
Breaking the Generative Steganography
Trilemma: ANStega for Optimal Capacity,

Efficiency, and Security
Yaofei Wang∗ Weilong Pang∗ Kejiang Chen† Jinyang Ding†

Donghui Hu∗ Weiming Zhang† Nenghai Yu†
∗Hefei University of Technology †University of Science and Technology of China

Email: ∗{wyf@,pangwl@mail.,hudh@}hfut.edu.cn †{chenkj@,source@mail.,zhangwm@,ynh@}ustc.edu.cn

Abstract—Generative steganography shows immense promise
for covert communication, yet existing methods are often con-
strained by a trilemma of capacity, efficiency, and security.
Methods based on Huffman Coding (HC) suffer from poor
efficiency and security, while those based on Arithmetic Coding
(AC), despite achieving optimal capacity, also pose security
risks. Although recent provably secure methods have addressed
the security issue, they often do so at the cost of elevated
embedding complexity or diminished capacity—failing to match
the high capacity exhibited by AC-based methods. To address
this trilemma, we adapt Asymmetric Numeral Systems (ANS)
for steganography. Our core insight is to repurpose the ANS
state machine, using its decoding function for embedding and its
encoding function for extraction. To translate this concept into a
practical system, we introduce several key innovations. First, we
incorporate a streaming architecture with state renormalization
to enable the stable embedding of arbitrarily long messages.
Second, we employ direct floating-point arithmetic, avoiding
costly probability-to-frequency conversions to reduce complexity
and precision loss. More critically, we introduce an innova-
tive cryptographic mask mechanism that ensures the sampling
process is driven by a cryptographically secure pseudo-random
number generator, thereby achieving provable security. Finally,
by optimizing core computations into highly efficient bitwise
shift operations, ANStega achieves exceptional embedding and
extraction speeds. Experimental results validate that ANStega
simultaneously achieves optimal embedding capacity, optimal ef-
ficiency (embedding complexity with O(1)) and optimal security,
successfully resolving the long-standing trilemma in generative
steganography.

I. INTRODUCTION

In today’s environment of increasing online surveillance
and widespread traffic analysis [1], [2], the ability to share
information without revealing that a conversation is taking
place has become as important as protecting the content of
the messages themselves. While encryption protects content,
it exposes metadata [3]. This vulnerability can be exploited

Corresponding authors: Donghui Hu and Weiming Zhang

Fig. 1: Comparison of entropy-coding schemes for gen-
erative steganography. Top: Huffman coding maps bits to
tokens via dynamic trees, causing distributional deviation.
Middle: Arithmetic Coding (AC) operates on cumulative in-
tervals but suffers from precision limitations and rescaling
overhead. Bottom: ANStega (ours) utilizes constant-time state
updates based on Asymmetric Numeral Systems, achieving
near-entropy capacity with distributional indistinguishability.

by adversaries to infer relationships between individuals or
to enforce censorship. Steganography [4] addresses this by
embedding secret data within innocuous media. This method
ensures that the act of sending messages remains undetectable
and appears indistinguishable from normal data exchange.
Furthermore, these covert channels facilitate digital “dead
drop” workflows [5], allowing a hidden message to be posted
in a public forum and discreetly retrieved by the intended
recipient without any traceable interaction. This approach
extends privacy protections beyond what encryption alone can
offer.

Recently, the emergence of powerful generative models,

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240605
www.ndss-symposium.org

TABLE I: The Capacity-Efficiency-Security trilemma in generative steganography. • denotes that the method achieves the
optimal goal for the corresponding property, whereas ◦ indicates a sub-optimal solution. Our work, ANStega, is the first to
resolve this trilemma.

Method Optimal Capacity Optimal Efficiency Optimal Security Modality
(Near Entropy Limit) (O(1) Complexity) (DKL ≤ ϵ)

Huffman-based [6], [7] •* ◦ ◦ Text †

AC-based [8]–[11] •* ◦ ◦ Text / Audio †

ADG [12] ◦ ◦ ◦ Text †

Meteor [13] ◦ ◦ • Text †

Discop [14] ◦ ◦ • Text / Image / Audio †

iMEC [15] ◦ ◦ • Text / Image / Audio †

SA-ANS [16] ◦ ◦ ◦ Text †

FDPSS [17] ◦ ◦ • Text †

Shimmer [18] ◦ • • Text †

SparSamp [19] ◦ • • Text / Image / Audio †

Image-based Methods:
Pulsar [20] ◦ ◦ • Image
StegaDDPM [21] ◦ • • Image

ANStega (Ours) • • • Text / Image †

*These methods achieve near-optimal capacity by altering the model’s original probability distribution.
†Note that the coding algorithms are theoretically modality-agnostic; the listed modalities reflect the specific implementations in the cited
works.

particularly Large Language Models (LLMs), has catalyzed
a significant shift in steganographic methodologies. Unlike
traditional approaches that modify existing covers and risk
detectable statistical anomalies [22], [23], generative steganog-
raphy leverages powerful generative models to synthesize
high-entropy, natural-looking media directly. Consequently,
generative steganography has flourished across various modal-
ities, including text [11], [12], images [9], and audio [10].
Researchers leverage these models’ rich, high-dimensional
probability distributions to construct covert channels with high
capacity and minimal statistical detectability

Historically, generative steganography is encoding-driven,
adapting long-standing entropy coding techniques to stegano-
graphic use. Anderson and Petitcolas [24] first highlighted
a critical insight—the duality between steganography and
inverse compression. Early generative approaches adapted
classical entropy coders, predominantly Huffman Coding (HC)
and Arithmetic Coding (AC), to navigate generative model
distributions. HC-based methods [6], [7], despite their concep-
tual simplicity, suffer from frequent tree reconstruction over-
head and unavoidable distribution modifications, resulting in
suboptimal efficiency and compromised security. Conversely,
AC-based methods [9]–[11] achieve near-optimal capacity
but incur significant computational overhead due to probabil-
ity scaling, and also introduce precision-induced distortions,
weakening security. As illustrated in Fig. 1, entropy-coding-
based steganography navigates the model distribution to “de-
compress” a secret bitstream into tokens, thereby aligning
embedding with generative sampling.

Recognizing these limitations, subsequent research empha-
sized provable security, as seen in schemes like Meteor [13],
Discop [14], and iMEC [15]. Although these schemes guaran-
tee robust security, they often impose substantial penalties on

embedding capacity and computational performance, limiting
their practicality. Even recent methods such as SparSamp [19],
which achieve optimal security and efficiency, exhibit only
a slight shortfall in embedding capacity—despite effectively
reaching the entropy limit—due to constraints inherent to
sparse sampling. Beyond the modality-agnostic coding algo-
rithms, generative steganography has also been explored in
image generation using diffusion models, yet similar trade-offs
persist. For example, StegaDDPM [21] achieves high opera-
tional efficiency by integrating embedding into the diffusion
sampling steps, but its capacity is low. On the other hand,
Pulsar [20] prioritizes cryptographic security and extraction,
however, this comes at the cost of computational overhead
and reduced effective embedding rates.

Despite this promising direction, generative steganogra-
phy remains fundamentally constrained by the Capacity-
Efficiency-Security Trilemma, illustrated in Table I. An op-
timal steganographic method should simultaneously achieve
three goals: (1) Optimal Capacity, approaching the Shannon
entropy limit with a vanishing gap (near-entropy embed-
ding); (2) Optimal Efficiency, characterized by constant-
time complexity O(1); and (3) Optimal Security, ensuring
statistical indistinguishability between the stego-content and
the cover-content. However, existing methods have invariably
compromised at least one of these crucial attributes.

This fragmented landscape highlights the need for a funda-
mentally novel coding paradigm to comprehensively resolve
the trilemma. In this context, we identify Asymmetric Numeral
Systems (ANS), introduced by Duda [25], as an overlooked
yet promising entropy coder. ANS uniquely combines the
computational simplicity reminiscent of Huffman Coding with
the high compression efficiency characteristic of Arithmetic
Coding. Its robust industrial adoption by major technology

2

firms, including Meta [26], Apple [27], Google [28], and Mi-
crosoft [29], underscores its practical strengths. While recent
studies have begun to explore ANS for steganography [16],
fully harnessing its potential to simultaneously achieve opti-
mal capacity, constant-time efficiency, and provable security
remains an open challenge.

We present ANStega, a strictly provably secure stegano-
graphic encoder built on the ANS framework. Unlike concur-
rent approaches that focus primarily on sampling strategies
[16], we do not merely transplant ANS: a naı̈ve port fails
to provide long-message support, constant-time embedding,
or rigorous distributional security. We therefore introduce a
set of steganography-specific modifications: streaming rANS
with bounded state to embed arbitrarily long messages without
numerical blow-up; direct probability updates without global
rescaling (no convert/renormalize over the full vocabulary),
preserving the model distribution while maintaining O(1) per-
step work; a per-step MASK (CSPRNG-based) that enforces
sampling randomness and independence, yielding distribu-
tional indistinguishability; and a reimplementation of core
arithmetic in bitwise primitives, further improving embed-
ding throughput. Together, these changes make ANS fit for
steganography: ANStega attains near-entropy capacity with
constant-time embedding and provable security, while remain-
ing practical for high-throughput LLM generation.

ANStega uniquely solves the generative steganography
trilemma, achieving simultaneous optimal performance across
embedding capacity, security, and efficiency. We experimen-
tally validate that ANStega approaches the theoretical entropy
limit, matches AC-based methods in capacity, and significantly
exceeds them in computational efficiency and statistical secu-
rity. Our theoretical proofs and extensive empirical evalua-
tions confirm that ANStega preserves model distributions and
achieves O(1) complexity by eliminating the scaling overhead
typical in AC-based schemes.

Our main contributions are as follows:

• We propose ANStega, a generative steganographic
scheme based on Asymmetric Numeral Systems. Rather
than directly adopting ANS, we systematically redesign
it for steganographic encoding by reversing its encoding-
decoding roles, aligning seamlessly with LLM-based to-
ken generation.

• We introduce a tailored streaming rANS approach, al-
lowing the stable embedding of arbitrarily long messages
by maintaining bounded state intervals. This strategy
effectively eliminates numerical overflow issues inherent
in traditional ANS implementations.

• To enhance efficiency, we devise a direct floating-point
update strategy that avoids global probability rescal-
ing, and further accelerate embedding through bitwise
arithmetic transformations, resulting in a constant-time
embedding complexity (O(1)).

• We ensure provable steganographic security by integrat-
ing a cryptographic masking mechanism (MASK), which
guarantees uniform randomness during token sampling.

Fig. 2: A concrete example of LLM-based Steganography.

We prove that ANStega preserves the original model
distribution, achieving optimal security.

• Extensive empirical evaluations validate that ANStega
achieves optimal embedding performance across capacity,
efficiency, and security metrics, successfully resolving the
long-standing generative steganography trilemma.

II. BACKGROUND AND RELATED WORK

A. Steganographic Model

Steganography enables two communicating parties to ex-
change secret messages over a public channel without an
adversary detecting the existence of communication. A classic
formalization of this scenario is Simmons’ “Prisoners’ Prob-
lem” [30], in which two prisoners, Alice and Bob, wish to
plan an escape by exchanging seemingly innocuous messages.
A prison warden inspects all messages carefully, rejecting any
communication that appears suspicious. This scenario captures
two fundamental requirements of steganography:

1) Correctness: Bob must reliably recover the hidden mes-
sage M from the received stego medium S without
errors.

2) Undetectability: The warden’s ability to distinguish the
stego medium S from a legitimate cover medium C
should be no better than random guessing.

Steganographic models generally fall into two principal
paradigms: modification-based and generation-based.

In modification-based steganography, given a cover medium
C ∈ C, a secret message M ∈ M, and a secret key K,
the embedding process produces a stego medium S ∈ S by
minimally altering the cover medium:

S = E(C,M,K), (1)

where K is shared secretly between Alice and Bob. The
embedding process ensures S is visually or statistically in-
distinguishable from C to unauthorized observers.

In contrast, generation-based steganography directly syn-
thesizes a stego medium from the secret message without
relying on a pre-existing cover. Formally, this generation
process is represented as:

S = G(M,K), (2)

where G denotes a generative function parameterized by the
secret key K. The principal advantage of generative steganog-
raphy lies in eliminating explicit modification artifacts, poten-
tially complicating detection.

3

To facilitate a better understanding of the generation-based
steganographic model, we introduce a concrete running exam-
ple based on LLM steganography, as illustrated in Figure 2.

Consider a scenario where a sender wishes to conceal a
secret message, m = ’10’, within a generated text stream.
The process operates as follows:

1) Context and Distribution: The LLM receives a prompt
(e.g., “I want to eat”) and computes a probability distri-
bution Pi for the next token. In our example, the tokens
“later” (11), “now” (10), and “here” (0) are assigned
probabilities of 0.25, 0.25, and 0.5, respectively.

2) Embedding (Encoding): Rather than sampling the next
token purely at random—which is standard in normal
generation—the sender utilizes a steganographic algo-
rithm to map the message bits m to a specific token.
Here, the message ’10’ maps directly to the token “now”.

3) Output: The token “now” is selected and appended
to the text, resulting in “I want to eat now”. To an
outside observer, this selection appears to be a natural
continuation of the sentence, statistically consistent with
the distribution Pi.

B. Generative Steganography

Early theoretical work on steganography established prov-
ably secure techniques for “cover-free” channels, yet these
methods remained largely impractical due to the inability
to sample realistic media distributions [31]. The advent of
high-quality generative models—LLMs for text, diffusion or
GAN/flow models for images and audio—has fundamentally
changed the landscape by enabling realistic, high-entropy
content synthesis that supports covert message embedding with
minimal detectability.

In text, early LSTM-based schemes such as Fang et al. [32]
encoded bits by selecting tokens from fixed vocabulary bins,
but suffered from detectability issues. RNN-Stega [33] im-
proved capacity by using Huffman coding over conditional
token probabilities, though the required tree reconstruction
and distribution distortion limited security and efficiency. The
introduction of Arithmetic Coding (AC) with LLMs (e.g.
Ziegler et al. [11]) allowed near-entropy embedding, but
AC’s rescaling operations introduce precision loss and runtime
overhead.

Subsequent work aimed to establish provably secure
schemes. Meteor [34] mitigated randomness-reuse risks in
AC-based embedding via recoverable-range sampling, improv-
ing cryptographic security at the cost of added complexity.
Adaptive Dynamic Grouping (ADG) [35] dynamically par-
titions the token space to align with the LLM distribution,
enhancing imperceptibility. Distribution-copy methods such as
Discop [14] and minimum-entropy coupling like iMEC [15]
further preserve statistical indistinguishability by constructing
exact distributional copies or couplings—but both incur sig-
nificant runtime cost. More recently, SparSamp [19] achieved
O(1) embedding and perfect security in practice, but still
exhibits a minor capacity gap due to its sparse-sampling
design. Very recently, concurrent work SA-ANS [16] has

begun to explore ANS for linguistic steganography. However,
SA-ANS relies on direct state-dependent sampling without
cryptographic masking, leaving statistical artifacts detectable
by analysis. Furthermore, it lacks optimal complexity and
employs fixed-rate consumption that limits capacity on low-
entropy distributions.

Generative steganography has also developed beyond text:
PixelCNN-based approaches for images [9], audio steganog-
raphy via TTS models [10], and diffusion-based frame-
works [20], [21] have all explored embedding messages during
generation. Collectively, these advances demonstrate modality-
wide applicability of generative steganography in AIGC,
covering encoding-based designs and alternative mechanisms
alike.

Despite this rich body of work, no existing approach si-
multaneously achieves (i) near-entropy embedding rate, (ii)
constant-time efficiency (O(1)), and (iii) provable distribu-
tional indistinguishability. In particular, while ANS—a coding
paradigm with Huffman-like efficiency and AC-level com-
pression effectiveness—has attracted recent attention [16],
its potential to fundamentally resolve this trilemma remains
unrealized. Our work fills that gap by systematically adapting
ANS to the steganographic setting, enabling efficient, provably
secure, and high-capacity generative steganography.

C. Asymmetric Numeral Systems

Asymmetric Numeral Systems (ANS) is a family of entropy
coders introduced by Duda that combines AC–like compres-
sion effectiveness with Huffman-like efficiency [36]. Two
widely used ANS variants are table-based ANS (tANS) and
range-based ANS (rANS). tANS precomputes state transitions
in lookup tables so that runtime encoding/decoding primarily
performs bit-shifts, additions, and table reads; rANS maintains
a single integer state and updates it with integer multiply–add
and div/mod operations analogous to range (arithmetic) cod-
ing. ANS has seen broad industrial adoption: Zstandard [26],
[37] and Apple’s LZFSE [27] employ Finite State Entropy,
and the JPEG XL standard [38] supports ANS as one of
its entropy coders. For steganographic use with generative
models, we favor rANS because the target token distribution
changes at every step, making tANS lookup tables impractical
to precompute or maintain.

The core idea of ANS is to represent a sequence of
symbols as a single natural number, effectively capturing
the entire message’s information content. This is achieved
by maintaining a state variable x, which is updated as each
symbol is processed. Let fs denote the frequency of symbol s,
Cs =

∑
a<s fa its cumulative frequency, and M =

∑
a∈Σ fa

the total frequency. Each symbol s is encoded via:

x←
⌊
x

fs

⌋
·M + Cs + (x mod fs), (3)

after all symbols have been processed, the final state x and any
residual bits are written out as the compressed output. During
decoding the process is reversed, successively recovering

4

symbols while restoring earlier states—thereby reproducing
the original message exactly.

The decoding in rANS proceeds by inverting the encoding
transformation to recover the original message from the final
state x. At each step, the current symbol s is identified by the
residue:

s← symbol (x mod M) , (4)

the state is then updated as

x← fs ·
⌊ x

M

⌋
+ (x mod M)− Cs, (5)

this process iterates until all symbols are decoded in order.

III. MOTIVATION

The relationship between entropy coding and stegano-
graphic encoding provides a useful duality for modern gen-
erative steganography. In classical information theory, entropy
coders such as Huffman Coding and Arithmetic Coding com-
press data by removing statistical redundancy, transforming
a symbol sequence into a bitstream that is close to uni-
form [39]. Anderson and Petitcolas [24] noted a consequence
for steganography: if one has a (near-)perfect generative model
of the cover distribution and an invertible coder, then the
inverse mapping can “decompress” a random bitstream (e.g.,
encrypted data) into plausible samples from that distribution.
Informally, steganographic embedding can be viewed as the
inverse of entropy coding: instead of compressing symbols
into bits, we map a secret bitstream into symbols that follow
the model’s target distribution.

This perspective naturally motivated adapting classical
coders for steganography. However, direct use of HC/AC
exposes a persistent capacity–efficiency–security tension:

• AC-based methods can approach the entropy limit and
thus offer high embedding capacity [8]–[11]. In practice,
each token step requires range updates and renormal-
ization under finite precision, plus converting model
probabilities to scaled integers. Although amortized time
per step is constant, these operations introduce nontrivial
overhead and sensitivity to precision/rounding, which
complicates accurate sampling of low-probability tokens
and can affect security if randomness management is not
careful.

• HC-based methods, while fast in static compression, lose
that advantage here: the model distribution changes at
every step, implying frequent tree rebuilds or reweighting.
Moreover, HC requires dyadic probabilities; quantization
to dyadic weights induces a systematic mismatch to
the target distribution, yielding suboptimal capacity and
measurable KL divergence [6], [7].

In this paper, we hypothesize that the unique properties of
ANS provide the ideal foundation for resolving the stegano-
graphic trilemma. Its near-optimal compression ratio suggests
the potential to achieve maximum capacity; its low-complexity
points toward O(1) efficiency; and its precise, scale-free
arithmetic offers a way to avoid the distributional distortions
that plague other methods. Therefore, this paper is dedicated

to investigating this hypothesis. We present the adaptation of
ANS for generative steganography, describing the necessary
innovations to harness its theoretical strengths.

IV. THREAT MODEL

We analyze ANStega against a passive adversary (the
warden, Eve) whose goal is steganographic detection. Eve
observes the public channel between the sender (Alice) and the
receiver (Bob) and seeks to distinguish stego text S (carries
a hidden message) from cover text C (does not). This is
a binary hypothesis test; Eve’s success is measured by any
distinguishing advantage over random guessing.

a) Kerckhoffs-aligned capabilities: We adopt a strong,
standard model in which security relies only on secret keys,
not on algorithm secrecy.

• System knowledge. Eve knows the generative model G
(architecture, parameters, and sampling hyperparameters
such as temperature) and the complete ANStega algo-
rithm and its implementation details.

• Channel access. Eve intercepts the full token sequence
and the prompt/context Φ for every message sent over
the public channel. She may perform arbitrary statistical
tests or train detectors using in-distribution corpora, and
she may query G (black-box sampling) to draw matched
reference samples.

• No access to secrets. Eve does not know the shared key
kseed used to derive the per-step MASK via a CSPRNG.
Internal ANS states and MASK values are never revealed
on the public channel.
b) Passive Adversary: We focus on a passive adversary

model, which is the standard setting for linguistic steganog-
raphy aiming for high capacity [6]–[19]. In this model, Eve
monitors the public channel to detect anomalies but does
not modify traffic. We defer the discussion of active adver-
saries—who may inject or alter tokens to disrupt synchroniza-
tion—to Section VIII, noting that resistance to such attacks
typically requires sacrificing the near-entropy capacity that
ANStega aims to achieve.

V. PROPOSED METHOD

A. Overview of Steganography System Based on ANS

The foundational principle of our system lies in mapping
the ANS framework to the generative steganography task.
Instead of merely using ANS as a black-box compressor, we
repurpose its core state machine for message embedding and
extraction. The key correspondences are established as follows
(and illustrated in Figure 3):

• ANS Symbol Sequence ↔ StegoText S: The sequence
of symbols produced by the state machine constitutes the
final steganographic text.

• ANS Alphabet ↔ Model Vocabulary V: The set of all
possible symbols corresponds to the vocabulary of the
generative model G.

• ANS Frequency Table ↔ Model Probability Distribu-
tion P (s | ·): The symbol frequencies are determined

5

Fig. 3: Mapping the core components of ANS to the generative
steganography task.

at each step by the next-token probability distribution
predicted by the generative model.

• ANS Bitstream ↔ Secret Message m: The secret
message provides the bits that drive the state machine’s
evolution.

The central innovation of our approach lies in inverting
the conventional roles of the ANS state transition functions,
C(s, x) (encode) and D(x) (decode). This inverse design is
intuitive for generative tasks:

• Standard ANS decoding takes a state xt+1 and produces
a symbol st. This is precisely the functionality required
for generative steganography, where we need to generate
a token (symbol) based on the current state, which is
derived from the secret message.

• Conversely, standard ANS encoding consumes a se-
quence of symbols to produce a final state. This mirrors
our message extraction process, which consumes the
sequence of received tokens to reconstruct the state and
thereby reveal the original secret message.

Therefore, we formally define our embedding function
EncodeG as the ANS decoding function D, and our extraction
function DecodeG as the ANS encoding function C:

Embedding : (xt, st) = D(xt+1)

Extraction : xt+1 = C(st, xt)
(6)

A critical consequence of this “decode-first, encode-later”
architecture is the need to synchronize the extractor’s initial
state with the embedder’s final state. To correctly reconstruct
the message, the extractor must begin its computation from
the exact state value, xfinal, where the embedder finished.

B. Construction of the ANStega System

The previous section established the theoretical framework
for using an ANS state machine for generative steganography.
However, a direct implementation faces a significant practical
challenge: the state value x can grow indefinitely when pro-
cessing a long message, leading to numerical overflow. This
section details how we engineer ANStega, an efficient system

that overcomes this limitation through a streaming architecture
and targeted optimizations.

1) Addressing State Overflow with Streaming rANS: To
solve the problem of unbounded state growth, we adapt our
system to use Streaming rANS. This approach constrains the
state value x to a fixed operational range [L,H], ensuring
numerical stability. Whenever an operation causes x to fall
outside this range, a renormalization step is performed by
streaming bits in or out. We adopt the standard configuration
where L = α ·M and H = 2L − 1, for a hyperparameter α
and M = 2precision.

This is accomplished by integrating two core operations,
Expand and Shrink, into our steganographic functions:

• Expand (during Embedding): During the embedding
process (EncodeG), a state update can cause x to become
too small (i.e., x < L). To renormalize it, the Expand
operation repeatedly shifts in bits from the secret message
m into the low-order bits of the state until x is back
within the [L,H] range. This is the primary mechanism
by which the secret message is consumed.

• Shrink (during Extraction): In the extraction process
(DecodeG), to ensure that the state variable x consis-
tently remains within the predefined valid interval I =
[L,H] after each update, we introduce a preprocessing
operation named Shrink. This operation is performed
before each state update with ExtractStep (Equation 3).
Its purpose is to pre-adjust x to guarantee that the new
state value after the update will fall within I . A direct
implementation would be to use a loop that speculatively
calls ExtractStep to check if the next state is valid, but
this is inefficient due to the repeated, costly function calls.
As we prove in Appendix A-A, this complex check is
equivalent to a much more efficient condition that only
involves the current state x: while (x ≥ 2αfs). Therefore,
the optimized Shrink loop simply uses this fast condition.
In each iteration, it outputs the least significant bit (LSB)
of x and then performs a right-shift, continuing until x
is small enough.

While Streaming rANS ensures stability, we introduce two
further optimizations to maximize the performance and preci-
sion of ANStega.

2) Avoiding Rescale for Higher Fidelity: Traditionally,
using generative models with entropy coders requires con-
verting the model’s floating-point probabilities into integer
frequencies for a range [0,M]. This rescaling process is
computationally expensive and, more importantly, introduces
quantization errors that distort the original probability distri-
bution. To eliminate this, we perform all arithmetic directly
in the floating-point domain. This is achieved by normalizing
the state value on the fly (i.e., using x (mod M)

M) and adapting
the state update function 5 accordingly:

f scaled
s ← ⌈Ps ·M⌉, Cscaled

s ← ⌈Cs ·M⌉

x← f scaled
s ·

⌊ x

M

⌋
+ (x mod M)− Cscaled

s

(7)

6

Fig. 4: An example of ANStega encoding process.

This approach preserves the model’s distribution while also
reducing computational overhead.

3) Securing Randomness with a Cryptographic Mask:
Although the Avoiding Rescale optimisation preserves the
language-model distribution exactly, the residue r =
(x mod M)/M is uniform only if the least-significant bits
of the ANS state x are themselves unbiased. Increasing the
normalisation factor α mitigates—but cannot eliminate—bias,
and it provides no formal guarantee.

To obtain unconditional uniformity we transform ANStega
into a symmetric-key scheme that injects cryptographic ran-
domness at every generation step:

1) Shared seed. Sender and receiver agree on a secret
key kseed and seed an identical cryptographically secure
pseudo-random number generator (CSPRNG).

2) Mask Generation: At each step t, the CSPRNG gener-
ates a precision-bit pseudo-random value, which serves
as a cryptographic mask, Rt.

3) State Scrambling: The sampling variable r is then
computed by first applying this mask to the low-order
bits of the state via a bitwise XOR operation:

r ← (x mod M)⊕Rt

M
(8)

where ⊕ denotes the bitwise XOR operation.
Because Rt is computationally indistinguishable from uni-

form, the resulting r is provably uniform regardless of any
latent structure in x or the choice of α. Steganographic security

therefore reduces to the secrecy of kseed and the strength of the
underlying CSPRNG, elevating ANStega’s indistinguishability
guarantee from heuristic to cryptographic.

4) Computational Simplification with Bitwise Operations:
The rANS state update formulas rely heavily on integer
division and modulo operations. These can be computationally
intensive. By setting our range parameter M to be a power of
two (i.e., M = 2precision), all division and modulo operations
with respect to M can be replaced with highly efficient bitwise
shift and AND operations. This optimization dramatically re-
duces the computational load, making ANStega exceptionally
fast and well-suited for deployment on resource-constrained
devices.

5) Algorithmic Implementation: The mechanisms de-
scribed above are implemented as a set of core algorithms.
The Expand and Shrink algorithms handle the state renormal-
ization for the streaming protocol. As shown in Algorithm 1,
Expand normalizes a state x < L by consuming bits from
the message queue m and appends them to the state’s least
significant bits. Algorithm 2 preemptively adjusts the state
x to ensure that the subsequent state, after performing one
extraction step, remains within the interval I .

The core inverse operations are realized in Algorithm 3
and Algorithm 4. Figure 4 provides a detailed, step-by-step
walkthrough of this embedding process, illustrating the state
transitions and token generation. The Sample function, de-
tailed in Algorithm 3, performs the embedding step: it uses
the state x to generate a uniform random value r, samples a

7

token s according to the model’s distribution P , and computes
the new, smaller state using the rANS decoding formula. The
EncodeStep function performs the inverse extraction step: it
takes the received token s and current state x to compute the
new, larger state using the rANS encoding formula, ensuring
perfect reversibility.

Finally, Algorithms 5 and 6 orchestrate the entire process.
The main embedding loop, EncodeG , iteratively calls Sample
to generate a token and Expand to renormalize the state.
The main extraction loop, DecodeG , processes tokens in
reverse, calling EncodeStep to update the state and Shrink
to renormalize and extract the hidden message bits.

Algorithm 1: Expand(x,m): Expand state x by con-
suming message bits

Input: State x, Message Queue m
Output: Expanded State x
while x < L do

b← m.pop front() // Get next bit from
message
x← (x≪ 1) | b // Append bit to LSB,
increasing state value

end
return x

Algorithm 2: Shrink(x, s, P): Shrink state x and
extract message bits

Input: State x, Symbol s, Probability Distribution P
Output: Shrunk State x, Extracted Bits bits
Initialization: bits← ∅
f scaled
s ← ⌈Ps ·M⌉
xmax ← 2 · t · f scaled

s

while x ≥ xmax do
b← x mod 2
bits.prepend(b) // Extract LSB and
prepend to bits list
x← x≫ 1 // Shrink state

end
return x, bits

VI. SECURITY ANALYSIS

A. Security Definition

Unlike information-theoretic steganography which assumes
perfect randomness [15], we analyze ANStega under the stan-
dard cryptographic model of computational indistinguishabil-
ity. The security of our system relies on the inability of a
polynomial-time adversary (Eve) to distinguish the distribution
of the stego-text PS from the cover-text distribution PG (the
language model).

Let G(Φ, s<t) denote the true next-token distribution of
the language model. Previous methods, such as those based
on HC or AC, inherently modify this distribution to fit
dyadic intervals or integer frequencies, resulting in a non-zero

Algorithm 3: Sample(x, P): Sample token and up-
date state (Embedding Step)
Input: State x, Probability Distribution P
Output: New State x, Sampled Token s
Initialization: C ← Cumulative(P)
r ← (x mod M)/M
s← InverseTransformSample(C, r) // Find
token s where Cs−1 ≤ r < Cs

// This is the rANS decoding formula
adapted for direct float
probabilities

x← ⌊x/M⌋ × ⌈Ps ·M⌉+ (x (mod M))− ⌈Cs ·M⌉
return x, s

Algorithm 4: ExtractStep(x, P, s): Update state with
token (ANS Encoding function)
Input: State x, Distribution P , Token s
Output: New State x
Initialization: C ← Cumulative(P)
f scaled
s ← ⌈Ps ·M⌉
Cscaled

s ← ⌈Cs ·M⌉
x←

⌊
x/f scaled

s

⌋
·M + Cscaled

s +
(
x mod f scaled

s

)
return x

Algorithm 5: EncodeG : Main Loop of the ANStega
Embedding
Input: Message m, Context Φ, Generative Model G,

Seed kseed
Output: Stegotext S, Final State x
Initialization:
M ← 2precision, L←M × α, H ← 2L− 1, S ← ∅
x← bits2int(m[: ⌈log2(H)⌉]) // Initialize
state with first bits of m

CSPRNG.Setup(kseed)
while generation is not finished do

mask← CSPRNG.next()
xmask ← x⊕mask // XOR the lower bits
of x with mask
P ← G(Φ)
(x, s)← Sample(xmask, P)
x← Expand(x,m)
S ← S ∥ s
Φ← Φ ∥ s

end
return S, x

8

Algorithm 6: DecodeG : Main Loop of the ANStega
Extraction

Input: Stegotext S, Context Φ, Model G, Final State
xfinal, Seed kseed

Output: Decoded Message m
Initialization:
M ← 2precision, L←M × α, H ← 2L− 1, m← ∅,
x← xfinal

CSPRNG.setup(kseed), mask list = []
for each token s in S do

mask← CSPRNG.next()
mask list.append(mask)

end
for each token s in reverse(S) do

// 1. Get distribution for the
PREVIOUS step

Φcontext ← prefix of S before s
P ← G(Φcontext)
// 2. pre-adjust state and extract

message bits
(x, out bits)← Shrink(x)
// 3. Update state using the token

(ANS encoding)
x← ExtractStep(x, P, s)
// 4. Recover state x via XOR the

same mask
mask← mask list.pop back()
x← x⊕mask
m← out bits ∥ m

end
Finalization:
out bits← to binary(x) // The final state
contains the message’s first bits
m← out bits ∥ m
return m

Kullback-Leibler (KL) divergence (DKL(PG ||PS) > 0) even
with perfect randomness.

In contrast, ANStega is designed such that the intended
sampling distribution is identical to PG . Ideally, assuming
access to a True Random Number Generator (TRNG), the
residue rt used for sampling is perfectly uniform, implying
DKL(PG ||PS) = 0. However, in practice, we rely on a
CSPRNG. Therefore, we define security via the advantage of
an adversary A in the steganographic distinguishing game:

Advstega
A = |Pr[A(S) = 1]− Pr[A(C) = 1]| (9)

where S is the stego-text sequence and C is a cover-text
sequence sampled natively from the model. We claim that
for any probabilistic polynomial-time (PPT) adversary A,
Advstega

A is negligible, provided the underlying CSPRNG is
secure.

B. Computational Security Analysis
The security proof proceeds by reduction. We show that

distinguishing the stego-text from the cover-text is computa-
tionally equivalent to distinguishing the CSPRNG output from
a truly random sequence.
1. Ideal Randomness Case (Information-Theoretic Base-
line): Consider an idealized version of ANStega, denoted
as Πideal, where the mask Rt is drawn from a uniform
distribution U{0,M − 1} where M = 2precision.

As defined in Eq. (9), the sampling variable is derived
via r ← [(x (mod M))⊕Rt] /M . Since Rt is perfectly
uniform and independent of the state x, the One-Time Pad
property ensures that the resulting bits (x mod M) ⊕ Rt are
perfectly uniform over {0, . . . ,M − 1}. Consequently, the
normalized residue r is uniform on [0, 1). Because the Sample
algorithm uses Inverse Transform Sampling on the exact model
distribution PG driven by this uniform r, the sampled token
st follows PG exactly. Thus, in the ideal case:

P ideal
S (st | s<t) ≡ PG(st | s<t) =⇒ DKL

(
PG∥P ideal

S

)
= 0
(10)

2. Real-World Case (Pseudo-Randomness): In the actual
ANStega protocol Πreal, Rt is generated by a CSPRNG seeded
with key kseed. If there exists a PPT adversary A that can
distinguish PS from PG with non-negligible advantage ϵ, we
can construct a distinguisher B for the CSPRNG. B receives a
sequence of masks and runs the ANStega sampling procedure.
If the masks are true random, the output follows PG (as proven
in Case 1); if they are pseudo-random, the output follows PS .
Therefore, A’s ability to distinguish the text implies B’s ability
to distinguish the CSPRNG output from random noise.

Advstega
A ≤ AdvPRNG

B (11)

Since AdvPRNG
B is negligible for a secure CSPRNG, the

resulting distribution PS is computationally indistinguishable
from PG .

VII. EXPERIMENT

In this section, we empirically evaluate ANStega to address
three key questions: (1) How does ANStega fundamentally
perform against other entropy coding-based methods and what
is the impact of hyperparameters? (2) How robust is its security
under theoretical analysis and steganalysis? (3) How do its
capacity and efficiency compare with the leading methods? By
systematically addressing these questions, we aim to provide
a holistic assessment of the superiority of ANStega as a well-
balanced steganographic solution.

A. Experimental Setup
1) Models and Dataset: We evaluate ANStega on six

representative generative models—GPT-2 (124M) [40], Llama
3 (8B) [41], Qwen2.5 (3B) [42], DeepSeek-R1-Distilled-Qwen
(1.5B), SmolLm2(135M) [43] and Phi-2(2.7B) [44], using the
IMDB [45] movie review dataset. The task involves contex-
tual text completion, where 100 text samples are randomly
selected, and the first three sentences of each are used as input
context.

9

2) Baselines and Parameters: To ensure fair compari-
son, we adopt standardized settings across all methods. Two
sampling strategies are used: top-k sampling [46], which
selects from the k most probable tokens, and nucleus (top-p)
sampling [47], which samples from the smallest set of tokens
with cumulative probability above p. For precision-sensitive
baselines like AC [11], we use 32-bit precision (β = 32),
while methods like iMEC [15], SparSamp [19] and SA-ANS
[16] retain their standard configurations (block sizes of 10, 64
and 16, respectively).

3) Implementation Details: All experiments are conducted
on a high-performance computing platform equipped with
an Intel Xeon Gold 6330 CPU and an NVIDIA RTX 4090
GPU. The implementation is developed using PyTorch 2.0
with CUDA 11.8 to ensure efficient and reproducible results.

B. Evaluation Metrics

To comprehensively assess ANStega and other baseline
steganographic methods, we evaluate their performance on
three key dimensions: capacity, efficiency, and security.

1) Capacity: We evaluate embedding capacity using two
metrics. The Embedding Rate (ER) measures the average
number of secret bits embedded per generated token:

ER =
Encoded bits

Generated tokens
(12)

The Utilized Entropy Rate (UR) normalizes capacity by com-
paring actual embedding to the model’s theoretical limit:

UR =

∑T
t=1 Ct∑T
t=1 Et

(13)

where Ct is the number of bits embedded at time step t, and Et

is the model’s Shannon entropy. Higher ER and UR indicate
greater embedding capacity.

2) Efficiency: We assess computational efficiency through
both throughput and overhead. Specifically, we use Embedding
Speed (ES) and Generation Speed (GS) to measure bits and
tokens processed per second:

ES =
Encoded bits

Encoding time
, GS =

Generated tokens
Encoding time

(14)

To quantify algorithmic overhead, we introduce the Sampling-
to-Inference Time Ratio (SITR), which captures the relative
cost of steganographic sampling:

SITR =
Sampling time
Inference time

(15)

An efficient method should achieve high ES/GS and low SITR.
3) Security: We evaluate security from three complemen-

tary perspectives: randomness quality, statistical fidelity, and
practical undetectability.

Since our method’s security relies on the indistinguisha-
bility of the cryptographic mask from uniform noise, we
employ the NIST Statistical Test Suite (STS). We evaluate
the bitstreams derived from the per-step sampling variates
against this industry-standard battery of tests. Passing these

TABLE II: Impact of α and the cryptographic mask on
ANStega’s performance (Llama3, Top-p, p = 1.0).

α Mask ER UR ES GS SITR
(bits/token) (bits/s) (tokens/s)

1 w/o 2.03 0.86 72.60 35.63 1.26E-02
w/ 2.63 1.00 92.11 34.92 1.49E-02

4 w/o 2.44 0.97 87.92 35.94 1.26E-02
w/ 2.54 0.99 88.44 34.79 1.46E-02

16 w/o 2.37 0.97 85.70 36.03 1.27E-02
w/ 2.48 0.98 86.52 34.83 1.47E-02

64 w/o 2.65 1.02 95.22 35.87 1.28E-02
w/ 2.70 1.01 94.38 34.84 1.46E-02

tests confirms that the CSPRNG-driven sampling introduces no
statistically detectable bias compared to a true random source.

Standard steganographic methods often alter the genera-
tive distribution to embed information (e.g., via probability
quantization or space partitioning). To quantify this inherent
statistical distortion, we compute the algorithmic Kullback-
Leibler (KL) divergence between the model’s original next-
token probability distribution and the steganographic sampling
distribution at each time step.

To assess real-world detectability, we measure steganalysis
accuracy (Acc) by training classifiers to distinguish stego-text
from cover-text:

Acc =
Correct predictions
Total predictions

(16)

An accuracy near 50% indicates strong resistance to detection.

C. Hyperparameter Analysis of ANStega

To thoroughly evaluate the performance and security of
ANStega and to determine its optimal configuration for sub-
sequent experiments, we conduct an in-depth analysis of two
key hyperparameters: the scale factor α and the cryptographic
mask. The scale factor α defines the normalization range
[L,H] (where L = α · M) and thus directly impacts the
frequency and efficiency of state updates. The mask is a
CSPRNG-derived perturbation on the low-order state used to
drive sampling randomness.

Our analysis targets two questions: (1) how α and the
mask affect efficiency and capacity; and (2) how they affect
the statistical randomness of the per-step sampling—which
directly impacts security.

1) Capacity and Efficiency: We first measure capacity and
efficiency under varying α and with/without the mask, using
Llama 3 with Top-p sampling (p = 1.0). The results (Table II)
lead to following observations. Without the mask, ANStega
attains near-entropy capacity only at larger α (e.g., UR = 0.90
at α = 1 vs. UR = 1.00 at α = 64), indicating that small
normalization ranges distort the per-step sampling bits and
depress capacity. With the mask enabled, capacity becomes
essentially α-insensitive: ER and UR remain at the near-
entropy frontier across settings (e.g., UR ≈ 0.99–1.01 for
α ∈ {1, 4, 16, 64}). Importantly, increasing α or enabling the
mask does not introduce a computational burden: ES/GS and
SITR stay nearly constant across all configurations.

10

TABLE III: NIST STS results on per-step sampling. (✓: pass,
✗: fail)

Test Random/Vanilla ANStega
Mask - w/o w/
α - 1 16 32 1–32
ApproximateEntropy ✓ ✗ ✗ ✗ ✓
BlockFrequency ✓ ✗ ✗ ✗ ✓
CumulativeSums ✓ ✗ ✓ ✓ ✓
FFT ✓ ✗ ✗ ✗ ✓
Frequency ✓ ✗ ✓ ✓ ✓
LinearComplexity ✓ ✓ ✓ ✓ ✓
LongestRun ✓ ✗ ✓ ✓ ✓
NonOverlappingTemplate ✓ ✗ ✗ ✗ ✓
OverlappingTemplate ✓ ✗ ✗ ✗ ✓
Rank ✓ ✓ ✓ ✓ ✓
Runs ✓ ✗ ✓ ✓ ✓
Serial ✓ ✗ ✗ ✗ ✓
Universal ✓ ✗ ✗ ✗ ✓

2) Security Analysis (NIST Statistical Randomness Test):
We evaluated the per-step sampling randomness using the
NIST STS battery on one million bits generated from a static
distribution {0.1, 0.2, 0.3, 0.4}. Table III highlights a critical
distinction: the unmasked ANStega is sensitive to α, with
lower values leading to increased test failures due to residual
state structure. Conversely, the masked ANStega is robust to
α variations, passing the full NIST suite across all configu-
rations. These results mirror the random baseline, empirically
confirming that the CSPRNG mask is essential for ensuring
the generated variability is statistically indistinguishable from
standard sampling.

Because security with mask is essentially α-insensitive
while efficiency has already plateaued at small α, we fix α = 4
and enable the mask for all subsequent experiments.

D. Performance Comparison against Traditional Coding Ap-
proaches

Tables IV and V contrast the four entropy coding-based
steganographic methods on Llama 3 with top-k sampling.

The Huffman-based method suffers from significant com-
putational overhead due to the frequent tree reconstruction
required for the large vocabulary of Llama 3. Consequently,
its embedding speed starts high (47.82 bits/s at k = 8) and
collapses further to 6.93 bits/s at k = 1024 as shown in
Table IV. Although its entropy-utilization rate (UR) exceeds
1 due to forcing token probabilities onto dyadic weights,
this approximation severely distorts the model distribution. As
shown in Table V, the average / max KL divergence reaches
0.72/10.60 at k = 8, signaling a clear statistical fingerprint.
The AC-based method better balances capacity and speed:
UR remains near entropy (0.98 ∼ 1.02) and ES increases
with k. However, rescaling the range per-step still introduces
algorithmic distortion, with KL divergence remaining in the
10−2 ∼ 10−4 range. The concurrent work SA-ANS [16]
adopts the ANS framework to improve capacity, achieving
significantly lower KL divergence (∼10−6) than AC. However,
it still incurs noticeable sampling overhead (SITR ≈ 0.08) due
to its state adjustment mechanism, and its embedding capacity

is slightly suboptimal at lower k values (e.g., UR = 0.89 at
k=8).

ANStega effectively overcomes these limitations. It
achieves near-perfect entropy utilization (UR ≈ 1.01) across
all settings, avoiding the dyadic approximation artifacts found
in Huffman coding. Crucially, as detailed in Table V, ANStega
yields zero algorithmic KL divergence because the proba-
bility distribution is not rescaled or quantized prior to sam-
pling—surpassing both AC and SA-ANS in statistical fidelity.
Leveraging constant-time rANS updates and bitwise optimiza-
tions, ANStega matches the high throughput of AC and SA-
ANS while incurring the lowest sampling overhead (consistent
SITR = 0.01). This represents an 8× reduction in overhead
compared to SA-ANS, securing optimal efficiency alongside
provable security.

E. Comparative Analysis with Other Secure Steganographic
Methods

To demonstrate that ANStega successfully solves the
trilemma, we benchmarked its performance against a range of
state-of-the-art, secure steganography methods. The evaluation
focuses on the critical dimensions of embedding capacity
and computational efficiency, where previous methods have
been forced to make significant compromises. The cross-model
comparison is presented in Table VI, while a detailed analysis
of sampling hyperparameters (p) on Llama 3 is provided in
Table VII.

The results clearly demonstrate the superiority of ANStega
in terms of embedding capability. As an entropy-based
encoding method, ANStega achieves nearly perfect entropy
utilization (UR ≈ 1.0) across all tested models and sampling
configurations. This allows ANStega to attain a significantly
higher embedding rate (ER) than competitors. For instance,
on Llama 3 with p = 1.00, ANStega’s ER of 1.93 bits/token
is substantially higher than that of SparSamp (1.77), Meteor-
reorder (1.42), and iMEC (1.35). This high-capacity perfor-
mance is robust across different model architectures (Table
VI) and scalable with the entropy of the sampling space.

In terms of computational efficiency, ANStega demon-
strates a decisive advantage. Its O(1) complexity translates
to extremely high embedding speed (ES) and a minimal
sampling-to-inference time ratio (SITR). As seen in Table VI,
under the rigorous setting of p = 1.0, ANStega’s throughput
consistently surpasses all other methods. While SparSamp
[19] also exhibits excellent O(1) efficiency with a low SITR,
ANStega is unique in achieving this top-tier speed without
sacrificing capacity. In stark contrast, methods like iMEC [15]
and Meteor [13] incur a devastating computational cost on
larger models or full sampling distributions, with SITR values
orders of magnitude higher (e.g., SITR > 600 for iMEC on
GPT-2), rendering them impractical for real-time applications.
Thus, ANStega uniquely occupies the optimal position in the
landscape of secure steganography.

11

TABLE IV: Capacity and efficiency comparison of entropy coding-based steganography on Llama 3.

Top-k ES (bits/s) UR SITR
Huffman AC SA-ANS † [16] ANStega Huffman AC SA-ANS ANStega Huffman AC SA-ANS ANStega

8 47.82 46.83 48.66 50.39 1.48 0.99 0.89 1.01 0.07 0.03 0.08 0.01
32 53.61 62.75 61.62 63.45 1.36 1.00 0.93 1.01 0.26 0.03 0.08 0.01

128 35.79 70.72 71.87 71.57 1.30 0.98 0.97 1.01 1.26 0.03 0.08 0.01
512 11.82 75.31 81.93 83.01 1.26 1.00 0.99 1.01 5.40 0.04 0.08 0.01
1024 6.93 84.62 81.61 86.43 1.25 1.02 0.99 1.02 13.91 0.04 0.08 0.01

† For SA-ANS, we calculate the effective embedding rate (per-token throughput) based on actual consumed bits rather than the theoretical parameter.

TABLE V: Comparison of algorithmic KL divergence (Ave /
Max) across methods on Llama 3.

Top-k 8 128 1024
Huffman 7.23E-01 / 10.60 5.60E-01 / 7.99 5.47E-01 / 8.60
AC 7.92E-02 / 2.41 9.44E-04 / 0.07 2.86E-05 / 0.003
SA-ANS 1.72E-06/8.68E-05 2.07E-06/9.46E-05 3.05E-06/1.08E-04
ANStega 0 / 0 0 / 0 0 / 0

F. Resistance to Steganalysis

To complement our theoretical security guaranties, we con-
ducted empirical steganalysis experiments to assess ANStega’s
practical undetectability. We constructed a balanced dataset of
20,000 samples generated under identical nucleus sampling
settings (p = 0.95). Specifically, we generated 10,000 benign
cover texts using the base model and 10,000 correspond-
ing stego texts using ANStega. The dataset was partitioned
into an 80/20 train-test split. On this data, we trained and
evaluated four widely-used steganalysis architectures: a Fully
Connected Network (FCN) [48], a Convolutional Neural Net-
work (CNN) [49], and two specialized Bi-LSTM with a
classification layer R-BiLSTM-C [50] and BiLSTM-Dense
[51].

The results, presented in Table VIII, demonstrate ANStega’s
security. All four classifiers performed at a statistically equiv-
alent level to random guessing, with accuracies hovering
around the 50% mark. This indicates that even sophisticated,
deep learning-based detectors were unable to find any reliable
statistical artifacts in the stego-text generated by ANStega.
These empirical findings provide strong practical evidence
for our theoretical claim that ANStega-generated content is
indistinguishable from model output.

G. Qualitative Analysis and Cross-Modal Application

In addition to quantitative metrics, it is crucial to assess
the qualitative nature of the generated stego-media. To this
end, we present examples that demonstrate both the fluency
of ANStega’s text outputs and its versatility for application in
other modalities.

Table IX presents several text continuations generated by
ANStega using the Llama 3 model. The examples confirm
that the stego-text maintains high semantic coherence with the
provided context and exhibits a natural, fluent style, rendering
it qualitatively indistinguishable from benign model outputs.

To showcase ANStega’s flexibility, we also applied it to
image generation. Following the integration methodology of
Wang et al. [19], we embedded ANStega into the final

sampling step of a Denoising Diffusion Probabilistic Model
(DDPM) [52] pre-trained on the FFHQ dataset. As illustrated
in Figure 5, the resulting 256 × 256 stego-images are high-
fidelity and visually coherent, demonstrating that the core
principles of ANStega can be effectively adapted to different
generative processes and data modalities.

VIII. DISCUSSION AND LIMITATIONS

While ANStega achieves optimal capacity, efficiency, and
provable security, we acknowledge limitations inherent to
high-capacity steganography.

Robustness vs. Capacity. ANStega is fragile against active
attacks (e.g., token insertion or reordering); unlike robust
watermarking, it requires the stego-text to be received exactly
as generated. However, this fragility is a necessary trade-off
for bandwidth, allowing ANStega to achieve embedding rates
over 200× higher than robust schemes [53]. It is best suited
for reliable channels rather than copyright protection.

Passive Threat Model. We assume a passive adversary who
monitors but does not modify traffic. While active interference
can disrupt the channel, widespread traffic alteration imposes
high operational costs on wardens. Consequently, the passive
model remains the standard assumption for high-bandwidth
covert communication.

Deployment Requirements. Successful decoding demands
strict synchronization of models and sampling parameters;
even minor floating-point non-determinism across hardware
can cause errors. Standardization is required to mitigate these
precision issues [5]. Additionally, as a symmetric system,
ANStega requires secure initial seed exchange, though subse-
quent keys can be rotated via message embedding to minimize
overhead.

IX. CONCLUSION

In this work, we addressed the long-standing Capacity-
Efficiency-Security Trilemma that has constrained the field of
generative steganography. We identified the root of this prob-
lem in the inherent limitations of adapting classical entropy
coders like Huffman and Arithmetic Coding. To break this
impasse, we introduced ANStega, a steganographic system
built upon the powerful paradigm of ANS.

Our main contribution lies not only in the application of
ANS, but also in the systematic reconstruction of its core
mechanisms to meet the unique requirements of steganog-
raphy. Through innovative reverse application of state ma-
chines, customized streaming architecture, and key crypto-
graphic masking mechanisms, we have designed a system that

12

TABLE VI: Capacity and efficiency comparison on different models (Top-p, p = 1.0).

Metrics Models ADG [12] iMEC [15] Meteor [13] Discop [14] SparSamp [19] ANStegabase reorder base huffman

ER
(bits/token)

GPT-2 5.25 4.53 4.67 5.73 2.40 5.78 5.67 5.95
Qwen2.5 2.80 2.88 2.67 3.67 1.53 3.73 3.48 3.69
Llama 3 1.63 0.70 1.62 1.67 1.06 2.19 2.37 2.56

DeepSeek 2.57 2.33 2.57 3.20 1.48 3.41 3.50 3.59
SmolLm2 4.43 3.46 2.01 4.42 4.10 5.12 5.12 5.50

Phi-2 3.56 2.57 1.76 3.99 3.30 4.40 4.32 4.67

UR

GPT-2 0.85 0.70 0.77 0.89 0.38 0.95 0.93 1.00
Qwen2.5 0.73 0.68 0.70 0.83 0.40 0.93 0.97 1.01
Llama 3 0.63 0.73 0.66 0.72 0.42 0.90 0.97 1.00

DeepSeek 0.69 0.73 0.70 0.83 0.39 0.92 0.96 0.99
SmolLm2 0.81 0.68 0.38 0.84 0.75 0.94 0.94 1.01

Phi-2 0.76 0.68 0.38 0.86 0.73 0.95 0.93 1.01

ES
(bits/s)

GPT-2 7.82 0.91 636.57 0.84 155.79 22.42 821.56 879.79
Qwen2.5 3.46 0.05 95.74 0.5 29.94 4.76 127.18 136.82
Llama 3 1.61 0.02 57.10 0.41 22.35 3.31 84.28 94.67

DeepSeek 1.82 0.04 115.88 0.31 32.97 4.62 157.14 169.51
SmolLm2 6.61 0.50 51.32 0.60 137.10 15.77 187.82 212.31

Phi-2 7.30 0.35 48.07 0.83 128.59 13.06 173.12 186.81

GS
(tokens/s)

GPT-2 1.49 0.20 136.45 0.15 65.01 3.88 144.69 147.76
Qwen2.5 1.24 0.02 35.65 0.14 19.60 1.28 36.52 37.05
Llama 3 0.98 0.03 35.16 0.25 21.02 1.51 35.53 36.91

DeepSeek 0.71 0.02 45.09 0.10 22.29 1.32 46.06 47.17
SmolLm2 1.48 0.14 25.47 0.13 33.39 3.07 36.62 38.56

Phi-2 2.04 0.13 27.28 0.20 38.94 2.96 40.01 39.98

SITR

GPT-2 93.75 640.56 0.11 730.36 1.16 30.81 0.03 0.04
Qwen2.5 28.02 1891.82 0.03 245.61 0.77 24.67 0.01 0.01
Llama 3 35.51 1151.72 0.03 129.53 0.65 20.86 0.01 0.01

DeepSeek 59.77 1774.04 0.03 424.71 0.97 29.52 0.01 0.01
SmolLm2 22.77 187.50 0.33 162.29 0.03 10.27 0.01 0.01

Phi-2 18.07 261.24 0.40 182.69 0.03 11.94 0.01 0.01

TABLE VII: Capacity and efficiency comparison on Llama 3 (Top-p).

Metrics p ADG [12] iMEC [15] Meteor [13] Discop [14] SparSamp [19] ANStegabase reorder base huffman

ER
(bits/token)

0.80 0.64 0.85 0.66 0.73 0.72 1.01 0.90 1.20
0.95 1.14 1.35 1.22 1.42 0.95 1.69 1.77 1.93
1.00 1.63 0.70 1.62 1.67 1.06 2.19 2.37 2.56

UR
0.80 0.52 0.86 0.55 0.61 0.58 0.85 0.99 1.00
0.95 0.60 0.79 0.64 0.73 0.48 0.87 0.99 1.01
1.00 0.63 0.73 0.66 0.72 0.42 0.90 0.97 1.00

ES
(bits/s)

0.80 21.45 26.31 22.00 23.47 23.90 34.53 30.17 43.98
0.95 37.51 39.42 40.37 33.18 31.36 55.00 59.20 64.21
1.00 1.61 0.02 57.10 0.41 22.35 3.31 84.28 94.67

GS
(tokens/s)

0.80 33.43 31.10 33.09 32.16 33.07 34.15 33.21 33.92
0.95 32.95 29.19 33.06 23.32 32.94 32.62 33.29 33.31
1.00 0.98 0.03 35.16 0.25 21.02 1.51 35.53 36.91

SITR
0.80 0.01 0.08 0.02 0.05 0.02 0.01 0.01 0.01
0.95 0.02 0.15 0.02 0.46 0.02 0.02 0.01 0.01
1.00 35.51 1151.72 0.03 129.53 0.65 20.86 0.01 0.01

Fig. 5: Representative 256×256 stego-faces synthesized by a DDPM equipped with ANStega. Despite their natural appearance,
each image conceals roughly 463 kbits of payload.

13

TABLE VIII: Steganalysis accuracy against ANStega.

FCN CNN R-BiLSTM-C BiLSTM-Dense

Acc 49.92% 50.28% 49.35% 50.15%

TABLE IX: Context and generation examples.

Context ANStega Generation
Beneath the quiet sky,
dreams wander like
fireflies, glowing softly
in the silence of hope.

Yet, in the stillness of the night, what lies
hidden, unseen by mortal eyes, is a dance
of shadows, an art of darkness, an eternal
sway of the pierced heart.

Even the darkest night
cannot extinguish a heart
that burns with purpose.

Every experience, no matter how
difficult, is an opportunity to learn, grow,
and rise above the challenges that we
face. Courage and perseverance can help
us overcome the impossible and lead us
to new heights of success and fulfillment.

Titanic is not just a
love story set against
tragedy—it’s a cinematic
elegy to fleeting beauty,
human hubris, and the
moments that define a
lifetime.

James Cameron’s sweeping epic is a
masterclass in filmmaking, a testament to
the power of storytelling, and a reminder
that even the most epic of tragedies
can be told with a disparate array of
miniatures, models, and digital wizardry.

successfully balances the three competing goals. Our exten-
sive theoretical analysis and empirical evaluation demonstrate
that ANStega is the first method to simultaneously achieve
the following three objectives: (1) near-optimal embedding
capacity, (2) constant-time O(1) computational efficiency, and
(3) provable security. Beyond raw metrics, ANStega preserves
the stylistic fidelity of natural text and yields visually coherent
diffusion images, demonstrating its applicability across modal-
ities. These results position ANStega provides both a practical,
high-performance tool for secure communication and a new,
powerful paradigm for steganographic research. We hope that
our work will provide valuable insights for the next generation
of secure, efficient, and high-capacity covert communication
systems.

ACKNOWLEDGMENT

The authors thank the reviewers for their valuable com-
ments. This work was supported in part by the Natural Science
Foundation of China under Grant 62302146, 62472398, and
U2336206.

REFERENCES

[1] U. S. Congress, “Kids online safety act,” https://www.congress.gov/bill/
118th-congress/house-bill/7891, April 2024.

[2] U. K. Parliament, “Online safety act 2023,” https://bills.parliament.uk/
bills/3137, 2023.

[3] D. Cole, “We kill people based on metadata,” https://www.nybooks.com/
online/2014/05/10/we-kill-people-based-metadata/, May 2014.

[4] G. J. Simmons, “The prisoners’ problem and the subliminal channel,” in
Annual International Cryptology Conference, 1983. [Online]. Available:
https://api.semanticscholar.org/CorpusID:2674577

[5] L. A. Bauer, J. K. Howes, S. A. Markelon, V. Bindschaedler, and
T. Shrimpton, “Leveraging generative models for covert messaging:
Challenges and tradeoffs for ”dead-drop” deployments,” in Proceedings
of the Fourteenth ACM Conference on Data and Application Security
and Privacy, ser. CODASPY ’24. New York, NY, USA: Association
for Computing Machinery, 2024, p. 67–78. [Online]. Available:
https://doi.org/10.1145/3626232.3653264

[6] Z.-L. Yang, X.-Q. Guo, Z.-M. Chen, Y.-F. Huang, and Y.-J. Zhang, “Rnn-
stega: Linguistic steganography based on recurrent neural networks,”
IEEE Transactions on Information Forensics and Security, vol. 14, no. 5,
pp. 1280–1295, 2019.

[7] F. Dai and Z. Cai, “Towards near-imperceptible steganographic text,”
in Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, A. Korhonen, D. Traum, and L. Màrquez,
Eds. Florence, Italy: Association for Computational Linguistics, Jul.
2019, pp. 4303–4308. [Online]. Available: https://aclanthology.org/
P19-1422/

[8] T. Van Le and K. Kurosawa, “Bandwidth optimal steganography secure
against adaptive chosen stegotext attacks,” in Information Hiding, J. L.
Camenisch, C. S. Collberg, N. F. Johnson, and P. Sallee, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 297–313.

[9] K. Yang, K. Chen, W. Zhang, and N. Yu, “Provably secure generative
steganography based on autoregressive model,” in International
Workshop on Digital Watermarking, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:59524394

[10] K. Chen, H. Zhou, H. Zhao, D. Chen, W. Zhang, and N. Yu,
“When provably secure steganography meets generative models,” 2019.
[Online]. Available: https://arxiv.org/abs/1811.03732v2

[11] Z. Ziegler, Y. Deng, and A. M. Rush, “Neural linguistic steganography,”
in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), 2019, pp. 1210–1215.

[12] S. Zhang, Z. Yang, J. Yang, and Y. Huang, “Provably secure
generative linguistic steganography,” in Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021, C. Zong, F. Xia,
W. Li, and R. Navigli, Eds. Online: Association for Computational
Linguistics, Aug. 2021, pp. 3046–3055. [Online]. Available: https:
//aclanthology.org/2021.findings-acl.268

[13] G. Kaptchuk, T. M. Jois, M. Green, and A. D. Rubin, “Meteor:
Cryptographically secure steganography for realistic distributions,”
Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, 2021. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:235309313

[14] J. Ding, K. Chen, Y. Wang, N. Zhao, W. Zhang, and N. H.
Yu, “Discop: Provably secure steganography in practice based
on ”distribution copies”,” 2023 IEEE Symposium on Security
and Privacy (SP), pp. 2238–2255, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:260002610

[15] C. S. de Witt, S. Sokota, J. Z. Kolter, J. N. Foerster, and
M. Strohmeier, “Perfectly secure steganography using minimum
entropy coupling,” in The Eleventh International Conference on
Learning Representations, 2023. [Online]. Available: https://openreview.
net/forum?id=HQ67mj5rJdR

[16] Y. Liu, C. Xu, F. Yang, P. Zhang, and L. Wang, “Linguistic
steganography via self-adjusting asymmetric number system,”
Computational Linguistics, pp. 1–35, 09 2025. [Online]. Available:
https://doi.org/10.1162/coli.a.22

[17] G. Liao, J. Yang, W. Shao, and Y. Huang, A framework for designing
provably secure steganography. USA: USENIX Association, 2025.

[18] M. Bai, K. Pang, G. Liao, J. Yang, and Y. Huang, “Shimmer: a
provably secure steganography based on entropy collecting mechanism,”
in Proceedings of the 34th USENIX Conference on Security Symposium,
ser. SEC ’25. USA: USENIX Association, 2025.

[19] Y. Wang, G. Pei, K. Chen, J. Ding, C. Pan, W. Pang, D. Hu, and
W. Zhang, “SparSamp: Efficient provably secure steganography based
on sparse sampling,” in 34th USENIX Security Symposium (USENIX
Security ’25). USENIX Association, Aug. 2025.

[20] T. M. Jois, G. Beck, and G. Kaptchuk, “Pulsar: Secure steganography
for diffusion models,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’24.
New York, NY, USA: Association for Computing Machinery, 2024,
p. 4703–4717. [Online]. Available: https://doi.org/10.1145/3658644.
3690218

14

https://www.congress.gov/bill/118th-congress/house-bill/7891
https://www.congress.gov/bill/118th-congress/house-bill/7891
https://bills.parliament.uk/bills/3137
https://bills.parliament.uk/bills/3137
https://www.nybooks.com/online/2014/05/10/we-kill-people-based-metadata/
https://www.nybooks.com/online/2014/05/10/we-kill-people-based-metadata/
https://api.semanticscholar.org/CorpusID:2674577
https://doi.org/10.1145/3626232.3653264
https://aclanthology.org/P19-1422/
https://aclanthology.org/P19-1422/
https://api.semanticscholar.org/CorpusID:59524394
https://arxiv.org/abs/1811.03732v2
https://aclanthology.org/2021.findings-acl.268
https://aclanthology.org/2021.findings-acl.268
https://api.semanticscholar.org/CorpusID:235309313
https://api.semanticscholar.org/CorpusID:235309313
https://api.semanticscholar.org/CorpusID:260002610
https://openreview.net/forum?id=HQ67mj5rJdR
https://openreview.net/forum?id=HQ67mj5rJdR
https://doi.org/10.1162/coli.a.22
https://doi.org/10.1145/3658644.3690218
https://doi.org/10.1145/3658644.3690218

[21] Y. Peng, D. Hu, Y. Wang, K. Chen, G. Pei, and W. Zhang,
“Stegaddpm: Generative image steganography based on denoising
diffusion probabilistic model,” in Proceedings of the 31st ACM
International Conference on Multimedia, ser. MM ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 7143–7151.
[Online]. Available: https://doi.org/10.1145/3581783.3612514

[22] A. D. Ker, “Improved detection of lsb steganography in grayscale
images,” in International workshop on information hiding. Springer,
2004, pp. 97–115.

[23] M. Boroumand, M. Chen, and J. Fridrich, “Deep residual network
for steganalysis of digital images,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 5, pp. 1181–1193, 2019.

[24] R. Anderson and F. Petitcolas, “On the limits of steganography,” IEEE
Journal on Selected Areas in Communications, vol. 16, no. 4, pp. 474–
481, 1998.

[25] J. Duda, “Asymmetric numeral systems,” 2009. [Online]. Available:
https://arxiv.org/abs/0902.0271

[26] https://github.com/facebook/zstd.
[27] https://github.com/lzfse/lzfse.
[28] https://github.com/google/pik.
[29] D. E. Gladding, S. Gopalakrishnan, S. D. Kumbhani, and L. Hsu-Kuei,

“Features of range asymmetric number system encoding and decoding,”
Jan. 25 2022, uS Patent 11,234,023.

[30] G. J. Simmons, “The prisoners’ problem and the subliminal channel,”
in Advances in Cryptology: Proceedings of Crypto 83. Springer, 1984,
pp. 51–67.

[31] N. J. Hopper, J. Langford, and L. von Ahn, “Provably secure steganog-
raphy,” in Advances in Cryptology — CRYPTO 2002, M. Yung, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 77–92.

[32] T. Fang, M. Jaggi, and K. Argyraki, “Generating steganographic text
with lstms,” in Proceedings of ACL 2017, Student Research Workshop,
2017, pp. 100–106.

[33] Z.-L. Yang, X.-Q. Guo, Z.-M. Chen, Y.-F. Huang, and Y.-J. Zhang, “Rnn-
stega: Linguistic steganography based on recurrent neural networks,”
IEEE Transactions on Information Forensics and Security, vol. 14, no. 5,
pp. 1280–1295, 2019.

[34] G. Kaptchuk, T. M. Jois, M. Green, and A. D. Rubin, “Meteor:
Cryptographically secure steganography for realistic distributions,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 1529–1548.

[35] S. Zhang, Z. Yang, J. Yang, and Y. Huang, “Provably secure generative
linguistic steganography,” in Findings of the Association for Computa-
tional Linguistics: ACL-IJCNLP 2021, 2021, pp. 3046–3055.

[36] J. Duda, “Asymmetric numeral systems: entropy coding combining
speed of huffman coding with compression rate of arithmetic coding,”
arXiv preprint arXiv:1311.2540, 2013.

[37] Y. Collet and M. Kucherawy, “Zstandard Compression and the
application/zstd Media Type,” RFC 8478, Oct. 2018. [Online].
Available: https://www.rfc-editor.org/info/rfc8478

[38] J. Sneyers, J. Alakuijala, L. Versari, Z. Szabadka, S. Boukortt,
A. Cohen-Tidhar, M. Firsching, E. Kliuchnikov, T. Lev-Ami, E. Portis,
T. Richter, and O. Watanabe, “The jpeg xl image coding system:
History, features, coding tools, design rationale, and future,” 2025.
[Online]. Available: https://arxiv.org/abs/2506.05987

[39] T. Cover and J. Thomas, Elements of information theory. Wiley-
Interscience, 2006.

[40] https://huggingface.co/openai-community/gpt2.
[41] https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct.
[42] https://huggingface.co/Qwen/Qwen2.5-3B-Instruct.
[43] https://huggingface.co/HuggingFaceTB/SmolLM2-135M.
[44] https://huggingface.co/microsoft/phi-2.
[45] https://ai.stanford.edu/∼amaas/data/sentiment/.
[46] A. Holtzman, J. Buys, M. Forbes, A. Bosselut, D. Golub, and

Y. Choi, “Learning to write with cooperative discriminators,” in
Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), I. Gurevych and
Y. Miyao, Eds. Melbourne, Australia: Association for Computational
Linguistics, Jul. 2018, pp. 1638–1649. [Online]. Available: https:
//aclanthology.org/P18-1152

[47] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious
case of neural text degeneration,” in International Conference
on Learning Representations, 2020. [Online]. Available: https:
//openreview.net/forum?id=rygGQyrFvH

[48] Z. Yang, Y. Huang, and Y.-J. Zhang, “A fast and efficient text steganaly-
sis method,” IEEE Signal Processing Letters, vol. 26, no. 4, pp. 627–631,
2019.

[49] ——, “Ts-csw: text steganalysis and hidden capacity estimation
based on convolutional sliding windows,” Multimedia Tools Appl.,
vol. 79, no. 25–26, p. 18293–18316, Jul. 2020. [Online]. Available:
https://doi.org/10.1007/s11042-020-08716-w

[50] Y. Niu, J. Wen, P. Zhong, and Y. Xue, “A hybrid r-bilstm-c neural net-
work based text steganalysis,” IEEE Signal Processing Letters, vol. 26,
no. 12, pp. 1907–1911, 2019.

[51] H. Yang, Y. Bao, Z. Yang, S. Liu, Y. Huang, and S. Jiao,
“Linguistic steganalysis via densely connected lstm with feature
pyramid,” Proceedings of the 2020 ACM Workshop on Information
Hiding and Multimedia Security, 2020. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:219980226

[52] J. Choi, S. Kim, Y. Jeong, Y. Gwon, and S. Yoon, “Ilvr: Conditioning
method for denoising diffusion probabilistic models,” in 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, pp. 14 347–
14 356.

[53] M. Bai, J. Yang, K. Pang, X. Xu, Z. Yang, and Y. Huang, “Provably
robust and secure steganography in asymmetric resource scenario,” in
2025 IEEE Symposium on Security and Privacy (SP), 2025, pp. 1438–
1456.

APPENDIX A
NORMALIZATION MECHANISM OF THE STREAMING RANS

ENCODER

A. Derivation of the Normalization Condition

A fundamental requirement of the rANS encoder is that after
encoding any symbol s, the new state C(s, x) must remain
within the normalization interval I . This can be expressed as:
L ≤ C(s, x) < 2L. To avoid a computationally expensive
trial-and-error loop to enforce this condition, we derive an
equivalent but far simpler direct condition on x. The derivation
proceeds as follows. First, we substitute the definitions of
C(s, x) and L = α×M into inequality (1):

α×M ≤
⌊
x

fs

⌋
+ Cs + (x mod fs) < 2× α×M (17)

Dividing all parts of the inequality by M yields:

α ≤
⌊
x

fs

⌋
+ [Cs + (x mod fs)]/M < 2α (18)

Let us analyze the fractional term [Cs + (x mod fs)]/M .
By definition, Cs + fs ≤ M . Since 0 ≤ (x mod fs) < fs, it
follows that 0 ≤ Cs+(x mod fs) < Cs+fs ≤M . Therefore,
the value of the fractional term is bounded within the range
[0, 1).

0 ≤ [Cs + (x mod fs)] /M < 1 (19)

Given that ⌊x/fs⌋ is an integer and the fractional term is in
[0, 1), the inequality18 can be simplified by considering only
the integer parts:

α ≤
⌊
x

fs

⌋
< 2α (20)

Based on the properties of the floor function, inequality (5) is
equivalent to:

α ≤ x

fs
< 2α (21)

15

https://doi.org/10.1145/3581783.3612514
https://arxiv.org/abs/0902.0271
https://github.com/facebook/zstd
https://github.com/lzfse/lzfse
https://github.com/google/pik
https://www.rfc-editor.org/info/rfc8478
https://arxiv.org/abs/2506.05987
https://huggingface.co/openai-community/gpt2
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://huggingface.co/HuggingFaceTB/SmolLM2-135M
https://huggingface.co/microsoft/phi-2
https://ai.stanford.edu/~amaas/data/sentiment/
https://aclanthology.org/P18-1152
https://aclanthology.org/P18-1152
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.1007/s11042-020-08716-w
https://api.semanticscholar.org/CorpusID:219980226
https://api.semanticscholar.org/CorpusID:219980226

Finally, multiplying all parts by fs gives the direct constraint
on the state x:

αfs ≤ x < 2αfs (22)

APPENDIX B
ARTIFACT APPENDIX

This appendix provides a self-contained guide for evaluating
the artifact for this paper.

A. Description & Requirements

This section details the necessary components to set up the
experimental environment and run the artifact.

1) How to access: The artifact is provided as a supple-
mentary .zip file. A permanent, archived version is publicly
accessible via the Zenodo repository at https://doi.org/10.5281/
zenodo.17943483.

2) Hardware dependencies:

• CPU: A modern multi-core CPU (e.g., Intel Xeon Gold
6330, as used in the paper).

• GPU: An NVIDIA GPU with sufficient VRAM is re-
quired for running the language models. An NVIDIA
RTX 4090 (24GB) was used for the paper’s experiments.
A GPU with at least 16GB of VRAM is recommended
for the larger models (Llama 3 8B). The gpt2 model can
be run on smaller-VRAM GPUs.

3) Software dependencies:

• Python ≥ 3.10
• PyTorch (CUDA 11.8 version is specified in
requirements.txt)

• All other Python dependencies are listed in
requirements.txt.

4) Benchmarks:

• Models: The artifact is designed to work with Hugging
Face-compatible causal language models. The paper eval-
uates:

– GPT-2 (openai-community/gpt2)
– Llama 3 8B (meta-llama/Meta-Llama-3-8B
-Instruct)

– Qwen2.5 3B (Qwen/Qwen2.5-3B-Instruct)
– DeepSeek-R1-Distilled-Qwen 1.5B

(deepseek-ai/DeepSeek-R1-Distill
-Qwen-1.5B)

– SmolLm2 (HuggingFaceTB/SmolLM2-135M)
– Phi-2 (microsoft/phi-2)

The scripts will automatically download gpt2 if no local
path is provided. Other models must be downloaded by
the user from Hugging Face.

• Datasets:
– imdb_context.xlsx: (Provided) Contains 1,000

contexts from the IMDB movie review dataset. The
batch script uses the first 100 entries for evaluation.

– message.txt: (Provided) A binary string used as
the secret message payload.

B. Artifact Installation & Configuration

[Estimated time: 10-15 minutes, plus model download time]
1) Unzip the artifact:

unzip anstega_artifact.zip
cd anstega_artifact

2) Create a Python virtual environment:
python3 -m venv venv
source venv/bin/activate

3) Install dependencies: Install all required Python pack-
ages using the provided requirements.txt file.
pip install -r requirements.txt

4) Model Preparation:
• Option 1 (Quick Test): No action

needed. The scripts run_single.py and
run_batch.py will default to loading
openai-community/gpt2 from Hugging
Face if the specified model_name path is not
found.

• Option 2 (Full Reproduction): To reproduce re-
sults for other models (e.g., Llama 3), manually
download the model from Hugging Face and save
it to a local directory. You will then need to update
the model_name variable in run_single.py or
run_batch.py to point to this local path (e.g.,
model_name = ’./LLaMA3_8B/’).

C. Experiment Workflow

The evaluation workflow is straightforward:
1) Installation: Set up the environment and dependencies

as described in Section B.
2) Functional Test: Run run_single.py to perform a

single encoding and decoding pass. This verifies that the
core ANStega algorithm is working correctly.

3) Performance Evaluation: Run run_batch.py to
execute the algorithm over 100 different contexts. This
script computes and reports the average performance
metrics (ER, UR, ES, GS, SITR) that directly correspond
to the results presented in the paper.

D. Major Claims

This artifact supports the following major claims from the
paper:

• (C1) Optimal Capacity: ANStega achieves near-optimal
embedding capacity, approaching the Shannon entropy
limit (Utilization Rate, UR ≈ 1.0) and outperforming
prior secure methods. This is proven by experiment (E2)
and corresponds to the ’ER’ (bits/token) and ’UR’ metrics
in Tables V and VI.

• (C2) Optimal Efficiency: ANStega has O(1) embedding
complexity, resulting in high Embedding Speed (ES),
Generation Speed (GS), and a minimal Sampling-to-
Inference Time Ratio (SITR) that is competitive with
AC-based methods and vastly superior to other provably
secure methods. This is proven by experiment (E2) and

16

https://doi.org/10.5281/zenodo.17943483
https://doi.org/10.5281/zenodo.17943483

corresponds to the ’ES’, ’GS’, and ’SITR’ metrics in
Tables IV, V, and VI.

E. Evaluation

This section provides the operational steps to validate the
artifact and reproduce the paper’s key results.

Experiment (E1): Functional & Correctness Test: [∼5
human-minutes + <5 compute-minutes]

This experiment validates the correctness of the ANStega
implementation by encoding a message and verifying that it
can be perfectly decoded.

• [Preparation]
1) Ensure the environment is set up (Section B).
2) No other preparation is needed. The script

run_single.py is configured to use gpt2 by
default if no other model is found.

• [Execution] Run the single test script:
python run_single.py

• [Results] The script will:
1) Print its configuration (token num, precision, etc.).
2) Print the auto-selected device (e.g., cuda).
3) Print the generated stego text.
4) Print a result_dict with the performance met-

rics (ER, UR, ES, GS, SITR) for this single run.
5) Crucially, it will end by printing:

success!

This ”success!” message confirms that the
outbits_list from decoding perfectly matched
the encoded_message from encoding.

Experiment (E2): Performance & Capacity Evaluation
(Batch): [∼5 human-minutes + 30-90 compute-minutes, de-
pending on GPU/model]

This experiment reproduces the core performance metrics
(ER, UR, ES, GS, SITR) presented in Tables IV, V, and VI
by running a batch evaluation over 100 contexts.

• [Preparation]
1) Ensure the environment is set up (Section B).
2) Ensure the imdb_context.xlsx and

message.txt files are in the same directory.
3) (Optional but recommended) To reproduce the pa-

per’s main results for larger models, download
the Qwen2.5-3B-Instruct model (or other mod-
els like Qwen) from Hugging Face... and edit
run_batch.py. Change the model name vari-
able to point to its local path:
model_name = ’/path/to/your/model/’

• [Execution] Run the batch test script:
python run_batch.py

A tqdm progress bar will show the progress as it iterates
through the 100 contexts.

• [Results] After the batch run is complete, the script
will print a final result_dict containing the average
metrics over all 100 runs. Example (values will vary
based on hardware and model): These values correspond

to the metrics for Claims C1 and C2. The evaluator
can compare these generated values directly with the
rows for ANStega in Tables IV, V, and VI of the paper
(for the corresponding model). Note: Exact speed metrics
(ES, GS) will vary based on hardware, but the ER and
UR values should be very close to the paper’s reported
results.

F. Customization

The experiments can be customized by modifying
the parameters at the top of run_single.py and
run_batch.py.

• model_name: Path to the local Hugging Face model
directory.

• seed: Random seed for reproducibility.
• precision: ANS precision parameter.
• ans_t: ANS scale factor (referred to as α in the paper,

Table II).
• top_p: Nucleus sampling (top-p) value.
• token_num: Number of tokens to generate.

17

	Introduction
	Background and Related work
	Steganographic Model
	Generative Steganography
	Asymmetric Numeral Systems

	Motivation
	Threat Model
	Proposed Method
	Overview of Steganography System Based on ANS
	Construction of the ANStega System
	Addressing State Overflow with Streaming rANS
	Avoiding Rescale for Higher Fidelity
	Securing Randomness with a Cryptographic Mask
	Computational Simplification with Bitwise Operations
	Algorithmic Implementation

	Security Analysis
	Security Definition
	Computational Security Analysis

	Experiment
	Experimental Setup
	Models and Dataset
	Baselines and Parameters
	Implementation Details

	Evaluation Metrics
	Capacity
	Efficiency
	Security

	Hyperparameter Analysis of ANStega
	Capacity and Efficiency
	Security Analysis (NIST Statistical Randomness Test)

	Performance Comparison against Traditional Coding Approaches
	Comparative Analysis with Other Secure Steganographic Methods
	Resistance to Steganalysis
	Qualitative Analysis and Cross-Modal Application

	Discussion and Limitations
	Conclusion
	References
	Appendix A: Normalization Mechanism of the Streaming rANS Encoder
	Derivation of the Normalization Condition

	Appendix B: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Customization

