
Icarus: Achieving Performant Asynchronous
BFT with Only Optimistic Paths

Xiaohai Dai∗, Yiming Yu∗, Sisi Duan†Q, Rui Hao‡Q, Jiang Xiao∗, and Hai Jin∗
∗National Engineering Research Center for Big Data Technology and System,

Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science and Technology
†Tsinghua University, State Key Laboratory of Cryptography and Digital Economy Security
‡School of Computer Science and Artificial Intelligence, Wuhan University of Technology

{xhdai, yming yu}@hust.edu.cn, duansisi@tsinghua.edu.cn, ruihao@whut.edu.cn, {jiangxiao, hjin}@hust.edu.cn
QCorresponding authors

Abstract—The emergence of blockchain technology has revital-
ized research interest in Byzantine Fault Tolerant (BFT) consen-
sus, particularly asynchronous BFT due to its resilience against
network attacks. To improve the performance of traditional asyn-
chronous BFT, recent studies propose the dual-path paradigm:
an optimistic path for efficiency under favorable situations and a
pessimistic path—typically implemented through a Multi-valued
Validated Byzantine Agreement (MVBA) protocol—to guarantee
liveness in unfavorable situations. However, owing to the inherent
complexity and inefficiency of the MVBA protocol, existing
dual-path protocols exhibit high implementation complexity and
poor performance in unfavorable situations. Moreover, the two
constituent types within the dual-path paradigm—serial-path and
parallel-path—each face additional limitations. Specifically, the
serial-path type encounters difficulties in switching between the
optimistic and pessimistic paths, whereas the parallel-path type
discards blocks from one of the paths, resulting in bandwidth
waste and reduced throughput.

To address these limitations, we propose Icarus, a single-path
asynchronous BFT protocol that exclusively leverages optimistic
paths without pessimistic paths. The optimistic path ensures
Icarus’s efficiency under favorable situations. To guarantee live-
ness in unfavorable conditions, Icarus employs a rotating-chain
mechanism: each node broadcasts a chain of blocks in parallel,
and these chains take turns serving as the optimistic path in a
round-robin fashion. Since non-faulty nodes’ chains continuously
grow, once a chain accumulating enough blocks becomes the
optimistic path, its blocks can be committed, ensuring liveness
even in unfavorable conditions. To maintain consistency during
path transitions, Icarus introduces the Two-consecutive-validated-
value Byzantine Agreement (tcv2-BA) protocol, which aligns
heights of committed blocks on the previous path. We have
verified Icarus’s correctness through theoretical analysis and
validated its high performance through various experiments.

I. INTRODUCTION

A. Dual-path asynchronous BFT and its issues

1) Asynchronous BFT: The emergence of blockchain tech-
nology has sparked widespread interest in Byzantine Fault

(a) The serial-path type

(b) The parallel-path type

Fig. 1: Schematic diagram of the dual-path paradigm

Tolerant (BFT) consensus protocols [1], [2]. These protocols
play a crucial role in maintaining data consistency across dis-
tributed nodes, even in the presence of malicious (Byzantine)
nodes [3], [4]. Traditional BFT protocols are broadly classified
into three categories based on network assumptions [5], [6]:
synchronous, partially synchronous, and asynchronous. Syn-
chronous protocols [7], [8] rely on strong network assumptions
that are difficult to satisfy in real-world deployments, com-
promising their practical applicability. Partially synchronous
protocols [9], [10] offer improved performance but remain vul-
nerable to liveness violations under network attacks [11]. Con-
sequently, recent research has focused on the asynchronous
protocols [12], [13], which exhibit the highest robustness by
making no timing assumptions. However, these traditional
asynchronous protocols typically achieve significantly lower
performance than their partially synchronous counterparts.

2) Dual-path asynchronous BFT: To improve the perfor-
mance of asynchronous BFT protocols, a line of studies has
proposed the dual-path paradigm that combines an optimistic
path and a pessimistic path [14], [15], [16], [17]. The op-

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240060
www.ndss-symposium.org

timistic path is built upon partially synchronous protocols
such as two-phase HotStuff [10], while the pessimistic path is
implemented using a purely asynchronous protocol—typically
Multi-valued Validated Byzantine Agreement (MVBA) [18],
[19]. Under the favorable conditions, the dual-path protocol
commits blocks through the optimistic path, achieving high
performance. Conversely, when it is in an unfavorable situa-
tion, the dual-path protocol falls back to the pessimistic path
to ensure liveness.

Based on the coordination strategy between the two paths,
existing dual-path protocols can be broadly categorized into
two types: serial-path and parallel-path. As illustrated in
Fig. 1a, serial-path protocols execute the two paths sequen-
tially, relying on timeout mechanisms to determine when to
transition from the optimistic path to the pessimistic one [14],
[15]. The protocol resumes using the optimistic path only
after a predefined number of blocks have been successfully
committed via the pessimistic path.

In contrast, parallel-path protocols execute both paths con-
currently [16], [17], as shown in Fig. 1b. Within this type, a
detection mechanism is employed to assess the effectiveness of
the optimistic path. Under favorable conditions, the detection
mechanism signals that the optimistic path is performing
smoothly, leading the protocol to commit blocks from the op-
timistic path while discarding those from the pessimistic path.
Conversely, in unfavorable conditions, the mechanism detects
the failure of the optimistic path, prompting the protocol to
commit blocks from the pessimistic path instead.

3) Issues of dual-path BFT: However, existing dual-path
protocols exhibit several fundamental limitations. First, in
both serial-path and parallel-path types, the pessimistic path
depends on MVBA protocols, whose intrinsic complexity
significantly amplifies the overall complexity of the dual-path
architecture, which in turn hinders practical implementation.
Moreover, the inherent inefficiency of MVBA degrades the
performance of dual-path protocols. Specifically, each instance
of MVBA can only commit a single block, imposing a
bottleneck on throughput. Furthermore, cutting-edge protocols
like sMVBA [19] require at least six communication rounds to
commit a block, while FIN suffers from cubic communication
complexity [20]. Second, serial-path protocols rely heavily
on precise tuning of timeout parameters to facilitate timely
transitions between optimistic and pessimistic paths; improper
configuration can lead to pronounced performance degrada-
tion. Third, even in favorable situations, parallel-path protocols
continue executing the pessimistic path while only committing
blocks from the optimistic path. This leads to significant
resource waste and low throughput, as the pessimistic path
is redundantly executed, yet its outputs are discarded.

B. Our solution: asynchronous BFT with only optimistic paths

To address the aforementioned issues, we propose Icarus,
an efficient single-path asynchronous BFT protocol that oper-
ates exclusively on optimistic paths. By removing pessimistic
paths, Icarus simplifies the protocol design and enhances
practical implementability. In the event of an optimistic path

failure, Icarus can promptly switch to an alternative optimistic
path without reverting to a pessimistic one, thus improving per-
formance. Furthermore, by employing a single type of paths,
Icarus circumvents the difficulties associated with switching
between optimistic and pessimistic paths, which are inherent
in serial-path protocols. Compared to parallel-path protocols,
Icarus guarantees that all broadcasted blocks are eventually
committed, avoiding resource wastage and further improving
overall throughput.

In fact, designing an asynchronous protocol using only
optimistic paths introduces significant challenges in liveness,
safety, and efficiency. Icarus overcomes these challenges
through three key components, as outlined below.

1) Parallel chains with path rotation to guarantee liveness:
Liveness challenge—An optimistic path may be disrupted by
the adversary through deliberately delaying blocks proposed
by the leader, thus compromising the liveness property.

Solution. To address this, we introduce a novel approach
that combines parallel chains with rotating optimistic paths.
Specifically, each node continuously broadcasts its chain of
blocks, with each block embedding the Quorum Certificate
(QC) of its immediate predecessor. Each chain essentially
constitutes the two-phase HotStuff structure, excluding the
view-change mechanism [10]. We say a block references
another block if the former contains the QC for the latter.
These individual chains take turns serving as the optimistic
path, based on a deterministic rotation schedule. The block
committing process on the optimistic path follows the two-
phase HotStuff protocol [21], [22], in which the receipt of a
block at height h enables the committing of the block at height
h−2. As all non-faulty nodes constantly extend and broadcast
their chains, block committing is triggered whenever a chain
accumulates more than two uncommitted blocks and becomes
the optimistic path, thereby ensuring liveness.

2) Leveraging a binary agreement variant to ensure safety:
Safety challenge—Due to network asynchrony, nodes may
initiate path switching at different block heights, potentially
leading to inconsistencies in the number of blocks commit-
ted from the previous optimistic path. Such divergence can
compromise the safety property of the protocol.

Solution. To resolve this, Icarus introduces the two-
consecutive-validated-value Byzantine Agreement (tcv2-BA)—
a customized variant of the Asynchronous Binary Agreement
(ABA) [23] or an extension of two-consecutive-value Byzan-
tine Agreement (tcv-BA) [14]. Icarus first conducts a height-
exchange round to align the locked block heights to one of two
adjacent values. It then leverages tcv2-BA to reach agreement
on the final committing height. This process ensures that all
non-faulty nodes commit consistent blocks of the previous
optimistic path, thereby preserving the safety.

3) Inter-chain references for high throughput and adaptive
path switching: Efficiency challenge—In a parallel-chain
structure, committing only blocks from the optimistic path
may result in the wasted dissemination of blocks from non-
optimistic-path chains.

2

Solution. To mitigate this inefficiency, each block in Icarus
not only references its predecessor within the same chain
(intra-chain references), but also references blocks from other
chains (inter-chain references). Based on these inter-chain
references, committing a block on the optimistic path also
triggers the committing of referenced blocks from other chains,
thereby improving throughput.

When the current optimistic path functions smoothly, blocks
from all chains can be continuously committed, keeping the
number of uncommitted blocks in each chain low. Based
on this observation, Icarus incorporates an adaptive path-
switching mechanism: once any non-optimistic-path chain
accumulates a threshold of uncommitted blocks, this indicates
the failure of the current optimistic path, prompting the system
to initiate a path rotation.

4) Experimental evaluation: We implement a prototype
of Icarus and evaluate its performance against four baseline
protocols: Ditto, ParBFT, sMVBA [19], and Tusk [24]. The
evaluation is conducted under two situations. In favorable
situations, optimistic leaders operate without artificial delays,
allowing blocks to be committed via the optimistic path. In
unfavorable situations, artificial delays are injected into the
optimistic leaders to trigger path switching. The experimental
results demonstrate that Icarus achieves minimal latency under
favorable situations by leveraging optimistic paths. Even in
unfavorable situations, Icarus maintains superior latency com-
pared to baselines, as it can immediately commit blocks on
the newly activated optimistic path after switching, effectively
reducing transition overhead. Furthermore, Icarus consistently
outperforms all baselines in throughput across both situations,
owing to its parallel-chain structure and inter-chain references.

II. BACKGROUND AND PRELIMINARIES

A. Model & assumptions

We consider a system consisting of n nodes, uniquely
identified by indices pi where 0 ≤ i < n. Among these nodes,
f nodes may deviate from protocol execution (satisfying the
condition 3f +1 ≤ n) and are referred to as Byzantine nodes.
The remaining nodes are termed non-faulty nodes. Like most
BFT protocols [10], [14], [16], [17], the set of nodes must
be fixed prior to the system initiation, which does not allow
for dynamic joining or replacement. We assume the existence
of an adversary that can coordinate all Byzantine nodes to
perform malicious actions, thereby exerting its maximum
capability to compromise either the safety or liveness of the
consensus protocol. Nodes are interconnected via a point-
to-point network. To ensure the protocol’s tolerance against
network attacks, we assume the network is asynchronous.
Specifically, the adversary can arbitrarily delay message trans-
missions between non-faulty nodes, provided that all messages
eventually reach their intended destinations.

We assume the system has established a Public Key In-
frastructure (PKI) and a threshold signature scheme. The
PKI mechanism guarantees the non-repudiation and integrity
of messages sent by nodes, while the threshold signature
scheme enables the construction of succinct signatures from

a group of nodes. Additionally, we assume the existence of a
cryptographic hash function. We further assume the adversary
is computationally bounded, meaning it cannot compromise
the security of the PKI, the threshold signature scheme, or the
hash function.

B. Asynchronous BFT & SMR

1) Definition of BFT and SMR: The Byzantine Fault Tol-
erant (BFT) consensus is used to maintain data consistency
among a group of distributed nodes even when some nodes
act maliciously [25]. Typically, the BFT consensus can be
employed to implement State Machine Replication (SMR). In
this paper, we primarily focus on designing BFT consensus
protocols in the context of SMR. Each node pi maintains
a local block vector denoted as Vi, where each element
represents a block and is indexed as Vi[k] (k ≥ 0). Blocks
that have undergone BFT consensus are written into Vi. The
vector Vi follows an append-only property, meaning that Vi[k]
can only be written when for all m < k, Vi[m] ̸= ⊥ and
Vi[k] = ⊥.

Each node maintains a transaction buffer to receive transac-
tions from clients. When generating new blocks, nodes select
the earliest transactions from the buffer (with the number of
transactions limited by block size). Once a block is committed
through BFT consensus, its contained transactions are removed
from the buffer. If a block is committed, all transactions
it contains are considered committed. As a widely adopted
practice [9], [26], when clients input new transactions, they
first send the transaction to a specific node. If the transaction
cannot be committed within a certain period, the client will
broadcast it to all nodes.

A correctly implemented SMR based on BFT must satisfy
two key properties:

• Safety: For any two non-faulty nodes pi and pj , if
Vi[k] ̸= ⊥ and Vj [k] ̸= ⊥, then Vi[k] = Vj [k].

• Liveness: If a transaction is added to the buffer of every
non-faulty node, it will eventually be committed.

2) Asynchronous BFT: BFT consensus protocols can be
classified into three categories based on network assumptions:
synchronous, partially synchronous, and asynchronous pro-
tocols. Among these, asynchronous protocols have received
significant attention in recent years due to their minimal
network assumptions, enabling tolerance against stronger net-
work attacks. However, compared to partially synchronous
protocols, traditional asynchronous protocols typically incur
higher communication overhead and larger latency.

C. Asynchronous BFT with dual paths

To enhance the performance of asynchronous BFT, several
approaches have introduced optimistic paths while employing
purely asynchronous protocols as the pessimistic path, forming
what is known as dual-path protocols [14], [15], [16], [17].
Typically, the optimistic path is implemented based on par-
tially synchronous protocols. When the system operates under
favorable conditions, dual-path protocols can commit blocks
through the optimistic path, significantly improving efficiency.

3

Conversely, when facing unfavorable network conditions, these
protocols can rely on the pessimistic path to ensure liveness.

Based on the operational patterns of the two paths, dual-
path protocols can be categorized into serial-path and parallel-
path types. The serial-path type executes the two paths se-
quentially [14], [15]: it first attempts the optimistic path,
and only invokes the pessimistic path when the optimistic
one fails. After committing a certain number of blocks via
the pessimistic path, the system reverts to attempting the
optimistic path. In contrast, the parallel-path type runs both
paths concurrently [16], [17], committing blocks from the
optimistic path when conditions are favorable or from the
pessimistic path when conditions are unfavorable.

Motivation. However, dual-path protocols exhibit several
limitations. First, the pessimistic paths typically employ
MVBA protocols [18], [19], whose structural complexity am-
plifies the overall intricacy of the dual-path protocols, thereby
complicating implementation. In addition, MVBA’s limited
efficiency further impairs the performance under unfavorable
situations. The throughput of existing MVBA protocols is
fundamentally constrained, as each instance commits only one
block. They also impose a difficult trade-off: achieving low
communication complexity leads to large latency (e.g., six
rounds in sMVBA [19]), while reducing latency comes at
the cost of cubic communication complexity (as in FIN [20]).
Second, while optimistic paths excel in favorable conditions,
pessimistic paths are better suited for unfavorable conditions.
This necessitates timely switching between optimistic and
pessimistic paths to avoid excessive latency in the dual-path
protocols. Finally, parallel-path protocols waste resources by
running both paths simultaneously while only committing
blocks from one path, leading to inefficient resource utilization
and low throughput.

D. Two-consecutive-value Byzantine agreement

The two-consecutive-value Byzantine Agreement (tcv-BA)
protocol, proposed by Lu et al. [14], can be viewed as a
generalization of the Asynchronous Binary Agreement (ABA)
protocol [27], [28]. In tcv-BA, both inputs and outputs are
integer values. All non-faulty nodes’ input values belong to
a consecutive two-integer set, specifically S = {v, v + 1},
where each non-faulty node pi’s input value ini ∈ S. All
non-faulty nodes ultimately output a consistent integer value
through tcv-BA. Formally, a correct tcv-BA protocol must
satisfy the following properties:

• Agreement: For any two non-faulty nodes pi and pj , if
they output outi and outj respectively from tcv-BA, then
outi = outj .

• Validity: If any non-faulty node outputs out, then at least
one non-faulty node takes out as the input value.

• Termination: If all non-faulty nodes activate the tcv-BA
protocol, then eventually all non-faulty nodes will output
a value.

The tcv-BA protocol can be constructed based on any
existing ABA protocol. Due to space limitations, we omit the

Fig. 2: The schematic diagram of Icarus, with color-filled
blocks to differentiate those generated by distinct nodes for
enhanced readability

specific construction details of tcv-BA, which can be found in
Section 5.2 of the BDT paper [14].

III. ICARUS DESIGN

Driven by the motivations outlined in Section II-C, we
introduce Icarus, a novel asynchronous BFT protocol that
operates exclusively on optimistic paths.

A. Overview

At a high level, each node broadcasts a chain following the
two-phase HotStuff protocol, with the view-change mechanism
removed. For brevity, we refer to a chain broadcast by pi as
pi’s chain. These chains take turns serving as the optimistic
path that drives the consensus process. When the current
optimistic path fails, a path switch is triggered, and the next
chain is selected as the new optimistic path. To ensure safety,
an alignment protocol is invoked during the path switch to
synchronize the block heights committed on the previous
optimistic path. Furthermore, to improve performance, each
block in Icarus can also incorporate QCs for blocks from other
chains. As a result, committing a block on the optimistic path
can indirectly trigger the committing of blocks on the other
chains through these QC links.

Additionally, after a path switch, the broadcaster associated
with the previous optimistic path may resume broadcasting
blocks (possibly due to network recovery or node fault re-
covery), thereby forming a new chain. To distinguish between
multiple chains generated by the same node, we assign an
epoch number to each chain. Thus, a block in Icarus is denoted

4

as B⟨e,h⟩
i , where i is the broadcaster’s identifier, e is the epoch

number (starting from 0), and h is the block’s height within
this chain (also starting from 0). Correspondingly, each chain
is represented as Ce

i , and a block at height h within this chain
is denoted as Ce

i [h].
It should be noted that, by including QCs for blocks

from other nodes, Icarus exhibits a topological similarity to
DAG-based protocols such as DAGRider [29] and Tusk [24].
However, the two approaches differ significantly. Specifically,
existing DAG-based protocols mandate that block generation
across different nodes maintain a comparable frequency—each
new block must wait and reference at least n−f previously
generated blocks. This requirement inherently constrains the
block generation rate and system throughput. In contrast,
Icarus does not enforce the constraint that a new block must
reference n−f prior blocks, thereby allowing different nodes
to generate blocks at their own pace. This flexibility leads to
an improvement in throughput, a claim that will be empirically
validated in the experimental section (Section V).

Illustration through an example. Fig. 2 illustrates the
architecture of Icarus, which consists of four nodes. For
example, Blocks B

⟨0,0⟩
0 , B⟨0,1⟩

0 , and B
⟨0,2⟩
0 form a chain C0

0 .
B

⟨0,1⟩
0 not only references B

⟨0,0⟩
0 , but also references B

⟨0,1⟩
1 .

Fig. 2 begins with chain C0
0 serving as the optimistic path.

Upon receiving block B
⟨0,2⟩
0 , block B

⟨0,0⟩
0 is committed (as

shown in ➊ of Fig. 2) according to the two-phase commit
rule [21], [22]. Since B

⟨0,0⟩
0 references block B

⟨0,0⟩
1 , the latter

is also committed (as shown in ➋ of Fig. 2). To distinguish
between these cases, we refer to the commit of a block based
on the two-phase commit rule as a direct commit (e.g., block
B

⟨0,0⟩
0), while the commit of a block triggered by the commit

of another block is called an indirect commit (e.g., block
B

⟨0,0⟩
1).
When the number of uncommitted blocks in other chains

reaches λ (as shown by C0
1 in ➌), the optimistic path will be

switched. To ensure consistency in the number of committed
blocks on the previous optimistic path, Icarus introduces the
tcv2-BA protocol to align the heights of committed blocks
(➍). Subsequently, the optimistic path switches to the next
chain, as illustrated by C0

1 in Fig. 2. On the new optimistic
path, if the number of uncommitted blocks exceeds two, all
blocks except the last two are directly committed (as shown in
➎ for B

⟨0,1⟩
1 , B⟨0,2⟩

1 , and B
⟨0,3⟩
1). These blocks also trigger

indirect commits of B
⟨0,0⟩
2 , B⟨0,1⟩

2 , B⟨0,0⟩
3 , and B

⟨0,1⟩
0 in ➏.

Furthermore, when a node pi rebroadcasts a block, it generates
a new chain with its epoch number incremented by one (as
shown in ➐ for C1

0 in Fig. 2).
As described above, Icarus is entirely composed of opti-

mistic paths and does not require any pessimistic path execu-
tion, thereby avoiding the various limitations associated with
pessimistic paths implemented through MVBA. Ideally, it is
desirable for Icarus to continuously commit blocks using the
current chain as the optimistic path, without triggering any
path switches. Based on this perspective, we formalize the
notions of favorable and unfavorable situations. A favorable

Algorithm 1: Data structures & utilities for pi
1 Let Dj denote the last certified block in Cν

j where Cν
j is

the latest chain generated by pj .

2 struct Block {i, e, h, sqc, wqc, d}

3 define GenBlk(e, h, sqc):
4 d← a batch of transactions from bufi;
5 B.e← e; B.h← h; B.d← d; B.sqc← sqc;
6 update B’s references;
7 foreach j ∈ [1..n] and j ̸= i do
8 if Dj is not referenced by B then
9 B.wqc← B.wqc ∪ {QC for Dj};

10 update B’s references;
11 return B

situation occurs when the system can commit blocks along
the current optimistic path without requiring a path switch.
Conversely, any situation that does not meet this condition is
classified as unfavorable.

In the remainder of this section, we detail the individual
components of the Icarus protocol, encompassing its data
structures, the tcv2-BA protocol, the block committing rule,
and the path switching rule. To facilitate a rigorous and clear
presentation, several algorithms are introduced. A complete
execution example of these algorithms is illustrated to enhance
reader comprehension; however, owing to space constraints,
this illustration is deferred to Appendix A.

B. Data structures & chain generation

1) Definition of references: Each block contains a QC for
its predecessor on the same chain, as well as multiple QCs
for blocks on the other chain. We refer to the former as a
strong reference and the latter as a weak reference. If a QC
is generated for block B, the height of this QC is defined
as the same as the height of B. A QC comprises the hash
of the referenced block along with n − f distinct votes from
different nodes. These votes can be aggregated either through
a threshold signature scheme or by combining n − f PKI
signatures. The reference relationship exhibits transitivity: if
block A references block B, and block B references block C,
then block A is considered to transitively reference block C.
All blocks referenced by block A are called the ancestors of
A. Specifically, every block is inherently considered its own
ancestor.

2) Definition of block: As shown in Algorithm 1, each
block B

⟨e,h⟩
i in Icarus comprises six fields. The first three

fields (i, e, and h) serve as unique identifiers for the block.
The remaining fields maintain two types of references: a strong
reference (sqc) and weak references (wqc). The block also
contains a transaction batch d for execution. A block is con-
sidered certified when the QC for it has been generated. During
the block generation for B, the last certified block Dj from
every other chain will be checked (Line 7 of Algorithm 1).
If Dj has not been referenced by B, the QC for Dj will be

5

Algorithm 2: Generation of the chain Ce
i

1 Let conc denote whether Ce
i is concluded.

2 Let QC
⟨e,h⟩
i denote QC for block B

⟨e,h⟩
i .

3 define NewChain(i, e, conc):
4 h← 0;
5 while not conc:
6 if h > 0 then
7 wait until QC

⟨e,h−1⟩
i is generated;

8 sqc← QC
⟨e,h−1⟩
i ;

9 else
10 sqc← ⊥;
11 B

⟨e,h⟩
i ← GenBlk(e, h, sqc);

12 broadcast B⟨e,h⟩
i ;

13 h++;

14 on receiving B
⟨e,h⟩
j from pj:

15 append B
⟨e,h⟩
j to the chain Ce

j ;
16 send vote on B

⟨e,h⟩
j to pj ;

17 on receiving n− f votes on B
⟨e,h⟩
i :

18 generate QC
⟨e,h⟩
i based on these votes;

incorporated into B.wqc (Lines 8-10 of Algorithm 1). The
reference set of B undergoes updates whenever a new QC is
added to the block, as evidenced by the operations in Lines
6 and 10. Through the sqc and wqc fields, each block must
newly reference at least f blocks from other distinct chains
compared to its immediate predecessor.

3) Generation of a chain: In Icarus, except for the genesis
block of the chain, a block creator can only construct and
broadcast the next block after receiving the QC for the pre-
ceding block. As illustrated in Lines 5-10 of Algorithm 2, the
sqc field of the genesis block is set to ⊥, while for subsequent
blocks, sqc contains the QC for the immediately preceding
block. Upon receiving a new block, each node verifies its
validity. If the node has not yet delivered any ancestor block
of the new block, it initiates a block retrieval request to the
creator of the new block. The node will only deliver the new
block after all its ancestor blocks have been delivered. For
brevity, Algorithm 2 omits the detailed description of block
verification and retrieval procedures. Once the verification
passes, the node casts its vote on the block (Line 16). The
vote is a partial threshold signature (for threshold-based QC)
or a PKI signature (for PKI-based QC). After collecting n−f
votes, the block creator aggregates these votes to generate the
QC for the block (Lines 17-18).

C. Two-consecutive-validated-value Byzantine agreement

The tcv2-BA protocol extends tcv-BA by incorporating the
external validity property. Its inputs consist of two parameters,
h and qc, where h retains the same meaning as in tcv-BA,
while qc is used for external validation. The output is a
consistent v value.

Algorithm 3: Πid
tcvv for the node pi with id identifying

the tcv2-BA instance
1 Let Πid

tcv denote the tcv-BA instance.

2 define Πid
tcvv(h, qc):

3 broadcast ⟨h, qc⟩ in the 1P message;
4 on receiving 1P message from pj:
5 ⟨hm, qcm⟩ ← data contained in this message;
6 blk ← the block qcm refers to;

▷ external validation
7 if any ancestor block of blk is not delivered then
8 retrieve blk’s ancestors from pj recursively;

▷ next, process hm as v in Πid
tcv

▷ the rest remains the same as Πid
tcv

9 on returning vo from Πid
tcv:

10 return vo;

The construction of tcv2-BA, denoted as Πtcvv , is presented
in Algorithm 3 and is derived by modifying any existing tcv-
BA construction Πtcv [14]. Specifically, in the first broadcast
round, it broadcasts a tuple ⟨h, qc⟩ (Line 3). Upon receiving
this tuple, nodes perform external validation based on qc.
During external validation, nodes check whether all ancestor
blocks referenced by qc have been delivered. If any ancestor
remains undelivered, they recursively retrieve it from the
corresponding node (Lines 4-8). The processing of the h
component in this tuple follows the same procedure as the
v value in Πtcv . Furthermore, all subsequent rounds of Πtcvv

remain identical to those in Πtcv . Once the vo value is returned
from the Πtcv instance, it is directly adopted as the output of
Πtcvv (Lines 9-10).

With the incorporation of random common coins in its tcv2-
BA (more specifically, tcv-BA) protocol, Icarus can circum-
vent the FLP impossibility theorem [30], thereby achieving
asynchronous consensus.

D. Block committing through a path

The commit process of blocks essentially involves writing
the blocks into the underlying vector Vi, which requires
performing a global sorting of these blocks.

1) Block committing: As described in Section III-A, block
committing in Icarus follows two forms: direct committing and
indirect committing. The direct committing process operates
through either the two-phase commit rule or path finalization.
For two-phase rule-based direct committing, as illustrated in
Lines 9-11 of Algorithm 4, Cν

oid denotes the chain correspond-
ing to the current optimistic path, where oid represents the
rotating node identifier for the optimistic path and ν indicates
the epoch number of the latest chain generated by poid.
When an uncommitted block in Cν

oid possesses two successor
blocks, it triggers direct committing. Path-finalization-based
direct committing will be detailed in Section III-E1. The
direct committing operation subsequently induces the indirect
committing of its ancestor blocks.

6

Algorithm 4: Icarus protocol for pi
1 Let Γ record the latest chain epoch of each node.

2 define main():
3 oid← 0; Γ[:]← 0;
4 conc0 ← false; NewChain(i, 0, conc0);

5 while true:
6 switch← false; ν ← Γ[oid];
7 Cν

oid ← the chain with epoch ν generated by poid;
8 while not switch:
9 hl ← height of last uncommitted block in Cν

oid;
10 if there are two or more blocks after hl then
11 GlobalSort(Cν

oid[hl]);

12 if oid = i then
▷ initiate a new chain

13 concν ← true;
14 concν+1 ← false;
15 NewChain(i, ν + 1, concν+1);
16 Γ[oid]← ν + 1;
17 oid← oid+ 1 mod n;

▷ trigger the path switch
18 on #uncommitted blocks in C

Γ[k]
k ≥ λ:

19 switch← true;
20 stop voting for blocks on Cν

oid;
21 invoke Π

⟨oid,ν⟩
align ;

▷ finalize the previous path
22 on returning hba from Π

⟨oid,ν⟩
align :

23 foreach h≤hba and Cν
oid[h] is uncommitted do

24 GlobalSort(Cν
oid[h]);

Algorithm 5: Global sorting protocol (for pi)

1 define GlobalSort(B):
2 Scom ← all committed blocks;
3 Sanc ← ancestor blocks of B;
4 Stoc ← Sanc \ Scom;
5 S∗

toc ← sort Stoc first by the block creator’s identifier,
then by epoch, and finally by height;

6 append S∗
toc to Vi;

Fig. 3: An example to demonstrate the global sorting rule. We
omit some references in the figure for brevity.

Algorithm 6: Π⟨i,e⟩
align where ⟨i, e⟩ identifies the path

1 Bcert ← the last certified block in the chain Ce
i ;

2 broadcast QC for Bcert in the QC-EX message;

3 on receiving n− f QC-EX messages:
4 QCl ← QC with the largest height in these messages;
5 hqc ← QCl’s height;
6 hba ← Π

⟨i,e⟩
tcvv(hqc, QCl);

7 return hba;

2) Global block sorting: It should be noted that we do
not explicitly perform the indirect commit for blocks in
Algorithm 4. In fact, whether it is a direct commit or an
indirect commit, the corresponding block is globally sorted
and written into Vi. Thus, the global sorting process implicitly
accomplishes the indirect commit, with the specific rules de-
fined in the GlobalSort function of Algorithm 5. Specifically,
if a block B is directly committed, we first remove all already-
committed ancestor blocks from B’s ancestor set, resulting in
a remaining block set Stoc. The blocks in Stoc are then sorted
based on the following priority: (1) the identifier of the block
creator, (2) the epoch number, and (3) the block height. Finally,
the sorted sequence is appended to Vi.

Fig. 3 illustrates the global sorting rule through an example.
In the figure, C0

1 represents the optimistic path, where blocks
B

⟨0,1⟩
1 , B⟨0,2⟩

1 , and B
⟨0,3⟩
1 are sequentially direct-committed.

The direct commit of B
⟨0,2⟩
1 triggers the indirect commits of

B
⟨0,0⟩
2 , B⟨0,1⟩

2 , and B
⟨0,0⟩
3 . These four blocks are written to Vi

in the order B
⟨0,2⟩
1 , B⟨0,0⟩

2 , B⟨0,1⟩
2 , B⟨0,0⟩

3 , as determined by
the sorting rules defined in Algorithm 5. Similarly, the direct
commit of B⟨0,3⟩

1 triggers the indirect commit of B⟨0,1⟩
0 , which

is appended to Vi in the order B⟨0,1⟩
0 , B⟨0,3⟩

1 .

E. Path switching

As shown in Lines 18-19 of Algorithm 4, when a node
pi detects that the number of uncommitted blocks in a chain
exceeds λ (λ ≥ 3), it triggers a path switching operation. To
ensure safety, pi suspends voting for blocks on the current
optimistic path (Line 20). The path switching process consists
of two parts: finalizing the previous path and initiating the
next path.

1) Finalize the previous path: The node pi first needs to
align with other nodes on the number of committed blocks
in the previous path, which is achieved by invoking the
Πalign protocol (as shown in Line 21 of Algorithm 4). The
construction of Πalign is presented in Algorithm 6, where
each node first broadcasts the QC of its latest certified block
from the previous path. Once n − f QCs are collected, the
node selects the one with the largest height and inputs this
QC along with its corresponding height into the tcv2-BA
protocol Πtcvv . Πtcvv then returns a consistent block height
to all nodes. Based on this height, nodes directly commit
the previously uncommitted blocks, again by invoking the
GlobalSort protocol (Lines 22-24 in Algorithm 4).

7

For the node that generates the previous optimistic path
(i.e., poid), it concludes the chain associated with that path.
This conclusion is accomplished by setting the concv variable
to true (Line 13), which is then passed to the NewChain
function in Algorithm 2. Furthermore, this node generates a
new chain where the epoch number is incremented by 1 (Lines
14-15). Correspondingly, all nodes update the epoch number
for poid’s latest chain (Line 16) and switch their optimistic
path to the chain of the next node (Line 17).

2) Initiate the new path: Upon switching to the new
optimistic path, uncommitted blocks on this path are first
examined. If any blocks can be committed via the two-phase
rule, they are immediately committed (as shown in Lines 9-
11 of Algorithm 4). As a result, when multiple blocks are
on the new path, these blocks, except the last two, can be
committed without waiting, effectively reducing the latency
after path switching.

F. Adaptive adjustment of λ
It is evident that the setting of the λ value may impact the

performance of Icarus. On the one hand, to tolerate occasional
network fluctuations, λ should be set to a larger value to
prevent unnecessary switching of the optimistic path. On the
other hand, when the current optimistic path fails, we desire
a smaller λ value to facilitate a quicker transition to a new
optimistic path. To reconcile these conflicting requirements,
we design a dynamic λ adjustment mechanism composed of
two parts: successive halving and probing recovery.

1) Successive halving: λ is dynamically adjusted within the
predefined range [λl, λh], where λh = λl · 2k. It is initialized
to its maximum value, λh. We evaluate the lifespan of an
optimistic path by monitoring its block generation. If no new
blocks are generated on this path between its designation as
the optimistic path and the subsequent path switch, the system
is deemed to be under unfavorable conditions, and λ is halved.
Conversely, a successful block generation leaves λ unchanged.
This halving process continues until λ reaches its minimum
value λl after k decrements.

2) Probing recovery: Once λ reaches its minimum value
λl, a mechanism is needed to detect whether the system
has recovered to a favorable condition. This is accomplished
through a probing recovery procedure. First, we execute m
optimistic paths using λl. Then, we tentatively restore λ to its
maximum value λh for a single path, which we refer to as
a trial path. If new blocks are successfully generated during
the lifespan of this trial path, it indicates that the system has
returned to a favorable condition, and the successive halving
process restarts. Conversely, if this trial path fails to generate
new blocks, the number of subsequent runs using λl is doubled
to 2m before another trial path is attempted. This doubling
repeats (to 4m, 8m, and so on) after each unsuccessful trial
until one trial path successfully generates new blocks, at which
point the successive halving process resumes.

IV. CORRECTNESS ANALYSIS

In this section, we analyze the correctness of the Icarus
protocol by verifying its adherence to the safety and liveness

properties formally defined in Section II-B1. The proofs of
these properties rely on several supporting lemmas. Due to
space limitations, the proofs of some lemmas (namely, Lem-
mas 2, 3, and 5) are deferred to Appendix B.

A. Safety analysis

All blocks directly committed by a node pi constitute
a vector Di, which is append-only and shares structural
similarities with Vi. In accordance with the global sorting
protocol described in Algorithm 5, the blocks within Vi can
be partitioned into contiguous segments, each delineated by
a directly committed block and encompassing all indirectly
committed blocks it triggers. These segments are sequentially
indexed as Qi[m], where Qi[m] specifically denotes the seg-
ment generated by the direct commit of Di[m].

LEMMA 1. On an optimistic path C, if the last block
committed through the two-phase rule is C[h], then all non-
faulty nodes are guaranteed to commit blocks on C up to either
C[h] or C[h+ 1].

Proof. Without loss of generality, we assume node pi commits
block C[h] through the two-phase rule, implying it has deliv-
ered blocks C[h+1] and C[h+2]. Since C[h+2] contains the
QC for C[h+1] (which consists of n− f votes on C[h+1]),
at least n− 2f non-faulty nodes have delivered C[h+ 1] and
possess the QC for C[h].

On the other hand, since C[h] is the last block committed
via the two-phase rule, no node can deliver C[h+ k] (for any
k ≥ 3). This means no node can hold the QC for C[h + l]
(where l ≥ 2).

Considering both points above, during the first round of
Algorithm 6, at least n−2f non-faulty nodes will broadcast the
QC for either C[h] or C[h+1], while each node broadcasts QC
for at most C[h+m] (with m ≤ 1). Given that n−2f ≥ f+1,
upon receiving n− f QC-EX messages, each non-faulty node
is guaranteed to receive the QC for C[h] and may also receive
the QC for C[h+ 1].

According to Algorithm 6’s design, each non-faulty node
takes the height h or h + 1 as the input parameter for Πtcvv

(Line 6). Leveraging the agreement and validity properties of
tcv-BA, each non-faulty node ultimately outputs h or h + 1
from Πtcvv and commits blocks up to C[h] or C[h+ 1].

LEMMA 2. For any two non-faulty nodes pi and pj , if
Di[k] ̸= ⊥ and Dj [k] ̸= ⊥, then Di[k] = Dj [k]

LEMMA 3. For any two non-faulty nodes pi and pj , if pi
and pj commit the segments Qi[m] and Qj [m], respectively,
then Qi[m] = Qj [m].

THEOREM 4 (SAFETY). For any two non-faulty nodes pi
and pj , if Vi[k] ̸= ⊥ and Vj [k] ̸= ⊥, then Vi[k] = Vj [k].

Proof. We assume blocks Vi[k] and Vj [k] reside within seg-
ments Qi[mi] and Qj [mj] respectively. Without loss of gen-
erality, let mi ≤ mj .

By Lemma 3, for all m < mi, we have Qi[m] = Qj [m].
This implies pi and pj commit identical numbers of blocks

8

across the first mi − 1 segments, denoted by count t. Conse-
quently, Vi[k] and Vj [k] must reside within the same segment,
yielding mi = mj . Let mi = mj = m.

Furthermore, Vi[k] and Vj [k] correspond to the (k − t)-
th blocks committed by pi and pj within the m-th segment,
formally expressed as: Vi[k] = Qi[m][k − t] and Vj [k] =
Qj [m][k − t].

Applying Lemma 3 again guarantees identical segments:
Qi[m] = Qj [m]. Thus, we derive: Vi[k] = Qi[m][k − t] =
Qj [m][k − t] = Vj [k].

B. Liveness analysis

1) Intuitional analysis: Our model in Section II-A assumes
that messages originated by any non-faulty node are eventually
delivered to all other non-faulty nodes. As a result, once a non-
faulty node broadcasts a block, it is guaranteed to collect at
least n−f votes for that block, enabling the node to aggregate
a QC and generate the next block. This key property ensures
that the chain of every non-faulty node grows continuously.

Even if the adversary mounts a large-delay attack on each
leader, after a finite duration, the chain of at least one non-
faulty node will inevitably accumulate more than two un-
committed blocks. Similarly, if a temporary network partition
occurs, the same conclusion holds once the partition heals.
When this chain becomes the optimistic path, the two-phase
committing rule described in Algorithm 4 ensures that at least
one block on that chain can be committed, thereby upholding
the liveness property.

2) Formal analysis: Next, we formally analyze the liveness
of Icarus (as stated in Theorem 6), the proof of which relies
on Lemma 5.

LEMMA 5. In Icarus, blocks can be continuously committed.

THEOREM 6 (LIVENESS). If a transaction is added to the
buffer of every non-faulty node, it will eventually be committed.

Proof. Let tx denote the target transaction. Assuming tx has
not been committed, all non-faulty nodes will incorporate tx
into their generated blocks. Denote the set of such blocks
as S. By Lemma 5, an unbounded number of blocks will
get committed from this point forward. Since each committed
block must reference at least f + 1 newly generated blocks,
it follows that a committed block must reference at least one
block from S. This leads to the committing of tx.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

To validate the effectiveness of Icarus, we implement a pro-
totype system and conduct comparative experiments against
five baseline protocols: Ditto, ParBFT, sMVBA [19], FIN [20],
and Tusk [24]. Ditto and ParBFT represent serial and parallel
dual-path protocols, respectively, while sMVBA and FIN serve
as two representative purely asynchronous protocols, and Tusk
denotes a Directed Acyclic Graph (DAG)-based protocol.
Ditto, ParBFT, sMVBA, and Tusk are evaluated using their

open-source Rust implementations1,2,3,4, which share a unified
code framework. For fairness, Icarus is implemented within
the same framework, and our implementation is made pub-
licly available5. The framework employs a mempool-based
transaction broadcasting mechanism to maximize bandwidth
utilization. We implement the ABA protocol based on the
MMR variant [27]. Specifically for FIN, due to the absence
of an open-source Rust implementation, we develop it within
the same framework.

Experiments are conducted on Amazon Web Services (AWS)
to simulate a distributed environment, with nodes deployed
across five global regions—N. Virginia (us-east-1), N. Cali-
fornia (us-west-1), Sydney (ap-southeast-2), Stockholm (eu-
north-1), and Tokyo (ap-northeast-1)—to ensure geographi-
cal distribution. Each node runs on an m5d.xlarge instance,
equipped with 4 vCPUs, 16GB RAM, and up to 10Gbps
bandwidth. To minimize experimental variance, each test is
repeated three times with error bars included in the results.
Each experiment runs for 5 minutes, and metrics are collected
during a stable system status.

We focus on two key performance metrics: end-to-end
latency and throughput. End-to-end latency is measured as
the average time between transaction input and its successful
commit, while throughput is quantified by the number of
transactions committed per second. We consider two kinds
of situations: favorable situations where all nodes operate
normally without faults or artificial delay, enabling optimistic
path execution for Ditto, ParBFT, and Icarus; and unfavorable
situations where leader nodes are artificially delayed by 20
seconds to disrupt optimistic paths. Additionally, we assess
performance under two more secure asynchronous conditions:
temporary network partitions and random delays injected into
each node. Due to space constraints, the experiments involving
random delays are presented in Appendix C-B.

The transaction size is consistently fixed at 256 bytes,
with each payload containing up to 1000 transactions and
each block referencing a maximum of 32 payloads. For the
parameter λ in Icarus, we employ two configuration strategies:
a static setting and an adaptive adjustment mechanism. In
the first four experimental studies (Sections V-B, V-C, V-D,
and V-E), we utilize a static configuration to show that Icarus
achieves better performance than existing alternatives even un-
der a simple setup. The remaining experiments (Sections V-F
and V-G) further illustrate Icarus’s superior performance when
the adaptive adjustment mechanism is enabled. Additionally,
the timeout parameter in Ditto is set to 5 seconds.

B. Performance in favorable situations

To evaluate the performance of all protocols under favorable
conditions, we deploy a system comprising seven nodes and
set λ = 10 in Icarus. The appropriate value of λ is determined

1https://github.com/danielxiangzl/Ditto
2https://github.com/ac-dcz/parbft-parbft1-rust
3https://github.com/ac-dcz/sDumbo
4https://github.com/facebookresearch/narwhal
5https://github.com/CGCL-codes/icarus

9

	�� ���� �	�� ����
��!�$�� $#��#%�"�

�

�

�

�

	

��
#�
��
&�
�"
�

�##�
��!���
"����

���!$"
�$"�
���

Fig. 4: Throughput v.s. latency in favorable situations

through an empirical evaluation across a range of candidate
values, the details of which are provided in Appendix C-A.
In each experiment, we progressively increase the transaction
input rate at the clients until the system reaches its saturation
point. Throughout this process, we measure the resulting
latency-throughput pairs, with the results presented in Fig. 4.

As shown in the figure, Icarus achieves low latency compa-
rable to that of Ditto, since both protocols exploit an optimistic
path for block committing. Additionally, Icarus reaches a peak
throughput of 237.3K TPS, substantially outperforming Ditto
(125.5K TPS), ParBFT (98.6K TPS), FIN (76.5K TPS), and
sMVBA (68.2K TPS). This performance gain is attributed
to Icarus’s parallel-chain design, wherein each node indepen-
dently broadcasts its own chain. By enabling blocks in other
chains to be committed through the optimistic path, Icarus sig-
nificantly enhances concurrency in block committing, thereby
maximizing throughput.

On the other hand, owing to its DAG structure, which en-
ables parallel block processing, Tusk achieves a high through-
put of 206.5K TPS. Nevertheless, its throughput remains
marginally lower than that of Icarus. This performance gap
stems from the requirement in Tusk that each node must wait
to deliver n− f blocks from the previous round before it can
generate a new block. This dependency constrains both the
block production rate and the overall block committing speed.
In contrast, Icarus allows each node to produce blocks without
the need to wait for or reference n−f blocks, thereby enabling
more flexible and potentially faster block generation.

C. Performance in unfavorable situations

In the unfavorable situation, we similarly deployed seven
nodes and set the parameter λ to 10. The experimental results
are presented in Fig. 5.

By comparing the performance of different protocols, we
observe that Icarus consistently achieves higher peak through-
put than all other protocols, with particularly significant gains
over Ditto, ParBFT, FIN, and sMVBA. Specifically, Icarus’s
peak throughput is approximately 1.2x that of Tusk, 3.1x
that of FIN, 3.5x that of sMVBA, 12.2x that of ParBFT,

� 	�� ���� �	�� ����
��" %��!%$��$&�#�

�

�

�

	

�

��
$�
��
'�
�#
�

��$$
��"
��
#��
�
���"%#
�%#�
���

Fig. 5: Throughput v.s. latency in unfavorable situations

��
 ���
 ���
 ���
 ���

����!���! �� "���

�

��

��

��

��
 �

��
#�

��
�

� �
���	��
���	�

����!�
�!��
���

Fig. 6: Comparison in the presence of network partitions

and 30.4x that of Ditto. A comparison between Fig. 4 and
Fig. 5 further reveals that due to the failure of the optimistic
path, the peak throughput of both Ditto and ParBFT drops
sharply, whereas Icarus maintains a high peak throughput. This
resilience is attributed to Icarus’s design: while the leader on
the optimistic path may be delayed, other nodes continue to
broadcast new blocks, allowing the system to sustain a high
block production rate. Moreover, upon path switching, Icarus
can leverage the new optimistic path to indirectly commit
blocks in other chains, thereby maintaining high throughput.

In terms of latency, all of Icarus, Ditto, and ParBFT exhibit
a noticeable increase under the unfavorable situation. This
increase is due to the failure of the current optimistic path:
Ditto and ParBFT must fall back to the pessimistic path,
while Icarus must transition to a new optimistic path. However,
Icarus still achieves lower latency than both Ditto and ParBFT.
This is because once Icarus switches to a new optimistic path,
if there are more than two uncommitted blocks on that path, it
can immediately commit them, significantly accelerating block
committing after the switch.

D. Performance under temporary network partitions

We maintain a configuration of seven nodes and set the λ
value to 10. The network is alternately partitioned and then

10

	�� ���� �	�� ���� �	��
��!�$�� $#��#%�"�

�

�

�

�

	

��

#�
��
&�
�"
�

�##�
��!���
"����

���!$"
�$"�
���

Fig. 7: Performance with a single rapid node

healed. Each partition lasts for 30 seconds, followed by a 60-
second post-healing phase. When partitioned, the 7 nodes are
split into two groups—one containing 3 nodes and the other
4 nodes—and network communication between the groups is
blocked. As a result, no node can gather enough votes to
form a QC and produce new blocks during the partition. The
experimental results are shown in Fig. 6.

As observed in Fig. 6, Icarus maintains the highest peak
throughput and the lowest latency among the compared pro-
tocols. A comparison between Fig. 6 and Fig. 4 reveals that,
although temporary partitioning leads to a significant increase
in latency for Icarus, its peak throughput remains largely
unaffected. This can be attributed to the fact that each node
continues to generate payloads during the partition, which are
broadcast and referenced in blocks after network recovery,
thus sustaining high throughput. Moreover, under temporary
partitioning, Ditto exhibits higher latency than Icarus. This is
because Ditto triggers a timeout and falls back to a pessimistic
path for block committing after the partition heals, which
introduces large latency. On the other hand, Icarus does not
require a path switch upon recovery; it continues to commit
blocks along the current path, resulting in lower latency.

E. Performance with a rapid node

In Icarus, the switch of the optimistic path is triggered based
on the number of uncommitted blocks on non-optimistic-path
chains. When a particular chain exhibits a significantly higher
block production rate than others, such that its blocks cannot
be committed in time, Icarus initiates a switch of the optimistic
path. This switching mechanism brings a key advantage: Icarus
tends to migrate the optimistic path toward the fastest-growing
chain. The experiments in this section are designed to validate
this behavior.

We consider a system with seven nodes and set the λ
parameter to 10. To simulate a scenario in which one node
produces blocks at a significantly higher rate, we introduce
an artificial delay of 500 ms to the block broadcasting step
of all nodes except node p2. The experimental results are
shown in Fig. 7. As depicted, Icarus achieves significantly
lower latency and higher throughput compared to the other

 �	 �� �� 	�
�(!��%�#��"#��&

����

����

����

����

��
%#
(�

�$
('
��'
)�
&�

��''#
��%
��
&��
�

���%(&
�(&
���

(a) Throughput comparison as the system scales

� �� �	 �� ��
�#��� ��������!

�

�

�

	

��

��

��
"�

��
$�

�!
�

��""�
�� �
�
!���

��� #!
�#!�

��

(b) Latency comparison as the system scales

Fig. 8: Scalability comparison under favorable situations

four baseline protocols. Further log analysis reveals that Icarus
quickly switches the optimistic path to the chain maintained
by p2 and remains on that chain, enabling fast and continuous
block commitment.

On the other hand, the 500 ms delay is not sufficient to
trigger timeouts in Ditto, allowing it to continue committing
blocks along its optimistic path. Similarly, for ParBFT, the
optimistic path remains faster than the pessimistic fallback,
leading ParBFT to commit blocks through the optimistic paths.
However, under these conditions, the optimistic paths of both
Ditto and ParBFT proceed at a much slower rate, resulting in
higher latency and lower throughput compared to Icarus.

F. Scalability

We evaluate the scalability of the protocols by varying
the number of nodes from 7 to 16, 28, 40, and 64, under
both the favorable and unfavorable situations. These specific
configurations are selected because they follow the 3f + 1
form. In Icarus, the parameter λ is configured using the
adaptive adjustment mechanism from Section III-F, with λl,
λh, and m set to 5, 40, and 1, respectively. For each system
scale, we gradually increase the transaction input rate to
identify the system’s saturation point, at which both latency
and throughput are recorded.

11

 �	 �� �� 	�
�(!��%�#��"#��&

�

����

����

����

����

��
%#
(�

�$
('
��'
)�
&�

��''#
��%
��
&��
�

���%(&
�(&
���

(a) Throughput comparison as the system scales

	 �� �
 �� ��
�$���!� ��� ��"

�

��

��

��

��
#�
��
%�
�"
�

�##
��!���
"����
���!$"
�$"�
���

(b) Latency comparison as the system scales

Fig. 9: Scalability comparison under unfavorable situations

1) Scalability in favorable situations: The scalability re-
sults in favorable situations are shown in Fig. 8. It is evident
that Icarus significantly outperforms its counterparts in both
throughput and latency across all scales. In particular, when
the system scales to 40 nodes, Icarus achieves a throughput
approximately 2.5x that of Ditto, 3.7x that of ParBFT, 5.0x
that of sMVBA, 4.1x that of FIN, and 1.1x that of Tusk.

As shown in Fig. 8a, all protocols exhibit a pattern where
throughput initially increases with the number of nodes and
then declines. This is because, in the early stage, adding more
nodes contributes to higher transaction input rates, which in
turn boosts throughput. However, as the system scale continues
to grow, the overhead from broadcasting massive transactions
starts to saturate the network bandwidth, leading to reduced
consensus efficiency and a subsequent decline in throughput.

2) Scalability in unfavorable situations: In this set of
experiments, we evaluate performance as the number of nodes
increases, specifically when optimistic leaders are delayed by
20 seconds. The experimental results are presented in Fig. 9.

As shown in Fig. 9a, Icarus achieves the highest throughput
across all system scales, with only marginal degradation
compared to its performance under favorable situations. In
contrast, both Ditto and ParBFT suffer significant throughput
drops. This advantage of Icarus can be attributed to its design:

� �� �
 	� �	
� �������������

�

��

����

�
��

����

�
��

��
��
��
!�
��

��

	����
	����

����

	���

����

����������������!
������������!

Fig. 10: Comparison between alignment and total latency

even when the leader’s block broadcast is temporarily delayed,
the remaining nodes continue to generate and broadcast blocks,
thereby sustaining high overall throughput.

From Fig. 9b, it can be seen that Icarus and FIN consistently
achieve the lowest latency among the compared protocols.
Icarus maintains low latency due to its ability to immediately
commit blocks of the new optimistic path after a path switch,
eliminating the need for additional waiting. FIN’s low latency,
on the other hand, benefits from the efficiency of its ABA
variant (i.e., RABA), which can output in as little as one com-
munication round [20]. In the future, we plan to integrate the
RABA protocol into Icarus to further improve its performance.

G. Latency analysis of the height-alignment protocol

In this section, we investigate the impact of the alignment
protocol on overall latency. Since path switching and height
alignment mainly occur under unfavorable conditions, we
adopt the same experimental setup as in Section V-F2 and
measure the latency required for height alignment across dif-
ferent system scales. The height-alignment latency is defined
as the average time taken by all nodes from triggering a path
switch to its successful completion. The results are shown
in Fig. 10, which compares the alignment latency and total
latency under different system scales. The values annotated
above the alignment latency bars indicate their proportion
relative to the total latency.

Overall, height alignment accounts for approximately 40%
to 60% of the total latency. Comparing results across dif-
ferent system scales, it can be observed that the proportion
of latency attributed to height alignment increases with the
number of nodes. This is because the height alignment process
invokes the tcv-BA protocol, whose internal implementation
relies on a threshold signature scheme to realize the common
coins. The time required to generate a complete threshold
signature increases significantly with the number of nodes. To
improve protocol performance under unfavorable situations,
future work may focus on optimizing the alignment protocol
and the underlying tcv-BA protocol.

12

VI. RELATED WORK

A. Synchronous BFT

Early BFT protocols, exemplified by the Byzantine Gen-
erals Problem [31], primarily adopted synchronous network
assumptions. This choice greatly simplifies the design com-
plexity by leveraging the predictability of message delivery
within a predetermined time bound ∆ [32], [33], [34]. Recent
research efforts, such as Sync-HotStuff [7] and Pili [35],
have attempted to optimize synchronous protocols, though
their practical deployment remains limited due to inherent
theoretical constraints. The fundamental limitation stems from
synchronous protocols’ stringent network assumptions, which
require all messages between non-faulty nodes to arrive within
∆ time units. This critical dependency creates a dilemma:
setting ∆ too small risks violating the synchronization as-
sumption and compromising safety, while excessive ∆ values
significantly degrade protocol efficiency.

B. Partially synchronous BFT

As a network assumption that lies between synchronous
and asynchronous models, the partially-synchronous network
assumption offers a more realistic foundation compared to the
synchronous model, while simultaneously providing greater
efficiency than the asynchronous counterpart. Since its in-
troduction by Dwork et al. [36], the partially-synchronous
assumption has been widely adopted in the design of numerous
BFT consensus protocols. Among these, the PBFT protocol
proposed by Castro et al. [9] stands out as the most representa-
tive example. Building upon PBFT, researchers have proposed
various optimization strategies, including the introduction of
fast paths [37], the utilization of trusted hardware [38], and
the adoption of more refined failure models [26].

The rise of blockchain technology has introduced new
insights into the design of BFT protocols. By packaging
transactions into blocks and connecting these blocks into
a chain using block hashes—or more precisely, QC—the
broadcast and voting processes for blocks are structured in a
pipelined manner. This approach is epitomized by the HotStuff
protocol [10]. On this basis, further optimizations to HotStuff
have been proposed by various researchers, aiming to reduce
consensus latency [21], [39] or enhance the success rate of
block committing [22], [40].

Despite the long-standing attention and widespread adoption
of partially-synchronous BFT, recent studies have cast doubt
on its liveness properties [11], [12], [13]. Specifically, it has
been shown that an adversary can manipulate the network in
such a way that when a non-faulty node becomes the leader,
blocks may fail to be delivered in a timely manner, whereas
when a faulty node becomes the leader, it may refrain from
broadcasting any blocks at all.

C. Asynchronous BFT

Asynchronous BFT protocols can be broadly categorized
into two classes: asynchronous broadcast and asynchronous
agreement [41], [42], [43], [44]. Asynchronous BFT broadcast

protocols are designed to ensure the consistency of deliv-
ered data, with representative examples including Reliable
Broadcast (RBC) [45] and Consistent Broadcast (CBC) [46].
However, when the broadcaster is faulty, it is possible that no
node will deliver any data.

On the other hand, asynchronous agreement protocols aim
to enable a group of nodes to reach consensus on a piece
of data while guaranteeing that eventually every correct node
will deliver the data. Depending on the form of the data being
agreed upon, these protocols mainly fall into two categories:
Multi-Valued Byzantine Agreement (MVBA) [18], [19], [47],
[48] and Asynchronous Binary Agreement (ABA) [28], [38],
[41]. MVBA can achieve agreement on any data that satisfies
the external validity condition, while ABA is limited to binary
values. As a result, MVBA can be directly employed as the
consensus protocol underlying an SMR system [13], whereas
ABA typically requires integration with underlying broadcast
protocols such as RBC or CBC in order to realize SMR [11],
[12], [49].

Asynchronous BFT protocols based on MVBA, in partic-
ular, make minimal assumptions about the underlying net-
work, which endows them with strong robustness properties.
However, this advantage comes at the cost of increased
protocol complexity and reduced efficiency. In an effort to
improve the performance of asynchronous BFT protocols,
some studies have introduced optimistic paths and proposed
dual-path protocols [14], [15], [16], [17]. Nevertheless, as
analyzed in Section II-C, dual-path protocols suffer from
several drawbacks, such as high protocol complexity, difficulty
in timely path switching, and inefficient resource utilization.
To address the issues inherent in dual-path protocols, we
propose a single-path paradigm that achieves asynchronous
BFT entirely through the use of optimistic paths, without
relying on a backup pessimistic path.

In addition, some researchers have explored the incor-
poration of Directed Acyclic Graph (DAG) topologies into
BFT protocol design, leveraging parallel block processing to
enhance throughput [24], [29]. However, most DAG-based
protocols require the election of a leader within each wave and
rely on the leader to commit blocks, which significantly in-
creases latency. Although protocols such as BullShark [50] and
Wahoo [51] have introduced optimistic paths, they still depend
on pessimistic paths to ensure liveness, thereby suffering from
limitations similar to those of the previously discussed dual-
path approaches. In fact, Icarus exhibits certain topological
similarities with the aforementioned DAG-based protocols,
as both allow a block to reference multiple other blocks.
However, DAG-based protocols enforce that each block must
reference at least n−f other blocks, which inherently reduces
the block generation rate and consequently limits throughput.
In contrast, Icarus employs a more flexible topological struc-
ture by not mandating that each block references n−f blocks,
thereby achieving higher throughput.

13

VII. CONCLUSION

We present Icarus, a single-path asynchronous BFT protocol
that exclusively employs optimistic paths. By eliminating
the reliance on separate pessimistic paths, Icarus avoids the
high overhead and implementation complexity inherent in
the MVBA protocol used within the dual-path paradigm.
Its rotating-chain mechanism and tcv2-BA component jointly
guarantee liveness and safety even under unfavorable situa-
tions. Furthermore, the parallel-chain structure and inter-chain
references enable blocks from non-optimistic-path chains to
be committed, thereby achieving high throughput. Formal
analysis and experimental results demonstrate that Icarus is
both correct and performant, offering a promising direction
for future asynchronous BFT protocols.

ACKNOWLEDGMENT

This work is supported by National Science and Technology
Major Project 2022ZD0115301.

REFERENCES

[1] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “Blockchain challenges
and opportunities: A survey,” International Journal of Web and Grid
Services, vol. 14, no. 4, pp. 352–375, 2018.

[2] X. Wang, S. Duan, J. Clavin, and H. Zhang, “BFT in blockchains: From
protocols to use cases,” ACM Computing Surveys, vol. 54, no. 10, pp.
1–37, 2022.

[3] R. Kotla and M. Dahlin, “High throughput byzantine fault tolerance,”
in Proceedings of the 34th International Conference on Dependable
Systems and Networks. IEEE, 2004, pp. 575–584.

[4] T. Distler, “Byzantine fault-tolerant state-machine replication from a
systems perspective,” ACM Computing Surveys, vol. 54, no. 1, pp. 1–38,
2021.

[5] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 2, pp. 1432–1465, 2020.

[6] G. Zhang, F. Pan, Y. Mao, S. Tijanic, M. Dangana, S. Motepalli,
S. Zhang, and H.-A. Jacobsen, “Reaching consensus in the Byzantine
empire: A comprehensive review of BFT consensus algorithms,” ACM
Computing Surveys, vol. 56, no. 5, pp. 1–41, 2024.

[7] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin, “Sync HotStuff:
Simple and practical synchronous state machine replication,” in Pro-
ceedings of the 41st IEEE Symposium on Security and Privacy. IEEE,
2020, pp. 106–118.

[8] T. Hanke, M. Movahedi, and D. Williams, “Dfinity technology overview
series, consensus system,” arXiv preprint arXiv:1805.04548, 2018.

[9] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Proceedings of the 3rd USENIX Symposium on Operating Systems
Design and Implementation. USENIX, 1999, pp. 173–186.

[10] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“HotStuff: BFT consensus with linearity and responsiveness,” in Pro-
ceedings of the 38th ACM Symposium on Principles of Distributed
Computing. ACM, 2019, pp. 347–356.

[11] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of BFT protocols,” in Proceedings of the 23rd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 31–42.

[12] S. Duan, M. K. Reiter, and H. Zhang, “BEAT: Asynchronous BFT made
practical,” in Proceedings of the 25th ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 2028–2041.

[13] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous BFT protocols,” in Proceedings of the 27th ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2020,
pp. 803–818.

[14] Y. Lu, Z. Lu, and Q. Tang, “Bolt-Dumbo transformer: Asynchronous
consensus as fast as the pipelined BFT,” in Proceedings of the 29th
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2022, pp. 2159–2173.

[15] R. Gelashvili, L. Kokoris Kogias, A. Sonnino, A. Spiegelman, and
Z. Xiang, “Jolteon and ditto: Network-adaptive efficient consensus
with asynchronous fallback,” in Proceedings of the 26th International
Conference on Financial Cryptography and Data Security. Springer,
2022, pp. 296–315.

[16] X. Dai, B. Zhang, H. Jin, and L. Ren, “ParBFT: Faster asynchronous
BFT consensus with a parallel optimistic path,” in Proceedings of
the 30th ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2023, pp. 504–518.

[17] E. Blum, J. Katz, J. Loss, K. Nayak, and S. Ochsenreither, “Abraxas:
Throughput-efficient hybrid asynchronous consensus,” in Proceedings of
the 30th ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2023, pp. 519–533.

[18] I. Abraham, D. Malkhi, and A. Spiegelman, “Asymptotically optimal
validated asynchronous Byzantine agreement,” in Proceedings of the
38th ACM Symposium on Principles of Distributed Computing. ACM,
2019, pp. 337–346.

[19] B. Guo, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Speeding
Dumbo: Pushing asynchronous BFT closer to practice,” Cryptology
ePrint Archive, 2022.

[20] S. Duan, X. Wang, and H. Zhang, “Fin: Practical signature-free asyn-
chronous common subset in constant time,” in Proceedings of the 30th
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2023, pp. 815–829.

[21] X. Sui, S. Duan, and H. Zhang, “Marlin: Two-phase BFT with linearity,”
in Proceedings of the 52nd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. IEEE, 2022, pp. 54–66.

[22] M. M. Jalalzai, J. Niu, C. Feng, and F. Gai, “Fast-HotStuff: A fast and
robust BFT protocol for blockchains,” IEEE Transactions on Dependable
and Secure Computing, vol. 21, no. 4, pp. 2478–2493, 2023.

[23] M. O. Rabin, “Randomized Byzantine generals,” in Proceedings of the
Annual Symposium on Foundations of Computer Science. IEEE, 1983,
pp. 403–409.

[24] G. Danezis, L. Kokoris-Kogias, A. Sonnino, and A. Spiegelman, “Nar-
whal and Tusk: A DAG-based mempool and efficient BFT consensus,”
in Proceedings of the 17th European Conference on Computer Systems.
ACM, 2022, pp. 34–50.

[25] H. Xu, C. Zhang, X. Liu, Y. Lv, S. Gan, L. Zhu, and K. Li, “A fast
and practical sector-based BFT consensus with sublinear communication
complexity,” IEEE Transactions on Networking, 2026.

[26] X. Dai, L. Huang, J. Xiao, Z. Zhang, X. Xie, and H. Jin, “Trebiz:
Byzantine fault tolerance with Byzantine merchants,” in Proceedings of
the 38th Annual Computer Security Applications Conference. ACM,
2022, pp. 923–935.

[27] A. Mostéfaoui, H. Moumen, and M. Raynal, “Signature-free asyn-
chronous Byzantine consensus with t < n/3 and O(n2) messages,” in
Proceedings of the 33rd ACM Symposium on Principles of Distributed
Computing. ACM, 2014, pp. 2–9.

[28] I. Abraham, N. Ben-David, and S. Yandamuri, “Efficient and adaptively
secure asynchronous binary agreement via binding crusader agreement,”
in Proceedings of the 41st ACM Symposium on Principles of Distributed
Computing. ACM, 2022, pp. 381–391.

[29] I. Keidar, E. Kokoris-Kogias, O. Naor, and A. Spiegelman, “All you need
is DAG,” in Proceedings of the 40th ACM Symposium on Principles of
Distributed Computing. ACM, 2021, pp. 165–175.

[30] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[31] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, 1982.

[32] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” Journal of the ACM, vol. 27, no. 2, pp. 228–234,
1980.

[33] D. Dolev and H. R. Strong, “Authenticated algorithms for Byzantine
agreement,” SIAM Journal on Computing, vol. 12, no. 4, pp. 656–666,
1983.

[34] P. Feldman and S. Micali, “Optimal algorithms for Byzantine agree-
ment,” in Proceedings of the 20th Annual ACM Symposium on Theory
of Computing. ACM, 1988, pp. 148–161.

[35] T. H. Chan, R. Pass, and E. Shi, “Pili: An extremely simple synchronous
blockchain,” Cryptology ePrint Archive, 2018.

[36] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM, vol. 35, no. 2, pp. 288–323,
1988.

14

[37] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative Byzantine fault tolerance,” in Proceedings of 21st ACM
SIGOPS Symposium on Operating Systems Principles. ACM, 2007,
pp. 45–58.

[38] R. Friedman, A. Mostefaoui, and M. Raynal, “Simple and efficient
oracle-based consensus protocols for asynchronous Byzantine systems,”
IEEE Transactions on Dependable and Secure Computing, vol. 2, no. 1,
pp. 46–56, 2005.

[39] J. Niu, F. Gai, M. M. Jalalzai, and C. Feng, “On the performance of
pipelined HotStuff,” in Proceedings of the 40th Annual IEEE Conference
on Computer Communications. IEEE, 2021, pp. 1–10.

[40] N. Giridharan, F. Suri-Payer, M. Ding, H. Howard, I. Abraham, and
N. Crooks, “BeeGees: stayin’alive in chained BFT,” in Proceedings
of the 42nd ACM Symposium on Principles of Distributed Computing.
ACM, 2023, pp. 233–243.

[41] M. Ben-Or, “Another advantage of free choice: Completely asyn-
chronous agreement protocols,” in Proceedings of the 2nd Annual ACM
Symposium on Principles of Distributed Computing. ACM, 1983, pp.
27–30.

[42] R. Canetti and T. Rabin, “Fast asynchronous Byzantine agreement with
optimal resilience,” in Proceedings of the 25th Annual ACM Symposium
on Theory of Computing. ACM, 1993, pp. 42–51.

[43] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast
protocols,” Journal of the ACM, vol. 32, no. 4, pp. 824–840, 1985.

[44] M. Correia, N. F. Neves, and P. Verı́ssimo, “From consensus to atomic
broadcast: Time-free Byzantine-resistant protocols without signatures,”
The Computer Journal, vol. 49, no. 1, pp. 82–96, 2006.

[45] G. Bracha, “Asynchronous Byzantine agreement protocols,” Information
and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[46] D. Dolev, “The Byzantine generals strike again,” Journal of Algorithms,
vol. 3, no. 1, pp. 14–30, 1982.

[47] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient
asynchronous broadcast protocols,” in Proceedings of the 21st Annual
International Cryptology Conference. Springer, 2001, pp. 524–541.

[48] Y. Lu, Z. Lu, Q. Tang, and G. Wang, “Dumbo-MVBA: Optimal
multi-valued validated asynchronous Byzantine agreement, revisited,” in
Proceedings of the 39th ACM Symposium on Principles of Distributed
Computing. ACM, 2020, pp. 129–138.

[49] H. Zhang and S. Duan, “PACE: Fully parallelizable BFT from repropos-
able Byzantine agreement,” in Proceedings of the 29th ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2022,
pp. 3151–3164.

[50] A. Spiegelman, N. Giridharan, A. Sonnino, and L. Kokoris-Kogias,
“BullShark: DAG BFT protocols made practical,” in Proceedings of
the 29th ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2022, pp. 2705–2718.

[51] X. Dai, Z. Zhang, Z. Guo, C. Ding, J. Xiao, X. Xie, R. Hao, and
H. Jin, “Wahoo: A DAG-based BFT consensus with low latency and low
communication overhead,” IEEE Transactions on Information Forensics
and Security, vol. 19, pp. 7508–7522, 2024.

APPENDIX A
ILLUSTRATING AN EXECUTION OF ALGORITHMS

Our illustration begins with Algorithm 4, which serves as
the main entry point of Icarus. Initially, all nodes start with a
chain number of 0; consequently, all values in Γ are initialized
to 0. The chain of node p0 is designated as the first optimistic
path, with the oid set to 0 (Algorithm 4, Line 3).

Furthermore, each node pi invokes the NewChain function
from Algorithm 2 to generate its first chain (Algorithm 4,
Line 4). The NewChain function continuously generates and
broadcasts new blocks as long as no conclusion signal is
received (Algorithm 2, Lines 5-6). New block generation is ac-
complished by calling the GenBlk function from Algorithm 1.
All non-faulty nodes vote on received blocks (Algorithm 2,
Lines 14-16). Upon collecting n − f votes, the broadcaster
assembles a QC, which is then used as a parameter to generate
the subsequent block (Algorithm 2, Lines 17-18).

The system then proceeds to commit blocks using the
optimistic path. For the current optimistic path Cν

oid, blocks
are committed via a two-phase rule provided that no path
switch is triggered (Algorithm 4, Lines 6-11). Committing
a block on the optimistic path also commits and sorts its
referenced ancestor blocks, which is implemented by invoking
the GlobalSort function in Algorithm 5.

When a path switch is triggered, the broadcaster node for
the current path must initiate a new chain, again by invoking
the NewChain function from Algorithm 2. Each node then
executes the Π

⟨i,e⟩
align protocol from Algorithm 6 to align the

committed block height of the current path (Algorithm 2,
Lines 18-21). Internally, Π⟨i,e⟩

align calls the Πid
tcvv function from

Algorithm 3 to reach agreement on two consecutive integer
values. After receiving the aligned height from Π

⟨i,e⟩
align, if a

node possesses any uncommitted blocks, it commits them
in sequence, again by invoking the GlobalSort function in
Algorithm 5.

APPENDIX B
PROOF OF LEMMAS

LEMMA 2. For any two non-faulty nodes pi and pj , if
Di[k] ̸= ⊥ and Dj [k] ̸= ⊥, then Di[k] = Dj [k]

Proof. Since the optimistic path operates in a serial manner, all
optimistic paths can be sequentially numbered as P [x]. Each
directly committed block belongs to one of these optimistic
paths. Without loss of generality, we assume Di[k] and Dj [k]
are committed on paths P [xi] and P [xj] respectively, where
xi ≤ xj .

According to Lemma 1, for every path P [x] (x < xi),
nodes pi and pj have committed an identical number of blocks.
This necessitates xi = xj , thereby ensuring Di[k] and Dj [k]
are committed on the same optimistic path. For notational
simplicity, we set xi = xj = 0 and denote the first path as C.

The proof proceeds by considering the following exhaustive
cases:

• Both blocks committed via two-phase rule: By the quo-
rum mechanism, Di[k] = Dj [k].

• A single block committed via two-phase rule: Assume
Di[k] is committed via two-phase rule while Dj [k] is
committed through path finalization. Since pi commits
block C[h] at Di[k], Lemma 1 dictates that pj must
have committed blocks up to C[h] or C[h + 1] on C.
Consequently, pj necessarily commits C[h] at Dj [k],
ensuring Di[k] = Dj [k].

• Both blocks committed via path finalization: By the
agreement property of tcv-BA, both pi and pj commit
blocks up to C[h] or C[h + 1] on C. In either scenario,
pi and pj respectively commit C[h] at Di[k] and Dj [k],
guaranteeing Di[k] = Dj [k].

This completes the proof of Lemma 2.

LEMMA 3. For any two non-faulty nodes pi and pj , if pi
and pj commit the segments Qi[m] and Qj [m], respectively,
then Qi[m] = Qj [m].

15

100K 150K 200K
Throughput (tx/s)

0.5

1.0

1.5

2.0

2.5

3.0
La

te
nc

y
(s

)

λ=5
λ=10
λ=20

(a) Performance without delaying optimistic leaders

100K 150K 200K
Throughput (tx/s)

1.5

2.0

2.5

3.0

3.5

La
te

nc
y

(s
)

λ=5
λ=10
λ=20

(b) Performance when delaying optimistic leaders

Fig. 11: Performance comparison using different λ values

Proof. Assume Qi[m] and Qj [m] are generated by the direct
commits of Di[m] and Dj [m], respectively. The proof pro-
ceeds via mathematical induction on the segment index m.

Base Case (m = 0): By Algorithm 5, the committed
block sets satisfy Scomi

= Scomj
= ∅, where Scomi

and
Scomj

denote the sets of blocks committed by pi and pj ,
respectively. From Lemma 2, we derive Di[0] = Dj [0], which
immediately implies Sanci = Sancj (ancestor block sets of
Di[0] and Dj [0]). Consequently, the to-be-sorted sets satisfy
Stoci = Stocj . Given identical sorting rules, the resulting
sequences must satisfy Qi[0] = Qj [0].

Inductive Step (m⇒ m+1): Assume Lemma 3 holds for
all k ≤ m (inductive hypothesis). For k = m+ 1:

1) By the inductive hypothesis, Qi[k] = Qj [k] ∀k ≤ m.
2) During the direct commit of Di[m+ 1] and Dj [m+ 1],

Scomi and Scomj remain equivalent due to the inductive
invariant.

3) Lemma 2 ensures Di[m + 1] = Dj [m + 1], yielding
Sanci = Sancj .

4) The equality Stoci = Stocj follows directly from the
above, guaranteeing identical sorting outcomes: Qi[m+
1] = Qj [m+ 1].

Conclusion: By the principle of mathematical induction,
Lemma 3 holds for all segment indices m ≥ 0.

LEMMA 5. In Icarus, blocks can be continuously committed.

Proof. We prove the lemma by contradiction. Assume no new
blocks are committed in Icarus while the current optimistic
path is the chain C. By protocol design, an optimistic path
switch must inevitably occur under these conditions. Accord-
ing to Algorithm 4, this necessitates the existence of an
alternative chain C ′ containing at least λ (λ ≥ 3) uncommitted
blocks. Two scenarios emerge: (1) If any block is committed
before switching to C ′, it directly contradicts the assumption
of zero new commits; (2) If no blocks are committed during
the switch to C ′, C ′ will still retain λ ≥ 3 uncommitted blocks,
triggering to enforce new block committing—again violating
the initial hypothesis. This contradiction proves that Icarus can
continuously commit blocks.

APPENDIX C
ADDITIONAL EVALUATION

A. Determining an appropriate value for static λ

In this section, we demonstrate the process of selecting an
appropriate value of λ for a system of 7 nodes. Specifically,
we examine λ values of 5, 10, and 20 under both favorable and
unfavorable scenarios. The experimental results are presented
in Fig. 11.

Fig. 11a illustrates Icarus’s performance without introducing
any delays to leaders for different λ values. It can be observed
that when λ = 5, Icarus exhibits higher latency. This is due
to the fact that smaller λ values increase the likelihood of
premature or unnecessary path switches triggered by transient
network fluctuations. When λ is increased to 10, such false
triggers are significantly reduced, resulting in a substantial
drop in latency. Further increasing λ to 20 yields no additional
improvement in latency, as the probability of mis-triggered
switches is already very low.

Fig. 11b shows the performance of Icarus when optimistic
leaders are delayed by 20 seconds. When λ is set to 5,
Icarus can quickly switch to a new optimistic path, thus
achieving minimal latency. Conversely, augmenting the value
of λ directly prolongs the path switching duration, which
consequently results in larger latency. By comparing the cases
of λ = 10 and λ = 20, we can find that the latency increase
incurred by changing λ from 5 to 10 is substantially smaller
than the corresponding increase measured between λ = 10
and λ = 20.

To sum up, when the system consists of seven nodes, setting
λ = 10 yields a good empirical balance between the two
situations.

In addition, we observe that the peak throughput of Icarus
remains nearly constant across all λ settings. This is because
Icarus continuously broadcasts blocks from all nodes, and
variations in λ only affect the timing of block committing,
not the number of blocks broadcast and committed per unit
time.

16

� ��� ���� ���� ����
��!�$�� $#��#%�"�

�

	

��

#�
��
&�
�"
�
�##�

��!���
"����

���!$"
�$"�
���

Fig. 12: Performance under per-node random delays

B. Evaluation under random delays on each node
In this set of experiments, we introduce random delays in

the range of 500–1000 ms to the block-broadcasting process
of each node. We continue to use a 7-node configuration and
set λ = 10. The experimental results are presented in Fig. 12.

Comparing Fig. 4 and Fig. 12, we observe an obvious
increase in latency across all protocols. Nevertheless, Icarus
consistently achieves the lowest latency. Its baseline latency is
approximately 81.1% of Ditto’s, 83.7% of ParBFT’s, 69.6%
of sMVBA’s, 75.7% of FIN’s, and only 29.5% of Tusk’s.
The large increase in Tusk’s latency arises from the fact that
most of its blocks (i.e., non-leader blocks) require four to five
rounds of block broadcasting, leading to significant cumulative
delay. Furthermore, owing to the parallel block-broadcasting
and commit mechanisms, both Tusk and Icarus maintain high
throughput despite the injected delays.

APPENDIX D
ARTIFACT APPENDIX

This appendix outlines the evaluation methodology for our
artifacts. In Section V, we present experimental results by
deploying Icarus on Amazon Web Service (AWS) with replicas
distributed across five geographically dispersed regions: N.
Virginia (us-east-1), N. California (us-west-1), Sydney (ap-
southeast-2), Stockholm (eunorth-1), and Tokyo (ap-northeast-
1). Since configuring AWS involves a relatively complex pro-
cess, we additionally provide local experimental instructions
that can be executed on a single machine, thereby enabling
easy validation of the code’s functionality.

A. Description & Requirements
1) How to access: Source codes of Icarus are available

on Github6, with a permanent archival record at Zenodo7.
Detailed configuration and step-by-step execution instructions
are available in the README.md file in the repository.

2) Hardware dependencies: No special hardware require-
ments are required.

6https://github.com/DGJGzy/Icarus
7https://zenodo.org/records/17797381

3) Software dependencies: Ubuntu 22.04 LTS is recom-
mended as the operating system. Other Linux distributions can
technically support deployment, as long as the operator can
complete the configuration of the environment dependencies.
The runtime environment mandates the installation of Python
3.9 or later, Rust (nightly version), Clang, and tmux terminal
multiplexer for session management.

4) Benchmarks: We select Ditto, ParBFT, sMVBA, and
Tusk as our benchmarks. Among these, Ditto8 and ParBFT9

represent serial and parallel dual-path protocols, respectively,
while sMVBA10 serves as a representative purely asyn-
chronous protocol, and Tusk 11 denotes a Directed Acyclic
Graph (DAG)-based protocol.

B. Artifact Installation & Configuration

Our repository can be downloaded using the git clone
https://github.com/DGJGzy/Icarus command. We
provide two ways to run our code: one is for local testing, and
the other is for running on AWS.

1) Local testing: We offer two options for installing depen-
dencies. The first is a ‘dockerfile’ that automatically generates
a Docker image with all dependencies installed. The second is
a manual installation method. To facilitate manual installation,
we also provide a build.sh script. We recommend using
the Docker approach for installation and execution. Detailed
installation and configuration instructions will be provided in
the [Preparation] part of Section D-D1.

2) Testing on AWS: After setting up AWS credentials and
SSH keys, you can configure the environment by running
commands such as fab create and fab install. For
specific details, please refer to the [Preparation] part of
Section D-D2.

C. Major Claims

• (C1): Icarus is a single-path asynchronous BFT protocol
that exclusively leverages optimistic paths without relying
on pessimistic paths.

• (C2): Under both favorable and unfavorable situations,
Icarus consistently exhibits superior performance com-
pared to other protocols, as shown in Sections V.B and
V.C, as well as Figures 4 and 5. Furthermore, Icarus
also demonstrates significantly better scalability, which
is supported by the experimental results in Section V.F
and Figure 8.

• (C3): In a situation where a single node (pk) broadcasts
blocks rapidly, Icarus can promptly switches the opti-
mistic path to the chain led by pk, thereby accelerating
block committing and substantially surpassing the perfor-
mance of baseline protocols, as demonstrated in Section
V.E and Figure 7.

8https://github.com/danielxiangzl/Ditto
9https://github.com/ac-dcz/parbft-parbft1-rust
10https://github.com/ac-dcz/sDumbo
11https://github.com/facebookresearch/narwhal

17

D. Evaluation

In this section, we present the workflows for running Icarus
locally and on AWS.

1) Local experiment process: Local deployment of Icarus
is relatively simple to implement.

[Preparation] There are two options to set up the testing
environment.

Option 1: With Docker (Recommended). After chang-
ing to the project directory, execute the command below to
build the Docker image, which has installed all dependencies
required to run the experiment.

docker build -t icarus .

Then, execute the following command to launch a Docker
container instance and enter its shell.

docker run -it --name icarus-dev icarus
/bin/bash

Option 2: Without Docker. You may choose to manually
install the required dependencies, including:

• Rust
• Clang (dependency for RocksDB compilation)
• tmux (for running processes in the background)
• Python 3.9+

For convenience, we include a build.sh script that auto-
mates the installation of all required dependencies.

[Execution] After successfully launching the Docker con-
tainer or completing the manual environment setup, you can
now perform the following operations:

git clone https://github.com/DGJGzy/
Icarus
cd Icarus && cargo build
cd benchmark
pip install -r requirements.txt

These commands serve to clone the repository and install
the required Python libraries. Note that the initial cargo
build execution may take considerable time, as our im-
plementation utilizes RocksDB—which requires compilation
during this step.

To run the system, execute the fab local command
within the Icarus/benchmark directory. The benchmark param-
eters can be customized in fabfile.py. Key configuration
categories include:

[Benchmark parameters (bench params)]
• nodes: number of replicas to run (default: 4)
• duration: test duration in seconds (default: 30)
[Node parameters (node params)]
• leader_delay: whether to launch delay attacks on the

leaders (default: False)
• leader_delay_duration: delay duration of the at-

tacks on the leaders (default: 20)

[Results] When the fab local command completes, it
displays an execution summary in the console and automati-
cally saves detailed logs to the logs directory. You can use
fab logs to parse these logs again, generating formatted
results that match the console output and are saved to the
results directory.

Using the default parameters described above, the Icarus
system will run locally with four replicas deployed on a
single machine. These replicas benefit from an optimized
network environment, resulting in significantly reduced latency
measurements. This differs from the results reported in Section
V of our paper, which were obtained under Wide Area Network
(WAN) conditions.

2) AWS-Based experiment process: The key difference
between AWS and local deployments of Icarus is in the
preparation phase.

[Preparation] To deploy Icarus on AWS, the following
configuration steps must first be completed to set up the
experimental environment.

• Configure AWS credentials. Enable programmatic ac-
cess to your AWS account from your local machine.
These credentials will authorize your system to program-
matically create, modify, and delete EC2 instances.

• Add SSH public key. Manually add your SSH public
key to each AWS region you intend to use.

• Testbed Configuration The file settings.json lo-
cated in Icarus/benchmark contains all the config-
uration parameters of the testbed to deploy.

• Testbed configuration. Modify the settings.json
file located in Icarus/benchmark to configure your testbed
parameters.

• Testbed deployment. Execute fab create to provi-
sion new AWS instances. The creation logic is defined in
fabfile.py under the ‘create’ task.

• Dependency installation. Run fab install to: (1)
clone the repository on remote instances, and (2) install
Rust language prerequisites.

For routine maintenance:
• Use fab stop to gracefully shut down the testbed.
• Use fab start to restart the testbed without recreating

instances.
[Execution] After setting up the testbed, execute the proto-

col on AWS instances by running fab remote.
[Results] The fab remote command automatically col-

lects logs from all replicas, enabling the result aggregation and
log analysis similar to the local experiment workflow.

E. Customization

In addition to the parameters mentioned in Section D
(nodes, duration, ddoS, random_ddos), you can also
modify other parameters in fabfile.py, including:

• tx_size: transaction size in bytes (default: 256)
• rate: transactions input per second (default: 10,000)
• faults: Byzantine replicas to simulate (default: 0)
• runs: number of experimental runs (default: 1)

18

