
ThinkTrap: Denial-of-Service Attacks against
Black-box LLM Services via Infinite Thinking

Yunzhe Li∗, Jianan Wang∗, Hongzi Zhu∗B, James Lin∗, Shan Chang† and Minyi Guo∗
∗Shanghai Jiao Tong University, †Donghua University

{yunzhe.li, divinenoah, hongzi, james}@sjtu.edu.cn, changshan@dhu.edu.cn, guo-my@cs.sjtu.edu.cn

Abstract—Large Language Models (LLMs) have become foun-
dational components in a wide range of applications, including
natural language understanding and generation, embodied intel-
ligence, and scientific discovery. As their computational require-
ments continue to grow, these models are increasingly deployed as
cloud-based services, allowing users to access powerful LLMs via
the Internet. However, this deployment model introduces a new
class of threat: denial-of-service (DoS) attacks via unbounded
reasoning, where adversaries craft specially designed inputs that
cause the model to enter excessively long or infinite generation
loops. These attacks can exhaust backend compute resources,
degrading or denying service to legitimate users. To mitigate
such risks, many LLM providers adopt a closed-source, black-
box setting to obscure model internals. In this paper, we propose
ThinkTrap, a novel input-space optimization framework for DoS
attacks against LLM services even in black-box environments.
The core idea of ThinkTrap is to first map discrete tokens
into a continuous embedding space, then undertake efficient
black-box optimization in a low-dimensional subspace exploiting
input sparsity. The goal of this optimization is to identify
adversarial prompts that induce extended or non-terminating
generation across several state-of-the-art LLMs, achieving DoS
with minimal token overhead. We evaluate the proposed attack
across multiple commercial, closed-source LLM services. Our
results demonstrate that, even far under the restrictive request
frequency limits commonly enforced by these platforms, typically
capped at ten requests per minute (10 RPM), the attack can
degrade service throughput to as low as 1% of its original
capacity, and in some cases, induce complete service failure.

I. INTRODUCTION

Large Language Models (LLMs) have emerged as a trans-
formative foundation for modern AI systems, enabling pow-
erful capabilities such as natural language understanding and
generation [1] [2], embodied intelligence [3] [4], and scien-
tific discovery [5] [6]. Due to their massive computational
demands, especially during multi-step inference or long-form
generation, LLMs are increasingly deployed as cloud-based
services to serve a broad and growing user base. However, this
introduces a critical vulnerability, i.e., denial-of-service (DoS)
attacks [7] [8] that exploit the recursive reasoning process

B Hongzi Zhu is the corresponding author of this paper.

of an LLM. Unlike conventional DoS attacks that flood the
network or overwhelm server endpoints, these newer attacks
introduce intensive computation costs by inducing LLMs to
think endlessly or generate prohibitively long outputs [9]. One
single malicious input can monopolize substantial GPU time,
queue slots, or memory resources, effectively starving legiti-
mate users and causing service degradation or outright outages
[10]. This asymmetric threat, where a small token input leads
to unbounded computation at cloud servers, represents a novel
and particularly insidious attack surface in the era of large-
scale AI deployment.

Launching a DoS attack against closed-source LLMs must
meet the following requirements. First, the attack should only
rely on the input-output interface of an LLM service, which
exposes quite limited information with no internal information
such as logits or attention weights. Second, the attack must
be cost-efficient because attackers also need to pay for LLM
queries. As a result, effective adversarial prompts must be
generated with minimal API calls. Third, the attack must be
robust across models and potential defenses. Modern LLMs
often include safeguards such as output filters or trunca-
tion mechanisms. Successful attacks must generalize across
these variations and remain effective despite unknown internal
changes.

Previous attack attempts to induce long or non-terminating
outputs from LLMs can be broadly classified into three cate-
gories, i.e., semantic-based [11] [12], gradient-based [9] [13],
and heuristic-based [14] [10]. The first category employs se-
mantic manipulation, such as presenting the model with inher-
ently open-ended prompts or complex tasks (e.g., Olympiad-
level mathematics problems) to encourage extended responses
[11]. While occasionally successful, these techniques of-
ten lack robustness and generalizability, typically relying on
fragile prompt engineering and exhibiting effectiveness only
on specific models. The second category utilizes gradient-
based optimization methods, commonly aiming to suppress
the probability of generating end-of-sequence (EoS) token in
order to prolong output [9]. Although effective in white-box
settings, such approaches necessitate access to internal model
parameters or output logits, rendering them unsuitable for use
with proprietary or closed-source LLM APIs. Finally, the third
category involves heuristic-driven search strategies at the token
level to identify input prompts that lead to extended outputs
[10]. These methods, however, tend to be computationally
inefficient and incur high query costs, limiting their scalability

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240639
www.ndss-symposium.org



and feasibility in practice. As a result, existing approaches
are constrained by limitations in generality, efficiency, and
applicability to black-box scenarios.

In this paper, we propose an attack framework, called
ThinkTrap, which can conduct a DoS attack on closed-source
black-box LLM service. The core idea of ThinkTrap is to
employ the derivative-free optimization of input tokens with
respect to the output length, even under the constraint that the
LLM autoregressive generation process is non-differentiable
and only provides limited black-box access to input-output
pairs. By approximating the direction in which an input
prompt elongates the model’s output, ThinkTrap efficiently
searches for adversarial prompts that maximize generation
length, thereby amplifying the computational burden on the
LLM service and inducing a denial-of-service (DoS) effect. To
this end, the ThinkTrap design encounters two main challenges
as follows.

First, the input space of large language models (LLMs) is
inherently discrete, consisting of sequences of tokens, which
poses a significant obstacle to the application of derivative-free
optimization methods that typically operate over continuous
domains. In contrast to continuous spaces, where infinitesimal
perturbations produce smooth changes in objective functions,
minor modifications to token sequences can induce abrupt
and non-monotonic variations in model behavior. This dis-
creteness severely limits the stability and efficiency of direct
optimization in the original input space. To address this
challenge, we introduce a continuous surrogate space in which
optimization can be more effectively conducted. Specifically,
we map discrete token sequences, i.e., prompts, into a con-
tinuous embedding space, which serves as a proxy domain
for exploration. Within this space, we apply derivative-free
optimization strategies to identify directions that are likely to
induce longer or more computationally intensive outputs from
the target LLM. The optimized embedding vectors are then
projected back to the closest valid token sequences using a
nearest-neighbor decoding mechanism, ensuring compatibility
with the actual input requirements of victim LLM service. This
surrogate-based formulation enables derivative-free prompt
optimization while respecting the discrete structure of natural
language inputs. It provides a stable and tractable framework
for inducing adversarial behavior in black-box language mod-
els deployed as cloud services.

Second, derivative-free optimization methods are inherently
less efficient than gradient-based approaches, especially in
high-dimensional input spaces. In the case of LLMs, the
dimensionality of the optimization space can be extremely
large. For example, when optimizing over a prompt of 100
tokens with a typical LLM, i.e., LLaMA-70B, the search space
spans over 400k dimensions. Exploring such a vast space
using derivative-free methods can be prohibitively expensive
and slow to converge. To tackle this issue, we exploit a key
property of large language models that their response behavior
often lies in a low intrinsic dimensionality subspace [15]
[16]. Prior studies and our empirical observations suggest that
modifying only a small subset of the parameters of LLMs

is often sufficient to induce significant changes in model
behavior [17] [18]. Leveraging this insight, we design a low-
dimensional optimization strategy that constrains the subgra-
dient search to a small number of editable token positions.
By selecting and optimizing only a few strategically chosen
input tokens while keeping the rest fixed, we effectively reduce
the search space by orders of magnitude. This dimensionality
reduction drastically improves the efficiency of our attack
without sacrificing effectiveness.

To evaluate the effectiveness and generality of ThinkTrap,
we conduct extensive real-world experiments across a wide
range of popular closed-source LLM APIs, including services
based on GPT, DeepSeek, and Gemini families. Our results
demonstrate that ThinkTrap achieves a high attack success
rate in black-box settings, consistently identifying prompts
that induce excessively long outputs and impose significant
computational burdens on the target services. Moreover, to
further investigate the impact of the attack, we deploy a high-
performance LLM service on a private server equipped with
16 Ascend GPUs and emulate ThinkTrap-style attacks under
controlled conditions. Experimental results indicate that even
a low-rate adversarial query stream, e.g., issuing only five
requests per minute, can significantly degrade service quality
when prompts are crafted using our method. Specifically, the
attack saturates GPU memory and computational resources,
leading to up to a 100× increase in response latency, a
reduction in throughput to as low as 1% of the original
performance, and, in extreme cases, complete service failure
due to GPU exhaustion. These findings confirm that ThinkTrap
can serve as an effective denial-of-service (DoS) attack method
against both commercial LLM services and self-hosted LLM
deployments. The main contributions made in this paper are
highlighted as follows:

• We identify a new DoS vulnerability in the closed-source
black-box LLM services through prompt-level manipula-
tion, even without access to internal model gradients or
parameters.

• We propose ThinkTrap, a novel attack framework that
leverages subgradient-guided optimization in a continu-
ous surrogate space to craft adversarial prompts that elicit
abnormally long responses, significantly increasing the
target model’s computational load.

• We validate ThinkTrap through extensive experiments
on both public LLM services and private LLM de-
ployments. The results demonstrate that ThinkTrap can
induce substantial degradation in service performance,
highlighting a new class of realistic threats to large-scale
LLM systems.

II. RELATED WORK

A. DoS attack on Machine Learning Services

Several recent studies have demonstrated the feasibility of
DoS attacks on machine learning systems through the use
of computationally intensive inputs. Sponge Example [10] is
among the first to show that adversarial inputs can significantly

2



increase energy consumption and inference latency in neural
networks, effectively degrading model availability. Later work
reveals that uniform inputs and sparse activations can exac-
erbate this effect, suggesting that “sponge behavior” is not
limited to worst-case optimization but may also emerge under
structured perturbations [19]. These findings highlight a class
of resource exhaustion attacks that exploit the computational
characteristics of deep models rather than their prediction
accuracy.

More recent efforts have adapted this threat model to object
detection and autonomous systems. Phantom Sponges [20]
exploit inefficiencies in the non-maximum suppression (NMS)
to inflate the number of processed detections, and follow-
up work [21] has enhanced these attacks by introducing
multi-modal perturbations that intensify computational de-
mand. Meanwhile, SlowTrack [22] and SlowLiDAR [23] have
shown that imperceptible input modifications can substantially
increase latency in camera- and LiDAR-based perception
systems, respectively. These techniques reveal a broader attack
surface where adversarial examples can compromise real-time
guarantees in safety-critical applications by targeting system
responsiveness rather than correctness.

B. DoS Attacks on LLMs

LLMs are susceptible to DoS attacks due to their sub-
stantial model size and the autoregressive nature of their
decoding process, which results in inference costs scaling
linearly with the length of the generated output. Consequently,
adversaries can launch DoS attacks by inducing the model
to produce excessively long or complex outputs [10] [24]
[14]. Existing DoS attack methods, however, predominantly
target open-source LLMs. For encoder-decoder architectures,
attacks exploit cross-attention mechanisms by compressing
numerous tokens into a single input sequence, thereby increas-
ing computational burden [10]. Such strategies are ineffec-
tive against decoder-only models, which lack cross-attention
modules. Perturbation-based approaches aim to modify tokens
critical to output length [14], but the widespread adoption
of Byte-Pair Encoding (BPE) tokenization [13], which en-
hances LLMs’ tolerance to typographical errors, has largely
diminished their effectiveness. Gradient-based optimization
techniques [9] attempt to craft adversarial prompts by min-
imizing the probability of generating the end-of-sequence
(EoS) token. However, these methods require access to token-
level probabilities, which are typically unavailable in popular
LLM APIs. Semantic-based attacks leverage complex input
prompts, such as Olympiad-level mathematics problems, to
provoke longer outputs [11] [25], but these approaches suffer
from instability due to their dependence on specific model
behaviors.

C. Security Threats to Black-box LLMs

Security concerns surrounding black-box access to LLMs
have grown substantially. Black-box tuning has demonstrated
that commercial LLMs can be adapted to downstream tasks
without access to model gradients, by leveraging zeroth-order

optimization and query-efficient strategies [18]. Similarly,
PromptBoosting shows that accurate black-box text classifi-
cation can be achieved with as few as 10 forward passes,
revealing the adaptability of LLMs to prompt-based inference
despite strict API request constraints [26]. These approaches,
though designed for benign applications, inadvertently high-
light the susceptibility of black-box LLMs to repeated probing
and exploitation.

More adversarial efforts have shown that universal and
transferable prompt-based attacks can reliably bypass safety
alignment mechanisms across tasks, even in black-box scenar-
ios [27]. A large-scale evaluation of jailbreak attacks versus
defenses further indicates that aligned safety mechanisms
remain fragile when facing adaptive prompt manipulation,
particularly in real-world LLM deployments [28]. Addition-
ally, Cold-Attack introduces a novel jailbreak strategy that
combines stealthiness and controllability, making detection
and mitigation significantly more difficult for LLM service
providers [29]. These efforts collectively reveal that LLM
services expose a broad and under-defended attack surface.
Building on these insights, we present a new threat: a denial-
of-service (DoS) attack vector uniquely enabled by the access
of black-box LLMs, which exploits the model’s resource
consumption behavior to impair availability without requiring
any internal knowledge or cooperation.

III. SYSTEM AND ATTACK MODEL

A. Background on LLM Inference

Large language models (LLMs) based on the Transformer
architecture generate text in an autoregressive manner. Infer-
ence typically consists of two stages [30]:

• Prefill stage: The model processes the entire input
prompt in one forward pass to initialize key-value (KV)
cache representations. This stage has computational cost
proportional to the input length.

• Decode stage: Tokens are then generated one-by-one. For
each output token, the model performs a full forward pass
over the cached context, making the cost of generation
grow approximately linearly with the output length.

Because each token requires querying large parameter ma-
trices and maintaining KV cache on memory-intensive ac-
celerators (e.g., GPUs), inference cost, latency, and memory
footprint scale with both prompt and output lengths. As a
result, unusually long responses can substantially increase
resource usage, slow down concurrent requests, and incur
higher operational cost in real deployments. This computa-
tional structure motivates our study of attacks that intentionally
trigger extremely long model outputs.

B. Attacker

The attacker has black-box access to the LLM service via
its API. Their capabilities include:

• Query Access: The attacker can issue arbitrary text
prompts to the model and monitor the corresponding
outputs, including the length of the generated responses.

3



Low-
dimensional 
vector 𝒛! at 

time 𝑡 Full 
embedding 𝑬

Output 
length 𝑜

Offline Attack Prompt Generation

Lo
w

-r
an

k 
Em

be
dd

in
g 

Pr
oj

ec
tio

n

Su
rr

og
at

e 
Pr

om
pt

 
D

ec
od

in
g

Optimized vector 𝒛!"#
Iteration 
until coverage

LL
M

 Q
ue

ry
in

g

Derivative-Free Optimization

Online Deny-of-Service Attack

Generated attack prompts …

Attack 
prompts

… Stealthy Prompt 
Injection Deny of service

Prompt 𝑝

Fig. 1: Attack overview of the proposed ThinkTrap system,
where the attack prompts are first generated offline and then
injected into the LLM in a stealthy way to conduct a denial-
of-service attack.

• No Internal Access: Owing to the high deployment
cost or the proprietary nature of the LLMs, the attacker
is unable to access the model’s parameters, gradients,
architecture, or confidence scores.

• Budget Constraints: The attacker has limited budgets
for the number of tokens consumed during the search
for the attack prompts, as token usage incurs cost when
interacting with the LLM API. Thus, attackers aim to
maximize output length per token spent.

C. Victim

The victim is an LLM service providing inference through
a black-box API with the following characteristics:

• Input-Output Interface: The victim provides a publicly
exposed interface that accepts discrete textual inputs
from arbitrary users over the internet and returns the
corresponding generated text responses.

• Resource Constraints: Although LLMs are typically de-
ployed in cloud environments, their large model sizes and
autoregressive decoding [31] make inference inherently
expensive. In particular, generating each output token
requires a full forward pass, causing computational cost,
memory consumption, and latency to grow roughly lin-
early with the output length. As output grows longer, the
demand on shared GPU resources increases significantly,
which can lead to higher operational costs and service
delays, especially under sustained or concurrent requests.

• Basic Defenses: The victim may implement basic safe-
guards such as input length restrictions, rate limiting, and
token quotas to constrain resource usage. These measures
are generally effective against naive attacks that rely on

TABLE I: Summary of notations.

Notation Description

patt Attack prompts to generate
t Index of the current optimization iteration
pt Prompt generated at the t-th optimization iteration
zt Low-dimensional vector of the prompt pt
m Dimensionality of each token vector in zt

Et Full embedding of the prompt pt
d Dimensionality of each token embedding in Et

A Random projection matrix
ot Generated output length in tokens
T sur. Embedding table of the surrogate encoder
wj j-th word token in surrogate encoder T sur.

T sur.
j Embedding of word token wj in T sur.

Mvic Black-box victim LLM

sending a large number of requests concurrently. For
example, commercial LLM APIs like GPT-4 enforce strict
request limits (e.g., no more than 10 requests per minute).
However, such defenses still permit low-rate, sustained
queries for normal service.

IV. OVERVIEW OF THINKTRAP

The proposed ThinkTrap system consists of two stages as
illustrated in Figure 1, namely offline attack prompt gener-
ation and online denial-of-service attack, with all notations
summarized in Table I. At a high level, ThinkTrap operates
entirely through a query–response loop in a strict black-box
setting where the attacker can only submit textual prompts
and observe the generated outputs. To search for effective
prompts under these constraints, ThinkTrap optimizes a low-
dimensional latent vector that is projected into an embedding,
decoded into a discrete prompt using a surrogate vocabulary,
and evaluated solely through the output length returned by
the victim API. This scalar feedback guides a derivative-free
optimization process that gradually improves the latent vector.
The optimized prompts obtained offline are then issued online
at a moderate rate to trigger excessively long generations and
degrade service availability.

Offline Attack Prompt Generation (APG). Given access
to the target LLM via its API, the attacker first generates
attack prompts patt offline using a derivative-free optimization
approach as detailed below.

1) Low-rank Embedding Projection (LEP). Given the low-
dimensional vector, denoted as zt at time t, the LEP module
projects it into the full embedding, denoted as Et via a random
projection matrix A, i.e., Et = Azt.

2) Surrogate Prompt Decoding (SPD). The SPD module
maps the full embedding Et back to a textual prompt pt by
decoding it via nearest-neighbor token retrieval on a surrogate
prompt encoding space to approximate the target LLM’s
encoding process in the black-box scenario.

3) LLM Querying (LQ). The LQ module evaluates the
current prompt pt by querying the LLM through its API and
assessing the length of the generated output as an indicator of
the attack efficacy ot of the prompt pt.

4



4) Derivative-Free Optimization (DFO). To enhance the
effectiveness of the attack prompt, the low-dimensional la-
tent vector zt is iteratively optimized using a derivative-
free method, guided by the observed efficacy score ot of
the corresponding prompt pt. The updated vector, denoted as
zt+1, serves as the basis for the next optimization step. This
process repeats until convergence or until a successful attack
is achieved.

Online Deny-of-Service Attack (DSA). The attacker lever-
ages the offline-generated attack prompts patt and injects them
into the LLM service through the public LLM API in a stealthy
manner, aiming to evade defense detection while conducting
a denial-of-service (DoS) attack.

V. OFFLINE ATTACK PROMPT GENERATION

A. Low-rank Embedding Projection

Optimizing the prompt embedding Et in the full continuous
space RL×d is computationally prohibitive due to its high di-
mensionality. For example, with a prompt length L = 100 and
embedding dimension d = 4096 (e.g., LLaMA-2-70B [32]),
the optimization space contains over 400K parameters, ren-
dering derivative-free methods inefficient because they scale
poorly with dimensionality. To mitigate this, we introduce a
low-dimensional latent vector zt ∈ Rm (m ≪ Ld) and use
a fixed, randomly initialized projection matrix A ∈ R(Ld)×m

to map the latent representation to the full embedding space,
i.e., Et = Azt. The optimization is then performed over the
low-dimensional vector zt to improve optimization efficiency.
This design exploits the redundancy and sparsity of LLM
embedding spaces [15], [16], enabling efficient search in a
compact subspace. We then first introduce the design of the
projection matrix A and introduce the embedding projection.

1) Projection Matrix Construction: The design of A must
meet several important criteria to ensure that the search in the
low-dimensional latent space remains effective and unbiased:

• The projected directions should be isotropic, meaning
they do not favor any particular axis in the high-
dimensional space;

• The mapping should avoid amplifying specific coordi-
nates, ensuring that the sampling process is balanced;

• The projection should maintain diversity, such that differ-
ent latent vectors zt produce sufficiently distinct embed-
dings Et to allow exploration of a broad set of adversarial
candidates.

To satisfy these properties, we construct A with entries
sampled independently from a Gaussian distribution [33]:

Ai,j ∼ N (0,
1

m
), (1)

where Ai,j denotes the value of i-th line and j-column in the
matrix A, and m denotes the target embedding dimension of
the low-dimensional vector z.

2) Embedding Projection: Given the latent vector zt ∈ Rm

and a fixed projection matrix A ∈ RLd×m, the prompt
embedding is directly obtained via a linear transformation:

Et = Azt ∈ RLd. (2)

This formulation allows the optimization to take place in a
compact latent space, substantially reducing the parameter
search space. The use of a random Gaussian projection for
A promotes subspace diversity and helps retain the expressive
capacity of the original embedding space.

B. Surrogate Prompt Decoding

To decode the embedding Et to the prompt pt, we apply
a core decoding strategy to map the optimized continuous
embeddings back into discrete token sequences via nearest
neighbor search in the model’s token embedding space. This
step is essential in black-box settings, where public LLM APIs
only accept textual inputs. Ideally, the decoding should be
performed using the target model’s token embedding matrix to
ensure semantic alignment. However, in black-box scenarios,
this internal decoder is inaccessible. To this end, we leverage
an important empirical property of large language models:
the token embedding spaces across different models exhibit
a high degree of alignment, owing to shared tokenization
schemes, overlapping training corpora, and convergent training
dynamics [34], [35]. This enables us to use a surrogate model’s
decoder as a practical substitute for nearest neighbor decoding.
In practice, we observe that such surrogate-based decoding
achieves strong performance, despite the lack of access to the
target model’s embedding layer.

Formally, given a prompt embedding Et, to convert this into
a discrete prompt pt = (wt

1, . . . , w
t
L), where wt

i denotes the
i-th word token in the prompt, we perform nearest neighbor
decoding using a publicly available surrogate token embedding
matrix T sur. ∈ R|V|×d, where each embedding T sur.

j represents
the embedding of word token wj . For each token position i,
we compute:

wi = argmin
j∈V

∥eti − T sur.
j ∥2, (3)

where ei denotes the i-th embedding in Et. The resulting
sequence pt = (wt

1, . . . , w
t
L) is then submitted to the black-

box LLM API for evaluation.

C. LLM Querying

Given a discrete prompt p, we submit it to the target
language model via its public API. Although the optimiza-
tion process operates in the latent space z and performs
intermediate computations in the continuous embedding space
E, neither representation is directly compatible with the API
interface, which only accepts tokenized textual inputs. There-
fore, only the decoded prompt p can be used for querying the
model.

Formally, we invoke the LLM with pt as input and evaluate
its output to obtain the attack objective ot, such as the number
of generated tokens:

ot = Mvic(pt), (4)

where Mvic denotes the black-box victim model being at-
tacked. This black-box querying process forms the only ob-
servable channel through which the attacker can evaluate and
optimize the attack objective.

5



D. Derivative-Free Optimization

To optimize the latent vector z in a black-box setting, we
adopt a derivative-free optimization (DFO) strategy. Unlike
gradient-based methods, which rely on access to model pa-
rameters or backpropagation, DFO methods require only the
evaluation of the objective function, making them particularly
well-suited for black-box attacks on large language models
(LLMs) via public APIs. In our context, the objective func-
tion assesses the effectiveness of a given latent vector z by
converting it into a discrete prompt and measuring generation-
based attack metrics, i.e., the length of the model’s output.

Formally, the optimization problem is defined as:

max
zt∈Rm

L(zt) = ot, (5)

where L(z) denotes the scalar objective value (i.e., generation
length) returned by the victim model Mvic in response to the
prompt derived from z.

To solve this problem, we employ the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [36], a state-of-
the-art DFO algorithm that maintains a multivariate Gaussian
search distribution N (µ(t),Σ(t)) over the latent space. The
distribution parameters are iteratively updated based on the
performance of sampled candidates with the following steps.

1) Initialization: At iteration t = 0, the search is initialized
with mean vector µ0 = 0 and isotropic covariance matrix
Σ0 = σ2I , where σ > 0 controls the initial search radius.
This defines an initial uniform search distribution over the
latent space.

2) Optimization Procedure: At each iteration t, CMA-ES
proceeds as follows:

Sampling. A population of N latent candidates zt
i , i =

1, 2, · · · , N , is drawn from the current distribution:

zt
i ∼ N (µt,Σt). (6)

Evaluation. Each candidate zt
i is projected to an embedding

Et
i = Azt

i , decoded into a discrete prompt pi, and submitted
to the victim LLM Mvic to obtain its corresponding objective
score ot1, o

t
2, · · · , otN .

Selection and Recombination. The candidates are ranked
according to their scores oti, and the top k individuals are
selected. A new mean vector is computed via a weighted
average of these top-performing candidates:

µ(t+1) =

k∑
j=1

wjz
t
j , (7)

where zt
j denotes the j-th best candidate and wj are predefined

positive weights summing to 1.
Covariance Update. The covariance matrix is updated to

reflect the empirical distribution of the selected candidates:

Σt+1 =

k∑
j=1

wj(z
t
j − µt+1)(zt

j − µt+1)T + ϵI, (8)

where ϵ is a small constant added for numerical stability.

This update mechanism captures both the principal direc-
tions and the variance of successful candidates, enabling the
algorithm to adaptively explore high-performing regions of the
latent space. The optimization proceeds until convergence or
a predefined querying budget is reached.

By directly operating on the latent vector z and relying
solely on black-box evaluations of Mvic, this framework en-
ables efficient search for adversarial prompts without requiring
access to model gradients or internal parameters.

VI. ONLINE DENIAL-OF-SERVICE ATTACK

Modern large language models (LLMs), especially those
deployed via public APIs, are typically equipped with basic
security mechanisms designed to defend against abuse and
misuse. These include input filtering, rate limiting, behavioral
detection, and generation constraints [37], all of which pose
significant challenges for sustained or high-frequency adver-
sarial querying. Consequently, launching an effective deny-of-
service (DoS) attack in such settings requires carefully evading
these protections while still delivering adversarial prompts
capable of degrading model availability or utility.

To this end, we design an online attack framework that
incrementally submits crafted prompts at a moderate query
rate, in order to bypass rate limiting and avoid triggering
abuse detection mechanisms. Our approach does not rely on
overwhelming the system with high-throughput requests. It
exploits the fact that carefully optimized prompts can consume
excessive model computation, even when submitted infre-
quently, by inducing long and resource-intensive generations.
This results in a form of slow DoS, which imposes sustained
computational burden on the model over time.

Concretely, we assume the target LLM service enforces
a minimum interval of t seconds between accepted queries
from a single user. To comply with this constraint and remain
undetected, the attacker submits attack prompts at a fixed rate
no faster than once every t seconds. Each prompt is selected
from a pool of previously optimized attack prompts.

VII. EVALUATION

A. Methodology

1) Implementation: We develop a prototype implementa-
tion of the attack based on a Python CMA-ES optimization
library 1. The attack is conducted under a black-box setting by
interacting with target LLMs through the unified Model Router
API 2, which dispatches requests to various backend models
and returns their responses. Due to computational constraints,
we set the maximum generation length to 4096 tokens, a
commonly adopted upper bound in LLM decoding [9], and
sufficient to observe generation collapse or abnormal length
behaviors. The input prompt length is fixed at 20 tokens to
balance optimization efficiency and input compactness, while
the decoding temperature is set to its default value of 1.0
to reflect the standard sampling configuration used in public-
facing LLM APIs.

6



TABLE II: Overview of evaluated LLMs. “OSS” denotes
whether the model is open-source. “Tokens/wk” denotes the
weekly token consumption during June 23–29, 2025. “Price”
represents the approximate cost per 1M output tokens for
public API inference at the time of evaluation. Values are
intended to contextualize practical deployment scale and cost
rather than serve as exact billing references.

Model Params Provider OSS Tokens/wk Price†

Gemini 2.5 Pro N/A Google No 88.8B $10
Lumimaid 70B NeverSleep No 12.4M $3
Magistral N/A Mistral No 58.7M $5
GPT-o4 N/A OpenAI No 3.22B $4.4
MAI DS R1 671B Microsoft Yes 998M $1.2
DS Qwen3 8B DeepSeek Yes 1.93B $0.02
Llama 3.2 3B Meta Yes 10.4B $0.02
DS R1 671B DeepSeek Yes 63.2B $2.15

† Open-source models (MAI DS R1, DS Qwen3, Llama 3.2, DS R1) are
accessible via third-party providers offering free usage tiers for platform
promotion. As a result, attackers may leverage such free services to conduct
attacks without incurring any monetary cost.

2) LLMs: We evaluate a diverse set of eight LLMs, as listed
in Table II, covering both proprietary and open-source models.
This selection includes frontier-scale models such as DeepSeek
R1 (671B) and widely used close-sourced LLMs like GPT o4
and Gemini 2.5 Pro. The weekly token usage reflects their
real-world adoption in our experiments conducted from June
23 to 29, 2025.

3) Baselines: We consider the following four black-box
baselines for evaluation.

• Decoy Problem [11]: We collect a set of 20 samples by
prompting GPT-4o to generate a set of open-ended, high-
complexity questions spanning a wide range of domains,
including physics, machine learning, economics, biology,
and philosophy. These questions are intentionally selected
to induce prolonged reasoning and multi-step generation,
making them particularly challenging for LLMs.

• Semantic Problem [9]: We enhance the decoy problems
by adding explicit semantic cues that encourage longer
responses. Specifically, each question is rephrased to in-
clude instructions such as “Output a longer explanation”
or “Provide a more detailed discussion,” thereby guiding
the language model to extend its generation.

• LLMEffiChecker [14]: We adopt the attack proposed
in LLMEffiChecker, which performs word-level pertur-
bations. Specifically, it first measures the impact of each
word on the output length and identifies the word that
contributes most to shortening the generation. Then, it
randomly substitutes this word to induce longer outputs
from the model.

• Sponge Examples [10]: This approach leverages a ge-
netic algorithm to perform word-level optimization. By
iteratively evolving input sequences, it generates adver-

1https://github.com/CyberAgent/cmaes
2https://openrouter.ai/

sarial examples that induce excessive computational cost
and prolonged output generation in language models.

4) Metrics: We consider the metrics in terms of LLM
behaviors in various aspects.

• LLM output length: Output length measures the total
number of tokens generated in response to a generated
attack prompt. This reflects how effectively the prompt
can elicit prolonged generation. Considering the possi-
bility that a large language model (LLM) may generate
unbounded output when engaged in infinite reasoning, we
impose a maximum output length of 4096 tokens during
evaluation. For consistency and clarity in presentation,
all reported output lengths are normalized with respect
to 4096 tokens.

• Tokens per second (TPS): Tokens per second, i.e.,
TPS, captures the generation throughput, defined as the
number of output tokens produced per second. A lower
throughput under attack inputs indicates degraded model
efficiency and increased inference cost.

• Time to first token (TTFT): Time to first token, i.e.,
TTFT, refers to the time elapsed between submitting the
prompt and receiving the first generated token. Increased
latency may suggest that the prompt induces heavier
computational burden during decoding initialization.

• GPU memory consumption: GPU memory consumption
records the peak GPU memory usage during model infer-
ence. Prompts that trigger abnormally high memory usage
can be indicative of resource exhaustion vulnerabilities.

B. Hyperparameter Search

1) Prompt Length: We first investigate the effect of prompt
length on the attack results. To this end, we plot the result of
normalized output length with five input prompt lengths on
DeepSeek R1, i.e., 10, 20, 30, 40, 50, in Fig. 2a. We observe
a non-monotonic trend in the effectiveness of prompt-based
attacks under a fixed query budget in Fig. 2a. As prompt
length increases, the attack initially becomes more potent
due to enhanced expressiveness. However, beyond a certain
length (e.g., 20), performance degrades. This is because longer
prompts expand the search space, causing the derivative-
free optimization to waste more budget on uninformative
directions. Consequently, the probability of discovering highly
effective adversarial prompts within a fixed number of queries
decreases. As a result, we choose a balanced prompt length
of 20 for the best attack performance on a given budget.

2) Latent Vector Dimension: We then investigate the effect
of subspace dimensions on the attack results. Specifically,
we report the normalized output length under five latent
dimensions, i.e., 10, 20, 50, 100, and 200, each averaged over
20 independent trials, as shown in Fig. 2b. The results exhibit
a non-monotonic trend. Moderate dimensionalities enhance
attack effectiveness by providing a richer search space and
greater expressive capacity for adversarial prompts. However,
once the dimension becomes sufficiently large, performance
begins to degrade, due to increased optimization difficulty and
the curse of dimensionality. Accordingly, we select a latent

7



10 20 30 40 50 60 70 80 90 100
Query Budget (k)

0.0

0.5

1.0
O

ut
pu

t l
en

gt
h

10 20 30 40 50

(a) Different prompt lengths.

10 20 30 40 50 60 70 80 90 100
Query Budget (k)

0.0

0.5

1.0

O
ut

pu
t l

en
gt

h

10 20 50 100 200

(b) Different latent vector dimensions.

Fig. 2: Output length of DeepSeek R1 with respect to the upper bound of 4096 on ThinkTrap under (a) different prompt
lengths and (b) different latent vector dimensions, where a non-monotonic trend can be observed in both hyperparameters for
a balance of prompt expressiveness and search efficiency.

dimension of 20 as a practical choice that balances achievable
output length and optimization efficiency.

C. LLM Output Length of Attack Prompts

To evaluate the generation efficiency of different LLMs
under varying output budgets, we conduct experiments by
setting the allowed output budget from 10K to 100K tokens.
For each budget level, we compare different attack methods
in terms of their ability to generate adversarial prompts that
induce the longest possible model outputs. To mitigate the
impact of randomness, each experiment is repeated five times.
Fig. 3 reports the average output lengths along with standard
deviations across the five runs.

1) Comparison with Baselines: We first compare Think-
Trap with existing baselines to show its superior performance.

ThinkTrap succeeds even on models where semantic-
based attacks fail. We observe that the performance of attack
methods based on semantics, i.e., decoy problem and semantic
problem, heavily depends on the specific architecture and
alignment strategy of the target LLM. While these methods
may achieve moderate success on certain instruction-tuned
models, they often fail to generalize across models with
different pretraining objectives or decoding behaviors, e.g.,
Lumimaid, DS R1, Llama 3.2. This suggests that purely
semantic manipulations lack the robustness and universality
required for cross-model transferability.

ThinkTrap attains long outputs with far lower query
budgets than heuristic-driven baselines, which struggle
under limited budgets. We can see that heuristic-driven
search methods, i.e., LLMEffiChecker and Sponge problem,
do not perform well, especially on Gemini 2.5 Pro and MAI
DS R1 when budget is low. This is because these approaches
typically rely on manually designed scoring functions or rule-
based mutation strategies. As a result, they require significantly
more queries or larger generation budgets to discover effective
adversarial prompts. This inefficiency becomes particularly
pronounced when operating under tight computational con-
straints, limiting their practicality for large-scale attacks. In
contrast, ThinkTrap leverages an adaptive optimization strat-
egy, enabling faster convergence with fewer queries.

ThinkTrap demonstrates robust performance across
seven of the eight evaluated LLMs, with particularly strong

advantages under limited query budgets. These results
indicate its capability to efficiently exploit generation dynam-
ics under resource constraints. Unlike baselines that typically
depend on substantial query budgets to induce long outputs,
ThinkTrap can discover prompts that trigger disproportionately
long responses with limited tokens. While its performance
is consistently strong for seven out of eight models, we
observe that for LLama 3.2 at very low budgets, Sponge
achieves higher output lengths. This exception highlights the
importance of model-specific factors, but overall, ThinkTrap’s
generalization across architectures and budget levels under-
scores its practical value in realistic denial-of-service settings
where adversaries may face strict cost constraints. Its effi-
ciency arises from an adaptive lightweight search strategy that
transfers effectively across models with different alignment
and decoding characteristics.

2) Attack Effects on Various LLMs: We then analyze the
attack effect of ThinkTrap on various types of LLMs.

ThinkTrap maintains strong effectiveness across both
closed-source and open-source LLMs, indicating that its
performance does not depend on access to model internals.
We can see the ThinkTrap perform well on both closed-
source and open-source LLMs. This is because ThinkTrap is
a black-box attack method without requiring access to model
internals or gradient information, which further underscores
its practicality for real-world adversarial scenarios.

ThinkTrap remains effective across diverse model fam-
ilies, whereas baseline methods show less consistent per-
formance across architectures. We can see that ThinkTrap
performs well on various model families including Gemini,
Luminmaid, Magistral, GPT, Qwen, DeepSeek, and Llama.
This shows that modern LLMs all suffer from this kind of
attacks. Despite that different attack methods attack different
parts of LLM, ThinkTrap can outperform other baselines on
every evaluated model family, showing the high importance of
the proposed ThinkTrap method.

ThinkTrap exhibits strong effectiveness across LLMs of
varying scales, indicating that its performance generalizes
well regardless of model size. We can also see that LLMs of
various mainstream sizes, i.e., 3B (Llama 3.2), 8B (DS Qwen
3), 70B (Lumimaid), and 671B (DS R1 and MAI DS R1).

8



10 20 30 40 50 60 70 80 90 100
Query Budget (k)

0

1

Le
ng

th
Gemini 2.5 Pro

10 20 30 40 50 60 70 80 90 100
Query Budget (k)

Lumimaid
Decoy problem Semantic problem LLMEffiChecker Sponge problem ThinkTrap

10 20 30 40 50 60 70 80 90 100
Query Budget (k)

0

1

Le
ng

th

Magistral

10 20 30 40 50 60 70 80 90 100
Query Budget (k)

GPT o4
Decoy problem Semantic problem LLMEffiChecker Sponge problem ThinkTrap

10 20 30 40 50 60 70 80 90 100
Query Budget (k)

0

1

Le
ng

th

DS Qwen3

10 20 30 40 50 60 70 80 90 100
Query Budget (k)

MAI DS R1
Decoy problem Semantic problem LLMEffiChecker Sponge problem ThinkTrap

10 20 30 40 50 60 70 80 90 100
Query Budget (k)

0

1

Le
ng

th

DS R1

10 20 30 40 50 60 70 80 90 100
Query Budget (k)

Llama 3.2
Decoy problem Semantic problem LLMEffiChecker Sponge problem ThinkTrap

Fig. 3: Output length of the evaluated eight LLMs on ThinkTrap and all the four baselines with respect to the upper bound
of 4096, where different baseline methods exhibit varying performance across different models, but ThinkTrap consistently
achieves the highest output length across all LLMs. The advantage of ThinkTrap is particularly evident under lower generation
budgets, demonstrating its efficiency in maximizing output with minimal resources.

Moreover, their behaviors do not vary despite different sizes.
This shows that despite the inference cost various, their risks
under the DoS attack equal. In other words, larger LLMs are
not safer.

ThinkTrap is effective on both thinking and non-
thinking LLMs, suggesting that vulnerability to the attack
extends beyond models with explicit reasoning features. We
can see that ThinkTrap can also work well on the non-thinking
base LLM, i.e., Llama 3.2. This shows that non-thinking LLM
may also suffer from the DoS attack. While we fail to attack
many early published LLMs such as Llama 2. We owe this
failure to the fact that early LLMs even do not have an ability

to output a long enough results. However, current LLMs such
as Llama-3.2 can generate longer outputs than early models,
making them more vulnerable to this attack.

3) Attack Effects on Various Decoding Strategies: Decod-
ing temperature is an important parameter which affects the
diversity of decoding behavior. We also plot the performance
of ThinkTrap on DS R1 under different decoding temperatures
in Fig. 4 to show its behavior of various temperatures.

ThinkTrap attack remains effective across a wide range
of decoding temperature settings. Decoding temperature
is a hyperparameter that controls the stochasticity of token
sampling and thereby regulates output diversity in LLM de-

9



10 20 30 40 50 60 70 80 90 100
Query Budget (k)

0.0

0.5

1.0
Le

ng
th

0 0.7 1.0 1.7

Fig. 4: Output length relative to the maximum limit of 4096
tokens for the eight evaluated LLMs under ThinkTrap, across
varying decoding temperatures (i.e., 0, 0.7, 1, 1.7), where
higher temperatures, introducing greater sampling random-
ness, consistently result in longer outputs.

coding. Fig. 4 illustrates that the attack consistently succeeds
across both low and high temperature configurations. A low
decoding temperature yields low output diversity, causing the
model to generate repetitive lexical or token patterns that
sustain the attack. In contrast, higher temperatures increase
output variability, making the model less inclined to produce
the <EOS> token. In most LLMs, <EOS> acts as a high-
logit, low-entropy token near the end of a sentence, where it
signals sequence completion. Raising the temperature weakens
this token’s dominance, resulting in longer and more chaotic
continuations, during which the model may enter a self-
reinforcing or perpetual thinking loop.

4) Attack Cost Analysis: We further quantify the attack cost
of different methods to assess the practical feasibility of the
proposed attack.

ThinkTrap imposes a very small cost and can be
executed adaptively given inferred system capabilities. In
particular, ThinkTrap attains a successful attack (i.e., forcing
the model to produce 4k+ tokens) with an attack budget of only
10k tokens on Gemini 2.5 Pro, Magistral, DS Qwen3, and DS
R1. In these cases, end-to-end execution requires only a few
minutes. For other evaluated LLMs, a comparable success is
also achievable within 100k tokens, corresponding to runtimes
below one hour. Using the prices reported in Table II, the
monetary cost of such attacks is negligible in practice. A
representative cost for DS R1 requiring a 10k-token budget is
only $0.0215. Even for relatively costly services, the expense
remains small, e.g., approximately $0.10 for Gemini 2.5 Pro
requiring a 10k-token budget, and $0.44 for GPT o4 requiring
a 100k-token budget. These results demonstrate that ThinkTrap
is both low-cost and practically feasible in realistic scenarios.

D. Attack Results on LLM Service Systems

We then evaluate attack results of the proposed ThinkTrap
on practical LLM service systems. Specifically, we deploy the
DS Llama 8B LLM as a local LLM service on a GPU server
equipped with four NVIDIA RTX 2080ti GPUs. To evaluate
the system’s robustness, we offline-generate 100 adversarial
prompts and submit them to the service via its API at a low
injection rate of 10 prompts per minute (RPM=10), thereby
avoiding detection by standard rate-limiting mechanisms. The
maximum number of tokens per generation is set to 32,768 to

enable extensive output, which is a common setting of modern
LLM service. The metrics of time to first token (TTFT), tokens
per second (TPS), GPU memory consumption of the GPU
server are plotted on Fig. 5.

ThinkTrap effectively exhausts the computational re-
sources of the LLM server. The crafted adversarial prompts
result in substantially prolonged inference durations. Notably,
the system latency increases approximately linearly prior to
the 40th input, suggesting that each prompt reliably induces
around four minutes of sustained computation. Beyond this
point, the rate of latency growth slightly tapers, as some earlier
generations complete. Nevertheless, due to the continuous
arrival of new prompts and the already degraded computational
throughput, the overall latency continues to escalate rapidly.

ThinkTrap effectively depletes the GPU memory re-
sources of the LLM server, thereby enabling a success-
ful denial-of-service (DoS) attack. We further observe a
sustained increase in GPU memory consumption across all
four devices. Initially, each GPU utilizes no more than 4GB
of memory. However, after the injection of 80 adversarial
prompts, the most heavily loaded GPU reaches 8GB of usage.
This growth is primarily attributed to the accumulation of key-
value (KV) caches for each ongoing inference, which demands
substantial memory resources. Considering that a portion of
GPU memory is reserved for the inference framework itself,
this level of consumption approaches the capacity limit of
consumer-grade GPUs such as the RTX 2080 Ti. Conse-
quently, after the 80th input, the system experiences memory
exhaustion, causing many inference requests to fail or time
out, indicating a successful denial-of-service (DoS) attack.
While the system remains partially responsive afterward, its
processing speed remains severely degraded, and memory
usage continues to rise until the next crash occurs.

It’s hard to defend against ThinkTrap by simply limiting
the maximum number of output tokens, as such constraints
can significantly degrade service quality. One naive way to
defend against the ThinkTrap attack is to limit the maximum
output tokens allowed to output. In this way, the artificially
induced high output is limited. However, we can see from Fig.
5 that, even with a strict output limitation of 256 tokens, the
decoding speed metrics, i.e., TTFT and TPS, still slow down
significantly. With the output limitation of 128 tokens, the
TTFT and TPS can remain stable, which successfully defense
the attack of ThinkTrap. However, such a low output length
will greatly affect the user experience, which is obviously
not feasible. We can also see that the LLM service of a
reasonable length limit of 1024 tokens behaves almost the
same as the LLM service without length limit. This shows
that the proposed ThinkTrap attack can cause great harm to the
system even when the service allows a reasonable maximum
output length.

E. Transferability of Attack Prompts

We further evaluate the transferability of the generated
attack prompts, given the substantial computational cost as-
sociated with their generation, i.e., we assess the feasibility of

10



0 50 100
Number of Attack Samples Sent

0

5

10
TT

FT
 (s

)

0 50 100
Number of Attack Samples Sent

0

10

TP
S

0 50 100
Number of Attack Samples Sent

20

30

G
PU

 M
em

or
y 

(G
B

)

unlimited 1024 tokens 512 tokens 256 tokens 128 tokens

Fig. 5: Impact of ThinkTrap attack on the DeepSeek Llama service with a just allowed attack rate of 10 RPM based on the
Transformers library using 4 NVIDIA 2080ti GPUs with different output token limitations, where only the unrealistic limitation
of 128 tokens can successfully defend the attack.

0 1000 2000 3000 4000
Output length

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F DS Llama 8B
Hermes Llama 405B
Euryale Llama 70B
Llama 3.1 70B
Llama 3.3 70B

(a) Transfer to the same LLM family

0 1000 2000 3000 4000
Output length

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F DS Llama 8B
DS Qwen 1.5B
DS Qwen 7B
DS Qwen 32B
DS R1 671B

(b) Transfer to the same SFT dataset

0 1000 2000 3000 4000
Output length

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F DS Llama 8B
Devstral Medium
Gemini 2.0
Kimi v2
Mistral nemo

(c) Transfer to brand new LLMs

Fig. 6: Cumulative distribution function (CDF) of the output lengths of attack prompts generated for DS Llama 8B and evaluated
across various LLMs, indicating that models fine-tuned on the same dataset may share similar vulnerabilities.

reusing prompts crafted to exploit one LLM to successfully
attack other LLMs without incurring additional generation
overhead. To this end, we evaluate the transferability of offline-
generated attack prompts for DS Llama 8B as an example.

1) Transferring across LLM Families: We first evaluate the
transferability of attack prompt across LLM families. To this
end, we plot the output length of attack prompts generated for
the DS Llama 8B for several Llama-based LLMs, i.e., Hermes
Llama 405B, Euryale Llama 70B, Llama 3.1 70B, Llama 3.3
70B. The cumulative distribution function (CDF) on the output
length of the evaluated LLMs, including the source DS Llama
8B, is shown in Fig. 6a.

The attack prompts exhibit limited transferability even
within the same LLM family. As shown in Fig. 6a, even
within the same model family, e.g., Llama, the effectiveness
of the attack prompts significantly degrades when transferred
to another model variant. The resulting output lengths are
consistently below 800 tokens, substantially shorter than those
observed in the source LLM. This observation suggests that
the exploited vulnerabilities are not inherent to the shared
architecture or parameter space of the LLM family.

2) Transferring across LLM Supervised Fine-Tuning (SFT)
Datasets: We then evaluate the transferability of attack
prompts across Supervised Fine-Tuning (SFT) datasets.

Specifically, we evaluate the output length of the LLMs fine-
tuned on the DeepSeek R1 distilled dataset, i.e., DS R1, DS
Qwen 1.5B, DS Qwen 7B, DS Qwen 32B, and DS R1 671B,
also on attack prompts generated for DS Llama 8B. The CDF
of output lengths is shown in Fig. 6b.

The attack prompts exhibit strong transferability across
models fine-tuned on the same supervised fine-tuning
(SFT) dataset. As illustrated in Fig. 6b, although some
degradation in performance is observed, models fine-tuned
on the same SFT dataset, i.e., DeepSeek R1, remain largely
susceptible to each other’s attack prompts. Notably, prompts
generated by the DS Llama model frequently elicit outputs
exceeding 4096 tokens, with a high likelihood of surpassing
800 tokens. This suggests that the vulnerability associated
with infinite generation is likely introduced during the post-
pretraining SFT phase. Furthermore, we observe that the
output length of the source DS Llama 8B model does not
consistently reach 4096 tokens, which can be attributed to
the inherent stochasticity of LLM decoding. Nevertheless,
the generated outputs are sufficiently long to preserve the
effectiveness of the attack.

3) Transferring to Brand New LLMs: We also evaluate
the transferability of attack prompts on the brand new LLMs
to access its universal generalization ability. To this end, we

11



evaluate the output lengths of the new LLMs that are unrelated
to the DS Llama 8B LLM, i.e., Devstral Medium, Gemini
2.0, Kimi v2, and Mistral nemo. The CDF of output length is
shown in Fig. 6c.

The attack prompts demonstrate limited generalizability
when applied to unseen LLMs. As shown in Fig. 6c, attack
prompts crafted specifically for the DS Llama model are
largely ineffective against novel LLMs. Despite variations
in output lengths across different models, most fail to ap-
proach the maximum length of 4096 tokens, with the majority
producing outputs of fewer than 800 tokens. This outcome
supports the validity of using 4096 as a practical upper bound
for evaluating excessive output generation, as non-adaptive
prompts rarely trigger such extended outputs. Moreover, the
results indicate that the generated prompts lack cross-model
generalization, suggesting that each LLM exhibits unique
susceptibility patterns and requires tailored attack samples.

VIII. DEFENDING AGAINST THINKTRAP

In this section, we examine practical defense mechanisms
against ThinkTrap and analyze their effectiveness in real-world
LLM serving environments. We focus on two representative
mitigation strategies that are widely deployed in current LLM
hosting systems, namely lightweight anomaly detection and
resource-aware scheduling. Our evaluation further investigates
their operational implications, providing guidance for practi-
tioners who must balance robustness and service quality.

A. Defense Mechanisms

We consider the following two typical practical defense
mechanisms:

• Anomaly Detection [38], [39]: An anomaly detection
mechanism is implemented to identify repetitive or loop-
ing generations through an n-gram-based analysis of
model outputs. Consecutive token sequences, i.e., n-
grams, are continuously monitored within a sliding win-
dow, and requests exhibiting excessive recurrence fre-
quency are regarded as degenerated and terminated early
to prevent unnecessary computation. 4-grams are em-
ployed [38] in our implementation to provide a trade-
off between detection sensitivity and robustness against
benign stylistic repetition.

• Resource-aware Scheduling [40], [41], [42]: We imple-
ment a resource-aware scheduling mechanism following
the Virtual Token Counter (VTC) policy [40], which
enforces fine-grained control over decoding progress to
prevent unbounded resource occupation. Instead of al-
lowing a request to decode continuously, the scheduler
allocates each active request a fixed token quantum (e.g.,
1024 tokens) per scheduling round. Once this quota is
exhausted, the request is preempted, its state is cached,
and it is re-queued behind other pending tasks. This
token-level preemption ensures that no single request
can occupy GPU or NPU resources for an extended
interval, thereby limiting the impact of long-generation
abuse patterns.

0 200 400 600
Number of Attack Samples Sent

0.0

0.2

0.4

TT
FT

 (s
)

0 200 400 600
Number of Attack Samples Sent

0

20

40

TP
S

None Anom-Det Res-Sched

Fig. 7: Time-to-First-Token (TTFT) and Throughput (TPS) of
the LLM service under the ThinkTrap attack (10 RPM) with
anomaly detection (Anom-Det) and resource-aware scheduling
(Res-Sched). Anomaly detection offers limited protection and
adds overhead, while resource-aware scheduling mitigates the
attack at the cost of degraded QoS for long-form requests.

B. Effectiveness of Defense Mechanisms

We evaulate the defense performance on a server equipped
with eight Ascend 910B NPUs, each providing 64 GB of high-
bandwidth memory (HBM), is employed for the evaluation.
We select DeepSeek Llama 70B as the representative model,
given its widespread adoption and the suitability of its scale
for this hardware configuration. The model is deployed using
MindIE, which schedules decoding requests in a First-In-
First-Out (FIFO) manner. The adversarial prompts are pre-
generated and subsequently issued to the target server at
a controlled rate of 10 requests per minute (RPM). Fig. 7
illustrates the Time-to-First-Token (TTFT) and Throughput
(TPS) of the LLM service under the ThinkTrap attack with the
Anomaly Detection and Resource-aware Scheduling defense
mechanisms, respectively.

Anomaly detection defense is ineffective against Think-
Trap. We can see from Fig. 7 that although anomaly detection
slightly alleviates the denial-of-service (DoS) effect caused by
ThinkTrap, its protection capacity remains extremely limited.
It can only tolerate several tens of adversarial prompts be-
fore the service eventually collapses. This weakness arises
because the long-form outputs induced by ThinkTrap are not
merely mechanical repetitions of surface tokens but exhibit
semantic-level redundancy with moderate diversity, making
them difficult to capture through lightweight repetition de-
tectors. Moreover, the anomaly detection approach incurs a
noticeable performance overhead. As shown in Fig. 7, its TPS
is lower even at the beginning of the attack. This indicates
that, despite being computationally lightweight, the detector
must still inspect every LLM decoding stream, thereby reduc-
ing overall throughput. More sophisticated anomaly detection
methods, such as those employing an auxiliary language model
to assess semantic repetition, would consume substantially
more computational resources, rendering them impractical for
real-time inference services.

The resource-aware scheduling approach successfully
defenses the attack, albeit with a trade-off in service quality
for long-response requests. As shown in Fig. 7, under single-

12



user attack scenarios, the resource-aware scheduling mecha-
nism effectively mitigates the ThinkTrap attack by constrain-
ing the maximum decoding length of each inference request.
Once the predefined limit is reached, the decoding process
is terminated and the corresponding computational resources
are promptly released. This mechanism prevents malicious
requests from monopolizing the hardware for unbounded pe-
riods and thus protects the service from complete breakdown.
However, this improvement in system stability comes at the
cost of degraded quality of service (QoS) for legitimate
requests that inherently require long-form reasoning. Tasks
requiring long outputs such as mathematical problem solving
and embodied task planning experience frequent interruptions
and forced re-scheduling, leading to a significant reduction
in their overall inference throughput. Furthermore, because
scheduling operates in a sequential manner, the defense re-
mains vulnerable under concurrent multi-user attacks. Such
queuing pressure is well known in multi-user video analytics
systems [43]. When multiple adversarial clients issue long-
generation requests simultaneously, the scheduler becomes
congested, causing benign requests to experience excessive
queuing delays and inflated TTFT.

C. Discussion of Defenses

Defense evaluation demonstrates that resource-aware
scheduling is highly effective in preventing adversarial re-
quests from monopolizing decoding resources, thereby pre-
serving service availability under sustained attack. Such mech-
anisms, however, inevitably introduce additional latency for
benign requests that require long, uninterrupted generations.
This tradeoff highlights a fundamental tension in serving large-
scale LLMs, where the system must maintain fairness and
availability in the presence of adversaries while simultaneously
supporting emerging workloads that demand extended reason-
ing or narrative outputs. We argue that resource-aware schedul-
ing should therefore be treated as a first-class requirement
for modern LLM hosting platforms, rather than an optional
optimization.

Beyond the mechanisms evaluated in this study, several
operational safeguards, such as output-length caps, per-user
rate limiting, and per-query compute metering, can limit an at-
tacker’s ability to induce unbounded inference. However, these
strategies degrade the experience for legitimate users whose
tasks naturally require long outputs or multi-step reasoning.
Their role resembles classical DoS mitigation approaches that
preserve availability by selectively reducing functionality or
imposing flow control under extreme load. While effective
as last-resort measures, these approaches are fundamentally
coarse-grained and do not address the root cause of reasoning-
induced DoS behavior.

Looking forward, more principled defenses will likely re-
quire a deeper understanding of the computation pathways
exercised during long-form and multi-step LLM reasoning.
Developing real-time signals that reflect internal model states,
decoding complexity, or incremental resource usage could
enable more adaptive scheduling and throttling mechanisms.

Attack-aware resource allocation should also be incorporate
into LLM-serving frameworks, balancing robustness, through-
put, and model utility under adversarial environments.

IX. CONCLUSION

This paper investigates a previously overlooked vulnera-
bility in closed-source LLM services: their susceptibility to
DoS attacks via adversarial prompts. We propose Think-
Trap, a black-box attack framework that identifies prompts
inducing excessive computation by leveraging derivative-free
optimization in a continuous surrogate space. Through a
low-dimensional, token-wise strategy, ThinkTrap circumvents
the challenges of discrete input spaces and high-dimensional
optimization. Extensive evaluations on commercial and self-
hosted LLMs demonstrate that ThinkTrap can degrade system
performance by inflating output length, exhausting GPU re-
sources, and delaying legitimate queries. These results high-
light a critical, asymmetric threat to LLM infrastructure and
underscore the need for prompt-level defenses in black-box
deployment settings.

ETHICS STATEMENTS

This work investigates prompting-based denial-of-service
risks in LLM services. Given the sensitivity of studying system
abuse vectors, we followed strict ethical and responsible
research practices throughout the research. All stress exper-
iments were conducted on privately hosted and university-
managed LLM deployments, i.e., models deployed on the
Zhiyuan-1 cluster maintained by the Center for High Per-
formance Computing at Shanghai Jiao Tong University, with
explicit permission from system administrators. These envi-
ronments allowed full instrumentation and stress evaluation to
safely examine worst-case execution behavior.

For commercial LLMs (e.g., ChatGPT, Gemini, DeepSeek),
we only conducted limited and controlled trial queries during
June and July 2025. These queries strictly adhered to publicly
documented usage policies, did not exceed normal user be-
havior patterns, and did not create abnormal load or service
disruption. No unauthorized stress tests were performed on
commercial infrastructure. Following reviewer guidance on
responsible disclosure, we formally contacted all evaluated
LLM providers via their official security reporting channels
on October 10, 2025, summarizing the ThinkTrap mechanism,
its potential impact, and mitigation insights. Our goal is
to responsibly surface security weaknesses to strengthen AI
system robustness, not to enable misuse. We do not release
attack-specific configurations that could facilitate abuse, and
we encourage LLM platform operators to adopt proactive
safeguards. No personal data, user content, or proprietary
system logs were accessed in this study.

ACKNOWLEDGMENT

This work was supported in part by the Natural Science
Foundation of China (Grants No. 62432008, 62472083). The
computations in this paper were run in part on the Zhiyuan-1
cluster supported by the Center for High Performance Com-
puting at Shanghai Jiao Tong University.

13



REFERENCES

[1] K. Sanderson, “Gpt-4 is here: what scientists think,” Nature, vol. 615,
no. 7954, p. 773, 2023.

[2] J. Qiu, K. Lam, G. Li, A. Acharya, T. Y. Wong, A. Darzi, W. Yuan, and
E. J. Topol, “Llm-based agentic systems in medicine and healthcare,”
Nature Machine Intelligence, vol. 6, no. 12, pp. 1418–1420, 2024.

[3] R. Mon-Williams, G. Li, R. Long et al., “Embodied large language
models enable robots to complete complex tasks in unpredictable
environments,” Nature Machine Intelligence, pp. 1–10, 2025.

[4] M. Li, S. Zhao et al., “Embodied agent interface: Benchmarking llms
for embodied decision making,” in Proceedings of NeurIPS, 2024.

[5] Y. Zheng, H. Y. Koh, J. Ju, A. T. Nguyen, L. T. May, G. I. Webb, and
S. Pan, “Large language models for scientific discovery in molecular
property prediction,” Nature Machine Intelligence, pp. 1–11, 2025.

[6] D. Truhn, J. S. Reis-Filho, and J. N. Kather, “Large language mod-
els should be used as scientific reasoning engines, not knowledge
databases,” Nature medicine, vol. 29, no. 12, pp. 2983–2984, 2023.

[7] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram,
and D. Zamboni, “Analysis of a denial of service attack on tcp,” in
Proceedings of IEEE S&P, 1997.

[8] K. Pelechrinis, M. Iliofotou, and S. V. Krishnamurthy, “Denial of
service attacks in wireless networks: The case of jammers,” IEEE
Communications surveys & tutorials, vol. 13, no. 2, pp. 245–257, 2010.

[9] J. Dong, Z. Zhang, Q. Zhang, T. Zhang, H. Wang, H. Li, Q. Li, C. Zhang,
K. Xu, and H. Qiu, “An engorgio prompt makes large language model
babble on,” in Proceedings of ICLR, 2025.

[10] I. Shumailov, Y. Zhao, D. Bates, N. Papernot, R. Mullins, and R. An-
derson, “Sponge examples: Energy-latency attacks on neural networks,”
in Proceedings of IEEE EuroS&P, 2021.

[11] A. Kumar, J. Roh, A. Naseh, M. Karpinska, M. Iyyer, A. Houmansadr,
and E. Bagdasarian, “Overthinking: Slowdown attacks on reasoning
llms,” arXiv preprint arXiv:2502.02542, 2025.

[12] X. Chen, J. Xu, T. Liang, Z. He, J. Pang, D. Yu, L. Song, Q. Liu,
M. Zhou, Z. Zhang et al., “Do not think that much for 2+ 3=? on the
overthinking of o1-like llms,” arXiv preprint arXiv:2412.21187, 2024.

[13] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” in Proceedings of ACL, 2016.

[14] X. Feng, X. Han, S. Chen, and W. Yang, “Llmeffichecker: Understanding
and testing efficiency degradation of large language models,” ACM
Transactions on Software Engineering and Methodology, vol. 33, no. 7,
pp. 1–38, 2024.

[15] A. Aghajanyan, S. Gupta, and L. Zettlemoyer, “Intrinsic dimensionality
explains the effectiveness of language model fine-tuning,” in Proceed-
ings of ACL, 2021.

[16] Y. Qin, X. Wang, Y. Su, Y. Lin, N. Ding, J. Yi, W. Chen, Z. Liu, J. Li,
L. Hou et al., “Exploring universal intrinsic task subspace for few-shot
learning via prompt tuning,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 2024.

[17] Y. Xu, L. Xie, X. Gu, X. Chen, H. Chang, H. Zhang, Z. Chen, X. Zhang,
and Q. Tian, “Qa-lora: Quantization-aware low-rank adaptation of large
language models,” in Proceedings of ICLR, 2024.

[18] T. Sun, Y. Shao, H. Qian, X. Huang, and X. Qiu, “Black-box tuning for
language-model-as-a-service,” in Proceedings of ICML, 2022.

[19] A. Müller and E. Quiring, “The impact of uniform inputs on activation
sparsity and energy-latency attacks in computer vision,” in Proceedings
of IEEE SPW, 2024.

[20] A. Shapira, A. Zolfi, L. Demetrio, B. Biggio, and A. Shabtai, “Phantom
sponges: Exploiting non-maximum suppression to attack deep object
detectors,” in Proceedings of IEEE/CVF WACV, 2023.

[21] C. Schoof, S. Koffas, M. Conti, and S. Picek, “Beyond phantomsponges:
Enhancing sponge attack on object detection models,” in Proceedings
of ACM WiseML, 2024.

[22] C. Ma, N. Wang, Q. A. Chen, and C. Shen, “Slowtrack: Increasing
the latency of camera-based perception in autonomous driving using
adversarial examples,” in Proceedings of AAAI, 2024.

[23] H. Liu, Y. Wu, Z. Yu, Y. Vorobeychik, and N. Zhang, “Slowlidar: In-
creasing the latency of lidar-based detection using adversarial examples,”
in Proceedings of IEEE/CVF CVPR, 2023.

[24] S. Chen, C. Liu, M. Haque, Z. Song, and W. Yang, “Nmtsloth: under-
standing and testing efficiency degradation of neural machine translation
systems,” in Proceedings of ACM FSE, 2022.

[25] J. Geiping, A. Stein, M. Shu, K. Saifullah, Y. Wen, and T. Goldstein,
“Coercing llms to do and reveal (almost) anything,” in Proceedings of
ICLR STLLM Workshop, 2024.

[26] B. Hou, J. O’connor, J. Andreas, S. Chang, and Y. Zhang, “Prompt-
boosting: Black-box text classification with ten forward passes,” in
Proceedings of ICML, 2023.

[27] A. Zou, Z. Wang, N. Carlini, M. Nasr, J. Z. Kolter, and M. Fredrikson,
“Universal and transferable adversarial attacks on aligned language
models,” arXiv preprint arXiv:2307.15043, 2023.

[28] Z. Xu, Y. Liu, G. Deng, Y. Li, and S. Picek, “A comprehensive study of
jailbreak attack versus defense for large language models,” in Findings
of ACL, 2024.

[29] X. Guo, F. Yu, H. Zhang, L. Qin, and B. Hu, “Cold-attack: Jailbreaking
llms with stealthiness and controllability,” in Proceedings of ICML,
2024.

[30] Huawei Technologies Co., Ltd., “Mindie: Mindspore inference engine
for ascend ai processors,” https://www.mindspore.cn/mindie, accessed:
2025-07-02.

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Proceedings
of NeurIPS, 2017.

[32] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[33] X. Zhang, “Gaussian distribution,” in Encyclopedia of machine learning
and data mining. Springer, 2016, pp. 1–5.

[34] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” Proceedings of NeurIPS, 2020.

[35] W. Gurnee and M. Tegmark, “Language models represent space and
time,” arXiv preprint arXiv:2310.02207, 2023.

[36] A. Auger and N. Hansen, “Tutorial cma-es: evolution strategies and
covariance matrix adaptation,” in Proceedings of ACM GECCO Com-
panion, 2012.

[37] F. Wu, N. Zhang, S. Jha, P. McDaniel, and C. Xiao, “A new era in llm
security: Exploring security concerns in real-world llm-based systems,”
arXiv preprint arXiv:2402.18649, 2024.

[38] H. Li, T. Lan, Z. Fu, D. Cai, L. Liu, N. Collier, T. Watanabe, and
Y. Su, “Repetition in repetition out: Towards understanding neural text
degeneration from the data perspective,” in Proceedings of NeurIPS,
2023.

[39] X. L. Li, A. Holtzman, D. Fried, P. Liang, J. Eisner, T. B. Hashimoto,
L. Zettlemoyer, and M. Lewis, “Contrastive decoding: Open-ended text
generation as optimization,” in Proceedings of ACL, 2023.

[40] Y. Sheng and et al., “Fairness in serving large language models,” in
Proceedings of USENIX OSDI, 2024.

[41] Y. Zhang, H. Yu, C. Han, C. Wang, B. Lu, Y. Li, Z. Jiang, Y. Li,
X. Chu, and H. Li, “Sgdrc: Software-defined dynamic resource control
for concurrent dnn inference on nvidia gpus,” in Proceedings of ACM
PPoPP, 2025.

[42] L. Zhang, H. Zhu, W. Fei, Y. Li, M. Zhang, J. Cao, and M. Guo,
“Novas: Tackling online dynamic video analytics with service adaptation
at mobile edge servers,” IEEE Transactions on Computers, vol. 73, no. 9,
pp. 2220–2232, 2024.

[43] L. Zhang, H. Zhu, Y. Li, J. Shen, and M. Guo, “The blind and
the elephant: A preference-aware edge video analytics scheduler for
maximizing system benefit,” in Proceedings of ICPP, 2024.

14


