⋃lmax

n=lmin
In, representing the set

of all instruction sequences with length in [lmin, lmax].
Based on this formalization, PORTRUSH samples opcode

sequences OP = [op1, op2, . . . , opn] according to θ⃗, and ran-
domly generates operands datak within each Dk. To emulate
hardware timing, interrupts δt ∼ N (µt, σ

2
t) are randomly

inserted between cycles.
Mutation optimization with PSO. While the PSO opti-

mizer adopts phase-specific strategies for distinct mutation
operators, its fundamental objective is to guide mutation
strategies toward global optima—specifically, configurations
that maximize the triggering and exploitation of write port
contention.

We choose PSO for its superior search capability in high-
dimensional continuous parameter spaces, which aligns with
our need to simultaneously optimize multiple mutation param-
eters (e.g., opcode weights, sequence lengths, and interrupt
timings). PSO efficiently converges toward global optima

7

through collaborative exploration and exploitation by a particle
swarm. Each particle represents a candidate configuration and
updates its search trajectory by tracking personal best and
global best positions. This mechanism enables PSO to balance
exploration (discovering diverse write request patterns) and
exploitation (reinforcing effective configurations) in Phase 1,
while fine-tuning sequence minimization parameters in Phase
2. Moreover, PSO’s stochasticity and adaptivity make it robust
to noise, which is critical for non-deterministic behavior in
hardware fuzzing. In contrast to gradient-based methods or
MAB models [40], [41] commonly used in fuzzing, PSO does
not require differentiability of the objective function, making
it suitable for our coverage-based discrete feedback metrics.

As detailed in Algorithm 2, a swarm of K particles is
initialized, with each particle pi = (xi, vi) encoding a can-
didate mutation strategy xi and its corresponding velocity
vi. Here, xi ∈ Rd represents the particle’s position in the
parameter space, where d is the dimensionality of the mutation
strategy (e.g., opcode weights θ⃗ and sequence length bounds).
The velocity vi ∈ Rd determines the direction and magni-
tude of parameter updates in subsequent iterations. Particle
initialization is randomized to ensure sufficient diversity in
the search space (Line 1). During each iteration, the mutator
utilizes the parameters of each particle to generate a batch of
seeds Xi for RTL simulation (Line 5). To enhance optimiza-
tion efficacy, distinct reward functions are designed for each
fuzzing phase. Following simulation, PORTRUSH evaluates
the reward associated with each particle (Line 6). Particles
update their personal bests when improvements are observed,
and the global optimum is concurrently tracked (Lines 7–9).
Subsequently, standard PSO update equations are applied,
enabling adaptive adjustment of both positions and velocities
in relation to individual and global bests (Lines 10–12). The
settings of parameters in Line 11 follow established PSO
practice to balance exploration and exploitation: population
size population size K ∈ [30, 50], iterations T ∈ [100, 200],
inertia weight ω ∈ [0.4, 0.9] (gradually decreasing), accel-
eration coefficients c1, c2 ∈ [1.5, 2.0], and random factors
r1, r2 ∼ U(0, 1). This iterative process proceeds for a pre-
determined number of rounds, progressively refining mutation
parameters to maximize both the coverage and exploitability
of write port contention events as potential side-channel attack
vectors.

2) Phase 1: The goal of PORTRUSH in Phase 1 is to
optimize the instruction sequence length, opcode types, and
opcode selection probabilities to maximize the register cover-
age and write request behavior coverage. Therefore, we use
xi = ⟨Ninst, θ⃗, µt, σt⟩ to encode the mutator parameters and
timing variations, while vi is the rate and direction of change
for each parameter. The reward function in Phase 1 is designed
based on coverage feedback collected during simulation and
used to compute a reward for each particle (Line 6):

R(xi) = α
|Snew|

|Stotal|︸ ︷︷ ︸
Coverage

+β log

1 +
∑
e∈E

I[e/∈H]


︸ ︷︷ ︸

Novelty

−γ
1

2|E|2ē

|E|∑
i=1

|E|∑
j=1

|ei − ej |

︸ ︷︷ ︸
Gini penalty

(10)

Algorithm 2: Optimizing Fuzzing Mutation with PSO
Input: Number of particles K, maximum iterations T , inertia

coefficient ω
Output: Optimal solution x∗

1 Initialize particle swarm pi with random parameters
2 Set iteration counter t← 0
3 while t < T do
4 foreach particle pi do
5 Generate seeds Xi = Mutator(pi) for simulation
6 Calculate reward R(xi)
7 if R(xi) > R(bi) then
8 Update particle’s personal best position bi ← xi

9 Identify global best position g = argmaxi R(bi)
10 foreach particle pi do
11 Update velocity:

vi ← ωvi + c1r1(bi − xi) + c2r2(g − xi)
12 Update position: xi ← xi + vi

13 Increment iteration counter t← t+ 1

14 return global best particle x∗ = g

Where α, β, and γ are weights for register coverage,
novelty of write request behaviors, and Gini penalty of write
request behaviors, respectively. To simplify computation, we
set the values of α, β, and γ according to different DUT to
normalize their corresponding three terms, ensuring all values
fall within [0, 1]. The coverage term |Snew|

|Stotal| measures the
proportion of new register coverage relative to total register
coverage, reflecting the effectiveness of exploring new areas.
The novelty term rewards the coverage of previously unseen
write request behaviors (i.e., write request behavior coverage),
with the logarithmic function scaling the reward as more novel
behaviors are discovered. In this context, E = {e1, . . . , em}
denotes the set of all write entities, and H is the subset that
has already generated write requests. The indicator function is
defined as:

I[e/∈H] =

{
0 if e is in H

1 otherwise
(11)

The Gini penalty term promotes balanced exploration
among all write entities by discouraging uneven distribution
of write requests. Given this encoding and reward function,
the PSO optimizer iteratively updates ⟨Ninst, θ⃗, µt, σt⟩ to
maximize both coverage metrics throughout Phase 1.

3) Phase 2: In Phase 2, seeds from the exploitation pool
are first minimized to retain only instructions essential for
triggering the observed write request behaviors. Subsequently,
the instructions within each minimized seed are reordered
to maximize the likelihood that write requests from distinct
entities coincide, thereby triggering write port contention.

Seed minimization is performed via an iterative binary
search process. Starting from the original instruction sequence
IN , the sequence is recursively divided into two halves,
I[0, N

2 −1] and I[N2 , N−1], and each half is simulated to verify
whether the targeted write request behaviors are preserved.
If either half maintains the required coverage, minimization
continues recursively on that half. Otherwise, the current
sequence is identified as minimal with respect to the desired
behaviors. All minimal sequences are subsequently grouped by

8

High-latency

instructions

Transient

Branch

Load secret and

extract secret bit

Secret-dependent

Branch

data-dependent on

Secret-dependent

instructions

Transient

Window

insert or replace low-priority

write-eliciting instructions

insert or replace high-priority

write-eliciting instructions

Fig. 5: Instruction sequence construction to validate write port
contention vulnerabilities in the side-channel attack

write entity, ensuring that each group targets the same storage
element.

Upon obtaining minimal instruction sequences, those within
the same group are concatenated, and their register, memory,
and address usage is optimized to minimize dependencies that
could prevent simultaneous write requests. The concatenated
instruction sequence is then subjected to a PSO-based per-
mutation search, where each particle encodes a permutation
xi = [k0, k1, k2, k3, . . . , kM−1], with kj denoting the position
of the j−th instruction in the concatenated sequence of length
M . The reward function is defined as:

R(xi) = − min
e1,e2∈E, e1 ̸=e2

∣∣cyclee1 − cyclee2
∣∣ (12)

Where E is the set of write entities in the current sequence,
and cyclee denotes the clock cycle at which entity e issues a
write request. This formulation promotes instruction orderings
that minimize the interval between write requests from differ-
ent entities, thereby enhancing the probability of triggering
write port contention. The PSO optimizer then efficiently
explores the permutation space based on this encoding and
reward function.

E. Write Port Contention Side-channel Validation

To validate write port contention side channels in realistic
attack scenarios, we combine contention-triggering instruction
sequences with transient execution attack patterns. Transient
execution, such as that enabled by speculative out-of-order
execution, creates a transient window. During this window, in-
structions are executed speculatively. Although their architec-
tural effects are eventually squashed, their microarchitectural
side effects, such as resource contention, remain observable.

As shown in Figure 5, we leverage this property by care-
fully arranging the instruction sequence. Low-priority write-
eliciting instructions are placed within hard-to-resolve
(e.g., high-latency) instructions immediately before a sub-
sequent transient branch. Meanwhile, high-priority write-
eliciting instructions are inserted into secret-dependent in-
structions inside the transient window (i.e., after the transient
and secret-dependent branches, in the speculative path). This
placement ensures that when the CPU speculatively executes
the transient window, high-priority instructions contend for
write ports with the preceding low-priority instructions. This
contention occurs even though the speculative results will
eventually be discarded. The induced contention manifests

as measurable timing differences or microarchitectural state
changes, forming the basis of the side-channel attack.

To automate the generation of such attack patterns, we use
the PSO optimizer to jointly determine (i) how many high-
and low-priority instructions to insert or replace, (ii) their exact
positions within the instruction sequence, and (iii) whether the
resulting sequence successfully exposes a write port contention
side-channel attack. Each candidate sequence encodes specific
insertion and replacement operations and is evaluated using the
following three criteria.

Transient execution verification. We combine SpecDoc-
tor [23] to monitor whether transient execution is successfully
triggered. Specifically, we leverage lightweight logic added to
the CPU’s Reorder Buffer (RoB) to detect rollback events.
Each rollback event is logged with relevant information,
including the cause of rollback, the opcode of the triggering
instruction, the program counters for both the transient and
correct paths, and the duration of the transient window. This
mechanism enables us to accurately monitor whether and when
transient windows are opened during testing.

Write port contention monitoring. To determine whether
the generated instruction sequence triggers write port
contention between low- and high-priority instructions,
PORTRUSH dynamically collects signal sequences that reflect
write port requests from instructions of different priorities.
By interpreting these signal sequences, PORTRUSH can iden-
tify cycles in which both high- and low-priority instructions
issue write requests simultaneously, thereby confirming the
occurrence of write port contention and its potential as a
microarchitectural side channel.

Timing side-channel observation. To assess the presence
and effectiveness of a side channel, we measure the execu-
tion time of the victim function under different candidate
sequences and secret values. Specifically, we examine whether
significant timing differences arise when low- or high-priority
instructions are inserted or replaced, and whether flipping
the secret value (e.g., from 1 to 0 or vice versa) leads to
corresponding changes in execution time. If both conditions
are satisfied, the observed timing variations indicate that
a practical and exploitable side channel exists. All timing
differences are recorded to support reward calculation.

Based on the above criteria, the PSO optimizer evaluates
each candidate using the following reward function:

R(xi) = Itransient(xi) + Icontention(xi) +∆t(xi) (13)

Where Itransient(xi) is an indicator function that equals 1
if transient execution is successfully triggered in candidate
sequence xi, and 0 otherwise. Icontention(xi) indicates whether
write port contention is induced, and ∆t(xi) measures the
timing difference observed in the victim function. Based
on Formula 13, instruction sequences that keep the transient
window open, trigger write port contention, and cause observ-
able timing differences in the victim function receive higher
rewards. The optimizer thus automatically and heuristically
searches for the optimal number and placement of low- and

9

high-priority instructions, ultimately identifying instruction
sequences that expose exploitable side channels.

V. IMPLEMENTATION

Static Analysis. To construct the WRG, extract the priorities
of write entities, identify potential write port contention, and
perform instrumentation for real-time monitoring of write port
contention, we implemented a custom pass in the FIRRTL [11]
compiler. First, we use sbt [7] to compile the Chisel source
code into an intermediate FIRRTL representation for static
analysis, and then further compile the FIRRTL representation
into Verilog files. The implementation consists of two parts:
(i) a module (800+ LoC in Scala) for RTL graph analysis,
WRG construction, extraction of write entity priorities, and
identification of potential write port contention; and (ii) a
module (200+ LoC in Scala) for instrumenting wires and
registers to monitor signals of selection elements within the
WRG.

Hardware Fuzzing. We implemented a hardware fuzzing
framework to generate instruction sequences that trigger write
port contention. The framework is implemented in Python
(600+ LoC) and includes: (i) a Signal Decoder to interpret
aggregated signal sequences; and (ii) a Diagnoser to detect
write port contention; and (iii) a PSO Optimizer to improve
write request behavior coverage, trigger write port contention,
and combine contention-triggered instruction sequences with
transient execution attack patterns for vulnerability validation.

VI. EVALUATION

To evaluate PORTRUSH, we conducted extensive experi-
ments to answer the following research questions:

• RQ1: Can PORTRUSH detect write port contention?
• RQ2: How does PORTRUSH perform in terms of cover-

age?
• RQ3: Can write port contention triggered by PORTRUSH

cause real security vulnerabilities?
• RQ4: How can write port contention be exploited to

construct side-channel attacks?

A. Evaluation Setup

Benchmarks. Most commercial processors are protected
intellectual property without publicly available source code.
Therefore, we selected three large and widely used open-
source RISC-V CPUs: Rocket Core [5], BOOM [43], and
NutShell [15]. These RTL cores are popular in the research
community and have been used in state-of-the-art studies [13],
[24], [39], [42]. Among them, BOOM and NutShell are
more complex than Rocket Core, featuring advanced microar-
chitectural capabilities such as superscalar and out-of-order
execution.

Evaluation environment. All experiments were conducted
using software-based simulation within a Docker container
on a 64-bit Ubuntu system. The host machine was equipped
with 80 CPU cores (Intel Xeon(R) Gold 6133 @ 2.50GHz).
For each RTL design, we performed five independent fuzzing
runs. After each run, we collected and analyzed the register

TABLE I: Potential write port contention statically identified

Target Storage Element Nport Write Entity Cont-Inst

BOOM BoomDataArray array 0 0 1 LSU, BoomMSHRFile 1

BOOM BoomDataArray array 1 0 1 LSU, BoomMSHRFile 1

BOOM BoomDataArray array 2 0 1 LSU, BoomMSHRFile 1

BOOM BoomDataArray array 3 0 1 LSU, BoomMSHRFile 1

BOOM BoomMSHRFile lb 1 BoomMSHR, BoomMSHR 1 1

BOOM L1MetadataArray tag array 1 BoomMSHRFile, BoomProbeUnit 2

BOOM RegisterFileSynthesizable 1 regfile 2
Port 0: MemAddrCalcUnit, FPUUnit 1

Port 1: CSRFile, ALUUnit, PipelinedMulUnit,
DivUnit

11

BOOM RegisterFileSynthesizable regfile 2
Port 0: ALUUnit, PipelinedMulUnit, DivUnit 4

Port 1: FPUUnit, FDivSqrtUnit 1

NutShell Backend ooo T 2
CSR, MOU, LSU, ALU

42
Multiplier, Divider, BRU

NutShell MDU 1 Divider, Multiplier 1

NutShell ROB prf 2
CSR, MOU, LSU, ALU

42
Multiplier, Divider, BRU

Core FPU regfile 1
CSRFile, FPUFMAPipe, FPUFMAPipe 1,

57MulAddRecFNPipe, MulAddRecFNPipe 1,
DivSqrtRecFN small, DivSqrtRecFN small 1

Core Rocket T 815 1 MulDiv, CSR, FPU, ALU 11

coverage, write request behavior coverage, and detected write
port contention instances to comprehensively evaluate the
effectiveness of our approach.

B. Identifying and Triggering Write Port Contention (RQ1)

Detecting write port contention in our evaluation consists of
two stages. First, PORTRUSH performs static analysis to iden-
tify potential write port contention by pinpointing architec-
tural scenarios where multiple instructions may simultaneously
attempt to access shared write ports. Then, PORTRUSH em-
ploys hardware fuzzing to automatically generate instruction
sequences that trigger actual write port contention instances,
thereby validating the existence and impact of such contention
in the target microarchitecture.

1) Static Identification of Potential Write Port Contention:
In the static analysis phase, PORTRUSH identifies storage
elements along with their associated write ports and write
entities. If the number of write entities exceeds the num-
ber of write ports for a given storage element, that ele-
ment is flagged as potentially susceptible to write port con-
tention. The results of this static analysis on Rocket Core,
BOOM, and NutShell are presented in Table I. The first
column (Target) lists the evaluated CPUs, while the second
(Storage Element) specifies the relevant storage elements.
For instance, BoomDataArray array 0 0 refers to a sub-
array within the BoomDataArray module. The third column
(Nport) indicates the number of write ports associated with
each storage element, and the fourth column (Write En-
tity) enumerates the functional modules capable of issuing
write requests to that element. The fifth column (Cont-Inst)
reports the number of distinct contention instances possi-
ble for each storage element’s write ports. For example,
BOOM’s RegisterFileSynthesizable 1 regfile fea-
tures two write ports. Port0 is shared by MemAddrCalcUnit

and FPUUnit, resulting in only one contention instance.
In contrast, Port1 is shared by CSRFile, ALUUnit,
PipelinedMulUnit, and DivUnit, allowing for 11 distinct
potential contention instances, arising from all possible pairs,

10

TABLE II: Write port contention triggered by fuzzing

Target Storage Element Nport Write Entity Cont-Insts

BOOM BoomDataArray array 0 0 1 LSU, BoomMSHRFile 1

BOOM BoomDataArray array 1 0 1 LSU, BoomMSHRFile 1

BOOM BoomDataArray array 2 0 1 LSU, BoomMSHRFile 1

BOOM BoomDataArray array 3 0 1 LSU, BoomMSHRFile 1

BOOM BoomMSHRFile lb 1 BoomMSHR, BoomMSHR 1 1

BOOM L1MetadataArray tag array 1 BoomMSHRFile, BoomProbeUnit 2

BOOM RegisterFileSynthesizable 1 regfile 2
Port 0: MemAddrCalcUnit, FPUUnit 1

Port 1: CSRFile, ALUUnit, PipelinedMulUnit,
DivUnit

7

BOOM RegisterFileSynthesizable regfile 2
Port 0: ALUUnit, PipelinedMulUnit, DivUnit 4

Port 1: FPUUnit, FDivSqrtUnit 1

NutShell Backend ooo T 2
CSR, MOU, LSU, ALU

7
Multiplier, Divider, BRU

NutShell MDU 1 Divider, Multiplier 1

NutShell ROB prf 2
CSR, MOU, LSU, ALU

7
Multiplier, Divider BRU

triples, and quadruple combinations of write entities. The
potential write port contention detected by PORTRUSH not
only guides the subsequent hardware fuzzing process but also
assists hardware designers and researchers in localizing and
understanding the root causes of possible write port contention
side-channel vulnerabilities.

As shown in Table I, there are 13 storage elements across
BOOM, NutShell, and Rocket Core that are susceptible to
write port contention, with a total of 177 distinct instances
of potential port contention identified. Each instance can be
triggered by carefully crafted instruction sequences, which
may be exploited to construct side-channel attacks.

2) Triggering Write Port Contention through Fuzzing:
The results of write port contention triggered by fuzzing are
presented in Table II. As shown, a total of 11 storage elements
across BOOM and NutShell exhibited write port contention,
with 35 distinct contention instances successfully triggered.
This number is noticeably lower than the total number of
potential write port contention instances for two reasons. First,
some potential write port contention instances require three
or more write entities to simultaneously issue write requests.
Although our hardware fuzzing approach leverages a PSO
optimizer to optimize instruction ordering, such complex sce-
narios are difficult to trigger within the limited 24-hour testing
window. Second, due to Rocket Core’s in-order, single-issue
architecture, the identified potential port contention instances
cannot be activated in practice. Nevertheless, since some
superscalar, out-of-order RISC-V CPUs may be developed
based on Rocket Core, the potential write port contention
detected in Rocket Core could propagate to advanced SoC
designs, thereby introducing side-channel security risks.

C. Evaluation on Coverage (RQ2)

Beyond detecting write port contention, PORTRUSH pre-
serves comprehensive design space exploration capabilities by
leveraging the register coverage metric from DiFuzzRTL.

We adopt this coverage metric for two reasons. First, it
captures PORTRUSH’s ability to cover a broad range of distinct
write paths. Triggering write port contention instances requires
executing multiple such paths, and their number is directly

TABLE III: Comparison with DiFuzzRTL on register coverage

Targets PORTRUSH DiFuzzRTL p-value

Rocket Core 86,385 (-6.27%) 92,169 1.02 ∗ 10−4

BOOM 407,661 (-7.03%) 438,519 3.16 ∗ 10−4

Average 494,046 (-6.90%) 530,668 2.09 ∗ 10−4

TABLE IV: Comparison with DiFuzzRTL on WPC coverage

Targets Potential PORTRUSH Coverage DiFuzzRTL Coverage
Cont. Inst. Triggered (%) Triggered (%)

BOOM 24 20 83.3 5 20.8
NutShell 85 15 17.6 1 1.2

Total 109 35 32.1 6 5.5

correlated with coverage, making it a meaningful indicator
of the fuzzer’s ability to reach contention conditions. Second,
PORTRUSH and DiFuzzRTL share methodological similarities,
as both derive coverage from MUX signals for coverage analy-
sis (DiFuzzRTL) or port contention monitoring (PORTRUSH).
Comparing coverage with DiFuzzRTL thus demonstrates that
PORTRUSH’s port contention monitoring mechanism, coupled
with the PSO optimizer, does not introduce significant per-
formance overhead that would reduce coverage. To assess
PORTRUSH’s effectiveness in uncovering functional vulnera-
bilities, such as deviations between DUT execution and RISC-
V ISA specifications, we directly compared PORTRUSH and
DiFuzzRTL under identical register coverage conditions. As
DiFuzzRTL does not support software simulation for NutShell,
our evaluation focuses on Rocket Core and BOOM, as sum-
marized in Table III.

Across five repeated fuzzing trials, PORTRUSH’s aver-
age register coverage on Rocket Core was 6.27% lower
than DiFuzzRTL, and 7.03% lower on BOOM. On average,
PORTRUSH exhibited only a 6.90% reduction in register
coverage across both targets, suggesting that the additional
instrumentation and PSO-based optimizations in our hardware
fuzzing approach do not significantly degrade the ability to
explore the DUT’s design space.

To more accurately assess PORTRUSH’s performance in
uncovering write port contention side-channel vulnerabilities,
we introduce the metric of write port contention coverage
(WPC coverage), defined as the proportion of statically
identified potential write port contention instances that are
dynamically triggered during fuzzing. As Table IV shows,
PORTRUSH achieves a WPC coverage of 83.3% on BOOM
and 17.6% on NutShell, with an overall coverage of 32.1%.
In contrast, DiFuzzRTL only achieves 20.8% and 1.2% on
the two CPUs, respectively, with an overall coverage of 5.5%.
These results demonstrate that, while maintaining competitive
register coverage, PORTRUSH is significantly more effective
than DiFuzzRTL in exercising and exposing write port con-
tention side-channel vulnerabilities in modern CPUs.

11

D. Write Port Contention Side-channel Vulnerability (RQ3)

By automatically combining discovered write port con-
tention with known transient execution attack patterns, we dis-
covered three vulnerabilities that can be exploited to construct
write port contention side-channel attacks. Among them, two
are new vulnerabilities, Birgus-variant and MSHRush,
while the third is the known Spectre-STC vulnerability.
The two newly discovered vulnerabilities have been reported
and assigned CVE identifiers.

By leveraging these vulnerabilities, we constructed write
port contention side-channel attacks on both BOOM and
NutShell processors. The performance of the three attack
vectors is presented in Table V, where the Error Rate
denotes the accuracy of secret leakage, and the Leakage
Rate represents the speed at which secret bits are leaked
by the attack sequences generated by PORTRUSH. As shown
in Table V, all three attack variants exhibit error rates
below 10% and achieve leakage rates exceeding 15 Kb/s.
An error rate below 10% enables PORTRUSH to accurately
infer the value of each secret bit using a majority voting
scheme over repeated experiments. Specifically, for each secret
bit, we perform the value inference five times, record the
number of times the bit is inferred as 0 or 1, and select the
value with the higher count as the final result. This majority
voting approach, combined with a low per-trial error rate,
ensures that each secret bit can be accurately recovered, as
the probability of incorrect inference across multiple trials is
significantly reduced. These results demonstrate that write port
contention side-channel vulnerabilities can serve as a reliable
attack vector when combined with transient execution attack
patterns, enabling effective leakage of secret values. Such write
port contention side-channel attack vectors are different from
traditional cache-based attacks. They exploit competition for
limited write ports in shared CPU structures rather than cache
occupancy or timing, allowing information leakage even in
processors with secure or partitioned caches.

E. Case Study of the MSHRush Attack (RQ4)

In this section, we analyze the newly discovered write
port contention side-channel vulnerability MSHRush in detail,
and further explain how the new attack variant exploits the
contention vulnerability to leak secret information. Analysis
of Birgus-variant and Spectre-STC is also provided
in §A and §B of the Appendix.
MSHRush is a Spectre-type attack targeting RISC-V BOOM

that is unique in exploiting write port contention at the L1 data
cache (BoomDataArray_array) rather than the register
file. The code snippet is shown in Listing 2, and the attack
flow is illustrated in Figure 6.

TABLE V: The performance of the three attack variants

Variant Error Rate Leakage Rate New variant?

Birgus-variant 8.7% 24Kb/s ✓
MSHRush 4.5% 15Kb/s ✓

Spectre-STC 4.8% 19Kb/s ×

BoomDataArray

array_0_0

Index Data (64bit)

0

1...

miss

0xade

...

....

MSHR (2)LSU (1)

store req refill req

Arbiter

Port

la x27, miss_cacheline

lw x26, 0(x27)

Cache Miss Process

Transient:

if (secret == probe)

store_storm

store

instructions

Fig. 6: The illustration of MSHRush attack

1 attacker:
2 rdcycle x10
3 call victim
4 rdcycle x11
5 sub x11, x11, x10
6 /* Use timing difference in x11 to infer secret bit */
7 victim:
8 la x27, miss_cacheline /* Address misses in cache */
9 lwu x25, 0(x27) /* Cache miss and MSHR allocation */

10 lwu x26, 0(x25) /* Load wait for refill completion */
11 ... /* More instructions dependent on x25 and x26 */
12 beqz x30, L1 /* Branch depends on refill result */
13 transient:
14 la x21, secret
15 lbu x22, 0(x21) /* Load secret byte */
16 andi x22, x22, 0x1 /* Extract secret bit */
17 beqz x22, L1 /* If secret bit = 0, skip store storm */
18 la x23, store_array
19 li x24, 64
20 store_storm:
21 sw x0, 0(x23) /* Store hits to saturate write port */
22 addi x24, x24, -1
23 bnez x24, store_storm
24 L1:
25 ...
26 ret

Listing 2: MSHRush in BOOM.

Write port contention of BOOM in DCache. In
BOOM, the L1 data cache (BoomDataArray_array)
provides only a single write port, shared by both
the Load/Store Unit (LSU) and Miss Status Handling

Register (MSHR). When LSU and MSHR simultaneously issue
write requests, the LSU is given higher priority, resulting in de-
layed MSHR refills. An attacker can saturate the store pipeline
so that the LSU issues continuous write requests, monopolizing
the write port and prolonging MSHR miss recovery.

Technical details of MSHRush. Similar to Spectre-type at-
tacks, MSHRush exploits transient execution to encode secret
information into microarchitectural state, write port contention
timing. The attack creates a measurable timing difference in
the victim function’s execution that depends on secret data.
The attack proceeds in four phases:

(i) Establishing the transient window (Lines 8–12). The
attacker first ensures a cache miss by having the victim load
data from a deliberately evicted cache line (Line 9). This cache
miss triggers an MSHR allocation to refill the missing data from

12

memory. The attacker then chains subsequent load instruc-
tions (Lines 10–11) and a conditional branch beqz (Line 12)
that depend on the missed data. Since these instructions cannot
resolve until the slow memory access completes, they create a
dependency chain. Meanwhile, the branch predictor has been
trained to mispredict this branch, causing the processor to
speculatively execute the instructions following the branch,
which forms the transient window where attack operations will
occur.

(ii) Secret-dependent transient behavior (Lines 13–19).
Inside the transient window, the attack loads the secret value
and extracts its least significant bit (Lines 14–16). Crucially,
the attack then takes different execution paths based on this
secret bit: If the secret bit is 1, the attack enters a tight loop
(Lines 18–23) that repeatedly executes store instructions.
This store storm saturates the LSU pipeline, causing it to
continuously issue write requests to the write port. Since LSU

has higher priority than MSHR, this creates sustained write port
contention that blocks the MSHR refill operation. If the secret
bit is 0, the store storm is skipped entirely, leaving the
write port available. The MSHR can complete its refill operation
without interference.

(iii) Microarchitectural state persistence. When the orig-
inal cache miss finally completes, the branch mispredic-
tion is detected and all speculatively executed instructions
are squashed. For instance, the architectural effects (register
writes, etc.) are discarded. However, the microarchitectural
timing effects persist. The write port contention caused by the
store storm has already delayed the MSHR refill. This delay
is observable because it affects when the dependency chain
(Lines 11–13) can finally resolve and the victim function
can complete.

(iv) Timing-based secret extraction. The attacker measures
the total execution time of the victim function. When the
secret bit is 1, the write port contention delays the MSHR refill,
resulting in longer execution time. When the secret bit is 0, the
refill completes faster, resulting in shorter execution time. By
repeatedly invoking the victim function and measuring these
timing differences, the attacker can reliably infer the value of
each secret bit, effectively leaking the entire secret one bit at
a time.

We evaluated the attack by setting the secret to different
values (e.g., 0xdeadbeef) and repeatedly testing the leak-
age accuracy. Figure 7 shows the distribution of execution
cycles for secret values 1 and 0. The x-axis represents clock
cycles, while the y-axis indicates the number of times the
victim function executed in each cycle during the side-
channel attack. For example, when inferring a 32-bit secret
(e.g., 0xdeadbeef) with 5 repetitions per bit, there are
160 total measurements. These execution times may be dis-
tributed across different clock cycles. The red line shows the
distribution when the inferred secret bit is 0, the blue line
corresponds to when it is 1, and some overlap exists due
to noise, such as microarchitectural optimizations and RTL
simulation variability.

We observe that when the secret is 0, the execution duration

518 536 558
Execution Duration (clock)

0

20

40

60

80

100

C
ou

nt

45

92

23
22

D0 Curve
D1 Curve
D0
D1

Fig. 7: Distribution of victim function execution cycles for
secret value equals 0 (D0) and 1 (D1) in MSHRush

of victim is 518 cycles. When the secret is 1, the execution
duration of victim can be either 536 or 558 cycles. Thus,
the expected execution duration, calculated as the sum of
each cycle value multiplied by its probability, is 518 cycles
for secret 0 and 540 cycles for secret 1—a difference of 22
cycles. This 22-cycle increase demonstrates that write port
contention—triggered when the secret bit is 1—significantly
delays the execution of victim. The substantial and consistent
timing difference between the two secret values demonstrates
the effectiveness of our approach in inducing measurable
timing side channels via port contention.

VII. DISCUSSION

Root causes of write port contention. We present
PORTRUSH, a systematic hardware fuzzing framework for
detecting and analyzing write port contention side-channel
vulnerabilities at the RTL in modern CPUs. PORTRUSH can
systematically identify potential write port contention, trig-
ger such contention by fuzzing, and validate the vulnera-
bility of write port contention in real side-channel attacks.
This highlights the framework’s effectiveness compared to
traditional manual analysis and hardware fuzzing methods.
Through extensive evaluation, PORTRUSH uncovers not only
new attack variants but also provides deep insights into the ar-
chitectural factors that make write port contention exploitable.
Specifically, our study identifies root causes of write port
contention in modern out-of-order RISC-V CPUs. First, write
port contention often arises when the number of write entities
exceeds the number of available write ports, as many designs
deliberately limit the number of ports to balance design
complexity, power consumption, and performance. Second,
multi-issue out-of-order execution increases the likelihood of
simultaneous write requests, making it feasible for attackers
to manipulate dependencies and induce contention. Third, the
widespread use of fixed-priority arbitration schemes, such
as static priority arbiters, can be exploited to favor certain
write requests consistently. Finally, short-latency instructions
can preempt longer-latency instructions by completing and
issuing write requests within a single cycle, thereby amplifying
contention and side-channel risk.

13

Challenges in mitigating write port contention. Mitigat-
ing write port contention side-channel vulnerabilities presents
several challenges. While architectural optimizations such as
fair or round-robin arbitration can be introduced at critical
points to distribute access more evenly, these approaches are
not without drawbacks. For instance, in the MSHR scenario of
BOOM, fair arbitration assigns equal priority and bandwidth
to store and MSHR refill requests, which can cause frequent
interference and negatively impact overall CPU performance.
Attackers may also exploit these mechanisms by flooding the
system with MSHR refill requests, thereby disrupting normal
store operations and inferring secret values through timing
analysis. Furthermore, increasing the number of write ports,
while potentially reducing contention, introduces additional
design complexity, area, and power consumption. Thus, CPU
designers must carefully balance performance, complexity, and
security when considering such mitigation strategies.

Optimal architectural defenses. Effective mitigation re-
quires a combination of targeted architectural enhancements.
First, scaling the number of write ports to match the level
of concurrent demand can minimize contention windows and
structural hazards, reducing the risk of side-channel exploita-
tion. Second, prioritizing long-latency instructions during arbi-
tration helps prevent critical operations from being persistently
delayed by short-latency requests, thereby limiting observable
timing variations. Third, implementing advanced arbitration
mechanisms, such as round-robin or resource-aware policies,
at contention-prone points can further distribute access eq-
uitably and prevent privilege escalation attacks. Collectively,
these measures address both performance and security, making
them robust solutions for mitigating write port contention side-
channel vulnerabilities in modern CPU microarchitectures.

VIII. RELATED WORK

Hardware Fuzzing. Prior work in hardware fuzzing,
such as RFUZZ [28], DifuzzRTL [24], MorFuzz [39],
RISCVuzz [35] and TheHuzz [26], has established coverage-
guided and differential fuzzing as effective techniques for
exposing functional bugs and undocumented instructions at
the register-transfer level (RTL) of CPUs. These frameworks
utilize various strategies, including cycle-level input gener-
ation and automated test harnesses, to maximize hardware
coverage and identify behavioral discrepancies between the
DUT and golden reference models. However, these approaches
are primarily oriented toward functional validation and do
not provide targeted mechanisms to systematically detect or
analyze microarchitectural security vulnerabilities, such as
write port contention. As a result, there remains a critical need
for specialized fuzzing frameworks that can uncover security-
sensitive contention vulnerabilities at the RTL.

Side-Channel and Transient Execution Vulnerability
Detection. A substantial body of research has focused on
detecting microarchitectural side-channels and transient exe-
cution vulnerabilities, employing both formal verification and
fuzzing-based methodologies. Formal approaches, exemplified
by UPEC [19] and Checkmate [36], use static analysis and

bounded model checking to identify timing side-channels
or transient execution bugs in RTL designs. Fuzzing-based
techniques, such as Osiris [37], SIGFuzz [33], and Whis-
perFuzz [13], generate instruction sequences to trigger and
analyze timing anomalies, aiming to uncover security-relevant
timing behaviors. While these methods have advanced the
detection of generic timing side-channels and some transient
execution vulnerabilities, they often struggle to pinpoint root
causes at the level of specific microarchitectural resources,
such as write ports, and may require substantial manual
effort for vulnerability analysis and mitigation. This highlights
the need for automated, resource-aware detection frameworks
capable of fine-grained vulnerability analysis.

Port Contention Side-Channels and Speculative Exe-
cution Attacks. Recent studies have demonstrated that port
contention—arising from competition for shared execution
resources—can serve as a powerful side channel in speculative
and transient execution attacks. SMoTherSpectre [12] ex-
ploits execution port contention in simultaneous multithread-
ing (SMT) processors by flooding specific execution ports to
infer secret-dependent instruction types, while PortSmash [2]
demonstrates cross-core port contention attacks on Intel’s
Skylake and Kaby Lake architectures by monitoring timing
variations when concurrent threads compete for execution
ports. Both attacks operate at the instruction execution level,
focusing on exploiting contention in functional execution
ports. In contrast, PORTRUSH targets write port contention—a
distinct microarchitectural bottleneck that occurs when mul-
tiple instructions or functional modules simultaneously at-
tempt to write results to shared storage elements such as
register files or cache arrays. While SMoTherSpectre and
PortSmash rely on software-level profiling and manual attack
construction to detect and exploit execution port contention,
PORTRUSH provides an automated, RTL-level approach that
identifies potential write port contention through static analysis
of hardware designs and automatically generates instruction
sequences to trigger and validate these vulnerabilities during
the hardware design phase.

IX. CONCLUSION

CPU vulnerabilities continue to present significant security
challenges in modern architectures, with write port contention
remaining an underexplored threat. In this paper, we intro-
duced PORTRUSH, the hardware fuzzing framework designed
for the detection and validation of write port contention
side-channel vulnerabilities at the RTL. By abstracting the
Write Request Graph, employing a hierarchical aggregation
and decoding method, and leveraging a contention-guided
fuzzing approach powered by Particle Swarm Optimization,
PORTRUSH enables efficient detection and triggering of write
port contention. Our evaluation on three RISC-V CPUs,
BOOM, NutShell, and Rocket Core, demonstrates the effec-
tiveness of PORTRUSH in uncovering previously unknown vul-
nerabilities. Notably, PORTRUSH discovered two novel attack
variants (Birgus-variant and MSHRush) and reproduced
the existing Spectre-STC attack on BOOM. These findings

14

highlight the security risks posed by write port contention and
underscore the need for systematic hardware-level analysis to
mitigate such side-channel threats in future CPU designs.

ETHICAL CONSIDERATIONS

Our research on write port contention side-channel vulner-
abilities might bring ethical concerns regarding experiment
environments and vulnerability disclosures. We have carefully
and proactively considered these research ethics throughout
this project. First, our research and experiments were con-
ducted in a local environment (e.g., servers) and did not
involve other persons or other live systems. Therefore, it would
not have an impact on other parties or live services. Second, we
attest that any newly discovered vulnerabilities were responsi-
bly disclosed to CVE to ensure proper mitigation. We did not
publicly disclose the vulnerabilities to the broad audience to
avoid any potential harm or public exploitations.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful suggestions on our paper. This work is
carried out with the support of the Hunan Provincial Key
Laboratory of Intelligent and Parallel Analysis for Software
Security, and is partially supported by the National Natural
Science Foundation China (62272472, 62306328, 62302050,
62372121, 62402509), the Science and Technology Innova-
tion Program of Hunan Province (2024RC3136), the Inno-
vative Research Group Project of National Natural Science
Foundation of China (62421002), the National University of
Defense Technology Research Project (ZK23-14), the Nat-
ural Science Foundation of Hunan Province (2021JJ40692,
2025JJ40053), and the Research Project of Key Laboratory
(WDZC20245250105).

REFERENCES

[1] Mor1kx, 2025. https://github.com/openrisc/mor1kx.
[2] Portsmash, 2025. https://github.com/bbbrumley/portsmash.
[3] Risc-v isa manual (privileged), 2025. https://riscv.org/specifications/

privileged-isa/.
[4] Riscyoo: Risc-v out-of-order processors, 2025. https://github.com/csail-

csg/riscy-OOO.
[5] Rocket core, 2025. https://github.com/chipsalliance/rocket-chip.
[6] Ryzenfallen, 2025. https://github.com/depletionmode/Ryzenfallen.
[7] scala-sbt, 2025. https://www.scala-sbt.org/.
[8] Side channel vulnerabilities: Microarchitectural data sampling and trans-

actional asynchronous abort, 2025. https://www.intel.com/content/www/
us/en/architecture-and-technology/mds.html.

[9] Synopsys vcs, 2025. https://www.synopsys.com/verification/simulation/
vcs.html.

[10] Xiang shan, 2025. https://github.com/OpenXiangShan/XiangShan.
[11] Chisel 3. A modern hardware design language, 2025. https://github.

com/freechipsproject/chisel3.
[12] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner,

Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kur-
mus. Smotherspectre: Exploiting speculative execution through port
contention. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’19, page 785–800, New
York, NY, USA, 2019. Association for Computing Machinery.

[13] Pallavi Borkar, Chen Chen, Mohamadreza Rostami, Nikhilesh Singh,
Rahul Kande, Ahmad-Reza Sadeghi, Chester Rebeiro, and Jeyavijayan
Rajendran. WhisperFuzz: White-Box fuzzing for detecting and locating
timing vulnerabilities in processors. In 33rd USENIX Security Sympo-
sium (USENIX Security 24), pages 5377–5394, Philadelphia, PA, August
2024. USENIX Association.

[14] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the intel
sgx kingdom with transient out-of-order execution. In 27th USENIX
Security Symposium (USENIX Security 18), Baltimore, MD, August
2019. USENIX Association.

[15] RISC-V CPU Developed by OSCPU Team. Nutshell, 2025. https://
github.com/OSCPU/NutShell.

[16] Chen Chen, Rahul Kande, Nathan Nguyen, Flemming Andersen, Aakash
Tyagi, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran. HyPFuzz:
Formal-Assisted processor fuzzing. In 32nd USENIX Security Sympo-
sium (USENIX Security 23), pages 1361–1378, Anaheim, CA, August
2023. USENIX Association.

[17] D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. Effective theorem
proving for hardware verification. In Ramayya Kumar and Thomas
Kropf, editors, Theorem Provers in Circuit Design, pages 203–222,
Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

[18] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh,
and Dmitry Ponomarev. Non-monopolizable caches: Low-complexity
mitigation of cache side channel attacks. ACM Trans. Archit. Code
Optim., 8(4), January 2012.

[19] Mohammad Rahmani Fadiheh, Johannes Müller, Raik Brinkmann, Sub-
hasish Mitra, Dominik Stoffel, and Wolfgang Kunz. A formal approach
for detecting vulnerabilities to transient execution attacks in out-of-order
processors. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pages 1–6, 2020.

[20] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner,
Clémentine Maurice, and Stefan Mangard. Kaslr is dead: Long live
kaslr. In Eric Bodden, Mathias Payer, and Elias Athanasopoulos, editors,
Engineering Secure Software and Systems, pages 161–176, Cham, 2017.
Springer International Publishing.

[21] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
Flush+flush: A fast and stealthy cache attack. In Juan Caballero, Urko
Zurutuza, and Ricardo J. Rodrı́guez, editors, Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 279–299, Cham, 2016.
Springer International Publishing.

[22] J. L. Hennessy and D. A. Patterson. Computer architecture: A quanti-
tative approach. 2011.

[23] Jaewon Hur, Suhwan Song, Sunwoo Kim, and Byoungyoung Lee.
Specdoctor: Differential fuzz testing to find transient execution vul-
nerabilities. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS’22, page 1473–1487,
New York, NY, USA, 2022. Association for Computing Machinery.

[24] Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo Kim,
and Byoungyoung Lee. Difuzzrtl: Differential fuzz testing to find cpu
bugs. In 2021 IEEE Symposium on Security and Privacy (SP), pages
1286–1303, 2021.

[25] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gul-
mezoglu, Thomas Eisenbarth, and Berk Sunar. Spoiler: Speculative load
hazards boost rowhammer and cache attacks. In 28th USENIX Security
Symposium (USENIX Security 19), SANTA CLARA, CA, August 2019.
USENIX Association.

[26] Rahul Kande, Addison Crump, Garrett Persyn, Patrick Jauernig, Ahmad-
Reza Sadeghi, Aakash Tyagi, and Jeyavijayan Rajendran. TheHuzz:
Instruction fuzzing of processors using Golden-Reference models for
finding Software-Exploitable vulnerabilities. In 31st USENIX Security
Symposium (USENIX Security 22), pages 3219–3236, Boston, MA,
August 2022. USENIX Association.

[27] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 1–19, 2019.

[28] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and
Koushik Sen. Rfuzz: Coverage-directed fuzz testing of rtl on fpgas. In
2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), page 1–8. IEEE Press, 2018.

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In 27th USENIX Security Symposium (USENIX
Security 18), pages 973–990, Baltimore, MD, August 2018. USENIX
Association.

15

https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/privileged-isa/
https://www.intel.com/content/www/us/en/architecture-and-technology/mds.html
https://www.intel.com/content/www/us/en/architecture-and-technology/mds.html
https://www.synopsys.com/verification/simulation/ vcs.html
https://www.synopsys.com/verification/simulation/ vcs.html
https://github.com/freechipsproject/chisel3
https://github.com/freechipsproject/chisel3
https://github.com/OSCPU/NutShell
https://github.com/OSCPU/NutShell

[30] Sujit Kumar Muduli, Gourav Takhar, and Pramod Subramanyan. Hy-
perfuzzing for soc security validation. In 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), pages 1–9, 2020.

[31] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of aes. In David Pointcheval, editor, Topics
in Cryptology – CT-RSA 2006, pages 1–20, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[32] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of aes. CT-RSA’06, page 1–20, Berlin,
Heidelberg, 2006. Springer-Verlag.

[33] Chathura Rajapaksha, Leila Delshadtehrani, Manuel Egele, and Ajay
Joshi. Sigfuzz: A framework for discovering microarchitectural timing
side channels. In 2023 Design, Automation and Test in Europe Confer-
ence and Exhibition (DATE), pages 1–6, 2023.

[34] W. Snyder. Verilator, 2025. https://www.veripool.org/wiki/verilator.
[35] Fabian Thomas, Lorenz Hetterich, Ruiyi Zhang, Daniel Weber, Lukas

Gerlach, and Michael Schwarz. Riscvuzz: Discovering architectural cpu
vulnerabilities via differential hardware fuzzing, 2024. ghostwriteat-
tack.com.

[36] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Checkmate:
Automated synthesis of hardware exploits and security litmus tests. In
2018 51st Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 947–960, 2018.

[37] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and
Christian Rossow. Osiris: Automated discovery of microarchitectural
side channels. In 30th USENIX Security Symposium (USENIX Security
21), pages 1415–1432. USENIX Association, August 2021.

[38] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. Scattercache: thwarting cache attacks
via cache set randomization. In Proceedings of the 28th USENIX
Conference on Security Symposium, SEC’19, page 675–692, USA, 2019.
USENIX Association.

[39] Jinyan Xu, Yiyuan Liu, Sirui He, Haoran Lin, Yajin Zhou, and Cong
Wang. MorFuzz: Fuzzing processor via runtime instruction morphing
enhanced synchronizable co-simulation. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 1307–1324, Anaheim, CA,
August 2023. USENIX Association.

[40] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu,
and Xu Zhou. EcoFuzz: Adaptive Energy-Saving greybox fuzzing as
a variant of the adversarial Multi-Armed bandit. In 29th USENIX
Security Symposium (USENIX Security 20), pages 2307–2324. USENIX
Association, August 2020.

[41] Gen Zhang, Pengfei Wang, Tai Yue, Xiangdong Kong, Shan Huang,
Xu Zhou, and Kai Lu. Mobfuzz: Adaptive multi-objective optimization
in gray-box fuzzing. 2022.

[42] Gen Zhang, Pengfei Wang, Tai Yue, Danjun Liu, Yubei Guo, and Kai Lu.
Instiller: Toward efficient and realistic rtl fuzzing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 43(7):2177–
2190, 2024.

[43] J. Zhao, B. Korpan, and others. Sonicboom: The 3rd generation berkeley
out-of-order machine. 4th Workshop on Computer Architecture Research
with RISC-V, 2020.

APPENDIX

A. Birgus-variant in NutShell

We present Birgus-variant, a novel Spectre-type at-
tack discovered in NutShell that leverages previously unknown
write port contention to establish a new microarchitectural
side channel. Unlike prior port contention attacks [2], [12],
[23], Birgus-variant leverages contention at the Reorder
Buffer’s physical register file (ROB_prf) to leak secrets
through timing. The code snippet is shown in Listing 3, and
the attack flow is illustrated in Figure 9.

Write port contention in ROB_prf of NutShell. Nut-
Shell, a dual-issue out-of-order RISC-V core, provisions two
write ports on ROB_prf to support concurrent write requests
from functional modules (e.g., LSU, Divider, and ALU, etc.)
However, as shown in Table I, up to seven modules may

Functional Modules

DIV (4) ALU (6)LSU (3) ……

Arbiter

Reorder Buffer

Physical Register File

Port 1 Port 2

req 1 req 3req 2

Issue

 Same

 Cycle

Write requests

(req 1, req 2, req 3)>
Write ports

(Port 1, Port 2)

Port Contention !

Fig. 8: The illustration of port contention in ROB prf

1 attacker:
2 rdcycle x10
3 call victim
4 rdcycle x11
5 sub x11, x11, x10
6 /* Use timing difference in x11 to infer secret bit */
7 victim:
8 /*Prepare cache addresses and divisor before attack*/
9 li x14, 1 /* divisor for div_lsu_storm */

10 la x25, hit-cacheline /*Pre-faulted, always cache-hit*/
11 la x15, miss-cacheline /*Pre-faulted, always

↪→cache-miss*/
12 /* multiple alu instructions depend on x15 */
13 lwu x16, 0(x15) /* Slow load from miss-cacheline */
14 add x17, x16, x14 /* Stall until load completes */
15 sub x18, x17, x14
16 /* More instructions dependent on x15 and x18 */
17 /* Branch predictor misprediction setup */
18 beqz x18, L1 /*Branch mispredicted as not taken*/
19 transient:
20 /* Begin transient window */
21 la x19, secret /* Load address of secret */
22 ld x20, 0(x19) /* Load secret value */
23 div x21, x21, x20 /*Secret-dependent division timing*/
24 div_lsu_storm:
25 /* multiple div and lsu instructions within 1 cycle */
26 lwu x24, 0(x25)
27 div x24, x21, x14
28 lwu x24, 0(x25)
29 ...
30 L1:
31 ...
32 ret

Listing 3: Code snippet of Birgus-variant in Nutshell

simultaneously issue write requests. Contention occurs when
more than two requests arrive in a single cycle, as shown
in Figure 8. Arbitration delays lower-priority modules (e.g.,
ALU), introducing measurable timing variations. By exploiting
the variable latency of division instructions, an attacker can in-
duce and measure contention-dependent delays to infer secret
data.

16

Technical details of Birgus-variant. Similar to
Spectre-type attacks, Birgus-variant exploits transient
execution attack patterns to encode secret information into
microarchitectural timing differences. The key insight is to
exploit the delay of lower-priority alu write requests caused
by simultaneous higher-priority load and division instruc-
tions. By measuring execution time differences in the victim

function, the attacker can infer secret data. The attack proceeds
in four phases:

(i) Establishing the transient window (Lines 9–18). The
attacker first prepares cache addresses and divisors (Lines
9–11) to align div and load instructions, ensuring they can
complete in one cycle and issue write requests simultane-
ously in the later div lsu storm. Multiple alu instructions
(Lines 14–16) are made data-dependent on a cache-miss load
instruction (Line 13), causing them to stall until the slow
memory access completes. The branch instruction beqz (Line
18) depends on these alu results. This branch has been trained
to mispredict, causing the processor to speculatively execute
multiple instructions in the transient window (Lines 20–29).

(ii) Secret-dependent transient behavior (Lines 20–29).
Inside the transient window, the attack includes secret-
dependent load and div operations (Lines 21–23). Crucially,
the execution timing differs based on the secret bit. If the
secret bit is 0, the div instruction completes in one cycle,
and the dependent div lsu storm instructions also finish
promptly. This avoids write port contention with the stalled
alu instructions. If the secret bit is 1, the div instruc-
tion takes 16 cycles. Therefore, div and load instructions
in div lsu storm are delayed by 15 cycles and execute
concurrently with the alu instruction waiting on the load

dependency. This creates simultaneous write requests to the
two write ports of ROB_prf, causing write port contention
that further delays the lower-priority alu instructions.

(iii) Microarchitectural state persistence. When the origi-
nal cache miss completes, the branch misprediction is detected
and all speculatively executed instructions are squashed—their
architectural effects are discarded. However, the microarchitec-
tural timing effects persist. The write port contention caused
when the secret bit is 1 has already delayed the alu instruc-
tions. Since the beqz instruction branch resolution depends on
the completion of these alu instructions, the total execution
time of the victim function becomes secret-dependent and
remains observable.

(iv) Timing-based secret extraction. The attacker measures
the total execution time of the victim function to infer the
secret bit. We evaluated the attack by setting the secret to
different values (e.g., 0xdeadbeef) and repeatedly testing
the leakage accuracy. As shown in Figure 10, the distribution
of execution cycles differs significantly for secret values 1
and 0. The x-axis represents clock cycles, while the y-axis
indicates the number of times the victim function executed
in each cycle during the side-channel attack. For example,
when inferring a 32-bit secret (e.g., 0xdeadbeef) with 5
repetitions per bit, there are 160 total measurements distributed
across different clock cycle values. The red line shows the

[Lines 1-3] Attacker (Time T0 in x11)

Victim Function

[Lines 4-6][Lines 14-16] Multiple ALU instructions

[Lines 4-6][Line 18] Branch Mispredict depend on ALU

Transient

Execution

[Lines 4-6][Line 23] Secret-dependent div

[Lines 4-6]

Secret =1, fast

[Lines 24-29] div_lsu_storm

Not taken

Requests:

ALU

Requests:

LSU

and DIVPort Contention

[Lines 4-6]
ALU instructions &

Victim delayed

[Lines 4-6]Attacker infers secret

Longer Victim

execution time

Fig. 9: The illustration of Birgus-variant

56 76
Execution Duration (cycle)

0

20

40

60

80

100

120

C
ou

nt

45

115

20

D0 Curve
D1 Curve
D0
D1

Fig. 10: Distribution of victim function execution cycles for
secret value equals 0 (D0) and 1 (D1) in Birgus-variant

distribution when the inferred secret bit is 0, and the blue line
corresponds to when it is 1.

We observe that the execution time cluster is around 55
cycles when the secret bit is 0, and around 75 cycles when
the bit is 1. This 20-cycle (36.6%) increase demonstrates
that write port contention—triggered when the secret bit is
1—significantly delays the execution of victim function. The
substantial and consistent timing gap between the two cases
demonstrates the effectiveness of our approach in inducing
measurable timing side channels via port contention, enabling
accurate leakage of secret values despite microarchitectural
noise and simulation variability.

17

B. Spectre-STC in BOOM

Spectre-STC is a Spectre-type attack previously iden-
tified in BOOM [13], [33]. This attack exploits a critical
microarchitectural feature of BOOM: the integer register file
is equipped with a single write port shared among multiple
functional modules, including DIV, MUL, and ALU. When DIV,
MUL, and ALU simultaneously issue write requests, a strict
arbitration policy prioritizes ALU and MUL units over the
latency-sensitive DIV unit.

The code snippet is shown in Listing 4, and the attack flow
is illustrated in Figure 11, The attack proceeds as follows: i)
Insert the data-dependent and low-priority division instruction
(Line 10). ii) Train the mispredicted branch to open the
transient window (Line 13). iii) Load the secret and extract
the secret bit (Lines 16-18), and set the secret-dependent
branch (Line 19). iv) Insert multiple alu instructions after the
secret-dependent branch (alu storm), which will compete
with the division on the same write port. This contention
only occurs for secret = 1, causing extra delay for the
division’s completion. After the branch resolves, speculative
instructions are squashed, but the timing impact persists and
can be measured by the attacker in register x11.

Leveraging the write port contention side-channel vulner-
ability found in Spectre-STC, PORTRUSH automatically
generated the attack vector. We evaluated the attack by setting
the secret to different values (e.g., 0xdeadbeef) and repeatedly
testing the leakage accuracy. Our experimental results demon-
strate that this attack achieves secret recovery with an error rate
below 5% and a bit rate of 19 Kb/s, highlighting the effective-
ness of combining transient execution with microarchitectural
write port contention on modern out-of-order cores.

1 attacker:
2 rdcycle x10
3 call victim
4 rdcycle x11
5 sub x11, x11, x10
6 /* Use timing difference in x11 to infer secret bit */
7 victim:
8 ...
9 /* low-priority div is data-dependent on beq branch */

10 div x18, x15, x14
11 ...
12 /* Branch predictor misprediction setup */
13 beq x16, x18, L1 /* Branch mispredicted as not taken */
14 transient:
15 /* Begin transient window */
16 la x19, secret /* Load address of secret */
17 ld x20, 0(x19) /* Load secret value */
18 andi x21, x21, 0x1 /* Extract secret bit */
19 beqz x21, L1 /* If secret bit = 0, skip alu storm */
20 alu_storm:
21 /* multiple alu instructions within 1 cycle */
22 alu x24, x15, x14
23 ...
24 L1:
25 ...
26 ret

Listing 4: Spectre-STC in BOOM

[Line 2] Victim & Time T0

[Line 10] Long-latency Division

[Line 13] Mispredicted Branch

[Lines 16-18] Load Secret & Extract Secret Bit

[Line 19] if (secret bit == 1)

[Lines 20-22] ALU Storm: multiple ALU instrs

[DIV and ALU Storm execute concurrently]

(OOO window)

[ALU Storm creates write port contention]

(blocking DIV write)

[Line 4] End & Time T1, ΔT = T1 - T0

(ΔT is larger if contention)

Fig. 11: The illustration of Spectre-STC attack

18

	Introduction
	Background
	Motivation
	Causes of Write Port Contention
	Security Risks of Write Port Contention

	Design of PortRush
	A High-Level Overview
	Write Request Static Profiling
	Write Request Graph Construction
	Priority Calculation
	Identification of Potential Write Port Contention

	Monitoring Write Port Contention
	Static Analysis for Instrumentation
	Decoding Aggregated Sequence and Monitoring Write Port Contention

	Hardware Fuzzing for Triggering Write Port Contention
	Formalization of Seed Generation and PSO Optimization
	Phase 1
	Phase 2

	Write Port Contention Side-channel Validation

	Implementation
	Evaluation
	Evaluation Setup
	Identifying and Triggering Write Port Contention (RQ1)
	Static Identification of Potential Write Port Contention
	Triggering Write Port Contention through Fuzzing

	Evaluation on Coverage (RQ2)
	Write Port Contention Side-channel Vulnerability (RQ3)
	Case Study of the MSHRush Attack (RQ4)

	Discussion
	Related Work
	Conclusion
	References
	Appendix
	Birgus-variant in NutShell
	Spectre-STC in BOOM

