
Enhancing Semantic-Aware Binary Diffing
with High-Confidence Dynamic Instruction

Alignment
Chengfeng Ye, Anshunkang Zhou󴻂, Charles Zhang

The Hong Kong University of Science and Technology, China
{cyeaa, azhouad, charlesz}@cse.ust.hk

Abstract—Binary diffing, which detects differences between
two pieces of binary code, is the fundamental technique in
various security analysis tasks. Existing work shows that a
sufficient number of fine-grained alignments as anchor points
can significantly improve the overall accuracy of binary diffing.
However, existing methods still suffer from numerous limitations
that hinder accurate and efficient anchor point identification.
Syntax-based techniques are known to be vulnerable to aggressive
compiler optimizations, while semantic-based methods are limited
by high computation cost or low code coverage.

In this paper, we revisit dynamic analysis to seek new in-
sights to address the limitations of existing approaches. Our
main insight is that not all dynamic semantics are necessary
or equally effective for identifying valid instruction alignment.
Therefore, we can prioritize dynamic execution resources to
partially reveal the runtime values that can effectively derive
instruction alignment. Based on the above insight, we propose
BARRACUDA, a high-confidence instruction alignment technique
based on partial instruction semantics extracted from forced
execution. We have implemented BARRACUDA and conducted
extensive experiments to evaluate its effectiveness. Extensive
experimental results demonstrate that BARRACUDA can detect
24.0% more instruction alignment as anchor points with a high
precision of 92.1%. The anchor points detected by BARRACUDA
can enhance state-of-the-art binary diffing tools, DEEPBINDIFF
and SIGMADIFF, with percentage point increases in F1 scores
ranging from 12.3% to 42.7% and 2.2% to 4.1%, respectively,
across various binary diffing scenarios.

I. INTRODUCTION

Binary diffing identifies the differences or modifications be-
tween two pieces of binary code. This fundamental technique
facilitates a range of downstream binary security analyses,
including one-day vulnerability detection [1]–[5], plagiarism
detection [6], [7], code change analysis [8]–[10], malware
analysis [11], supply chain analysis [12], [13] and patch
presence analysis [14]–[16].

The basic idea behind binary diffing is to match code parts
that are found to be equivalent or similar and take the rest
of them as differences. Over the past few decades, there
have been significant advancements in this area, ranging from

coarse-grained functional-level methods [17]–[28] to finer-
grained basic-block-level [8], [29]–[34] and instruction-level
techniques [9], [10], [35]. Although existing efforts focus on
matching code fragments at different granularities, one of the
most important steps, and usually the very first one, is called
“anchor points identification”. Simply speaking, anchor points
are pairs of similar or equivalent code fragments between the
compared binaries that can be matched together with high
confidence. By identifying anchor points in the first place,
previous methods could perform subsequent fuzzy matching
stages to match the remaining code effectively and find the
differences. Existing practices [10], [33] have shown that a suf-
ficient number of pre-existing anchor points can significantly
improve the overall binary diffing accuracy, and the greater
the number of high-confidence matches known in advance,
the more accurate the final diffing result will be. For example,
SIGMADIFF [10] requires adequate pre-known matches to
serve as labeled training nodes before its semi-supervised deep
graph matching [36], and the accuracy of DEEPBINDIFF [33]
can be improved by connecting pre-matched nodes on the
merged inter-procedural control flow graphs (ICFGs) of two
compared binaries before performing k-hop greedy matching.

Despite the importance of accurate anchor point identifica-
tion, we found that existing work still falls short in finding an
adequate number of anchor points due to several limitations.

Limitations of Existing Efforts. First, some existing binary
diffing techniques heavily rely on syntactic signatures such as
control-flow graphs [8] and instruction sequences [9] to find
matched anchor points. However, merely leveraging syntactic
signatures is known to be vulnerable to aggressive compiler
optimizations [33], [37]. For example, although SIGMAD-
IFF [10] tries to define the signature as symbolic formulas of
instructions, they still choose to determine the equivalence of
two symbolic formulas by comparing their syntactic structure,
which can be easily changed by compiler optimizations [26].

Second, another line of work leverages semantic-based
methods that extract binary functionalities or behaviors
through dynamic execution [34] or symbolic execution [14],
[15], [30], [31] for matching equivalent code fragments. On
the one hand, symbolic execution still could cause scalability
issues. Therefore, binary diffing techniques that rely on sym-
bolic execution either take a long time (from three to six hours)
just to find basic-block matching in small binaries with only

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240663
www.ndss-symposium.org

thousands of source lines [30], [31], or can at most be applied
on restricted code region to perform specific downstream tasks
like patch-presence testing [14]–[16].

On the other hand, although dynamic approaches have
the advantage of efficiently deriving robust binary program
semantics from runtime values observed during concrete exe-
cution [35], [38], [39], they naturally suffer from low coverage
due to path explosion. Forced execution-based methods [37],
[40], [41] try to increase block coverage by overriding the
intended program logic. While semantics extracted through
high block coverage is sufficient for analyzing function-level
similarity [37], they are still partial ones, as with finite compu-
tational resources, it is always difficult to cover all execution
paths within a binary. Therefore, existing methods still fall
short when analyzing finer-grained instruction alignment.

Insight. In this paper, we revisit dynamic analysis to un-
cover new insights to address the aforementioned limitations.
Our key insight is that not all dynamic semantics are necessary
or equally effective for identifying valid anchor points. On the
one hand, drawing on the successful use of biclique structures
in bioinformatics [42] and recommendation systems [42], we
notice that a group of instructions with partially overlapping
semantic relationships forming a biclique strongly indicates
the presence of valid alignment within that group. On the other
hand, it is intuitive that two instructions from the compared bi-
naries are more likely to share overlapping dynamic semantics
if they operate on a smaller set of runtime values, and revealing
just a small portion of these values is sufficient to achieve a
high probability of overlap. Based on these observations, we
could prioritize the execution resources to cover instruction
values that are more likely to derive overlapping semantics and
resort to the biclique structure of overlapping relationships to
find instruction alignment.

Our Approach. Based on the above insight, we propose
BARRACUDA, a high-confidence instruction alignment tech-
nique based on partial instruction semantics extracted from
dynamic execution. To effectively derive dynamic semantics
and identify more initial matches, we prioritize execution
resources to reveal runtime values that are likely to produce
overlapping semantics between instructions. The prioritized
path sampling begins by estimating the number of distinct
runtime values for each instruction through static analysis. We
then start with instructions with a smaller estimated number
of runtime values and sample each path that covers their
symbolic formulas. This process continues until we reach a
point where the probability of overlapping semantics with their
counterparts in the reference binary is sufficiently high.

With only partial semantics available, we model binary
instruction alignment as a two-stage bipartite graph-matching
process. Two instructions are marked as an initial match as
long as their semantics overlap. Then, for each balanced
biclique formed from this initial matching, a small reduced
CFG is constructed on each side by removing irrelevant
instructions while preserving the original topological order of
the remaining instructions. Deterministic graph isomorphism
can finally be used to efficiently determine precise instruction

Fuzzy Matching• Anchor Point Detection

A

C

B

Feature A

Feature A

Feature B

Feature B

A

C

B

Feature A

Feature A

Feature B

Feature B

A’

B’

C’

A’

B’

C’

Fig. 1: Conceptual flow of modern binary diffing.

matchings, leveraging the small size of the reduced graph.
In this way, we can find alignment for a large portion of
instructions while maintaining high overall precision.

The instruction alignment results can be integrated into
existing binary diffing tools as anchor points, enhancing the
overall accuracy of the binary diffing process.

Evaluation. We have implemented BARRACUDA on the
LLVM framework [43] and conducted extensive experiments
to evaluate its effectiveness. Extensive experimental results
demonstrate that BARRACUDA can detect 24.0% more in-
struction alignment as anchor points with a high precision
of 92.1%. The anchor points detected by BARRACUDA can
enhance state-of-the-art binary diffing tools, DEEPBINDIFF
and SIGMADIFF, with percentage point increases in F1 scores
ranging from 12.3% to 42.7% and 2.2% to 4.1%, respectively,
across various binary diffing scenarios.

Contributions. We make the following contributions.
• Prioritized Path Sampling: We propose a prioritized path

sampling to effectively reveal runtime values that are
more likely to derive overlapping semantics on matched
instructions.

• High-Confidence Instruction Alignment: We propose an
efficient and high-confidence instruction alignment using
Reduced-CFG Isomorphism on balanced bicliques con-
structed from overlapping semantics between instructions.

• Extensive Evaluation: Our evaluation demonstrates that
BARRACUDA is effective at identifying more precise
anchor points, thereby improving the overall diffing ac-
curacy of the two latest binary diffing tools.

II. BACKGROUND AND MOTIVATION

A. Binary Diffing with Neighborhood Consensus

Binary diffing is commonly modeled as a graph matching
problem, where instructions or basic blocks are represented as
nodes in a control flow graph (CFG) or a data dependency
graph (DDG). Modern binary diffing approaches [10], [33]
incorporate an important concept from the graph matching
domain known as Neighborhood Consensus [36], [44], [45],
which considers the nodes adjacent to a given node when
determining its match. Typically, these diffing methods begin
with an initial matching stage to identify high-confidence
matches that serve as anchor points, so that neighbors of the
anchor points are more likely to be matched in the subsequent
fuzzy matching stage. For instance, in Figure 1, if node pairs

2

a = b ≪ 2

a = arg1, b = arg2
A

a = a + 1;H

a = a ≪ 2K

a = b ≪ 2 a = a * 5JI

B Ba = a + 1 a = a + 2 a = a + 3b = b + 4D E F G

a = bB C

A I K A C F H JD I K

A I A I A C

K

Sampling on Reference Binary

Sampling on Target Binary

(d) Initial alignment

C

I

K

Reference Binary Target BinaryC

I

K

control flow

data dependency

(a) CFG and PDG of sample program

(b) Path sampling on both binaries to cover values of instructions C, I, and K

(c) Forced execution runtime values (with input arg1 = 1, arg2 = 3)

12 = 3 ≪ 2

12 = 3 ≪ 2 28 = 7 ≪ 2

48 = 12 ≪ 2 112 = 28 ≪ 2 300 = 75 ≪ 2

(f) Final alignment

C

I

K

(e) Reduced-CFG Isomorphism

D

A’ A’ A’D’

A’ A’I’ C’B’ H’ H’E’ J’ J’A’ G’

A

I’ I’ C’

K’ K’ K’

C’

I’

K’

12 = 3 ≪ 2

12 = 3 ≪ 2 28 = 7 ≪ 2

48 = 12 ≪ 2 100 = 25 ≪ 2 320 = 80 ≪ 2

C’

I’

K’

C’

I’

K’

C

I

C’

I’

Fig. 2: This figure shows the control flow graph (CFG) and data dependency graph (DDG) of a sample program, along with our
method for performing instruction alignment. Our path sampling first efficiently samples a small number of paths to reveal the
instruction semantics of C, I , and K via forced execution and identifies their initial matching. With initial matching containing
multiple targets, our reduced-CFG isomorphism can then efficiently and precisely detect the final matching.

A-A’ and B-B’ are identified as anchor points due to shared
features, then node pair C-C’ is more likely to be matched by
subsequent fuzzy matching. In essence, the greater the number
of precise early matches, the more likely the surrounding nodes
will also be matched, resulting in improved overall accuracy.

B. Forced Execution for Binary Diffing

Forced execution is a technique designed to address the
limited coverage issue in dynamic analysis. Its basic idea is
that the jumping direction at each branch instruction is deter-
mined by a path-sampling algorithm rather than the runtime
value of the branch condition. In a typical workflow of forced
execution for binary similarity analysis, it initializes a fixed
external environment (e.g., values of function parameters) for
a function, then explores the program paths within the function
and takes observed runtime values as the function semantics.
In this way, there is no need for test cases or architecture-
specific runtime environments to drive the execution.

However, because forced execution is still a per-path analy-
sis technique, it suffers from limited coverage, as the number
of program paths can grow exponentially with program size.
Consequently, existing forced execution techniques [37], [40],
[41] only aim to achieve full block coverage, regardless of
the coverage of different paths. Moreover, these techniques
only perform function-level matching rather than fine-grained
instruction alignment.

III. BARRACUDA IN A NUTSHELL

A. Motivating Example

In this section, we use a running example to illustrate
how BARRACUDA effectively samples paths to derive runtime
values as instruction semantics with forced execution and
utilizes the partial semantics obtained to align instructions.

Figure 2a shows the control flow graph of a code snippet,
with dashed lines highlighting the data dependencies between
instructions. Consider that this code snippet has been compiled
into reference and target binaries. To find instruction align-
ment, BARRACUDA samples execution paths in both binaries
to obtain runtime values of instruction operands, and considers
two instructions with overlapping values as initial matches.
For simplicity, we will focus on describing matching three
left-shift operators: C, I , and K.

For the first point, we note that the difficulty in match-
ing these three instructions is different. Examining the data
dependencies of instruction C and I reveals that only one
execution path is required for C, and two paths are required
for I , to reveal all their runtime values. Specifically, the data-
dependency path required for C is A → C, and paths required
for I are A → I and A → D → I . In contrast, instruction K
requires a total of five different paths to reveal all its values,
as there are five distinct data-dependency paths leading to it.
Therefore, if the path sampling quota is limited, it is more
beneficial to sample paths that can reveal the values of I and
C rather than those of K. For the second point, we emphasize
that an instruction inside two binaries can match as long as the
runtime values overlap. Consequently, finding a correct match
for an instruction does not require revealing all its values, and
the benefit of revealing more values decreases as we reveal
more values on it. Regarding instruction K, as long as we can
reveal three of its five runtime values in both binaries, the two
sets of values should overlap. Further sampling to reveal its
runtime values would not lead to additional gain in finding
more alignment. Based on the above analysis, BARRACUDA
decides to cover the paths shown in Figure 2b to match all
three left-shift operators, including all the paths for I and
C, and three paths for K. It is important to note that these

3

Binary 1
Value-Set Size

Analysis

Execution Path
Sampling

Binary 2

Prioritized Path
Sampling

Forced
Execution

Function Similarity
Analysis

Instruction
Alignment

Initial Alignment
Construction

1 3

2 runtime
values

execution
paths

fine-grained
matching

Binary Diffing
(e.g., SigmaDiff, DeepBinDiff)

Greedy Path
Merging

Reduced-CFG
Isomorphism

Fig. 3: Workflow of BARRACUDA

paths represent data-dependency sequences that should be
covered rather than final control-flow paths to execute. For
example, to cover the five selected data-dependency paths in
the reference binary, executing just three complete control-
flow paths is sufficient. These paths are A → B → D →
H → I → K, A → C → F → H → I → K, and
A → C → F → H → J → K. Figure 2c shows the runtime
values revealed by executing paths that can cover the sampled
data dependencies. Based on these values, the initial matchings
shown in Figure 2d can be established.

The initial alignment of an instruction could include multi-
ple targets. For instance, as shown in Figure 2d, the targets for
instruction C and I include both C ′ and I ′ because they share
the same runtime value 12 = 3 ≪ 2. To precisely identify
which instruction aligns with which target within an alignment
group, our method is based on the assumption that the control-
flow order between two instructions is generally stable against
compiler optimizations. Consequently, we generalize the pro-
cess of finding one-to-one instruction alignments among a
group of initially aligned instructions as a graph isomorphism
problem on a reduced graph that reflects control-flow order
between instructions to align. As shown in Figure 2e, we
construct the reduced graph for C and I by reducing the
original CFG to a subgraph that excludes other unrelated in-
structions. Given the small scale of the reduced CFGs, a simple
graph isomorphism analysis with depth-first search (DFS) can
efficiently determine precise matching relationships, ultimately
identifying that C matches C ′ and I matches I ′, as shown
in Figure 2f. Unlike some previous approaches that apply
graph isomorphism to the entire CFG [8], [9], reduced-CFG
isomorphism has the advantages in both efficiency and accu-
racy. Since each reduced CFG contains only a small number
of instructions, even a non-polynomial isomorphism analysis
can complete its execution quickly. Additionally, because only
the instructions to be aligned exist in the reduced CFG, code
transformations performed in other code regions by compilers
will not affect the alignment of instructions in a reduced CFG.

B. Workflow

In this section, we describe the overall workflow of BAR-
RACUDA. Figure 3 shows the architecture of BARRACUDA,
consisting of three main stages.

S1: Execution Path Sampling(§V-A). To sample paths
that effectively reveal instruction semantics for instruction

alignment, our approach is based on two key insights: (1)
instructions with a smaller set of runtime values are easier to
have overlapping values with their correct matching targets,
and (2) the gain from revealing additional runtime values
for aligning an instruction diminishes as more values on the
instruction are revealed. To begin, we estimate the number of
distinct runtime values of each instruction by the number of
symbolic formulas that can be derived from it, which we will
refer to as value-set size. Next, for each instruction inside a
function with an increasing value-set size, we sample paths to
cover its symbolic formula one by one until the probability
of its value-set overlap between two binaries exceeds a large
predefined threshold, or until we reach a maximum path
sampling bound for a function. Finally, a greedy algorithm
is applied to merge these paths into a smaller set and convert
them into control-flow paths for execution.

S2: Forced Execution(§V-B). Given a path to execute, per-
function forced execution is performed by initializing function
parameters with a fixed set of values and then executing the
function in the path order. Runtime values observed on the
instruction operands are collected as instruction semantics,
while the values stored in memory or passed to library
functions are collected as function semantics.

S3: Instruction Alignment(§VI). Following previous
work [38], [40], we first calculate pairwise function-similarity
scores using the Jaccard index based on function semantics.
In each iteration, we select a pair of functions with the highest
score and establish an initial instruction alignment based on
the overlap of instruction semantics collected from forced
execution. Next, for each group of instructions whose matches
form a balanced biclique, we construct a reduced CFG that
includes only those instructions while preserving their relative
control-flow orders. We then perform graph isomorphism on
the reduced CFG to determine the precise one-to-one instruc-
tion alignment relationship within the group. Additionally,
basic-block matching is derived from the alignment result of
instructions within each basic block.

The output of BARRACUDA includes precise instruction
alignments and basic-block matches, each marked by its binary
address. These outputs are fed into existing semantic-aware
binary diffing tools and serve as anchor points, enhancing their
overall diffing accuracy.

4

Program P := F+ G+

Function F := f(arg1, ..., argn){B+}
Basic Block B := I+

Instruction I := v0 ← ⊕(v1, ..., vn)

Opcode ⊕ := load | store | call | cmp | phi |+ |− ...

Value v := G | Arg | F | B | I | C
Argument arg ∈ Arg Global g ∈ G Constant c ∈ C

Fig. 4: Program Language Syntax

IV. PRELIMINARY

In this section, we describe the definitions used in the paper
and formulate the problems we aim to solve.

Language Syntax. Figure 4 illustrates the language syntax
of the intermediate language (IR) on which our analysis is
performed. Each binary program consists of a set of functions
F and global variables G, which are recovered through disas-
sembly [46] and decompilation [47]. Each function contains
a set of basic blocks B arranged in control-flow order, where
each low-level instruction is translated to an SSA instruction I
with different opcodes ⊕. To ensure scalability in our analysis,
we follow the practice from existing forced execution [41] to
break back edges in the CFGs and call graph. Each function
is transformed into a single-entry single-exit (SESE) structure.

Forced Execution. Following existing work [40], [41],
forced execution is conducted as a per-function analysis.
Figure 5 shows the abstract domain related to the forced
execution. Given a fixed set of values initialized as input inp
for the function parameters and a path p to be executed, forced
execution interprets each instruction in the order specified by
the execution path while maintaining a mapping from each
top-level value v in IR and abstract memory address a to a
concrete runtime value rv. In line with the memory model
used by previous work [48]–[51], we organize the abstract
memory into a global region RG, a stack region RF for each
function, and a heap region RH for each heap allocation.

Next, we formally define the concept of instruction se-
mantics based on the runtime values observed during forced
execution.

Definition 1. The semantics of an instruction is defined as
{(⊕, S(v0), S(v1), ..., S(vn)) | inp, p}, where inp is the
initialized values of arguments and p is the path to be executed.

In other words, the semantics of an instruction is represented
by the set of its operand runtime values S(vi) observed during
forced execution, along with its opcode ⊕. Since the input
inp is fixed for each function to ensure the semantics derived
in different functions across two binaries are comparable, the
instruction semantics extracted is solely determined by the set
of execution paths p.

Based on the above formal definition, we can now formulate
the specific technical problems we aim to address before
delving into the technical details in the following sections.

Input inp := arg → rv Path p := B+

Memory M := a → rv State S := v → rv

Address a := (rgn, Z+) Runtime Value rv := Z+

Region rgn := RG (global) | RH
+(heaps) | RF

+(stacks)

Fig. 5: Forced Execution Abstract Domain

Problem Statement.
1) Given that computational resources are limited and the

number of paths is exponential in relation to the size of
the binary, how can we effectively sample execution paths
to derive instruction semantics for alignment?

2) Given that instruction semantics is often partial due to the
difficulty of enumerating all paths within a program, how
can we leverage partially collected instruction semantics
to match as many instructions as possible precisely?

V. INSTRUCTION SEMANTICS EXTRACTION

A. Execution Path Sampling

This stage samples paths based on the instruction value set
size. Path sampling is conducted as a per-function analysis,
where each sampled path represents a sequence of basic blocks
from the entry to the exit block of the currently analyzed
function f . Due to compiler optimization, some functions may
be inlined in only one of the two compared binaries, making
it challenging to align instructions within these functions. To
address the challenge, we use strategies from Asm2Vec [22]
to infer call sites that could be inlined if compiler optimization
were applied, which we refer to as inlined calls. Path sampling
can then proceed into the inlined callee when it encounters an
inlined call. Other call sites are treated like external functions.

1) Value-Set Size Analysis: The value-set size of an instruc-
tion is the number of its distinct symbolic formulas. For an
instruction I := v0 ← ⊕(v1, ..., vn), the value-set size can be
calculated based on the instruction type and its operands:

Size(I) = 1 ⊕ ∈ {G,Arg, F,B,C}

Size(I) =

n󰁛

i=1

Size(vi) ⊕ ∈ {phi}

Size(I) =
󰁛

vk→I

Size(vk) ⊕ ∈ {load}

Size(I) = Size(vret) ⊕ ∈ {inlined call}

Size(I) =

n󰁜

i=1

Size(vi) ⊕ ∈ {binop, cmp, call, store}

As the formulas indicate, the value-set size for constant
values, addresses, and base function arguments is set to 1.
The value-set size of a phi instruction is the sum of the value-
set sizes of its incoming values. A special case arises for load
instruction, whose value-set size is derived from values that
can be loaded from memory, represented as vk → I , obtained
from a data dependency analysis. For an inlined call, we track

5

Algorithm 1: Control-Flow Path Conversion
Input: Symbolic formula s
Output: Control-flow path p to cover the fomula s

1 Function ConvertToPath(s):
2 p ← ∅
3 foreach n ∈ operand(i) do
4 pn ← ConvertToPath(n)
5 p ← TryMergePath(p, pn)
6 if p = ∅ ∨ pn = ∅ then
7 return ∅

8 return p

9 Function TryMergePath(p1, p2):
10 p ← ∅
11 i1, i2 ← 0, 0
12 while i1 < |p1| ∧ i2 < |p2| do
13 if CFGReachable(p1[i1], p2[i2]) then
14 p.append(p1[i1])
15 i1 ← i1 + 1

16 else if CFGReachable(p2[i2], p1[i1]) then
17 p.append(p2[i2])
18 i2 ← i2 + 1

19 else
20 return ∅

21 return p

the return value of its callee vret. The value-set size of other
instructions is the product of their operands.

Example 1. Consider the instruction I : a = b ≪ 2 in
Figure 2, the value-set size of it is two because the size of b at I
is two and the size of constant 2 is one. As a validation, we can
observe that there are two distinct symbolic formulas for this
instruction, including a = (arg2+4) ≪ 2 and a = arg2 ≪ 2.

2) Prioritized Path Sampling: Next, we perform a pri-
oritized path sampling guided by the value-set size of in-
structions. Essentially, value-set size indicates the number of
symbolic formulas that can be derived from an instruction,
estimating the number of distinct runtime values that can be
revealed through forced execution. Consequently, our path
sampling can be seen as prioritizing paths to reveal each
runtime value.

The principle of prioritized sampling consists of two main
points. First, we should sample the symbolic formulas of in-
structions with the smallest value-set sizes first, as instructions
with fewer runtime values are more likely to match. Second,
we should stop sampling the symbolic formulas of a given
instruction when the overlap probability is sufficiently high,
since further sampling will yield diminishing returns. This
overlap probability is the likelihood of overlap when sampling
M items from a set of N elements twice with replacement,

and is given by 1 − (N−M
M)
(N
M)

. We set the threshold for this

probability at 1− 0.14, which means that the total number of
samples taken for an instruction with a value-set size of N is

the minimum M such that (N−M
M)
(N
M)

≤ 0.14, approximating to
the square of N .

The process of sampling formulas for an instruction is sim-
ilar to calculating its value-set size through data-dependency
graph traversal, as previously described. The key difference
is that we will record each symbolic formula during graph
traversal rather than merely calculating a number.

For each sampled formula, we need to find a block sequence
with a valid control-flow topological order that covers the
instructions involved in the formula, representing an execution
order that can reveal its runtime value. The process is detailed
in Alg 1. For each operand of a sampled formula s, the
function ConvertToPath is invoked recursively to obtain
the subpath pn. Then TryMergePath is invoked to merge
the subpath pn with the path p to return (Line 3-7). Path
merging involves finding a topological order of the nodes
in both paths. This is done by iterating over each node in
both paths and checking if a valid topological order exists
between them. If a valid order exists, the node with the higher
topological order is appended to the merged path (Lines 12-
18). Otherwise, it means that a valid CFG path does not exist,
and an empty path is returned directly (Lines 19-20). During
path merging, we ensure that two consecutive store-load or
value-phi nodes in the original paths remain consecutive in
the merged path, thereby preserving value dependencies and
preventing them from being disrupted by merging with other
paths.

Example 2. Consider the instruction K : a = b ≪ 2 in
Figure 2a, which has a value-set size of 5. As the minimum

M for (5−M
M)
(5
M)

≤ 0.14 is 3, we sample three symbolic formulas

from it. After converting them into block sequences, we obtain
three paths A → I → K, A → D → I → K, and A → C →
F → H → J → K, as shown in Figure 2b.

The time complexity of path sampling is directly determined
by the number of paths allowed for sampling each function.
In our experiment, we set such a limit to 2,000.

3) Greedy Path Merging: Finally, we merge paths sampled
in the previous step to reduce the total number of paths to
execute. Two paths can be merged if there is a valid topological
sorting of nodes on both paths. Similarly, a group of paths can
be merged if every pair of paths in the group can be merged.

If we treat each path as a vertex and an edge to represent
whether two paths can be merged, then finding the minimum
number of merged paths can be reduced to finding a minimum
clique cover in this graph, which is known to be NP-hard [52].
Consequently, we use a greedy approach to efficiently merge
as many paths as possible.

The greedy algorithm is presented in Alg 2. Given a
set of paths Pin to merge, we initialize Premained as Pin,
which represents the remaining paths to merge (Line 3). In
each iteration, we remove one path p from Premained, and
attempt to merge p with each remaining unmerged path px in
Premained (Lines 4-7). If px can be merged with p, it is also
removed from the Premained, and p is updated as the merged
path (Lines 8-10). At the end of each iteration, the merged
path p is added to the merged path set Pmerged (Line 11).

6

Algorithm 2: Greedy Path Merging
Input: A set of path Pin to be merged
Output: A set of merged path Pmerged

1 Function GreedyMerging(s):
2 Pmerged ← ∅
3 Premained ← Pin

4 while Premained ∕= ∅ do
5 p ← Premained.pop()
6 for px ∈ Premained do
7 pmerge ← TryMergePath(p, px)
8 if pmerge ∕= ∅ then
9 p ← pmerge

10 Premained.erase(px)

11 Pmerged.insert(p)

12 return Pmerged

The merged path set is returned when there are no paths to
merge (Line 12).

The greedy approach has worst-case time complexity O(n2)
and best-case time complexity O(n), depending on the propor-
tion of paths that can be merged. In our experiments, we found
that most pairs of paths can be merged, making the greedy
approach quite efficient in practice. Finally, each merged path
is post-processed to include function entry and exit blocks,
with sub-paths added between consecutive blocks if they are
not directly connected in the CFG.

Example 3. Consider the five paths sampled on the reference
binary as shown in Figure 2b. After merging, we obtain three
paths A → B → D → H → I → K, A → C → F → H →
I → K, and A → C → F → H → J → K to be executed.

B. Forced Execution

The forced execution process follows the standards estab-
lished in previous work [40], [41], where function parameters
are initialized to a fixed set of values. Interpretation is then
performed on each instruction in the order of the paths to
update the memory state and IR values. Here, we provide a few
necessary details on how some important cases are handled.

• Memory Operation. Addresses extracted during execu-
tion are incomparable due to differences in the address
layouts of binaries. To address this issue, we normalize
addresses within different memory regions to predefined
magic values. Additionally, when a loaded memory is
uninitialized, a magic value is returned to indicate the
uninitialized state. If a load address belongs to external
memory, typically represented by an invalid address (such
as a dereference on an argument), a hash value is calcu-
lated based on the dereferenced address to represent the
value loaded from external memory. This way, if the same
external memory address is dereferenced in both binaries,
we can ensure that the loaded value remains consistent.

• Function Calling. A special case of function calling
occurs when a call instruction is not considered an inlined
call. In this situation, the execution will still call into the
callee function. However, since the execution order within

Algorithm 3: Alignment Workflow
Input: Reference binary Pref

Input: Target binary Ptgt

Input: Forced execution values V extracted on two binaries
Output: Instruction alignment Minst

Output: Basic-block alignment Mblock

1 Function Workflow(s):
2 Minst ← ∅
3 Mblock ← ∅
4 Mscore ← GetPairwiseScore(Pref , Ptgt, V)
5 while HasSinglyTopMatch(Mscore) do
6 (fref , ftgt) ← PopTopMatch(Mscore)
7 (minst,mblock) ← GetAlignment(fref , ftgt, V)
8 Minst ← Minst ∪minst

9 Mblock ← Mblock ∪mblock

10 return Minst,Mblock

a non-lined called function is not specified, the execution
will switch to normal mode, where the direction of a
branch instruction is decided by the current execution
state.

VI. INSTRUCTION ALIGNMENT

With the runtime values collected from forced execution,
the overall alignment workflow is illustrated in Alg 3. First,
pairwise function similarity scores are calculated based on the
collected values (Line 4). In each iteration, we retrieve the
highest-scoring function pair, and align the instructions and
basic blocks of the base functions and their inline callees
across the two binaries (Lines 5-7). The alignment results
for each function pair are merged into a global map (Lines
8-9), which ultimately serves as the output of BARRACUDA
(Line 10). Details of each step are provided in the following
subsections.

A. Initial Instruction Alignment

Instruction alignment is a two-stage process. At the first
stage, an initial alignment is obtained based on the overlap
relationship between instruction semantics.

Definition 2. (Initial Alignment) We consider instructions
I and I ′ are of initial alignment if Semantic(I) ∩
Semantic(I ′) ∕= ∅ satisfied, denoting as I ∼ I ′

The above definition indicates that two instructions could
align if their semantics overlap. Based on the definition of
Initial Alignment, we further define Initial Alignment Targets.

Definition 3. (Initial Alignment Targets) For Iref ∈ Fref , the
Initial Alignment Targets of Iref are {I ′ | I ′ ∼ I, ∀I ∈ Ftgt},
denoted by L(I). For Itgt ∈ Ftgt, L(Itgt) is defined similarly.

In a word, the initial alignment targets of one instruction
are the set of its initial alignments in the counterpart binary.

Example 4. As Figure 2c shows, for instruction C : a = a ≪
2 and instruction I ′ : a = b ≪ 2, we have C ∼ I ′, since
Semantic(C) ∩ Semantic(I ′) = {≪, 12, 3, 2}. Similarly,
we have C ∼ C ′. As a result, L(C) = {I ′, C ′}

7

Callee

IA

IC

Entry

Exit

I’B

I’A

Entry

Exit

Callee

Entry

Exit

IB

IA

IC

IB

Entry

Exit

IA
IB

IC

IB’

IA’

Entry

Exit

Call

(a) CFG-Coreutils@O0 (d) CFG-Coreutils@O2 (e) Reduced CFG(c) Inline callee(b) Reduced CFG

I’C I’C

Fig. 6: This figure shows the reduced-CFG construction on usage wc function in Coreutils compiled with O0(left) and O2(right).

Next, we define the Maximal Alignment Group.

Definition 4. (Maximal Alignment Group) We say two sets
of instructions S and S′ form a Maximal Alignment Group if
∀I ∈ S, ∀I ′ ∈ S′, S′ ⊆ L(I) ∧ S ⊆ L(I ′), |S| = |S′|, and
(S, S′) cannot be extended by adding more instructions while
preserving these properties, denoting as S ≈max S′.

Conceptually, if we model the initial alignment relation
between instructions as a bipartite graph, then S ≈max S′

indicates that S and S′ form a maximal balanced biclique.
Such graph structure is known to be a strong indicator of
matching relationships and has been widely applied in domains
like bioinformatics [42] and recommendation systems [53]. In
our case, S ≈max S′ provides a strong hint for the alignment
relationship between instructions in two sets.

Example 5. In Figure 2d, the sets S : {C, I} and S′ :
{C ′, I ′} have the relation S ≈max S′, thus there could be a
one-to-one alignment between instructions involved.

The maximal balanced biclique problem (MBB) is known
to be NP-hard. However, in our case, the graph established
by the initial instruction alignment relationship for a function
pair is small and quite sparse, as only a few instruction pairs
with the same opcode can have overlapping runtime values
between two functions. As a result, we can apply the state-of-
the-art MBB algorithm [54] to enumerate maximal alignment
groups. Then, if a maximal alignment group contains only a
single instruction pair, the instruction pair is directly marked
as aligned. For a maximal alignment group containing multiple
instructions, we next apply reduced-CFG isomorphism to
determine the one-to-one alignment relationships.

B. Reduced-CFG Isomorphism

Aligned instructions should occupy similar positions in
their respective CFGs, which is a problem typically solved
by graph isomorphism [8], [9]. To ensure scalability and
mitigate compiler optimization effects, we propose performing
isomorphism on reduced CFGs instead of the original CFGs.

Definition 5. (Reduced CFG) Given a set of instructions S,
its Reduced CFG is the subgraph containing only instructions
I ∈ S, while preserving the control-flow ordering: if Ia ≼ Ib
in the original CFG, then Ia ≼ Ib in the reduced CFG.

Reduced-CFG Construction. Given an instruction set S,
the construction of a reduced CFG is a two-step process. First,
for each basic block in the base function and inlined callees,
we delete those basic blocks that do not contain any instruction
in S, and the predecessors and successors of the deleted blocks
are connected together. For a block containing more than one
instruction in set S, the block is split into multiple blocks,
where each denotes a specific instruction. If a block contains
an inlined callee with instructions in set S, a virtual call
node is added and connected to the entry and exit of the
callee function. For example, Figure 6a shows the CFG of the
usage wc function and one of its inlined callees in Coreutils
compiled with O0, with a set of instructions S : {IA, IB , IC}
marked. The reduced CFG for S is shown in Figure 6b, where
all other nodes are removed, and one virtual call node is added.

In the second step, each virtual call is handled by cloning
the nodes inside callees into the caller function and replacing
the virtual call node. The original callee function is removed
when all its virtual call nodes have been processed. Figure 6c
shows the final reduced CFG after inlining nodes from the
callee. Since we only have one virtual call node, only one
instance of the callee nodes is inlined into the base function.

Reduced-CFG Isomorphism. Isomorphism proceeds by
depth-first search starting from the entry nodes of two reduced
CFGs, recursively checking whether there is a matching be-
tween child nodes such that each pair of child nodes is also
isomorphic. To handle cases where a node can match multiple
nodes due to multiple possible isomorphisms, we enumerate
all isomorphism matchings and mark only nodes with exactly
one match as final instruction alignments. The isomorphism
process has exponential complexity, but in practice, reduced
CFGs are often very small because it is difficult to find a
large maximal alignment group. Nevertheless, to handle rare
cases where the reduced CFG is too large and isomorphism
computation takes too long, we set the maximum graph size
for isomorphism to 20 in our experiments.

Figure 6d shows the CFG of the usage wc function com-
piled with O2, with a set of instructions S′ : {I ′A, I ′B , I ′C}
marked. Compared with Figure 6a, we can see significant
differences in the syntactic structure between the two CFGs.
Specifically, the callee function in Figure 6a is inlined into
the base function, and several optimizations are applied to the

8

inlined callee, resulting in some blocks being duplicated or
merged. The sets S′ and S form a maximal alignment group.
However, due to differences in syntactic structure and the large
size of the two CFGs, directly applying isomorphism to the
original CFGs could be expensive and unlikely to match these
instructions. By contrast, when we apply isomorphism on the
two reduced CFGs shown in Figure 6c and Figure 6e, a one-
to-one instruction alignment can be easily found.

C. Basic-Block Matching

Based on instruction alignment, basic-block matching is also
derived and used by downstream diffing tools. We consider two
basic blocks B and B′ as matched if (1) at least one instruction
in B aligns to one instruction in B′, and (2) instructions in B
and B′ do not align to instructions in other basic blocks.

VII. IMPLEMENTATION

BARRACUDA is built on the LLVM framework [43] and
relies on the RetDec decompiler [55], [56] to lift binaries of
different architectures into LLVM IR. The main components of
BARRACUDA, which include path sampling, forced execution,
and final instruction alignment, comprise about 18,000 lines
of C/C++ code. Path sampling is implemented as a series of
handlers for different kinds of LLVM instructions, performing
graph traversal over the LLVM IR to calculate value-set sizes
and sample paths to execute. Similarly, forced execution is
implemented as an emulator based on LLVM IR, interpreting
the execution semantics of different instruction kinds while
updating the abstract state of IR values and abstract memory.

The handling of load instructions for value-set size analysis
and path sampling requires a data dependency graph to track
which IR values can be loaded from memory. We implement
the data-dependency following the VLLPA algorithm [57],
which is a bottom-up summary-based analysis with context
and flow sensitivity. For our purposes, we set the depth of
summary inlining to three, as we observe that the maximum
inline call depth typically does not exceed this value.

VIII. EVALUATION

This section presents the evaluation results of BARRACUDA
by investigating the following research questions:

• RQ1: How effective is BARRACUDA in improving the
performance of existing semantic-aware binary diffing?

• RQ2: How effectively can BARRACUDA identify instruc-
tion alignment compared to existing work?

• RQ3: Is BARRACUDA efficient enough to be used for
enhancing existing binary diffing tools?

A. Experimental Setup

We evaluated BARRACUDA on a server equipped with
four 16-core Intel(R) Xeon Gold 6226R CPU@2.90GHz, four
NVIDIA GeForce RTX 3080 GPUs, and 256 GB of RAM.
Note that GPUs are used for the execution of other baseline
binary diffing tools, and BARRACUDA does not require GPUs.

Dataset. In our evaluation, we choose the same dataset used
by SIGMADIFF [10], including Coreutils of three versions

(v5.93, v6.4, v8.1), Diffutils of three versions (v2.8, v3.4,
v3.6), Findutils of three versions (v4.2.33, v4.4.1, v4.6.0),
GMP of three versions (v6.0.0, v6.1.1, v6.2.1), and Putty
of three versions (v0.75, v0.76, v0.77). These binaries are
compiled with GCC v5.4 and Clang v3.8.0 at four optimization
levels (O0, O1, O2, O3). All experiments were conducted on
stripped binaries, and debug info is extracted separately using
addr2line [58] to serve as ground truth.

Baselines. We consider SIGMADIFF [10] and DEEPBIN-
DIFF [33] as the baseline binary diffing tools to be enhanced
by BARRACUDA. They represent the state-of-the-art semantic-
aware binary diffing techniques. We made minimal adaptations
to their original official implementation to import the instruc-
tion alignment results generated by BARRACUDA.

• SIGMADIFF [10] is a pseudocode-level binary diffing
technique. It decompiles binaries into pseudocode tokens
using Ghidra (v9.2.2), then relies on DGMC model [36]
to perform semi-supervised learning to match pseudocode
tokens, where pre-matched tokens are regarded as training
nodes. We adapted SigmaDiff’s training nodes selection
module by also marking two pseudocode tokens as pre-
matched nodes if: 1) their corresponding binary instruc-
tions are aligned instructions identified by BARRACUDA,
and 2) their opcodes are of the same type.

• DEEPBINDIFF [33] is designed for basic-block level
binary diffing. It utilizes the TADW algorithm [59] to
generate semantic-aware basic-block embeddings from
a merged CFG of two binaries, then performs k-hop
greedy matching to match basic blocks. During its graph
merging process, pairs of nodes that are likely to match
(e.g., those referring to the same string literal or library
function call) are connected by a virtual node, making
them easier to match during greedy matching. We adapted
DeepBinDiff’s graph-merging module to connect two
nodes if their corresponding basic blocks are marked as
matched by BARRACUDA.

Evaluation Metrics. We followed the metrics used by
SIGMADIFF and used the scripts provided in its public GitHub
repository to calculate the precision, recall, and F1 score of
binary diffing. Specifically, all calculations are based on pseu-
docode tokens generated by Ghidra [60] with the following
formulas:

Precision(P) =
C

M
, Recall(R) =

C

T
, F1 =

2PR

P +R

where C is the number of correct token matches detected by
a tool, M is the total number of token matches detected by a
tool (including both correct and incorrect matches), and T is
the total number of token matches specified in ground truth.

Two tokens are considered correctly matched if their corre-
sponding source-code lines are matched. Since DeepBinDiff
outputs basic-block matching pairs instead of pseudocode
matches, we follow SigmaDiff’s evaluation strategy by mark-
ing all pseudocode tokens within the matched basic blocks
identified by DeepBinDiff as matched. To evaluate the diffing

9

TABLE I: Cross-version Pseudocode-Level Diffing Result. (Si: SIGMADIFF, De: DEEPBINDIFF, Ba: BARRACUDA)

Project Version Precision Recall F1
Si Si+Ba De De+Ba Si Si+Ba De De+Ba Si Si+Ba De De+Ba

Coreutils
v5.93 - v8.1 74.4 77.4 72.6 77.0 67.7 71.5 27.9 49.0 70.9 74.3 39.6 59.6
v6.4 - v8.1 74.8 77.3 75.3 79.2 68.5 71.6 32.6 53.4 71.5 74.3 44.4 63.4
Average 74.6 77.4 74.0 78.1 68.1 71.5 30.3 51.2 71.2 74.3 42.0 61.5

Diffutils
v2.8 - v3.6 78.6 82.2 88.5 87.7 68.9 73.6 35.2 54.5 73.4 77.6 49.9 67.2
v3.4 - v3.6 94.3 94.9 94.6 97.6 92.3 93.2 64.3 82.8 93.3 94.0 76.3 89.5
Average 86.5 88.5 91.5 92.6 80.6 83.4 49.8 68.7 83.4 85.8 63.1 78.3

Findutils
v4.233 - v4.6 76.2 77.8 73.1 80.7 69.6 71.5 29.7 48.2 72.7 74.5 42.0 60.1
v4.41 - v4.6 85.0 85.4 86.0 90.4 80.0 80.9 39.0 58.5 82.4 83.1 53.2 70.9

Average 80.6 81.6 79.5 85.5 74.8 76.2 34.3 53.3 77.6 78.8 47.6 65.5

Gmp
v6.0.0 - v6.2.1 84.6 87.6 N/A N/A 80.0 83.6 N/A N/A 82.2 85.6 N/A N/A
v6.1.1 - v6.2.1 87.8 90.1 N/A N/A 84.2 87.3 N/A N/A 86.0 88.7 N/A N/A

Average 86.2 88.9 N/A N/A 82.1 85.4 N/A N/A 84.1 87.1 N/A N/A

Putty
v0.75 - v0.77 67.7 68.8 N/A N/A 64.6 65.5 N/A N/A 66.1 67.1 N/A N/A
v0.76 - v0.77 68.1 69.3 N/A N/A 65.4 65.9 N/A N/A 66.7 67.5 N/A N/A

Average 67.9 69.1 N/A N/A 65.0 65.7 N/A N/A 66.4 67.3 N/A N/A

Average 79.2 81.1 81.7 85.4 74.1 76.4 38.1 57.7 76.5 78.7 50.9 68.4
Standard Deviation ±0.04 ±0.12 ±0.27 ±0.21 ±0.09 ±0.12 ±0.24 ±0.65 ±0.03 ±0.12 ±0.23 ±0.51

on binaries of different versions, we follow existing work and
use the Myers algorithm [61] to identify matched lines in the
source code. The matched source lines, along with the DWARF
debug symbols, are used for the evaluation computation.

BARRACUDA has parallelism support in its path-sampling
and forced-execution stages, while DEEPBINDIFF and SIG-
MADIFF perform learning in parallel on CPUs and GPUs,
respectively. In our experiment, we set CPU parallelism to
16 threads and ran four parallel instances simultaneously on
our 64-core, 4-GPU server. All experiments were conducted
three times, with averages and standard deviations reported.

B. Effectiveness on Binary Diffing Enhancement

We conducted five sets of evaluations: cross-version, cross-
optimization, cross-compiler, cross-architecture, and cross-
obfuscation diffing. In cross-obfuscation diffing, binaries were
compiled and obfuscated with OLLVM 4.0. Binaries in exper-
iments other than cross-optimization diffing were compiled by
O2, while binaries in experiments other than cross-architecture
diffing are x86-64 binaries. Except for cross-compiler and
cross-obfuscation diffing, all binaries were compiled by GCC
v5.4. We set a 24-hour timeout limit for diffing each binary
pair. If a tool cannot complete the analysis within the time
limit, we mark the corresponding slots in tables as N/A.

Cross-Version Diffing. In the cross-version diffing exper-
iment, we compare the lowest version of each binary in the
dataset against each of its higher versions. Table I presents the
detailed precision, recall, and F1 score in percentage, where
the column Si denotes SIGMADIFF, De denotes DEEPBIN-
DIFF, and Si + Ba and De + Ba denote the ones enhanced
by importing the anchor points detected by BARRACUDA.

The data shows that BARRACUDA consistently improves
the F1 scores of both diffing tools across all benchmarks. On
average, with BARRACUDA instruction alignment imported as
training nodes, the F1 score of SIGMADIFF increases by 2.2%
in percentage points. Even on a dataset where the original
performance is high, such as the 93.3% F1 score on Diffutils
v3.4 - v3.6, BARRACUDA still provides further improvements.

The evaluation of DEEPBINDIFF shows a larger improvement,
with the average F1 score increasing from 50.9% to 68.4%.
This greater improvement can be attributed to its strong
reliance on high-precision anchor points, as its k-hop greedy
algorithm starts matching from pairs of pre-matched nodes.

Cross-Optimization Diffing. In this experiment, we com-
pare each O0 binary in the dataset with the one compiled with
O1, O2, and O3 optimizations, respectively.

As shown in Table II, with BARRACUDA, the average F1
scores of SIGMADIFF and DEEPBINDIFF increased by 2.9%
and 27.6% in percentage points, respectively. A closer exam-
ination of the data reveals that as the gap between optimiza-
tion levels increases, the improvements from BARRACUDA
become more significant, indicating that precise anchor points
are crucial for effective binary diffing in more challenging
diffing scenarios. The enhancements observed demonstrate that
BARRACUDA is robust against compiler optimization.

Cross-Compiler Diffing. In this experiment, we compare
binaries compiled from GCC v5.4 and Clang v3.8.0.

Table III presents the detailed diffing results. With the fine-
grained alignment generated by BARRACUDA, the precision
and recall of both SIGMADIFF and DEEPBINDIFF improved
in all cases, resulting in percentage point increases of 4.1%
and 42.7% in average F1 score, respectively. Despite that
BARRACUDA is based on LLVM IR, its effectiveness is not
affected by the compiler used to compile the binaries. To some
extent, using different compilers is similar to compiling with
different optimizations. Thus, BARRACUDA can still generate
high-quality instruction alignment to assist with binary diffing.

Cross-Architecture Diffing. In this experiment, we com-
pare binaries compiled for ARM and x86-64 architectures.
Since DEEPBINDIFF does not support ARM binaries, it was
excluded from this experiment. As shown in Table IV, BAR-
RACUDA can significantly improve both the precision and
recall of SIGMADIFF in all cases, increasing the average F1
score from 53.3% to 56.7%. These promising results further
demonstrate the versatility of BARRACUDA in enhancing

10

TABLE II: Cross-optimization Pseudocode-level Diffing Result. (Si: SIGMADIFF, De: DEEPBINDIFF, Ba: BARRACUDA)

Project Version Precision Recall F1
Si Si+Ba De De+Ba Si Si+Ba De De+Ba Si Si+Ba De De+Ba

Coreutils
v8.1 O0 - O3 50.1 54.8 45.0 80.0 35.3 39.6 0.8 23.6 41.4 45.9 1.6 36.4
v8.1 O1 - O3 72.8 75.2 64.2 81.1 61.5 64.1 12.6 40.7 66.6 69.2 20.6 54.1
v8.1 O2 - O3 86.3 86.2 86.1 91.0 80.0 80.2 51.8 70.8 83.0 83.0 64.5 79.5

Average 69.7 72.1 65.1 84.0 58.9 61.3 21.8 45.0 63.7 66.1 28.9 56.6

Diffutils
v3.6 O0 - O3 49.9 53.7 50.6 80.5 33.7 37.2 1.3 25.0 40.2 44.0 2.6 38.0
v3.6 O1 - O3 73.2 75.9 67.2 81.5 61.0 63.4 14.4 39.6 66.5 69.1 23.5 53.3
v3.6 O2 - O3 91.5 91.9 91.2 94.4 87.3 88.0 46.9 70.8 89.3 89.9 61.7 80.9

Average 71.5 73.8 69.7 85.5 60.6 62.9 20.9 45.1 65.3 67.7 29.2 57.4

Findutils
v4.6 O0 - O3 51.7 56.1 32.9 78.6 35.9 39.8 1.0 24.8 42.3 46.6 2.0 37.7
v4.6 O1 - O3 72.0 74.6 66.4 78.7 60.3 62.6 14.2 39.1 65.6 68.1 23.3 52.2
v4.6 O2 - O3 88.2 89.6 87.5 91.7 81.8 83.2 49.3 69.8 84.9 86.3 63.0 79.2

Average 70.6 73.4 62.2 83.0 59.3 61.9 21.5 44.6 64.3 67.0 29.5 56.4

Gmp
v6.2.1 O0 - O3 59.1 63.1 N/A N/A 45.1 50.0 N/A N/A 51.1 55.8 N/A N/A
v6.2.1 O1 - O3 75.7 80.1 N/A N/A 67.3 72.1 N/A N/A 71.2 75.9 N/A N/A
v6.2.1 O2 - O3 90.7 91.2 N/A N/A 87.9 88.2 N/A N/A 89.3 89.7 N/A N/A

Average 75.2 78.1 N/A N/A 66.8 70.1 N/A N/A 70.6 73.8 N/A N/A

Putty
v0.77 O0 - O3 44.3 50.9 N/A N/A 29.0 33.8 N/A N/A 35.0 40.6 N/A N/A
v0.77 O1 - O3 67.1 70.7 N/A N/A 51.1 53.8 N/A N/A 58.0 61.1 N/A N/A
v0.77 O2 - O3 78.2 80.7 N/A N/A 63.6 65.8 N/A N/A 70.1 72.5 N/A N/A

Average 63.2 67.4 N/A N/A 47.9 51.1 N/A N/A 54.4 58.0 N/A N/A

Average 70.1 73.0 65.7 84.2 58.7 61.5 21.4 44.9 63.6 66.5 29.2 56.8
Standard Deviation ±0.09 ±0.10 ±0.29 ±0.31 ±0.06 ±0.03 ±0.06 ±0.06 ±0.08 ±0.04 ±0.03 ±0.12

TABLE III: Cross-compiler Pseudocode Diffing. (Clang vs. GCC). (Si: SIGMADIFF, De: DEEPBINDIFF, Ba: BARRACUDA)

Project Precision Recall F1
Si Si+Ba De De+Ba Si Si+Ba De De+Ba Si Si+Ba De De+Ba

Coreutils v8.1 71.8 77.1 76.0 79.5 60.1 64.8 3.6 33.5 65.4 70.4 6.9 47.0
Diffutils v3.6 75.7 79.5 56.6 76.7 65.3 69.7 2.6 36.6 70.1 74.3 4.9 49.5
Findutils v4.6 76.5 78.7 61.6 77.9 65.1 67.6 4.0 37.9 70.4 72.7 7.5 50.9
Gmp v6.2.1 57.0 61.9 N/A N/A 38.5 43.3 N/A N/A 45.9 50.9 N/A N/A
Putty v0.76 50.1 54.6 N/A N/A 33.1 36.5 N/A N/A 39.8 43.7 N/A N/A

Average 66.2 70.4 64.7 78.0 52.4 56.4 3.4 36.0 58.3 62.4 6.4 49.1
Standard Deviation ±0.17 ±0.31 0.78 0.24 ±0.07 ±0.30 0.07 0.15 ±0.10 ±0.31 0.15 0.20

TABLE IV: Cross-architecture Pseudocode-Level Diffing Re-
sult (ARM vs. x86-64). (Si: SIGMADIFF, Ba: BARRACUDA)

Project Precision Recall F1
Si Si+Ba Si Si+Ba Si Si+Ba

Coreutils 67.1 72.1 66.3 71.2 66.7 71.6
Diffutils 70.8 76.1 70.6 75.9 70.7 76.0
Findutils 65.1 70.0 64.2 68.9 64.6 69.4

Gmp 38.1 39.0 38.0 38.9 38.1 38.9
Putty 26.8 28.3 25.6 27.1 26.2 27.7

Average 53.6 57.1 52.9 56.4 53.3 56.7
SD ±0.42 ±0.32 ±0.36 ±0.25 ±0.39 ±0.28

cross-architecture diffing, which is typically more challenging.
Cross-Obfuscation Diffing. In this experiment, we compare

each binary compiled by OLLVM-4.0 without obfuscation
to those obfuscated by Bogus Control Flow (BCF), Control
Flow Flattening (FLA), Instruction Substitution (SUB), and
combinations of all three obfuscation methods (ALL). These
obfuscations involve semantic-preserving transformations that
alter the layout of basic blocks and syntactic representation of
instructions.

Figure 7 shows the Cumulative Distribution Function (CDF)
of the F1 score for each of the four obfuscations, with detailed
data provided in Appendix B. On average, BARRACUDA
enhances SIGMADIFF with F1 score increases of 3.8%, 3.3%,

(a) OLLVM-BCF (b) OLLVM-FLA

(c) OLLVM-SUB (d) OLLVM-ALL
Fig. 7: Cross-obfuscation Pseudocode Diffing F1-score CDF.
(Si: SIGMADIFF, De: DEEPBINDIFF, Ba: BARRACUDA)

2.6%, and 2.3% in percentage points, and enhances DEEPBIN-
DIFF with F1 score increases of 13.8%, 10.7%, 17.3%, and
7.2% for BCF, FLA, SUB, and ALL obfuscation, respectively.

These obfuscations can affect the effectiveness of BAR-
RACUDA to some extent. For example, OLLVM-SUB can

11

TABLE V: Average instruction alignment precision and recall on all the previous experiment settings.

Project Literal Literal + Expr BARRACUDA BARRACUDA-I BARRACUDA-V Literal + Expr + BARRACUDA
Prec Recl Prec Recl Prec Recl Prec Recl Prec Recl Prec Recl

Coreutils 91.50 9.80 92.76 30.32 92.78 39.11 92.66 30.65 92.65 36.89 91.92 45.58
Diffutils 88.10 10.93 94.61 29.40 94.33 40.46 94.37 30.50 94.15 38.38 93.70 45.58
Findutils 95.54 6.68 91.36 28.03 93.08 36.78 92.66 28.15 93.10 35.03 91.32 43.22

Gmp 99.27 20.76 96.75 38.51 94.44 38.03 94.56 35.51 94.45 36.19 94.12 43.30
Putty 87.70 10.26 84.45 24.92 85.78 33.05 84.71 26.55 85.96 32.10 85.11 36.42

Average 92.42 11.68 91.99 30.24 92.08 37.49 91.79 30.27 92.06 35.71 91.23 42.82
SD ±0.13 ±0.07 ±0.04 ±0.01 ±0.02 ±0.02 ±0.04 ±0.03 ±0.05 ±0.09 ±0.07 ±0.27

transform a single arithmetic instruction into multiple in-
structions that yield the same calculation result, impacting
BARRACUDA’s ability to match the obfuscated instruction.
However, as a dynamic matching technique, the sampled
runtime values are stable against these semantic-preserving
obfuscations. Consequently, BARRACUDA can still identify
instruction alignments with higher accuracy than existing
anchor-point detection methods and enhance diffing accuracy.

C. Accuracy of Instruction Alignment

In this section, we evaluate the accuracy of the instruction
alignment generated by BARRACUDA. For baseline compari-
son, we selected two early-match strategies used by existing
binary diffing. The first strategy matches two instructions if
they reference an identical string literal or library function
call, which is used by DEEPBINDIFF and denoted as column
Literal in Table V. The second strategy further matches
two instructions if symbolic expressions derived from them
are syntactically identical, which is the training-node selection
technique of SIGMADIFF and denoted as column Literal
+ Expr in Table V. Both techniques are implemented in
SIGMADIFF, so we used its implementation for comparison.

Since BARRACUDA and SIGMADIFF are based on different
IRs, directly calculating their accuracy based on their respec-
tive IR instructions could introduce bias. To ensure a fair
comparison, we used the binary address of instructions to map
the instruction alignment result of BARRACUDA to the IR of
SIGMADIFF. In this way, the accuracy of all the instruction
alignment techniques can be fairly evaluated based on the IR of
SIGMADIFF, covering various opcodes such as Load, Store,
Cmp, Call, and all kinds of Binary Operators.

Comparison with Existing Techniques. Table V presents
the average results collected from all the five experimental
settings. Due to differences in binary disassembly and decom-
pilation between SIGMADIFF and BARRACUDA, a small por-
tion of instruction alignments detected by BARRACUDA cannot
be matched to the IR instructions of SIGMADIFF. This issue
results in some loss in the recall calculation for BARRACUDA.
Despite this disadvantage, the data shows that BARRACUDA
achieves an average recall of 37.49%, significantly higher
than the average recalls of 30.24% and 11.68% for the other
two strategies, while maintaining a second-highest average
precision, only 0.34% slightly slower than Literal.

The last column in Table V presents the merging results,
showing an additional 5.33 percentage point improvement
in recall compared to using BARRACUDA alone. This im-

104

103

102

100Ti
m

e
(s

ec
on

ds
, l

og
 sc

al
e)

101

Subject ID (ordered by execution time of DeepBinDiff)

DeepBindiff Barracuda SigmaDiff

Fig. 8: Execution time of BARRACUDA and binary diffing.

TABLE VI: Execution Time Summary (in seconds).
SIGMADIFF Enhancement DEEPBINDIFF Enhancement
SigmaDiff Barracuda DeepBindiff Barracuda

Min 40.8 0.2 (+0.49%) 318.5 0.2 (+0.06%)
Max 17026.0 853.6 (+5.01%) 8132.5 443.4 (+5.45%)
Avg 859.3 28.0 (+3.26%) 726.3 12.2 (+1.68%)
SD ±38.35 ±1.28 ±37.20 ±0.54

provement is attributed to the differing core techniques of
these strategies. BARRACUDA is a semantic-aware dynamic
alignment technique that can find instruction alignments even
when significant syntactic differences arise between binaries.
However, due to coverage issues, BARRACUDA may miss
some alignments that other syntactic strategies can detect. The
finding indicates the benefit of combining BARRACUDA with
other strategies for significantly better overall performance.

Ablation Study. The column BARRACUDA-I shows the
results when reduced-CFG isomorphism is disabled, mean-
ing that only singly matched pairs are considered as final
instruction alignments. The column BARRACUDA-V shows the
results when the prioritized path sampling is disabled. In this
case, we utilize the path sampling strategy of existing forced
execution tools to cover each basic block once [37], [40].

Compared to BARRACUDA, the recall for BARRACUDA-I
and BARRACUDA-V decreases by 7.22% and 1.78% in per-
centage points, respectively, while both exhibit a slight drop
in precision. These decreases in both recall and precision
highlight the importance of these components in BARRACUDA.
When BARRACUDA-V is disabled, we obtain fewer ini-
tial alignments because fewer matched instruction pairs in
two binaries reveal overlapping instruction semantics. When
BARRACUDA-I is disabled, we cannot determine which in-
structions match within a maximal alignment group, resulting
in fewer instruction pairs being identified as final alignments.

12

D. Efficiency

To assess the additional overhead introduced by applying
BARRACUDA to binary diffing enhancement, we compare its
execution time with that of the binary diffing tools it improves.

Figure 8 visualizes the execution time of BARRACUDA,
SIGMADIFF, and DEEPBINDIFF, derived from diffing Core-
utils, Diffutils, and Findutils binaries in cross-version, cross-
optimization, cross-compiler, and cross-obfuscation experi-
ments where all three tools are involved. The results show that
the execution time for each binary diffing tool is significantly
higher than that of BARRACUDA by an order of magnitude.

Table VI presents the comparison results for the minimum,
maximum, and average execution time between BARRACUDA
and the two downstream binary diffing tools. The comparison
with SIGMADIFF is based on all benchmarks across five diffing
scenarios, while the comparison with DEEPBINDIFF is based
on a subset of the dataset, excluding the Gmp and Putty
datasets due to DEEPBINDIFF timeouts, and excluding the
cross-architecture diffing experiment because DEEPBINDIFF
only supports x86 binaries. On average, BARRACUDA intro-
duces only 3.26% and 1.68% extra runtime overhead for SIG-
MADIFF and DEEPBINDIFF, respectively, demonstrating that
BARRACUDA is efficient enough to enhance the state-of-the-
art semantic-aware binary diffing tools. Detailed experimental
data on efficiency evaluation can be found in Appendix A.

Execution Time Breakdown. We also further investigate
the execution time of different stages in BARRACUDA.

• Preprocessing: This stage includes lifting binary into
LLVM IR and performing data-dependency analysis. It
accounts for 16.5% of the total analysis time.

• Prioritized Path Sampling: This stage includes estimat-
ing value-set-size and sampling paths to be executed. It
accounts for 15.7% of the total analysis time.

• Forced Execution: This stage includes executing each
sampled path inside emulator to establish instruction and
function semantics, occupying 38.0% of analysis time.

• Instruction Alignment: This stage leverages collected
runtime values to derive initial alignment and performs
sub-graph isomorphism to match instructions and basic
blocks further, occupying 29.8% of total analysis time.

IX. DISCUSSION

A. Application Scope and Integration

BARRACUDA is positioned as a lightweight instruction
alignment technique suitable for various binary diffing and
comparison scenarios. The experiment demonstrated its ad-
vantages in finding fine-grained alignment between binaries
with high precision and high efficiency. However, since BAR-
RACUDA does not include a fuzzy-matching stage that relies on
machine learning or statistical comparison, it is not suitable for
generating comprehensive diffing results on its own. Instead,
BARRACUDA is best utilized as a plugin for other binary
comparison tools, integrating its high-precision results into
their algorithms to enhance overall performance with minimal
additional overhead, as discussed in this paper.

Such integration typically requires only a small amount of
code adaptation effort. In our experience, integrating BAR-
RACUDA into SIGMADIFF and DEEPBINDIFF requires only a
few dozen lines of code. In essence, any binary comparison
tool that requires precise, fine-grained alignment could benefit
from BARRACUDA. Other potential beneficiaries include patch
present analysis [15] and security patch analysis [62], as their
techniques also require a precise matching on basic blocks or
instructions. However, some techniques are not suitable for
integration with BARRACUDA. For example, DIAPHORA [9]
treats the pseudocode of binaries as strings and diffs them as
a whole, leaving limited space for integrating BARRACUDA.

B. Limitations

Function Inlining. BARRACUDA requires information on
whether a call site is inlined in the comparison binary to de-
termine the boundary of instruction alignment, which is known
as the cross-inlining problem [63]. Current implementation of
BARRACUDA applies the rules proposed by asm2vec [22], but
is still not accurate enough. Recently, there have been some
new explorations [64] on the problem. Integrating the latest of
these techniques could also improve BARRACUDA.

One-To-One Matching. Following the limitation of existing
work [10], BARRACUDA only supports one-to-one instruction
alignment to ensure its high precision. However, because
compiler optimizations can duplicate or fuse instructions, some
instructions may not be aligned when aggressive optimizations
are applied. Handling such cases may require domain knowl-
edge and extensive study of the effects of different compiler
optimizations, which can be a challenging problem and a
promising future research direction.

Data Dependency Analysis. The prioritized path sampling
of BARRACUDA depends on a data dependency graph. Any
missing data dependency edges or the presence of incorrect
edges can impact the quality of the sampled paths, a challenge
that is difficult to avoid due to the difficulty of the problem.
Recent advancements in this field [65] have provided new
insights, and we envision that deploying such tools could
further enhance the performance of BARRACUDA.

Binary Obfuscation and Malware. Although our evalu-
ation demonstrates the effectiveness of BARRACUDA against
several OLLVM obfuscations, some obfuscations are difficult
to handle. First, since BARRACUDA relies on a static disassem-
bly, it is vulnerable to obfuscations that alter function layout
or impede function boundary identification. Examples include
inter-procedural obfuscation, such as function splitting [66],
and return-oriented programs (ROP) [67], which conceal their
logic within gadget chains. Second, obfuscations involving
self-modification cannot be handled by BARRACUDA as run-
time modifications are not modeled. Typical examples include
virtualization obfuscations such as VMProtect [68] and Code
Virtualizer [69]. To address these limitations, automatic binary
deobfuscation techniques [70], [71] could be combined with
BARRACUDA. Additionally, since BARRACUDA assumes a
memory-safe execution, it is agnostic to post-exploitation

13

behaviors such as remotely injected code and gadgets [72],
[73], which are often outside the scope of binary diffing.

Analyze Large Binary. Existing fine-grained binary diffing
techniques still cannot scale to very large binaries. While
BARRACUDA can improve binary diffing accuracy with only
a small relative overhead, it does not enhance scalability, and
this limitation remains. Exploring more efficient fine-grained
diffing methods could be an important future research topic.

X. RELATED WORK

A. Binary Diffing

Function Similarity Analysis. A majority of binary diffing
focuses on computing similarity scores between functions.
Traditional approaches rely on the syntactic structure of
CFG [1], [8], [19] or partial traces decomposed from CFG [3],
[14], [20] for similarity computation. Several methods leverage
advances in deep learning to compare similarities based on
graph embeddings extracted from CFG [4], [5], [21], [74]–
[79] or dependencies between instructions [22], [24], [25],
[32], [80]–[84]. To address cross-compilation similarity, re-
optimization techniques [23], [85] were proposed. Dynamic
analysis has also been widely applied to capture runtime
behaviors for similarity comparison [38], [39], [86], [87]. To
address poor coverage issues, forced execution [37], [40],
[41] is further proposed to execute binaries while overriding
intended program logic. However, they all aim for high block
coverage instead of path coverage; as a result, they are
ineffective when used for fine-grained instruction alignment.

Basic-Block Matching. Theorem provers are commonly
utilized to determine the semantic equivalence between basic
blocks [6], [26], [27], [30], [31], [34]. Multi-MH [29] and
Bingo [88] break binary code into smaller fragments for
semantic extraction and comparison. VSIM [28] enhances
efficiency with under-constrained symbolic execution values.
BinDiff [8] and Diaphora [9] match basic blocks between
functions based on CFG isomorphism and matching heuristics,
while DEEPBINDIFF [33] further improves these methods
with the TADW algorithm [59] and context- and semantic-
aware basic block embeddings. BARRACUDA also exploits the
isomorphic structure of CFGs for alignment. However, instead
of matching the full CFG, we only perform isomorphism
on a smaller reduced CFG to match instructions within an
alignment group, resulting in greater precision and efficiency.

Instruction Alignment. Recently, instruction-level binary
diffing has gained attention. Diaphora [9] performs instruction-
level diffing via string-level diffing. SIGMADIFF [10] is the
first general static method for instruction-level diffing, defining
signatures as symbolic formulas of instructions and leveraging
the DGMC graph-matching model to match IR instructions.
Many patch presence analysis methods [14]–[16], [89] also
perform instruction-level matching to determine whether patch
signatures exist in a target binary; however, such alignment
typically only operates within a relatively small code scope
rather than providing a general approach. DTW [35] and
BinSim [34] also conduct instruction alignment through dy-
namic analysis. However, their approaches focus on aligning

instruction traces logged from concrete execution under spe-
cific inputs, whereas BARRACUDA aligns instructions using
forced execution, eliminating the need for specific input.

B. Program Analysis via Path Sampling

Path sampling is widely applied in various applications,
including binary similarity [37], [40], [41], malware analy-
sis [90]–[93], data dependency analysis [94], and fault local-
ization [95]. Different approaches have different focuses on
path prioritization. For example, Pem [41] samples equivalent
paths via a probability model, BDA [94], [96] samples paths
with equal probability, and Empc [97] samples paths as a
minimum path cover problem to increase symbolic execution
coverage. In our work, we sample paths to favor revealing
values more likely to lead to instruction alignment.

XI. CONCLUSION

This paper proposes BARRACUDA, a high-confidence dy-
namic instruction alignment. Extensive evaluation demon-
strates that BARRACUDA can detect 24.0% more instruction-
level matches with a high precision of 92.1%, improving
two state-of-the-art binary diffing tools, DEEPBINDIFF and
SIGMADIFF, with F1 score percentage-point increases ranging
from 12.3% to 42.7% and 2.2% to 4.1%, respectively.

ACKNOWLEDGMENT

We thank reviewers for their valuable comments on this
work. This work is supported by research donations from
Huawei, TCL, and Tencent. Anshunkang Zhou is the corre-
sponding author.

REFERENCES

[1] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Efficient
cross-architecture identification of bugs in binary code,” in 23nd Annual
Network and Distributed System Security Symposium, NDSS 2016, San
Diego, California, USA, February 21-24, 2016. The Internet Society,
2016.

[2] Y. David, N. Partush, and E. Yahav, “Firmup: Precise static
detection of common vulnerabilities in firmware,” SIGPLAN Not.,
vol. 53, no. 2, p. 392–404, Mar. 2018. [Online]. Available:
https://doi.org/10.1145/3296957.3177157

[3] Y. Xu, Z. Xu, B. Chen, F. Song, Y. Liu, and T. Liu, “Patch based
vulnerability matching for binary programs,” in Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 376–387. [Online]. Available:
https://doi.org/10.1145/3395363.3397361

[4] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
graph-based bug search for firmware images,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 480–491. [Online]. Available: https:
//doi.org/10.1145/2976749.2978370

[5] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, “Vulseeker: A semantic
learning based vulnerability seeker for cross-platform binary,” in 2018
33rd IEEE/ACM International Conference on Automated Software En-
gineering (ASE), 2018, pp. 896–899.

[6] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software and algorithm plagiarism detection,” IEEE Transactions on
Software Engineering, vol. 43, no. 12, pp. 1157–1177, 2017.

[7] Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and D. Wu, “Value-based
program characterization and its application to software plagiarism de-
tection,” in 2011 33rd International Conference on Software Engineering
(ICSE), 2011, pp. 756–765.

14

https://doi.org/10.1145/3296957.3177157
https://doi.org/10.1145/3395363.3397361
https://doi.org/10.1145/2976749.2978370

[8] “Zynamics bindiff,” https://www.zynamics.com/bindiff.html, 2025.
[9] “Diaphora,” https://github.com/joxeankoret/diaphora, 2025.

[10] L. Gao, Y. Qu, S. Yu, Y. Duan, and H. Yin, “Sigmadiff: Semantics-
aware deep graph matching for pseudocode diffing,” Proceedings 2024
Network and Distributed System Security Symposium, 2024. [Online].
Available: https://api.semanticscholar.org/CorpusID:262144278

[11] D. Kirat and G. Vigna, “Malgene: Automatic extraction of malware
analysis evasion signature,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015, pp. 769–
780.

[12] H. Wang, Z. Liu, S. Wang, Y. Wang, Q. Tang, S. Nie, and S. Wu,
“Are we there yet? filling the gap between binary similarity analysis
and binary software composition analysis,” in 2024 IEEE 9th European
Symposium on Security and Privacy, 2024, pp. 506–523.

[13] H. Wang, Z. Liu, Y. Dai, S. Wang, Q. Tang, S. Nie, and S. Wu, “Pre-
serving privacy in software composition analysis: A study of technical
solutions and enhancements,” in Proceedings of the IEEE/ACM 47th
International Conference on Software Engineering (ICSE), 2025, p.
2329–2341.

[14] Z. Jiang, Y. Zhang, J. Xu, Q. Wen, Z. Wang, X. Zhang,
X. Xing, M. Yang, and Z. Yang, “Pdiff: Semantic-based patch
presence testing for downstream kernels,” in Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1149–1163. [Online]. Available:
https://doi.org/10.1145/3372297.3417240

[15] H. Zhang and Z. Qian, “Precise and accurate patch presence test for
binaries,” in 27th USENIX Security Symposium (USENIX Security 18),
2018, pp. 887–902.

[16] Q. Zhan, X. Hu, X. Xia, and S. Li, “React: Ir-level patch presence test for
binary,” in Proceedings of the 39th IEEE/ACM International Conference
on Automated Software Engineering, 2024, pp. 381–392.

[17] H. Wang, P. Ma, S. Wang, Q. Tang, S. Nie, and S. Wu, “sem2vec:
Semantics-aware assembly tracelet embedding,” ACM Transactions on
Software Engineering and Methodology, vol. 32, no. 4, May 2023.

[18] W. K. Wong, H. Wang, Z. Li, and S. Wang, “BinAug: Enhancing binary
similarity analysis with low-cost input repairing,” in Proceedings of
the 46th IEEE/ACM International Conference on Software Engineering,
2024.

[19] M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate comparison
of binary executables,” in Proceedings of the 2nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop, ser. PPREW
’13. New York, NY, USA: Association for Computing Machinery,
2013. [Online]. Available: https://doi.org/10.1145/2430553.2430557

[20] Y. David and E. Yahav, “Tracelet-based code search in executables,” in
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 349–360.
[Online]. Available: https://doi.org/10.1145/2594291.2594343

[21] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song,
“Neural network-based graph embedding for cross-platform binary
code similarity detection,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
363–376. [Online]. Available: https://doi.org/10.1145/3133956.3134018

[22] S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2vec: Boosting
static representation robustness for binary clone search against code
obfuscation and compiler optimization,” in 2019 IEEE Symposium on
Security and Privacy (SP), 2019, pp. 472–489.

[23] Y. David, N. Partush, and E. Yahav, “Similarity of binaries through re-
optimization,” in Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI 2017.
New York, NY, USA: Association for Computing Machinery, 2017, p.
79–94. [Online]. Available: https://doi.org/10.1145/3062341.3062387

[24] X. Li, Y. Qu, and H. Yin, “Palmtree: Learning an assembly
language model for instruction embedding,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 3236–3251. [Online]. Available:
https://doi.org/10.1145/3460120.3484587

[25] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni,
“Safe: Self-attentive function embeddings for binary similarity,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2019, pp. 309–329.

[26] Q. Feng, M. Wang, M. Zhang, R. Zhou, A. Henderson, and H. Yin,
“Extracting conditional formulas for cross-platform bug search,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, ser. ASIA CCS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 346–359. [Online].
Available: https://doi.org/10.1145/3052973.3052995

[27] Y. David, N. Partush, and E. Yahav, “Statistical similarity of binaries,”
SIGPLAN Not., vol. 51, no. 6, p. 266–280, Jun. 2016. [Online].
Available: https://doi.org/10.1145/2980983.2908126

[28] H. Wang and Z. Lin, “vSim: Semantics-aware value extraction for
efficient binary code similarity analysis,” in Network and Distributed
Systems Security (NDSS) Symposium, 2026.

[29] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz, “Cross-
architecture bug search in binary executables,” in 2015 IEEE Symposium
on Security and Privacy, 2015, pp. 709–724.

[30] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically
finding semantic differences in binary programs,” in Information
and Communications Security: 10th International Conference, ICICS
2008 Birmingham, UK, October 20 - 22, 2008 Proceedings. Berlin,
Heidelberg: Springer-Verlag, 2008, p. 238–255. [Online]. Available:
https://doi.org/10.1007/978-3-540-88625-9 16

[31] J. Ming, M. Pan, and D. Gao, “ibinhunt: Binary hunting with
inter-procedural control flow,” in Information Security and Cryptology
- ICISC 2012 - 15th International Conference, Seoul, Korea,
November 28-30, 2012, Revised Selected Papers, ser. Lecture
Notes in Computer Science, T. Kwon, M. Lee, and D. Kwon,
Eds., vol. 7839. Springer, 2012, pp. 92–109. [Online]. Available:
https://doi.org/10.1007/978-3-642-37682-5 8

[32] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural
machine translation inspired binary code similarity comparison beyond
function pairs,” in 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27,
2019. The Internet Society, 2019.

[33] Y. Duan, X. Li, J. Wang, and H. Yin, “Deepbindiff: Learning program-
wide code representations for binary diffing,” in 27th Annual Network
and Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020. The Internet Society, 2020.

[34] J. Ming, D. Xu, Y. Jiang, and D. Wu, “Binsim: trace-based semantic
binary diffing via system call sliced segment equivalence checking,” in
Proceedings of the 26th USENIX Conference on Security Symposium,
ser. SEC’17. USA: USENIX Association, 2017, p. 253–270.

[35] U. Kargén and N. Shahmehri, “Towards robust instruction-level trace
alignment of binary code,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2017,
pp. 342–352.

[36] M. Fey, J. E. Lenssen, C. Morris, J. Masci, and N. M. Kriege, “Deep
graph matching consensus,” International Conference on Learning Rep-
resentations (ICLR), 2020.

[37] A. Zhou, Y. Hu, X. Xu, and C. Zhang, “Arcturus: Full coverage binary
similarity analysis with reachability-guided emulation,” ACM Trans.
Softw. Eng. Methodol., vol. 33, no. 4, Apr. 2024. [Online]. Available:
https://doi.org/10.1145/3640337

[38] S. Wang and D. Wu, “In-memory fuzzing for binary code similarity anal-
ysis,” in 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2017, pp. 319–330.

[39] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Cross-architecture binary semantics
understanding via similar code comparison,” in 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1, 2016, pp. 57–67.

[40] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:
dynamic similarity testing for program binaries and components,” in
Proceedings of the 23rd USENIX Conference on Security Symposium,
ser. SEC’14. USA: USENIX Association, 2014, p. 303–317.

[41] X. Xu, Z. Xuan, S. Feng, S. Cheng, Y. Ye, Q. Shi, G. Tao,
L. Yu, Z. Zhang, and X. Zhang, “Pem: Representing binary
program semantics for similarity analysis via a probabilistic execution
model,” in Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 401–412. [Online]. Available:
https://doi.org/10.1145/3611643.3616301

[42] Y. Cheng and G. M. Church, “Biclustering of expression data.” in Ismb,
vol. 8, no. 2000, 2000, pp. 93–103.

15

https://www.zynamics.com/bindiff.html
https://github.com/joxeankoret/diaphora
https://api.semanticscholar.org/CorpusID:262144278
https://doi.org/10.1145/3372297.3417240
https://doi.org/10.1145/2430553.2430557
https://doi.org/10.1145/2594291.2594343
https://doi.org/10.1145/3133956.3134018
https://doi.org/10.1145/3062341.3062387
https://doi.org/10.1145/3460120.3484587
https://doi.org/10.1145/3052973.3052995
https://doi.org/10.1145/2980983.2908126
https://doi.org/10.1007/978-3-540-88625-9_16
https://doi.org/10.1007/978-3-642-37682-5_8
https://doi.org/10.1145/3640337
https://doi.org/10.1145/3611643.3616301

[43] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, ser. CGO ’04. USA: IEEE Computer
Society, 2004, p. 75.

[44] I. Rocco, M. Cimpoi, R. Arandjelović, A. Torii, T. Pajdla, and J. Sivic,
“Neighbourhood consensus networks,” in Proceedings of the 32nd
International Conference on Neural Information Processing Systems,
ser. NIPS’18. Red Hook, NY, USA: Curran Associates Inc., 2018,
p. 1658–1669.

[45] J. Bian, W.-Y. Lin, Y. Matsushita, S.-K. Yeung, T.-D. Nguyen, and M.-M.
Cheng, “Gms: Grid-based motion statistics for fast, ultra-robust feature
correspondence,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 2828–2837.

[46] C. Pang, R. Yu, Y. Chen, E. Koskinen, G. Portokalidis, B. Mao, and
J. Xu, “Sok: All you ever wanted to know about x86/x64 binary
disassembly but were afraid to ask,” in 2021 IEEE Symposium on
Security and Privacy (SP), 2021, pp. 833–851.

[47] G. Balakrishnan and T. Reps, “Divine: discovering variables in executa-
bles,” in Proceedings of the 8th International Conference on Verification,
Model Checking, and Abstract Interpretation, ser. VMCAI’07. Berlin,
Heidelberg: Springer-Verlag, 2007, p. 1–28.

[48] G. Balakrishnan and R. Thomas, “Analyzing memory accesses in x86
executables,” in International conference on compiler construction.
Springer, 2004, pp. 5–23.

[49] G. Balakrishnan and T. Reps, “Wysinwyx: What you see is not what
you execute,” ACM Trans. Program. Lang. Syst., vol. 32, no. 6, Aug.
2010. [Online]. Available: https://doi.org/10.1145/1749608.1749612

[50] S. H. Kim, D. Zeng, C. Sun, and G. Tan, “Binpointer: towards precise,
sound, and scalable binary-level pointer analysis,” in Proceedings of the
31st ACM SIGPLAN International Conference on Compiler Construc-
tion, 2022, pp. 169–180.

[51] C. Ye, Y. Cai, A. Zhou, H. Huang, H. Ling, and C. Zhang, “Manta:
Hybrid-sensitive type inference toward type-assisted bug detection for
stripped binaries,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 4, ser. ASPLOS ’24. New York, NY, USA:
Association for Computing Machinery, 2025, p. 170–187. [Online].
Available: https://doi.org/10.1145/3622781.3674177

[52] R. M. Karp, “Reducibility among combinatorial problems,” in 50 Years
of Integer Programming 1958-2008: from the Early Years to the State-
of-the-Art. Springer, 2009, pp. 219–241.

[53] C. Maier and D. Simovici, “On biclique connectivity in bipartite
graphs and recommendation systems,” in Proceedings of the 2021
5th International Conference on Information System and Data
Mining, ser. ICISDM ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 151–156. [Online]. Available:
https://doi.org/10.1145/3471287.3471302

[54] L. Chen, C. Liu, R. Zhou, J. Xu, and J. Li, “Efficient exact algorithms for
maximum balanced biclique search in bipartite graphs,” in Proceedings
of the 2021 International Conference on Management of Data, 2021,
pp. 248–260.

[55] P. M. J. Kˇroustek, “Retdec: An open-source machine-code decompiler,”
Presented at Pass the SALT 2018, Lille, FR, July 2018.

[56] A. Zhou, C. Ye, H. Huang, Y. Cai, and C. Zhang, “Plankton: Reconciling
binary code and debug information,” in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ser. ASPLOS ’24. New
York, NY, USA: Association for Computing Machinery, 2024, p.
912–928. [Online]. Available: https://doi.org/10.1145/3620665.3640382

[57] B. Guo, M. J. Bridges, S. Triantafyllis, G. Ottoni, E. Raman, and
D. I. August, “Practical and accurate low-level pointer analysis,” in
Proceedings of the International Symposium on Code Generation and
Optimization, ser. CGO ’05. USA: IEEE Computer Society, 2005, p.
291–302. [Online]. Available: https://doi.org/10.1109/CGO.2005.27

[58] “addr2line,” https://sourceware.org/binutils/docs/binutils/addr2line.html,
2025.

[59] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information,” in Proceedings of the
24th International Conference on Artificial Intelligence, ser. IJCAI’15.
AAAI Press, 2015, p. 2111–2117.

[60] N. S. Agency, “Ghidra reverse engineering tool,” https://ghidra-sre.org/,
2025.

[61] E. W. Myers, “Ano(nd) difference algorithm and its variations,”
Algorithmica, vol. 1, no. 1–4, p. 251–266, Nov. 1986. [Online].
Available: https://doi.org/10.1007/BF01840446

[62] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song, “Spain:
Security patch analysis for binaries towards understanding the pain and
pills,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), 2017, pp. 462–472.

[63] A. Jia, M. Fan, W. Jin, X. Xu, Z. Zhou, Q. Tang, S. Nie, S. Wu, and
T. Liu, “1-to-1 or 1-to-n? investigating the effect of function inlining on
binary similarity analysis,” ACM Trans. Softw. Eng. Methodol., vol. 32,
no. 4, May 2023. [Online]. Available: https://doi.org/10.1145/3561385

[64] A. Jia, M. Fan, X. Xu, W. Jin, H. Wang, and T. Liu, “Cross-inlining
binary function similarity detection,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ser. ICSE ’24.
New York, NY, USA: Association for Computing Machinery, 2024.
[Online]. Available: https://doi.org/10.1145/3597503.3639080

[65] L. Gao and H. Yin, “Bindsa: Efficient, precise binary-level pointer
analysis with context-sensitive heap reconstruction,” Proceedings of the
ACM on Software Engineering, vol. 2, no. ISSTA, pp. 1190–1211, 2025.

[66] P. Zhang, C. Wu, M. Peng, K. Zeng, D. Yu, Y. Lai, Y. Kang,
W. Wang, and Z. Wang, “Khaos: The impact of inter-procedural
code obfuscation on binary diffing techniques,” in Proceedings of
the 21st ACM/IEEE International Symposium on Code Generation
and Optimization, ser. CGO ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 55–67. [Online]. Available:
https://doi.org/10.1145/3579990.3580007

[67] G. Poulios, C. Ntantogian, and C. Xenakis, “Ropinjector: Using return
oriented programming for polymorphism and antivirus evasion,” Black-
hat USA, 2015.

[68] V. Software, “Vmprotect software protection,” http://vmpsoft.com, last
reviewed: 11/13/2025.

[69] O. Technologies, “Code virtualizer: Total obfuscation against re-
verse engineering,” http://oreans.com/codevirtualizer.php, last reviewed:
11/13/2025.

[70] K. Lu, D. Zou, W. Wen, and D. Gao, “derop: removing return-oriented
programming from malware,” in Proceedings of the 27th Annual
Computer Security Applications Conference, ser. ACSAC ’11. New
York, NY, USA: Association for Computing Machinery, 2011, p.
363–372. [Online]. Available: https://doi.org/10.1145/2076732.2076784

[71] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in 2015 IEEE
Symposium on Security and Privacy, 2015, pp. 674–691.

[72] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee, “Jekyll on ios:
when benign apps become evil,” in Proceedings of the 22nd USENIX
Conference on Security, ser. SEC’13. USA: USENIX Association,
2013, p. 559–572.

[73] H. Shacham, “The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86),” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, ser. CCS ’07.
New York, NY, USA: Association for Computing Machinery, 2007, p.
552–561. [Online]. Available: https://doi.org/10.1145/1315245.1315313

[74] Z. Li, P. Ma, H. Wang, S. Wang, Q. Tang, S. Nie, and S. Wu, “Un-
leashing the power of compiler intermediate representation to enhance
neural program embeddings,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 2253–2265.

[75] H. Wang, P. Ma, Y. Yuan, Z. Liu, S. Wang, Q. Tang, S. Nie, and S. Wu,
“Enhancing DNN-based binary code function search with low-cost
equivalence checking,” IEEE Transactions on Software Engineering,
vol. 49, no. 1, pp. 226–250, 2022.

[76] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou, “αdiff:
Cross-version binary code similarity detection with dnn,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE’18. New York, NY, USA: ACM, 2018.

[77] H. He, X. Lin, Z. Weng, R. Zhao, S. Gan, L. Chen, Y. Ji, J. Wang, and
Z. Xue, “Code is not natural language: unlock the power of semantics-
oriented graph representation for binary code similarity detection,” in
Proceedings of the 33rd USENIX Conference on Security Symposium,
ser. SEC ’24. USA: USENIX Association, 2024.

[78] J. Wang, C. Zhang, L. Chen, Y. Rong, Y. Wu, H. Wang, W. Tan, Q. Li,
and Z. Li, “Improving ml-based binary function similarity detection by
assessing and deprioritizing control flow graph features,” in Proceedings
of the 33rd USENIX Conference on Security Symposium, ser. SEC ’24.
USA: USENIX Association, 2024.

16

https://doi.org/10.1145/1749608.1749612
https://doi.org/10.1145/3622781.3674177
https://doi.org/10.1145/3471287.3471302
https://doi.org/10.1145/3620665.3640382
https://doi.org/10.1109/CGO.2005.27
https://ghidra-sre.org/
https://doi.org/10.1007/BF01840446
https://doi.org/10.1145/3561385
https://doi.org/10.1145/3597503.3639080
https://doi.org/10.1145/3579990.3580007
http://vmpsoft.com
http://oreans.com/codevirtualizer.php
https://doi.org/10.1145/2076732.2076784
https://doi.org/10.1145/1315245.1315313

[79] L. Jiang, J. An, H. Huang, Q. Tang, S. Nie, S. Wu, and Y. Zhang, “Bina-
ryai: Binary software composition analysis via intelligent binary source
code matching,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, 2024, pp. 1–13.

[80] K. Pei, Z. Xuan, J. Yang, S. Jana, and B. Ray, “Trex: Learning
execution semantics from micro-traces for binary similarity,” arXiv
preprint arXiv:2012.08680, 2020.

[81] J. Yang, C. Fu, X.-Y. Liu, H. Yin, and P. Zhou, “Codee: A tensor
embedding scheme for binary code search,” IEEE Transactions on
Software Engineering, vol. 48, no. 7, pp. 2224–2244, 2021.

[82] S. Yang, L. Cheng, Y. Zeng, Z. Lang, H. Zhu, and Z. Shi, “Asteria: Deep
learning-based ast-encoding for cross-platform binary code similarity
detection,” in 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2021, pp. 224–236.

[83] H. Wang, W. Qu, G. Katz, W. Zhu, Z. Gao, H. Qiu, J. Zhuge, and
C. Zhang, “Jtrans: Jump-aware transformer for binary code similarity
detection,” in Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2022, pp. 1–13.

[84] K. He, Y. Hu, X. Li, Y. Song, Y. Zhao, and D. Gu, “Strtune: Data
dependence-based code slicing for binary similarity detection with fine-
tuned representation,” IEEE Transactions on Information Forensics and
Security, vol. 19, pp. 10 233–10 245, 2024.

[85] J. Jiang, G. Li, M. Yu, G. Li, C. Liu, Z. Lv, B. Lv, and W. Huang,
“Similarity of binaries across optimization levels and obfuscation,” in
European Symposium on Research in Computer Security. Springer,
2020, pp. 295–315.

[86] Y. Hu, Y. Zhang, J. Li, and D. Gu, “Binary code clone detection across
architectures and compiling configurations,” in 2017 IEEE/ACM 25th
International Conference on Program Comprehension (ICPC). IEEE,
2017, pp. 88–98.

[87] Y. Hu, Y. Zhang, J. Li, H. Wang, B. Li, and D. Gu, “Binmatch: A
semantics-based hybrid approach on binary code clone analysis,” in 2018
IEEE international conference on software maintenance and evolution
(ICSME). IEEE, 2018, pp. 104–114.

[88] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K. Tan,
“Bingo: Cross-architecture cross-os binary search,” in Proceedings of
the 2016 24th ACM SIGSOFT international symposium on foundations
of software engineering, 2016, pp. 678–689.

[89] Q. Zhan, X. Hu, Z. Li, X. Xia, D. Lo, and S. Li, “Ps3: Precise patch
presence test based on semantic symbolic signature,” in Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1–12.

[90] Z. Tang, J. Zhai, M. Pan, Y. Aafer, S. Ma, X. Zhang, and J. Zhao, “Dual-
force: Understanding webview malware via cross-language forced exe-
cution,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, 2018, pp. 714–725.

[91] J. Wilhelm and T.-c. Chiueh, “A forced sampled execution approach
to kernel rootkit identification,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2007, pp. 219–235.

[92] W. You, Z. Zhang, Y. Kwon, Y. Aafer, F. Peng, Y. Shi, C. Harmon,
and X. Zhang, “Pmp: Cost-effective forced execution with probabilistic
memory pre-planning,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 1121–1138.

[93] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: Force-
executing binary programs for security applications,” in 23rd {USENIX}
Security Symposium ({USENIX} Security 14), 2014, pp. 829–844.

[94] Z. Zhang, W. You, G. Tao, G. Wei, Y. Kwon, and X. Zhang,
“Bda: practical dependence analysis for binary executables by unbiased
whole-program path sampling and per-path abstract interpretation,”
Proc. ACM Program. Lang., vol. 3, no. OOPSLA, Oct. 2019. [Online].
Available: https://doi.org/10.1145/3360563

[95] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated
predicate switching,” in Proceedings of the 28th international conference
on Software engineering, 2006, pp. 272–281.

[96] Z. Zhang, Y. Ye, W. You, G. Tao, W.-c. Lee, Y. Kwon, Y. Aafer,
and X. Zhang, “Osprey: Recovery of variable and data structure via
probabilistic analysis for stripped binary,” in 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 2021, pp. 813–832.

[97] S. Yao and D. She, “ Empc: Effective Path Prioritization for
Symbolic Execution with Path Cover ,” in 2025 IEEE Symposium
on Security and Privacy (SP). Los Alamitos, CA, USA: IEEE
Computer Society, May 2025, pp. 2772–2790. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00190

TABLE VII: Average runtime overhead on each benchmark
across different diffing scenarios. (Si: SIGMADIFF, De: DEEP-
BINDIFF, Ba: BARRACUDA)

Project Size Num Scenario Average Execution Time (s)
De Si Ba

Coreutils 67K 1120

Ver 548.2 298.6 5.2
Opt 679.4 386.7 6.5

Comp 548.0 419.9 8.9
Arch N/A 622.2 10.6
Obf 811.1 538.7 19.6

Diffutils 99K 44

Ver 610.5 448.1 7.4
Opt 750.8 548.1 8.7

Comp 603.0 545.6 8.4
Arch N/A 908.4 10.6
Obf 996.7 731.3 24.8

Findutils 164K 33

Ver 1954.7 1140.3 10.7
Opt 1795.1 872.7 13.3

Comp 1226.4 903.8 13.5
Arch N/A 1913.1 17.7
Obf 2540.8 1240.3 29.9

Gmp 682K 11

Ver N/A 4604.2 651.1
Opt N/A 5278.8 783.7

Comp N/A 6881.9 556.5
Arch N/A 6012.7 595.7
Obf N/A 8120.8 514.4

Putty 792K 44

Ver N/A 8891.4 247.2
Opt N/A 7686.5 375.1

Comp N/A 5846.5 216.0
Arch N/A 6512.6 243.5
Obf N/A 13435.7 339.0

APPENDIX A
RUNTIME OVERHEAD DETAILS

Table VII further presents the detailed average runtime
overhead of SIGMADIFF, DEEPBINDIFF, and BARRACUDA
across five benchmark projects and all five diffing scenarios.
The Size column indicates the average size of the stripped
binaries involved in the diffing experiments, and the Num
column represents the number of binary-diffing pairs per-
formed in these experiments. In the Scenario column, Ver,
Opt, Comp, Arch, and Obf abbreviate Cross-Version, Cross-
Optimization, Cross-Compiler, Cross-Architecture, and Cross-
Obfuscation diffing scenarios, respectively.

Generally speaking, larger binary pairs require more time
for analysis with all three tools. Both SIGMADIFF and DEEP-
BINDIFF analyze the inter-procedural CFG or DDG of a
binary as a whole during their core diffing processes, so
their execution time is directly influenced by the number of
instructions in the binary. In contrast, BARRACUDA is more
sensitive to the size and number of large functions in binaries,
as the path sampling is conducted on a per-function basis. The
larger a function, the more paths and longer paths are required
for sampling to reveal instruction semantics, resulting in longer
sampling time. For instance, BARRACUDA takes more time
on the Gmp benchmark due to the presence of many large
functions used for high-precision arithmetic calculations.

APPENDIX B
CROSS-OBFUSCATION DIFFING DETAILS

Table VIII shows the detailed result of the cross-obfuscation
diffing on all five benchmarks, including Coreutils v8.1,

17

https://doi.org/10.1145/3360563
https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00190

TABLE VIII: Cross-obfuscation Pseudocode-level Diffing Result. (Si: SIGMADIFF, De: DEEPBINDIFF, Ba: BARRACUDA)

Project Version Precision Recall F1
Si Si+Ba De De+Ba Si Si+Ba De De+Ba Si Si+Ba De De+Ba

Coreutils
OLLVM-BCF 68.4 71.7 72.2 78.1 56.6 59.9 29.8 42.6 61.9 65.2 41.9 54.9
OLLVM-FLA 58.1 63.0 64.0 73.9 35.7 39.3 15.1 22.2 44.0 48.2 24.0 33.6
OLLVM-SUB 83.4 84.9 90.0 94.3 75.8 77.4 41.1 60.0 79.4 80.9 56.0 73.1
OLLVM-ALL 47.3 51.7 41.6 53.4 25.4 28.1 9.7 14.6 32.9 36.3 15.4 22.7

Average 64.3 67.8 67.0 74.9 48.4 51.2 23.9 34.9 54.6 57.7 34.3 46.0

Diffutils
OLLVM-BCF 68.6 71.7 76.6 83.6 57.0 60.7 34.3 48.5 62.3 65.7 47.2 61.3
OLLVM-FLA 43.1 45.7 60.3 74.4 26.1 28.4 5.7 12.9 32.5 35.0 10.4 22.0
OLLVM-SUB 86.1 87.5 94.8 96.9 79.3 81.2 45.9 61.5 82.6 84.2 61.8 75.3
OLLVM-ALL 39.3 41.3 42.3 58.7 19.6 21.8 3.9 8.2 26.1 28.5 7.0 14.4

Average 59.3 61.6 68.5 78.4 45.5 48.0 22.4 32.8 50.9 53.3 31.6 43.2

Findutils
OLLVM-BCF 67.2 69.6 71.4 78.4 49.3 52.2 24.2 37.7 56.3 59.1 35.4 49.8
OLLVM-FLA 45.4 49.0 47.7 66.2 25.1 27.2 7.5 14.7 31.9 34.6 12.7 23.6
OLLVM-SUB 88.7 89.7 90.2 95.3 79.6 80.8 38.0 61.6 83.8 84.9 53.4 74.8
OLLVM-ALL 37.6 40.9 34.9 47.8 18.7 20.4 5.5 9.9 24.7 26.9 9.2 16.0

Average 59.7 62.3 61.0 71.9 43.2 45.2 18.8 31.0 49.2 51.4 27.7 41.1

Gmp
OLLVM-BCF 81.2 85.3 N/A N/A 72.4 77.6 N/A N/A 76.5 81.3 N/A N/A
OLLVM-FLA 62.1 66.0 N/A N/A 44.4 48.2 N/A N/A 51.8 55.7 N/A N/A
OLLVM-SUB 80.4 85.1 N/A N/A 72.6 78.8 N/A N/A 76.3 81.8 N/A N/A
OLLVM-ALL 58.9 59.5 N/A N/A 38.8 39.5 N/A N/A 46.8 47.5 N/A N/A

Average 70.7 74.0 N/A N/A 57.1 61.1 N/A N/A 62.9 66.6 N/A N/A

Putty
OLLVM-BCF 62.2 67.5 N/A N/A 45.2 49.6 N/A N/A 52.4 57.2 N/A N/A
OLLVM-FLA 52.2 55.7 N/A N/A 29.8 32.4 N/A N/A 37.9 41.0 N/A N/A
OLLVM-SUB 80.9 84.3 N/A N/A 68.3 71.6 N/A N/A 74.1 77.4 N/A N/A
OLLVM-ALL 41.5 45.0 N/A N/A 18.7 20.7 N/A N/A 25.7 28.3 N/A N/A

Average 59.2 63.1 N/A N/A 40.5 43.6 N/A N/A 47.5 51.0 N/A N/A
Average 62.6 65.8 65.5 75.1 46.9 49.8 21.7 32.9 53.0 56.0 31.2 43.5

Standard Deviation ±0.21 ±0.08 ±0.46 ±0.19 ±0.06 ±0.09 ±0.22 ±0.10 ±0.09 ±0.07 ±0.25 ±0.16

Diffutils v3.6, Findutils v4.6, Gmp v6.2.1, and Putty v0.77,
corresponding to the Cumulative Distribution Function result
shown in Figure 7 in §VIII.B. On average, with BARRACUDA,
the average F1 scores of SIGMADIFF and DEEPBINDIFF
increase by 3.0% and 12.3% in percentage points, respectively.

APPENDIX C
ARTIFACT APPENDIX

This artifact includes the implementation, experimental
scripts, environmental dependencies, and datasets required to
reproduce the experiments described in the paper, as well as
the original data supporting the presented results.

A. Description & Requirements

1) How to Access: The complete artifact file is available
on Zenodo at the following DOI link: https://doi.org/10.5281/
zenodo.17885726. The Docker environment with environmen-
tal dependency set up can be accessed at https://hub.docker.
com/r/cyeaa/barracuda.

2) Hardware Dependencies: The evaluation was conducted
on a server equipped with four 16-core Intel(R) Xeon Gold
6226R CPUs at 2.90GHz, four NVIDIA GeForce RTX 3080
GPUs, and 256 GB of RAM.

3) Software Dependencies: The baseline tools SIGMADIFF
and DEEPBINDIFF require different Python dependencies, as
well as JDK 11 and Ghidra 9.2.2, all of which are included
as pre-installed bundles within the Docker container.

4) Benchmarks: The experiments described in the
paper include five benchmarks: Coreutils, Diffutils,
Findutils, Gmp, and Putty. A complete experiment requires

approximately one week of execution on a server equipped
with hardware similar to that described in Hardware
Dependencies. We provide both full-scale experiment
scripts for evaluation on all benchmarks and downscaled
experiment scripts for the Diffutils benchmark. The full-
scale dataset and scripts are available in the archive
AE_full.tar.xz on Zenodo, while the downscaled
dataset and scripts are in the archive AE.tar.xz on
Zenodo. The original raw data and results can be downloaded
via the following link: https://hkustconnect-my.sharepoint.
com/:u:/g/personal/cyeaa connect ust hk/IQBtam
45abBQKcXWrTldatsASp-EcYq4sco9d2GZxgC3x4?e=
rmt5On.

B. Artifact Installation & Configuration
The home directory inside the Docker container contains

the dataset and scripts for the downscaled evaluation, with
the folder diff_exp containing the entry scripts to start
the evaluation. A full-scale evaluation can be performed by
downloading and extracting the archive AE_full.tar.xz
to the home directory. In this case, the diff_full_exp
folder contains the entry scripts.

To obtain the Docker image:
$ docker pull cyeaa/barracuda:2.0
To create a Docker container with the Docker image:
$ docker run --gpus all -it

cyeaa/barracuda:2.0

C. Major Claims
• (C1): BARRACUDA can detect precise instruction

alignments as anchor points, effectively enhancing the

18

https://doi.org/10.5281/zenodo.17885726
https://hub.docker.com/r/cyeaa/barracuda
https://hkustconnect-my.sharepoint.com/:u:/g/personal/cyeaa_connect_ust_hk/IQBtam_45abBQKcXWrTldatsASp-EcYq4sco9d2GZxgC3x4?e=rmt5On

accuracy of state-of-the-art fine-grained binary diffing
across various scenarios. This is demonstrated by exper-
iments (E1) and (E2), with results reported in Tables I,
II, III, IV, V, and VIII.

• (C2): BARRACUDA introduces only minimal additional
runtime overhead to existing binary diffing tools. This is
demonstrated by experiment (E3), with results reported
in Figure 7 and §VIII.D.

D. Evaluation

This section describes the process for reproducing the
downscaled experiment. The full-scale experiment can be
reproduced similarly, with slight manual adjustments recom-
mended to run it in multiple batches simultaneously (based
on the server hardware specifications used) to accelerate the
process. It took approximately 1 week to complete one round
of the full-scale experiment, with 4 batch executions running
in parallel in our experiment environment.

1) Experiment (E0): [10 human-minutes]: Download the
artifact archive AE.tar.xz and extract it in the home direc-
tory (if you are using Docker, you can skip this step). Then,
enter the diff_exp folder, where all subsequent experiments
will be conducted.

2) Experiment (E1): [10 human-minutes + 12 compute-
hours]: This experiment performs cross-version, cross-
optimization, cross-architecture, cross-compiler, and cross-
obfuscation diffing on the Diffutils dataset. Our evaluation
metrics include precision, recall, and F1-score. The experiment
is conducted using SigmaDiff and DeepBindiff, and the cor-
responding versions accepting the BARRACUDA instruction
alignment results as anchor points.

[Execution]: Run ./run_exp1.sh. After the experiment
finishes, the diffing output generated by the different experi-
ment groups will be placed in their corresponding subfolders.

[Results]: Run ./show_exp1.sh. This will generate
evaluation results in the standard output, including data rows
corresponding to Diffutils in Tables I, II, III, IV, and VIII.
Slight variations in specific data points are expected, but the
comparison trends across different tools should remain largely
consistent.

3) Experiment (E2): [10 human-minutes + 2 compute-
hours]: This experiment evaluates the accuracy of instruction
alignments generated by BARRACUDA using two ablation
groups and compares them with two anchor point detection
methods implemented in SIGMADIFF.

[Execution]: Run ./run_exp2.sh. After the experiment
finishes, the diffing output will be placed in the folder
TrainingNodeEval.

[Results]: Run ./show_exp2.sh. This will generate
evaluation results in the standard output, including data rows
corresponding to Diffutils in Table V. Slight variations in
specific data points are expected due to a few random factors
in BARRACUDA, such as path sampling, but the comparison
trends across different evaluation groups should remain largely
consistent.

4) Experiment (E3): [5 human-minutes]: This experiment
displays the comparison of runtime overhead between BAR-
RACUDA, SIGMADIFF, and DEEPBINDIFF, based on the
results obtained from previous executions.

[Results]: Run ./show_exp3.sh. This will generate
evaluation results in the standard output, including data corre-
sponding to Figure 7 and §VIII.D.

19

