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Abstract—The Differentially Private Stochastic Gradient De-
scent (DP-SGD) algorithm supports the training of machine
learning (ML) models with formal Differential Privacy (DP) guar-
antees. Traditionally, DP-SGD processes training data in batches
using Poisson subsampling to select each batch at every iteration.
More recently, shuffling has become a common alternative due
to its better compatibility and lower computational overhead.
However, computing tight theoretical DP guarantees under shuf-
fling remains an open problem. As a result, models trained with
shuffling are often evaluated as if Poisson subsampling were used,
which might result in incorrect privacy guarantees.

This raises a compelling research question: can we verify
whether there are gaps between the theoretical DP guarantees
reported by state-of-the-art models using shuffling and their
actual leakage? To do so, we define novel DP-auditing procedures
to analyze DP-SGD with shuffling and measure their ability to
tightly estimate privacy leakage vis-à-vis batch sizes, privacy
budgets, and threat models. Overall, we demonstrate that DP
models trained using this approach have considerably overes-
timated their privacy guarantees (by up to 4 times). However,
we also find that the gap between the theoretical Poisson DP
guarantees and the actual privacy leakage from shuffling is not
uniform across all parameter settings and threat models. Finally,
we study two common variations of the shuffling procedure that
result in even further privacy leakage (up to 10 times). Overall,
our work highlights the risk of using shuffling instead of Poisson
subsampling in the absence of rigorous analysis methods.

I. INTRODUCTION

To mitigate privacy risks [9, 49, 57], the Differentially
Private Stochastic Gradient Descent (DP-SGD) [1] algorithm
is increasingly being used to train models with Differential
Privacy (DP) guarantees [24]. More precisely, DP provably
bounds the leakage from a model so that no adversary can
confidently learn (up to a privacy parameter ε) any individual-
level information about the training data. DP-SGD is supported
by many open-source libraries [7, 30, 58] and is deployed
in state-of-the-art (SOTA) private models with performance
increasingly approaching that of non-private models [19].
Subsampling vs. Shuffling in DP-SGD. Since DP-SGD
is computationally intensive, practitioners often attempt to

optimize it. As DP-SGD processes training data in batches,
the standard approach to select batches at each step is
Poisson subsampling, which requires random access to the
entire dataset and can be slow for large datasets [47]. As
a result, recent work has often replaced that with shuffling
the training data and deterministically iterating over fixed-size
batches [19, 48, 52]. Additionally, modern ML pipelines (e.g.,
XLA compilation [45]) are optimized for fixed batch sizes,
while Poisson subsampling produces different batch sizes,
which can significantly slow down private training [13].

While the privacy analysis of Poisson subsampling is well-
studied and admits strong privacy amplification theorems [5,
22], correctly estimating DP-SGD’s theoretical guarantees
when using shuffling remains an open problem [16, 17, 29].
As a result, it has become common to train models using
DP-SGD with shuffling while reporting DP guarantees as if
Poisson subsampling were used [19, 39, 47]. (In the rest of
the paper, we use DP-SGD (Shuffle) to denote the former DP-
SGD (Poisson) for the latter.) This prompts the need to analyze
whether this discrepancy affects the actual privacy guarantees
of state-of-the-art models using shuffling.

DP Auditing. We build on the concept of DP auditing [21],
which consists in estimating and comparing the empirical pri-
vacy leakage (denoted as εemp) from DP mechanisms against
their theoretical DP upper bounds (ϵ) [2, 3, 11, 31, 32, 42, 43].
This involves running attacks against the mechanism – e.g., in
the case of DP-SGD, inferring whether or not a sample was
used to train the model (aka membership inference [49]), and
using the adversary’s success to estimate εemp. Finding that
εemp > ϵ indicates the presence of DP violations or bugs in
the DP algorithm. For the auditing to be effective, it also needs
not to be “loose” – i.e., if εemp ≪ ϵ, the audit may not be
exploiting the maximum possible privacy leakage.

Research Problem. In this paper, we present, to the best of our
knowledge, the first methodology to audit DP-SGD (Shuffle),
aiming to analyze the gap between its empirical privacy
leakage and the theoretical guarantees provided by DP-SGD
(Poisson). Notably, auditing the former is significantly harder
than the latter, and presenting suitable algorithms has remained
a largely unaddressed research question (see Section VIII).
Unlike for DP-SGD (Poisson), tight theoretical upper bounds
are not currently known for DP-SGD (Shuffle) [16, 17], and
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Fig. 1: Largest gaps observed for each dataset between the empirical
privacy leakage estimate εemp and theoretical Poisson guarantees ε
when training by shuffling datasets using DP-SGD.

privacy attacks have not been evaluated against it. Therefore,
it is unclear whether and how the privacy leakage can be
effectively leveraged by the auditing adversary.

Roadmap. We start by auditing a simplified version of DP-
SGD, which we denote as Batched Gaussian Mechanism
(BGM), using a novel method that builds on likelihood ratio
functions. Our BGM variant is non-adaptive and simpler
than the Adaptive Batch Linear Query (ABLQ) mechanism
studied in prior work [16], enabling us to audit it tightly in a
principled way (see Section III). Then, we extend our auditing
procedure to DP-SGD (Shuffle) and evaluate the empirical
privacy leakage under various adversarial models.

Our experiments highlight a substantial gap (up to 4×)
between the empirical privacy leakage observed from SOTA
models [19, 39] and their claimed theoretical DP guarantees.
In Figure 1, we summarize the largest gaps for each dataset
we experiment with – e.g., on the MNLI dataset, the state-
of-the-art differentially private BERT model from [39] reports
a theoretical ε = 3, while our audit results in an empirical
εemp = 12.7 due to shuffling the dataset as opposed to using
Poisson sub-sampling as in the theoretical analysis.

However, the gap is not uniform across all parameter
settings and threat models. Specifically, for large batch sizes
and weak threat models, we find that the gap is much smaller,
implying that the relationship between the theoretical Poisson
DP guarantees and the actual privacy leakage observed from
shuffling is a complex one.

Finally, we adapt our auditing procedures to audit two vari-
ations of the shuffling procedure first reported by Ponomareva
et al. [47], namely, partial shuffling and batch-then-shuffle.
We find them in 2.6% of public code repositories related to
non-private ML training and show that these variations yield
even larger privacy leakage (up to 10×) compared to standard
shuffling. For theoretical ε = 0.1, the partial shuffling and
batch-then-shuffle procedures result in an empirical privacy
leakage of εemp = 0.29 and εemp = 1.00, respectively.

Contributions. In short, our work makes several contributions:

• We are the first to audit DP-SGD (Shuffle) and show that
the empirical privacy leakage of SOTA models [19, 39] is
substantially larger than the theoretical DP guarantees, eval-
uating the impact of the batch size and the adversarial model
on the privacy leakage observed from DP-SGD (Shuffle).

In the process, we present novel auditing techniques using
likelihood ratio functions.

• We investigate and identify gaps in the privacy leakage from
two common variants of the shuffling procedure, namely,
partial shuffling and batch-then-shuffle.

• Although we focus on DP-SGD (Shuffle), our auditing
framework could be applied to any sampling technique and
mechanism, e.g., to identify variations within and estimate
privacy leakage for implementations of shuffling itself.

• Our work attests to the impact of shuffling (and its variants)
on privacy leakage, calling into question the guarantees
claimed by some SOTA models. This has important im-
plications both in terms of privacy (i.e., privacy claims
might be overly optimistic) and utility (i.e., hyperparameters
tuned to DP-SGD (Shuffle) may not be optimal for DP-SGD
(Poisson) and vice versa).

NB: we have made the source code of our auditing procedure
publicly available to support reproducibility and encourage
further work in this space.1

II. BACKGROUND

A. Differential Privacy (DP)

Definition 1 (Differential Privacy (DP) [24]). A randomized
mechanism M : D → R is (ε, δ)-differentially private if for
any two adjacent datasets D,D′ ∈ D and S ⊆ R:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ

Two common notions of adjacent datasets are add/remove
and edit. The former corresponds to inserting/deleting a single
record from the dataset (hence |D|= |D′|±1); the latter to
replacing a single record with another (|D|= |D′|). Note that
the difference in the size of the adjacent datasets limits the
applicability of the add/remove adjacency in some settings
(e.g., sampling w/o replacement), while guarantees under
edit adjacency typically require roughly twice the amount of
noise [47] since replacing a record is equivalent to first deleting
then adding a record under the add/remove adjacency.
Zero-out Adjacency. To bridge the gap between add/remove
and edit adjacency, the “zero-out” adjacency [34] is increas-
ingly used to simplify theoretical privacy analyses [14, 16, 47].

Definition 2 (Zero-out adjacency [34]). Let X be a data
domain s.t. special element ⊥ /∈ X and X⊥ = X ∪ {⊥}.
Datasets D ∈ Xn and D′ ∈ Xn

⊥ are zero-out adjacent if
exactly one record in D is replaced with ⊥ in D′.

The special ⊥ record is usually 0 for numerical data.
This allows the guarantees under zero-out adjacency to be
semantically equivalent to those under add/remove (i.e., no
additional noise required) while ensuring that the sizes of the
adjacent datasets are equal.
f -DP and trade-off functions. Besides (ε, δ)-DP, there are
other formalizations of DP; e.g., f -DP captures the difficulty
for any adversary to distinguish between the outputs of a

1See https://github.com/spalabucr/audit-shuffle.
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mechanism M on adjacent datasets D and D′ using trade-
off functions.

Definition 3 (Trade-off function [22]). For any two probability
distributions P and Q on the same space, the trade-off function
T (P,Q) : [0, 1]→ [0, 1] is defined as:

T (P,Q)(α) = inf{βϕ : αϕ ≤ α}

where the infimum is taken over all (measurable) rejection
rules ϕ and αϕ and βϕ are the type I and II errors correspond-
ing to this rejection rule, respectively.

In theory, the trade-off function characterizes the false
positive/negative errors achievable by any adversary aim-
ing to distinguish between P and Q. A mechanism M is
said to satisfy f -DP if for all adjacent datasets D, D′:
T (M(D),M(D′)) ≥ f .

One special case of f -DP is µ-GDP, when the underlying
distributions are Gaussian.

Definition 4 (µ-GDP [22]). A mechanismM satisfies µ-GDP
if for all adjacent datasets D, D′:

T (M(D),M(D′)) ≥ Φ(Φ−1(1− α)− µ),

Φ being the standard normal cumulative distribution function.

f -DP is useful, e.g., in the context of auditing (introduced
in Section III), as it is equivalent to (ε, δ)-DP for specific
trade-off functions and can be used to efficiently compare the
empirical power of adversaries with theoretical guarantees, as
we do later in the paper.
Privacy Loss Distribution (PLD). The PLD formalism [36]
is useful to derive tight theoretical guarantees for DP mecha-
nisms. In recent work [42], PLD has also been used to tightly
audit DP-SGD (Poisson) by using the given PLD to estimate
the corresponding trade-off function. However, while the PLD
for DP-SGD (Poisson) is known, deriving the PLD for DP-
SGD (Shuffle) is still an active area of research [16, 17].

B. DP-SGD

Differentially Private Stochastic Gradient Descent (DP-
SGD) [1] is a popular algorithm for training machine learning
(ML) models with formal privacy guarantees. DP-SGD takes
in input a dataset D along with several hyperparameters and
proceeds iteratively, processing the dataset in batches and
computing the gradients of samples one batch at a time. There
are several strategies for sampling a batch from a dataset, such
as Poisson subsampling and sampling without replacement.
In general, DP-SGD can be defined with an abstract batch
sampler B that takes as input the dataset D and the (expected)
batch size B, and outputs batches sampled from the dataset.
We report its pseudo-code in Algorithm 4 in Appendix A.
Poisson subsampling. The first implementations of DP-SGD
used batches sampled through Poisson subsampling. With
this approach, the batch sampler independently samples each
record (x, y) ∈ D with probability q = B/|D| in each
batch, where B is the batch size. One major advantage
of using Poisson subsampling is substantially reducing the

amount of required noise via strong privacy amplification
theorems [1, 22]. However, in practice, Poisson subsampling
can be quite inefficient. For instance, the dataset cannot be
fully loaded in memory when it is too large; thus, one needs
to load a random batch in and out from the disk at every
step, which is costly [47]. Furthermore, efficient modern ML
pipelines (e.g., XLA compilation) require fixed-size batches to
fully leverage GPU parallelization [13].

Shuffling. In practice, state-of-the-art DP-SGD implementa-
tions often rely on more computationally efficient sampling
schemes, such as shuffling, while reporting DP guarantees
as though Poisson subsampling was used [19]. In shuffling,
the batch sampler randomly permutes the records first, then
partitions the dataset into fixed-size batches. Since shuffling is
already the standard in non-private training, this also simplifies
implementations of DP-SGD by layering DP on top of existing
non-private pipelines instead of redesigning and optimizing
them from scratch. However, since the privacy guarantees pro-
vided by shuffling are not yet fully understood, this can create
a discrepancy between the theoretical guarantees reported by
state-of-the-art models and the actual privacy leakage, which
we study in this work.

Zero-out Adjacency. While shuffling is more compatible with
edit adjacency due to the fixed batch sizes, the Poisson scheme
is more suitable for add/remove adjancency. Nevertheless, it
is possible to derive guarantees for Poisson under the edit
adjacency, although this is known to be very cumbersome [5].
Thus, comparing privacy guarantees between the different
subsampling schemes is inherently complicated. Overall, zero-
out adjacency is increasingly used to analyze the privacy of
DP-SGD in practice [14, 34, 47].

Specifically, the ⊥ record is defined so that the gradient
is always zero, i.e., ∀θ ∇ℓ(⊥; θ) = 0 [34]. By doing so, we
ensure that DP-SGD (Poisson) under zero-out adjacency is se-
mantically equivalent to DP-SGD (Poisson) under add/remove,
which enables us to compare the privacy guarantees of DP-
SGD (Poisson) with that of DP-SGD (Shuffle) under a com-
mon adjacency notion.

III. DP AUDITING

Privacy auditing broadly denotes the process of empirically
estimating the privacy leakage from an algorithm. In DP, this
involves running experiments to estimate the empirical privacy
guarantees (εemp) and compare them to the theoretical guar-
antees (ε). For simplicity, we assume the empirical guarantees
are derived for the same δ as the theoretical (ε, δ)-DP; thus, we
are technically comparing (εemp, δ) to (ε, δ), but leave out δ to
ease presentation. If one finds that εemp > ε, the mechanism
leaks more privacy than expected. As mentioned earlier, if
εemp ≪ ε, the audit is not tight, i.e., the theoretical bounds
are overly conservative or there may be substantial room for
improvement to the privacy estimation procedure.

Implementing DP algorithms correctly is challenging [10,
33] and bugs in DP-SGD implementations have resulted in
significantly degraded protections [11, 33] and realistic privacy
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Game Parameters: (D, n,M, τ)

Adversary Challenger

Pick zT ∈ D
zT−−−−−−−−−→

D− ∼ Dn−1, zT /∈ D−

D0 := D− ∪ {⊥}
D1 := D− ∪ {zT }

D0, D1←−−−−−−−−−
b ∼ {0, 1}...←−−−−−−−−→ o ∼M(Db)

o←−−−−−−−−−

b̂← A(o;M, D0, D1)
Output: b̂

Fig. 2: Distinguishability Game between an Adversary and a Chal-
lenger for zero-out DP given data distribution D of size n, the
mechanism M, and a decision threshold τ .

attacks [20]. DP auditing can be used to detect these bugs [4,
42, 53] and/or evaluate the optimality of the attacks [4, 43].
Moreover, empirical guarantees are also useful for estimating
the privacy loss in settings where tight theoretical guarantees
are not currently known, e.g., when the adversary does not
have access to intermediate updates [2, 3].

In the rest of this section, we introduce a general DP
auditing procedure using an adversary and a distinguishing
game. The attack’s success can then be converted into the
lower-bound empirical privacy leakage estimate εemp.

A. The Distinguishing Game

In Figure 2, we present the standard distinguishing
game [42], involving an Adversary and a Challenger, adapted
to audit the zero-out DP guarantees of a mechanism M. The
Challenger runs the mechanism on a randomly chosen dataset,
and the Adversary aims to determine the dataset used by the
Challenger based on the mechanism’s output.

In each game, the Adversary picks a single target record
zT from the data domain and sends it to the Challenger.2 The
latter constructs adjacent datasets D0 and D1 by appending
the zero-out record ⊥ and the target record zT , respectively,
to a randomly sampled dataset with n−1 records as done in
prior work [2, 42, 46, 50]. Then, the Adversary is given access
to the randomly sampled adjacent datasets D0 and D1. Next,
the Challenger runsM on dataset Db for a random b ∈ {0, 1},
and the Adversary wins if they correctly guess b̂ = b.

Note that M can be a complex algorithm with many im-
plementation details that the theoretical privacy analysis does
not rely on; thus, depending on the threat model considered
and the adversarial capabilities, the adversary may be given
access to specific internals ofM as discussed in Section V-A,
along with M ’s output. In theory, this can take any form, e.g.,
scalar o ∈ R, vector o ∈ Rd, or even have arbitrary domain
o ∈ Y . However, it can be difficult to consider and design
decision functions around values in arbitrary domains. Hence,
a common strategy [31, 43] is for the Adversary to define a

2We are abusing notation by define D as both the data distribution and domain,
although it is clear from the context.

distinguishing function A that assigns a scalar “score” to the
output representing the Adversary’s confidence that the output
is drawn from processing D1. This score is then thresholded
to produce a guess b̂ = 1 if the Adversary determines that
o ∼M(D1) and 0 otherwise.

B. Estimating εemp

We estimate the empirical privacy leakage εemp by running
the distinguishing game multiple times, where only a single
record is inserted in each run. We compute the false positive
rate (FPR) α and the false negative rate (FNR) β across
multiple games and derive (statistically valid) upper bounds
α and β using Clopper-Pearson confidence intervals (CIs) to
quantify the confidence in our privacy loss estimation [31, 42].
We then calculate the empirical lower-bound privacy guarantee
εemp from α and β using the (ε, δ)-DP definition as follows.

While recent DP-SGD audits have presented “auditing in
one run” methods [41, 50, 55], these do not yield sufficiently
tight DP-SGD audits (even under powerful threat models), and
thus we choose to audit using multiple runs. Moreover, prior
work [41, 42, 55] has proposed alternative auditing techniques
for DP-SGD (Poisson) using f -DP or PLD; however, since
tighter f -DP guarantees for DP-SGD (Shuffle) are currently
unknown [16], we stick to the (ε, δ)-DP definition.
Auditing using (ε, δ)-DP. For any given (ε, δ)-DP mechanism,
the possible false positive rates (α) and false negative rates
(β) attainable by any adversary are known to be the following
privacy region [35]:

R(ε, δ) = {(α, β)|α+ eεβ ≥ 1− δ ∧ eεα+ β ≥ 1− δ ∧
α+ eεβ ≤ eε + δ ∧ eεα+ β ≤ eε + δ}

(1)

Therefore, given upper bounds α and β, the empirical lower
bound can be calculated as:

εemp = max

{
ln

(
1− α− δ

β

)
, ln

(
1− β − δ

α

)
, 0

}
(2)

While Bayesian intervals [59] can improve the privacy esti-
mation’s tightness, they are also more computationally expen-
sive to derive and may not always be statistically sound [42].
Thus, we stick to Clopper-Pearson CIs. (In Section VI-B, we
will also evaluate the impact of using CIs on the empirical
privacy leakage estimation).

For simplicity, we follow standard practice [31, 42, 50, 59]
and fix the the value of δ = 10−5 throughout all experiments
and only estimate the εemp guarantee at this δ value.

C. The Distinguishing Function
As mentioned, DP auditing involves an adversary distin-

guishing between observations from M(D) and M(D′). For
a mechanism M : X → Y , this can be any function of the
form A : Y → {0, 1} where A(o) = 1 (or 0) represents that
the adversary predicts that the observation o is drawn from
M(D) (or M(D′)).
Scalar Score. In theory, A is equivalent to the rejection
rule from the definition of f -DP, which represents the ad-
versary performing a hypothesis test on whether to reject that
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o ∼ M(D′). However, in previous work [31, 32, 42, 43],
the adversary assigns a scalar “score” to each output, which
is then thresholded to form the distinguishing function—e.g.,
Jagielski et al. [31] and Nasr et al. [42] use, respectively, the
loss function and dot product. This is because the raw outputs
of DP-SGD tend to be high-dimensional vectors where dis-
tances can be difficult to interpret, thus making distinguishing
functions hard to design.

On the other hand, using a scalar score, the adversary
can first represent the confidence that the observation was
drawn fromM(D) instead ofM(D′). Then, the score can be
thresholded to produce a prediction easily, i.e., all observations
with score ≥ τ are labeled as drawn from M(D) and from
M(D′) otherwise. Furthermore, this threshold τ can also
be adjusted to produce not only a single FPR/FNR pair but
an FPR-FNR curve, i.e., an empirical trade-off curve, which
can also be compared with the claimed theoretical trade-off
function when auditing.
Choosing the threshold. When auditing using scalar scores,
choosing the threshold τ from an independent set of observa-
tions is the easiest method to ensure a technically valid lower
bound for the empirical privacy leakage estimate εemp derived
this way. However, it is standard to report the maximum εemp

for the optimal threshold [3, 11, 31, 42, 43, 46, 59] and we do
so too, making the process more efficient by first sorting the
scalar scores. Here, we substantially improve the efficiency of
this procedure by first sorting the scores in increasing order, as
reported in Algorithm 1. This enables us to find the optimal
threshold from, potentially, billions of observations without
incurring a prohibitive computational cost. For simplicity, we
abstract the details of choosing an appropriate threshold and
designing a distinguishing function. We refer to the empiri-
cal estimation procedure at significance level α and privacy
parameter δ from scores S and S ′ derived from M(D) and
M(D′), respectively as EstimateEps(S,S ′, α, δ).

IV. AUDITING THE BATCHED GAUSSIAN MECHANISM

Before auditing DP-SGD (Shuffle), we first turn to the
Batched Gaussian Mechanism (BGM) (see Algorithm 5 in
Appendix A), a heavily simplified version of DP-SGD adapted
from [16]. We do so to develop principled, (close to) tight
auditing techniques for shuffling (under an idealized setting).

Like DP-SGD, BGM also proceeds iteratively, sampling
batches according to some batch sampler B. However, instead
of calculating gradients, the inputs are simply aggregated
together with noise at each batch, and the noisy aggregated
values are released for each batch across all epochs. Moreover,
unlike DP-SGD, it is non-adaptive, i.e., the outputs of previous
iterations do not affect the current one.

While BGM can be instantiated with any batch sampler,
we use the shuffle batch sampler, which is commonly used
in ML training. We bound the inputs, i.e. ∀i xi ∈ [−1,+1],
so that the mechanism satisfies (ε, δ)-DP. When the number
of epochs is 1, Chua et al. [16] use the adjacent datasets
D = (+1,−1, ...,−1) and D′ = (⊥,−1, ...,−1), setting
⊥ = 0 in their lower bound privacy analysis. Specifically,

Algorithm 1 Estimating εemp from scores

Require: Scores from M(D), S. Scores from M(D′), S ′. Signifi-
cance level, α. Privacy parameter, δ.
▷ Assume |S|= |S ′|.

1: R← |S|
▷ Initial FPR and FNR for classifying all scores as s ∼M(D).

2: FPR← R
3: FNR← 0
4: for τ ∈ sort increasing(S ∪ S ′) do

▷ Calculate FPR and FNR for classifying score as s ∼ M(D)
if s > τ .

5: if τ ∈ S then
6: FNR← FNR + 1
7: else
8: FPR← FPR− 1
9: end if

▷ Calculate confidence intervals for FPR and FNR.
10: FPR← Clopper-Pearson(FPR,R, α)
11: FNR← Clopper-Pearson(FNR,R, α)

▷ Estimate εemp from Equation 2
12: εemp[τ ] = max

{
ln

(
1−FPR−δ

FNR

)
, ln

(
1−FNR−δ

FPR

)
, 0
}

13: end for
14: return maxτ εemp[τ ].

they conjecture, but do not prove, that these are the worst-
case adjacent datasets for the shuffle batch sampler. Note
that this is different from the proven worst-case datasets
D = (+1, 0, ..., 0) and D′ = (⊥, 0, ..., 0) for the Poisson
batch sampler [60]. Specifically, in the shuffle setting, the
differing sample in the conjectured worst-case datasets is
equal in magnitude but opposite in direction to the other
samples, unlike in the Poisson setting. Finally, in a single
epoch and for batch size B, the outputs of the mechanism on
the adjacent datasets are (−B, ...,−B+2, ...,−B)+N (0, σ2I)
and (−B, ...,−B + 1, ...,−B) + N (0, σ2I) for D and D′,
respectively. Since the inputs are shuffled, the “−B + 2” and
“−B + 1” values can appear in any batch.

We stress that BGM is a “hypothetical” algorithm, i.e., it is
not used/associated with common data distributions or training
datasets. Therefore, when auditing it using the Distinguishabil-
ity Game, we take the data distribution to be the “pathological”
distribution, which always outputs ‘-1.’ Then, the adversary
always chooses ‘+1’ as the target record zT .

A. From Single to Multiple Epochs

Single Epoch. To audit a single epoch, an adversary has to dis-
tinguish between (g̃1, ..., g̃T ) ∼ BGM(D) and (g̃′1, ..., g̃

′
T ) ∼

BGM(D′). As mentioned, prior DP-SGD audits [31, 32, 42,
43] typically compute a natural “score” from each thresholded
observation. However, in the context of shuffling, there is no
known score to distinguish between the outputs.

In this work, we draw from the Neyman-Pearson [44]
lemma, which states that the optimal way to distinguish
between two distributions is by thresholding the output of
the likelihood ratio function. Specifically, the likelihood ratio
function computes the ratio of probabilities that the outputs
are from BGM(D) or BGM(D′). Here, the probability that
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(g̃1, ..., g̃T ) is from BGM(D) (or BGM(D′)) can be split
into T cases depending on which batch the target record +1
(or ⊥) appears in. To that end, we calculate the likelihood
ratio for the adjacent datasets D = (+1,−1, ...,−1) and
D′ = (⊥,−1, ...,−1) as follows (we let g̃ = (g̃1, ..., g̃T )):

Λ(g̃) =
Pr[g̃|BGM(D)]

Pr[g̃|BGM(D′)]
=

∑
t T

−1 Pr[g̃|BGM(D) ∧+1 is in batch t]∑
t T

−1 Pr[g̃|BGM(D′) ∧ ⊥ is in batch t]
=

=

∑
t Pr[g̃t|N (−B + 2, σ2)]

∏
t′ ̸=t Pr[g̃t′ |N (−B, σ2)]∑

t Pr[g̃t|N (−B + 1, σ2)]
∏

t′ ̸=t Pr[g̃t′ |N (−B, σ2)]

Note that for arbitrary adjacent datasets where all records
are different, Λ(·) would be computationally intractable to
compute since we would need to account for all possible
permutations induced by shuffling. However, since [16]’s
conjecture assumes that all records except one are identical,
this reduces the number of “cases” to be considered to T , thus
making Λ(·) tractable.
Multiple Epochs. Although [16] only considers one set of
batches (i.e., corresponding to a single “epoch” of training),
we extend to multiple epochs as training private models
typically involves multiple epochs. We rely on the fact that
the batch sampling and aggregation are done independently
across multiple epochs; thus, the likelihood across multiple
epochs is the product of the likelihoods of each epoch, i.e.,

letting G =

− g̃1−
...

− g̃E−

, we define the likelihood ratio as:

ΛBGM(G) =
E∏

i=1

Λ(g̃i) =

=

E∏
i=1

∑
t Pr[g̃

i
t|N (−B + 2, σ2)]

∏
t′ ̸=t Pr[g̃

i
t′ |N (−B, σ2)]∑

t Pr[g̃
i
t|N (−B + 1, σ2)]

∏
t′ ̸=t Pr[g̃

i
t′ |N (−B, σ2)]

Overall, our experimental evaluation (presented below)
shows that auditing using likelihood ratios is very effective
at estimating the privacy leakage from the Batched Gaussian
Mechanism. In this idealized setting, we observe a substantial
gap (up to 4×) between the privacy leakage observed empiri-
cally and the theoretical guarantees from the Poisson subsam-
pling analysis (recall that there are no known guarantees for
shuffling). This further motivates us to investigate whether this
gap is also observable in real-world settings using DP-SGD.

B. Experiments

Varying Batch Size and Noise Multiplier. We start by fixing
both the number of epochs and the batch size (B) to 1. We
vary the number of steps for a single epoch, T , by varying
the dataset size and can then compute the theoretical Poisson
analysis ε using the privacy loss random variable (PRV)
accountant for a given T and noise multiplier σ. Furthermore,
to assess computational complexity, we audit each setting
over a varying number of game runs, each yielding a single
observation. For context, we also consider the lower bound
theoretical ε previously calculated by Chua et al. [16].

In Figure 3, we plot the empirical εemp observed when
auditing the Batched Gaussian Mechanism with the numbers
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Fig. 3: Auditing BGM for various number of steps T and noise
multipliers σ. Theoretical ε (Poisson) represents the theoretical
guarantees if Poisson subsampling had been used, while Theoretical
ε (Shuffle, lower bound) denotes the lower bounds from [16].

of steps T at 100 and 1,000 and noise multipliers σ at
0.5, 1.0, 1.5. For several parameters, the empirical privacy
leakage is substantially larger than the theoretical upper
bounds from the Poisson analysis. Specifically, with T = 100,
we obtain εemp = 8.96, 4.01, and 1.44, respectively, for
σ = 0.5, 1.0, 1.5 against theoretical upper bounds suggesting
only ε = 6.49, 0.73, 0.30 (over 109 observations).

This gap varies with different numbers of steps taken in each
epoch (T ) and different noise multipliers (σ). More precisely,
it is substantially larger for larger T (corresponding to small
batch sizes) and smaller σ. For instance, the gap between ε
and εemp is 5.78 for T = 1000, σ = 0.5 vs. 1.14 for T = 100,
σ = 1.5. However, larger numbers of steps may not always
result in larger empirical privacy leakage estimates either. At
σ = 1.5, for T = 100 and 1000, we find εemp = 1.44 and
εemp = 0.34, respectively.

Since the privacy loss distribution (PLD) used in [42] is
not currently known for DP-SGD (Shuffle), recall that we
are auditing using the (ε, δ)-DP definition; as a result, we
require a large number of observations for the εemp estimates
to converge, especially when σ is small. For σ ≥ 1.0, at
T = 100, εemp converges after 108 observations, but for
σ = 0.5, it requires more than 109 observations (we do not
explore beyond 109 due to computational constraints).

As expected, given enough observations, our audits match
but do not exceed the theoretical lower bounds calculated by
Chua et al. [16]. This not only confirms that our auditing
procedure is effective but also that it might be possible
to convert the lower-bound privacy analysis from [16] into
an upper-bound privacy guarantee. However, proving upper-
bound privacy guarantees might not be trivial and is beyond
our scope—thus, we leave it to future work.

Exploring parameter settings. Next, we audit using parame-
ters from state-of-the-art differentially private models. Specif-
ically, we audit BGM in the settings used in [19] and [39] to
train private image classification models and large language
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Paper Dataset Size σ T E ε εemp Gap

[19] Places-365 1.8M 1.00 440 509 7.53 13.54 1.80×
[19] CIFAR-10 60K 3.00 11 168 6.24 6.39 1.02×
[39] SST-2 60K 0.79 117 10 3.00 9.80 3.27×
[39] QNLI 100K 0.87 195 30 3.00 10.60 3.53×
[39] MNLI 400K 0.73 781 50 3.00 12.73 4.25×
[39] Persona-Chat 400K 0.82 254 30 2.99 11.08 3.70×

TABLE I: Parameter settings used in prior work where the empirical
privacy leakage (εemp) observed from shuffling is appreciably larger
than the theoretical ε from Poisson sampling.

models, respectively3. Note that De et al. [19] explicitly
state they train their models with shuffling but report DP
guarantees as though Poisson sampling was used. Whereas, Li
et al. [39] do not mention using shuffling, but a review of their
codebase shows they use the default Pytorch implementation
of DataLoader, which shuffles the dataset.

In total, we audit all 101 combinations of parameters (i.e.,
noise multiplier, σ, number of steps per epoch, T , and number
of epochs E) extracted from [19] and [39] using 107 observa-
tions. Overall, we find a substantial gap between the empirical
privacy leakage under shuffling and the theoretical Poisson
analysis in two-thirds of the settings studied. In Table I, we
report the maximum gaps between εemp and ε, over several
datasets, for parameter settings used in prior work. The largest
gap (4.25×) occurs with large language models, probably
owing to the small noise multiplier used to optimize utility.

Overall, these experiments indicate that, under the Batched
Gaussian Mechanism’s ideal conditions, training with shuffling
instead of Poisson subsampling incurs substantial privacy
leakage, also in settings commonly used for training state-of-
the-art models. This further motivates assessing the validity of
the DP guarantees reported by state-of-the-art models.

C. Takeaways

As mentioned earlier, we experiment with Batched Gaussian
Mechanism and study the impact of various parameter settings
(noise scale, batch size, and number of epochs) on the empir-
ical privacy leakage observed. Our experiments show that the
empirical privacy leakage from shuffling can be substantially
larger than the theoretical guarantees given by the Poisson
subsampling analysis.

Crucially, this gap is prominent in the parameter settings
used to train SOTA models in prior work [19, 39] as well. For
instance, De et al. [19] reportedly use shuffling to fine-tune an
NF-ResNet-50 model on the Places-365 dataset at a theoretical
ε = 7.53, but our audits show that the actual privacy leakage
is almost double (εemp = 13.59).

V. AUDITING DP-SGD (SHUFFLE)

In this section, we present our novel auditing procedure for
DP-SGD (Shuffle). We start by defining various threat models
specific to the shuffling setting and then present our algorithm.

3We audit the different parameter settings using our own shuffling implemen-
tation instead of auditing existing implementations both for computational
efficiency and to freely vary the hyperparameters (e.g., batch size).

A. Adversarial Modeling

Although DP-SGD (Shuffle)’s structure is very similar to
that of BGM, there are practical considerations that can affect
the empirical privacy estimates. For instance, since the inputs
to the mechanism are directly aggregated and all intermediate
noisy aggregates are released, adversaries for the BGM are, by
default, given as much power as the theoretical worst-case DP
adversary. By contrast, DP-SGD first calculates the gradient
of each input before aggregating them and may only output
the final trained model, thus making it unclear which aspects
of the mechanism the adversary is given access to.
Auditing with a Worst-Case Adversary. We start by con-
sidering the worst-case adversary, assuming they can insert
the gradients of all records in the dataset. Although this may
destroy model utility, recall that the main goal of DP auditing
is to verify that the DP bounds are correct, and DP is a worst-
case guarantee that should hold against the most powerful
adversary. In fact, the privacy analysis of DP-SGD assumes
that the adversary can indeed insert arbitrary gradients for all
records [1].

Overall, adversaries used in the DP auditing literature
are usually given strong capabilities, including, e.g., (active)
white-box access to the model [42, 43]. More precisely, DP-
SGD audits [4, 11, 41–43, 46, 50, 55] typically consider a
“white-box with gradient canaries” setting where not only
can the adversary choose the target record (x̂, ŷ), but they
also have access to the model parameters at each update step
and can arbitrarily insert gradients of samples (i.e., gradient
canary). Our work also operates in this setting.
Auditing with a Target-Canary Adversary. Prior DP-SGD
audits [4, 11, 41–43, 46, 50, 55] have also experimented
with adversaries that can only insert the gradient of the
target record, obtaining relatively tight audits for DP-SGD
(Poisson). In this setting, all records except the target have
natural gradients (i.e., not adversarially crafted). While we
expect models audited using these adversaries to have the same
utility as production models (the canary gradient has minimal
impact on it), our experiments show the resulting audits to
be relatively loose. As a result, we only report experimental
results in the context of analyzing the impact of varying
adversarial capabilities on the tightness of the audit (as also
done in prior work [3, 31, 42, 43, 50]).
Auditing with a Partially-Informed Adversary. Theoret-
ically, the worst-case adversary assumed by the DP guarantees
has access to all aspects of the algorithm not involved in the
randomness for noise addition and batch selection, i.e., it can
modify the gradients of all samples. Nevertheless, we believe it
is interesting and useful to relax this assumption and introduce
the so-called Partially-Informed adversary, which can
only modify selected samples’ gradients. Specifically, this
adversary only inserts the gradients of the target record and
the final record in each batch. We are motivated to do so as
one of the reasons why Target-Canary audits are loose could
stem from the bias introduced by the other samples in each
batch, which our likelihood-based auditing procedure could
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be sensitive to. Therefore, by leaving the remaining B − 1
samples in each batch untouched, we can precisely study the
impact of the bias introduced by other samples on our auditing
procedure. Similar to the Worst-Case, the adversary can also
insert opposing gradients, thus, making the batches containing
the target or zero-out record more obvious. Overall, models
audited under this threat model should still maintain similar
utility as production models, while we expect them to result
in tighter audits.
Auditing with Strong Adversaries. Although our adversarial
models consider relatively strong, gradient-crafting adver-
saries, arguably, this does not diminish the value and impact of
our analysis. First of all, as we discuss in Section VIII, prior
work has considered similarly strong adversaries: for instance,
in the context of DP-SGD (Poisson), Nasr et al. [43] rely on
adversaries that can craft arbitrarily malicious datasets (i.e.,
“Pathological Dataset”). In other words, our Worst-Case adver-
sary can be modeled with the Pathological Dataset adversary;
thus, our threat model does not involve adversaries stronger
than those used in prior auditing work (see Appendix C).

Overall, it is common to instantiate audits with different
adversarial models and evaluate the resulting impact on their
tightness [4, 42, 43]. We follow a similar strategy and consider
several adversarial models that are specifically catered to DP-
SGD (Shuffle); this also allows us to evaluate the impact
of adversarial capabilities on different aspects of DP-SGD
(Shuffle) algorithms in terms of privacy leakage.

Perhaps more importantly, being a worst-case definition, DP
is meant to provide formal guarantees that hold also against
worst-case adversaries. One of the main goals of DP auditing is
to verify that empirical leakage does not exceed these (theoreti-
cal) DP guarantees. In our case, in particular, the main research
question we focus on is whether or not privacy discrepancies
emerge from designing DP-SGD algorithms that use shuffling
but reporting guarantees as if Poisson subsampling was used.
Therefore, the adversaries we experiment with should be seen
as part of our auditing toolkit, more than in the context of how
“realistic” it would be to instantiate them.

B. Auditing Procedure

In Algorithm 2, we outline the DP-SGD algorithm [1]
with the modifications needed to audit with Target-Canary,
Partially-Informed, and Worst-Case adversaries. Lines
7-8 correspond to enforcing that the ⊥ record has a 0 gradient,
which is needed for auditing with zero-out adjacent datasets.

Then, lines 9-10 are standard steps for active white-box
adversaries that insert the gradient of the target record. Lines
11-12 correspond to inserting the gradient of the final record
in each batch, which only occurs with Partially-Informed

and Worst-Case (but not Target-Canary). Specifically, the
adversary inserts the canary gradient in the opposite direction
for each batch that does not contain both the target and zero-
out records. This closely resembles the conjectured worst-case
datasets by Chua et al. [16] as the target record’s gradient
has an equivalent magnitude but opposite direction to the
final records in all other batches, which makes audits in this

Algorithm 2 The DP-SGD algorithm with the modifications
we make to audit DP-SGD (Shuffle) with different adversaries.
Modifications for Target-Canary, Partially-Informed,
and Worst-Case are reported in red. Additional modifications
for Partially-Informed and Worst-Case only are in blue
and for Worst-Case only in orange.
Require: Dataset, D. Epochs, E. Batch Size, B. Learning rate, η.

Batch sampler, B. Loss function, ℓ. Initial model parameters,
θ0. Noise multiplier, σ. Clipping norm, C. Target record, (x̂, ŷ).
Canary gradient, ĝ. Zero-out record, (x⊥, y⊥).

1: T ← |D|/B
2: for i ∈ [E] do
3: θi1 ← θi−1

T
4: Sample batches B1, ..., BT ← B(D,B)
5: for t ∈ [T ] do
6: for (xj , yj) ∈ Bt do
7: if (xj , yj) = (x⊥, y⊥) then
8: gj ← 0
9: else if (xj , yj) = (x̂, ŷ) then

10: gj ← ĝ
11: else if j = B − 1 ∧ (x̂, ŷ), (x⊥, y⊥) /∈ Bt then
12: gj ← −ĝ
13: else
14: gj ← ∇ℓ((xj , yj); θ

i
t)

15: gj ← 0
16: end if
17: ḡj ← gj/max

(
1,

||gj ||2
C

)
18: end for
19: g̃ ← 1

B

(∑
j ḡj +N (0, C2σ2I)

)
20: θit+1 ← θit − ηg̃
21: oit ← ⟨g̃, ĝ⟩
22: end for
23: end for

24: return O =

o11 . . . o1T
...

. . .
...

oE1 . . . oET



model tighter. This does not break or change the underlying
DP guarantees of DP-SGD (Shuffle) as this step is applied
regardless of whether the target or zero-out record is present
in the dataset and thus applies to D and D′ equally.

In line 15, the Worst-Case adversary additionally zeroes
the gradients of all other samples, effectively removing the
bias from the other samples. Finally, all adversaries compute
the dot product between the privatized and canary gradient as
“outputs” (line 21) and release the full matrix of “outputs”
across all batches and epochs (line 24). Similar to BGM,
the adversary computes and thresholds the likelihood ratio to
calculate empirical privacy leakage estimates.

In our auditing procedure, the adversary does not have
access to the underlying batch sampler B, but only to the
output matrix O. We do so as we focus on determining the
impact of alternate subsampling schemes on the empirical
privacy leakage. This allows us not only to assess whether
the adversary can leak more privacy without knowing the
specifications of the batch sampler but also to detect bugs
within the shuffling implementations (see Section VII).

Overall, our auditing procedure assumes an adversary that
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can access all parts of training other than the clipping, noise
addition, and batch selection steps and is only slightly weaker
than the adversary assumed by DP-SGD’s privacy analysis
(i.e., the optimal adversary can also choose a pathological
dataset D and has access to the batch sampler).

C. Computing Likelihood Ratios

The last step in the audit is for the adversary to calculate the
score assigned to the mechanism’s output using the Neyman-
Pearson lemma. While this is similar to the BGM setting,
the likelihood ratios differ depending on the threat model.
Mainly, oit = ⟨g̃, ĝ⟩ ≈ 0 if ĝ or −ĝ were not inserted by
the adversary in Steps 10 or 12 and oit ≈ +1 and ≈ −1,
respectively, otherwise. For each threat model, we calculate
Λ(O) as follows.

• Target-Canary (ΛTC):
E∏

i=1

∑
t Pr[o

i
t|N (+1, σ2)]

∏
t′ ̸=t Pr[o

i
t′ |N (0, σ2)]∏

t Pr[o
i
t|N (0, σ2)]

• Partially-Informed (ΛPI):
E∏

i=1

∑
t Pr[o

i
t|N (+1, σ2)]

∏
t′ ̸=t Pr[o

i
t′ |N (−1, σ2)]∑

t Pr[o
i
t|N (0, σ2)]

∏
t′ ̸=t Pr[o

i
t′ |N (−1, σ2)]

• Worst-Case (ΛWC):
E∏

i=1

∑
t Pr[o

i
t|N (−B + 2, σ2)]

∏
t′ ̸=t Pr[o

i
t′ |N (−B, σ2)]∑

t Pr[o
i
t|N (−B + 1, σ2)]

∏
t′ ̸=t Pr[o

i
t′ |N (−B, σ2)]

VI. EXPERIMENTAL EVALUATION

We now present an experimental evaluation of our auditing
techniques, aiming to compare the empirical privacy leakage
observed from mechanisms that use shuffling (εemp) with the
upper-bound privacy leakage guaranteed by the analysis using
Poisson subsampling (ϵ).

A. Experimental Overview

Datasets. We use three datasets commonly used in the DP au-
diting literature: FMNIST [56], CIFAR-10 [37], and Purchase-
100 (P100) [49]. Due to computational constraints, we only
take samples corresponding to two labels from FMNIST and
CIFAR-10 and downsample all datasets only to include 10,000
samples, as also done in prior work [31]. Therefore, our
FMNIST dataset contains 10,000 28x28 grayscale images
from one of two classes (‘T-shirt’ and ‘Trouser’), CIFAR-10
contains 10,000 3x32x32 RGB images from one of two classes
(‘Airplane’ and ‘Automobile’), and P100 consists of 10,000
records with 600 binary features from one of 100 classes.
Models. For CIFAR-10, we train a moderate-sized Convolu-
tional Neural Network (CNN) drawn from prior work [23].
For FMNIST and P100, we train a small LeNet and an MLP
model, respectively. We refer to Appendix B for more details
on the model architectures.
Experimental Testbed. We run all experiments on a cluster
using 4 NVIDIA A100 GPUs, 64 CPU cores, and 100GB
RAM. Auditing a single model using 106 observations took
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Fig. 4: Comparison of tradeoff curves for auditing DP-SGD (Shuffle)
(95% Clopper-Pearson upper bound) at theoretical ε = 1.0 vs. the
corresponding theoretical tradeoff curves from (ε, δ)-DP and from the
PLD analysis of DP-SGD (Poisson). The plot on the right is zoomed
in on 0 ≤ FPR ≤ 0.2.

38.8, 17.1, and 5.70 hours for the shallow CNN, LeNet, and
MLP models, respectively.
Metrics and Parameters. For all experiments, we report
lower bounds with 95% confidence (Clopper-Pearson [18])
along with the mean and standard deviation values of εemp

over five independent runs. For simplicity, we set δ = 10−5,
gradient clipping norm to C = 1.0, and choose the learning
rate η by hyperparameter tuning from a logarithmic scale.

B. Auditing DP-SGD (Shuffle) with Partially-Informed

Next, we audit DP-SGD (Shuffle) in the
Partially-Informed model described in Section V-A.
We do so because we expect Partially-Informed

to produce tighter audits than Target-Canary, without
destroying model utility like for Worst-Case.

In all experiments, we use a randomly sampled gradient
from the unit ball as the canary gradient, although we did
not notice any significant difference between different types
of canary gradients (e.g., dirac) in preliminary experiments.

Comparing trade-off curves. We start by auditing a CNN
model on CIFAR-10 for one epoch using shuffling with batch
size B = 100, calibrating the noise multiplier to satisfy
ε = 1.0 if Poisson subsampling was used. In Figure 4,
we plot the FPR-FNR curve (95% Clopper-Pearson upper
bound) from training 103 and 104 models and the curves for
the corresponding theoretical (ϵ, δ)-DP at ϵ = 1.0 and PLD
bounds expected if Poisson subsampling had been used. We
note that an upper bound on FPR and FNR is used to compute
the corresponding lower bound on empirical εemp as explained
previously in Section III-B. Due to computational constraints,
we are only able to train 104 models for this experiment.

Overall, we find substantial gaps regardless of the num-
ber of observations. More precisely, even a relatively small
number of observations (103) is enough to detect that the DP-
SGD (Shuffle) implementation violates the theoretical privacy
guarantees provided by the Poisson subsampling analysis.
However, while auditing with the PLD curve would allow
an adversary to identify that a given implementation of DP-
SGD did not specifically use Poisson subsampling, it may not
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Fig. 5: Comparison of tradeoff curves for auditing DP-SGD (Shuffle)
(Raw and 95% CP upper bound, 103 observations) vs. the theoretical
tradeoff curves from (ε, δ)-DP and PLD analysis for DP-SGD (Pois-
son). The plot on the right is zoomed in on 0 ≤ FPR ≤ 0.2.

necessarily mean that the underlying implementation does not
satisfy (ϵ, δ)-DP in general.

To estimate the empirical privacy leakage observed from
DP-SGD (Shuffle), we would need to audit using the (ε, δ)-
DP definition instead. In Figure 4, this would correspond to
comparing the observed FPR-FNR curves with the (ϵ, δ)-DP
curve instead (ϵ = 1.0). Here, there is a much smaller gap,
with the trade-off curve for 104 observations only violating
(ϵ, δ)-DP at FPRs < 0.05, and the trade-off curve for 103 not
violating the theoretical DP guarantees at all. Therefore, 103

observations are not enough to detect a violation of (ϵ, δ)-DP
guarantee: the violation can only be detected by using at least
104 observations at very low FPRs.
Impact of CIs. To better understand the dependence on the
number of observations, we also analyze the impact of using
Clopper-Pearson (CP) CIs. In Figure 5, we plot the trade-
off curves from the same experiment with 103 observations
with and without the CP upper bounds. We notice a large
gap between the “raw” observed trade-off curve (w/o CP
upper bounds) and the trade-off curve with CP upper bounds.
Specifically, when using the trade-off curve with CP bounds,
we estimate a lower bound εemp, which is always numerically
smaller than the εemp estimated from the “raw” trade-off
curve, thus making it more difficult to detect violations of
(ε, δ)-DP. Nevertheless, in DP auditing, we are interested not
only in estimating the empirical privacy leakage but also in
the associated confidence level. This allows us to reduce false
positives and provide assurances that the privacy violations
are real, especially when debugging implementations (as we
do later in Section VII). As a result, we believe it necessary
to use CP intervals in our auditing experiments, even though
that requires more training runs.

Varying batch size B and theoretical ε. Next, we evaluate
the impact of the batch size and theoretical (Poisson) ε on the
empirical privacy leakage observed from DP-SGD (Shuffle).
Due to computational constraints, rather than a CNN on
CIFAR-10, we audit a LeNet model on FMNIST and an MLP
model on P100 over 106 observations. In Figure 6, we plot
the empirical leakage estimates εemp observed from auditing
DP-SGD (Shuffle) at various batch sizes and privacy levels ε.
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Fig. 6: Auditing DP-SGD (Shuffle) at various batch sizes (B) and
privacy levels (ε).

With B = 100, the empirical privacy leakage is significantly
larger than the theoretical guarantees across both datasets
and privacy levels. Specifically, for ε = 1.0, 2.0, 4.0, privacy
leakage from the models trained on FMNIST and P100 amount
to, respectively, εemp = 3.46, 4.66, 5.78 and 3.42, 4.48, 5.55.

However, with a larger batch B = 1000, we only detect
small gaps in some settings. Under Partially-Informed,
the gradients of all samples remain unchanged except for the
target record and final record in each batch. Thus, this likely
introduces a “bias” term when evaluating the output from
each step, i.e., oit ← ⟨g̃, ĝ⟩. Although Nasr et al. [42] show
that this bias does not affect audits of DP-SGD (Poisson),
they simply threshold the output from each step. Our auditing
procedure is more complicated as we compute a likelihood
ratio function across multiple steps, which we believe is
more susceptible to the bias term, resulting in weaker audits
than expected from BGM. However, in several settings, the
empirical privacy leakage is close to or already exceeds the
theoretical Poisson guarantee, suggesting that given enough
observations (≈ 109), we can potentially detect larger. Due to
computational constraints, we leave this to future work.

C. Varying Adversarial Capabilities

Our experiments thus far show that auditing DP-SGD (Shuf-
fle) under Partially-Informed reveals large gaps between
the empirical privacy leakage observed and the theoretical
guarantees promised by the Poisson subsampling analysis.
Next, we set out to evaluate the impact of different adversarial
capabilities on the empirical privacy leakage.

In Figure 7, we report the different values of εemp when
auditing DP-SGD (Shuffle) with the three different adversaries
considered (see Section V). We fix the batch size to B = 100
and use 106 observations. Despite the “bias” from other train-
ing samples discussed above, the empirical privacy leakage
under Partially-Informed is almost the same as that from
the idealized Worst-Case threat model (which corresponds to
auditing BGM) at small batch sizes. Specifically, on FMNIST,
at ε = 1.0, 2.0, 4.0, auditing under Partially-Informed and
Worst-Case yield privacy leakage estimates, respectively, of
εemp = 3.55, 4.66, 5.78 and εemp = 4.06, 5.18, 6.43.
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Fig. 7: Auditing DP-SGD (Shuffle) under various threat models.

However, estimates under Target-Canary are significantly
weaker than the other two threat models. In all settings,
εemp under Target-Canary is actually smaller than the
theoretical ε guaranteed by Poisson subsampling, even though
shuffling was used. This is because the negative canary
gradients inserted by the Partially-Informed adversary
are crucial in “identifying” the batch containing the tar-
get (or zero-out) record in each epoch. Specifically, in the
Partially-Informed threat model, without any noise, the
adversary aims to distinguish between (−1, ...,+1, ...,−1)
and (−1, ..., 0, ...,−1), which has a Hamming distance of
2 with high probability (assuming the ‘+1’ and ‘0’ appear
in different batches). Whereas under Target-Canary, they
have to distinguish between (0, ...,+1, ..., 0) and (0, ..., 0),
which only has a Hamming distance of 1. Informally, the
distributions of outputs observed under Target-Canary are
less distinguishable than under Partially-Informed, thus
resulting in lower empirical privacy leakage estimates.

D. Takeaways

Our experiments confirmed that the empirical privacy leak-
age observed from shuffling is much larger than the theoretial
privacy leakage expected from the Poisson subsampling analy-
sis when auditing models trained using the DP-SGD (Shuffle)
algorithm. Specifically, for a LeNet-5 classifier trained on
FMNIST at theoretical ε = 1.0 in the Partially-Informed

model, we find an empirical privacy leakage amounting to
εemp = 3.46, almost 3.5× the theoretical guarantee.

We also show that audits using a weaker adversary, i.e.,
Target-Canary, the εemp is well below the expected theoret-
ical guarantees ε, which confirms that strong adversarial mod-
els are necessary to audit shuffling mechanisms effectively.

VII. DEBUGGING SHUFFLE IMPLEMENTATIONS

Implementing DP algorithms correctly is known to be
challenging [10, 33], and DP violations have been found in
the wild [4, 53]. Specific to shuffling, Ponomareva et al. [47]
report that for computational reasons, in many cases, datasets
may not even be shuffled fully but only within a small buffer.
Therefore, bugs or variations to the shuffling procedure itself
may be present in DP-SGD implementations, and, naturally,
this would substantially affect their privacy leakage.

Searching public GitHub repositories (see Section VII-B),
we identify cases where the dataset is first batched, and the
batches are then shuffled, rather than shuffling the samples
before batching. As visualized in Section VII-B, this makes

Algorithm 3 Auditing Partial Shuffling (with Buffer K)
Require: Dataset, D. Number of observations, N . Target record,

(x̂, ŷ). Zero-out record, (x⊥, y⊥). Significance level, α. Privacy
parameter, δ.

1: for i ∈ [N
2
] do

2: Θ[i]← DP-SGDPI
K({(x̂, ŷ)} ∪D;−)

3: Θ′[i]← DP-SGDPI
K({(x⊥, y⊥)} ∪D;−)

4: end for
5: for k ∈ {1, 10, 20, ..., 100} do
6: for i ∈ [N

2
] do

7: [o1|...|oT ]← Θ[i]
8: [o′

1|...|o′
T ]← Θ′[i]

9: S[i]← ΛPI([o1|...|ok])
10: S ′[i]← ΛPI([o′

1|...|o′
k])

11: end for
12: εemp[k]← EstimateEps(S,S ′, α, δ)
13: end for
14: return maxk εemp[k].

Run 1

Run 2

Run 3

Run 4

Full Shufling Partial Shufling ( )K = 4

x5 x3 x2 x1 x6 x4 x7 xT

xT x1 x2 x7 x6 x4 x5 x3

x1 x2 xT x6 x4 x7 x3 x5

x2 x1 x7 x6 x5 xT x7 x2

Batch 1 Batch 2 Batch 3 Batch 4

x2 x3 xT x1 x6 x4 x7 x5

x3 xT x2 x1 x5 x4 x6 x7

xT x3 x1 x2 x7 x4 x5 x6

Batch 1 Batch 2 Batch 3 Batch 4

x1 x2 x3 xT x5 x7 x6 x4

Fig. 8: Comparison between a small dataset with eight records
(x1,...,x7,xT ) being fully shuffled vs. partially shuffled with a buffer
of K=4 and batch size B=2. The target record xT is highlighted in
red.

the batch with the target record substantially more identifiable
in cases where the samples surrounding it are different from
samples “far away” from it (in this setting, batching is done
locally). While these variations to the shuffling procedure
intuitively affect the privacy analysis, in this section, we
verify whether our auditing procedure can identify them and
determine the scale of their impact on privacy leakage.

A. Partial Shuffling

We first consider the case where datasets are only shuffled
within a small buffer of K samples, as reported in [47],
and report the procedure used to debug this variation in
Algorithm 3. The dataset is shuffled in buffers of size K,
i.e., the first K samples are shuffled and batched, followed by
the next K samples, etc. Figure 8 provides a visualization of
a small one-dimensional dataset that is partially shuffled.

Methodology. We assume the Partially-Informed ad-
versary, where the output remains (mostly) the same at
(−1, ...,+1, ...,−1) + N (0, σ2I) and (−1, ..., 0, ...,−1) +
N (0, σ2I) for D and D′, respectively. However, while in full
shuffling, the ‘+1’ and ‘0’ can appear uniformly in any batch,
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Fig. 9: Auditing DP-SGD (Shuffle) when the P100 dataset is only
shuffled within a buffer of K samples. When the buffer K = |D|=
10,000, the dataset is fully shuffled.

here they can only appear in the first ⌊KB ⌋ batches since the
first K samples are first shuffled and then batched.

The remaining challenge in identifying this bug is that the
adversary does not have access to the batch sampler B and,
by extension, does not know K. We impose this restriction
as, even in a real-world auditing setting, it may be cumber-
some for an auditor to be given access to the batch sampler
separately—even then, the model trainer may not faithfully
use the batch sampler. Therefore, we allow the adversary to
“guess” multiple buffer sizes and evaluate empirical privacy
leakage from only the first K batches. The adversary then
outputs the maximum empirical privacy leakage observed
across all buffer sizes guessed. Theoretically, they could per-
form a binary search to reduce the number of guesses made;
however, we assume they search over K = {1, 10, 20, ..., 100}
since the number of batches is small. Also, in theory, the
empirical privacy leakage from each guess must be calculated
on separate sets of observations for the 95% CI to be valid,
similar to choosing the optimal threshold. However, to evaluate
the maximum empirical privacy leakage achievable, we omit
this step and instead report standard deviations over five runs.

We review the procedure used to debug this variation in
Algorithm 3. We denote with DP-SGDPI

K the execution of DP-
SGD with partial shuffle over a buffer of size K and with the
modifications made for the Partially-Informed adversary
as reported in Algorithm 2.

Results. In Figure 9, we report the empirical privacy leakage
estimates for various buffer sizes K. We only audit the MLP
model trained on P100 due to computational constraints. We
experiment with small ε = 0.1, 0.2, 0.4 as the violations
are much more significant in this regime. Specifically, at
ε = 0.1, 0.2, 0.4, the empirical privacy leakages for full dataset
shuffling K = 10,000 and partial shuffling at K = 1,000
are εemp = 0.09, 0.31, 1.80 and εemp = 0.29, 1.12, 2.51,
respectively. This shows that even partial shuffling can result
in substantially larger empirical privacy leakages.

However, as ε increases, the gap between full shuffling
and no shuffling (K = 100) reduces. For instance, at ε =
0.1, 0.2, 0.4, the εemp values from no shuffling are 10.4×,
6.16×, and 1.72× that of the εemp values from full shuffling,
respectively. This indicates that for larger values of ε, the
impact of not shuffling or partial shuffling steadily decreases,
which in turn suggests that shuffling may not always result in
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Fig. 10: Auditing DP-SGD (Shuffle) when the P100 dataset is batched
before shuffling is performed.

strong privacy amplification.

B. Batch-then-Shuffle

Finally, we debug the variation where a dataset is first
batched and then shuffled. Although this is not necessarily a
known bug in the context of training private models, we find
a substantial presence of this sequence of events in public
repositories related to non-private ones. Specifically, we use
the GitHub Code Search tool to search for occurrences of
dataset.batch(.*).shuffle(.*), which indicates that the
dataset is first batched before it is shuffled, and compare with
occurrences of dataset.shuffle(.*).batch(.*).

We find approximately 10,800 files using the “correct”
shuffle-then-batch implementation and 290 files (2.6%) using
the batch-then-shuffle approach. As a result, we set out to pre-
emptively explore techniques to catch these bugs.

Under the Target-Canary and Partially-Informed

threat models, batch-then-shuffle is equivalent to shuffle-then-
batch. This is because we expect the dot product of the
privatized gradient and gradient of almost all other samples,
which cannot be modified by the adversary, to be near 0
under both threat models. Thus, this bug can only be detected
under the Worst-Case threat model. We then consider the
Worst-Case threat model, but we let the adversary insert
the gradients of the first B samples as the canary gradi-
ent ĝ and the remaining samples as the negative canary
gradient −ĝ. By doing so, the outputs from the DP-SGD
algorithm are expected to be (B,−B, ...,−B)+N (0, σ2I) and
(B− 1,−B, ...,−B)+N (0, σ2I) for D and D′, respectively.
Note that ‘B’ and ‘B−1’ can appear uniformly in any batch.
(Again, please refer to Figure 11 for a visualization of a small
one-dimensional dataset that is batched first and then shuffled.)

We adjust the likelihood ratio used under the Worst-Case

threat model accordingly and report the audit results
with/without the bug in Figure 10. Our audit can indeed easily
detect this bug: at ε = 0.1, 0.2, 0.4, εemp = 1.00, 1.86, 3.06,
respectively, with the bug but only εemp = 0.09, 0.28, 1.61,
respectively, without the bug.

C. Takeaways

Our experiments show that our auditing procedure is highly
extensible as it can be used to audit common variations of
the shuffling procedure, more precisely, “partial shuffling”
and “batch-then-shuffle.” These variations remain easily de-
tectable by our auditing method, which estimates εemp =
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Fig. 11: Comparison between a small dataset with 8 records being
shuffled then batched (“correct”) vs. batched then shuffled (“wrong”)
with batch size B = 4. Target record xT is highlighted in red.

0.29, 1.12, 2.51 and εemp = 1.00, 1.86, 3.06 for the “partial
shuffling” and “batch-then-shuffle” procedure at theoretical
ε = 0.1, 0.2, 0.4, respectively.

VIII. RELATED WORK

To our knowledge, we are the first to audit DP-SGD with
shuffling. In the following, we review relevant prior work on
shuffling and auditing DP-SGD.
DP-SGD Audits. Jayaraman et al. [32] present the first DP-
SGD audit using black-box inference attacks on the trained
model, but only achieve loose estimates of the privacy leakage.
Jagielski et al. [31] use input canaries to improve tightness and
use Clopper-Pearson intervals to calculate confidence intervals
for the empirical estimates. Nasr et al. [43] are the first to
achieve tight DP-SGD audits using a large number of training
runs, a pathological dataset, and an active white-box adversary
that can insert gradient canaries at each step. To reduce the
number of training runs, Zanella-Béguelin et al. [59] use cred-
ible intervals instead of Clopper-Pearson. Although [42] later
questions the validity of the credible intervals, it shows that
tight empirical estimates are possible even with few training
runs and natural (not adversarially crafted) datasets by auditing
with f -DP. Recent work on DP-SGD audits has also focused
on federated learning settings [2, 40] and further reducing the
number of training runs [46] to a single one [2, 41, 50] and
auditing under weak threat models [3, 11].

Overall, prior work auditing DP-SGD implementations has
focused on Poisson subsampling. Previous audits also typically
threshold the losses [3, 31, 41–43, 46, 50] or gradients [41–
43, 43, 46] directly. By contrast, we audit the shuffling setting
and use likelihood ratio functions to audit DP-SGD.
Shuffling and DP-SGD. To the best of our knowledge, there
is limited prior work analyzing the privacy of DP-SGD with
shuffling. Chua et al. [16] analyze a simplified version of
DP-SGD, i.e., the Adaptive Batch Linear Query (ABLQ)
mechanism. Although they do not present a theoretical upper
bound for the ABLQ mechanism with shuffling, they consider
pathological settings where ABLQ could leak more privacy
when using shuffling instead of Poisson subsampling. While
they initially only consider a single epoch [16], in follow-up

work [17], they extend their lower bound to multiple epochs.
However, neither work directly analyzes DP-SGD or evaluates
the gap in real-world parameter settings.

Our work takes a different approach, empirically estimating
the privacy leakage from DP-SGD using DP auditing. By
doing so, we derive empirical privacy leakage estimates for
real-world models trained using DP-SGD (Shuffle). We also
focus on the impact of real-world considerations like threat
models and variations on the shuffling procedure. Overall, we
believe that our work is orthogonal to [16] as our focus is on
empirical privacy estimation, whereas theirs is on theoretical
privacy analysis.
Shuffling. Shuffling is also used in local DP, where users
randomize their inputs before sharing them for data processing.
Bittau et al. [8] introduce the Encode-Shuffle-Analyze (ESA)
framework, where users’ randomized samples are shuffled be-
fore being processed. Cheu et al. [12] and Erlingsson et al. [26]
prove that shuffling users’ data improves privacy guarantees
in the local DP setting. In follow-up work, Erlingsson et
al. [25] apply their privacy amplification results to the ESA
framework, while Balle et al. [6] improve on and generalize
results from [26]. Finally, Feldman et al. [27, 28] and Wang
et al. [54] present a nearly optimal analysis of shuffling in the
local DP setting. Overall, the privacy analysis for (ε, δ)-DP
mechanisms typically used in central DP is far less understood
than that of shuffling for local DP mechanisms, which typically
guarantee pure DP (i.e., δ = 0).

IX. DISCUSSION AND CONCLUSION

This paper presented the first audit of DP-SGD implementa-
tions that shuffle the training data and deterministically iterate
over fixed-size batches, which we denoted as DP-SGD (Shuf-
fle). Arguably, this addressed an important research problem
as using shuffling to sample batches in DP-SGD has become
common [19, 39, 47], mostly due to better computational
efficiency, even though theoretical guarantees are reported as if
Poisson subsampling was used, which we referred to as DP-
SGD (Poisson). This makes it crucial to investigate the gap
between the empirical privacy leakage from the former and
the theoretical guarantees of the latter.

We introduced new auditing techniques and audited DP-
SGD (Shuffle) with different parameter settings and threat
models. More precisely, we experimented with 101 settings
from SOTA models using shuffling [19, 39], finding gaps
in two-thirds of them—in some cases, the empirical privacy
leakage from DP-SGD (Shuffle) was up to 4 times higher
than the theoretical guarantee from DP-SGD (Poisson). We
also showed how these discrepancies can depend on the
batch size and the strength of the adversary, with smaller
batch sizes and stronger threat models yielding larger gaps.
Finally, we used our techniques to detect the presence of
bugs in the implementations of the shuffling procedure. We
investigated two common bugs [47] found in public code
repositories of non-private model training, showing that our
auditing framework effectively identifies them and detects even
higher empirical privacy leakages in their presence.
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Implications and Recommendations for Practitioners. The
measurable differences between the empirical and the theoret-
ical guarantees shows that prior work [19, 39] substantially
overestimated the privacy guarantees of some SOTA private
models. Consequently, our work calls into question the validity
of reporting theoretical guarantees using DP-SGD (Poisson)
while implementing algorithms that use DP-SGD (Shuffle),
reiterating the importance of formally analyzing the privacy
guarantees provided by shuffling the dataset. Concretely, we
recommend practitioners avoid shuffling until tighter guar-
antees are proven. Recently proposed alternative sampling
schemes like Balls-in-Bins [13, 15] could also be used, as
they could balance shuffling’s computational efficiency with
provably tight guarantees.

Adversarial Models. Our audits use adversaries in active
white-box models; specifically, we assume they can insert
a target sample of their choice and view the final trained
model, and can insert (varying sizes of) canary gradients
at each step and observe all intermediate models. While
we introduce an adversarial model unique to shuffling, i.e.,
Partially-Informed, this serves as a hypothetical middle-
ground between the Worst-Case adversary and a weaker
one (Target-Canary), and may not necessarily reflect an
actual adversary. Nevertheless, as discussed in Section V-A,
this primarily serves as a useful auditing tool, enabling us
to identify the impact that the bias from other (non-target)
samples has on our novel likelihood-based auditing method.

Overall, although not all the adversaries we consider may
always have the corresponding capabilities against models
deployed in production, recall that provably correct DP guar-
antees are meant to be robust in worst-case settings, making
our adversaries valid in the context of auditing. In fact, similar
assumptions were made in prior DP-SGD audits [4, 42, 43].

Limitations & Future Work. One main limitation of our
work is the computational cost required to run the audit.
Specifically, since shuffling does not provide any improved f -
DP or µ-GDP guarantees, we require training runs in the order
of thousands and millions. Recent work presented audits of
DP-SGD (Poisson) with just one run [2, 41, 46, 50]; however,
these techniques may not directly apply to DP-SGD (Shuffle)
and underestimate privacy leakage even under powerful threat
models. Thus, it is not yet clear how to adapt them to our
setting. In follow-up work, we plan to investigate how to
minimize the number of training runs required to audit DP-
SGD (Shuffle) accurately, which would also enable us to audit
larger deep learning models.

In addition, our audits are weaker for larger batch sizes,
which we believe is mainly due to the bias introduced by
the “other” samples. We plan to reduce this bias term using
debiasing techniques (e.g., [51]) to make our audits effective
even for large batch sizes.

Finally, due to computational constraints, we only audited
one epoch of DP-SGD (Shuffle) and therefore did not measure
model utility. In the future, we plan to audit state-of-the-
art models built using DP-SGD (Shuffle) directly, which

will also allow us to measure drops in utility with different
adversaries. As mentioned, we expect utility to plummet with
Worst-Case but remain stable with Partially-Informed

and Target-Canary adversaries.
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[39] X. Li, F. Tramèr, P. Liang, and T. Hashimoto. Large Language
Models Can Be Strong Differentially Private Learners. In ICLR,
2022.

[40] S. Maddock, A. Sablayrolles, and P. Stock. CANIFE: Craft-
ing Canaries for Empirical Privacy Measurement in Federated
Learning. In ICLR, 2023.

[41] S. Mahloujifar, L. Melis, and K. Chaudhuri. Auditing f -
Differential Privacy in One Run. In ICML, 2025.

[42] M. Nasr, J. Hayes, T. Steinke, B. Balle, F. Tramèr, M. Jagielski,
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APPENDIX A
DIFFERENTIALLY PRIVATE STOCHASTIC GRADIENT

DESCENT (DP-SGD)

In Algorithm 4, we review DP-SGD [1]’s pseudo-code.
Then, in Algorithm 5, we report that of Batched Gaussian
Mechanism (BGM), a heavily simplified version of DP-SGD
adapted from [16] to develop principled tight auditing tech-
niques for shuffling under an idealized setting.
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Algorithm 4 Differentially Private Stochastic Gradient De-
scent (DP-SGD) [1]
Require: Dataset, D. Epochs, E. Batch Size, B. Learning rate, η.

Batch sampler, B. Loss function, ℓ. Initial model parameters, θ0.
Noise multiplier, σ. Clipping norm, C.

1: T ← |D|/B
2: for i ∈ [E] do
3: θi1 ← θi−1

T
4: Sample batches B1, ..., BT ← B(D,B)
5: for t ∈ [T ] do
6: for (xj , yj) ∈ Bt do
7: gj ← ∇ℓ((xj , yj); θ

i
t)

8: ḡj ← gj/max(1,
||gj ||2

C
)

9: end for
10: g̃ ← 1

B

(∑
j ḡj +N (0, C2σ2I)

)
11: θit+1 ← θit − ηg̃
12: end for
13: end for
14: return θET

Algorithm 5 Batched Gaussian Mechanism (BGM)

Require: Dataset, D = (x1, ..., xN ) ∈ [−1,+1]N . Batch Size, B.
Number of epochs, E. Batch sampler, B. Noise multiplier, σ.

1: T ← |D|/B
2: for i ∈ [E] do
3: Sample batches B1, ..., BT ← B(D,B)
4: for t ∈ [T ] do
5: g̃it ←

∑
xi∈Bt

xi +N (0, σ2)
6: end for
7: end for

8: return

 g̃11 . . . g̃1T
...

. . .
...

g̃E1 . . . g̃ET



APPENDIX B
MODEL ARCHITECTURES

In our experiments, we audit several (shallow) Convolu-
tional Neural Networks (CNNs) and an MLP model corre-
sponding to different datasets. More precisely, for the CIFAR-
10 dataset, we use the CNN from Dörmann et al. [23], who
make minor modifications to the CNNs previously used by
Tramèr and Boneh [52]. For the FMNIST dataset, we use
a small LeNet-5 model [38]. Finally, for the P100 dataset,
we use an MLP model with 32 hidden neurons and ReLU
activations.

Exact model architectures for CIFAR-10 and FMNIST are
reported in Tables II and III, respectively.

APPENDIX C
WORST-CASE VS PATHOLOGICAL DATASET

We now briefly explain how our Worst-Case adversary can
be modeled with the Pathological Dataset adversary used in
prior work [43]. The Pathological Dataset adversary crafts the
malicious dataset by making sure the dataset (not including the
target sample) is labeled perfectly by the initial model. This
ensures that the gradients of all other samples are zero, except
for the target sample. Furthermore, to ensure that subsequent

Layer Parameters

Convolution 32 filters of 3x3, stride 1, padding 1
Convolution 32 filters of 3x3, stride 1, padding 1
Max-Pooling 2x2, stride 2, padding 0
Convolution 64 filters of 3x3, stride 1, padding 1
Convolution 64 filters of 3x3, stride 1, padding 1
Max-Pooling 2x2, stride 2, padding 0
Convolution 128 filters of 3x3, stride 1, padding 1
Convolution 128 filters of 3x3, stride 1, padding 1
Max-Pooling 2x2, stride 2, padding 0
Fully connected 128 units
Fully connected 2 units

TABLE II: Shallow CNN model for CIFAR-10 with Tanh activa-
tions.

Layer Parameters

Convolution 6 filters of 5x5, stride 1, padding 2
Avg-Pooling 2x2
Convolution 16 filters of 5x5, stride 1
Avg-Pooling 2x2
Fully connected 120 units
Fully connected 84 units
Fully connected 2 units

TABLE III: LeNet-5 model for FMNIST with Tanh activations.

model updates do not disrupt the gradients, the Pathological
Dataset also sets the learning rate to 0.

On the other hand, in our work, the Worst-Case adversary
crafts malicious gradients for all samples that are equal in
magnitude but opposite in direction to the target sample. This
can be modeled by the Pathological Dataset adversary by first
calculating the gradient of a given target sample with respect
to the initial model parameters. Then, the other samples can
be crafted by optimizing an input sample with respect to the
target sample’s gradient in the opposite direction and repeating
them N times. Finally, the learning rate can be set to 0 to
ensure that future model updates do not disrupt the gradients.
Therefore, we can ensure that the gradient of the target sample
is always equal in magnitude and opposite in direction to the
target sample throughout the training process.
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