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Abstract—The proliferation of IoT devices has driven a rise in
vulnerability exploits. Existing vulnerability detection approaches
heavily rely on firmware or source code for analysis. This reliance
critically compromises their efficiency in real-world black-box
scenarios. To address this limitation, we propose IoTBec, a novel
firmware and source-code independent framework for recurring
vulnerability detection. IoTBec innovatively constructs a Vulner-
ability Interface Signature (VIS) based on black-box interfaces
and known vulnerability information. The signature is designed
to match potential recurring vulnerabilities against target de-
vices. The framework then deeply integrates this signature-based
detection with Large Language Model (LLM)-driven fuzzing.
Upon a match, IoTBec automatically leverages LLMs to generate
targeted fuzzing payloads for verification.

To evaluate IoTBec, we conducted extensive experiments on
devices from five major IoT vendors. Results show that IoTBec
discovers over 7 times more vulnerabilities than the current
state-of-the-art (SOTA) black-box fuzzing methods, with 100%
precision and 93.37% recall. Overall, IoTBec detected 183 vul-
nerabilities, 169 of which were assigned CVE IDs. Among these,
53 were newly discovered and had an average CVSS 3.x score of
8.61, covering buffer overflows, command injection, and CSRF
issues. Notably, through LLM-driven fuzzing, IoTBec also dis-
covered 25 previously unknown vulnerabilities. The experimental
evidence suggests that IoTBec’s unique firmware and source-
code independent paradigm enhances detection efficiency and
enables the discovery of novel and variant vulnerabilities. We
will release the source code for IoTBec and the experiment data
at https://github.com/IoTBec.

I. INTRODUCTION

In recent years, the number of IoT devices, such as routers,
switches, and cameras, has increased rapidly, with widespread
applications in both personal and industrial scenarios. It is pro-
jected that the global active IoT device count will surge to ap-
proximately 40 billion by the end of 2030 [1]. However, the se-
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curity situation for IoT has deteriorated significantly, with fre-
quent attack incidents [2], [3]. Research indicates that over half
of IoT devices contain security vulnerabilities [4]. Therefore,
the rapid, efficient, and reliable detection of vulnerabilities in
IoT devices has become a pressing issue in cybersecurity.

Current vulnerability detection methods for IoT devices
primarily fall into two categories: static analysis [5], [6] and
dynamic analysis [7]-[11], collectively referred to as model-
based vulnerability detection. Static analysis involves examin-
ing IoT device firmware or source code to find potential secu-
rity vulnerabilities without executing the program, such as taint
analysis and symbolic execution. In contrast, dynamic analysis
detects program behavior during actual execution, triggering
anomalies through input mutation and other techniques to
uncover exploitable security flaws. However, these methods
are facing fundamental limitations in practical application:

L1: Firmware Acquisition and Decryption. Acquiring
firmware for a large number of IoT devices is extremely diffi-
cult, as it is frequently not publicly accessible. Furthermore, a
considerable number of firmwares are protected by encryption
mechanisms, which critically impede subsequent analysis and
testing [7].

L2: High-Fidelity Emulation. Even with successful
firmware acquisition, achieving high-fidelity emulation of
firmware is highly challenging. Especially for enterprise-
grade devices, existing firmware emulation tools have limited
capabilities for replicating peripheral interactions and system
environments, often failing to achieve high fidelity, which
leads to relatively low emulation success rates [12], [13].

Due to these limitations, white-box testing becomes infeasi-
ble in most practical 10T scenarios [14]-[17], while grey-box
testing is constrained by unrealistic assumptions and stringent
setup requirements. Consequently, black-box testing has be-
come the most practical approach to IoT security detection.
Traditional black-box testing methods, such as equivalence
partitioning [18], [19] and boundary value analysis, primarily
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target functional defects and performance issues, making them
ineffective in discovering security vulnerabilities. Existing
static analysis techniques are largely impractical in black-box
scenarios due to the lack of firmware and source code. There-
fore, current black-box vulnerability detection for IoT devices
typically relies on dynamic methods, primarily exemplified by
fuzzing [7], [8]. However, in black-box scenarios, the absence
of firmware and prior knowledge limits the effectiveness of
seed generation and mutation strategies, leading to generally
low efficiency in vulnerability discovery through fuzzing.
Currently, LABRADOR [9] is the leading black-box IoT
fuzzing solution, which introduces response-guided control
flow inference to enhance fuzzing efficiency. Nonetheless, it
still relies on firmware access for static analysis, making it
unsuitable for a truly black-box scenario.

Recurring vulnerability detection, as an essential comple-
mentary technique to model-based vulnerability detection, has
been proven to enhance vulnerability discovery capabilities ef-
fectively by leveraging known vulnerability information to find
new vulnerabilities with similar flaws [20]. In IoT firmware,
recurring vulnerabilities are also frequently detected. However,
existing recurring vulnerability detection methods typically
rely on firmware or source code to generate vulnerability sig-
natures, making them infeasible to apply directly in black-box
testing scenarios. To achieve effective recurring vulnerability
detection where such resources are unavailable, three core
challenges need to be addressed:

C1: How to design a black-box scenario applicable vulner-
ability signature.

C2: How to efficiently generate these vulnerability signa-
tures and build a ground truth database.

C3: How to leverage this constructed signature ground truth
to conduct automated, precise recurring vulnerability detection
on black-box IoT devices.

To address these challenges, we propose IoTBec, an auto-
mated recurring vulnerability detection framework for black-
box IoT devices. IoTBec integrates Interface Signatures and
Vulnerability Signatures, leveraging the device interface struc-
tural features, network data packets, and open-source vulnera-
bility information to automatically discover potential recurring
vulnerabilities without relying on source code or firmware.

The following is [oTBec’s vulnerability detection procedure.
First, we propose a method for constructing the Interface
Signature (IS). We use a depth-first traversal algorithm to
extract the POST interfaces, network request data packets, and
associated UI context information for each interface, thereby
constructing a unique IS to achieve a structured representation
of device functional interfaces. Subsequently, we leverage
a vulnerability analyzer LLM with meticulously designed
prompts to assist in automatically generating the Vulnerability
Signature (VS). Specifically, IoTBec crawls official CVE [21]
descriptions and open-source vulnerability reports. Through
the LLM’s summarization capabilities, it efficiently extracts
key vulnerability characteristics, including CVE ID, vulnera-
bility type, affected POST interface, and critical parameter, to
construct VS. Finally, within the same device, [oTBec inno-

vatively proposes the Vulnerability Interface Signature (VIS)
by automatically extracting common information through
matching key fields, such as the POST interface between IS
and VS. This process effectively integrates device interface
information with vulnerability characteristics, providing a
conceptual approach and a concrete solution for C1 and C2.

To verify IoTBec’s effectiveness and efficiency, we designed
a complete experimental process. First, we constructed a
ground truth database of VIS for recurring vulnerability detec-
tion by selecting six products from each of the five mainstream
IoT vendors (Tenda, TOTOLINK, D-Link, TP-Link, Linksys).
We then selected 21 devices from the same product series as
a test set, for which only IS was constructed. For each IS in
the test set, we performed modular similarity matching against
signatures in the ground truth database. For each successfully
matched IS-VIS pair, we used the request data packet of the
test device’s IS to generate fuzzing seed inputs. Subsequently,
combining the matched VIS and corresponding open-source
reports, the fuzzing LLM generated targeted fuzzing payloads.
All payloads were executed automatically with the monitoring
strategies. The entire process—from crawling vulnerability
information, LLM-driven signature and payload generation, to
testing, monitoring, and alerting—achieved a high degree of
automation for solving C3.

Results of these experiments show that compared to existing
SOTA black-box IoT fuzzing methods, IoTBec discovered
an average of 7 times more vulnerabilities and obtained 53
CVE IDs. IoTBec achieved 100% alert precision and a recall
rate of 93.37%. Notably, during fuzzing, relying on prompts
and the LLM’s mutation capabilities, loTBec discovered
25 vulnerabilities beyond the ground truth. Among these, 4
vulnerabilities were confirmed not to have been reported in
prior CVEs for the corresponding products. loTBec not only
significantly improved the efficiency of black-box IoT device
vulnerability discovery methods but also, by combining
recurring vulnerability detection with fuzzing, broke through
the limitation of traditional recurring vulnerability detection to
only “find duplicated vulnerabilities”. The main contributions
of this paper for black-box IoT testing scenarios are as follows:

1) First to propose a recurring vulnerability detection
framework for black-box IoT devices: We designed
the IoTBec framework based on VIS, combining known
vulnerability characteristics with device interfaces to
build a high-quality VIS ground truth database. Us-
ing the matching algorithm and fuzzing strategy, we
achieved accurate and efficient detection of recurring
vulnerabilities in black-box scenarios.

2) Comprehensive Evaluation on real-world devices:
We conducted systematic experiments on 27 real-world
devices from five mainstream vendors. Experimental
results demonstrate that IoTBec discovered over 7 times
vulnerabilities compared to boofuzz and Snipuzz, high-
lighting its superior effectiveness.

3) Discovery of a large number of high-severity vul-
nerabilities: IoTBec discovered 183 vulnerabilities, 53
of which were newly assigned as CVE (average CVSS



3.x score [22] of 8.61), covering taint-based buffer over-
flow and command injection vulnerabilities, and web-
frontend vulnerabilities represented by CSRF, breaking
through the limitations of traditional recurring vulnera-
bility detection methods.

II. MOTIVATION AND THREAT MODEL
A. IoTBec’s Core Motivation

In practical IoT device testing scenarios, firmware is often
not publicly available or cannot be extracted [23], [24]. In
black-box testing scenarios, model-based detection methods
are often ineffective. Although Snipuzz [7] effectively im-
proved the efficiency of black-box IoT testing by using device
responses to mutate payloads, the responses from most IoT
devices are relatively simple and lack sufficient information to
guide fuzzing mutations effectively. This severe information
deficit prompted us to investigate how to leverage high-
quality, accessible information within a black-box scenario to
assist fuzzing. Through in-depth research and observation, we
identified two types of information with significant potential:

1) High-Quality Open-Source CVE Vulnerability Re-
ports: The number of CVEs for IoT devices has been
immense and has increased rapidly over the past five
years. Mainstream CNA organizations, such as MITRE
Corporation [25], typically require submitters to pro-
vide key information during the CVE review process,
including affected product versions, vulnerability types,
descriptions, and exploitation details.

2) IoT Device UI Context and Network Request Packet
Characteristic: IoT devices are commonly accompa-
nied by Ul management interfaces. Their Ul structure
and functional modules are highly readable, and simi-
lar functional modules across different devices exhibit
strong consistency. Concurrently, capturing network re-
quest packets during UI interaction can yield network
packets containing POST interface and parameter infor-
mation for corresponding functional modules.

Based on the accessibility of the aforementioned external
information, we also observed the phenomenon of recurring
vulnerabilities in IoT devices. Due to the highly repetitive
functional modules and interaction logic commonly found
in IoT firmware, recurring vulnerabilities frequently appear
across different physical devices. Taking the buffer overflow
vulnerability CVE-2022-38314 [26] in the Tenda AC18 router
as an example, this vulnerability occurs at the POST interface
/goform/saveParentControllnfo, which is used for fine-grained
internet access management based on specified times, dates,
URLs, etc. Through a deep analysis of related CVE reports
and actual devices, we discovered that this vulnerability exists
in at least 18 Tenda devices with similar functionality. The web
navigation-bar UI on these devices often includes the keyword
“Parent Control.” Furthermore, the data packets for requests
to /goform/saveParentControllnfo mainly include the critical
parameters required to trigger the vulnerability: deviceld,
urls, and time, as explicitly mentioned in the corresponding

CVE reports. The accessibility of these features provides the
necessary conditions for precise, multidimensional recurring
vulnerability detection in a black-box scenario. Similarly, a
buffer overflow vulnerability in loginauth, a standard function
used to handle login logic in TOTOLINK devices, affects at
least 16 products.

Numerous cases illustrate that recurring vulnerability de-
tection offers a unique and efficient avenue for discovery.
While the current SOTA method for recurring vulnerability
detection in IoT devices, FirmRec [20], is effective, it heavily
relies on firmware, which cannot be applied to the black-box
scenarios described above. Based on a deep understanding of
the prevalence of recurring vulnerabilities in IoT devices and
the consistency of their externally visible features, such as Ul
elements, POST interfaces, and network packet parameters, we
proposed the Vulnerability Interface Signature (VIS) method
and the IoTBec framework. Our goal is to leverage this
accessible external information in a black-box scenario to
construct a novel type of vulnerability signature. This signature
is then combined with fuzzing under a recurring vulnerability
detection framework, thereby enabling efficient vulnerability
discovery without relying on firmware or source code.

B. Availability of IoTBec’s Core Information Sources

The effectiveness of IoTBec depends on the quality and
accessibility of the black-box visible information sources.
Accordingly, we conducted a detailed availability analysis of
the two core information sources that loTBec builds upon: IoT
device UI context information and open-source CVE vulner-
ability information, to validate their widespread accessibility
in real-world IoT devices.

1) Open-Source CVE Vulnerability Information: In recent
years, the number of vulnerabilities in IoT devices has
continued to increase. Research indicates that over 50% of
devices possess critical security vulnerabilities that can be
directly exploited [27], and the number of publicly disclosed
vulnerabilities has increased by 136% between 2022 and
2024 [28]. For IoT device vulnerabilities, CVE descriptions
and vulnerability reports in references on the CVE official
website typically include crucial information, such as affected
product versions, vulnerability types, descriptions, and ex-
ploitation details. To verify the widespread availability of this
critical information for constructing Vulnerability Signatures,
we conducted a survey of 500 CVE IDs from four main-
stream manufacturers—Tenda, TOTOLINK, D-Link, and TP-
Link—between May 26th and 29th, 2025. The detailed survey
results are presented in Appendix subsection A, confirming
that the vast majority of CVE descriptions and their associated
reports contain the necessary details for building effective Vul-
nerability Signatures. Notably, CVEs issued by CNA VULDB
[29] surged between 2024 and 2025, accounting for over
40% of the total vulnerabilities from the four manufacturers
mentioned above during that interval. VULDB is a promising
CNA organization. Its procedures for vulnerability submission
are notably more comprehensive and transparent. Further-
more, VULDB offers faster email responses and consistently
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provides more standardized vulnerability descriptions while
ensuring the ready accessibility of reference links. Our survey
revealed that an exceptionally high proportion (approximately
93.2%) of CVEs assigned by VULDB between 2024 and
2025 contained all the necessary information for the VS
construction of IoTBec. From the perspective of industry
status and vulnerability growth trends, the signature gener-
ation mechanism based on CVEs and public vulnerability
reports is broadly applicable and long-term effective. It can
cover current mainstream devices and is also suitable for
the continuous evolution of future IoT vulnerability detection
needs. Open-source vulnerability information can be used to
generate high-quality Vulnerability Signatures, which provide
necessary support for subsequent payload construction during
the vulnerability fuzzing stage.

2) IoT Device Ul Context Information: Reports indicate
that IoT device management is typically carried out through
web Ul or mobile apps, which are used for registration,
control, and configuration [30]. Among currently vulnerable
IoT devices, routers account for over 50% [31], and the vast
majority of them are equipped with rich UI interfaces. We
researched 85 devices (including routers, extenders, network
bridges, and cameras) from 8 well-known IoT vendors. We
found that the device UI is not only universally present
but also plays a central role in device configuration and
management. Specifically, all of these IoT devices employ
a uniform Ul structure consisting of a navigation-bar and
hierarchical pages. This highly consistent design demonstrates
strong commonality and transferability, even across different
manufacturers, device types, and versions. To be precise,
the hierarchical path of navigation bar fields can accurately
delineate the device’s functional hierarchy and serve as a
unique identifier for functional interfaces, providing reliable
support for Interface Signature matching. Our study indicates
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that IoTBec’s use of the interface structure is not a restrictive
prerequisite but rather a natural choice, given the universal
presence and high degree of consistency of current IoT device
interfaces, which ensures its broad applicability across the vast
majority of IoT devices.

C. IoTBec’s Threat Model

This section outlines the capabilities and the research scope
of the IoTBec framework. Our threat model specifically tar-
gets black-box IoT device vulnerability detection scenarios,
with the fundamental assumption that the security analyst
cannot obtain the target device’s firmware or source code,
nor can they perform any form of physical access or internal
debugging. In this stringent black-box scenario, the analyst
primarily relies on network reachability, enabling them to
log in and access the target IoT device’s web management
interfaces and open network services via the internet or a
local network. The security analyst is assumed to possess
robust external information-gathering capabilities, including
accessing public CVE databases and their associated vulner-
ability reports, capturing web traffic and data packets using
proxy tools, and traversing the device’s web interface structure.
Furthermore, we assume the analyst can leverage the LLMs
to process unstructured vulnerability information and infer a
large number of potential attack vectors. Under these assumed
capabilities, the primary target of the analysis is to discover
recurring security vulnerabilities related to publicly disclosed
CVEs on new, insufficiently tested IoT devices; to identify
novel or variant vulnerabilities of these known issues; and
ultimately, to exploit these vulnerabilities to perform denial-
of-service or command execution on the devices. loTBec is
specifically designed to assist security analysts in efficiently
and automatically identifying remote vulnerabilities triggered
via web interfaces, such as buffer overflows and command
injections, within this defined threat model.
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III. METHODOLOGY

This section will elaborate on the technical design and al-
gorithmic implementation of the IoTBec framework. Figure 1
illustrates the overall architecture of IoTBec, whose workflow
primarily consists of the following three stages:

1) Information Collection and Signature Generation:
IoTBec acquires and generates Vulnerability Signatures
(VS) and Interface Signatures (IS) from the POST
interface, network packets, and public CVE reports of a
subset of IoT devices.

2) Vulnerability Interface Signature (VIS) Construction
and Recurring Vulnerability Matching: IoTBec inte-
grates the IS and VS into the VIS and creates a ground
truth database. For a device under test, it extracts its IS
and matches it against a ground-truth database using an
algorithm to identify potential recurring vulnerabilities.

3) LLM-Driven Fuzzing and Vulnerability Validation:
For each matched recurring vulnerability, IoTBec uti-
lizes the fuzzing LLM to generate and execute fuzzing
payloads, and it validates the vulnerability trigger
through a monitoring module.

JoTBec achieves end-to-end automation, from information
acquisition to vulnerability validation, without any reliance on
the target device’s firmware or source code. The following
subsections detail the signature design, the signature matching
algorithm, and the LLM-driven fuzzing strategy.

A. Signature Design

This subsection will detail the structure of the three core
signatures within IoTBec.

1) Vulnerability Signature(VS): For both the VS discussed
in this section and the IS detailed later, [oTBec strictly adheres

to the principle of using only information accessible within
the threat model. Given that firmware and source code are
inaccessible, leveraging open-source CVE information to cre-
ate Vulnerability Signatures is the optimal choice. Typically,
a Proof of Concept (PoC) for an IoT device vulnerability
contains two key components: the POST interface and the
payload. Combined with the affected product versions, this
set of information can precisely characterize a specific vul-
nerability. As illustrated in Figure 2, for each open-source
CVE, the VS we designed includes the following key fields:
CVE ID, vendor, affected product, vulnerability type, POST
interface, and critical parameters. IoTBec opts for “critical
parameters” instead of complete payload information because
many public vulnerability reports do not directly disclose
the full exploitation payload. In contrast, critical parameters
are necessary conditions for triggering the vulnerability, and
their availability is more stable and widespread. These critical
parameters, in combination with the network packets from the
IS, will jointly guide the fuzzing LLM to construct the final
exploitation payload intelligently.

IoTBec automatically generates these JSON-formatted Vul-
nerability Signatures using a vulnerability analyzer LLM. We
first obtain the official CVE description from https://cve.mitre.
org and retrieve associated public vulnerability reports (e.g.,
vendor security advisories or third-party research reports)
from its references section. Subsequently, we use a specially
designed prompt to guide the LLM in performing information
extraction and structuring. In this prompt, the inputs include
the CVE description and the full text of the vulnerability
report, explicitly instructing the LLM to assume the role of
a cybersecurity analyst. Its task is to extract or infer the
aforementioned VS fields and to output the result exclusively
in a strictly defined JSON object format. The prompt provides
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specific instructions, for instance, directing the LLM to find the
POST interface within the PoC section of a report and to look
for terms like “parameter” or “argument” in the vulnerability
explanation. If a field is not explicitly mentioned in the text,
the LLM is instructed to populate it with an empty string.
This fine-grained guidance ensures precise extraction of key
information from descriptions and vulnerability reports. Even
when faced with difficulties such as broken links or brief
descriptions in older reports, the vulnerability analyzer LLM
can still maximize the completeness of the signature based on
the available information.

2) Interface Signature(1S): In the black-box vulnerability
testing of IoT devices, interfaces often serve as the key entry
point for discovering vulnerabilities. Besides the affected ven-
dor and product, IoTBec’s IS is primarily composed of three
components: the POST interface, the parameters in the packet
(specifically, only parameter names), and context information
from the device’s UL

The POST interface is the most direct and vital identifier
for an interface. Concurrently, we use the structure and content
of the data packet as a seed for subsequent fuzzing, and we
record its data format in the IS. Notably, for the data packet,
we include only the parameter names in the IS, excluding
their specific values. This decision is based on two primary
considerations:

1) The dynamic and unstable behaviors of parameter
values: The parameter values for an IoT device’s inter-
face often change with each packet capture. They lack
sufficient stability and objectivity to serve as a reliable
feature of the interface.

2) Optimizing the generalization capability of the LLM:
A data packet with specific values could, to some extent,
constrain the generalization capability of the LLM. The
parameter values obtained from packet captures typi-
cally lack a reference value for vulnerability discovery.
Conversely, by using the critical parameter information
provided by the VS and the context from the vulnerabil-
ity report, the LLM can more effectively mutate high-
quality payloads.

In addition to the POST interface and the network data
packet, the navigation-bar path and trigger button information
from the device’s Ul are also critically important. Taking the
Tenda ACI18 router as an example, the two POST interfaces
/goform/SetNetControlList and /goform/setPptpUserList are
formally similar, and their data packet parameters (e.g., both
are named [ist) are identical. These two interfaces can easily
lead to confusion during the subsequent signature matching
algorithm. However, the contextual information from the de-
vice’s Ul corresponding to these two interfaces is significantly
different: /goform/SetNetControlList corresponds to the ‘Save’
button on the ‘Bandwidth Control’ sub-page under ‘Advanced
Settings’, while /goform/setPptpUserList corresponds to the
‘+New’ button on the ‘PPTP Server’ sub-page under “VPN.
By characterizing the interface’s corresponding navigation-bar
path and trigger button field, we can more accurately represent
the unique functional context of the interface. This approach

enables us to effectively distinguish between situations where
the back-end interface and the data packet appear similar but
serve different functions. As a result, it significantly boosts
the precision of the IS and reliability of the matching process.
The construction process for the IS is illustrated in Figure 3.

3) Vulnerability Interface Signature(VIS): The VIS is at
the core of the IoTBec framework. It is designed to bridge
the gap between abstract vulnerability knowledge (VS) and
specific device interface details (IS), thereby enabling precise
recurring vulnerability detection in black-box scenarios. For
a given device, IoTBec associates the extracted VS with its
corresponding IS using the affected vendor, product, and POST
interface as key linking fields. We integrate this information
through a logical union operation, successfully combining
the vulnerability’s characteristic features with the interface’s
specific information. This forms a more comprehensive and
indicative signature, providing both the conceptual approach
and concrete solution for C1 and C2.

Ultimately, a complete VIS contains the following key
fields: vendor, affected product, POST interface, form param-
eter (parameter names only with parameter format), and the
UI navigation-bar path and trigger button field. Through this
meticulously designed fusion, the VIS not only inherits the
precise description of the vulnerability type and parameters
from the VS but also incorporates the unique characterization
of the interface’s function and UI context from the IS. This
ensures that during the subsequent signature matching process,
interfaces with the same or similar vulnerabilities can be
identified more accurately. It also provides an exact attack
vector and guidance on mutations for the fuzzing LLM.

B. Signature Matching Algorithm

This subsection describes the signature matching algorithm
used in IoTBec to identify potential recurring vulnerabilities,
as shown in Algorithm 1. The algorithm calculates a weighted
fuzzy similarity score between the IS of the device under test
and the entries in the ground truth database of VIS. A matching
decision is then made based on a predefined threshold.

To calculate this score, loTBec leverages the string fuzzy
matching capabilities provided by the rapidfuzz library to
independently score each key field in the signatures, which are
then aggregated according to predefined weights. Specifically,
for any two signature entries being compared (one IS from
the test device and one VIS from the ground truth), the
algorithm iterates through their common key fields. For each
field, it extracts its string representation and calculates a
fuzz.ratio similarity score between them (ranging from 0O to
100). This score is then multiplied by the predefined weight
corresponding to that field. After all the field scores are
weighted and accumulated, the sum is divided by the total
weight to yield the final weighted fuzzy similarity score.
Considerations for the Weights: To ensure a comprehensive
and precise matching process, we adopted a multidimensional
equal-weighting strategy. The three core sets of IS—the POST
interface, the form parameters with format, and the UI context
information—are assigned equal weights. Each set represents a
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distinct and indispensable dimension of an interface’s identity.
Furthermore, we observed that the complexity of device Ul
context, POST Interfaces, and the size of data packets can
vary significantly across different IoT devices. Therefore, the
equal-weighting strategy serves as a robust solution, ensuring
that no single feature is underestimated or overrated in the
matching process, which is crucial for precisely characterizing
and distinguishing interfaces and, consequently, identifying
recurring vulnerabilities accurately.

A match is identified when the weighted fuzzy similarity
score exceeds the threshold, indicating that the IS under test
may contain a recurring vulnerability similar to a known entry
in the ground truth database.

Selection of the Similarity Matching Threshold: Due to the
significant variations of the three core sets of IS, it is pretty
challenging to determine a single, “perfect” threshold that is
universally applicable to all situations. Through extensive real-
world testing and iterative validation, we found that a range
between 70 and 80 is most suitable. Ultimately, we set the
matching threshold to 75. This choice is intended to strike the
following balance:

1) Minimizing Irrelevant Signature Matches: A thresh-
old of 75 is sufficiently high to filter out irrelevant sig-
nature matches that lack effective guidance for crafting
mutations. By setting a relatively high threshold, loTBec
minimizes subsequent fuzzing attempts and improves
overall testing efficiency.

2) Enabling the Discovery of Novel Vulnerabilities: Im-
portantly, a threshold of 75 also permits the matching of

vulnerabilities that have a marginally weaker correlation
but still hold potential value. While these matches may
not represent recurring vulnerabilities, the similarity in
their interface characteristics and parameters is sufficient
to provide effective mutation strategies for the subse-
quent LLM-driven fuzzing. This greatly increases the
likelihood that IoTBec will discover novel and variant
vulnerabilities, surpassing the limitation of traditional
recurring vulnerability detection, which is confined to
“finding only duplicated” vulnerabilities.

Ultimately, the choice of a 75 threshold represents a strate-
gic compromise that balances the two competing objectives of
precision and novelty discovery.

C. LLM-Driven Fuzzing Strategy

After the signature matching algorithm identifies a poten-
tial recurring vulnerability in the device under test, IoTBec
proceeds to the vulnerability validation stage. The core of
this stage is LLM-driven fuzzing, which aims to intelligently
generate and execute highly targeted fuzzing payloads based
on the matched vulnerability information. The system iterates
through the IS of the device under test. If a particular IS
successfully matches a recurring vulnerability (represented
by VIS) in the ground truth database, IoTBec activates the
LLM-driven fuzzing module. At this point, the fuzzing LLM
assumes the role of a professional security fuzzing expert, and
its input includes the following key information:

1) Structured information of the matched recurring
vulnerabilities: This includes the detailed fields from



the VIS of the matched vulnerability, such as the POST
interface, critical parameters, and network packets.

2) The associated original CVE report text: The com-
plete, original CVE report provides the LLM with rich
context and potential exploitation details, supplementing
the semantic nuances and attack methods that the VIS
may not fully encompass.

These inputs collectively form the knowledge base for the
fuzzing LLM’s intelligent decision-making and payload con-
struction. The fuzzing LLM follows a meticulously designed
prompt to construct the fuzzing payloads in a series of steps:
Seeds Template Preparation: First, the fuzzing LLM an-
alyzes the data packet provided in the IS. This packet’s
parameters provide the LLM with a basic structural seeds
template for generating fuzzing payloads. This ensures that
the generated payloads maintain consistency with the target
interface’s expected input format, thereby improving their
parsability.

Intelligent Fuzzing Target Identification: The fuzzing LLM
intelligently identifies and prioritizes the targets for fuzzing.
It first prioritizes parameter mutation by targeting the key
parameters explicitly specified in the matched VIS. Notably,
suppose a target parameter that is expressly mentioned in
the VIS or vulnerability report is missing from the IS data
packets. In that case, the fuzzing LLM will proactively add
this parameter to the final payload structure for mutation. Sub-
sequently, leveraging its semantic understanding, the fuzzing
LLM further mutates other potentially vulnerable parameters
closely related to those explicitly indicated in the matched
VIS. Semantically related parameters are more likely to be
processed with similar code logic, thereby increasing the
likelihood of similar vulnerabilities, for instance, parameters
startlp and endlp, or security and security_5g. Furthermore,
drawing on our experience in vulnerability discovery, we also
provide the LLM with several parameter names commonly
associated with vulnerabilities (parameters containing key-
words such as name, urls, time, ip, and ssid) to enhance
the effectiveness of mutations. This intelligent identification
mechanism significantly broadens the scope of the fuzzing,
enabling it to discover potentially vulnerable parameters that
are not explicitly indicated in known vulnerability reports.

Targeted Payload Generation: The fuzzing LLM’s final task
is to construct a fixed number of distinct fuzzing payloads.
These payloads are highly targeted and diverse, with each one
typically focusing on mutating different parameters. Taking
overflow vulnerabilities as an instance, the fuzzing LLM uses
a uniform placeholder {payload} to avoid directly outputting
the actual overflow string (e.g., “A”*1000 ). This placeholder
precisely indicates the injection point for the actual fuzzing
string, offering significant flexibility by allowing a subsequent
fuzzing engine to insert various types of test data. To efficiently
reproduce known vulnerabilities, particularly for standard
crash reuse scenarios, the fuzzing LLM prioritizes ensuring
that its first generated payload is a replica of the parameter
names and values from the matched VIS. This approach
guarantees high-precision replay for known vulnerabilities and

provides a reliable baseline for subsequent mutated payloads.
These generated payloads are then automatically sent to the
target IoT device. IoTBec’s fine-grained monitoring module
(detailed in Appendix subsection B) monitors the device’s
responses and behavioral anomalies in real-time to determine
if a vulnerability has been successfully triggered.

The overall process of IoTBec provides a solution for C3. Its
efficiency and robustness in black-box IoT device vulnerability
detection will be comprehensively demonstrated and validated
in the next section—Evaluation.

Algorithm 1 Recurring Vulnerability Matching Algorithm
Require:
1: T={IS;}: target IS;
2: V= {VIS;}: VIS Ground Truth
3: W: field weights;
4: T: similarity threshold
Ensure: Matches : I.S; — {(VIS;, sim;;) | stim;; > 7}
5. function WEIGHTEDSIM(IS, VIS, W)
6: score < 0, weight < 0
7: F < fields(15) N fields(V1S)
8: for each f € F with w = W[f] do

9: s 4 fuzzy_ratio(IS[f], VIS[f])
10: score < score + § X w

11: weight < weight + w

12: end for

13: return score/weight if weight > 0 else 0
14: end function

15:

16: function RECURRINGMATCH(Z, V, W, 1)

17: Initialize empty map Matches

18: for 1S in 7 do

19: for VIS in V do

20: sim <~ WEIGHTEDSIM(IS, VIS, W)
21: if sim > 7 then

22: append (V1S, sim) to Matches[I5]
23: end if

24: end for

25: end for

26: return Matches

27: end function

IV. EVALUATION

A. Experiment Setup

We implemented IoTBec in approximately 4,500 lines of
Python code. Its core modules include: an information col-
lector based on Selenium 4.31.0 and Burp Suite Professional
v2023.4.5; a Vulnerability Signature generator, a signature
similarity matching engine, and a fuzzing payload generator;
and a back-end that integrates interaction with a simulated
environment and vulnerability alert monitor. For all LLM
operations within IoTBec, we used the general-purpose Large
Language Model, OpenAl gpt-4 [32], with the temperature
parameter set to 0.1 to ensure highly consistent output.



1) Vulnerability Signature Construction: Our VS construc-
tion process is as follows: For each CVE ID, we first obtain
its official description from cve.mitre.org and extract detailed
information from the public vulnerability reports linked in
its References field (e.g., vendor security advisories, third-
party security research reports, Exploit-DB entries, etc.).
Subsequently, in conjunction with structured prompts and
the vulnerability analyzer LLM, we automatically parse this
unstructured text. This process is designed to extract key
vulnerability features precisely—including the vulnerability
type, affected versions, the vulnerability’s POST interface, and
critical parameters—ultimately generating a JSON-structured
Vulnerability Signature.

2) Interface Signature Acquisition: For the construction of
an IS for a device under test, the process begins with two
manual preliminary steps: an analyst first obtains login authen-
tication, and the device’s Ul language is set or translated into
English. Following these steps, IoTBec then uses a depth-first
traversal to navigate all accessible interfaces, extracting their
contextual information of the hierarchical navigation path and
the key buttons. Subsequently, by configuring the browser’s
traffic to be routed through Burp Suite as an HTTP/HTTPS
proxy, we capture the raw network request triggered by
each functional interaction (such as a button trigger or form
submission). From this request, we extract the POST interfaces
and their associated parameter information. These network
data packets are then associated with the corresponding UI
contextual features to form a unique IS. This process ensures a
comprehensive and structured characterization of the device’s
interactive interfaces in fully black-box scenarios.

3) Experiment Environment and Device Selection: All ex-
periments were conducted on a Windows 11 host machine
equipped with an Intel Core i7-1260P CPU (12 cores, 16
threads) and 48 GB of RAM. The core logic of IoTBec,
including the acquisition of CVE and interface information,
LLM interaction, signature matching, and payload generation,
was executed directly on the host machine. Vulnerability
verification and monitoring were performed within an Ubuntu
22.04 LTS virtual machine running on VMware Workstation
Pro 17. This VM was allocated 4 CPU cores and 16 GB of
RAM. All tools used in the comparative experiments were
also run in this same Ubuntu VM environment. The maximum
execution time for all fuzzing tools was set to 6 hours.

Our experiments revealed that executing high-risk vulner-
ability tests on physical IoT devices may cause irreversible
damage. For instance, we discovered that the buffer overflow
vulnerability CVE-2024-42545 [33] caused a TOTOLINK
A3700R device to crash, rendering it unrecoverable even via
the physical reset button. As this vulnerability has been fixed
in the latest firmware version, we disclose this information
in our paper. To ensure the controllability and reproducibility
of our research, all vulnerability testing and validation were
conducted within a QEMU [34] system emulation environ-
ment. We used binwalk [35] to extract the target IoT device’s
firmware and obtain its filesystem, which we then used to
perform high-fidelity, full-system emulation within a QEMU

virtual machine. The QEMU was configured for each experi-
ment, including accurately matching the target device’s CPU
architecture (e.g., MIPS, ARM) and emulating the necessary
network cards and bridges. Although we used firmware to
set up the emulated environment, it must be emphasized
that IoTBec operates as a black-box tool throughout the
entire detection process. It only relies on accessing the IoT
device’s web interface, publicly available CVE descriptions,
and vulnerability reports for its input, which aligns with our
threat model.

We selected a total of 27 devices from five mainstream
[36]-[39] IoT vendors (Tenda, TOTOLINK, D-Link, TP-Link,
and Linksys) for our tests. Among these, 6 devices were
used to construct the ground truth database of Vulnerability
Interface Signatures, which serves as the baseline for recurring
vulnerability detection. The remaining 21 devices were used
as the test set to evaluate IoTBec’s vulnerability discovery
capabilities. We consulted vendor vulnerability information
from VULDB to select products with a high number of
reported vulnerabilities for constructing the ground truth set
(e.g., Tenda AC18). The devices for the test set were chosen
from the same product series as those in the ground truth set
(e.g., Tenda AC5-ACI10, AC15).

B. Vulnerability Detection Experiment

1) VIS Ground Truth Construction: To construct a ground-
truth baseline for recurring vulnerability detection, we selected
five IoT vendors that are representative across both market
share and the number of reported vulnerabilities: Tenda, TO-
TOLINK, D-Link, TP-LINK, and Linksys. From 6 products
across these vendors, we collected 261 CVE IDs over the last
5 years. We used this data to construct a ground truth database
of VIS.

During the VS construction process, we utilized the vul-
nerability analyzer LLM to parse the descriptions and public
vulnerability reports associated with these CVE IDs. The
experimental results indicate that the vulnerability analyzer
LLM effectively extracted structured Vulnerability Signatures
from 90.8% of CVE descriptions and vulnerability reports. The
few instances of extraction failure were primarily due to overly
brief CVE descriptions, missing associated vulnerability re-
ports, or, in a tiny number of cases, erroneous information in
the CVE description or report. Concurrently, we successfully
extracted IS from all accessible interfaces of the 6 products to
construct the ground truth. This success ensures the feasibility
of IoTBec’s method for generating valid VIS by integrating
the VS and IS.

In terms of efficiency, the vulnerability analyzer LLM
required only about 5 seconds on average to extract a VS for a
single CVE ID, with the prompt and output token counts typ-
ically not exceeding 1,200 and 200, respectively. In contrast,
extracting all IS for a single device took approximately 1,200
seconds on average, a process that does not require the LLM
and is handled entirely by the information collector. Table I
details key data for a subset of vendors and products during the
ground truth construction process, where Time represents the



total duration for extracting all VIS for a single device. This
further validates the effectiveness and efficiency of IoTBec in
information extraction.

2) Vulnerability Detection Based on Ground Truth: For the
test set, we selected IoT devices from the same product series
as those in the ground truth for vulnerability testing. For each
device in the test set, we extracted its IS using the same method
during the ground truth construction phase. The success rate
for IS extraction was 86.42%. Notably, for 2 of the devices,
we were unable to extract complete IS because their data
packets were AES-encrypted. These 2 devices will be tested
and analyzed separately in our robust experiment.

We then performed algorithmic matching between the IS of
the devices under test and the VIS in the ground truth database.
The vulnerability detection results for these test devices are
summarized in Table II, where IS represents the number of
IS successfully extracted from the device’s interfaces. Match
represents the number of known CVEs in the ground truth
database that the product’s IS matched. This directly reflects
IoTBec’s ability to identify known recurring vulnerabilities.
Upon a match, IoTBec invokes the fuzzing LLM. The LLM
uses the network data packet corresponding to the IS as a
seed for fuzzing, mutating it in conjunction with the matched
recurring vulnerability information VIS and its generalization
capabilities. For each Match, the LLM generates 7 distinct
test payloads. The LLM Payloads shows the total number of
payloads generated by the fuzzing LLM during device testing.
Typically, for payloads generated from a single match, the
LLM’s input prompt tokens do not exceed 2,500, and the
output tokens do not exceed 250. Alarm records the total
number of alerts issued by IoTBec’s monitoring module, while
RC represents the number of root-cause vulnerabilities found
among those alerts. We determine a root-cause vulnerability
by a unique tuple (POST interface, parameter) associated with
each alert. Each identified RC is then manually verified to
confirm its validity and distinctness. 7P represents the true
positive RC vulnerabilities discovered by IoTBec. In this
experiment, loTBec’s alert precision reached 100%, a result
attributable to its robust monitoring rules. Assigned as CVE
denotes the number of these vulnerabilities that have been
assigned a CVE number.

The execution time, denoted as 7ime, includes the IS
matching time, the LLM payloads generation time, and the
test payload transmission time. Since the response time for the
same payload can vary across IoT devices due to differences in
architecture and functionality, we adopted a uniform, reason-
able time measurement method. We counted the total number
of requests sent to the target device and factored this into the
total duration at a calculated rate of one response per second.
To ensure thorough payload verification, IoTBec uses Python’s
requests library to repeatedly send each payload generated by
the LLM to the test IoT device 7 times. If IoTBec’s monitoring
module issues an alert during this process, the testing for
that specific payload is immediately terminated; otherwise,
all 7 transmissions are completed. Appendix subsection C
presents the detailed results of the vulnerabilities discovered
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by IoTBec. In terms of efficiency, IoTBec required an average
of 101 seconds and 11 test payloads to discover each root-
cause vulnerability throughout the experiments. This demon-
strates the high detection efficiency of our black-box recurring
vulnerability detection framework.

C. Comparison Experiment

To comprehensively evaluate IoTBec’s vulnerability dis-
covery capabilities in black-box scenarios, we conducted
a comparative experiment against two representative, open-
source black-box fuzzing tools: boofuzz and Snipuzz. It is
important to note that this comparative experiment did not
include grey-box or other black-box testing tools that require
firmware acquisition (such as Firm-AFL and Labrador), as
their testing prerequisites differ from IoTBec’s real-world
black-box, firmware and source-code independent paradigm.
This comparative experiment primarily focuses on two met-
rics: the number of vulnerabilities discovered (Vulnerability)
and the recall rate (Recall). For the evaluation of the recall
rate, since it is impossible to pre-determine the total number
of vulnerabilities on a device to serve as an absolute ground
truth, we defined the ground truth for this experiment as
the total set of root-cause vulnerabilities discovered by all
participating tools combined (IoTBec, boofuzz, and Snipuzz).
Based on this collective ground truth, we calculated the
proportion of vulnerabilities found by each tool and used it
as the recall metric. Table III presents a detailed comparison
of IoTBec against the existing black-box fuzzing tools in terms
of vulnerability discovery capability and recall rate.

Experimental results show that IoTBec! (using gpt-4 as
the fuzzing LLM) discovers over 7 times more vulnerabil-
ities than boofuzz and Snipuzz, with a 93.37% recall rate.
While IoTBec? (using gpt-3.5-turbo) also achieves a 74.49%
recall rate, IoTBec®’s recall (using chatgpt-4o-latest) is al-
most identical to that of IoTBec!. Based on these results,
IoTBec’s high efficiency compared to existing tools stems
from two main factors. First, in terms of detection scope,
boofuzz and Snipuzz must perform exhaustive testing on every
interface, resulting in extensive detection with low efficiency.
In contrast, IoTBec utilizes its unique VIS mechanism to
perform focused testing only on interfaces that match a known
recurring vulnerability. This approach significantly reduces
the detection scope, enabling deeper exploration and higher
discovery rates. For example, on the Tenda FH1201, boofuzz
only found the overflow vulnerability in the page parameter
of the /goform/RouteStatic interface after exhaustive fuzzing.
In contrast, [oTBec matched the IS of /goform/RouteStatic
with the VIS of vulnerability CVE-2023-37714 [40] in Tenda
FH1202 and discovered the recurring overflow vulnerability in
the page parameter with the first payload. By focusing on the
/goform/RouteStatic interface, IoTBec successfully triggered
one additional overflow vulnerability in the mitlnterface pa-
rameter with the fifth payload generated by the fuzzing LLM.
This vulnerability has been assigned as CVE-2024-41464 [41],
which is rated as CRITICAL with a CVSS 3.1 score of 9.8.
Second, IoTBec employs a more intelligent payload generation



TABLE I

OVERVIEW OF VIS GROUND TRUTH CONSTRUCTION

D \ Vendor Product CVE VS Interface IS Time(s) VIS

1 Tenda ACI18 V15.03.05.05 87 75 42 42 1702 31

2 Tenda FH1202 V1.2.0.14_V1.2.0.14 40 39 43 43 1490 8

3 TOTOLINK  A3700R V9.1.2u.5822_B20200513 30 27 30 30 1187 17

4 D-Link DIR-816A2_FWv1.10CNBO05 43 35 22 22 893 5

5 TP-Link TL-WR84IND_V11_150616 8 8 36 36 1345 2

6 Linksys RE7000 1.1.05.003 53 53 8 8 847 6

TABLE II
IOTBEC VULNERABILITY DETECTION RESULTS

ID ‘ Vendor Interface IS Match Alarm RC TP  Assigned As CVE LLM Payloads Time(s)
1 Tenda 336 262 148 452 136 136 122 1701 9056
2 TOTOLINK 61 61 7 16 4 4 4 84 480
3 D-Link 36 36 6 17 5 5 5 56 290
4 TP-Link 80 80 5 4 2 2 2 35 227
5 Linksys 32 32 12 42 36 36 36 168 924

strategy. It not only utilizes matched vulnerability information
for efficient payload reuse but also leverages the fuzzing LLM
to intelligently infer potential vulnerabilities in associated pa-
rameters. For instance, in our experiment, the IS of Tenda AC7
/goform/WifiExtraSet interface matched the Tenda AC18 VIS
with the critical parameter of wpapsk_crypto_5g. Based on its
semantic understanding capabilities, the fuzzing LLM in IoT-
Bec tested the associated wpapsk_crypto parameter and newly
discovered a vulnerability assigned as CVE-2024-2899 [42],
which is rated as HIGH with a CVSS 3.1 score of 8.8. In con-
trast, the payload mutation strategies of boofuzz and Snipuzz
lack this kind of intelligent guidance, making them unable to
discover such vulnerabilities within a limited timeframe.

D. Robust Experiment

We also performed a robustness test on IoTBec. In previous
tests, we identified two devices whose captured data packets
were AES-encrypted, preventing us from obtaining complete
cleartext data. In this scenario, other black-box testing tools
were rendered almost entirely ineffective. However, IoTBec
was still able to utilize the incomplete IS for algorithmic
matching and successfully discovered 16 RC vulnerabilities.
The experimental results are presented in Table IV. This result
demonstrates IoTBec’s significant resilience when faced with
the challenging scenario of encrypted data streams.

Additionally, we evaluated the robustness of IoTBec when
faced with missing or erroneous CVE reports. As described
in the VIS Ground Truth Construction section, our dataset
already included cases where CVE descriptions were overly
brief, public vulnerability reports were missing, or the CVE
details themselves contained inaccuracies. Despite these dif-
ficulties, IoTBec still demonstrated strong robustness when
extracting VS from this imperfect information.

E. Ablation Experiment

To better understand the impact of each key field within
the IS on IoTBec’s performance, we conducted an ablation
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experiment on several representative devices from each vendor.
We designed four experimental groups, each compared against
a baseline: the baseline group used the complete IS for
matching. The other three groups each involved removing
one key component from the IS: the POST interface, the
data packet (form-data), or the corresponding UI context
information (navigation-button). Table V presents the ablation
experiment results of Tenda AC7.

Results illustrate that excluding essential fields from the
IS leads to a pronounced increase in the total number of
matched CVEs in the ablation groups, as reflected by ele-
vated Match counts. This indicates that the removal of these
fields leads to over-generalization in the matching process,
resulting in a higher number of meaningless matches with
irrelevant vulnerabilities. Consequently, [oTBec must expend
more resources for the fuzzing LLM to generate a larger
number of fuzzing payloads. However, despite this increased
investment of computational resources, the number of actual
RC vulnerabilities discovered does not increase. This directly
impacts the overall efficiency of the tool, increasing the LLM
Payloads and the Time for vulnerability detection accordingly.

As stated in the section III regarding the rationale for
selecting these fields, the results of this ablation study provide
strong evidence that the POST interface, the data packet (form-
data), and the UI context information (navigation-button) all
play a crucial role in the comparison of IS. Collectively, they
ensure the specificity of the signatures and the precision of the
matching process, which effectively guides subsequent LLM-
driven fuzzing to achieve efficient vulnerability discovery.

V. DISCUSSION AND LIMITATION

The successful implementation of IoTBec validates the
feasibility and high efficiency of recurring vulnerability detec-
tion on black-box IoT devices. Our experiments confirm that
this paradigm significantly enhances the efficiency of black-
box testing. Compared to SOTA tools boofuzz and Snipuzz,
IoTBec discovered over 7 times more vulnerabilities. This



TABLE III
COMPARISON EXPERIMENT WITH SNIPUZZ AND BOOFUZZ

Vendor | Vulnerability | Recall (%)
‘ Snipuzz  boofuzz  IoTBec! ‘ Snipuzz  boofuzz IoTBec! ToTBec? IoTBec®
Tenda 6 17 136 4.08 11.56 92.52 73.46 93.88
TOTOLINK 1 2 4 20.00 40.00 80.00 60.00 80.00
D-Link 1 3 5 16.67 50.00 83.33 83.33 83.33
TP-Link 0 0 2 0.00 0.00 100.00 100.00 100.00
Linksys 5 4 36 13.89 11.11 100.00 77.78 100.00
SUM 13 26 183 6.63 13.27 93.37 74.49 93.88
TABLE IV

EXPERIMENTAL RESULTS OF ROBUSTNESS FOR ENCRYPTED DATA PACKETS

ID ‘ Product Interface Match Alarm RC TP LLM Payloads Time(s)

1 Tenda AC8 V4.0 V15.03.05.05 37 20 47 14 14 203 1508

2 Tenda AC10 V4.0 V15.03.05.05 37 20 10 2 2 203 1691
TABLE V

EXPERIMENTAL RESULTS OF ABLATION FOR THE KEY FIELDS SET OF IS

ID \ Product Ablation Match Alarm RC LLM Payloads Time(s)
1 AC7 Baseline 31 76 16 217 1413
1 AC7 no POST interface 34 85 16 238 1552
1 AC7 no form-data 32 68 16 224 1528
1 AC7 no navigation-button 37 88 16 252 1649

work also charts a clear path for broader research in the
security field. For instance, the external VIS perspective could
be applied to enhance white and grey-box testing, and the core
concept could be extended to other black-box scenarios such
as Industrial Control Systems (ICS).

Despite its effectiveness, IoTBec has several limitations
due to the stringent black-box scenarios. First, the frame-
work’s applicability depends on the availability of two core
information sources: open-source CVE reports and device UL
Although our survey (detailed in subsection II-B) confirms
the widespread availability of information, IoTBec’s utility
would be significantly constrained if a target device’s vendor
lacks a sufficient history of published CVEs or the device
UI. Additionally, the lack of firmware and source code limits
the scope of detection, preventing IoTBec from identifying
hidden interfaces or debug paths unlinked within the frontend
Ul Second, due to variations in Ul structure and POST
interfaces across different vendors, IoTBec’s effectiveness is
currently limited to intra-vendor recurring vulnerability detec-
tion. Cross-vendor detection is generally unreliable with the
current design. We will address this limitation by optimizing
our signature design and matching algorithms to improve
generalization and enable reliable cross-vendor detection in
future work. Finally, IoTBec still requires manual intervention
for key processes, such as the preliminary device setup in
subsubsection IV-A2 and the initial selection of devices for
the ground truth database. IoTBec’s performance also depends
on the capabilities of the specific LLM. The framework relies
on the LLM for vulnerability signature extraction and targeted
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payload generation. Therefore, selecting a sufficiently power-
ful model, such as OpenAl gpt-4, is essential for achieving
optimal detection performance.

VI. RELATED WORK
A. IoT Firmware Vulnerability Detection

In recent years, as IoT devices have become widely used
across various domains, their security threats have grown in-
creasingly prominent. Currently, vulnerability discovery meth-
ods for IoT devices primarily fall into two categories: static
analysis and dynamic analysis, collectively known as model-
based vulnerability detection. Static analysis involves exam-
ining IoT device firmware or source code to find potential
security vulnerabilities without executing the program. Typical
static analysis methods include symbolic execution and taint
analysis, primarily used for discovering taint-based vulner-
abilities, such as KARONTE [5] and SaTC [6]. However,
these methods often suffer from path explosion, leading to
low analysis efficiency [43]. In contrast, dynamic analysis
detects program behavior during actual execution, triggering
anomalies through input mutation and other techniques to
uncover exploitable security flaws. These methods typically
require execution within simulated or rehosted firmware envi-
ronments [10], [44]. Yet, due to the complexity of emulating
complete systems and external interactions, their operation is
complex, and applicability is limited. Furthermore, fuzzing,
a standard dynamic analysis method, heavily relies on high-
quality initial seeds and effective mutation strategies. In black-
box IoT firmware scenarios, the lack of firmware information



makes it extremely challenging to acquire broad-coverage
seeds. Additionally, fuzzing often depends on Sanitizer [45]
tools (e.g., AddressSanitizer [46], UndefinedBehaviorSanitizer
[47]) for runtime anomaly monitoring. However, deploying
and running these tools on resource-constrained and highly
enclosed black-box IoT devices is very difficult, which further
limits the effectiveness of fuzzing.

In the domain of grey-box and black-box IoT device vulner-
ability discovery, dynamic fuzzing is currently widely adopted.
For instance, FirmAFL targets embedded firmware and can
achieve efficient vulnerability discovery when combined with
device emulation. Boofuzz [11] provides an automated net-
work protocol fuzzing framework; Snipuzz optimizes muta-
tion strategies through message fragment feedback, enabling
testing and zero-day vulnerability discovery without firmware.
However, in black-box testing with limited prior information,
the efficiency and vulnerability coverage of these tools are
generally limited. LABRADOR’s core idea is to leverage
string information from device responses to infer internal
firmware execution paths, thereby assisting vulnerability dis-
covery. Nevertheless, there is still a gap between this method
and black-box testing scenarios, for LABRADOR requires the
static analysis of the firmware, including string extraction and
the construction of simplified control flow graphs.

In summary, while existing black-box IoT vulnerability
detection tools have improved the ability to discover new
vulnerabilities, they generally suffer from persistent issues
such as reliance on firmware (even partial reliance) and limited
capabilities for retesting known vulnerabilities. This makes
them insufficient to meet the demands for efficient, automated,
and recurring detection in completely black-box, firmware and
source-code independent scenarios.

B. Code Clone and Recurring Vulnerability Detection

Code Clone Detection, a classic software engineering tech-
nique, has long been used to identify redundant and repetitive
logic in source code. Mainstream methods include string-
based matching [48], Abstract Syntax Tree (AST) structure
comparison [49], and clone detection based on Program De-
pendency Graphs (PDGs) [50]. These methods are widely
applied in scenarios such as code refactoring, vulnerability
propagation analysis, and software maintenance. However,
virtually all of them rely on firmware or source code, making
them challenging to migrate to black-box IoT device scenarios
where source code is unavailable.

For IoT devices, recurring vulnerability detection, as an
essential supplement to model-based vulnerability detection,
has been proven to enhance vulnerability discovery capabilities
effectively. This technique leverages information from known
vulnerabilities to discover new ones with similar flaws, thereby
significantly boosting the effectiveness of existing detection
tools. For example, Tracer [51] increased the vulnerability
detection rate of CodeQL by 55.8%, while MVP [52] de-
tected an additional 97 vulnerabilities beyond those detected
by existing tools. VulMatch [53] focuses on binary-level
Vulnerability Signature extraction, enabling it to “precisely
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locate vulnerability-related binary instructions to generate a
vulnerability signature” and achieve vulnerability discovery
in commercial-grade firmware. Recurring vulnerabilities also
appear frequently in IoT firmware. One of the main reasons
for this phenomenon is the widespread adoption of third-
party components and open-source libraries, which are repeat-
edly integrated across multiple vendors and device models.
For example, an analysis of over 6,000 firmware images
by AutoFirm [54] found that “67.3% of firmwares still use
outdated third-party libraries, with an average patch delay of
up to 1.34 years.” FirmSec [55] further demonstrated that in a
dataset of over 34,000 firmware images, component analysis
revealed 128,757 vulnerabilities originating from third-party
components. This clearly illustrates the reality of code reuse,
which repeatedly leads to vulnerabilities appearing across
different products and vendors. Furthermore, the IoT firmware
supply chain has long suffered from a component lag issue. A
report from Palo Alto Networks [56] points out that “many IoT
firmwares still use outdated or deprecated libraries/components
that are not updated in a timely manner; once a vulnerability is
discovered in such a component, it affects numerous devices.”
Microsoft has further noted that “the continued use of the
deprecated Boa web server SDK is widespread across multiple
IoT products, constituting a long-term risk” [57].

However, existing recurring vulnerability detection methods
all rely on firmware binaries or source code. They are primarily
based on static feature matching, making them difficult to
apply in a completely black-box IoT device scenario. In
real-world testing scenarios involving physical devices where
source code, binaries, or even the entire firmware are unavail-
able, achieving efficient and automated recurring vulnerability
detection remains a critical and urgent technical challenge for
the field.

VII. CONCLUSION

This paper proposes IoTBec, an innovative, firmware and
source-code independent framework for recurring vulnerability
detection in black-box IoT devices. Its core lies in the unique
concept of the Vulnerability Interface Signature (VIS), which
is constructed entirely from black-box observable information:
device POST interface, network data packets, Ul context
information, and open-source vulnerability reports. By deeply
integrating the VIS with LLM-driven fuzzing, loTBec achieves
an end-to-end automated vulnerability detection process, elim-
inating any reliance on firmware or source code.

The experimental results confirm the superior performance
of IoTBec. Specifically, it significantly surpasses existing
black-box SOTA methods in the number of discovered vul-
nerabilities while maintaining high alert precision. This ef-
fectiveness is underscored by the identification of high-risk
vulnerabilities, leading to the successful assignment of 53 new
CVE IDs. Furthermore, IoTBec demonstrates robustness when
processing both encrypted data packets and non-ideal, real-
world CVE reports. Finally, our ablation studies validate the
essential contribution of the key fields within the Vulnerability
Information Structure (VIS).



Through its unique firmware and source-code independent
paradigm, IoTBec opens up a new direction in the field of IoT
security and has significant, far-reaching practical implications
for enhancing device security.
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APPENDIX

A. Survey on the Availability of IoT CVE Information for
Vulnerability Signature Construction

To validate the feasibility of the Large Language Model
(LLM)-driven automated vulnerability signature construction
proposed in this paper, we conducted a systematic sur-
vey of the availability of CVE information for Internet of
Things (IoT) devices. This investigation selected four main-
stream manufacturers—Tenda, TOTOLINK, D-Link, and TP-
Link—each representative in terms of market share and the
number of known vulnerabilities.

We surveyed between May 23 and May 26, 2025, Beijing
time, analyzing a total of 500 CVE IDs. For each manu-
facturer, we randomly sampled 125 CVEs, comprising 50
CVE IDs published between 2024 and 2025, and 75 CVE
IDs published in 2023 or earlier. This sampling ratio was
chosen based on observed trends: as of July 29, 2025, Beijing
time, out of 4239 CVEs from these four manufacturers, 1544
(approximately 36%) were discovered within the last eighteen
months. This indicates a significant recent increase in IoT-
related vulnerabilities, making it essential to increase the
proportion of newer CVEs in our survey.

We used an automated crawler to retrieve the official De-
scription for each CVE ID from cve.mitre.org. We parsed its
References field to obtain potential vendor security advisories,
third-party reports, security blogs, and other detailed informa-
tion. Subsequently, we manually assessed whether this infor-
mation included the critical fields required for vulnerability
signature construction: the affected POST endpoint and key
parameter information needed by mutation. If the Description
or associated report explicitly mentioned parameters crucial
for vulnerability triggering, it was marked as “containing key
information.” Notably, many third-party reports even provided
complete Proof-of-Concepts (PoCs), which significantly sup-
port the automated extraction of vulnerability signatures.

The survey results, detailed in Table VI, show the suc-
cess rate of obtaining key information from References, De-
scription, and a combination of both. Our survey reveals
a significant improvement in the quality of IoT vulnerabil-
ity reports. Although early CVE reports (2023 and earlier)
presented challenges with information completeness and link
accessibility, 63% of these CVE IDs still contained all key
information required for vulnerability signatures. More im-
portantly, the IoT domain has a large number of recurring
vulnerabilities, many of which have been rediscovered as
variants in other devices. With the continuous development
of the cybersecurity community and the increasing maturity
of vulnerability disclosure practices, the quality of reports
from the past two years (2024-2025) has seen a remarkable
leap. For CVEs published between 2024 and 2025, we found
that up to 84% of cases could obtain all necessary key
information for vulnerability signatures from their Description
and References. This substantial improvement highlights the
industry’s progress in standardizing and making vulnerability
information more accessible.
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Particularly noteworthy is the explosive growth in CVEs
issued by CNA VULDB in the IoT domain during 2024-
2025, accounting for over 40% of the total vulnerabilities from
the four manufacturers above during that period. VULDB is
a highly promising CNA organization; compared to MITRE
Corporation, it offers advantages such as API-supported sub-
mission, faster response times, and transparent processes.
VULDB actively assists vulnerability submitters in uploading
more comprehensive and standardized CVE Descriptions and
ensures the accessibility of reference links. In our survey
of 200 CVEs from 2024-2025, 88 were issued by VULDB,
and among these, 82 (approximately 93.2%) contained all the
necessary information for signature construction.

These survey results powerfully demonstrate that the avail-
ability of high-quality open-source vulnerability information
is continuously improving. With the rise of emerging CNA
organizations like VULDB and the increasing industry em-
phasis on vulnerability disclosure standardization, we have
strong reasons to believe that future CVE reports will be more
comprehensive and standardized, and phenomena such as CVE
misreporting and incomplete vulnerability information will be
significantly reduced. This provides a solid data foundation
and the potential for sustainable development for IoTBec’s
LLM-driven automated vulnerability signature construction.

B. IoTBec’s Monitoring Rules

This appendix details the rigorous monitoring strategies
IoTBec employs to accurately detect vulnerabilities in the
QEMU full-system simulation environment. The design of
these strategies stems directly from extensive experience in
reproducing vulnerabilities and from deep integration with our
simulation setup, ensuring the precision and reliability of our
research findings.

1) Buffer Overflow Monitoring Rules: For detecting buffer
overflow vulnerabilities in Tenda, TP-Link, and D-Link de-
vices, our monitoring mechanism specifically targets service
crashes. In a QEMU full-system simulation, a successful buffer
overflow attack typically causes critical services (e.g., the
httpd daemon) to crash. IoTBec constructs and sends request
payloads via Python’s requests module. Upon successful ex-
ploitation and service crash, the affected device’s IP address
becomes inaccessible, causing the Python requests module to
capture connection exceptions. The monitor precisely captures
these connection exceptions, interpreting them as indicators of
a buffer overflow vulnerability hit.

For buffer overflow vulnerabilities in TOTOLINK devices,
experiments showed that successful exploitation doesn’t al-
ways result in a complete system crash. Instead, the vulnerable
service returns an HTTP 500 Internal Server Error response
code upon successful exploitation. IoTBec’s monitoring mod-
ule also supports using this specific response code as an
indicator for buffer overflow vulnerability hits.

2) Command Injection Monitoring Rules: To detect com-
mand injection vulnerabilities across Tenda, TOTOLINK, TP-
Link, and D-Link devices, IoTBec implements a rigorous out-
of-band detection mechanism. After generating a command



TABLE VI
SURVEYS ON OPEN SOURCE CVE VULNERABILITY

Vendor \ Year Interface&parameters in Reference Interface&parameters in Description Interface&parameters Available
Tenda | 2023 or earlier 39/75 20/75 47775 = 63%

| 2024-2025 40/50 29/50 46/50 = 92%
TOTOLINK | 2023 or carlier 45775 21/75 51/75 = 68%

| 2024-2025 34/50 29/50 45/50 = 90%
D-Link ‘ 2023 or earlier 19/75 32/75 38/75 = 51%

| 2024-2025 37/50 29/50 39/50 = 78%
TP-Link | 2023 or earlier 34/75 25/75 49/75 = 65%

| 2024-2025 25/50 19/50 37/50 = 74%

injection payload, IoTBec first attempts to write a unique
marker file (e.g., 123.txt) to the IoT device’s web root direc-
tory. Subsequently, [oTBec immediately sends an HTTP GET
request to http://{device_IP}/123.txt.

1) If the initial request to http://{device_IP}/123.txt returns
a 200 OK response code, it confirms successful arbitrary
file creation, indicating a potential command injection
vulnerability.

Upon this confirmation, IoTBec immediately sends a
follow-up command via a specially crafted payload to
delete the 123.txt file from the web root.

Subsequently, another request is sent to http://{device_
IP}/123.txt. If this request returns a 404 Not Found
response code, it validates both the command execution
capability and the successful deletion of the file, marking
it as a confirmed command injection vulnerability.

3) Cross-Site Request Forgery Monitoring Rules: For
Cross-Site Request Forgery (CSRF) vulnerabilities involving
operations like device reboot or reset, [oTBec’s monitoring
strategy also includes detecting device crashes. In the QEMU
emulation environment, we’ve observed that specific forged
requests, when successfully invoked by the corresponding
service, can cause the target system to crash. The monitor
identifies such CSRF vulnerability hits by capturing these ex-
ception alerts. Notably, this set of experiments was conducted
under QEMU user-mode emulation due to specific issues
with the simulation environment, enabling precise monitoring
of the httpd service behavior and effective identification of
vulnerability triggers.

The aforementioned monitoring strategies are meticulously
designed and have been refined through extensive reproduc-
tion of numerous real-world vulnerabilities within our con-
trolled QEMU simulation environment. As a testament to
the effectiveness and reliability of these strategies, the CVEs
submitted by IoTBec based on these monitoring principles
have received official recognition from MITRE and VULDB,
two leading CVE Numbering Authority (CNA) organizations.
Looking ahead, we plan to further expand IoTBec’s monitoring
capabilities by developing mechanisms to detect additional
vulnerability types, such as unauthorized access and informa-
tion disclosure vulnerabilities, to broaden its detection scope.

2)

3)
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C. Vulnerabilities Discovered by loTBec

Our repository presents all vulnerabilities newly discovered

by IoTBec in the test set devices, including 47 buffer overflow
vulnerabilities, 2 command injection vulnerabilities, and 4
CSREF vulnerabilities.
Ethical Considerations. Our evaluation was executed within
a controlled, isolated laboratory environment to guarantee no
impact on public networks or external users. All IoT devices
utilized in our experiments were legally procured and are the
property of the research team. This research strictly adheres to
established security ethics guidelines. In accordance with Co-
ordinated Vulnerability Disclosure (CVD) practices, we have
responsibly reported all identified vulnerabilities to the rele-
vant vendors. Furthermore, our findings have been submitted
to the Common Vulnerabilities and Exposures (CVE) program.
We are actively engaged with the vendors to support the
remediation of all reported issues. We will track the disclosure
status and vendor correspondence for the 53 newly discovered
vulnerabilities at https://www.github.com/IoTBec/Reports, up-
dating this repository as details become publicly available.


http://{device_IP}/123.txt
http://{device_IP}/123.txt
http://{device_IP}/123.txt
http://{device_IP}/123.txt
https://www.github.com/IoTBec/Reports
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