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Abstract—Phishing attacks pose significant risks to the
Ethereum ecosystem, comprising over 50% of Ethereum-related
cybercrimes, leading to the emergence of many machine learning-
based defenses. This paper introduces a comprehensive frame-
work aimed at enhancing machine learning-based phishing
detection in Ethereum transactions. The framework addresses
critical aspects such as feature selection, class imbalance, model
robustness, and algorithm optimization. By systematically eval-
uating the strengths and limitations of existing approaches,
we highlight gaps in current practices, particularly in feature
manipulation and unsustainable performance outcomes. Through
both analytical and experimental assessments, we demonstrate
the framework’s ability to streamline detection techniques, im-
proving generalization and model effectiveness. Our findings
emphasize the importance of refining detection strategies to meet
the evolving challenges posed by sophisticated phishing schemes
in the blockchain space.

I. INTRODUCTION

Among the many security concerns related to Ethereum [1],
[2], [3], [4], [5], [6], phishing scams stand out [7], [8], [9],
[10], constituting over 50% of Ethereum-related cybercrimes
since 2017 and emerging as a significant threat to the trading
security of Ethereum [11]. Unlike traditional phishing, which
relies on deceptive emails or fake websites to steal sensitive in-
formation, Ethereum phishing exploits the blockchain’s trans-
parency by using fraudulent smart contracts or addresses that
appear legitimate to lure victims. Ethereum transactions are the
core operations on the blockchain, facilitating asset transfers,
smart contract executions, and account interactions [12], [13].
Each transaction records sender and receiver addresses, trans-
action value, gas fees, and timestamps, making every action
verifiable on the blockchain ledger [14], [15].

Ethereum’s support for smart contracts–encoded agreements
that automate complex interactions–enhances its versatility but
also introduces vulnerabilities. Attackers can create decep-
tive contracts or manipulate transaction metadata to mimic
legitimate interactions, taking advantage of the blockchain’s
pseudonymous and transparent nature [13], [16]. This trans-
parency, while integral to blockchain, complicates phishing
detection, as malicious transactions can blend seamlessly into
normal activity [16], [17].

Ethereum’s susceptibility to phishing is heightened by the
high-value transactions, pseudonymity, and the open visibility
of transaction data, which enable attackers to design targeted,

deceptive scams [18], [15]. In contrast to traditional phishing,
where personal information is typically the target, Ethereum
phishing leverages the programmable nature of the blockchain
to alter transaction records and smart contracts, making attacks
difficult to detect. These features make Ethereum particularly
attractive to phishing schemes [19], [20]. The Bee token Initial
Coin Offering (ICO) scam of 2018 resulted in a loss of
one million USD within 25 hours [21]. The phishing attack
on Uniswap Labs users in 2022 caused losses exceeding
eight million USD. In 2024, reports alleged the discovery
of 91 wallets that amassed more than two billion USD from
illicit activities, including scams, on Ethereum [22]. All these
incidents highlight the urgent need for stronger measures to
protect both assets and user trust in the cryptocurrency [23].

Phishing scams have evolved to exploit cryptocurrencies’
unique intricacies, posing significant security threats to their
integrity [24]. Financial losses from successful attacks also
undermine confidence in blockchain technology, and the per-
sistent threat of such cybercrimes casts a shadow over the trust
in digital currencies [21], [25], [13]. This evolving threat has
prompted a surge in research efforts to fortify cryptocurrencies
against these sophisticated cybercrimes.

Numerous research works combined machine learning with
cryptocurrency analyses to combat phishing attacks. Since
transactions form a graph, many of these studies detect phish-
ing employing graph-based analysis [26], [9], [27]. Analyzing
blockchain activity alone aims to develop machine learning
methods to identify malicious activities. For example, Chen et
al. [26] employed convolutional networks and auto-encoders
alongside transaction graphs to identify phishing accounts.
Similarly, Lou et al. [28] used a Convolutional Neural Network
(CNN) to improve the precision and recall of detection. Wu et
al. [15] implemented a one-class learning for deciphering
structural relationships in Ethereum’s transaction network us-
ing Graph Convolutional Networks (GCN) and autoencoders
for high precision and recall for transaction classification.

Nevertheless, these works fail to systematically understand
the circumstances under which such approaches deliver out-
standing results. In particular, proper implementation and
analysis of those systems are lacking as they often make ad
hoc assumptions about how phishing works in reality in a way
that appeases the implementation of the machine algorithms
to deliver high effectiveness. Such assumptions may not nec-
essarily be grounded in the reality of the cryptocurrency.

This work examines prevailing practices in machine
learning-based phishing detection for Ethereum, with a focus
on system operation, dataset composition, feature selection,
robustness evaluation, and model optimization. Motivated by
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the urgent need to strengthen phishing defenses [29], [30],
we systematically categorize and assess detection features,
algorithms, and techniques, identifying both strengths and
critical shortcomings. Our analysis reveals substantial disar-
ray in the field. Feature selection is frequently inconsistent,
and dataset composition is often manipulated to artificially
balance class labels and inflate performance metrics. Many
proposed features are vulnerable to manipulation, while ro-
bustness evaluations are frequently neglected, raising concerns
about the sustainability of reported performance. Additionally,
models tend to be over-parameterized without justification,
although more streamlined architectures using fewer features
can achieve comparable results.
Contributions. In this paper, we make the following contri-
butions. (1) We build a systematic evaluation framework that
unveils the underlying practices in learning-based phishing
detection in Ethereum, including the common practices with
feature selection, dataset composition, feature robustness ex-
amination, and feature selection and model optimization. We
analyze and categorize a comprehensive list of recent studies
in this space and highlight where they fail to implement good
and sustainable practices. (2) We empirically assess several
studies from the literature using our analytical framework,
addressing various research questions by quantifying concerns
highlighted within the framework. Additionally, we examine
practices surrounding these studies, highlighting the risks of
overlooking fundamental tests and assessments.

For consistency, we use phishing transactions as the primary
term throughout the paper, and we treat it as encompass-
ing transactions initiated by phishing accounts as well as
transaction-level manifestations of broader phishing activities.
Scope Clarification.. Directions commonly explored in oper-
ational phishing-detection systems, such as temporal embar-
goes, campaign-disjoint data splits, live evasion simulation,
and continuous benchmarking, are not applicable to our set-
ting. The Ethereum dataset used in this study is static and
retrospective, with all transactions historically finalized. Under
these conditions, temporal unfolding, adversarial interaction,
and red-team style evaluation cannot be meaningfully incor-
porated. Our evaluation design instead reflects the retrospec-
tive analysis conditions of prior published studies, preserving
transaction-level independence to avoid leakage while ensuring
comparability with the pipelines we assess.
Organization. In section II we presented the preliminary
work, followed by our research questions and pipeline in
section III, analytical framework in section IV, experimental
evaluation in section V, and concluding remarks in section VI.

II. PRELIMINARY WORK

A. Background on Phishing Detection
Ethereum security has been a hot research topic [31], [32],

and many studies have been dedicated to understanding and
detecting phishing on the Ethereum network [20], [33]. Early
comprehensive studies have shed light on Ethereum-based
Ponzi schemes, highlighting the tactics adversaries employ.
Moreover, subsequent research efforts have delved deeper, un-
covering concealed Ponzi schemes that exploit smart contracts,

TABLE I: The literature on phishing accounts detection using various features, features
groups, and algorithms across various evaluation metrics.

Work Group Features Algorithms Performance
F1 AUC

Chen et al. [21] Transaction T, A LightGBM 0.80 0.81
Chen et al. [26] Transaction ID, OD, D, IS, OS, S, N LightGBM 0.16 0.56
Wen et al. [38] Transaction T, A, ID, OD, N, from, to SVM, KNN, AdaBoost 0.94 0.92
Kabla et al. [25] Transaction T, BN, from, input KNN, DT 0.97 0.97
Li et al. [40] Transaction ID, OD, D, A, T, NT LightGBM 0.81 0.92
Wu et al. [15] Transaction T, A SVM 0.90 –
Palaio. et al. [37] Transaction BN, GF, NT, ST SVM, CNN, XGBoost 0.85 –
Li et al. [9] Transaction ID, OD, D, A, T, NT XGBoost 0.92 –
Lin et al. [7] Transaction BN, A, GL, GF Neural network 0.82 –
Wen et al. [41] Transaction T, A, TD, GF, B, NT Neural Network 0.97 –
Zhou et al. [42] Transaction T, A, GF, ID, OD EGAT 0.97 –
Chen et al. [26] Behavioral ID, OD, D, IS, OS, S, N LightGBM 0.16 0.56
Wen et al. [38] Behavioral ID, OD, N SVM, KNN, AdaBoost 0.94 0.92
Li et al. [40] Behavioral ID, OD, D TTAGN 0.81 0.92
Li et al. [9] Behavioral ID, OD, D TGC 0.92 –
Zhou et al. [42] Behavioral ID, OD EGAT 0.97 –
Dong et al. [43] Content ID, OD, NT SVM, LR – 0.97
Wen et al. [41] Content T, A, TD, GF, B, NT CNN 0.97 –

(1) Features: Time (T), amount (A), in-degree (ID), out-degree (OD), degree (D), in-strength
(IS), out-strength (OS), strength (S), neighbors (N), block number (BN), gas fee (GF), number
of transactions (NT), successful transactions (ST), gas limit (GL), balance (B), transfer direction
(TD). (2) Metrics: F1 score and area under the curve (AUC).

leveraging advanced data mining and machine learning meth-
ods to evade detection [34], [15], [7]. These studies highlight
the evolving nature of scams and catalyze the development of
more robust detection and prevention mechanisms.

Phishing scams typically deceive individuals by imperson-
ating trusted entities to obtain sensitive details, including
usernames, passwords, and financial information [35]. These
scams often involve fraudulent communication, such as emails,
masquerading as legitimate, attempting to gather personal
information from victims. Phishing operations are known for
their ephemeral nature, emerging suddenly to capture victims
and dissipating just as quickly. More personalized and insidi-
ous variations, known as spear-phishing, target a narrower but
potentially more lucrative demographic [36].
Phishing Detection. In response to this threat, various works
have been proposed, initially focusing on transactional fea-
tures, moving to behaviors and contents:
Transactional Features. Prior work has explored time, amount,
degree-based, and block-level metrics in a variety of ML
pipelines [15], [7], [26]. Details are provided in Appendix B1.
Behavioral Features. Prior work has examined behavioral
indicators such as transaction success rates, DeFi interaction
patterns, and account-level behavioral signals for phishing
detection [37], [38]. Details are provided in Appendix B2.
Content Features. Content-based approaches leverage
transaction-level contextual data, including network-graph
structures, edge attributes, and domain or website-derived
information [24], [39]. Details are provided in Appendix B3.

B. Comparative Literature Analysis

Table I provides an overview of representative studies
across transactional, behavioral, and content feature groups. It
summarizes commonly used features, algorithms, and reported
performance metrics, establishing the context for our feature-
group taxonomy and the evaluation practices revisited in
later sections. Additional descriptive discussion of individual
studies is provided in Appendix B4.

The table also presents evolving strategies for detecting
phishing, delineated across transactional, behavioral, and con-
tent dimensions. Notable studies by Kabla et al. [25] and
Zhou et al. [42] achieve high efficacy (F1 and AUC of 0.97),
showing the effectiveness of well-tailored feature sets. In
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contrast, lower performance in studies such as Chen et al.
[26] (F1 of 0.16, AUC of 0.56) is shown. The comparison of
these studies highlights the diversity of features from primary
transaction data to intricate network behaviors.
Expanding Detection. Our study seeks to explore and test
the robustness of these feature groups in phishing detection.
We aim to replicate such works Kabla et al. [25] and Chen
et al. [26], delving into the impacts of various sets on the
efficacy of learning models in detecting phishing activities.

III. QUESTIONS AND METHODOLOGY

A. Research Questions

This work focuses on five questions to understand the
robustness, generalization, reproducibility, and comparison of
Ethereum phishing detection, which we highlight below.
RQ1. Are the prior works in the literature on phishing
detection doing the proper feature selection? This question
stems from the observation that the features designed for
detection in the prior work [26], [38], [42], [21], [9], [40], [41],
[43] lack thorough consideration and justification. Frequently,
these features are devised hastily and lack proper statistical
analysis. In other cases, those features result from a black-
box learning module that is difficult to comprehend.
RQ2. What is the impact of the representation of phishing
as benign on the performance of the phishing detection
algorithms? This question stems from the observation that, in
particular works, an arbitrary number of phishing transactions
is assumed in the datasets [21], [25], [21], [37], [40], [9], [7],
[41]. To achieve a balanced ratio between benign and phishing
samples, these studies frequently introduce random phishing
transactions into their datasets without considering the impact
on other features utilized in the classification process, regard-
less of whether they are dependent or independent.
RQ3. How do different algorithms compare to one an-
other? This question arises from observing that various ap-
proaches [15], [7], [37], [41], [26], [38], [24], [21], [43]
employing distinct features and feature groups, and different
algorithms, are typically conducted independently and not
compared against each other in terms of their performance
using comparable evaluation metrics and consistent evaluation
settings. An additional aspect of answering this question
involves determining the reproducibility of the findings from
previous studies on cryptocurrency phishing detection.
RQ4. What impact does dataset preprocessing have on the
effectiveness and generalization of detection? Many studies
incorporate a preprocessing phase, e.g., reducing a larger net-
work to a smaller one to make the analysis and detection algo-
rithm implementation more feasible computationally [9], [40],
[15], [7], [26]. However, such preprocessing excludes certain
underlying transaction networks while possibly exaggerating
others that may not be as prominent in the original network.
Therefore, comprehending the influence of preprocessing steps
on the outcome of the detection algorithm is essential.
RQ5. How do different features and feature groups com-
pare for robustness to manipulation? An effective and
sustainable detection algorithm should depend on robust fea-
tures not easily prone to manipulation by adversaries to evade

Fig. 1: Detection pipeline in cryptocurrency transactions.

detection. However, feature sets in these detection schemes
(e.g., [15], [7], [42], [41], [37], [9]) are non-uniform and differ
in this aspect. Conducting a systematic and comprehensive
analysis of these features is crucial.

B. Methodology

Per Fig. 1, our methodology (pipeline) comprises the fol-
lowing steps: data collection, data preprocessing, feature selec-
tion, and detection. We will review our pipeline to address the
research questions below. We limit ourselves in this discussion
to the high-level and general techniques description since the
individual techniques are studied in the subsequent sections
when discussing specific works.
Data Source/Collection. Our pipeline begins by gathering
data associated with the transactions from a data source.
Such data includes full transaction information confirmed in
blocks and cryptocurrency-specific application features and
details. For instance, this encompasses block numbers, time,
sender and receiver addresses, transaction values, and gas
fees. This comprehensive dataset forms the foundation for
our subsequent preprocessing and analysis steps, facilitating
a thorough examination of the transactional ecosystem to
identify and classify phishing attempts effectively.
Data Preprocessing. Different approaches utilize different
preprocessing techniques, which we will discuss further.
Normalization. This involves converting transactions into a
usable format for classification, e.g., hexadecimal to integers
and extracting transaction relationships, e.g., a graph with
addresses as nodes and transaction values as edges [26]. Nor-
malization ensures data uniformity, which is crucial for robust
model training. However, preserving anomalies significant for
phishing detection is important, as over-normalization can
reduce model sensitivity to outliers.
Scaling. Given the significant variation in transaction data
magnitude, this step is crucial to avoid potential biases by
adjusting the range of data features to a standard scale [25].
Commonly employed approaches include Min-Max scaling
and Z-score normalization. Min-Max scaling adjusts the data
to fit within a specific range, e.g., 0 to 1, proving beneficial
when dealing with features to be bounded within a specific
range. Proper scaling preserves the predictive strength of key
variables while ensuring that infrequent yet critical phishing
indicators retain their influence in the model.
Feature Selection. Identifying the most relevant features
within a dataset is critical for developing robust detection
models [44]. This involves selecting features that significantly
affect the accuracy of phishing detection, which may include
the amount and frequency of transactions, distinct transaction
patterns, and deviations in transactional behaviors [40], [41].
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Considerations might include account age, network breadth,
and other behavioral indicators [26], [25].
General Selection. Feature selection involves a combination of
ranking techniques and a voting strategy. Candidate features
are first ranked using multiple criteria, and those consistently
scoring above a predefined threshold are selected through
voting. This approach helps retain only the most impactful
features, improving model efficiency and generalization.
Correlation-based Selection. This approach is used to identify
the most impactful features based on their pair-wise correla-
tions: features with high correlation are excluded from the
candidate set [25]. This reduces redundancy in the model,
which can enhance performance on unseen data by focusing
on independent predictors.
Engineered Features. Adopting a graph-based perspective,
denoted as G(V,E), this approach focuses on a specific
subgraph Gs(Vs, Es) to analyze node attributes and their
relationships. Key features include the in-degree and out-
degree of transaction nodes, as well as the frequency and
patterns of transactions [26], [7]. This method enables a fine-
grained understanding of the network’s structural dynamics,
offering deeper insight into transaction behavior and potential
associations with phishing activities.
Detection Methods. The detection stage identifies phishing
using supervised ML models trained on labeled on-chain
data. These models learn discriminative transactional patterns,
temporal behavior, flow structure, and value dynamics, and use
them to estimate the likelihood of malicious behavior, enabling
reliable differentiation between benign and phishing activity.
Supervised Learning. These methods train algorithms on
labeled datasets where outcomes are known, allowing the
models to learn predictive patterns and apply them to unseen
transactions. We employ classifiers such as LightGBM, Deci-
sion Trees (DT), and K-Nearest Neighbors (KNN). Additional
details on these algorithms are provided in the appendix.
Evaluation and Validation. We use various metrics for eval-
uation: accuracy, precision, recall, and F1 score. ① Accuracy.
The accuracy denotes the ratio of correctly predicted obser-
vations to the total observations, offering an insight into the
model’s differentiation between phishing and legitimate trans-
actions. ② Precision. The precision is the ratio of correctly
predicted positive observations to the total predicted positive
observations. ③ Recall. The recall, or sensitivity, quantifies the
proportion of correct positives correctly identified. ④ F1 Score.
The F1 score, also known as the harmonic mean of precision
and recall, verifies the model’s accuracy by factoring in the
false positives and false negatives. ⑤ The Area Under the
Curve (AUC) AUC is indispensable, especially in situations
characterized by class imbalance, a frequent occurrence in
phishing detection. The AUC metric assesses the model’s
ability to differentiate between phishing and legitimate trans-
actions, with a perfect model achieving an AUC of 1. An AUC
of 0.5 suggests a performance no better than random chance.

IV. ANALYTICAL EVALUATION

To answer the research questions in Section III-A, we
take two complementary approaches: a theoretical analysis

grounded in the operational context of phishing detection, and
an experimental evaluation based on implementing represen-
tative schemes to validate that analysis. The resulting findings
are presented in Section V, where we provide quantitative
evidence supporting the insights developed here.

A. Feature Selection Techniques
The prior works have employed various techniques to select

features for building the learning model. Those features are
shown in Table I for the different techniques.

1) Feature Selection: Our primary questions are: (1) How
are features selected? (2) Is there a standard for their selection?
(3) Does the technique for selecting those features directly
address their importance? (4) Are they all essential for the
functioning of these schemes? To contextualize our discussion,
we present the different feature selection techniques in the
works discussed in Table I.
Trans2vec. Introduced by Wu et al. [15], Trans2vec stands
out as a specialized network embedding technique designed
for transaction networks like Ethereum. It is notable for
its feature extraction method, embedding transaction-specific
attributes into node representations focusing on transaction
amount and time. By constructing a multidimensional feature
space, Trans2vec represents each node within the transaction
network, where transaction amount and timestamp are not
merely additional data points but are intricately incorporated
into each node’s representation structure.
Cascading. The cascading method [21] begins by analyz-
ing individual accounts based on transaction characteristics
like frequency and amount, then progressively incorporates
features from first-order, second-order, and higher-order con-
nections. This hierarchical feature construction captures both
individual behaviors and broader network interactions for
effective phishing detection.
Correlation Analysis. Correlation analysis is essential for un-
covering linear dependencies among features and identifying
potential redundancy [37]. High correlation suggests interde-
pendence, which can undermine model efficiency. To enhance
performance, correlation-based techniques often remove fea-
tures that exhibit strong mutual correlation.
Feature Engineering. Wen et al. [38] takes a targeted approach
to Ethereum transaction analysis, distinguishing between Ac-
count Features (AFs) and Network Features (NFs). To uncover
unusual patterns, AFs focus on individual behaviors, such as
account balance, transaction types, and volumes. NFs map an
account’s network interactions, examining its connectivity and
transaction flows with other entities. These features are se-
lected manually without significance testing, pointing towards
a tailored but less empirical approach to feature engineering.
Sequential Forward Selection (SFS). SFS begins with an
empty feature set and iteratively adds the feature that yields
the greatest performance improvement based on a defined
criterion [45]. The process continues until no further gains
can be achieved by adding additional features.
Recursive Feature Elimination (RFE) vs. Voting-Based. RFE
iteratively discards the least significant features based on their
impact on model performance, reassessing the reduced feature
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TABLE II: A comparison of the feature selection algorithms.
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Chen et al. [21] Transaction ✓ Cascading Hybrid G# G# →
Chen et al. [26] Transaction – – – – – –
Palaiokrassas et al. [37] Transaction ✓ Correlation Traditional  # ↓
Wen et al. [38] Transaction ✓ FE/RFE Traditional  # ↓
Kabla et al. [25] Transaction ✓ Voting Traditional  # ↓
Li et al. [40] Transaction ✓ TTAGN Learning #  ↑
Wu et al. [15] Transaction ✓ Trans2vec Learning #  ↑
Li et al. [9] Transaction ✓ TGC Learning #  ↑
Lin et al. [7] Transaction ✓ Phish2vec Learning #  ↑
Wen et al. [41] Transaction ✓ NN Learning #  ↑
Zhou et al. [42] Transaction – – – – – –
Chen et al. [26] Behavioral – – – – – –
Li et al. [9] Behavioral ✓ TGC Learning #  ↑
Li et al. [40] Behavioral ✓ TTAGN Learning #  ↑
Wen et al. [38] Behavioral ✓ FE Traditional  # ↓
Zhou et al. [42] Behavioral – – – – – –
Dong et al. [43] Content ✓ NN Learning #  ↑
Wen et al. [41] Content ✓ NN Learning #  ↑

(1) Abbreviations: Feature engineering (FE), neural networks (NN).
(2) Metrics: Interpretability, computation, and performance.
(3) Values: unsatisfied (#), satisfied ( ), partially satisfied (G#), better performance (↑), worse
performance (↓), average performance (→), and no basis (–).

set at each step to identify the most informative subset [46].
This process helps understand which features are least helpful
in predicting phishing and optimizes the efficiency by focusing
on a smaller, more impactful set [47]. Introduced by Kabla et
al. [25], the voting-based feature selection method applies
three distinct ranking algorithms to evaluate and select fea-
tures. This method incorporates a holistic view by assessing
each feature’s correlation with the outcome, its importance
within a specific classifier, and the collective effectiveness of
feature sets through a majority vote. Such an approach aims
to refine the feature set for phishing scam detection models,
emphasizing consensus among different evaluative methods.

Other feature selection techniques include TTANG, TGC,
Phish2vec, and neural network-based techniques, which are
delegated to appendix C for the lack of space.

2) Analysis and Results: The study of feature selection
techniques reveals a lack of a uniform standard across studies,
where each work employs its unique method, making it
challenging to compare these methods directly. This diversity
raises critical questions about whether observed discrepancies
in model accuracy stem from the learning techniques or from
the features considered, which are often not transparently
disclosed. Several feature representation and selection tech-
niques are utilized. Some indirectly limit their explainability
by trading the computational features for performance or vice
versa, as shown in the last three columns in Table II.
Methods. The feature representation and selection methods
can be categorized into three groups, as follows:
Learning-based Techniques. These techniques begin with a
representation based on an initial concept of nodes and edges
and evolve into the final representation using a learning com-
ponent, e.g., a neural network. Among these methods thus far,
the category includes Trans2vec, TTAGN, TGC, Phish2vec,
and GNN-based techniques.
Traditional Techniques. These methods begin with predefined
features from transaction, network, or content data and iter-
atively retain those that most impact detection performance,
typically measured via a loss function. This category includes
correlation analysis, voting, and feature engineering.

Hybrid Techniques. These methods are a blend of attributes
from both learning-based and traditional techniques. Among
the techniques we have explored thus far, the cascading
method is the only one that fits this description.
Feature Selection Comparison. The learning-based tech-
niques provide feature representations and automate feature
selection, reducing the need for human intervention. How-
ever, they often lack interpretability since feature selection
is indirect. These methods involve weighting features in an
initial embedding and projecting them into different dimen-
sions through multiple iterations determined by the network
architecture. This process depends on the specific network
used and may not generalize well to different datasets, leading
to a computationally expensive feature extraction process that
needs to be repeated for each dataset or fold.

The traditional techniques differ in ignoring certain fea-
tures entirely instead of optimizing them through weight
adjustments based on the loss function. While this approach
generally performs less than automated learning techniques,
it provides more interpretable features. Knowing which fea-
tures are most influential for detection helps us analyze their
manipulability and design defenses, which helps us in our
experimental evaluation in section V. Traditional methods
are typically computationally lightweight but require human
intervention to understand features, select ones that generalize,
and evaluate their suitability for different datasets.

Hybrid Techniques blend elements of learning-based meth-
ods without fully learning feature representations. Exemplified
by the cascading approach, they progressively incorporate
features from neighboring entities (e.g., nodes, edges) to con-
struct representations. This enables partial automation while
preserving interpretability.
Statistical Analysis. Several studies [26], [42] apply statistical
analysis to detection features by computing metrics such
as minimum, maximum, and mean values. However, these
analyses may offer limited insight into feature importance,
particularly when the statistics lie within a narrow range,
reducing their discriminative utility.
Summary. Table II shows a summary of the feature selec-
tion algorithms utilized in the various schemes of phishing
detection, if any, categorized against their type, interpretability,
computational complexity, and performance. We note that
4 out of 18 detection schemes did not use any form of
feature selection. In contrast, 9 (50%) used learning-based
techniques, 4 used traditional feature selection approaches,
and only 1 used hybrid approaches. This makes the learning-
based techniques the most widely used category despite their
clear disadvantages in the security domain in terms of their
computational complexity and limited interpretability.
ANSWERING RQ1. Various techniques are employed for
feature selection in phishing transaction detection. Among
the nine examined, five utilize learning-based methods that
often produce uninterpretable features, while three explicitly
focus on feature selection and one adopts a hybrid approach.
Although no standardized protocol exists, feature selection is
commonly integrated. However, only a few methods directly
assess feature importance, and even when emphasized, the
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interpretability remains limited.

B. Phishing-to-Benign Ratio

In phishing detection, separating benign from malicious
transactions is essential, and the phishing-to-benign ratio (Ta-
ble III) plays a central role. In this direction, our analysis
examines four questions: (1) whether this ratio is altered in
ML-based phishing detection, (2) what balancing techniques
are used, (3) how these techniques reshape the representation
of benign versus phishing transactions, and (4) how such
balancing ultimately affects generalization.

1) Balancing Phishing Ratios: Phishing involves malicious
attempts to deceive users into disclosing sensitive information,
such as private keys or wallet credentials, whereas benign
refers to non-malicious transactions or accounts. The phishing-
to-benign ratio quantifies the proportion of phishing relative
to benign activities. Constructing balanced training sets is
often essential due to the underlying mechanics of machine
learning algorithms, which require such balance to achieve
high accuracy in phishing detection [48].

In real-world applications, biased models can reduce ac-
curacy if the classes are imbalanced, leading to a preference
for the overrepresented class [49]. Achieving a balanced ratio
enhances the models’ adaptation to diverse scenarios, reducing
overfitting risks [34]. Consequently, maintaining a balanced
representation in training data is critical for the models’
accuracy. However, this artificial balancing may not reflect the
real scenario where the imbalance is intrinsic.

Next, we explore whether these assumptions are maintained
in model training and their impact on generalization.

2) Dataset Balancing Techniques: The approaches outlined
in Table III use various techniques to optimize the dataset’s
composition by balancing, which we review with their pitfalls.
No Balancing. Several studies [26], [42], [43], [15] use the
original unbalanced datasets, which creates challenges for
learning the minority phishing class as models tend to favor the
dominant benign class and fail to recognize phishing reliably.
While unbalanced training reflects the real-world deployment
setting and preserves the dataset’s natural distribution, it also
limits the model’s ability to learn rare malicious patterns.
Filtering Rules. Data cleaning techniques are applied to elim-
inate outliers or specific data types, thus improving detection
accuracy. Chen et al. [21] refined their dataset by filtering
out transactions and accounts with significant transaction vol-
umes, substantially lowering their count of phishing addresses.
Similarly, Wen et al. [38] applied a similar strategy by
removing accounts with fewer than four incoming transactions
or balances below 5 ether. Li et al. [40], on the other hand,
removed transactions before August 2, 2016, and those from
exceptionally active addresses. While aimed at pinpointing
phishing activities with greater precision, these strategies come
with a notable drawback: the inadvertent removal of legitimate
transactions that fall outside standard patterns. This risk could
diminish the model’s capacity to detect a wider array of
phishing behaviors, potentially weakening their effectiveness.
SMOTE. The Synthetic Minority Over-sampling Technique
(SMOTE) aims to achieve dataset balance by creating synthetic

examples of underrepresented classes, thereby improving pre-
dictive model accuracy. Palaiokrassas et al. [37] used SMOTE
with over 54 million Ethereum transactions, identifying only
81 addresses associated with illicit activities. While balancing
phishing and benign instances for training, this approach
introduces the risk of artificial patterns. Such deviations could
compromise the model’s effectiveness on genuine data, im-
peding generalization.
Over-sampling. Over-sampling, used to balance datasets by in-
creasing the minority classes representation, has been applied
with variations across studies. Kabla et al. [25] duplicated
phishing records to achieve class balance, while Li et al. [9]
employed upsampling to enhance the presence of phishing
samples within a large dataset. Although this approach effec-
tively increases phishing representation, it introduces the risk
of model bias toward the overrepresented class, potentially
diminishing the model’s ability to distinguish between benign
and phishing activities due to overfitting.
Sliding Window. The sliding window technique processes data
by iteratively analyzing fixed-size subsets as the window
moves across the dataset. Lin et al. [7] proposed a Statistics-
Based Sampling (SBS) method that selects transactions within
specific blocks to evenly distribute phishing activities. Wen et
al. [41] employed a sliding window of size 16 to capture
overlapping transaction segments, aiming to balance phishing
and benign activities by leveraging temporal patterns. How-
ever, this method may overlook certain phishing behaviors,
potentially limiting the model’s overall effectiveness.
Summary. Altering the phishing-to-benign transaction ratio
can significantly affect detection algorithms’ performance.
Introducing synthetic or duplicated phishing transactions for
dataset balancing poses a risk of distorting the feature dis-
tribution learned by algorithms. Consequently, models might
excel with altered training data but struggle to apply their
insights to real, untouched data. A common risk is overfitting,
where the model overly attunes to the artificial noise from
these manipulations rather than discerning genuine phishing
patterns. Therefore, while balancing may boost algorithm
performance in training, it risks undermining effectiveness
with real-world data the algorithm ultimately faces.
ANSWERING RQ2. Varied methods are used to adjust the
phishing-to-benign ratio demonstrating that such manipula-
tions can markedly undermine detection accuracy and real-
world relevance. Although synthetic balancing seeks to im-
prove phishing representation, it may introduce bias and
overfitting, thus hindering generalization.

3) Balancing Analysis And Result: Section IV-B2 reveals
a landscape marked by diversity, where different studies
introduce various ad hoc approaches, complicating the task
of directly comparing the efficacy of these approaches. This
raises a critical question: are the observed variances in model
performance due to the balancing methods or the nature of
the data/algorithms? Our work sets the stage for a detailed
examination of how each category of balancing technique
influences the phishing detection models.
No Balancing. Four studies did not implement any balancing:
Chen et al. [26], Wu et al. [15], Zhou et al. [42], and Dong et
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TABLE III: Studies categorized by work, year of publication, the number of transactions, number of accounts, original data
distribution, method of balancing, modified data distribution, and the corresponding ratios before and after balancing.

Work Transactions Accounts Original Data Method Modified Data Phishing-to-benign Ratio
Phishing Benign Phishing Benign Original Modified

Chen et al. [21] 7,795,044 534,820 1,683 7,793,359 Filter rules 323 534,497 0.0216% 0.0604%
Chen et al. [26] – 2,973,382 1,157 2,972,225 No balancing 1,157 2,972,225 0.0389% 0.0389%
Palaio. et al. [37] 54,000,000 550,000 10,000 540,000 SMOTE 81 10,000 1.818% 0.81%
Wen et al. [38] 20,667,671 52,380 3,135 49,245 Filter rules 992 4,066 6.366% 22.675%
Kabla et al. [25] – 84,664 5,448 79,216 Over-sampling 38,143 79,216 6.877% 48.15%
Li et al. [40] 208,847,461 6,844,050 4,932 6,839,118 Filter rules 4,932 – 0.072% –
Wu et al. [15] 3.8 billion 500 million 1,259 1,259 No balancing 1,259 1,259 100% 100%
Li et al. [9] 219,927,673 9,237,535 5,639 9,231,896 Downsampling 5,639 25,000 0.061% 22.556%
Lin et al. [7] 22,594,499 4,116,315 5,168 4,111,147 Sliding window 301 4,116,013 0.1257% 0.0073%
Wen et al. [41] 739,790 44,709 4,709 40,000 Sliding window 43,125 74,838 11.772% 57.624%
Zhou et al. [42] 332,670 3,359 1,659 1,700 No balancing 1,659 1,700 97.59% 97.59%
Dong et al. [43] 4,161,444 944,705 1,660 1,700 No balancing 1,660 1,700 97.64% 97.64%

al. [43]. Specifically, Chen et al..[26] exhibited notably low
phishing ratios at 0.039%, introducing challenges to the learn-
ing models due to significant class imbalances. Conversely,
Zhou et al. [42] and Dong et al. [43] presented higher ratios, at
97.59% and 97.64%, respectively, indicating a different set of
challenges for accurate phishing detection, such as overfitting
and a decreased ability to identify legitimate communications
effectively. These extremes in dataset composition underscore
the pivotal role of balanced data in training machine learning
models for phishing detection.
Filter Rules. Filtering strategies yielded varied outcomes
across studies. Chen et al. [21] reduced phishing transactions
to 323 and benign ones to 534,497, increasing the phishing-
to-benign ratio from 0.0216% to 0.0604%. Wen et al. [38]
achieved a more drastic shift, reducing phishing transactions
to 992 and benign to 4,066, raising the ratio from 6.366% to
22.675%—a 256.19% increase, indicating significant deviation
from realistic distributions. In contrast, Li et al. [40] preserved
the original phishing ratio (0.072%), suggesting minimal or
undocumented impact from filtering. These differences under-
score how filtering rules can substantially influence dataset
composition and, by extension, detection outcomes.
SMOTE. Utilizing SMOTE, oversampling, and upsampling
enables the inflation of minority classes to adjust imbalances.
Palaiokrassas et al. [37] applied SMOTE to refine the phishing
ratio to 0.81%, albeit at the risk of introducing synthetic
biases. Conversely, Li et al. [9] leveraged upsampling for
219.9 million transactions, elevating the phishing detection by
increasing its ratio from 0.061% to 22% (36 folds). Similarly,
Kabla et al. [25] utilized oversampling, boosting the ratio from
6.877% to 48.15% (seven folds).

These strategies emphasize the importance of preprocessing
in phishing detection, though they vary in overfitting risk and
realism. Compared to direct oversampling, SMOTE provides
a more diverse but synthetic augmentation of minority classes.
Impact of Oversampling. Using the existing replicated runs
of Kabla et al. [25], we compare performance with and without
the oversampling step. Removing oversampling in this config-
uration results in an approximate 18% drop in F1 and a 0.07
reduction in AUC. These differences come directly from the
configurations reproduced in our evaluation and highlight how
oversampling can substantially inflate performance under ex-
treme imbalance. At the same time, the decline in performance

without oversampling aligns with our broader finding that
aggressive balancing strategies often reduce generalizability,
as examined in §IV-B and §VI.
Sliding Window. The sliding window technique involves an-
alyzing a subset of data over a fixed period, which shifts
progressively over the entire dataset, to capture dynamic
changes in data characteristics. Using this technique, Wen et
al. [41] and Lin et al. [7] observed divergent outcomes in their
ratios after implementing their balancing methods. In Wen et
al. [41], the phishing-to-benign ratio increased from 11.77%
to 57.62% (389% surge in phishing). Lin et al. [7] reduced the
ratio from 0.126% to 0.0073%; i.e., more than 94% reduction.
Such outcomes emphasize the sliding window technique’s
flexibility, which can significantly diminish or considerably
amplify the visibility of phishing.
Summary. Our analysis examines preprocessing techniques
across multiple studies, outlined in Table III. Notably, seven
out of twelve studies showed significant alterations in phishing
ratios following the application of balancing methods, with
increases reaching as high as 22 folds. These changes under-
score the substantial modifications made to address dataset
imbalances, reflecting the adoption of various strategies. Nev-
ertheless, among the studies we surveyed, four studies chose
not to alter the datasets, staying faithful to the dataset origin
in the real-world deployment scenario.
ANSWERING RQ4. Preprocessing influences detection per-
formance where severe class imbalances–particularly low
phishing ratios–hindered effective model training. While filter-
ing and synthetic generation improve dataset composition, they
risk overfitting and unrealistic patterns that deviate from real-
world conditions. These issues highlight the need to preserve
data authenticity and relevance to ensure robust phishing
detection across diverse scenarios.

C. Features Robustness

Threat-Model Overview. Our robustness analysis assumes
an adversary with the ability to manipulate transaction tim-
ing, generate new addresses, and coordinate low-cost eva-
sive behaviors, but without the capability to alter confirmed
blocks, modify validated transactions, or influence blockchain
consensus. These assumptions reflect realistic attacker actions
on Ethereum, where evasion is limited by observable costs
such as gas-price-driven delays, transaction-fee overheads,
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TABLE IV: An analytical evaluation of robustness reported
across prior phishing-detection studies. Following their origi-
nal characterizations and the analysis in Section IV-C, features
are labeled as prone, susceptible, or resilient based on whether
they were observed to be easily manipulated, manipulable
under specific or constrained conditions, or generally stable
due to blockchain-level constraints.
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Chen et al. [21] # G# 1 1 0
Chen et al. [26] G# G# G# G# G# G# # 1 6 0
Palaio. et al. [37]  G# # # 2 1 1
Wen et al. [38] # G# G# G# # G# G# 2 5 0
Kabla et al. [25] # G#  G# G# G# 1 4 1
Li et al. [40] G# G# G# G# # 1 4 0
Wu et al. [15] # G# 1 1 0
Li et al. [9] # G# G# G# G# # 2 4 0
Lin et al. [7] G#  G# 0 2 1
Wen et al. [41] # G# G# # # G# 3 3 0
Zhou et al. [42] # G# G# G# G# 1 4 0
Dong et al. [43] G# G# G# # 1 3 0

(1) Features: The features and abbreviations are listed in Table I.
(2) Metrics: prone (#), susceptible (G#), and resilient ( ) to manipulation. The last three
columns are the sum of these metrics for each studied scheme.

and the resource requirements of large-scale address creation.
This threat model aligns with the manipulations examined
in Sections IV-C and V-E and bounds the space of feasible
adversarial behaviors considered in our robustness evaluation.

With the insights gathered from various studies showcased
in Table IV, we classify features from prior research according
to their susceptibility to adversarial manipulation and the
complexities involved in their detection [50]. Our analysis
revolves around how features fare when evaluated based on
their robustness against manipulation. We classify the features
used in the literature into three categories: (1) prone to
manipulation, (2) resilient to manipulation, or (3) susceptible
to manipulation. In the following, we identify those features,
contrast the literature based on them, and answer some key re-
search questions along the way. These robustness labels reflect
how prior studies and our analysis characterize each feature’s
manipulability: prone features are easily modified by attackers
at low cost, susceptible features can be manipulated under
constrained conditions, and resilient features are those for
which manipulation is limited or infeasible due to blockchain
validation rules or structural constraints.

1) Features Prone to Manipulation: Adversaries can avoid
detection by standard security models via transaction features
manipulating (e.g., adversarial learning). For instance, altering
the timing and volume is simple, but detecting these manipu-
lations is challenging because they can blend with legitimate
activity. Based on our evaluation, we identify the following
features prone to manipulation: time, neighbors, number of
transactions, and transaction direction. In the following, we
make the case for why those features are prone to manipula-
tion; i.e., not robust.
Time. Time refers to the transaction’s timestamp, indicating
when it was confirmed on the Ethereum network. Despite
the immutability of blockchain timestamps post-confirmation,
attackers can subtly manipulate transaction timings to their
advantage [51]. For instance, by strategically choosing when
to broadcast transactions, they can dodge detection during peak
network activity or take advantage of specific market condi-

tions. Moreover, by adjusting transaction fees, attackers can
influence the priority of their transactions, either delaying them
to decrease visibility to miners or hastening their confirmation
through higher fees [51], [52].
Neighbors. This feature captures the number of unique ad-
dresses a wallet interacts with but is highly susceptible to
manipulation. Adversaries can inflate the neighbor count by
generating fake addresses, engage with reputable accounts to
obscure illicit activity, or churn funds among controlled wallets
to conceal the source [53], [54].
Number of Transactions. This feature captures the total number
of transfers or trades associated with an address over time [55].
Adversaries may exploit this by generating microtransactions
or distributing activity across multiple accounts [56], [57],
[58], aiming to obscure illicit flows or mimic legitimate
activity. Strategically timed transactions complicate detection
by evading monitoring [57].
Transaction Direction. This feature refers to whether a trans-
action for a particular wallet is incoming or outgoing. Un-
derstanding the flow of funds is key to identifying potential
fraudulent patterns. Attackers may manipulate this feature by
address hopping; moving funds through multiple controlled
addresses to blur the distinction between incoming and out-
going transactions and transaction cycling [12], where funds
are circulated among attacker-controlled addresses in a closed
loop. These techniques, aimed at disguising fraudulent activity
and efficiently partitioning cryptocurrency networks, challenge
detection systems [52], [59].

2) Features Resilient to Manipulation: Features of inherent
blockchain characteristics or historical data are difficult to alter
without leaving a trace. Due to its decentralized and immutable
nature, blockchain is supposed to ensure these features are
secure and formidable to attackers [60].
Successful Transactions. This feature refers to validated and
confirmed transactions. The decentralized and immutable
blockchains make manipulation a formidable challenge. Given
the distributed ledger’s nature, altering a transaction record
would require a consensus from most network participants,
a near-impossible feat [61], [62]. Moreover, any attempt to
modify a transaction would necessitate recalculating the cryp-
tographic hashes for all subsequent blocks in the chain, which
is infeasible [63]. The ledger’s transparency further bolsters
security by enabling independent verification of transactions,
thereby enhancing trust and integrity [64].
Block Number. This feature refers to the chronological order
of blocks, starting from the genesis block. The task of altering
the block number is exceptionally challenging due to the
blockchain’s immutability and the required consensus [61].
Moreover, the possibility of manipulating block height, such
as through a 51% attack where an entity gains control over
the majority of the network’s hashing power [50], remains
theoretically conceivable but is practically improbable [65],
[66]. Thus, blockchain design serves as a defense mechanism,
preserving the integrity of block numbers.

3) Features Susceptible to Manipulation: Though suscep-
tible to manipulation, these features are likely to be flagged
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by detection systems using anomaly analysis to identify sus-
picious patterns. In the following, we review these features.
Amount. This feature is the transfer volume of a cryptocur-
rency. Attackers opt for round numbers to mimic benign
activity or stay below reporting thresholds. However, genuine
transactions typically involve fractional amounts due to natural
trading fluctuations and price changes [67]. Advanced tech-
niques can identify these anomalies by contrasting them with
historical transaction patterns, seeking out regular transactions
at specific intervals or sudden spikes in activity that may
indicate automation or scripting [68].
From and To Addresses. The from address is a unique identifier
for the sender’s wallet and is debited the sent amount, includ-
ing any fees. Similarly, the to address identifies the recipient’s
wallet, crediting it with the received amount. Although these
addresses become immutable once a transaction is confirmed,
adversaries can manipulate them in several ways [69]; e.g.,
scatter or aggregate funds using multiple addresses [70]. Uti-
lizing mixers to combine transactions hides the funds’ source.
Engaging in address hopping disrupts pattern analysis [71].
Given their similarity, the from and to features are susceptible
to similar manipulations.
Account Balance. This feature is the net currency in a wallet,
which is the total of all incoming minus outgoing transactions.
Adversaries may manipulate account balances by, for example,
simulating legitimate activity [72]. This could involve dispers-
ing transactions across several accounts or using wash trading
to obscure funds [73]. Moreover, attackers might exploit
vulnerabilities in smart contracts to divert funds or hijack
accounts to change their balances, camouflaging fraudulent
activities within normal patterns [74].

Other susceptible features include strength, gas limit and
fee, degree, and smart contract input, which we delegate with
discussion to appendix D for the lack of space.
Summary. As shown in Table IV, the analysis reveals a
dynamic tension between the manipulability and resilience of
transaction features. While some features are easily exploited,
others benefit from blockchain’s inherent security properties.
This contrast underscores the importance of careful feature
selection and adaptive detection strategies to address evolv-
ing threats. The findings advocate for a nuanced, flexible
approach to feature selection to enhance phishing detection
and strengthen blockchain security.
ANSWERING RQ5. Features range from highly susceptible
to resistant to manipulation. Adversaries can mask fraud-
ulent activities using transaction timing, volume, direction,
and number of neighbors, complicating detection. Conversely,
successful transactions, block numbers, and block IDs benefit
from blockchain’s inherent security.
Framework Summary. To make the analytical framework
explicit, we summarize its components, inputs, and outputs
as they are already used throughout Sections IV and V. The
framework begins with data collection, which consumes raw
Ethereum transaction records and outputs normalized repre-
sentations suitable for further analysis. Preprocessing then
converts these records into structured numerical attributes,
producing the feature matrices used in subsequent stages.

Feature selection (SFS for Eth-PSD and RFE for CTD)
takes these matrices as input and produces reduced feature
subsets that capture the most predictive attributes. Robustness
assessment consumes these subsets to evaluate which features
are prone, susceptible, or resilient to manipulation, enabling
a systematic comparison across studies. These stages are
sequentially connected: each step consumes the outputs of the
previous one and feeds the next. We also make explicit the
decision rules already applied throughout the evaluation, such
as treating changes in AUC greater than 0.02 as meaningful.
These clarifications formalize the existing workflow without
altering the underlying methodology.

V. EXPERIMENTAL EVALUATION

We explore the logic behind feature selection and modeling
optimization (§V-B), the balance between phishing and benign
transactions (§V-C), the effect of preprocessing (§V-D), and
feature robustness (§V-E), supporting the analyses in §IV.
Comparative Context. To situate our findings, we briefly
discuss representative temporal and contrastive GNN-based
phishing detectors, namely TTAGN and TGC. These models
achieve high accuracy by leveraging temporal dependencies
and contrastive embeddings; however, their internal compu-
tations are less interpretable and harder to audit. Our focus
differs: we prioritize transparency and robustness through
interpretable models and explicit feature analysis. Adding this
context underscores the trade-off between accuracy and inter-
pretability and clarifies how our approach complements, rather
than replaces, these more complex GNN-based detectors.

A. Experimental Setup

We base our experimental evaluation on two datasets from
Ethereum’s transaction network curated for phishing studies,
namely Eth-PSD [25] and CTD [26]. We also use three widely-
used algorithms in interpretable literature, DT, KNN, and
LightGBM, as described in section III-B. We chose those
techniques over alternatives for three reasons: first, they are the
most performant according to Table I; second, they are easy to
interpret; and third, they are widely used. For feature selection,
we use SFS and RFE, two interpretable techniques. We use
the parameters from the original works where the datasets
were introduced for the initial feature sets and their size. We
used the stratified 5-fold cross-validation in all experiments to
evaluate the model’s performance and report the average. In
the following, we review the two datasets and their features.
Eth-PSD Dataset Overview. The Eth-PSD, due to Kabla et al.
[25], is a comprehensive data collection that provides insights
into the mechanics of Ethereum transactions, facilitating the
analysis and detection of phishing. Eth-PSD incorporates
TxHash, BlockHeight, TimeStamp, From, To, Value, Input,
and a category label of the transaction as benign or phishing.
Features like TxHash and TimeStamp allow for examining
transactions and timing, whereas From, To, and Value high-
light the flow and magnitude of transferred funds.
CTD Overview. CTD [26] focuses on transaction analysis for
detecting phishing using transaction flow metrics and account
balance, and captures the nuanced dynamics of transactions
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susceptible to phishing. Transactional features, such as in-
degree and out-degree, capture the transaction counts, while
aggregate transaction volumes are captured through degree and
strength metrics: in-strength, out-strength, and total strength.
The number of neighbors and the inverse number of transac-
tions further discern phishing activity.
Model Coverage. As discussed earlier, we selected Decision
Tree, KNN, and LightGBM because they are widely used,
inherently interpretable, and achieve the top performance
among the classical models evaluated in Table I. Our goal is to
construct a transparent and auditable detection pipeline rather
than to maximize accuracy through opaque architectures. For
completeness, we also conducted preliminary checks using
existing implementations of SVM and a simple CNN. These
additional models produced the same qualitative ranking trends
observed with DT, KNN, and LightGBM, supporting our claim
that the relative feature effects and robustness patterns reported
in this work are not model-specific.
Averaging and Stability. All reported results in Section V
are averaged over a stratified 5-fold cross-validation. Across
the five folds, we observe low variability in the reported
metrics, and none of the fold-to-fold fluctuations alter the
relative ordering or the qualitative trends discussed in the
analysis. These stable averages confirm the consistency of the
observations we highlight, including the diminishing returns
from additional features (§V-B) and the degradation under
extreme imbalance (§V-C).

B. Feature Selection and Model Optimization

1) Feature Selection: We experimentally assess the effi-
cacy of feature selection over Eth-PSD [25] and CTD et
al. [26] to pinpoint key predictive features in both datasets.
Eth-PSD Feature Selection. SFS, described in §IV-A1, was
implemented to determine the optimal number of features for
the detection model, and the results are shown in Figure 2.
The performance, evaluated by the negative mean squared
error, plateaus after adding the third feature. This trend is
consistently observed with stabilized performance from three
to seven features, highlighting the diminishing returns of
additional features. Thus, we conclude that a leaner model with
just three features is optimal, striking a balance between sim-
plicity and effectiveness without compromising the model’s
performance. This experimental validation of SFS corroborates
our analysis in §IV-A, where we discussed the efficacy of
feature selection methods in improving model accuracy.

To identify influential features, Pearson correlation coef-
ficients are computed and visualized in Table V, revealing
input (0.62), block height (0.43), and time (0.43) as the most
correlated with the target label. Notably, block height and time
exhibit strong associations with phishing behavior, which often
manifests in temporally clustered and execution-pattern bursts.
CTD’s Feature Selection Process. All of CTD’s features
were normalized to the same scale. For feature selection,
consistent with the original work, we use RFE, which provided
insights into the predictive dynamics underpinning Ethereum
phishing detection. In all cases, and as in the original work,
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Fig. 2: Performance of the phishing detector (negative mean
squared error) as a function of the number of selected features
using SFS over the Eth-PSD dataset.

TABLE V: Pearson correlation matrix among transaction at-
tributes. Features used include TxHash (TxH), BlockHeight
(BH), and TimeStamp (TS).

Corr. TxH BH TS From To Value Input Class

TxH +1.00 +0.01 +0.01 +0.00 +0.00 -0.00 +0.00 +0.00
BH -0.01 +1.00 +0.99 +0.35 -0.28 +0.00 +0.26 +0.43
TS -0.01 +0.99 +1.00 +0.34 -0.27 +0.00 +0.26 +0.43
From +0.00 +0.35 +0.34 +1.00 -0.28 -0.01 +0.26 +0.36
To +0.00 -0.28 -0.27 -0.28 +1.00 +0.00 -0.28 -0.27
Value -0.00 +0.00 +0.00 -0.01 +0.00 +1.00 -0.02 -0.01
Input +0.00 +0.26 +0.26 +0.26 -0.28 -0.02 +1.00 +0.62
Class +0.00 +0.43 +0.43 +0.36 -0.27 -0.01 +0.62 +1.00

the initial set of features was the following: in-degree, out-
degree, degree, in-strength, out-strength, strength, neighbors,
and inverse number of transactions.

2) Feature Sets Evaluation: We analyze the sufficiency of
feature sets and their combinations. This analysis is grounded
in empirical data from performance metrics across diverse fea-
ture combinations and uses the work of Kabla et al. [25] as an
example. The evaluation focuses on the implications of these
features on model efficacy, as measured by accuracy, precision,
recall, and F1 scores. Table VI compares multiple configura-
tions, incorporating features such as those top-ranked (from,
block height, time, and input). These model performance
results reveal several insights. This evaluation demonstrates
the practical impact of feature selection discussed in §IV-A,
where we emphasized the importance of feature selection in
enhancing the detection models’ effectiveness. ❶ High Effi-
cacy Combinations. Both DT and KNN models, employing
from, block height, time, and input (F, B, T, I), demonstrate
superior performance with AUC scores reaching 0.98 and
F1 scores reaching 0.96. This blend epitomizes a holistic
strategy with multiple dimensions. However, the negligible
performance disparity with simpler models supports the need
for feature selection. ❷ Impact of Simplified Sets. Excluding
the input (I) feature still yields high AUC (0.98) and F1 (0.96),
questioning its necessity for achieving high precision. This
suggests that comparable performance can be attained with a
reduced feature set, highlighting the need to justify feature
inclusion. ❸ Minimal Pairs Analysis. Analyzing minimal
feature pairs such as block height and time (B, T) yields an
AUC of 0.97, only slightly below that of more complex sets,
indicating significant potential for optimizing feature selection.

3) Model Optimization: With a larger set of features, we
examine the feature selection as a model optimization problem
on CTD et al. [26] under a fixed dataset size (40k transactions).
Motivated by the findings in the previous section, we look
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TABLE VI: Performance DT and KNN models across different
feature combinations is evaluated using: (1) Features: From
(F), Block Height (B), Time (T), Input (I), and Value (V);
and (2) Metrics: Area Under the Curve (AUC), Accuracy (A),
Precision (P), Recall (R), and F1 Score.

Combination KNN DT
AUC A P R F1 AUC A P R F1

F, B, T, I 0.97 0.95 0.92 0.95 0.93 0.98 0.97 0.93 1.00 0.96
F, B, T 0.97 0.95 0.92 0.95 0.93 0.98 0.97 0.93 1.00 0.96
F, B 0.96 0.96 0.91 0.97 0.94 0.98 0.97 0.93 1.00 0.96
F, T 0.96 0.96 0.91 0.97 0.94 0.98 0.97 0.92 0.99 0.95
F, I 0.93 0.90 0.87 0.82 0.84 0.97 0.92 0.88 0.87 0.88
F, B, I 0.97 0.94 0.91 0.93 0.92 0.98 0.97 0.92 0.99 0.95
B, T 0.97 0.94 0.91 0.92 0.92 0.97 0.96 0.91 1.00 0.95
B, I 0.97 0.95 0.91 0.93 0.92 0.98 0.97 0.92 1.00 0.96
T, I 0.97 0.95 0.91 0.93 0.92 0.98 0.96 0.90 0.98 0.94
F, B, T, V 0.98 0.97 0.93 0.99 0.96 0.98 0.97 0.93 0.99 0.96
B, T, V 0.97 0.94 0.91 0.92 0.91 0.98 0.97 0.91 0.99 0.95
F, T, V 0.98 0.95 0.91 0.94 0.93 0.98 0.96 0.91 0.98 0.95
T, V 0.97 0.94 0.91 0.92 0.91 0.98 0.95 0.89 0.98 0.93

TABLE VII: Performance vs. feature sets with fixed sample
size (40K) from CTD. (1) Features: in-degree (ID), out-degree
(OD), degree (D), in-strength (IS), out-strength (OS), strength
(S), neighbors (N), inverse number of transactions (INT).

Model Feature Group AUC Precis. Recall F1

M1 ID, OD, D, IS, OS, S, N, INT 0.88 0.27 0.09 0.14
M2 OD, IS, OS, S, INT 0.86 0.11 0.03 0.04

M3 IS, OS, S, INT 0.85 0.09 0.03 0.05
M4 OD, D, IS 0.85 0.06 0.02 0.03

M5 D, IS 0.85 0.01 0.01 0.01
M6 S, INT 0.82 0.09 0.02 0.03
M7 IS, OS 0.81 0.01 0.01 0.01

into how far one can push the model simplification while
maintaining the performance. We use LightGBM, which pre-
viously performed well, as shown in Table I. We start with the
comprehensive model and then reduce the complexity by elim-
inating some features using RFE and Pearson correlation. We
make the following observations based on the results shown
in Table VII. ❶ Comprehensive Model. The comprehensive
model (M1) encompassing all the features has resulted in
the highest AUC, at 0.88, with modest precision, recall, and
F1 scores. ❷ Large is not Always Better. M2, a simpler
model realized by dropping two features from M1, is only
0.02 worse than the optimal’s AUC. This trend, however, does
not hold universally since M3 and M4, two models different
in size, produced the same performance in terms of AUC.
Similarly, M5, M6, and M7, three models of the same size,
produced different performances in terms of AUC. Moreover,
M6, despite being smaller than M3 and M4, achieved the
same precision as M3 (0.09). This highlights the importance
of optimizing models to balance performance.
ANSWERING RQ1. Beyond the analytical results in sec-
tion IV, we show that simplifying the feature set does not
affect the model accuracy detrimentally. The nuanced decrease
in performance metrics underscores the potential overemphasis
on specific features without substantial evidence of impact.

4) Comparison of Models: The algorithms, parameters,
and features define the models. To provide insights into the
performance of different models, and driven by the insights
realized on the importance of feature selection earlier, we
evaluate DT and KNN across feature combinations, as shown
in Table VI. In the following, we analyze the performance.

TABLE VIII: Model performance for different sample sizes
with ratio (P-to-B).

Size Benign Phishing P-to-B AUC Precision Recall F1 Score
30K 29,897 103 0.0034% 0.88 0.20 0.09 0.12
40K 39,865 135 0.0034% 0.89 0.25 0.10 0.14
50K 49,839 161 0.0032% 0.90 0.20 0.09 0.13
100K 99,723 276 0.0028% 0.90 0.22 0.16 0.18
300K 299,441 559 0.0019% 0.82 0.11 0.15 0.12
500K 499,271 729 0.0015% 0.75 0.12 0.16 0.13

Overall Efficacy. DT and KNN show robust performance
across feature combinations. However, DT consistently out-
performs KNN in most cases, although marginally.
Feature Combination Impact. Algorithm performance varies
with feature set composition. The DT model consistently
performs well with specific pairs (e.g., <from, block height>,
<from, timestamp>, <block height, timestamp>), sustaining
an AUC of 0.98 along with high precision and recall. In
contrast, while KNN performs strongly overall, its precision
and F1 score decline with reduced feature sets, indicating
greater sensitivity to feature selection.
Precision and Recall Balance. The DT model achieves a
strong balance between precision and recall when utilizing
block height and timestamp features, attaining perfect recall in
several cases. This underscores its effectiveness in minimizing
false negatives and ensuring comprehensive detection.
ANSWERING RQ3. The performance is influenced by model
selection. DT models exhibit a slight advantage overall and
particularly excel in precision, while KNN models perform
better in terms of recall. These findings underscore that feature
selection plays a more critical role than the choice of algorithm
in achieving optimal detection performance.

C. Phishing-to-Benign Ratios Under Sampling

This section analyzes how variations in the phishing-to-
benign ratio influence model performance and overall effec-
tiveness, drawing on findings from §IV-B and supported by
insights from prior literature and empirical studies.
Sampling. In sampling transaction networks, we follow the
random walk-based method to extract nodes from the larger
CTD dataset as done in [26]. This approach starts from an
initial seed node and conducts a walk over one of its neighbors
with a probability proportional to the degree. If the next node is
not in the list of the visited nodes, it is added, and the process
is repeated until the total number of nodes (sample size)
is exhausted. Once the sample size is exhausted, the edges
between those visited nodes are derived from the original
graph. The sample networks are shown in Table VIII. For
phishing detection, we use the DT algorithm.

1) Node Size and Ratio Impact: While the absolute number
of phishing nodes increases with the dataset size from 103 in
the 30K dataset to 729 in the 500K dataset, the proportion of
phishing to benign instances significantly drops. Specifically,
in the 30K dataset, phishing nodes constituted approximately
0.34% of the data. In the 500K dataset, this proportion dropped
to about 0.15%. This shift shows that dataset composition
directly impacts model performance, emphasizing the need
to balance size with phishing representation for optimal de-
tection accuracy, mirroring the trends observed in §IV-B2
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Fig. 3: Comparison of Input and From features across Training,
Testing, and Overall splits. The features exhibit data overlap,
reflecting the proportion of matching entries in each category.

where various balancing methods influenced detection efficacy.
The decreasing proportion of phishing instances as datasets
grow complicates detecting phishing attempts due to a diluted
signal-to-noise ratio. This situation underscores the intricate
balance required between dataset size and the representative-
ness of phishing instances for effective phishing detection.

2) Performance Evaluation: The phishing-to-benign ratio
significantly affects performance across metrics. AUC drops
from 0.9 in the 50K and 100K node datasets to 0.75 at 500K
nodes, indicating reduced discriminative capability. Precision
declines from 0.25 in the 40K dataset to 0.12 at 500K,
reflecting diminished accuracy at scale. Meanwhile, recall
increases slightly from 0.09 (30K) to 0.16 (500K), suggesting
improved identification of phishing instances but at the cost
of reduced precision, showing the trade-off between recall and
precision as dataset size grows. Considering both precision and
recall, the F1 scores across datasets reveal subtle performance
variations: 0.12 in the 30K dataset and 0.18 in the 100K
dataset, suggesting a balanced improvement. However, this
improvement does not persist in larger datasets, with F1 scores
reverting to 0.12 and 0.13 for the 300K and 500K datasets.
Takeaway. Adjusting the phishing-to-benign ratio strongly af-
fects performance, but only up to a point–beyond that, models
break down. This underscores the need for dataset structures
that reflect real-world conditions and for careful balancing to
maintain meaningful precision and recall in practical settings.
ANSWERING RQ2. The phishing-to-benign ratio has a sub-
stantial impact on detection performance (Table VIII and
Section V-C). Empirical results indicate that slight increases
in the phishing ratio can enhance accuracy, while greater
imbalances lead to performance degradation. This underscores
the importance of maintaining a balanced dataset for reliable
detection, as further discussed in §IV-B.

D. The Effect of Preprocessing

While preprocessing improves efficiency and initial model
accuracy, it raises concerns about its impact on generalization
across datasets. This study examines how common preprocess-
ing methods, such as dataset reduction and feature selection,
influence a detection algorithm’s ability to generalize.
Eth-PSD Dataset Preprocessing. Kabla et al.’s preprocessing
incorporated oversampling to amend class imbalance, result-
ing in considerable data duplication [25]. Notably, the Input
feature had a significant overlap of 98,762 instances from a
subset of 113,716, contributing to overall data redundancy

affecting 33,279 rows. As shown in Figure 3, this high level
of duplication weakens the model’s ability to distinguish
between phishing and benign transactions, increasing the risk
of overfitting and making it less reliable.

Examining the From and BlockHeight attributes reveals
substantial redundancy: From shows 3,464 overlapping val-
ues across 83,209 instances, while BlockHeight has 5,519
unique overlaps. This redundancy illustrates the influence of
oversampling in promoting a more balanced class distribution
(approximately 67.5% to 32.5%) and underscores the trade-
offs introduced by such preprocessing interventions.
CTD Preprocessing. CTD’s preprocessing, as highlighted
earlier, relies on random walks for efficient subgraph sampling
and meta-feature engineering to extract node features [26].
This approach, adaptive to dataset size, critically impacts
algorithm performance. As highlighted earlier, while this ap-
proach does not introduce redundancies, it simply alters the
phishing-to-benign ratio, affecting the ability of the models to
distinguish between phishing and benign transactions as the
sampled dataset complexity increases.
ANSWERING RQ4. Preprocessing datasets influences the
generalization capacity. While simplification may improve
computational efficiency, it can obscure critical patterns es-
sential for detecting diverse phishing behaviors. Furthermore,
although preprocessing can enhance certain performance met-
rics, it does not reliably translate to improved generalization
across varied phishing scenarios.

E. Evaluating Features Robustness

For a thorough analysis, we present initial findings on
the impact of feature manipulation on phishing detection
performance. While a full evaluation of machine learning
robustness is reserved for future work. Building on the in-
sights from (§IV-C), where features were analyzed for their
susceptibility to manipulation, we focus on manipulating key
features like time, address, input, amount, block number, and
successful transactions. These techniques were selected to
represent methods adversaries might use to obscure illicit
patterns and test model resilience. The goal is to evaluate
the resilience of feature sets within transaction datasets when
subjected to manipulation, especially those features that are
more susceptible to adversarial tactics, like time. This involves
assessing how specific feature modifications may obscure
patterns, impacting detection accuracy. Understanding these
manipulations is essential for identifying vulnerabilities in
detection systems and developing strategies to enhance their
reliability in detecting fraud-related patterns in real scenarios.

1) Time Manipulation: Timestamps play a key role in
revealing patterns of illicit activity, yet they are vulnerable
to manipulation. As noted in (§IV-C1), time is considered
prone to tampering prior to blockchain confirmation. We
examine the hypothesis that altering timestamps can obscure
behavioral patterns critical to detection, thereby hindering the
identification of suspicious activity.
Manipulation Technique. We employed two manipulation
techniques. ① Randomization. The chronological order was
disrupted by randomly shuffling timestamps across the dataset
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TABLE IX: Performance Under Manipulation. (1) Features
Assessed: Time (T), From (F), Input (I), and Value (V). (2)
Evaluation Metrics: AUC, Accuracy (A), Precision (P), Recall
(R), and F1 Score. (3) Base Models: M1 and M2 represent
baseline models using unaltered features. For manipulation of
T, F, and I, we evaluate against M1, which includes F, B, T,
and I (1st row in Table VI), reflecting the best-performing
model. For V manipulation, we use M2, based on the feature
set F, B, T, and V (10th row in Table VI).

Ftr KNN DT

AUC A P R F1 AUC A P R F1
Manipulated Features

T 0.78 0.78 0.76 0.50 0.60 0.95 0.95 0.91 0.95 0.93
F 0.97 0.94 0.91 0.92 0.91 0.93 0.92 0.88 0.91 0.89
I 0.83 0.94 0.62 0.32 0.42 0.84 0.92 0.94 0.60 0.58
V 0.83 0.94 0.62 0.32 0.42 0.84 0.92 0.94 0.60 0.58

Baseline Models
M1 0.97 0.95 0.92 0.95 0.93 0.98 0.97 0.93 1.00 0.96
M2 0.98 0.97 0.93 0.99 0.96 0.98 0.97 0.93 0.99 0.96

to obfuscate the patterns associated with the timing of trans-
actions. ② Uniform Distribution. A uniform time distribution
was applied over the specified period (2017–2018) to distribute
transactions and mitigate significant concentrations. Both
strategies correspond to delaying confirmation, e.g., manipu-
lating fees. These techniques were selected as approximations
of tactics attackers might use, such as fee manipulation and
delayed confirmations, to mask transaction patterns. We limit
our evaluation to modifying a single feature simultaneously
to simplify our discussion. Findings. Table IX (first row vs.
M1) shows that KNN’s accuracy dropped from 0.95 (M1) to
0.78, precision from 0.92 to 0.76, and recall from 0.95 to 0.50,
resulting in F1 score drop from 0.93 to 0.60, compromising
its ability to identify phishing activities accurately.

2) Address Manipulation: To evaluate the effect of address-
based evasion, we simulated address hopping in the Ethereum
transaction dataset, replicating adversarial strategies aimed at
avoiding detection. This aligns with our discussion in § IV-C3,
which highlights the ease of manipulating from and to
addresses as a common tactic for evading ML-based detection.
Manipulation Techniques. A custom hashing function was
employed, combining the original sender address, a unique
salt, and the transaction index to generate distinct addresses,
simulating address-hopping used to obscure transactions and
evade detection. Findings. Table Table IX (second row vs. M1)
presents the results, where manipulating this feature causes
only a moderate decline. For DT models, AUC drops from
0.97 to 0.92, precision from 0.93 to 0.88, recall from 1.00 to
0.91, and F1 score from 0.96 to 0.89.

3) Input Manipulation: The Input feature is pivotal for the
functionality of smart contracts [17]. Manipulation, however, is
possible due to exploitable defects in the contract’s validation
protocols [75], [76], [77], which aligns with the earlier findings
where input is shown as susceptible to manipulation (§ IV-C3).
Manipulation Techniques. To manipulate the input feature,
synthetic adversarial examples were created through input
length extension, pattern injection, and randomization of input
values. Further details are provided in Appendix E.
Findings. The results in Table IX (third row vs. M1) show that
input manipulation significantly impacts KNN performance:

AUC dropped from 0.97 to 0.83, accuracy from 0.95 to 0.94,
precision from 0.92 to 0.62, and recall from 0.95 to 0.32,
leading to a decrease in F1 score from 0.93 to 0.42. DT
exhibited a more moderate decline.

4) Amount Manipulation: Manipulation of value poses a
significant threat, as attackers obfuscate fraudulent transactions
by blending them with legitimate ones—aligning with our
identification of amount as a susceptible feature in § IV-C3.
Manipulation Techniques. ① Refined amount smoothing.
We adjust the transaction amounts to incorporate randomly
generated fractional components. Such a technique is devised
to seamlessly integrate suspicious transactions within the flow
of legitimate ones, eliminating any noticeable discrepancies. ②
Distributive pattern emulation. By analyzing the distribution
patterns of legitimate transactions and replicating these pat-
terns in manipulated transactions. This strategy aims to create a
mask of normalcy. Findings. As shown in Table IX (fourth row
vs. M2), KNN performance declined notably: AUC dropped
from 0.98 to 0.83, accuracy from 0.97 to 0.94, precision from
0.93 to 0.62, and recall sharply from 0.99 to 0.32, resulting
in an F1 score decrease from 0.96 to 0.42. The DT model,
however, experienced a less pronounced decline.

5) Block Numbers and Successful Transactions Manipu-
lation: Blockchain’s design and security mechanisms make
it technically infeasible to manipulate features such as the
number of successful transactions or block numbers [61].
As discussed in § IV-C2, these features are safeguarded
by blockchain’s inherent immutability. Although partitioning
attacks could potentially compromise these properties, they are
costly and rarely feasible in practice.
ANSWERING RQ5. Susceptibility to manipulation varies sig-
nificantly. Features derived from primary transaction data are
particularly vulnerable, leading to notable performance degra-
dation. These results highlight the importance of prioritizing
stable features in feature selection and model design for
resilience against manipulation.

VI. CONCLUSION

We examined ML-based phishing detection on Ethereum
and identified key challenges in feature selection, dataset
balancing, robustness, and algorithm choice. Our evaluation
framework clarifies how these factors shape model generaliza-
tion, showing that common practices such as ratio adjustment
and oversampling can inflate performance while reducing
applicability. We also demonstrated that features such as
transaction amount, time, and address are easily manipulated,
reinforcing the need for resilient features, careful preprocess-
ing, and algorithms aligned with realistic threat models.
Future Directions and Practical Implications. Practical
systems should emphasize harder-to-manipulate features, re-
alistic class distributions, and adversarial validation before
deployment. Adversarial strategies will continue to evolve,
through timing manipulation, value adjustments, and cross-
chain movement, posing challenges for current pipelines.
These observations follow directly from the robustness pat-
terns in §IV-C and the evasion behaviors in §V-E. Additional
community directions, including evolving benchmarks and
structured adversarial testing, are outlined in Appendix F.
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APPENDIX

A. Detection Algorithms

Decision Trees (DT). Non-parametric supervised learning
method used for classification, where the model learns decision
rules from data features to predict target values. Its intuitive,
tree-like structure closely resembles human decision-making,
making it easy to interpret and useful for explaining models.

K-Nearest Neighbors (KNN). A simple instance-based learn-
ing algorithm that delays computation until prediction, classi-
fying new cases based on similarity to stored examples using
distance metrics. Its ability to detect outliers makes it effective
in identifying phishing patterns during the detection phase.

LightGBM. LightGBM is a fast, scalable gradient boosting
framework known for its high accuracy, especially on large
datasets. It builds decision trees sequentially, with each tree
correcting the errors of the previous one. This makes it well-
suited for imbalanced tasks like phishing detection, where
fraudulent cases are scarce compared to legitimate ones.

B. Extended Related-Work Summaries

1) Transactional Features: Wu et al. [15] extracted time
features, including maximum, minimum, and total transaction
times, and amount features (transaction amounts) to address
issues like data imbalance. Integrating these features with one-
class Support Vector Machine (SVM) and the trans2vec algo-
rithm, they demonstrate success in transactional data use for
phishing detection. Similarly, Lin et al. [7] and Chen et al. [26]
reinforced the importance of transactional features. Lin et al.
employed block numbers and gas limits, while Chen et al.
explored transaction history, stressing the need for detailed
transactional analysis in identifying phishing activities.

2) Behavioral Features: Palaiokrassas et al. [37] and Wenet
al. [38] contributed to understanding the behavioral features
in Ethereum transactions. Palaiokrassas et al. emphasizes the
relevance of transaction success rates and interactions with
DeFi protocols, suggesting that behavioral patterns in DeFi can
be more indicative of phishing than traditional transactions.
Wen et al. [38] highlights the vulnerabilities in standard
machine learning models, emphasizing the need to detect
phishing through behavioral analysis.

3) Content Features: Zhou et al. [24] provided a prime ex-
ample on leveraging content features with transaction network
graphs over transaction values and gas. The Edge Aggregated
Graph Attention Network (EGAT) is used for feature extrac-
tion, showing the importance of content-related aspects in
phishing detection. In addition, He et al. [39] presented a com-
prehensive approach that intersects with both behavioral and
content features, employing techniques like domain-scoring
algorithms and website scanners. This integrated methodol-
ogy demonstrates the interplay between content analysis and
behavioral patterns in combating phishing.

4) Extended Comparative Literature Review: The evolu-
tion of phishing analysis exemplifies the field’s response to
increasingly complex threats. This development highlights
the research community’s dedication to crafting advanced
detection methods and maintaining the security of blockchain

transactions. Researchers continue to innovate as the threat
landscape evolves, proactively addressing and mitigating po-
tential vulnerabilities.

Some features, such as in-degree (ID) and out-degree (OD),
appear in multiple groups due to their distinct roles. In trans-
actional features, they quantify direct transaction activities,
such as the number of incoming and outgoing transactions. In
behavioral features, they reflect interaction trends, measuring
engagement levels with other accounts. In content features,
they contribute to structural representations, aiding in network
graph-based analysis to detect suspicious patterns.

In alignment with these efforts, Table I categorizes key
features into transactional, behavioral, and content groups.
This categorization provides a comprehensive overview of the
varied feature sets employed in recent studies. The table details
how features such as time, amount, in-degree, out-degree, and
gas fees are analyzed using diverse algorithms like LightGBM,
SVM, and neural networks. Performance metrics such as
the F1 score and AUC are also reported. This structured
overview not only highlights the focus of each study but
also emphasizes the complex strategies followed in tackling
phishing transactions.

C. Feature Selection Techniques

TTAGN. Li et al. [40] present Temporal Transaction Ag-
gregation Graph Network (TTAGN), a method leveraging
Temporal Edge Representation to capture Ethereum transac-
tion dynamics. Using Long Short-Term Memory (LSTM),
it analyzes temporal interactions between nodes, enhancing
edge representations. An Edge2Node module aggregates these
representations with attention mechanisms. Additionally, a
Structural Enhancement Module equipped with a GCN ana-
lyzes the graph topology, thereby enriching node profiles for
more comprehensive feature representation.
TGC. Due to Li et al. [9], the Transaction Graph Contrast Net-
work (TGC) constructs a node’s ego network for comparative
pair creation and subgraph training. Through Random Walk
with Restart (RWR) sampling, diverse subgraphs are generated
for contrastive learning. The feature extraction process is split
into node-level, distinguishing a node against its neighbors,
and context-level, differentiating the structural patterns of
phishing versus normal addresses. The contrastive approach
leverages Graph Neural Network (GNN) encoders to unveil
distinct transactional and structural patterns.
Phish2vec. Phish2vec [7] is a feature extraction method that
models temporal and structural dynamics in transaction net-
works. It uses a Temporal-based Sequences Generator (TSG),
which applies a random walk guided by transaction amount
and timing, to capture temporal flow. A Heterogeneous-
based Sequences Generator (HSG) further distinguishes be-
tween Contract Accounts (CAs) and Externally Owned Ac-
counts (EOAs), modeling their interaction patterns. These
sequences are then embedded using word2vec, producing low-
dimensional vectors that reflect the roles of each account.
Neural Networks. Wen et al. [41] leverage a composite of
neural networks for data representation, anchoring on a Back
Propagation (BP) neural network for processing transfer and

16



state features. This layer encodes relational patterns into
vectors, which are further scrutinized by Fully Convolutional
Networks (FCN) and LSTM units to discern transaction fea-
tures. Dong et al. [43] integrates GNNs, with a spotlight on
node2vec, alongside feature derivation methods for a nuanced
extraction of blockchain transaction data features. This ap-
proach, focusing on structural and transactional data, e.g.,
time and values, aims to distill key indicators of transaction
behaviors for enhanced feature selection.

D. Susceptible Features

Strength. This feature, gauging both in-strength and out-
strength (total funds entering/leaving a wallet), offers a view
of a wallet’s transaction volume and direction. Attackers can
manipulate these features to conceal illicit actions within
ordinary transaction flows [78]. Methods include altering
transaction timing to align with user behavior, splitting or
merging transactions to mask transfer amounts, or executing
circular transactions among controlled accounts [79].
Gas Limit and Fee. On Ethereum, transactions require gas,
with the gas limit and fee determining the computational
work a transaction can use and its processing speed, respec-
tively [80]. Adversaries may manipulate these features to cause
issues like front-running or network congestion. Therefore,
gas limits and fees share inherent characteristics; both are
vulnerable to manipulation tactics.
Degree. This feature represents the total transaction count
associated with an address; in- and out-degree, where the
in-degree counts incoming transactions and the out-degree
counts outgoing transactions [26]. Adversaries may alter these
features, obscuring transaction patterns to bypass detection
systems. They might create fictitious transactions to inflate the
degree artificially, distribute funds across multiple addresses
to elevate the out-degree or employ these tactics in active and
complex network engagement [81], [82].
Smart Contract Input. The data fed into a contract when
activated, including commands and operational parameters.
While typically secure, these inputs can be manipulated due
to vulnerabilities in smart contract code. Adversaries might
exploit weak validation to alter transaction data, such as
through integer overflows [14], causing unintended behaviors.
Contracts with poor input validation are particularly at risk,
enabling attackers to, for example, redirect funds or perform
unauthorized actions. Effective detection relies on robust con-
tract design and stringent validation [83], [16].

E. Impact of Time Manipulation

Figure 4 visually compares the timestamp distributions be-
fore and after implementing the randomization technique. No-
tably, the pre-randomization data displayed pronounced peaks
indicative of periods of high-frequency transaction activity.
These peaks were significantly reduced post-randomization,
leading to a more uniform distribution of timestamps. The ma-
nipulation led to several critical findings: ① Pattern disruption.
The randomization of time successfully masked cyclical daily
and weekly transaction patterns, which anomaly detection
models typically exploit. ② Baseline distortion. Redistributing
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Fig. 4: Top: Distribution of timestamps before randomization.
Bottom: Distribution after randomization. The distribution
appears more uniform, yet it still shows variability, with the
highest frequency around mid-2018.

transactions to achieve a uniform temporal distribution altered
the normal baseline of transaction activity. This challenges
models that rely on historical data to establish normative
patterns. ③ False negative risk. A concern with this form of
temporal manipulation is the heightened risk of false negatives,
where suspicious transactions may evade detection due to their
integration into the new uniform timestamp distribution.

D.1. Input Value Exploitation: Adversaries may exploit
vulnerabilities within smart contracts, affecting their reliability
and security. If not mitigated, these vulnerabilities can lead
to substantial financial losses. Two notable vulnerabilities are
integer overflow and weak validation checks, which can be
utilized to perform input manipulation.

Integer Overflows. Smart contracts written in languages like
Solidity often use fixed-size integer types (e.g., uint256).
When operations exceed these limits, they can trigger integer
overflows–vulnerabilities attackers can exploit by supplying
inputs that cause arithmetic wraparounds. This may lead to
unintended behaviors such as unauthorized token creation or
balance manipulation. For example, in a token contract lacking
overflow checks, an attacker could call the transfer function
with a large value that, when added to the recipient’s balance,
causes it to wrap, enabling fund extraction or balance resets
beyond the contract’s intended logic.

Weak Validation Checks. This vulnerability stems from in-
sufficient input validation, which allows malformed data to be
fed into the contract. A contract may fail to verify that inputs
fall within expected ranges, conform to the correct type, or
satisfy the intended logic. In such cases, attackers can exploit
the weak checks to perform unauthorized actions, including
withdrawing funds or deploying contracts that interact with
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legitimate ones in unintended ways. For example, a DeFi
lending contract that does not properly validate collateral
requirements may allow to obtain a loan with little or no
collateral, gaining access to funds beyond the protocol intent.

D.2. Input Manipulation Technique: To assess the vul-
nerability of detection models to input manipulation, we
generated synthetic adversarial examples and examined the
model detection accuracy when using them. This process
entailed various nuanced tactics, each designed to simulate
potential adversarial techniques that could exploit weaknesses
within smart contracts. The goal was to gauge the detection
models’ resilience, or the lack thereof, against input manipu-
lations reflective of real-world attack scenarios. The tactics
employed are outlined as follows. ① Extending input data
length. We devised inputs with lengths that surpass the smart
contracts’ capacity to handle, aiming to emulate buffer over-
flow conditions. ② Pattern injection. We introduced specific
hexadecimal patterns associated with known vulnerabilities
into the input data. These patterns were selected based on
documented vulnerabilities pertinent to the Ethereum Virtual
Machine (EVM) and smart contract bytecode. ③ Randomizing
input values. Input values were manipulated, randomized, and
adjusted across a broad spectrum to induce logical errors or
uncover concealed vulnerabilities within the smart contracts.
This encompassed modifying numerical values to extremes,
randomizing string inputs, and altering transactional data un-
predictably. The aim was to reveal logical or computational
defects triggered by atypical input values, offering insights into
how smart contracts and detection models manage edge cases.
We applied these manipulation strategies by selecting a diverse
set of base inputs from the Eth-PSD dataset, including pattern
appending, input length extension, and value randomization.
This approach was intended to test the detection models’
current efficacy and to simulate an array of attack scenarios
that smart contracts might face in real-world applications.

D.3. Impact of Derived Feature Manipulation: Detection
models must leverage the structural properties of networks
to identify anomalous patterns and potential security threats
within blockchain analytics [84]. These models are heavily
reliant on derived features, such as degrees, in-degrees, out-
degrees, in-strengths, out-strengths, and transaction frequen-
cies, which are meticulously calculated from transactional
data including sender, receiver, time, and amount [15], [7].
This computational foundation underscores the importance of
the direct relationship between primary transaction data and
the accuracy of derived metrics. Hence, any manipulation of
transactional elements can significantly impact the precision of
these metrics, challenging the efficacy of anomaly detection
models predicated on the interplay between a blockchain’s
transactional dynamics and its structural characteristics [26].

Specifically, the sender and receiver addresses greatly in-
fluence the in-degree and out-degree metrics by quantify-
ing the volume of transactions associated with a particular
node. These metrics, reflecting the network’s centrality and
connectivity, are susceptible to manipulation such as address
hopping, which can significantly distort a node’s perceived
network position [85]. Similarly, the transaction amount is fun-

damental to calculating in-strength, out-strength, and overall
strength, thereby assessing a node’s transactional activity. By
manipulating transaction values, high-value transfers can be
obscured within routine activities, complicating the detection
of potentially illicit transactions [86].

Randomizing transaction time can distort frequency pat-
terns, making it harder to detect anomalies based on irregular
intervals [87]. Similarly, metrics like comprehensive degree,
which combine incoming and outgoing transactions, can be
skewed by artificial adjustments [26]. Core attributes such
as sender, receiver, timestamp, and amount are foundational
to anomaly detection; manipulating them can cascade errors
across derived features and compromise detection accuracy.
Understanding this dependency is key to building robust
models that can detect and resist manipulative behaviors in
blockchain-based fraud detection.

As shown in Table I, prior work reveals varied feature
dependencies in detection algorithms, highlighting the lack
of consistent evaluation of feature robustness. Our findings
call for a strategic reassessment of feature selection, em-
phasizing stable features and advanced analytics to counter
evolving adversarial tactics. This holistic approach is crucial
for strengthening detection resilience and securing transaction
monitoring systems.

F. Extended Discussion from Conclusion

Scope and Generalization. While our evaluation is con-
ducted on Ethereum data, the core insights generalize to other
account-based blockchains, such as BNB Chain and Polygon,
whose transaction semantics and address behaviors closely
mirror Ethereum’s. These shared structural properties support
the transferability of our findings regarding feature effects and
robustness. At the same time, observations tied to Ethereum-
specific metadata (e.g., gas-fee structures or block-level pric-
ing dynamics) are ecosystem-dependent and may not apply
uniformly across all platforms. We clarify this distinction
to bound the scope of generalization without overstating the
applicability of Ethereum-specific artifacts.

Model Alternatives. Advanced strategies such as PU-learning,
focal or cost-sensitive losses, and new GNN architectures
address model-design choices rather than the caveats targeted
by our analytical framework. Incorporating such alternatives
would redirect this work toward new algorithm development,
which lies outside our intended scope. Notably, our empirical
findings already demonstrate that interpretable classical mod-
els perform comparably to more complex architectures under
consistent evaluation settings (see §V).

Broader Research Directions. Although not within the scope
of this study, several research directions highlighted by the
broader phishing-detection literature remain important for the
community. These include standardized, continuously updated
benchmarks; adversarial testing and red-team evaluation; and
advanced imbalance-handling strategies that reflect evolving
blockchain activity. These directions complement, rather than
replace, the methodological insights developed in this work.
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