
Cirrus: Performant and Accountable
Distributed SNARK

Wenhao Wang
Yale Univerity, IC3

wenhao.wang@yale.edu

Fangyan Shi
Tsinghua University

sfy21@tsinghua.org.cn

Dani Vilardell
Cornell University, IC3

dv296@cornell.edu

Fan Zhang
Yale University, IC3

f.zhang@yale.edu

Abstract—Succinct Non-interactive Arguments of Knowledge
(SNARKs) can enable efficient verification of computation in
many applications. However, generating SNARK proofs for
large-scale tasks, such as verifiable machine learning or virtual
machines, remains computationally expensive. A promising
approach is to distribute the proof generation workload across
multiple workers. A practical distributed SNARK protocol should
have three properties: horizontal scalability with low overhead
(linear computation and logarithmic communication per worker),
accountability (efficient detection of malicious workers), and a
universal trusted setup independent of circuits and the number
of workers. Existing protocols fail to achieve all these properties.

In this paper, we present Cirrus, the first distributed SNARK
generation protocol achieving all three desirable properties at once.
Our protocol builds on HyperPlonk (EUROCRYPT’23), inheriting
its universal trusted setup. It achieves linear computation
complexity for both workers and the coordinator, along with low
communication overhead. To achieve accountability, we introduce
a highly efficient accountability protocol to localize malicious
workers. Additionally, we propose a hierarchical aggregation
technique to further reduce the coordinator’s workload.

We implemented and evaluated Cirrus on machines with
modest hardware. Our experiments show that Cirrus is highly
scalable: it generates proofs for circuits with 33M gates in under
40 seconds using 32 8-core machines. Compared to the state-of-
the-art accountable protocol Hekaton (CCS’24), Cirrus achieves
over 7× faster proof generation for PLONK-friendly circuits
such as the Pedersen hash. Our accountability protocol also
efficiently identifies faulty workers within just 4 seconds, making
Cirrus particularly suitable for decentralized and outsourced
computation scenarios.

I. INTRODUCTION

Succinct Non-interactive Arguments of Knowledge
(SNARKs) [1]–[11] enable efficient, non-interactive verification
of computations. The primitive has proven practical for
various applications, such as privacy-preserving payments (e.g.,
Zerocash [12]), scalability solutions for decentralized consensus
(e.g., zkRollups [13]), and blockchain interoperability (e.g.,
zkBridges [14]). However, for more ambitious applications
such as verifiable machine learning (zkML) and verifiable
virtual machines (zkVM), the computational demands of proof
generation remain a substantial bottleneck.

A recent line of works [14]–[18] proposed to horizontally
scale up SNARK generation with distributed SNARK generation
protocols, where multiple workers collaborate on different parts
of a general-purpose circuit to create a final proof. By splitting
up the proof task across workers, distributed proof generation
not only speeds up computation but also reduces memory usage,
making it feasible to prove statements about large circuits that
cannot fit in the memory of a single server.

We identify three properties that a distributed SNARK
generation scheme should satisfy:

1) Firstly, it should scale horizontally with low overhead.
Specifically, each worker’s computational complexity should
ideally grow linearly with the size of the subcircuit it
is assigned, avoiding performance degradation as more
workers are added. Furthermore, each worker’s communi-
cation complexity should scale sublinearly with its subtask
size, as large tasks would otherwise incur prohibitive
communication costs.

2) Secondly, it should achieve accountability, i.e., being able
to efficiently detect malicious behavior and identify faulty or
dishonest workers. Accountability is particularly important
when proof computation is outsourced to decentralized
networks that may include untrusted participants. For
instance, in prover marketplaces [19]–[21], users delegate
computation tasks to workers offering spare computational
resources, which necessitates mechanisms to detect malfea-
sance and hold responsible parties accountable to maintain
trust and reliability.

3) Thirdly, it should have a universal setup, avoiding the
need for per-circuit trusted setup ceremonies. Requiring
a dedicated setup each time a new application is encoun-
tered is highly inefficient, especially in proof outsourcing
scenarios where workers frequently handle tasks from
many different applications. The complexity and cost
associated with conducting secure multi-party ceremonies
for each application would severely limit scalability and
usability [22]. A universal setup addresses this challenge
by enabling diverse applications to leverage distributed
SNARKs without additional trusted initialization.

Limitation of prior works. While prior works reduced
overhead and achieved partial accountability, none achieved all
three properties. Pianist [16] is the first distributed proof gener-
ation scheme based on PLONK. It achieves a robust quasilinear

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240668
www.ndss-symposium.org

prover time protocol for general circuits, but not accountability1.
HyperPianist [18] improves the prover complexity to linear
time but still lacks accountability. Hekaton [17] introduced an
accountable protocol with quasilinear prover time, but it relies
on Mirage [23], a SNARK requiring a circuit-specific setup,
making it costly to use in general-purpose circuits. Neither
Pianist nor Hekaton achieves linear worker time.

This work: Cirrus. We introduce Cirrus, the first distributed
SNARK generation scheme that simultaneously satisfies all
of the desired properties: low overhead, accountability, and
universal trusted setup. Specifically, Cirrus achieves linear
computational complexity for both workers and the coordinator,
with communication overhead scaling sub-linearly with task
size, ensuring practical efficiency for large-scale deployments.
Moreover, Cirrus reuses existing universal setup parameters
from HyperPlonk, which significantly simplifies its deploy-
ment. Unlike previous accountable schemes such as Hekaton,
Cirrus does not require circuit-specific setups, and therefore
avoiding repeated costly setup ceremonies. Furthermore, Cirrus
implements an efficient accountability protocol that enables
the coordinator to quickly detect malicious behavior, precisely
identify offending workers, and support incentive-based systems
to maintain security and trustworthiness. By simultaneously
addressing computational efficiency, accountability, and setup
universality, Cirrus significantly expands the potential scalabil-
ity and security of SNARK applications in decentralized and
outsourced computation environments.

A. Technical Overview

Our distributed scheme is built upon HyperPlonk [8], a non-
distributed SNARK scheme with prover time linear in circuit
size and universal trusted setup. Our adaptation of HyperPlonk
to a distributed setting must preserve these properties.

We use M to denote the number of workers. A circuit C of
N gates is particitioned into M sub-circuits (using approach
proposed in Pianist [16]), each of size T . Additionally, M
workers collaborate with a single coordinator.

Distributing HyperPlonk. To adapt HyperPlonk to a dis-
tributed setting, we need to distribute its core building blocks:
multilinear KZG, the sum-check protocol (SumCheck), the
zero test protocol (ZeroTest), and the permutation test protocol
(PermTest). While distributing the multilinear KZG protocol
is straightforward, naively distributing the SumCheck protocol
using existing techniques (e.g., deVirgo [14]) introduces a
critical issue. Specifically, at the conclusion of the distributed
SumCheck, we must open a multivariate polynomial with
constant degree d > 1. However, existing techniques from
deVirgo [14] combined with multilinear KZG only support
multivariate polynomials of degree at most 1.

We address this limitation using the following key obser-
vation: any constant-degree multivariate polynomial can be
equivalently represented as a function of a constant number

1Pianist introduces a limited form of accountability designed specifically for
data-parallel circuits; however, its accountability mechanism does not extend
to general-purpose circuits.

of multilinear (i.e., degree-1) polynomials. More formally,
each polynomial f(x) of constant degree can be expressed as
f(x) = h(g1(x), . . . , gc(x)), where each gi(x) is multilinear.
Furthermore, additions and multiplications of these degree-
1 distributed polynomials produce results that match the
evaluation of the original polynomial on the Boolean hypercube
{0, 1}n. Consequently, we transform the original challenge into
distributing the sum-check protocol for multilinear polynomials.
This transformation enables us to employ distributed multilinear
KZG effectively to commit to and open polynomials at the
end of the distributed SumCheck. With this distributed version
of SumCheck, we subsequently extend our construction to a
fully distributed HyperPlonk scheme.

Optimistic accountability. When a proof is generated by
workers, the coordinator verifies the proof. If this verification
succeeds, no further action is required, as correctness is ensured
with overwhelming probability by the soundness property.
However, when verification fails, the coordinator is required
to identify one or more workers at fault. A naive approach
would require the coordinator to independently recompute all
intermediate results and compare them with the results sent
by the workers, incurring high computational costs same as
generating the entire proof on its own. To address this issue,
Cirrus introduces a fault localization protocol that significantly
reduces computational overhead.

First, the coordinator verifies the KZG sub-proofs provided
by each worker and checks their consistency with the respective
KZG commitments of the witness polynomials constructed
by the workers. A failed verification at this stage directly
identifies a faulty worker. If all sub-proofs verify successfully,
the coordinator proceeds to reconstruct the witness polynomials
from each worker and evaluates them at a common random
point determined at the conclusion of the distributed sum-
check protocol. A mismatch in any evaluation result indicates
a malicious worker. Asymptotically, our fault localization
protocol requires only O(M log T) pairings and O(MT) field
operations. Since the field operations are lightweight in practice,
our accountability protocol is substantially more efficient than
the baseline approach of recomputing the proof. Our evaluation
confirms its concrete efficiency, requiring only 4 seconds to
localize malicious workers, even for circuits with 33 million
gates distributed across 256 workers.

Reducing the coordinator’s computational overhead. In the
optimistic case where all workers are honest, the coordinator’s
computational workload scales with the number of workers,
potentially becoming a performance bottleneck as the worker
count grows. In the vanilla distributed HyperPlonk protocol,
the coordinator’s runtime complexity would be O(M log T),
which originates from aggregating M vectors, each of length
O(log T), in the distributed SumCheck and distributed mul-
tilinear KZG protocols. To reduce this, Cirrus introduces an
efficient hierarchical aggregation approach. Specifically, we
partition the aggregation task among M/ log T designated
worker provers, referred to as leaders, each of whom aggregates
vectors from log T workers. Consequently, the coordinator’s

2

computational complexity for this aggregation step is reduced
significantly to O(M). We note that the resulting computational
overhead per leader is O(log2 T), which remains negligible
compared to the primary computation tasks, which are domi-
nated by O(T).

In summary, Cirrus is the first distributed SNARK protocol
to achieve linear computational complexity, logarithmic com-
munication per worker, efficient accountability, and a universal
trusted setup. As shown in Table I, Cirrus outperforms previous
state-of-the-art distributed SNARK schemes by simultaneously
achieving all desirable properties. Therefore, Cirrus signifi-
cantly improves both the practicality and scalability of real-
world deployments of ZKP applications.

B. Implementation and Evaluation

We implement and extensively evaluate Cirrus to assess
its end-to-end performance. Our implementation builds upon
the HyperPlonk library [24]. To benchmark performance, we
generated random PLONK circuits with corresponding random
witnesses, distributing the SNARK generation process across
up to 32 AWS t3.2xlarge machines (each equipped with 8
vCPUs and 32 GB of memory). We note that Cirrus seamlessly
reuses existing universal setup parameters from HyperPlonk,
simplifying its deployment in practice.

Our experiments demonstrate that Cirrus can efficiently
produce proofs for circuits containing up to 33M gates in
merely 39 s, using a distributed network of 32 worker machines,
with 40.0 KB communication per worker and 16.6 KB proof
size. In contrast, vanilla HyperPlonk can only handle circuits of
size 4M gates, requiring more than 110 s on the same hardware
configuration. To ground these numbers in an application,
we instantiate Cirrus to prove RAM programs [25]–[29].
Distributing the RAM program CPU cycles over 256 cores,
Cirrus sustains near-linear scaling and proves a trace of 214

CPU steps in under 40 s, while a multi-threaded HyperPlonk
baseline is substantially slower. These results clearly illustrate
the horizontal scalability advantages of Cirrus.

We perform comparative evaluations with another state-of-
the-art accountable distributed SNARK scheme Hekaton [17].
Our experiments highlight that for PLONK-friendly workloads,
such as Pedersen hash circuits, Cirrus significantly outperforms
Hekaton, achieving a performance gain of over 7×. For
other tasks, including MiMC hash and PoK of Exponent,
Cirrus also achieves faster performance than Hekaton, while
additionally offering the advantage of a universal trusted
setup. Specifically, unlike Hekaton, our approach does not
require separate trusted setups for each distinct application
or varying worker configurations, substantially simplifying
practical deployment and enhancing flexibility.

We evaluate the efficiency of our accountability protocol.
Our results indicate that when an incorrect proof is produced,
the coordinator can identify at least one faulty worker within
4 s for circuits of 33M gates and 256 workers, showing the
practicality of the accountability checks.

We also evaluate the performance benefits of hierarchical ag-
gregation. We assess the coordinator’s computational overhead

and confirm that, with hierarchical aggregation, the coordi-
nator’s runtime is independent of sub-circuit sizes, thereby
validating this theoretical improvement. Our experiments show
that hierarchical aggregation only adds minimal overhead to
leader workers compared with non-leader workers.

Our Contribution

• We introduce the notion of accountability to distributed
SNARK generation, which is particularly important in decen-
tralized settings, such as zero-knowledge prover markets [19],
where participants may behave maliciously or unreliably.

• We present Cirrus, the first accountable distributed SNARK
generation protocol that simultaneously achieves all the
essential properties for practical deployment, including
horizontal scalability, accountability, and universal setup
compatible with existing parameters.

• We implement and evaluate the performance of Cirrus. The
source code is publicly accessible via this link.

II. PRELIMINARIES

In this section, we introduce the key notation, definitions,
and building blocks.

Notation. Let F denote a finite field of size Ω(2λ), where
λ is the security parameter, and let Bµ := {0, 1}µ denote the
µ-dimensional Boolean hypercube. We write F≤dµ [X] for the
set of µ-variate polynomials whose degree in each variable is at
most d; a multivariate polynomial is multilinear if its degree in
each variable is at most 1. Any polynomial f ∈ F≤dµ [X] can be
expressed as f(x) = h(g1(x), . . . , gc(x)), where h has total
degree O(d), is computable by an arithmetic circuit of O(d)
gates, and each gi is multilinear. For w ∈ Bµ, let χw(x) :=∏µ

i=1(wixi+(1−wi)(1−xi)) denote the multilinear Lagrange
polynomial over Bµ. For x ∈ Fµ, define [x] :=

∑µ
i=1 2

i−1xi,
and let ⟨v⟩m denote the m-bit representation of an integer
v ∈ [0, 2m−1]. Finally, we use C to denote a circuit over F, x
a public input, and w a witness. We write C(x;w) = 1 when
w satisfies C on x.

Useful tools. Here we introduce frequently used tools.

Lemma 1 (Multilinear Extension). For a function g : Bµ → F,
there is a unique multilinear polynomial g̃ such that g̃(x) =
g(x) for all x ∈ Bµ. The function g̃ is said to be the
multilinear extension (MLE) of g. g̃ can be expressed as
g̃(x) =

∑
a∈Bµ

f(a) · χa(x).

Lemma 2 (Schwartz-Zippel Lemma). Let g : Fℓ → F be a
nonzero ℓ-variate polynomial of degree at most d. Then for all
∅ ̸= S ⊆ F, Pr

x←Sℓ
[g(x) = 0] ≤ d

|S| .

Model and assumptions. Participants in Cirrus consist
of a coordinator C, M = 2ξ workers P1, . . . ,PM , and a
verifier V . We assume point-to-point communication channels
between C and workers, and between C and V . The verifier
only communicates with the coordinator. We assume static
corruptions, i.e., an adversary may corrupt any subset S ⊆ [M]
of workers and/or the coordinator C before the protocol

3

https://github.com/hackingdecentralized/cirrus/tree/v0.2

Scheme Worker Time Coordinator Time Comm. V Time Accountable Setup
Cirrus (Ours) O(T) O(M) O(M logT) O(logN) ✓ Universal
Hekaton [17] O(T log T) O(|S|+M logM) O(M) O(1) ✓ Circuit-specific

HyperPianist [18] O(T) O(M log T) O(M log T) O(logN) ✗ Universal
Pianist [16] O(T log T) O(M logM) O(M) O(1) ✗ Universal

DeVirgo [14] O(T) N/A O(N) O(log2 N) ✗ Transparant
DIZK [15] O(T log2 T) N/A O(N) O(1) ✗ Circuit-specific

TABLE I: Comparison between Cirrus and existing distributed SNARK generation protocols. Comm. denotes the communication
cost in total. V Time denotes the verifier time. N is the number of gates (or constraints) in the whole circuit, and M is the
number of workers. T = N/M is the size of each sub-circuit. For Setup, “Circuit-specific” denotes that each different circuit
requires its own trusted setup, “Universal” denotes that one set of trusted setup parameters works for circuits up to a certain
size, and “Transparent” denotes that no trusted setup is required.

starts; corrupted parties can arbitrarily collude. We require
the accountability property to hold when C is honest (i.e., not
corrupted); we require the soundness and knowledge soundness
properties to hold even if C is corrupted. Following existing
works [16]–[18], we assume all workers and the coordinator
have access to the witness.

Definition 1 (Accountable Distributed SNARK). An account-
able distributed SNARK for a circuit C with M workers consists
of PPT sub-protocols:

• Setup(1λ)→ pp: Generate public parameters pp.
• Partition(C,M) → (C1, . . . ,CM): Split the circuit C into
M sub-circuits covering all gates.

• KeyGen(C, pp,M) → (pk, pk1, . . . , pkM , vk): Generate
the coordinator proving key pk, per-worker proving keys
pk1, . . . , pkM , and verification key vk.

• SplitInst(pp,C, x, w) → ((ppi, xi, wi)i∈[M]): From
(pp,C, x, w) derive per-worker inputs where xi is the public
input relevant to Ci and wi the corresponding witnesses.

• Provei(pki,Ci, xi, wi),Prove(pk,C, x, w) → π: Workers
interact with the coordinator and other workers to prove
that the circuit computation is satisfied by w, and output a
proof π which is sent to V . Let tr denote the communication
transcript of the coordinator during the proof generation.

• CheckAndAccuse(pk,C, x, w, tr) → S∗ ⊆ [M] ∪ {⊥}:
Given the communication transcript tr during proof gen-
eration and the circuit witnesses, the coordinator interacts
with workers and outputs a subset of malicious workers S∗,
or ⊥ if no malicious worker is detected.

• Verify(vk, x, π)→ b ∈ {0, 1}: The verifier outputs whether
or not it accepts the proof π.

They satisfy the following properties:

Completeness. If C(x;w) = 1 and all parties
are honest, then Pr

[
Verify(vk, x, π) = 1 ∧

CheckAndAccuse(pk,C, x, w, tr) = ⊥
]

= 1. Namely,
valid proofs can be generated for satisfying witnesses when
all parties are honest without false accusations.

Knowledge soundness. For any PPT adversary A that statically
corrupts any subset S ⊆ [M] and interacts with honest C to
produce π such that Verify(vk, x, π) = 1, there exists a PPT
extractor E with oracle access to P1, . . . ,PM , C that outputs
w⋆ with Pr

[
C(x;w⋆) = 1

]
≥ 1− negl(λ).

Accountability. Let S ⊆ [M] be a non-empty set of corrupted
workers. Consider any execution with honest C that ends with
Verify(vk, x, π) = 0, CheckAndAccuse(pk, x, w, tr) outputs a
non-empty subset of S except with probability negl(λ). This
also implies that no honest parties will be falsely accused.
Zero-knowledge (Optional). If ZK is claimed, then if the
coordinator and all workers are honest, there exists a PPT
simulator Sim such that for any C, x, w such that C(x;w) = 1,
the distribution of Sim(pp,C, x) is indistinguishable from a
proof produced by the coordinator and the workers.

III. CIRRUS: ACCOUNTABLE AND EFFICIENT DISTRIBUTED
SNARK

In this section, we formally describe Cirrus, a distributed
SNARK generation scheme with linear prover time where the
coordinator can make accountable any malicious behavior. We
start by giving the construction to distribute HyperPlonk for a
general circuit. We first present a distributed multilinear KZG
PCS and how to construct a distributed multivariate SumCheck
protocol that is compatible with our distributed PCS. With the
distributed multivariate SumCheck protocol, we show how to
construct the distributed HyperPlonk accordingly.

The distributed HyperPlonk protocol is complete and sound,
but it still suffers from the following drawbacks: (1) the
coordinator cannot find accountable the malicious prover(s)
if the final proof is incorrect, and (2) the coordinator needs
to perform O(M log T) group and field operations, which is
not truly linear in M and T . To tackle the first challenge,
we propose a verification protocol that allows the coordinator
to detect any malicious prover. The core technique in the
verification protocol is that the coordinator can evaluate the
permutation products of each circuit segment. Note that the
additional verification steps would introduce a large overhead
for the coordinator if the verification is performed on the fly.
We overcome this with an alternative protocol: the coordinator
first verifies the final proof to check if there exist malicious
nodes. The coordinator will only run the complete check if the
verification fails. In this way, the optimistic runtime overhead
of the coordinator can be reduced to the verifier time of our
protocol. To tackle the second challenge, we delegate part of
the work of the coordinator to multiple nodes to reduce the
runtime of the coordinator and show how this technique can
work along with the optimistic verification. This is done while
keeping all the coordinator’s computation time linear.

4

A. Distributedly Computable HyperPlonk
Our protocol is built on top of HyperPlonk [8], an adaptation

of PLONK to the boolean hypercube, using multilinear polyno-
mial commitments to remove the need for FFT computation and
achieving linear prover time. We first define the polynomials
necessary for the protocol.
Defining polynomials. Before running the distributed SNARK,
we assume that a circuit C has been divided into M = 2ξ

different sub-circuits. This can be done by just dividing the
PLONK trace t of the circuit evenly into M chunks {t(b)}b∈Bξ

,
where the gates within the same chunk are in the same
circuit segment. Then each circuit segment has its own public
inputs, addition and multiplication gate selectors, and wiring
permutations. Let ν(b) be the length of the binary index to
represent public inputs for Pb, i.e. 2ν

(b)

= ℓ
(b)
x . Let µ be

the length of the binary index to represent the gates for all
workers, i.e. 2µ = |C|/M . Let s(b) represent the gate selection
vector for Pb. Note that there is a wiring permutation between
different circuit segments. Let s(b), σ(b) : Bµ+2 → Bµ+2 and
ρ(b) : Bµ+2 → Bξ be the mappings of the circuit wiring for Pb,
such that {(σ(b)(c), ρ(b)(c)) : c ∈ Bµ, b ∈ Bξ} = Bµ+2×Bξ .
Specifically, the permutations indicate that t(b)i = t

ρ(b)(⟨i⟩)
σ(b)(⟨i⟩) for

all i ∈ [2µ], b ∈ Bξ.
A worker prover Pb interpolates the following polynomials:

• Two multilinear polynomials S(b)
add, S

(b)
mult ∈ F≤1µ [X] such that

∀i ∈ [N (b)] S
(b)
add(⟨i⟩µ) = s

(b)
i and S

(b)
mult(⟨i⟩µ) = 1− s

(b)
i .

• A multilinear polynomial F (b) ∈ F≤1µ+2 such that
F (b)(0, 0, ⟨i⟩µ) = t

(b)
3i+1 i ∈ [0, N (b) − 1]

F (b)(0, 1, ⟨i⟩µ) = t
(b)
3i+2 i ∈ [0, N (b) − 1]

F (b)(1, 0, ⟨i⟩µ) = t
(b)
3i+3 i ∈ [0, N (b) − 1]

F (b)(1, . . . , 1, ⟨i⟩ν) = x
(b)
i+1 i ∈ [0, ℓ

(b)
x − 1]

• A multilinear polynomial I(b) ∈ F≤1
ν(b) [X] such that for all

i ∈ [0, ℓ
(b)
x − 1] we have I(b)(⟨i⟩ν(b)) = x

(b)
i+1.

Distributed multilinear KZG PCS. First, we introduce the
distributed multilinear KZG PCS. This protocol enables us to
commit and open a multilinear polynomial distributedly. For
a multilinear polynomial f(x,y) =

∑
b∈Bξ

f (b)(x)χb(y) ∈
F≤1µ+ξ[X], the PCS protocol is described as follows:

• KeyGen: Generate crs = (g, (gτi)i∈[µ+ξ], (Uc,b :=
gχc(τ1,...,τµ)·χb(τµ+1,...,τµ+ξ))c∈Bµ,b∈Bξ

) where
τ1, . . . , τµ+ξ are secrets. Note that we can derive
Vb := gχb(τµ+1,...,τµ+ξ) with crs, which will be useful
to C, since

∑
c∈Bµ

χc ≡ 1.
• Commit(f, crs): each Pb computes comb :=∏

c∈Bµ
U

f(b)(c)
c,b and sends comb to C. Then C

computes com :=
∏

b∈Bξ
comb.

• Open(f,α,β, crs):
1) Each prover Pb computes z(b) := f (b)(α) and

f (b)(x)−f (b)(α) :=
∑

i∈[µ] q
(b)
i (x)(xi−αi). Then

it computes π
(b)
i = gq

(b)
i (τ1,...,τµ)·χb(τµ+1,...,τµ+ξ)

with crs, and sends π(b) and z(b) to C.
2) C computes z = f(α,β) =

∑
b∈Bξ

z(b) · χb(β). C
decomposes

f(α,y)− f(α,β) =
∑
j∈[ξ]

qj(y)(yj − βj).

Then it computes πµ+j = gqj(τµ+1,...,τµ+ξ) with Vb.
C also computes πi =

∏
b∈Bξ

π
(b)
i for all i ∈ [µ].

3) Then C sends π := (π1, . . . , πµ+ξ) and z to V .
• Verify(com,π,α,β, z, crs): The verifier checks

if e(com/gz, g) =
∏

i∈[µ] e(πi, g
τi−αi) ·∏

j∈[ξ] e(πµ+j , g
τµ+j−βj).

Here we summarize the complexity of the distributed
multilinear KZG PCS. The worker time is O(2µ), and the
coordinator time is O(2ξ · µ). All provers will communicate
O(µ+ ξ) group elements. The verifier time is O(µ+ ξ).

Proposition 1. The distributed multilinear KZG PCS is
complete and sound.

Proof. If π is honestly generated, we have∏
i∈[µ]

e(πi, g
τi−αi) ·

∏
j∈[ξ]

e(πµ+j , g
τµ+j−βj)

=e(g
∑

i∈[µ]

∑
b∈Bξ

q
(b)
i (τ1,...,τµ)·(τi−αi)

, g)

· e(g
∑

j∈[ξ] qj(τµ+1,...,τµ+ξ)·(τµ+j−βj), g)

=e(gf(τ)−f(α,β), g)

Therefore, the protocol is complete. We kindly refer to exising
work [30] for a full proof of the soundness and knowledge
soundness of the multilinear KZG protocol.

Distributed multivariate SumCheck Poly-IOP. Here we
describe the distributed multivariate SumCheck Poly-IOP.
Suppose each prover Pb has a multivariate polynomial f (b) ∈
Fµ[X]. The provers want to show to the verifier that a mul-
tivariate polynomial f(x) := h(g1(x), . . . , gc(x)) ∈ Fµ+ξ[X]
satisfies

∑
x∈Bµ+ξ

f(x) = v, where each gi is multilinear and
h can be evaluated using a arithmetic circuit with O(d) gates.
Suppose each prover Pb has access to g

(b)
i for i ∈ [c], where

g
(b)
i (y) = gi(y, b). We further define f (b)(y) = f(y, b) =

h
(
g
(b)
1 (y), . . . , g

(b)
c (y)

)
. The protocol is described as follows:

1) For each i ∈ [µ]:
a) Let αi−1 = (α1, . . . , αi−1)
b) Each Pb computes and sends to C the polynomial

r
(b)
i (x) :=

∑
w∈Bµ−i

f (b)(αi−1, x,w).

5

c) Then C adds

ri :=
∑
b∈Bξ

r
(b)
i =

∑
b∈Bξ,w∈Bµ−i

f (b)(αi−1, x,w)

=
∑

w∈Bµ−i

∑
b∈Bξ

f(αi−1, x,w, b)

and sends the oracle of ri to V .
d) V checks if v = ri(0) + ri(1), and samples and

sends to C a random αi ← F. Then V sets v :=
ri(αi).

2) Let α = (α1, . . . , αµ).
3) C receives g

(b)
i (α) for i ∈ [c] from each Pb. C first

constructs

g̃i(y) :=g(α,y) =
∑
b∈Bµ

gi(α, b)χb(y)

=
∑
b∈Bµ

g
(b)
i (α)χb(y).

Then C has f̃(y) = f(α,y) = h (g̃1(y), . . . , g̃c(y)).
4) C and V perform Multivariate SumCheck on f̃ with

target value v. Denote the challenge as β. Note that in
the final round, the verifier queries gi(α,β) for i ∈ [c]
and calculates f(α,β) itself.

We give an example of how to perform SumCheck with
f (b) = f

(b)
1 · f (b)

2 , to illustrate the sum-check protocol on
h(f1, f2, . . . , fk). In Step 3, Pb opens f (b), and compute
g(y) :=

∑
b∈Bξ

(v
(b)
1 · χb(y)) ·

∑
b∈Bξ

(v
(b)
2 · χb(y)). In Step

4, V and the provers open f1(α,β) · f2(α,β) at the end.
We summarize the complexity of the distributed multivariate

SumCheck Poly-IOP. The worker time is O(2µ · d log2 d), and
the coordinator time is O(2ξ · d log2 d+µ · 2ξ · d). All provers
will communicate O((µ+ ξ) · d) field elements. The verifier
time is O((µ+ ξ) · d).

Proposition 2. The distributed multivariate SumCheck proto-
col is complete and sound.

Proof. If all workers and the coordinator are honest, in step 1
we have

ri(0) + ri(1) =
∑

w∈Bµ−i+1

∑
b∈Bξ

f(αi−1,w, b) = vi,

so the verifier check will pass. In step 4, by the completeness of
the SumCheck protocol, the verifier check will pass. Therefore,
the protocol is complete. In step 3 we have

∀y ∈ Bξ, f̃(y) = h(g̃1(y), . . . , g̃c(y))

≡
∑
b∈Bξ

h(g
(b)
1 (y), . . . , g(b)c (y)) · χb(y) = f(α,y).

Therefore, we have the target v at the end of step 1 is
consistent with the target at the beginning of step 4. Following
the soundness of the SumCheck protocol, the distributed
multivariate SumCheck protocol is sound.

Distributed multivariate ZeroTest Poly-IOP. Suppose each
prover Pb has a multivariate polynomial f (b)(x) ∈ F≤dµ [X].
The provers wants to show to the verifier that f (b)(x) = 0 for
all b ∈ Bξ and x ∈ Bµ. The protocol is described as follows:

1) V samples and sends to C two random vectors r ← Fµ

and r0 ← Fξ.
2) C sends r to each Pb. Note that when we apply the Fiat-

Shamir heuristic to make the argument non-interactive,
communication in this step is no longer needed.

3) Each Pb sets f̃ (b)(x) := f (b)(x) · χr(x) · χr0
(b).

4) The provers and V run distributed multivariate
SumCheck protocol on f̃ (b)(x) with target value 0.

To improve the efficiency of the protocol, the verifier
has oracle access to f(x, y) :=

∑
b∈Bξ

f (b)(x) · χb(y) and
knows χr(x) · χr0

(y). In Step 4 of SumCheck, P0 will
evaluate χr0

(y) over the boolean hypercube Bξ using dynamic
programming techniques [6] and then add them up. Since V has
oracle access to f and can efficiently evaluate χr(x) · χr0(y)
at a random point in O(µ+ ξ) time, the protocol is succinct.

Proposition 3. The distributed multivariate ZeroTest Poly-IOP
presented above is complete and sound.

Proof. Let F (x, y) :=
∑

b∈Bξ,c∈Bµ
f (b)(c) ·χc(x) ·χb(y). If

f (b)(c) is identically zero for all b ∈ Bξ and c ∈ Bµ, F is
identically zero, therefore, F (r, r0) = 0 and the SumCheck
will always pass. Therefore, the protocol is complete. On the
other hand, if F is not identically zero, by Schwartz-Zippel
lemma F (r, r0) = 0 holds w.p. at most (µ+ ξ)d/|F|, which
is negligible. Therefore, the protocol is also sound.

Distributed multivariate PermTest Poly-IOP. Let σ(b) :
Bµ → Bµ and ρ(b) : Bµ → Bξ be two mappings such that
{(σ(b)(c), ρ(b)(c)) : c ∈ Bµ, b ∈ Bξ} = Bµ ×Bξ.

Each prover Pb has a multivariate polynomial f (b) ∈
F≤dµ [X]. The provers want to show to the verifier that
f (b)(c) = f (ρ(b)(c))(σ(b)(c)) for all b ∈ Bξ and c ∈ Bµ.
Here we introduce the protocol in the more complicated case
where ρ(b)(c) is not identically b for all c ∈ Bµ.

We define the multivariate polynomials s, s
(b)
µ , s

(b)
ξ ∈

F≤1µ [X] where s(x) := [x], s
(b)
µ (x) := [σ(b)(x)] and

s
(b)
ξ (x) := [ρ(b)(x)]. The protocol then goes as follows:

1) V samples and sends to the coordinator γµ, γξ, δ ← F.
2) Let f (b)

1 (x) := f (b)(x) + γµ · s(x) + γξ · [b] + δ and
f
(b)
2 (x) := f (b)(x) + γµ · s(b)µ (x) + γξ · s(b)ξ (x) + δ.

Each prover Pb builds a multilinear polynomial z(b) ∈
F≤1µ+1[X] such that for all x ∈ Bµ

z(b)(0,x) = f
(b)
1 (x)/f

(b)
2 (x)

z(b)(1,x) = z(b)(x, 0) · z(b)(x, 1), x ̸= 1

z(b)(1,1) = 0

6

Let w(b)
1 (x) := z(b)(1,x)− z(b)(x, 0) · z(b)(x, 1) and

w
(b)
2 (x) := f

(b)
2 (x) · z(b)(0,x)− f

(b)
1 (x).

3) Each Pb sends z(b) := z(b)(1, 1, . . . , 1, 0) to C. We
have

∏
b∈Bµ

z(b) = 1. Then C interpolates a multilinear
polynomial z ∈ F≤1ξ+1[X] such that{

z(0,y) = z(y)

z(1,y) = z(y, 0) · z(y, 1)

Let w3(y) := z(1,y)−z(y, 0)·z(y, 1) and w
(b)
4 (x) :=

z(0, b)− z(b)(x, 0) · χ(1,1,...,1,0)(x, 0).
4) The provers and V run distributed multivariate ZeroTest

on {w(b)
1 }, {w

(b)
2 } and {w(b)

4 }. C and V run multivari-
ate ZeroTest on w3.

Proposition 4. The distributed PermTest protocol is complete
and sound.

Proof. The completeness and soundness of PermTest directly
follow the completeness and soundness of ZeroTest.

Distributed HyperPlonk Poly-IOP. We construct a distributed
HyperPlonk Poly-IOP as follows:

• Input Constraint: V ensures that F (b)(1, . . . , 1,x)−
I(b)(x) = 0 for all x ∈ Bν and b ∈ Bξ with distributed
multilinear ZeroTest.

• Output Constraint: V queries F (1,...,1)(1, 0, ⟨N (b) −
1⟩µ) and checks if it is zero.

• Gate Constraint: Define a multivariate polynomial

G(b)(x) := S
(b)
add(x)(F

(b)(0, 0,x) + F (b)(0, 1,x))+

S
(b)
mult(x)(F

(b)(0, 0,x) · F (b)(0, 1,x))− F (b)(1, 0,x).

V checks that G(b)(x) = 0 for all x ∈ Bµ and b ∈ Bξ

with distributed multivariate ZeroTest.
• Wiring Constraint: V verifies that F (b)(x) =

F (ρ(b)(x))(σ(b)(x)) for all x ∈ Bµ+2 and b ∈ Bξ with
distributed multivariate PermTest.

B. Efficient Accountability Protocol

Up to this point, our protocol does not yet ensure account-
ability. A straightforward but naive approach to accountability
would require the coordinator to verify all intermediate results
by independently recomputing every step of each worker’s
computation. However, this naive solution incurs prohibitive
computational and storage overhead, making it impractical for
large-scale circuits.

We observe that it is unnecessary for the coordinator to
verify all intermediate computations immediately. Instead,
the coordinator can optimistically defer these checks until
the final aggregated proof is available, running only the
verifier’s check at the end. The soundness property of the
distributed SNARK protocol ensures that any incorrect proof

will indicate at least one malicious worker. If the verification
fails, the coordinator can then retrospectively examine all
communications and intermediate computations performed by
each worker to pinpoint the malicious parties. We refer to this
deferred verification approach as an optimistic check.

One remaining challenge is to significantly reduce the com-
putational cost of the optimistic check in cases when malicious
behavior is detected. Our key insight is that accountability can
be efficiently enforced by splitting the verification into two
clearly defined stages:

Stage 1: Verifying polynomial openings. In the first stage,
the coordinator checks the correctness of separate polynomial
opening proofs submitted by each worker. Specifically, recall
that in the distributed multilinear KZG PCS protocol, each
worker prover Pb sends an opening proof π(b) to the coordi-
nator. The coordinator can verify these openings by checking
the pairing equation:

e(comf (b), g) · e(g−z
(b)

, Vb)
?
=

∏
i∈[µ]

e(π
(b)
i , gτi−αi).

If this check fails, the coordinator immediately identifies the
corresponding prover as malicious.

Stage 2: Verifying witness polynomials. If all polynomial
opening proofs from workers verify correctly but the final proof
still fails, we prove in Proposition 5 that with overwhelming
probability at least one worker has committed to an incorrect
witness polynomial F (b). Therefore, the coordinator must
pinpoint the worker who constructed this incorrect polynomial.

To achieve this efficiently, we leverage the fact that all parties,
including the coordinator, already perform a plaintext evaluation
of the entire circuit at the start of the distributed proof
generation. Therefore, the coordinator can store evaluations of
each worker’s witness polynomial F (b) over Bµ for all b ∈ Bξ

at no additional computational overhead.
Recall that in step 3 of the distributed SumCheck protocol,

each worker sends the evaluation F (b)(r) at a random point
r chosen by the coordinator. Therefore, the coordinator only
needs to record the randomness r and locally compute F (b)(r)
for each worker, comparing it with the evaluation reported by
the worker. Any discrepancy indicates a malicious worker.

Overall, our two-stage accountability protocol efficiently
detects malicious behavior without requiring the coordinator
to recompute the entire distributed proof. Furthermore, this
accountability protocol does not require the coordinator to com-
municate with workers. Here we analyze in detail the cost of the
protocol for the coordinator. In the first stage, the coordinator
verifies O(M) polynomial opening proofs, each of length µ,
resulting in a total overhead of O(M log T) pairing operations.
In the second stage, the coordinator evaluates O(M) multilinear
polynomials, each with µ variables, incurring O(MT) = O(N)
field operations. In Section IV, we empirically demonstrate
that this accountability protocol introduces minimal overhead
and performs efficiently.

Our efficient accountability protocol is detailed as follows:

7

1) The coordinator (C) first verifies the final distributed
polynomial opening. If this verification passes, no
further action is required. If it fails, the coordinator
proceeds to identify malicious workers through a two-
stage verification process:

2) Stage 1: Verifying polynomial openings. For each
prover Pb, let π(b) denote the polynomial opening
proof submitted during the distributed polynomial
commitment opening protocol. The coordinator verifies:
e(comf (b), g) · e(g−z(b)

, Vb) =
∏

i∈[µ] e(π
(b)
i , gτi−αi).

Any prover Pb whose verification fails at this step is
immediately identified as malicious.

3) Stage 2: Verifying witness polynomial evaluations.
If all polynomial openings verify correctly in Stage
1, the coordinator checks for discrepancies in witness
polynomial evaluations. Let F (b) denote the witness
polynomial for the subcircuit indexed by b, and let r
be the randomness used in step 3 of the distributed
SumCheck protocol. Each prover Pb previously sent
the evaluation F (b)(r) to the coordinator. The coor-
dinator independently evaluates each polynomial F (b)

at point r using the correct witness data it holds and
compares the results. Any discrepancy identifies the
worker Pb as malicious.

The correctness of the above protocol is shown in the
following proposition.

Proposition 5. If the final proof sent to the verifier cannot
verify, in the accountability protocol described above, an honest
coordinator can identify at least one malicious worker with
overwhelming probability.

Proof. Assume the coordinator is honest and the final aggre-
gated proof sent to the verifier fails to verify. Let the set of
workers be {Pb}b∈Bξ

.
During Stage 1 each worker Pb supplies an opening proof

π(b) for the commitment comf (b). Then the coordinator checks

e(comf (b), g) · e(g−z
(b)

, Vb) =
∏
i∈[µ]

e(π
(b)
i , gτi−αi).

By the soundness of the KZG PCS, an incorrect opening passes
this check with only negligible probability. If the check fails,
the corresponding Pb must be malicious.

Suppose every worker passes Stage 1. Note that only the
witness polynomial F (b) is committed by each worker instead
of preprocessed. Then each commitment comf(b) corresponds
to some degree-bounded polynomial F (b), and the opening
value z(b) is consistent with that commitment. By completeness
of the PermTest, SumCheck protocols, this can only happen if
at least one F (b) is not the correct witness polynomial F (b)

true.
Because the (incorrect) commitment was fixed before the

challenge point r was chosen, by Schwartz-Zippel lemma

Pr
[
F (b)(r) = F

(b)
true(r)

]
≤ deg(F

(b)
true)

|F|
,

which is negligible. In Stage 2 the coordinator recomputes
F

(b)
true(r) from the stored plaintext circuit evaluation and

compares it to the worker’s reported F (b)(r). Any discrepancy
exposes Pb as malicious.

Since the failure probability in each stage is negligible, an
honest coordinator identifies at least one malicious worker with
overwhelming probability.

C. Hierarchical aggregation

By far, we have achieved linear prover time for each worker.
However, we still have a coordinator time of O(M log T), T
being the size of each sub-circuit, and M being the number
of worker nodes. In this part, we discuss how to eliminate the
(log T) term while maintaining the accountability property.

We note that the coordinator’s work of summing up group
or field elements in distributed SumCheck and distributed
KZG can be distributed. However, naively distributing this
step (e.g., having each node add one element) could introduce
a larger round complexity. Instead, only a subset of nodes
is required for computing. We demonstrate this idea with the
following example. Suppose each node has A elements, and the
coordinator would finally need to get the sum of all elements.
We divide the M nodes into k groups and select a leader of
each group. In the first round, the leader in each group adds
up all MA/k elements in its group. In the second round, the
coordinator adds up k elements from the leaders. The cost of
the leader of each group is O(MA/k), and the cost of the
coordinator is O(k). In our case, when choosing k = log(T)
we end up with a O(M) coordinator cost and the same worker
cost as before for the leaders, as their previous cost dominates
this extra computation.

In the following paragraphs, we introduce the modified
protocols with hierarchical aggregation. The modified protocol
steps are highlighted in blue.
Distributed KZG PCS with hierarchical aggregation. For
a multilinear polynomial f(x,y) =

∑
b∈Bξ

f (b)(x)χb(y), the
PCS protocol is described as follows:

• KeyGen, Commit(f, crs), Verify(com,π,α,β, z, crs): Same
as the previous protocol.

• Open(f,α,β, crs):
1) Divide nodes into groups of size log T . The coordinator

randomly select one leader out of each group.
2) Each prover Pb computes z(b) := f (b)(α) and f (b)(x)−

f (b)(α) :=
∑

i∈[µ] q
(b)
i (x)(xi − αi). Then it computes

π
(b)
i = gq

(b)
i (τ1,...,τµ)·χb(τµ+1,...,τµ+ξ) using the crs. Pb

sends (π(b), z(b)) to both leader of its group and C.
3) The leader of each group sums up the π(b) it receives,

and sends the result together with all the communication
to the coordinator. In the case where the leader does not
receive π(b) from a specific node, it communicates with
the coordinator to send a dispute.

4) C computes z = f(α,β) =
∑

b∈Bξ
z(b) · χb(β). C

decomposes

f(α,y)− f(α,β) =
∑
j∈[ξ]

qj(y)(yj − βj).

8

Then it computes πµ+j = gqj(τµ+1,...,τµ+ξ) with Vb.
5) C sets π := (π1, . . . , πµ+ξ).

Distributed SumCheck with hierarchical aggregation.
Using the previously presented KZG PCS with hierarchical
aggregation we can build a distributed SumCheck with hierar-
chical aggregation as follows:

1) For each i ∈ [µ]:
a) For b ∈ Bξ, Pb computes r

(b)
i (x) :=∑

w∈Bµ−i
f (b)(α1, . . . , αi−1, x,w). Pb sends r(b)i

to both the leader of its group and C.
b) The leader of each group sums up the r

(b)
i it

receives, and sends the result together with all com-
munication to the coordinator. In the case where
the leader does not receive r

(b)
i from a specific

worker, it communicates with the coordinator to
send a dispute. C sends the oracle of ri to V .

c) V checks if v = ri(0) + ri(1), and samples and
sends a random αi ← F to C. Then V sets v :=
ri(αi). C sends αi to each Pb.

2) C receives v(b) := f (b)(α) from each Pb. C defines
g(y) := f(α,y) =

∑
b∈Bξ

v(b) · χb(y).
3) C and V perform SumCheck on g with target value v.
C and the worker provers open f(α,β).

Dispute Control. After every invocation of the hierarchical
aggregation protocols, the coordinator C executes the following
dispute control protocol after identifying a malicious leader
group using our accountability protocol. Its goal is to identify
at least one misbehaving party (worker or leader). This dispute
control is necessary, since a worker may have sent the correct
value, but their leader may tamper with the communicated
value sent to the coordinator.

1) Collection of messages. Every leader in group j has
already forwarded to C:
• Its own partial sum, where for KZG this

is
∑

b∈group j π
(b), and for SumCheck it is∑

b∈group j r
(b)
i .

• The entire set of messages
{
(m(b))

}
b∈group j

that it
received from its workers,

where m(b) denotes either (π(b), z(b)) or r(b)i .
2) Recognition of worker values. For every worker
Pb, C confirms the value that this worker sent to the
coordinator in the previous protocol, denoted m̃(b),
using the communication sent to the coordinator.

3) Leader consistency check. For each group j, compare
the leader’s reported sum Sj with S̃j :
• If Sj = S̃j , the leader passes the check.

• Otherwise the leader j is marked malicious.
4) Detection of double behaviour. For any worker Pb

that sent two different signed messages—one to the
leader and one directly to C—the inconsistent pair of
signatures is sufficient evidence of malicious behaviour,
even if neither message was individually incorrect.

5) Accountability check. The leader finally runs the
accountability check protocol, to further identify any
malicious worker.

We summarize the accountability guarantee of the dispute
control protocol in the following proposition.

Proposition 6. The dispute control protocol satisfies that, if any
worker or leader deviates from the prescribed protocol, either
by sending incorrect values, omitting messages, or equivocating,
the coordinator will identify at least one malicious party.

Proof. Since the protocol is sound, the coordinator can detect
when a malicious worker or leader has submitted incorrect
proof. Accountability is ensured in these scenarios through the
following mechanism:
• If a worker submits an incorrect proof to both the leader

and the coordinator, the coordinator can identify the worker
in the accountability check step.

• If the leader submits an incorrect addition, the coordinator
can detect the leader’s error by recomputing the additions
based on the values submitted directly by the workers to the
coordinator in the leader consistency check step.

• If the previous verification fails because a worker submitted
inconsistent signed values to the leader and the coordinator,
the leader can show that they received a different value than
the one available to the coordinator in the detection of double
behavior step.

Since all the possible cases are covered, the coordinator
will always be able to identify the malicious node, ensuring
accountability in the protocol with dispute control.

The Cirrus distributed SNARK. Cirrus, the accountable
and efficiently computable distributed SNARK, is structured
as follows. Note that all verifier challenges are replaced using
the Fiat-Shamir transform by the coordinator.

• Input Constraint: F (b)(1, . . . , 1,x)− I(b)(x) = 0 for
all x ∈ Bν and b ∈ Bξ with distributed multilinear
ZeroTest.

• Output Constraint: Open F (1,...,1)(1, 0, ⟨N (b) − 1⟩µ)
and show that it is 0.

• Gate Constraint: Define a multivariate polynomial

G(b)(x) := S
(b)
add(x)(F

(b)(0, 0,x) + F (b)(0, 1,x))+

S
(b)
mult(x)(F

(b)(0, 0,x) · F (b)(0, 1,x))− F (b)(1, 0,x).

G(b)(x) = 0 for all x ∈ Bµ and b ∈ Bξ with distributed
multivariate ZeroTest.

9

• Wiring Constraint: Check if F (b)(x) =

F (ρ(b)(x))(σ(b)(x)) for all x ∈ Bµ and b ∈ Bξ

with distributed multivariate PermTest.
• Accountability Check: At the end the protocol, the

coordinator runs the efficient accountability protocol
presented in Section III-B.

Theorem 1 (Main Theorem). Cirrus is an accountable
distributed SNARK (Definition 1).

Proof. We now instantiate the interfaces in Definition 1 using
the protocols from Sections III-A to III-C. This yields a
concrete, accountable distributed SNARK.

Setup(1λ).
1) Run KeyGen of distributed multilinear KZG and generate

all parameters needed for creating and verifying polynomial
commitments.

2) Fix a signature scheme Sig with (KeyGen, Sign,Vfy).
3) Fix a hash function H : {0, 1}∗ → F which will be used in

the Fiat-Shamir transform.

KeyGen(C, pp,M). Let M = 2ξ and 2µ = |C|/M .

1) Sample τ1, . . . , τµ+ξ
$←− F and define

Uc,b := gχc(τ1,...,τµ)·χb(τµ+1,...,τµ+ξ), and
Vb := gχb(τµ+1,...,τµ+ξ) for all c ∈ Bµ, b ∈ Bξ. Set
crs := (g, {gτi}i∈[µ+ξ], {Uc,b}c,b).

2) Compute the circuit-dependent wiring maps
{σ(b), ρ(b)}b∈Bξ

and selectors {S(b)
add, S

(b)
mult}b∈Bξ

as
in Section III-A.

3) Each party P ∈ {C} ∪ {Pb : b ∈ Bξ} runs Sig.KeyGen to
obtain (skP , vkP).

4) Set the coordinator key pk :=

(crs, {Vb}b∈Bξ
, {σ(b), ρ(b)}b, {S(b)

add, S
(b)
mult}b,H).

5) For each worker Pb, set pkb := (crs, σ(b), ρ(b), S
(b)
add, S

(b)
mult).

6) The verifier key contains the CRS part needed for
verification and all signature verification keys: vk :=
(crs, {Vb}b∈Bξ

, {vkP }P ,H).

Partition(C,M).
1) Evenly split the PLONK trace t into M = 2ξ chunks
{t(b)}b∈Bξ

.
2) For each chunk, define the sub-circuit Cb whose trace is

t(b) and whose wiring is given by σ(b), ρ(b).

SplitInst(pp,C, x, w).
1) Partition the global input/witness (x,w) into per-segment

pairs (xb, wb) consistent with t(b).
2) For each b ∈ Bξ, compute the local oracles S

(b)
add, S

(b)
mult,

F (b), and I(b) as described in Section III-A.

Proveb(pkb,Cb, xb, wb). Worker Pb executes:
1) Commit. Interpolate F (b) and compute comb :=∏

c∈Bµ
U

F (b)(c)
c,b . Send (comb, Signskb [comb]) to C.

2) Distributed Poly-IOPs. In each distributed protocol (multi-
linear ZeroTest, PermTest, and SumCheck):

• Compute the required local univariates r
(b)
i or auxiliary

polynomials (w(b)
1 , w(b)

2 , etc.);
• Send them to C (and to the group leader if hierarchical

aggregation is used), signed with skb;
• When an opening of F (b) at (α,β) is requested, compute
z(b) := F (b)(α) and the witnesses {π(b)

i }i∈[µ] and send
the signed tuple.

Prove(pk,C, x, w). The coordinator C:
1) Aggregate commitments. Collect all {comb}b, check their

signatures, and set com :=
∏

b comb. Initialize the proof π
with com.

2) Run distributed Poly-IOPs. For each constraint family:
• Input and Gate constraints: run distributed ZeroTest with

workers as in Section III-A, aggregating ri :=
∑

b r
(b)
i (or

leaders’ partial sums) and forwarding them to V . Append
all communication to V to π instead of sending them to
V , and replace verifier challenges using the Fiat-Shamir
transform with the hash function H.

• Wiring constraint: run distributed PermTest over the
F (b)’s; build z from z(b) and check the product constraint
as in Section III-A. Append all communication to V to
π instead of sending them to V , and replace verifier
challenges using the Fiat-Shamir transform with the hash
function H.

• Output constraint: open F (1,...,1)(1, 0, ⟨N (b)−1⟩µ), and
append the opening proof to π.

3) Openings. Whenever the Poly-IOP requires a polynomial
opening, compute πµ+j using Vb and aggregate πi :=∏

b π
(b)
i , and then append (z,π) to π.

4) Output. Output the proof π to the verifier.
5) Transcript. Log all worker messages into a transcript tr for

accountability checks and dispute control.

CheckAndAccuse(pk,C, x, w, tr). Executed by C only if
Verify(vk, x, π) = 0: given the transcript tr and the circuit
witness, run the accountability protocol in Section III-B, and
the dispute control protocol in Section III-C if hierarchical
aggregation is used.

Verify(vk, x, π). Given the public input x and proof π, the
verifier:
1) Parses π into the global commitment com, the SumCheck

univariates, the Fiat-Shamir challenges, and the KZG
opening proofs.

2) Recomputes all challenges in order using the same hash
function H.

3) For each sumcheck instance, checks the condition vi−1 =
ri(0) + ri(1) and the final evaluation consistency.

4) For each ZeroTest and PermTest, performs the stated final
point checks using the derived challenges.

5) For each polynomial opening, verify the distributed KZG
pairing equation using (com, z,π).

6) Output b = 1 iff all checks pass; otherwise output b = 0.
The completeness and soundness of Cirrus follows the

completeness and knowledge soundness of distributed KZG

10

(Proposition 1), distributed SumCheck (Proposition 2), dis-
tributed ZeroTest (Proposition 3), and distributed PermTest
(Proposition 4). It is shown in Lemma 2.3 in HyperPlonk [8]
that sound Poly-IOPs are knowledge sound, so we have
that Cirrus is knowledge sound. Existing works [31], [32]
show that replacing the verifier challenges with Fiat-Shamir
transform is secure for multi-round special-sound protocols
and multi-round oracle proofs. The accountability of Cirrus
follows Propositions 5 and 6, since we have shown the protocol
for the coordinator to identify at least one malicious worker
if the final proof does not successfully verify. Therefore,
Cirrus is an accountable distributed SNARK as defined
in Definition 1.

ZK for Cirrus. To turn Cirrus into a zero-knowledge
protocol, we apply an additive mask to every distributed
SumCheck (and therefore to every ZeroTest and PermTest):
for each target polynomial f we sample an independent random
mask g, and the verifier sends a random scalar ρ ∈ F∗ so that
the protocol is run on f + ρg instead of f . Intuitively, in
the simplest case where f is multilinear, a single multilinear
mask g already hides all partial sums, and the verifier only
needs to check f + ρg at one random point at the end. In our
multivariate setting where f may have a higher per-variable
degree, we choose g as a low-degree product of independent
multilinear masks so that deg g matches the degree of f . At
the PCS layer, commitments are blinded by adding a random
polynomial mask committed under a different basis. In the
ZK protocol, accountability holds unchanged, and both the
worker/coordinator asymptotic costs remain identical to the non-
ZK protocol. The ZK compilation of the distributed SumCheck
and the distributed KZG PCS, together with the proofs, appears
in Section A of the appendix.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation Details

We implement an end-to-end prototype of Cirrus, including
the accountability protocol. Our implementation is based on
the codebase of HyperPlonk [24], and we added 5, 000+ lines
of Rust code. Our code is publicly accessible via this link.

Circuit partition. An advantage of Cirrus, in addition to its
high efficiency and its accountability, is that it automatically
distributes workloads across workers, eliminating the need for
developers to explicitly specify circuit partitions.

Universal setup. Cirrus requires only a universal setup and is
fully compatible with the existing HyperPlonk setup parameters.
This feature lowers the adoption barrier of Cirrus, because a
setup ceremony is expensive to organize [22].

In contrast, prior schemes such as Hekaton require developers
to manually partition circuits into sub-circuits, explicitly
manage shared wires between partitions, and perform sep-
arate trusted setups for each partition, significantly increasing
complexity and overhead.

B. Evaluation Setup

To assess the practicality of running Cirrus in a decentralized
environment (e.g., by individual volunteers), we benchmark
Cirrus on hardware comparable to personal computers. In
contrast, related works such as Hekaton and Pianist are
evaluated on much more powerful HPC servers (e.g., with 128
cores and 512 GB memory). Our distributed setting consists of
32 AWS t3.2xlarge machines in North Virginia, each with
8 vCPUs and 32 GB of memory; the average network latency
across nodes in our setup was measured at 306 microseconds.
We found that the best setting for Cirrus is one worker per
core (i.e., running 8 workers per machine), and we use this
configuration across all experiments.

C. End-to-end Proof Generation Evaluation

Proof generation time. We first evaluate the end-to-end proof
generation time of Cirrus. As a baseline, we run multi-threaded
HyperPlonk on the same worker machine to generate proofs
for random circuits of varying sizes. We select random circuits
because the overall proof generation time depends only on the
number of gates and is independent of the circuit structure.
Then, we run Cirrus with up to 32 machines (each with 8
cores) for random circuits generated in the same way. Figure 1
shows the end-to-end proof generation time of Cirrus, as a
function of total circuit size and the number of workers. The
line for HyperPlonk stops at 222 (4M) gates when it runs out
of memory (32 GB). In comparison, Cirrus can support larger
circuits with more machines. We stopped at 225 (33M) gates
with 8 AWS machines since the horizontal scalability is clear.

216 217 218 219 220 221 222 223 224 225

Total Gates

21

22

23

24

25

26

27

En
d-

to
-E

nd
 T

im
e

(S
ec

on
ds

)

C (8 cores)
C (16 cores)
C (32 cores)
C (64 cores)
C (128 cores)
C (256 cores)
H (8 threads)

Fig. 1: End-to-end proof generation time of Cirrus when all
workers are honest with different total cores and circuit sizes.
C denotes Cirrus; H denotes HyperPlonk.

Example application: verifiable RAM programs. To put the
numbers in context, we consider an example application of
distributed proof in verifiable RAM programs, also known as
zkVMs [25]–[29]. To evaluate Cirrus in this setting, we have

11

https://github.com/hackingdecentralized/cirrus/tree/v0.2

our circuit for RAM programs following the design of Ben-
Sasson et al. [25] with 32-bit words and 16 registers; a RAM
program is represented as a repetition of a single “CPU cycle”
sub-circuit. We then distribute these cycles evenly across 256
cores and measure end-to-end proving time. Fig. 2 compares
Cirrus running on 256 cores with a multi-threaded HyperPlonk
baseline. Cirrus sustains near-linear scaling in the number of
cycles and can prove a trace of 214 CPU steps in under 40
seconds.

27 28 29 210 211 212 213 214

Cycles

22

23

24

25

26

27

En
d-

to
-E

nd
 T

im
e

(S
ec

on
ds

) C (256 cores)
H (8 threads)

Fig. 2: Runtime of Cirrus with 256 cores compared with
HyperPlonk when proving RAM programs with different
numbers of cycles. C denotes Cirrus; H denotes HyperPlonk.

Communication, proof size, and verifier time. We also
evaluated the communication overhead, proof size, and the
verifier’s runtime. The communication of each worker increases
logarithmically with the sub-circuit size T . Each worker sends
(1027 · log T + 2438) B to the coordinator, and receives
(520 · log T + 3576) B from the coordinator, in (3 · log T + 5)
communication rounds. In our experiments, the communication
cost is capped at T = 222, where each worker receives 25.0 KB
of data and sends 15.0 KB in 71 rounds.

The proof size is (616 · logN + 1232) B, which grows
logarithmically with the full circuit size N . For our largest
circuit, N = 225, this corresponds to a proof size of about
16.6 KB. The verifier time of Cirrus also grows logarithmically
in N ; for N = 225 gates, we measure a verifier time of
28 ms. In Table II, we compare worker communication cost,
proof size, and verifier time with Pianist and Hekaton. Worker
communication is lightweight, and both the proof size and
the verifier time are succinct. Cirrus outperforms the other
accountable distributed SNARK, Hekaton, in these aspects.

Protocol Sent Received Rounds π Size V Time
Cirrus 15.0 KB 25.0 KB 71 16.6 KB 28 ms

Pianist [16] 2.1 KB 0.2 KB 4 2.8 KB 3.5 ms
Hekaton [17] 923 KB 0.6 KB 2 32 KB 83 ms

TABLE II: The per-worker communication cost (bytes sent
to and received from the coordinator, and number of com-
munication rounds), proof size, and verifier time for Cirrus
with sub-circuit size T = 222 and full circuit size N = 225,
compared with Pianist and Hekaton.

Memory usage. We record how each worker’s memory usage
varies with the worker’s sub-circuit size in Table IIIa. In Cirrus,

Sub-Circuit Size Memory
216 383 MB
217 765 MB
218 1.4 GB
219 2.8 GB
220 5.6 GB
221 11.3 GB
222 22.6 GB

(a) Memory usage of each worker
with varying sub-circuit sizes.

Full Circuit Size Memory
219 200 MB
220 396 MB
221 799 MB
222 1.5 GB
223 3.0 GB
224 6.0 GB
225 12.1 GB

(b) Memory usage of the coordina-
tor with varying full circuit sizes.

TABLE III: Memory usage of workers and the coordinator.

worker memory consumption is similar to that of Pianist and
Hekaton for sub-circuits of the same sizes. The memory usage
of the coordinator is reported in Table IIIb, which only depends
on the size of the full circuit.

Comparison with Hekaton. From the above evaluation results,
we know that the primary performance metric of interest is the
proof time. To understand the performance of Cirrus further,
we compare it with Hekaton, the fastest distributed SNARK
system (reportedly outperforms Pianist by 3×) and the only
accountable distributed SNARK known at the time of writing.
We obtained the source code from the authors and evaluated
Hekaton on the same machines used for our Cirrus experiments.
For reference, we report relevant parameters in Table IV.

Protocol Curve Choice Security Target Circuit Encoding
Cirrus BLS12-381 128 bit PLONK

Hekaton [17] BLS12-381 128 bit R1CS

TABLE IV: Parameter comparison between Cirrus and Heka-
ton.

We compare the two systems across a range of tasks to
show practical performance differences. We tested three tasks:
Pedersen hashing [33], MiMC hashing [34], and proof of
knowledge of exponent (PoK of Exp). In each case, we repeated
the task multiple times in the circuit to test the scalability of
both protocols when they are required to prove a large number
of instances. The results are shown in Fig. 3. We highlight:
• for Pedersen hashing, Cirrus is over 7× faster;
• for MiMC hashing, Cirrus is about 2× faster;
• for PoK of Exponent, Cirrus is around 4× faster.
These results show that Cirrus performs well in these real-world
applications, especially for PLONK-friendly tasks. We also
emphasize that, unlike Hekaton, Cirrus supports a universal
trusted setup and does not require any per-circuit configuration,
and is therefore more flexible to deploy.

D. Evaluation of The Accountability Protocol

Accountability protocol runtime. A key advantage of
Cirrus is the high efficiency of its accountability protocol
(see Section III-B). We implement the accountability protocol
and evaluate the time required by the coordinator to identify
malicious worker(s) for various circuit sizes and numbers
of workers. As shown in Fig. 4, the accountability check is
extremely fast in practice compared with the time to generate

12

26 27 28 29 210 211 212 213 214 215 216

of Instances to Prove

21

22

23

24

25

26

27

28

29

En
d-

to
-E

nd
 T

im
e

(S
ec

on
ds

)

C (8)
C (16)
C (32)
C (64)
C (128)
C (256)

He (16)
He (32)
He (64)
He (128)
He (256)

(a) Comparison between Cirrus and Hekaton to prove Pedersen
Hashes.

29 210 211 212 213 214 215 216 217 218 219

of Instances to Prove

21

22

23

24

25

26

27

28

29

En
d-

to
-E

nd
 T

im
e

(S
ec

on
ds

)

C (8)
C (16)
C (32)
C (64)
C (128)
C (256)

He (16)
He (32)
He (64)
He (128)
He (256)

(b) Comparison between Cirrus and Hekaton to prove MiMC
hashes.

26 27 28 29 210 211 212 213 214 215

of Instances to Prove

21

22

23

24

25

26

27

28

29

En
d-

to
-E

nd
 T

im
e

(S
ec

on
ds

)

C (8)
C (16)
C (32)
C (64)
C (128)
C (256)

He (16)
He (32)
He (64)
He (128)
He (256)

(c) Comparison between Cirrus and Hekaton to prove PoK of
exponent tasks.

Fig. 3: Comparison between Cirrus and Hekaton on different
tasks. C denotes Cirrus, and He denotes Hekaton. The total
number of working cores is shown in the parentheses.

the proof. For circuits of 225 total gates and the distribution of
256 workers, the accountability protocol takes under 4 seconds
to run. This demonstrates that our accountability mechanism
imposes minimal overhead on the coordinator compared with
the time to generate the proof.

216 217 218 219 220 221 222 223 224 225

Total Gates

50

100

500

1000

4000

Op
en

in
g

Ti
m

e
in

 A
cc

ou
nt

ab
ilit

y
(m

s) 8 workers
16 workers
32 workers
64 workers
128 workers
256 workers

Fig. 4: The time to run the accountability protocol with different
numbers of workers and full circuit sizes.

Circuit evaluation cost. Before or during proving, the
coordinator needs to evaluate the circuit in plaintext to obtain
the witness trace and store it in the memory, which is used
later by our optimistic accountability protocol if malicious
workers are present. It does not violate the security assumptions,
since in Section II the coordinator is assumed to have access
to the witness. We further note that it does not create a
bottleneck for the coordinator. If the coordinator is also a
worker, the evaluation has already been performed locally; if
not, the coordinator can evaluate the circuit while waiting for
messages from the workers. On our coordinator hardware (AWS
t3.2xlarge), plaintext circuit evaluation for 225 gates takes
17 seconds; the coordinator’s idle time during proof generation
is 39 seconds with 256 workers, so the coordinator has enough
time during proof generation to complete this evaluation without
increasing the wall-clock proving time.

E. Benefits of Hierarchical Aggregation

Coordinator’s computation time. A feature of Cirrus is
that the coordinator’s computation is lightweight thanks to
hierarchical aggregation (see Section III-C). We measure the
coordinator’s computation time in Fig. 5. Without hierarchical
aggregation, the computation time of the coordinator increases
as the sub-circuit size increases. With our hierarchical ag-
gregation technique, the computation time of the coordinator
is independent of the size of the sub-circuits. Overall, the
coordinator’s computation is lightweight and well under 1
second for fewer than 10, 000 workers.

Leader worker overhead in hierarchical aggregation. We
evaluate the overhead of leader workers and non-leader workers

13

29 210 211 212 213 214 215 216

Number of Workers
0
1
2
3
4
5
6
7
8
9

10
11

Co
or

di
na

to
r T

im
e

(S
ec

on
ds

) No HA, Sub-circuit Size = 28

No HA, Sub-circuit Size = 216

No HA, Sub-circuit Size = 232

HA

Fig. 5: Computation time of the coordinator with varying
number of workers and sub-circuit sizes. In this figure, “HA”
denotes the coordinator time with hierarchical aggregation,
while “No HA” denotes the coordinator time without hierar-
chical aggregation.

in hierarchical aggregation. Each leader worker will aggregate
intermediate results of log T workers, where T is the size of the
sub-circuit. In our experiments, the overhead of leader workers
is less than 22 ms when T = 222. It can be inferred that
hierarchical aggregation adds little overhead to leader workers.

V. RELATED WORK

In this section, we review prior works on distributed proof
generation schemes, focusing on asymptotical performance
(prover time, verifier time, communications) and accountability.
We summarize the comparison in Table I.
DIZK. Wu et al. [15] introduced a distributed approach to
zkSNARK provers, focusing on optimizing key operations
such as Fast Fourier Transforms (FFTs) and multi-scalar
multiplications. Their system scales Groth16 by distributing
the computation across multiple machines, and can handle
much larger circuits using a cluster of machines. However, a
significant limitation is that the communication cost of each
machine is linear in the size of the full circuit (as opposed
to the size of a worker’s sub-circuit) due to the distributed
FFT algorithm. Another limitation of DIZK is that it uses a
circuit-specific setup instead of a universal setup.
deVirgo. Introduced in zkBridge [14], deVirgo is a distributed
variant of Virgo [7]. Authors of deVirgo proposed a way to
distribute the SumCheck protocol [35] and the FRI low-degree
test across multiple machines. With n machines, the proof
generation time is reduced by 1/n. The protocol only supports
data-parallel circuits. Despite these improvements in scalability
over DIZK, deVirgo incurs a per-worker communication cost
linear in the size of the full circuit due to its reliance on the
FRI low-degree test.
Pianist. Pianist [16] introduces a distributed proving al-
gorithm for the PLONK SNARK that works for general
circuits [3], aiming to reduce communication overhead in
distributed proving systems. The core innovation in Pianist
is the use of bivariate polynomial commitments, which allows

for decomposing PLONK’s global permutation check (which
is responsible for ensuring the correctness of circuit wiring)
into local permutation checks for each prover. Pianist achieves
only partial accountability (only for data-parallel circuits) and
their paper does not formally define accountability. Pianist is
also the first distributed SNARK scheme to achieve constant
per-node communication. Despite these advances, the prover
time of each worker remains quasi-linear in the circuit size. In
comparison, our protocol achieves linear worker time (in the
size of the sub-circuit) and stronger accountability for general
circuits (not just data-parallel circuits).
Mangrove. Nguyen et al. [36] presents a framework for
dividing PLONK into segments of proofs and using folding
schemes to aggregate them. While Mangrove shows promising
theoretical results with estimated performance comparable to
leading SNARKs, it has not been fully implemented or evalu-
ated, especially when it comes to distributing the evaluation of
the segments. Additionally, if applied to distributed proving,
its techniques would require an inter-worker communication
complexity that is linear in the circuit size. In comparison,
Cirrus achieves an amortized communication complexity
logarithmic in the size of each sub-circuit. Since Mangrove is
not implemented, its concrete performance is unknown.
Hekaton. Rosenberg et al. [17] proposes a “distribute-
and-aggregate” framework to achieve accountable distributed
SNARK generation. Specifically, Hekaton leverages memory-
checking techniques, where a coordinator constructs a global
memory based on the value of the shared wires among circuits.
Then, the provers perform consistency checks on their memory
access. In this way, the coordinator can detect malicious
behavior, and therefore, Hekaton is an accountable scheme.
However, like Pianist, the workers’ prover time of Hekaton
is quasi-linear instead of truly linear in the size of the sub-
circuit. Another drawback of Hekaton is that it requires a
circuit-specific setup. Moreover, the coordinator’s work scales
linearly with the global memory size, which could be a potential
bottleneck when the number of shared wires among circuits is
large. In comparison, the per-worker prover time of Cirrus is
truly linear in the size of the sub-circuit, and the coordinator’s
workload is independent of the shared wires among sub-circuits.
HyperPianist. HyperPianist [18] is a concurrent work with
similar distributed permutation test and zero test techniques
with multilinear polynomials, while they adopt a different
distributed polynomial commitment scheme. However, their
protocol is not accountable. There has not been a proof of
soundness or a thorough performance evaluation.
SNARK aggregation schemes. A series of works [37]–[39]
focuses on SNARK aggregation schemes, where the system
uses cryptographic techniques to aggregate proofs of sub-
circuits. However, these schemes can only aggregate the proofs
when the sub-circuits do not have shared wires or inputs,
and cannot be directly used to construct distributed SNARK
generation schemes for general circuits.
Collaborative ZK-SNARKs. A recent line of work on
collaborative ZK-SNARKs [40]–[43] addresses the privacy

14

problem when generating proofs with witnesses from multiple
parties using multi-party computation. All these schemes
require preprocessing among all servers for each proof, which
requires total communication that is linear in the size of the
full circuit. Therefore, Collaborative ZK-SNARKs are not as
efficient, though they achieve privacy, which is a non-goal for
distributed proof generation schemes.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have introduced Cirrus, the first accountable distributed
SNARK generation scheme with linear-time worker and coor-
dinator computation time, minimal communication overhead,
and supports a universal trusted setup. By our accountability
protocol, the coordinator can efficiently identify any malicious
prover, making Cirrus suitable for deployment in decentralized
settings, e.g., in prover markets, where workers cannot be
fully trusted. We formally define accountability in distributed
proof generation schemes and prove that Cirrus satisfies this
definition. According to our experiments, Cirrus is horizontally
scalable and is concretely faster than the state-of-the-art for
representative workloads.

One future direction is to further improve the communication
round complexity, currently logarithmic in the size of each sub-
circuit due to the distributed SumCheck. It is of both theoretical
and practical interest to design an accountable distributed
SNARK with a constant number of communication rounds
while preserving the efficiency of Cirrus. Additionally, future
work could focus on minimizing the coordinator’s overhead
in the accountability protocol. Currently, identifying malicious
provers in stage 2 of the accountability protocol requires a
number of field operations linear in the size of the entire circuit.
While the cost of the accountability protocol is acceptable in
most settings, optimizing this step would make it even more
scalable for larger circuits.

ACKNOWLEDGEMENT

This project is supported in part by the Ethereum Foundation.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of these institutes.

REFERENCES

[1] J. Groth, “On the size of pairing-based non-interactive arguments,” in
Advances in Cryptology–EUROCRYPT 2016: 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35. Springer,
2016, pp. 305–326.

[2] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam, “Ligero:
Lightweight sublinear arguments without a trusted setup,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 2087–2104.

[3] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations
over lagrange-bases for oecumenical noninteractive arguments of knowl-
edge,” Cryptology ePrint Archive, 2019.

[4] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward, “Marlin:
Preprocessing zksnarks with universal and updatable srs,” in Advances in
Cryptology–EUROCRYPT 2020: 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10–14, 2020, Proceedings, Part I 39. Springer, 2020, pp.
738–768.

[5] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ser. ITCS ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 326–349. [Online].
Available: https://doi.org/10.1145/2090236.2090263

[6] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song, “Libra:
Succinct zero-knowledge proofs with optimal prover computation,” in
Advances in Cryptology–CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019,
Proceedings, Part III 39. Springer, 2019, pp. 733–764.

[7] J. Zhang, T. Xie, Y. Zhang, and D. Song, “Transparent polynomial
delegation and its applications to zero knowledge proof,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 859–876.

[8] B. Chen, B. Bünz, D. Boneh, and Z. Zhang, “Hyperplonk: Plonk with
linear-time prover and high-degree custom gates,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 2023, pp. 499–530.

[9] S. Setty, “Spartan: Efficient and general-purpose zksnarks without trusted
setup,” in Annual International Cryptology Conference. Springer, 2020,
pp. 704–737.

[10] A. Golovnev, J. Lee, S. Setty, J. Thaler, and R. S. Wahby, “Brakedown:
Linear-time and field-agnostic snarks for r1cs,” in Annual International
Cryptology Conference. Springer, 2023, pp. 193–226.

[11] T. Xie, Y. Zhang, and D. Song, “Orion: Zero knowledge proof with linear
prover time,” in Annual International Cryptology Conference. Springer,
2022, pp. 299–328.

[12] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,”
in 2014 IEEE symposium on security and privacy. IEEE, 2014, pp.
459–474.

[13] Ethereum Foundation, “zk-rollups: Scaling solutions for ethereum,” https:
//ethereum.org/en/developers/docs/scaling/zk-rollups/, Jul. 2024.

[14] T. Xie, J. Zhang, Z. Cheng, F. Zhang, Y. Zhang, Y. Jia, D. Boneh, and
D. Song, “zkbridge: Trustless cross-chain bridges made practical,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 3003–3017.

[15] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica, “DIZK: A
distributed zero knowledge proof system,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 675–692.

[16] T. Liu, T. Xie, J. Zhang, D. Song, and Y. Zhang, “Pianist: Scalable
zkrollups via fully distributed zero-knowledge proofs,” in 2024 IEEE
Symposium on Security and Privacy (SP). IEEE, 2024, pp. 1777–1793.

[17] M. Rosenberg, T. Mopuri, H. Hafezi, I. Miers, and P. Mishra, “Hekaton:
Horizontally-scalable zksnarks via proof aggregation,” in Proceedings of
the 2024 on ACM SIGSAC Conference on Computer and Communications
Security, 2024, pp. 929–940.

[18] C. Li, P. Zhu, Y. Li, C. Hong, W. Qu, and J. Zhang, “HyperPianist:
Pianist with linear-time prover and logarithmic communication cost,” in
2025 IEEE Symposium on Security and Privacy (SP). IEEE, 2025, pp.
3383–3401.

[19] W. Wang, L. Zhou, A. Yaish, F. Zhang, B. Fisch, and B. Livshits, “Prooφ:
A zkp market mechanism,” arXiv preprint arXiv:2404.06495, 2024.

[20] “Gevulot docs,” https://docs.gevulot.com/gevulot-docs/, accessed: 2024-
04-06.

[21] “Ferham docs,” https://docs.fermah.xyz/, accessed: 2024-11-06.
[22] S. Walters, “What is the zcash ceremony? the complete beginners

guide,” accessed: 2024-11-14. [Online]. Available: https://coinbureau.
com/education/zcash-ceremony/

[23] A. Kosba, D. Papadopoulos, C. Papamanthou, and D. Song, “MIRAGE:
Succinct arguments for randomized algorithms with applications to
universal zk-snarks,” in 29th USENIX Security Symposium (USENIX
Security 20), 2020, pp. 2129–2146.

[24] Espresso Systems, “Hyperplonk library,” accessed: 2024-11-13. [Online].
Available: https://github.com/EspressoSystems/hyperplonk

[25] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-
interactive zero knowledge for a von neumann architecture,” in 23rd
USENIX Security Symposium (USENIX Security 14), 2014, pp. 781–796.

[26] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “SNARKs
for C: Verifying program executions succinctly and in zero knowledge,”
in Annual cryptology conference. Springer, 2013, pp. 90–108.

[27] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou,
“vRAM: Faster verifiable ram with program-independent preprocessing,”

15

https://doi.org/10.1145/2090236.2090263
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://ethereum.org/en/developers/docs/scaling/zk-rollups/
https://docs.gevulot.com/gevulot-docs/
https://docs.fermah.xyz/
https://coinbureau.com/education/zcash-ceremony/
https://coinbureau.com/education/zcash-ceremony/
https://github.com/EspressoSystems/hyperplonk

in 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018,
pp. 908–925.

[28] S. Team, “ethstark documentation–version 1.1,” IACR preprint archive
2021, Tech. Rep., 2021.

[29] A. Arun, S. Setty, and J. Thaler, “Jolt: Snarks for virtual machines
via lookups,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2024, pp. 3–33.

[30] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou,
“vSQL: Verifying arbitrary sql queries over dynamic outsourced databases,”
in 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017,
pp. 863–880.

[31] T. Attema, S. Fehr, and M. Klooß, “Fiat-shamir transformation of
multi-round interactive proofs,” in Theory of Cryptography Conference.
Springer, 2022, pp. 113–142.

[32] D. Wikström, “Special soundness in the random oracle model,” Cryptol-
ogy ePrint Archive, 2021.

[33] D. Hopwood, S. Bowe, T. Hornby, N. Wilcox et al., “Zcash protocol
specification,” GitHub: San Francisco, CA, USA, vol. 4, no. 220, p. 32,
2016.

[34] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen,
“Mimc: Efficient encryption and cryptographic hashing with minimal
multiplicative complexity,” in International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 2016,
pp. 191–219.

[35] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, “Algebraic methods for
interactive proof systems,” Journal of the ACM (JACM), vol. 39, no. 4,
pp. 859–868, 1992.

[36] W. Nguyen, T. Datta, B. Chen, N. Tyagi, and D. Boneh, “Mangrove: A
scalable framework for folding-based snarks,” in Annual International
Cryptology Conference. Springer, 2024, pp. 308–344.

[37] X. Liu, S. Gao, T. Zheng, Y. Guo, and B. Xiao, “SnarkFold: Efficient proof
aggregation from incrementally verifiable computation and applications,”
Cryptology ePrint Archive, Paper 2023/1946, 2023.

[38] M. Ambrona, M. Beunardeau, A.-L. Schmitt, and R. R. Toledo, “aPlonK:
Aggregated plonk from multi-polynomial commitment schemes,” in
International Workshop on Security. Springer, 2023, pp. 195–213.

[39] N. Gailly, M. Maller, and A. Nitulescu, “Snarkpack: Practical snark
aggregation,” in International Conference on Financial Cryptography
and Data Security. Springer, 2022, pp. 203–229.

[40] A. Ozdemir and D. Boneh, “Experimenting with collaborative zk-snarks:
Zero-knowledge proofs for distributed secrets,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 4291–4308.

[41] S. Garg, A. Goel, A. Jain, G.-V. Policharla, and S. Sekar, “zkSaaS: Zero-
knowledge snarks as a service,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 4427–4444.

[42] A. Chiesa, R. Lehmkuhl, P. Mishra, and Y. Zhang, “Eos: Efficient private
delegation of zksnark provers,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 6453–6469.

[43] X. Liu, Z. Zhou, Y. Wang, Y. Pang, J. He, B. Zhang, X. Yang, and
J. Zhang, “Scalable collaborative zk-snark and its application to fully
distributed proof delegation,” in 34th USENIX Security Symposium
(USENIX Security 25), 2025.

APPENDIX A
ZERO-KNOWLEDGE COMPILATION FOR CIRRUS

In this section, we show a zero-knowledge (ZK) compilation
for Cirrus. We first describe the ZK distributed SumCheck
protocol and prove its security. Then we construct the other
ZK Poly-IOPs using ZK distributed SumCheck. Finally, we
show the construction of the ZK Cirrus by combining the ZK
distributed KZG PCS.

ZK distributed SumCheck. Let m := µ + ξ, Z =
(x, b) ∈ Fm, and let f(Z) = h

(
g1(Z), . . . , gc(Z)

)
be

the target with per-round variable degree bound df . Fix
a masking degree dmask ≥ df . Sample dmask independent
spikes {w(t)}dmask

t=1
$←− Fm and define g′t(Z) := χw(t)(Z)

and g(Z) :=
∏dmask

t=1 g′t(Z) = h′
(
g′1(Z), . . . , g′dmask

(Z)
)
, where

h′(v1, . . . , vdmask
) =

∏dmask

t=1 vt. Thus g has variable degree dmask

and each g′t is multilinear, so g is a constant-degree compo-
sition of multilinears and is compatible with our distributed
multilinear-KZG pipeline.

Let H :=
∑

Z∈Bm
f(Z) and G :=

∑
Z∈Bm

g(Z). We run
SumCheck on f +ρg with target H +ρG. Below we spell out
the full distributed protocol, matching the two-phase structure
in Section III-A.

Public blinder and scalar.
1) (Public blinder) C samples the spikes {w(t)}dmask

t=1 and
sends them (or a seed) to all workers. The provers
run distributed Commit to each multilinear g′t (using
Section III-A) and send the commitments to V to bind
the blinder polynomials.

2) (Verifier’s scalar) V samples ρ
$←− F∗ and sends it to

C (public-coin). This fixes the blinded target f + ρg.
Phase I (rounds over x; workers → coordinator). Let
v0 := H + ρG be the initial target. For each i ∈ [µ] do:
1) Let αi−1 = (α1, . . . , αi−1) denote the past challenges.

Each worker Pb computes the usual partial-sum uni-
variate

r
(b)
i,f (X) :=

∑
w∈Bµ−i

f (b)(αi−1, X,w)

and sends it to C (optionally via hierarchical aggrega-
tion (Section III-C)).

2) (Coordinator blinding term) Using the public spikes,
C computes the blinder’s round-i univariate ri,g(X)

without worker help. Writing L
(t)
j (z) := w

(t)
j z + (1−

w
(t)
j)(1− z), one has the closed form

ri,g(X) = Ai ·Bi ·Ui(X), Ui(X) =

dmask∏
t=1

L
(t)
i (X),

where Ai :=
∏

j<i

∏
t L

(t)
j (αj) and Bi :=∏

j>i

(∏
t w

(t)
j +

∏
t(1−w

(t)
j)

)
. Therefore deg ri,g =

dmask and it costs O(dmask) to evaluate.
3) (Blinded message) C aggregates the workers’ contribu-

tions and adds the mask and gets ri(X). C sends ri
to V in the standard SumCheck encoding (e.g., d+ 1
evaluations), and stores ri(αi).

4) (Verifier check & challenge) V checks vi−1
?
= ri(0) +

ri(1), samples αi
$←− F, sets vi := ri(αi), and returns

αi to C (who forwards it to workers).
After µ rounds, set α = (α1, . . . , αµ) and note that vµ =∑

b∈Bξ

(
f(α, b) + ρg(α, b)

)
.

Phase II (coordinator builds the b-only polynomials).
1) (Collect per-worker evaluations) For each j ∈

[c], each Pb sends g
(b)
j (α) to C (with distributed

KZG openings if binding is required). C defines
g̃j(y) :=

∑
b∈Bξ

g
(b)
j (α) · χb(y) and f̃(y) :=

h
(
g̃1(y), . . . , g̃c(y)

)
.

16

2) (Mask on the tail) C also forms g̃(y) := g(α,y)
directly and its sum Gα :=

∑
y∈Bξ

g̃(y), so that the
phase-I target vµ equals

∑
y∈Bξ

(
f̃(y) + ρg̃(y)

)
.

Phase III (rounds over b; coordinator ↔ verifier).
Run ξ more SumCheck rounds between C and V over the
polynomial f̃(y) + ρg̃(y) with initial target vµ:
1) For j = 1 to ξ, C sends the univariate r̃j(Y) defined by

summing over the remaining ξ−j Boolean variables; V
checks telescoping, samples βj

$←− F, and sets vµ+j :=
r̃j(βj).

Let β = (β1, . . . , βξ) denote the final challenge.
Final openings.
1) (Open multilinear components) Using the distributed

KZG PCS, the coordinator and workers open
{gj(α,β)}j∈[c] to V at point (α,β) (as in the trans-
parent protocol).

2) (Evaluate the mask) V computes g(α,β) =∏dmask

t=1 χw(t)(α,β) directly from the public spikes.
3) (Consistency) V checks that f(α,β) +

ρg(α,β)matches the last SumCheck message If
so, accept; otherwise reject and the accountability
workflow in Section III-B identifies a malicious
worker.

Notes. (i) Choose dmask ≥ maxi degXi
f so that each round’s

degree is fully masked. In our instantiation, dmask = deg(h)
suffices. (ii) Binding the mask with PCS is optional; the verifier
can recompute g at the final point. If desired, committing to
the multilinear g′t’s via the distributed KZG (and opening them
when used) gives a fully bound blinder without touching the
non-multilinear product g itself.

The standard distributed SumCheck analysis applies un-
changed. Completeness follows by construction; soundness
is preserved since the degree bound and the final point check
are unchanged. Regarding accountability, at the end of the
protocol all workers still evaluates gb(r), so the coordinator
accountability procedure remains the same as in Section III-B.
To show that this protocol is HVZK, we follow the ideas of
previous works [6], [8].

Proposition 7. Fix d and m. Let the verifier and all workers
be honest, and let the blinder g(Z) =

∏d
t=1 χw(t)(Z) with

{w(t)} chosen uniformly at random from Fm. Then the
distributed SumCheck on f with target H is HVZK.

Proof. (i) Simulator commits to g⋆ first. Sample d spikes
{w(t)⋆} uniformly, define g⋆, and compute the closed-form
G⋆ :=

∑
Z∈Bm

g⋆(Z). Send the public description of the
spikes (or a commitment to g⋆) and G⋆ before seeing ρ.
(ii) Receive ρ ∈ F∗.
(iii) Choose f⋆ at random. Sample f⋆ uniformly from degree-
≤ d polynomials conditioned on

∑
Z∈Bm

f⋆(Z) = H .
(iv) Run SumCheck on h⋆ := f⋆+ρg⋆. At round i ∈ [m] (with

prefix α<i) the prover sends

h⋆
i (Xi) :=

∑
b∈Bm−i

h⋆(α<i, Xi, b) = f⋆
i (Xi) + ρG⋆

i (Xi),

a univariate of degree ≤ d. Across m rounds, the verifier learns
(md + 1) independent affine constraints on the coefficients
of h⋆, due to the m degree bounds and the (m−1) telescoping
equalities.

Here we argue that the distribution of (iv) is statistically close
in both worlds. Let L(t)

j (z) := w
(t)
j z+(1−w(t)

j)(1−z). A direct
factorization gives G⋆

i (Xi) = AiBi · (
∏d

t=1 L
(t)
i (Xi)). Thus

G⋆
i is a degree-d univariate in Xi, whose (d+ 1) coefficients

are polynomial functions of the spike coordinates {w(t)
j }. Write

Ui(X) =
∏d

t=1(atX+ bt) with at := 2w
(t)
i −1 and bt := 1−

w
(t)
i . The coefficient vector coeff(Ui) ∈ Fd+1 is a multivariate

polynomial in {w(t)
i }dt=1 whose Jacobian minors are (up to

nonzero scalars) the Vandermonde
∏

t̸=t′(w
(t)
i − w

(t′)
i) times∏

t at. Hence, except when a single low-degree polynomial in
{w(t)

i } vanishes, the differential has full row rank onto the d-
dimensional affine slice determined by the round-i telescoping
constraint.

Moreover, the dependence across rounds is block-triangular:
G⋆

i depends only on spike coordinates with indices j ≥ i
(via the nonzero scale A<i and the tail factor B>i). After
reordering variables by coordinate, the global Jacobian that
maps all spikes {w(t)}t≤d to the concatenated coefficient
vectors

(
coeff(G⋆

1), . . . , coeff(G
⋆
m)

)
is upper block-triangular

with diagonal blocks of the type above. By Schwartz-Zippel
and a union bound over i ∈ [m], the probability that any block
loses rank is at most O(md/|F|).

Conditioned on the (overwhelming) “full-rank” event and
since ρ ̸= 0, each masked coefficient vector

Ci := coeff
(
h⋆
i

)
= coeff(f⋆

i) + ρ ·AiBi · coeff
(
Ui

)
is an affine image of independent uniforms in {w(t)

i }, and is
therefore exactly uniform over the d-dimensional affine slice
defined by the round-i relation. When the low-probability rank-
deficiency event happens, the support can shrink; this yields
at most O(md/|F|) statistical distance from uniform on that
slice.

Finally, because the simulator chooses f⋆ uniformly subject
only to the single global sum constraint, and the m masked
univariates jointly impose md+1 linear conditions with the
block-triangular independence above, the simulated and real
sumcheck transcripts are statistically close, with error at most
O(md/|F|). The final query reveals f⋆(r′) + ρg⋆(r′); g⋆(r′)
is determined by the public spikes, so no witness information
leaks. This proves HVZK.

Costs. Our ZK compilation of the distributed SumCheck
protocol adds only small, one-time or lower-order work and
does not change rounds or per-round message sizes. Concretely,
the coordinator samples d spike vectors and computes G in
O(d(µ+ ξ)) total field ops with the workers; the coordinator

17

and the workers forms a degree-d mask univariate per round
in O((µ+ ξ)d2) field ops.

ZK distributed multivariate ZeroTest and PermTest Poly-
IOP. We compile the ZeroTest and PermTest by replacing
their internal sumcheck with the ZK sumcheck, using a degree
bound that matches the masked instance. The asymptotic prover,
coordinator, verifier, and communication costs match those of
the transparent version.

ZK distributed multilinear KZG PCS. Let f(x,y) =∑
b∈Bξ

f (b)(x)χb(y) ∈ F≤1µ+ξ[X] with x ∈ Bµ, y ∈ Bξ.

• KeyGenzk: Sample independent generators g, h ∈ G
with unknown discrete-log relation. Sample
trapdoors τ1, . . . , τµ+ξ

$←− F. Publish crszk =

(g, h, {gτi}i∈[µ+ξ], {hτi}i∈[µ+ξ], {U
(g)
c,b}c,b, {U

(h)
c,b }c,b),

where U
(⋆)
c,b := (⋆)χc(τ1,...,τµ)·χb(τµ+1,...,τµ+ξ) for

⋆ ∈ {g, h}, c ∈ Bµ, b ∈ Bξ. For aggregation on y we
also make available V

(⋆)
b := (⋆)χb(τµ+1,...,τµ+ξ).

• Commitzk(f): Each worker Pb samples an independent
multilinear mask r(b) ∈ F≤1µ [X] and computes two

partial commitments com
(g)
b :=

∏
c∈Bµ

(
U

(g)
c,b

)f(b)(c)

and com
(h)
b :=

∏
c∈Bµ

(
U

(h)
c,b

)r(b)(c)
. It sends comb :=

com
(g)
b · com(h)

b to the coordinator. The coordinator
outputs the global commitment com :=

∏
b comb.

• Openzk(f, (α,β)):
1) Per-worker witnesses on x: Each Pb computes

z(b) := f (b)(α) and ẑ
(b)
h := hr(b)(α) (note that

the scalar r(b)(α) itself is not revealed). It divides
f (b)(x)− f (b)(α) and r(b)(x)− r(b)(α) as∑
i∈[µ]

q
(b)
i (x)

(
xi − αi

)
,

∑
i∈[µ]

q̃
(b)
i (x)

(
xi − αi

)
,

and sends the paired witnesses
π
(b)
i := gq

(b)
i (τ1,...,τµ)·χb(τµ+1,...,τµ+ξ) ·

hq̃
(b)
i (τ1,...,τµ)·χb(τµ+1,...,τµ+ξ) for all i ∈ [µ],

together with z(b) and ẑ
(b)
h .

2) Coordinator aggregation on y: The coordinator
computes

z :=
∑
b

z(b) · χb(β), ẑh :=
∏
b

(
ẑ
(b)
h

)χb(β)
.

It also expresses f(α,y) − f(α,β) =∑
j∈[ξ] Qj(y)(yj − βj) and similarly for the

mask part (implicitly defined by the ẑh term), and
forms for each j ∈ [ξ] the pairwise-combined
witnesses

πµ+j :=
(
gQj(τµ+1,...,τµ+ξ)

)
·
(
hQ̃j(τµ+1,...,τµ+ξ)

)
,

where Qj and Q̃j are obtained using V
(g)
b and V

(h)
b

exactly as in the transparent protocol (with g- and h-
bases, respectively). Finally it multiplies per-worker

π
(b)
i to get πi :=

∏
b π

(b)
i for all i ∈ [µ], and sends(

z, ẑh, {πi}i∈[µ+ξ]

)
to the verifier.

• Verifyzk
(
com,α,β; z, ẑh, {πi}

)
: Accept iff

e(com/(gz ẑh), g) =
∏

i∈[µ] e (πi, g
τi−αi) ·∏

j∈[ξ] e
(
πµ+j , g

τµ+j−βj
)
.

The commitment is binding under KZG assumptions and
hiding due to the independent h-term. Accountability from
Section III-B holds, since the coordinator can verify each
worker’s per-worker equation using the same form with that
worker’s ẑ

(b)
h and {π(b)

i }.

Proposition 8. The ZK distributed multilinear KZG PCS above
is complete and sound under the standard KZG assumptions.
If all workers are honest, the evaluation protocol is zero-
knowledge: for a given opening point, the proof reveals no in-
formation about f beyond the claimed evaluation z = f(α,β).

Proof. Completeness follows by multi-linearity and the same
telescoping used in the transparent verifier equation. Binding
follows from the binding of Pedersen-style KZG in both g- and
h-bases. Zero-knowledge holds because the only value about
r that ever appears is ẑh = hr(α,β), which is independent
of r(α,β) under discrete-log hardness; all other terms are
randomized witnesses tied only to the public commitment.

Costs. Relative to the transparent PCS in Section III-A, the
ZK variant adds a second set of witness terms and a single
extra group element ẑh per opening. Therefore, the cost of the
coordinator and workers remains the same up to a constant
factor.
ZK Cirrus. We compile the ZK Poly-IOP into the ZK
Cirrus using the distributed KZG PCS in its hiding variant.
Then we use the PCS’s ZK evaluation procedure to prove
openings used inside the protocol. Note that all checks
in Sections III-B and III-C work over hiding commitments. If
a proof fails, the same localization identifies a faulty worker.
Combining Propositions 7 and 8 and Theorem 1, we obtain
the following corollary.

Corollary 1. Composing the ZK distributed Poly-IOPs with the
ZK distributed KZG PCS yields a ZK accountable distributed
SNARK (Definition 1) for the same relation.

18

APPENDIX B
ARTIFACT APPENDIX

This appendix describes how to obtain, build, and run Cirrus
for artifact evaluation. It also documents the hardware, software,
and configuration requirements, enumerates the major claims,
and how to run the experiments.

A. Description & Requirements

To run our artifact, we need a set of AWS instances to act as
the coordinator and distributed workers, and a local machine to
interact with the AWS instances (e.g., run command efficiently,
upload required files, etc.).
How to access. Our code is public on Zenodo (doi:
10.5281/zenodo.17843693).
• Source code for Cirrus (Rust), developed from HyperPlonk.
• Reproduction scripts for the major claims in the implemen-

tation section.
• Documentation: a README.md.

Hardware dependencies. We ran our experiments on up to
33 AWS t3.2xlarge instances in the same region, each
with 8 vCPUs and 32 GB RAM. One instance acts as the
coordinator, and has 500 GB storage; the other 32 instances
act as workers, and have 50 GB storage. Each instance has a
public IP address.

To run the setup necessary for our experiments and to connect
to the remote AWS instances, we require one local machine
with at least 64 GB RAM and 500 GB storage; if you prefer
to download the setup parameters from an existing source, the
local machine should have 8 GB RAM and 500 GB storage.
Software dependencies. Each instance has OS Ubuntu
Server 24.04 LTS, and Python 3.12 and Rust in-
stalled. For the local machine, please have Python 3.12
installed, and Rust installed with a 64-bit Linux OS if running
the setup is desired. The local machine relies on Paramiko2 to
connect to the AWS instances.

B. Artifact Installation & Configuration

Local machine setup. Install Python first, and we recom-
mend Miniconda3 for installation. Then install the required
package to connect to the AWS instances by running:

1 pip install paramiko

To generate the setup parameters on your own, please install
Rust.

1 curl --proto ’=https’ --tlsv1.2 -sSf https://sh.
rustup.rs | sh

2 source ˜/.cargo/env

AWS instance setup. To have the artifact installed on the
AWS instances, please first configure an EC2 launch template
with the following specifications:
• OS volume type: Ubuntu Server 24.04 LTS
(HVM), SSD Volume Type.

2https://www.paramiko.org/
3https://www.anaconda.com/docs/getting-started/miniconda/main

• Instance type: t3.2xlarge.
• Key pair (login): Create your ed25519 key pair, and rename

the private key on the local machine to cirrus.pem.
• Network settings: Create a new security group with security

group rule, with All traffic from Anywhere allowed.
Also in the advanced network configuration, enable the Auto
assign public IP option.

• Storage: change the storage size to 50 GiB for workers, or
to 300 GiB for the coordinator.

After saving the launch template, launch 33 instances using this
template, and get a list of public IPs IP_0, IP_1, ...,
IP_32.

We run the following steps to setup the environments on
each AWS instances. (1) In the local machine, place the
cirrus.pem key file in the folder key/ under the main
folder. (2) Open the file ec2/setup.py and update the
variable ec2_public_ips to the list of public IPs. (3) Run
the following command on the local machine:

1 python ec2/setup.py

This step prepares the AWS instances with the required Rust
and Python software dependencies to run our experiments.

C. Major Claims
Here are the major claims of the paper.

1) (C1): Cirrus generates proofs for circuits with 33 million
gates in under 40 seconds using 32 8-core machines. This
is proven by experiment (E1) whose results are illustrated
in Fig. 1 in the paper.

2) (C2): The accountability protocol of Cirrus is efficient, and
for circuits of 225 total gates and the distribution of 256
workers, the accountability protocol takes under 4 seconds
to run. This is proven by experiment (E2) whose results
are illustrated in Fig. 2 in the paper.

3) (C3): The runtime of the coordinator’s computation is
lightweight and under 1 second for less than 10, 000
workers. This is proven by experiment (E3) whose results
are illustrated in Fig. 3 in the paper.

D. Evaluation

Experiment (E1) [30 human-minutes + 4 compute-hours].
In this experiment, we benchmark the end-to-end run time of
our artifact with circuit of different sizes and different number
of workers. If you would like to verify the major claim (C1),
please set log_num_workers to 8 and log_num_vars
to 25 (note that 225 is 33 million).
[Preparation] In the preparation, we get the setup files on the
local machine, and upload the required setup files to the AWS
instances. To prepare setup parameters, do the following on
the local machine:
1) Please either (1) download them from an existing source

and place them in the folder out/ under the main artifact
folder, or (2) run the following command to setup for
2log_num_workers workers and circuit of size 2log_num_vars:

1 ./scripts/run.sh setup --log_num_workers
$log_num_workers --log_num_vars
$log_num_vars

19

https://doi.org/10.5281/zenodo.17843692
https://www.paramiko.org/
https://www.anaconda.com/docs/getting-started/miniconda/main

And the output files will be in the directory
out/vanilla-$log_num_vars-
$log_num_workers.

2) To upload the setup parameter for 2log_num_workers work-
ers and circuit of size 2log_num_vars, first open the file
ec2/transfer_setup_param.py, and modify the
following two variables:

1 log_num_workers = [$log_num_workers]
2 log_num_vars = [$log_num_vars]

Note that you can upload multiple files at the same
time by including multiple log_num_workers and
log_num_vars in the list. Also update the variable
ec2_public_ips to the list of public IPs, with IP_0
being the first item in the list. Then run the following
command on the local machine:

1 python ec2/transfer_setup_param.py

[Execution] To benchmark the end-to-end runtime of our
artifact with 2log_num_workers workers and circuit of size
2log_num_vars, do the following on the local machine.
1) First, open the file ec2/run_exp_single_thread.py,

and modify the following two parameters:
1 log_num_workers = [$log_num_workers]
2 log_num_vars = [$log_num_vars]

Note that you can run multiple experiments sequen-
tially by including multiple log_num_workers and
log_num_vars in the list, if the setup parameters are
ready on the AWS instances. Record the private IPv4 address
of the machine with IP_0, as COORD_IP. Also modify
the following parameters:

1 master_ip = $IP_0
2 # The private IPv4 address
3 master_private_addr = $COORD_IP
4 master_listen_port = 7034
5 worker_ips = [
6 $IP_1, ..., $IP_32
7]

2) Then run the following command to run the experiment:
1 python ec2/run_exp_single_thread.py

[Results] To gather result for log_num_workers and
log_num_vars, open the file

1 ˜/projects/cirrus/out/vanilla-$log_num_vars-
$log_num_workers/master_analysis.json

The end-to-end runtime of the protocol is
1 json_data[1]["duration"] - json_data[0]["

send_time"]

This is the runtime in seconds. When log_num_workers is
8 (i.e., 256 workers in total) and log_num_vars is 25 (i.e.,
the circuit has 33M gates), the runtime is expected to be below
40 seconds, proving the major claim (C1).
Experiment (E2) [15 human-minutes + 1 compute-hour].
In this experiment, we benchmark the accountability protocol
of Cirrus with different circuit sizes and numbers of workers.
[Preparation] No extra preparation is required.

[Execution] To execute the experiment with
log_num_workers and log_num_vars to benchmark
the accountability protocol runtime with 2log_num_workers for
circuit of size 2log_num_vars, connect to the AWS instance of
public IP address IP_0. Then run the following command on
that AWS instance:

1 ./scripts/run.sh accountability --log_num_vars
$log_num_vars --num_threads 8 --
log_num_workers $log_num_workers

[Results] The result of the experiment will be printed on the
terminal, following [INFO] total time: {t} s. This
means that the accountability protocol for 2log_num_workers

workers and circuit of size 2log_num_vars takes t seconds. For
log_num_workers not greater than 8 and log_num_vars
not greater than 25, the total time is expected to be below 4
seconds, proving the major claim (C2).
Experiment (E3) [15 human-minutes + 45 compute-
minutes]. In this experiment, we benchmark the coordinator
time to demonstrate its performance.
[Preparation] No extra preparation is required.
[Execution] To execute the experiment to benchmark the
coordinator time with hierarchical aggregation (HA), first
connect to the AWS instance of public IP address IP_0. Then
run the following command on that AWS instance:

1 bash ./bench_master_ha.sh

To benchmark the coordinator time without HA, run the
following command:

1 bash ./bench_master_no_ha.sh

[Results] The results will be printed on the terminal like this:
1 Time elapsed for --log-num-vars=$log_num_vars

and --log-num-workers=$log_num_workers: {$t}
ms

This means that for subcircuit of size 2log_num_vars and
2log_num_workers workers, the coordinator time is t millisec-
onds. When log_num_workers is 13, the coordinator time
with HA is expected to be less than 1 second, which justifies
the major claim (C3).

20

	Introduction
	Technical Overview
	Implementation and Evaluation

	Preliminaries
	Cirrus: Accountable and Efficient Distributed SNARK
	Distributedly Computable HyperPlonk
	Efficient Accountability Protocol
	Hierarchical aggregation

	Implementation and Evaluation
	Implementation Details
	Evaluation Setup
	End-to-end Proof Generation Evaluation
	Evaluation of The Accountability Protocol
	Benefits of Hierarchical Aggregation

	Related work
	Conclusions and Future Directions
	References
	Appendix A: Zero-knowledge compilation for Cirrus
	Appendix B: Artifact Appendix
	Description & Requirements
	Artifact Installation & Configuration
	Major Claims
	Evaluation

