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Abstract—JSON Web Tokens (JWT) have become a widely
adopted standard for secure information exchange in modern
distributed web applications, particularly for authentication and
authorization scenarios. However, JWT implementations have
introduced various vulnerabilities, such as signature verification
bypass, token spoofing, and denial-of-service attacks. While prior
research has reported individual such vulnerabilities, there is a
lack of systematic study for JWT implementations.

In this paper, we propose JWTeemo, a novel testing method-
ology to effectively discover JWT vulnerabilities in JWT im-
plementations. We evaluated JWTeemo against 43 JWT im-
plementations across 10 popular programming languages and
discovered 31 previously unknown security vulnerabilities, 20
of which have been assigned CVE numbers. We demonstrated
the security impact of these vulnerabilities, such as enabling
authentication bypass in Kubernetes and denial-of-service attacks
against Apache James. We further categorized these vulnerabili-
ties into five types, and proposed several mitigation strategies.
We discussed our mitigation strategies with the IETF, which
has acknowledged our findings and suggested that they would
adopt our mitigations in a new RFC document. We have also
reported those identified vulnerabilities to the affected providers
and received acknowledgments and bug bounty rewards from
Apache, Connect2id, Kubernetes, Let’s Encrypt, and RedHat.

I. INTRODUCTION

JSON Web Token (JWT) is a compact and self-contained
standard for securely transmitting information as a JSON
object between parties. As each JWT is digitally signed or en-
crypted, it allows the recipient to verify the token’s authenticity
and integrity. This property enables stateless authentication, as
the recipient does not need to contact the issuing server for
validation. Owing to its efficiency and security features, JWT
has become a cornerstone for authentication in modern web
applications and distributed systems and has seen widespread
adoption by prominent systems such as CloudFlare [1], Let’s
Encrypt [2], and Kubernetes [3].

However, recent studies have uncovered vulnerabilities in
JWT implementations that can lead to severe security im-
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plications. For instance, a recently disclosed vulnerability in
Microsoft SharePoint Server (CVE-2023-29357 [4]) allowed
attackers to bypass authentication and achieve administrative
privileges using a maliciously crafted JWT. Furthermore, the
potential impact of flawed JWT implementations extends to
Denial-of-Service (DoS) attacks. Given the widespread adop-
tion of JWT, these vulnerabilities pose a significant threat to
web ecosystems.

Despite the discovery of individual vulnerabilities, current
methodologies for identifying JWT-related security flaws rely
on manual, ad hoc approaches. While techniques such as static
and dynamic analysis have proven effective for identifying
taint-style vulnerabilities (e.g., SQL injection and XSS), their
application to JWT implementations is challenging. The di-
verse nature of JWT vulnerabilities and the absence of clear
sources and sinks for taint tracking hinder their detection. Prior
work, such as JWTKey [5], has focused on key management
issues in applications using JWTs but it cannot identify
security vulnerabilities within JWT implementations. To date,
no systematic study has yet been conducted for evaluating
JWT implementations.

In this paper, we aim to bridge this gap by investigating
three research questions:

• RQ1: How can we generate JWTs to systematically
trigger vulnerabilities in JWT implementations?

• RQ2: How do we detect JWT vulnerabilities automati-
cally?

• RQ3: What is the current prevalence of vulnerability
among real-world JWT implementations?

To answer these questions, we introduce a novel fuzzing
tool JWTeemo to systematically detect vulnerabilities in JWT
implementations. For RQ1, we introduce a novel grammar
Function-extended Backus-Naur Form (FBNF) to model JWTs
and utilize a feedback-driven approach for effective test case
generation. For RQ2, we develop a differential analyzer that
employs both parsing discrepancy and resource exhaustion
analysis strategies to effectively detect vulnerabilities. For
RQ3, we evaluate JWTeemo against 43 popular JWT imple-
mentations across 10 different programming languages.

In total, we discovered 31 vulnerabilities in 17 popular JWT
libraries that could lead to authentication bypasses or DoS at-
tacks. We further analyzed these vulnerabilities and identified
five primary attack categories targeting JWT implementations:
(1) Signature/Encryption Confusion, (2) Algorithm Confusion,
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(3) JWT Format Confusion, (4) Billion Hashes Attack, and (5)
Compression DoS. We responsibly disclosed all discovered
vulnerabilities to the affected vendors, resulting in 20 CVE
assignments. We received acknowledgments and bug bounties
from entities including RedHat, Kubernetes, Apache, and
Connect2id. We reported our findings and mitigation strategies
to the IETF, which acknowledged our work and would incor-
porate our proposals into the new JWT Best Current Practices
(BCP) RFC document.

In summary, we make the following contributions:
• We introduced JWTeemo 1, a novel testing methodology

to automatically uncover vulnerabilities in JWT imple-
mentations.

• We conducted the first large-scale, systematic security
evaluation of JWT implementations, covering 43 widely-
used libraries across 10 popular programming languages.
Our analysis uncovered 31 previously unknown security
vulnerabilities, all of which are exploitable to perform
authentication bypass or DoS attacks. To date, 20 vul-
nerabilities have been assigned CVE IDs, and our find-
ings have been acknowledged by prominent vendors and
projects.

• We analyzed the root cause of these vulnerabilities and
categorized the root cause into three types. We propose
several mitigation strategies and discussed them with
the IETF, which has acknowledged our work and would
incorporate our proposals into a new RFC document.

II. BACKGROUND

A. JSON Web Token

The widespread adoption of distributed architectures and
Single-Page Applications (SPAs) has exposed the limitations
of traditional server-side session-based authentication. Such
mechanisms require servers to store and synchronize user login
states, presenting significant scalability challenges in multi-
server distributed environments. To address this, the Internet
Engineering Task Force (IETF) proposed the JSON Web Token
(JWT), which was standardized in 2015 through a series of
core specifications [6], [7], [8].

The JWT ecosystem is not a monolithic specification but
a modular framework designed to meet diverse security ob-
jectives, offering two primary JWT types. The first is JSON
Web Signature (JWS, RFC 7515 [7]), which ensures integrity
and authenticity through digital signatures or Message Au-
thentication Codes (MACs). Although JWS guarantees that
the information has not been tampered with or originates
from a trusted source, its payload remains visible to any
intermediary. The second is JSON Web Encryption (JWE,
RFC 7516 [8]), which provides confidentiality protection.
When claims contain sensitive data, JWE encrypts the content,
ensuring that it can only be read by the intended recipient.
This separation of concerns, complemented by JSON Web
Algorithms (JWA, RFC 7518 [9]) for defining cryptographic
algorithms and JSON Web Key (JWK, RFC 7517 [10]) for

1JWTeemo is available at https://github.com/JWTeemo/JWTeemo

representing cryptographic keys, forms a flexible and com-
prehensive framework for modern security credentials. This
allows developers to precisely select the level of security
required for their specific use case.

B. JWT Structures

Depending on the security mechanism employed, a JWT
can be structured in one of two primary types: JWS or JWE,
as illustrated in Figure 1a and Figure 1b, respectively.

A JWS, as shown in Figure 1a, is composed of three parts
separated by dots: Header, Payload, and Signature.
The Header is a JSON object containing cryptographic
metadata, including the alg claim that specifies the signing
algorithm. The Payload is another JSON object that carries
the core claims to be transferred, such as the username and
roles. The Signature is computed over the Base64Url-encoded
Header and Payload using the algorithm specified in the
alg claim, providing an integrity and authenticity value. This
signature provides data integrity and authenticity, ensuring that
any tampering with the header or payload can be detected.
The final token consists of the Base64Url-encoded Header,
Payload, and Signature, concatenated in order with dot
separators.

A JWE, as depicted in Figure 1b, consists of five
parts separated by dots: Header, Encrypted_key, IV,
Ciphertext, and Authentication Tag. The Header
is a JSON object containing cryptographic metadata, including
the alg claim that specifies the key encryption algorithm (e.g.,
A256KW) and the enc claim that defines the content encryp-
tion algorithm (e.g., AES-GCM). The encryption process is
a two-step procedure. First, the JSON object containing the
core claims (e.g., username and roles) is serialized into plain-
text, and a random single-use Content Encryption Key
(CEK) is generated. The plaintext is then encrypted with the
CEK under the enc algorithm, producing the Ciphertext,
IV, and Authentication Tag. Second, the CEK is then
encrypted with the developer-provided JWK under the alg
algorithm, producing the Encrypted_Key. Finally, each of
these five components is Base64Url-encoded and concatenated
with dots to form the final JWE token. This encryption
ensures confidentiality of the payload, so that only authorized
recipients possessing the correct key can recover the original
claims.

C. JWT Vulnerabilities

In recent years, attacks targeting JWT implementations have
exposed significant security risks. A prominent example is
the vulnerability in Microsoft SharePoint Server (CVE-2023-
29357 [4]), where attackers exploited a flaw in the JWT vali-
dation logic to forge JWS signatures, bypassing authentication
and ultimately achieving privilege escalation and even remote
code execution.

Current research on JWT vulnerabilities can be broadly
categorized into two directions. One line of work focuses on
key management, such as JWTKey [5], which aims to address
security issues throughout the lifecycle of cryptographic keys,
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Fig. 1: Two Typical Types of JWT

including their generation, storage, transmission, and use.
However, a vast number of security flaws stem not from
improper key management but from the specific processes
within JWT validation and parsing implementations. The
inherent flexibility of the JWT specification, while offering
broad design space for developers, inadvertently creates oppor-
tunities for security vulnerabilities due to a lack of mandatory
constraints on implementation details. The other research
direction explores these implementation-level issues. For in-
stance, researchers at security conferences like DEFCON [11]
and BlackHat [12] have disclosed multiple vulnerabilities that
exploit implementation weaknesses.

Although prior work has identified several vulnerabilities in
JWT, the discovery process heavily relies on manual analysis.
While some tools exist [13], [14], they are mostly dictionary-
based scanners that only detect known vulnerabilities, and
there remains a lack of systematic evaluation of JWT imple-
mentations, which has motivated our study.

III. OVERVIEW

A. Threat Model

Web App

User

HTTP Request

Bear JWT JWT
Implementation

JWT {"role": "user"}Payload
ValidStatus

Verify
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Fig. 2: JWT-based Web Application and Threat Model

In this paper, we consider a typical web application that
employs JWT for authentication and authorization. After a
user logs in to the web application, they receive a JWT. The
user then includes this JWT token with each request to access
protected endpoints. Behind the scenes, a JWT implementation
handles cryptographic checks (e.g., signature verification or
decryption) and decodes the token to extract its claims. The
application enforces access rules based on these claims, as
illustrated in Figure 2.

We assume a remote attacker with black-box access to
the target application. The attacker possesses the capability

to submit arbitrarily structured JWTs and observe the corre-
sponding responses from the web application. The attacker
aims to exploit vulnerabilities in the JWT processing for
various attacks, such as signature verification bypass, token
spoofing, and denial-of-service attacks.

B. Research Questions

This paper answers the following research questions:
RQ1: How do we generate JWTs to systematically

trigger vulnerabilities in JWT implementations?
The first question is the efficient generation of high-quality

and diverse JWTs. These tokens must satisfy two require-
ments: (1) The generated JWTs must be syntactically valid
according to their specification, as any malformed token would
be rejected outright during initial parsing, thus failing to
exercise deeper code paths. (2) The generated JWTs must
exhibit sufficient diversity to ensure a comprehensive security
assessment of the JWT implementation.

To the best of our knowledge, no prior work has specifically
focused on fuzzing JWTs, and conventional generation meth-
ods, such as those based on Augmented Backus-Naur Form
(ABNF) widely used in protocol fuzzing, are ill-suited for the
JWT context for two primary reasons. First, JWT generation
involves numerous functional operations, such as HMAC and
RSA signing; however, ABNF, being a formal language for
defining syntax, lacks the intrinsic capability to perform such
computations. Second, while ABNF is suitable for generating
context-free grammars, JWT generation is inherently context-
sensitive. For instance, the JWS signature operation is depen-
dent on the value pre-defined in the alg header field.

To address this question, we introduce Function-extended
Backus-Naur Form (FBNF), an extension of ABNF that
incorporates FUNC and IF constructs. The former handles
functional computations between nodes, while the latter man-
ages contextual dependencies between the current generation
content and preceding node values. During the JWT generation
phase, we first construct an FBNF grammar graph based on
the relevant RFC documents and then traverse this graph to
generate test cases. Furthermore, the JWT RFCs define a
large number of claims, leading to an exponential growth in
the combinatorial space. A naive random generation strategy
would suffer from combinatorial explosion and produce a high
volume of invalid samples that are immediately rejected for
violating semantic constraints (e.g., a missing alg claim),

3



severely hampering fuzzing efficiency and effectiveness. To
this end, we model the "node selection" process within
the FBNF grammar graph as a Monte Carlo Tree Search
(MCTS) and employ a UCT-Rand algorithm to guide the
generation process. During fuzzing, we leverage the parsing
feedback from the target implementation on previously gen-
erated JWTs to dynamically adjust the selection weights of
nodes in the grammar graph, thereby progressively "learning"
the internal semantic logic of the target and enabling more
directed testing.

RQ2: How do we detect JWT vulnerabilities automati-
cally?

Prior fuzzing methodologies typically detect vulnerabilities
by observing program exceptions, such as crashes. However,
JWT security issues manifest as logic bugs and often do not
trigger explicit program exceptions.

To overcome this limitation, we have developed a novel
differential analyzer for detecting JWT vulnerabilities based
on differential testing [15], [16], [17]. This analyzer consists
of two key components: (1) Cross-library differential analyzer:
This component compares the output behavior of different
JWT libraries to detect logical vulnerabilities. When process-
ing the same JWT input, distinct libraries with identical func-
tionality should yield the same output (e.g., a valid or invalid
JWT verification result) . A discrepancy in outcomes across
different implementations for the same input is flagged as
a potential vulnerability. (2) Resource consumption detector:
This component continuously records the performance of each
library during fuzzing, including CPU utilization and memory
consumption. First, we obtain the average values of resource
consumption from baseline tests. Then we track the resource
usage before and after each fuzzing session, paying attention
to whether it exceeds the threshold generated by the baseline
tests. If the resource consumption significantly exceeds the
baseline, the implementation is flagged as having a potential
Denial of Service (DoS) vulnerability.

RQ3: What is the current prevalence of vulnerability
among real-world JWT implementations?

To investigate security issues in real-world JWT imple-
mentations, we conduct the first large-scale, systematic eval-
uation across 43 widely-used libraries spanning 10 popular
programming languages. Our analysis reveals 31 previously
unknown vulnerabilities. These vulnerabilities fall into five
categories—three enabling authentication bypass and two lead-
ing to Denial-of-Service (DoS) attacks. The authentication by-
pass issues can be exploited to forge tokens that are mistakenly
accepted as valid, while the DoS vulnerabilities can exhaust
server resources through crafted inputs, affecting availability.
We categorize the root causes of JWT vulnerabilities into
three classes and propose corresponding mitigation strategies.
These measures target both the JWT specification itself and
the implementations by library developers. We have shared our
findings and proposals with the IETF, which has acknowledged
our work and plans to incorporate our recommendations into
a new RFC document.
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Fig. 3: JWTeemo Workflow

IV. JWTEEMO: DESIGN AND IMPLEMENTATION

A. Workflow

We design and implement JWTeemo, a framework designed
to detect security vulnerabilities in JWT implementations
through automated and efficient fuzzing. Figure 3 presents
the workflow, which consists of two primary modules: the
Rule Generator and the Grammar-based Fuzzing module. In
the Rule Generator module, we first manually craft a set of
grammar rules based on the relevant RFC specifications for
JWT. For this, we use Function-extended Backus-Naur Form
(FBNF), a novel descriptive language we developed by extend-
ing the traditional Augmented Backus-Naur Form (ABNF).
An FBNF parser then processes these rules to construct an
FBNF parsing graph. The Grammar-based Fuzzing module
traverses this graph to generate an initial JWT corpus, and
subsequently utilizes a mutator to apply a series of mutation
strategies to this corpus. The resulting JWTs are then sent to
the target JWT implementations. Based on the feedback from
the JWT implementations, a generator adjusts the weights of
the nodes in the FBNF generation graph. Finally, a differential
analyzer is employed to identify and report discrepancies in
parsing results and resource consumption among different
JWT implementations.

B. Rule Generator

Listing 1: An example of JWT’s FBNF
1 JWT = JWS / JWE
2 JWS = CompactJWS / FlattenJWS
3 CompactJWS = b64header "." b64payload "." base64_encode(

signature)
4 signature = if(alg_value,{
5 "HS256": HMACUsingSHA256(key, b64header "."

b64payload),
6 "RS256": RSAUsingSHA256(key, b64header "."

b64payload),
7 }

FBNF Rules The Augmented Backus-Naur Form (ABNF)
is widely adopted for describing the context-free grammar
of Internet protocols. Its rules are typically expressed in the
format Rule = Definition, where the left side is the
rule name and the right side is its definition. ABNF sup-
ports fundamental operations such as concatenation, selection,
and repetition. However, the generation process for protocol
formats like JWT often involves functional operations and
contextual dependencies, the semantics of which lie beyond
the expressive capabilities of traditional ABNF.
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To address this limitation, we propose FBNF (Function-
extended BNF), an extended formalism that introduces two
novel constructs to ABNF: function invocation and context-
aware function selection. Within FBNF, a grammar rule can
not only reference static symbols but also embed the semantics
of function calls and contextual choices in its definition.
Specifically, the right-hand side of a rule can formally rep-
resent an invocation of a function and dynamically select
which function to call conditioned on the values of other
syntactic nodes. This allows for a more accurate modeling of
the semantic dependencies inherent in the protocol generation
process.

A concrete example of an FBNF grammar for
JWT is presented in Listing 1. Here, the construct
base64_encode(signature) applies Base64 encoding
to the output of the signature rule. Furthermore, a
conditional if construct dynamically dispatches to the
correct cryptographic function based on the alg_value
parameter: it selects HMACUsingSHA256 for HS256 and
RSAUsingSHA256 for RS256. These functions operate on
arguments including a key and a message body constructed
by concatenating b64header, a dot (".") separator, and
b64payload.

The formal ABNF-style definitions for our extensions,
function invocation and function selection, are presented in
Appendix Listing 3. These extensions cover the syntactic
structures for function invocation and selection while main-
taining the readability and consistency of the original ABNF.
Consequently, FBNF significantly enhances the expressive
power for defining protocol formats. This makes it particularly
well-suited for generation tasks involving security protocols
that require contextual processing and functional execution,
such as Security Assertion Markup Language (SAML) [18].

FBNF Parser The FBNF Parser consists of two primary
components: Grammar-Based Input Analysis and a Trans-
former. The former is responsible for parsing each FBNF rule
into a syntax tree to extract its internal structural relationships.
The latter further transforms these syntax structures into a
unified FBNF parsing graph, which facilitates subsequent
semantic modeling and test case generation.

In the Grammar-Based Input Analysis stage, we employ the
Lark parser generator for lexical and syntactic analysis of the
input FBNF rule set, thereby constructing a Concrete Syntax
Tree (CST) for each rule. Within the CST, each internal node
represents a specific syntactic operator (e.g., concatenation,
selection, function call), while the leaf nodes correspond to
either terminals or invocations of other grammar rules. The
CST preserves the hierarchical structure, compositional rela-
tionships, and semantic logic of the rule, fully encapsulating
its internal structural logic.

The Transformer component then converts all CSTs into
a single, directed FBNF graph, as illustrated in Fig. 4, to
explicitly model inter-rule dependencies. To achieve this, the
Transformer first interprets the specific operator nodes within
each CST. Drawing an analogy from conventional ABNF
parsing, where the three fundamental operations, concatena-
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Fig. 4: FBNF Graph Example

tion, selection, and repetition, are mapped to AND, OR, and
RAND nodes, respectively, we extend this principle for FBNF.
Specifically, the two new operation types introduced in our
FBNF paradigm are translated into FUNC nodes for direct
semantic function calls and IF nodes for conditional function
selection.

After interpreting these intra-rule structures, the Trans-
former builds the complete graph by linking the individual
trees. It traverses the non-terminal leaf nodes of each CST
and, based on their names, adds a directed edge to the root
node of the rule it references. These edges not only represent
structural references but, more critically, capture the contextual
dependency paths within the semantic generation process. For
instance, the alg_value rule is used to construct the alg
field in a JWT Header and also dictates the generation logic
for the signature. To model this semantic dependency,
the Transformer introduces a directed edge in the parsing
graph from the signature node to the alg_value node.
This signifies that the generation of the signature is
contingent upon the resolved value of the algorithm field. Such
dependency edges ensure the sequential integrity of semantic
generation: alg_value must be generated and resolved be-
fore the signature can be produced, thus enabling context-
aware semantic modeling.

C. Grammar-based Fuzzing

JWTeemo leverages grammar-based fuzzing, augmented
by the Upper Confidence Bounds Applied to Trees (UCT)
Rand algorithm [19], to improve the efficiency of identifying
security issues in JWT implementations, regardless of their
implementation language. It generates more effective test cases
through a feedback mechanism implemented for JWTeemo
and the UCT-Rand algorithm. Additionally, a differential
analyzer is used to find vulnerabilities by comparing the
parsing results for the same JWT test case between different
implementations and analyzing the resource consumption of
each implementation individually.

JWT Generator The JWT Generator is responsible for
producing a large volume of syntactically valid test cases based
on the FBNF parsing graph. The graph consists of five node
types, each representing a distinct operation that guides the
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generator’s depth-first traversal. The JWT Generator initiates
the process by targeting the JWT rule as the root node and
recursively traverses the FBNF parsing graph down to its
terminal nodes (e.g., string and numeric literals). Furthermore,
to enhance the efficiency of JWTeemo, we implement a
caching mechanism. During each generation pass, the value
produced by any non-RAND node is cached. This strategy
prevents redundant generation operations that would otherwise
occur when multiple traversal paths converge on the same
node.

The generation strategy is determined by the type of node
being visited during the traversal: (1) AND Node: When
visiting an AND node, the generator must recursively visit all
of its child nodes to proceed with the generation. (2) OR Node:
Upon visiting an OR node, the generator recursively visits
one of its child nodes. (3) RAND Node: This signifies that its
child node is visited a randomized number of times. (4) FUNC
Node: The generator first recursively visits all child nodes to
gather their generated values. These values are then passed as
arguments to a corresponding function, which the user must
predefine in Python. The JWT Generator invokes this function,
and its return value becomes the value of the FUNC node. (5)
IF Node: The traversal first visits the designated condition
child node. The resulting value is then compared against the
keys of a selection-map to determine which function to select.
Subsequently, the generator recursively visits all child nodes
that serve as arguments for the chosen function. The values
from these argument nodes are passed to the selected function,
and its return value becomes the value of the IF node.

Mutator To discover a wider range of potential parsing
ambiguities in JWTs, JWTeemo incorporates a Mutator mod-
ule that performs random mutations at two distinct levels:
structural and content. For structural mutation, the Mutator
randomly selects a non-terminal node from the FBNF graph
and either deletes the subgraph rooted at that node (Node Dele-
tion) or replaces it with a different node (Node Replacement).
For content mutation, it targets a randomly selected terminal
node and either inserts a random character at a random position
within its value or deletes a single character from a random
position. By design, only a small number of these mutations
are applied to any single JWT. This approach allows for
the generation of a greater variety of JWT formats while
ensuring that the token’s fundamental structure is not entirely
corrupted, thereby maintaining its potential to be parsed by
target implementations.

Differential Analyzer The Differential Analyzer is re-
sponsible for identifying anomalous behaviors when different
implementations parse JWTs. Our analysis focuses on two key
aspects: (1) the consistency of parsing results across imple-
mentations, and (2) whether resource consumption within a
single implementation exceeds established thresholds. To ad-
dress these, we designed two corresponding strategies: Parsing
Discrepancy Analysis and Resource Exhaustion Analysis.

The overall workflow, illustrated in Algorithm 1, iterates
through each target JWT implementation. Within each it-
eration, the RuleGenerator module takes the FBNF parsing

graph and enriches the syntax tree T with declarative values
extracted from RFCs. The JWTGenerator then produces a
JWT, which the Mutator alters to create a mutatedJwt. This
mutatedJwt is sent to the implementation under test, and
we collect its parsing result and resource consumption. The
Differential Analyzer then invokes the appropriate strategy.
Finally, the UCT-Rand algorithm updates the FBNF graph,
using the successful parsing by the current implementation as
a feedback signal.

Algorithm 1: Grammar-based Fuzzing Algorithm
Input: G: The initial FBNF graph constructed based

on the RFC specification.
Input: H: An array of JWT Implementations,

H = {H1, ...,Hn}.
Input: k: Resource Usage metric (a constant factor).
Output: differences: An array of captured differences.

1 µ← 0; σ ← 0;
2 repeat
3 jwt seed← JWTGENERATOR(G);
4 jwt← MUTATOR(jwt seed);
5 outputs,RU ← RUNFUZZ(H, jwt);
6 foreach pair (i, j) such that 1 ≤ i < j ≤ n do
7 if outputs[i] ̸= outputs[j] then

/* Differences between
implementations */

8 differences.APPEND((Hi, Hj , jwt));

9 for i← 1 to n do
10 if RU [i] > µ[i] + k · σ[i] then

/* Differences within the same
implementation */

11 differences.APPEND((Hi, jwt));

12 µ[i], σ[i]←
RESOURCEMONITORUPDATE(RU [i]);

13 G← UCTUPDATE(G, outputs);
14 until ENDCONDITIONS();

In the Parsing Discrepancy Analysis strategy, we assess
result consistency based on two conditions: (1) whether one
implementation successfully validates a given JWT while
another fails, and (2) whether both implementations validate
the JWT but return inconsistent parsed content. These checks
are designed to detect vulnerabilities such as authentication
bypass, which can lead to privilege escalation. Any JWT that
triggers such a discrepancy is flagged as anomalous.

The Resource Exhaustion Analysis strategy monitors for
abnormal usage, a common indicator of resource exhaustion
Denial of Service (DoS) vulnerabilities. We focus on two
primary metrics: excessive server CPU utilization and memory
consumption. Adopting the methodology from Rampart [20],
we continuously monitor these metrics and use Chebyshev’s
inequality (Equation 1) to identify statistically significant de-
viations. The inequality states that the probability of a random
variable (X) differing from its mean by more than k standard
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deviations is at most 1/k2. Therefore, if a measured resource
usage value R deviates from the mean by more than a threshold
of k × σ (Equation 2), JWTeemo flags the responsible JWT
as anomalous.

Finally, all JWTs flagged as anomalous by either strategy
are archived in a database for subsequent analysis.

P (|X − µ| ≥ kσ) ≤ 1

k2
(1)

R > µ+ k × σ (2)

UCT Update To enable the fuzzer to learn the internal
validation logic of the target JWT implementation, we intro-
duce a feedback-driven update mechanism based on the UCT
(Upper Confidence bound for Trees)-Rand algorithm [19].
This approach iteratively optimizes the selection of nodes
in the FBNF graph under limited feedback, while balancing
the trade-off between exploration and exploitation to steadily
improve the quality of generated test cases.

In each iteration, a generated JWT is submitted to multiple
widely-used JWT implementations for validation. If more than
50% of the implementations accept the input, the current path
is considered successful; otherwise, it is marked as failed, and
the FBNF graph is updated accordingly.

In UCT-Rand, the selection of the next node v′ given the
current node v follows the strategy shown in Equation 3:

π(v) := weighted rand
v′∈v.children

(
Q(v, v′) + c ·

√
lnN(v)

N(v, v′)

)
(3)

where:
• Q(v, v′) denotes the empirical success rate of generating

a valid JWT by choosing node v′ after v;
• N(v) is the number of times node v has been visited;
• N(v, v′) is the number of times node v′ has been selected

following v;
• c is an exploration coefficient to balance exploitation and

exploration.
This feedback mechanism is particularly effective in iden-

tifying semantic dependencies between claims during genera-
tion. For instance, in a JWE using the PBES2 algorithm, both
p2s and p2c fields are typically required to appear together
for the token to be considered valid. Specifically, the node
selection process over the FBNF grammar is modeled as a
Monte Carlo Search Tree. Suppose the fuzzer selects a path
like “JWE → p2s”, meaning it intends to generate a JWE
token containing the p2s field. The next possible nodes may
include p2c, kid, or exp, yielding candidate paths such as
“JWE→ p2s→ p2c” and “JWE→ p2s→ kid”. If the path
with both p2s and p2c leads to successful validation, while
the one with only p2s fails, the algorithm records a higher
empirical success rate for the former. In subsequent iterations,
when revisiting the state “JWE→ p2s”, the algorithm is more
likely to select p2c as the next node. This allows the fuzzer to
adaptively learn and preserve inter-claim dependencies during
generation.

V. EVALUATION AND FINDINGS

A. Experiment Setup

Dataset. To test the effectiveness of JWTeemo, we consid-
ered the top 16 programming languages in the TIOBE [21]
ranking, and selected the JWT libraries with GitHub stars ≥
100 from jwt.io [22] for testing, a total of 43 libraries. The
detailed contents are shown in Appendix Table IV. We wrote
a harness for each library as an implementation for receiving
and verifying JWTs.

Setup. JWTeemo is deployed on an Ubuntu server with
a 4.1GHz 32-core CPU and 512G RAM. We designed and
implemented a corresponding harness for each target library as
the JWT implementation to receive and verify JWT. Each har-
ness independently listens to a port, through which JWTeemo
can send a JWT to the corresponding implementation. If the
parsing is successful, the Harness returns the parsing result
of the JWT, otherwise the Harness returns the error message
during the parsing for further analysis.

B. Discovering Real-World JWT Vulnerabilities

During the experiment, JWTeemo generated a total of
100,000 JWT test cases. Among them, 9,383 JWTs triggered
parsing inconsistencies across different implementations. To
avoid counting the same type of ambiguity multiple times,
we applied a deduplication step: if several test cases failed
on the same set of JWT implementations and produced the
same error messages, we treated them as the same issue and
grouped them together. After grouping the cases, we obtained
442 distinct JWT test cases, each representing a unique type of
parsing error. We then manually analyzed these 442 cases and
examined the pairwise parsing discrepancies among the JWT
implementations. In total, JWTeemo revealed 1,804 observable
differences across pairs of implementations.

Through our manual analysis, we identified five types of
discrepancies across different implementations, three of which
indicate concrete security issues in JWT implementations.
Additionally, we discovered two types of intra-implementation
resource consumption differences, both of which also reflect
security problems in JWT implementations. Overall, JWTeemo
detected 31 security issues from 43 implementations, includ-
ing 2 Sign/Encryption Confusion vulnerabilities, 2 Algorithm
Confusion vulnerabilities, 10 Billion Hashes Attack vulnera-
bilities, 13 Compression DoS vulnerabilities, and 4 implemen-
tations supporting the parsing of JWS in JSON format, which
had the risk of JWT Format Confusion. Notably, the first three
vulnerability categories can lead to token spoofing, enabling
attackers to forge or tamper with tokens and bypass authenti-
cation, while the latter two expose implementations to JWT-
based DoS attacks. In addition, 71.9% of the implementations
supporting the PBES2 algorithms have Billion Hashes Attack
flaws, and 86.7% of the implementations supporting JWE have
Compression Attack flaws. All the vulnerabilities we found are
shown in Table I. In modern Internet systems, JWTs are widely
used for service authentication and authorization, and both
token spoofing and DoS vulnerabilities can severely undermine
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Language Library Github Stars Version LLoC Vulnerability CVE Number

Python

python-jose 1.5k 3.3.0 3,726 Compression DoS CVE-2024-29370

jwcrypto 430 1.5.0 6,393
Billion Hashes Attack CVE-2023-6681

Compression DoS CVE-2024-28102
JWT Format Confusion Fixed

authlib 4.5k 1.2.1 22,586 Compression DoS Unassigned

C
latchset/jose 170 11 9,274

Billion Hashes Attack CVE-2023-50967
JWT Format Confusion Unassigned

libjwt 368 1.15.3 5,175 Algorithm Confusion CVE-2024-57453

C++ cpp-jwt 387 1.4 3,357 Algorithm Confusion CVE-2024-57454

Java

jjwt 10.1k 0.12.3 18,621
Billion Hashes Attack CVE-2024-39960

Compression DoS Unassigned
Compression DoS (in JWS) Unassigned

jose4j N/A 0.9.3 30,282
Billion Hashes Attack CVE-2023-51775

Compression DoS CVE-2024-29371

nimbus-jose-jwt N/A 9.37.1 50,324
Billion Hashes Attack CVE-2023-52428

Compression DoS Unassigned

C# jose-jwt 933 4.1.0 19,576
Sign/Encrypt Confusion CVE-2024-24238

Compression DoS CVE-2024-27663

JavaScript
jose 5.3k 5.1.3 20,598 Compression DoS CVE-2024-28176

node-jose 699 2.2.0 17,128
Billion Hashes Attack CVE-2024-39960

Compression DoS Unassigned

PHP jwt-framework 881 3.2.8 16,949
Billion Hashes Attack Fixed

Compression DoS Unassigned

Go

jose2go 186 1.5.0 3,580
Billion Hashes Attack CVE-2023-50658

Compression DoS CVE-2025-63811

go-jose 2.3k 3.0.1 16,256
Compression DoS CVE-2024-28180

JWT Format Confusion Unassigned

jwx 1.9k 2.0.17 37,837
Billion Hashes Attack CVE-2023-49290

Compression DoS CVE-2024-28122
JWT Format Confusion Fixed

Ruby json-jwt 297 1.16.3 2,883 Sign/Encrypt Confusion CVE-2023-51774

TABLE I: New JWT vulnerabilities discovered by JWTeemo. N/A indicates the library is not open source on GitHub.

these security guarantees. In particular, token forgery attacks
allow adversaries to gain unauthorized access or escalate
privileges, while DoS attacks can be triggered at minimal cost
by maliciously crafted tokens that exhaust memory or CPU
resources on authentication servers, potentially causing service
outages.

1) Differences between implementations: The final results
of the differences found are shown in Appendix figure 12.
We classified these differences into five categories based on
root causes: (1) Sign/Encryption Confusion; (2) Algorithm
Confusion; (3) JWT Format Confusion; (4) Different Claims
Checker; (5) Different Algorithm Support. The first three
differences can be exploited for signature verification bypass
and token spoofing.

Sign/Encryption Confusion During fuzzing, we discovered
that when using a JWS public key to encrypt and generate a
JWE-type JWT, the JWT could be validated by two different
implementations. This parsing discrepancy leads to an attack
scenario as shown in Figure 5a. The attacker first obtains the

public key used for validating the JWS signature. Then, they
log in normally to get a JWS containing their role. The attacker
next modifies the payload’s role to admin. Finally, they use
the obtained public key to encrypt the payload and create a
forged JWE. Vulnerable JWT implementations, when parsing
this JWT, determine it to be a JWE based on the number of
dots "." in the JWT, and then use the corresponding private
key to decrypt it. This results in successful authentication,
allowing the attacker to escalate privileges. As shown in
Appendix Figure 13a, the Generator module of JWTEEMO
starts from the JWT node, selects the JWE subnode and the
subsequent opaque nodes shown in the FBNF Graph according
to its generation strategy, including the alg_value node
with the value RSA-OAEP, and uses the non-terminal nodes
as generation roots to further traverse their subnodes and
instantiate the corresponding productions, thereby generating
the resulting payloads as test inputs.

Algorithm Confusion During fuzzing, we found that when
the JWS’s alg claim is set to HS256, and the public key
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(a) Sign/Encrypt Confusion: A vulnerable JWT Implementation
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(c) JWT Format Confusion: A vulnerable JWT Implementation
misidentifies the JWT Format. This allows attackers to convert
legitimate Compact-format JWT into JSON-format JWT and
insert forged payload and enabling arbitrary token forgery.

Fig. 5: Three types of JWT vulnerabilities discovered by
differences between implementations

is used as the HMAC secret for signing, the JWS can be
validated by two implementations. This parsing discrepancy
leads to an attack scenario as shown in Figure 5b. The
attacker first obtains the public key used for validating the
RSA signature and logs in normally to get a JWS containing
their role. The attacker then modifies the alg claim in the
JWT Header to HS256 and changes the payload’s role to
admin. Finally, the attacker uses the obtained public key as
the HMAC secret to sign the JWT and create a forged JWT.
Vulnerable JWT implementations, when parsing this JWT,
select the HMAC algorithm based on the alg claim in the
Header and use the public key as the secret to validate the
signature, allowing the attacker to bypass authentication and
escalate privileges. As shown in Appendix Figure 13b, the
Generator module of JWTEEMO starts from the JWT node,
selects the JWS subnode and the subsequent opaque nodes
shown in the FBNF Graph according to its generation strategy,

including the alg_value node with the value HS256, and
treats the selected non-terminals as roots to synthesize test
payloads.

JWT Format Confusion During fuzzing, we discovered
that when generating a JSON-type JWS, the JWS could pass
validation from four different implementations. This parsing
discrepancy could lead to an attack scenario as shown in
Figure 5c. The attacker first logs in normally to obtain a
JWS containing their role. They then convert this JWT into
a JSON JWT type as shown in the figure, inserting a forged
claim "fake":".eyJyb2xlIjoiYWRtaW4ifQ." (URL-
safe base64-encoded of {"role":"admin"}) in the pay-
load. As shown in Appendix Figure 13c, the Generator module
of JWTEEMO starts from the JWT node, selects the JSON
JWS subnode allowed by the JWS RFC [7], even though
such a format is not permitted by the JWT RFC [6], and uses
the non-terminal nodes as generation roots to instantiate the
corresponding productions, thereby generating the resulting
payloads that violate the expected format constraint.

Vulnerable JWT implementations, when parsing this JWT,
check the protected, payload, and signature fields
and wrongly determine it to be a valid JWT. However,
when the Web App extracts the payload by splitting the
JWT by periods ("."), they retrieve the attacker’s forged
eyJyb2xlIjoiYWRtaW4ifQ payload, which results in
privilege escalation. A specific case of this vulnerability was
discovered in Kubernetes, detailed in Case Study 1 in Sec-
tion V-E.

Different Claims Checker This issue poses a potential
security risk. We found that after JWT signature verification,
20 implementations automatically check whether the exp claim
is expired, etc., while other implementations do not check,
or only provide an interface but do not call it automatically.
However, application developers may not notice the expiration
of exp claim. If the implementation does not provide automatic
checking function, JWT may still be used after expiration,
increasing the risk of session hijacking.

Different Algorithm Support The reason for this dif-
ference is that different implementations support different
algorithms, and this difference is common between imple-
mentations. After our analysis, such differences will affect the
compatibility of JWT in different applications, but will not
directly cause security issues.

False Positive Analysis. A comprehensive examination
of the 1,804 parsing discrepancies illustrated in Appendix
Figure 12 revealed that 635 of these cases were attributable
to false positives, resulting in an overall false-positive rate of
35.1%. All of these false positives stem from implementation-
specific support differences among libraries, particularly in-
consistencies in how supported algorithms and JWS/JWE fea-
tures are handled. For instance, some implementations throw
an exception when encountering an unsupported algorithm,
whereas another implementation that does support that algo-
rithm proceeds to parse successfully. Such behavioral asymme-
try leads the differential analysis to misclassify these benign,
capability-driven divergences as meaningful discrepancies.
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Fig. 6: Two Types of JWT vulnerabilities discovered by
differences within the same implementations

2) Differences within the same implementation: In order to
detect differences within the JWT implementation, we contin-
uously monitored and compared the CPU usage and memory
consumption of the JWT implementation when parsing the
JWT generated by JWTeemo. We used formula |R−µ| > kσ
to determine whether the current CPU usage and memory
consumption significantly exceeded the baseline.
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Fig. 7: Resource Consumption of JJWT Under JWTeemo

Figures 7 and 8 are the test results for the jjwt library [23]
(Java, 10.1k Stars) and the jwx library [24] (Go, 1.9k Stars),
respectively. In these two charts, the blue line represents the
resource consumption of the server caused by the JWTs sent
by JWTeemo, and the blue line represents the calculated
baseline. According to our analysis, the sharp increase in CPU
usage caused by JWTeemo is due to the fact that the JWT we
generated caused the target server to perform a large number
of hash operations, that is, Billion Hashes Attack. The sharp
increase in memory consumption caused by JWTeemo is due
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Fig. 8: Resource Consumption of JWX Under JWTeemo

to the fact that the JWT we generated caused the target server
to decompress a long string, that is, Compression DoS.

Billion Hashes Attack This vulnerability scenario is illus-
trated in Figure 6a. The attacker first creates a JWE encrypted
using the PBES2 algorithm, then modifies the p2c claim
in the JWT header to a large value and sends the modified
JWT to the Web App. The p2c claim defines the number
of iterations applied to the underlying hash function (e.g.,
SHA-256) during key derivation. When decrypting the JWE,
the JWT implementation uses this value to derive the Content
Encryption Key (CEK), meaning that a large p2c value results
in a highly expensive key derivation process. As a result,
an attacker can exploit this claim to force the server into
performing excessive hash computations, leading to high CPU
usage and causing a Denial-of-Service (DoS) attack. As shown
in Appendix Figure 13d, the Generator module of JWTEEMO
starts from the JWT node and first generates a JWE using
the PBES2 algorithm in the relevant subnode by recursively
expanding non-terminal nodes. Then, through the mutation
module, it mutates the p2c claim to a large number, thereby
producing concrete payloads that serve as test inputs.

Compression Attack The attack scenario is illustrated in
Figure 6b. The attacker first constructs a JWE containing a
long string in the payload. In the header, the attacker sets
{"zip":"DEF"}, indicating that the payload is compressed
using the Deflate algorithm. When the server parses this
JWT, it decompresses the payload, which results in high
memory consumption. As shown in Appendix Figure 13e, the
Generator module of JWTEEMO starts from the JWT node
and first generates a JWE with zip compression in the relevant
subnode. Then, through the mutation module, it mutates the
payload to include long strings, which are then fed to the
fuzzing harness.

Notably, we found that the JJWT library accepts the zip
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claim within a JWS, even though the RFC explicitly states
that the zip claim is only allowed in a JWE. This RFC-
violating payload was discovered through mutation-based
fuzzing in JWTeemo, highlighting the necessity of grammar-
based fuzzing in uncovering such edge cases. As shown in
Appendix Figure 13f, the Generator module of JWTEEMO
starts from the JWT node and first generates a JWS. Then,
through the mutation module, it inserts the zip subnode from
the JWE subgraph into the header node, producing mutated
tokens that are then fed to the fuzzing harness.

C. Ablation Experiments

To evaluate the contribution of each component in JW-
Teemo, we conducted ablation experiments and designed two
fuzzer variants, each disabling one of its key mechanisms:
the UCT Update and the Mutator. We measured two met-
rics—Covered Edges and Time-to-Discover—to assess explo-
ration efficiency and vulnerability detection capability, where
Time-to-Discover denotes the time (in seconds) at which each
vulnerability was first identified. We ran five fuzzing sessions
per configuration and reported the median as the final result.

Assessing the UCT Update. We disabled the UCT-based
exploration update (JWTeemo w/o UCT Update) to analyze
its impact on exploration efficiency. We measured the tem-
poral evolution of covered edges over time on the JJWT
implementation. As shown in Figure 9, JWTeemo w/o UCT
Update exhibited slower growth in edge coverage, indicating
that the absence of guided exploration reduced the diversity
of explored inputs. Moreover, in the Time to Discover Vul-
nerabilities evaluation as shown in Table II, JWTeemo w/o
UCT Update required a longer time to identify known issues,
confirming that UCT updates accelerate effective exploration
and improve fuzzing stability.

Assessing the Mutator. We disabled the mutation en-
gine (JWTeemo w/o Mutator) to evaluate its effect on input
diversity and vulnerability discovery. In this configuration,
JWTeemo w/o Mutator relied solely on FBNF graph traversal
without dynamic node mutation. We observed a noticeable
slowdown in coverage growth on the JJWT library and a
reduced ability to reach deep parsing paths. In the Time

to Discover Vulnerabilities analysis, JWTeemo w/o Mutator
failed to uncover two vulnerability types detected by the full
version. These results suggest that mutation-based exploration
is essential for maintaining input diversity and improving over-
all fuzzing effectiveness. The comparative results for coverage
and vulnerability discovery are summarized in Figure 9 and
Table II.

D. Comparison with Other JWT Tools.

To evaluate the effectiveness of JWTeemo, we conducted
a comparative experiment with two state-of-the-art (SOTA)
tools: JWT Tool [13] and the JWT Editor plugin for Burp
Suite [14]. To ensure a fair comparison, we modified our
fuzzing harness to expose a simple web-based interface that
accepts JWT tokens via HTTP requests and returns status code
200 when a token is successfully parsed and validated, or 403
otherwise. This unified interface allowed all tools—including
JWTeemo, JWT Tool, and JWT Editor—to be tested under
consistent conditions. For JWT Tool, executed a full scan,
interacting entirely with the harness via the web interface. The
tool generated and submitted various crafted tokens using its
built-in payloads and heuristics. If any of the injected tokens
bypassed the validation logic (i.e., triggered a 200 response),
we considered the corresponding vulnerability detected. For
JWT Editor, which is a semi-automated Burp Suite extension,
we manually tested each of its exploit modules against the
same web interface. For each vulnerability type, we loaded
a sample token into the editor, applied the relevant attack
options, and submitted the result to the server.

After applying all three tools to the harness, we recorded
each tool’s branch coverage on the JJWT library and the time
required to discover vulnerabilities. The results are summa-
rized in Table III. As shown, JWT Tool and JWT Editor both
achieved limited coverage and detected only the Algorithm
Confusion vulnerability, with JWT Editor further requiring
manual effort to operate. In contrast, JWTeemo attained
higher coverage and discovered vulnerabilities more efficiently
through its automated and systematic fuzzing process.

Our analysis of the results reveal that both existing tools
only collect known exploits and rely on predefined payloads
for detection, and therefore their ability to identify vulnerabil-
ities is limited, making them less effective for comprehensive
vulnerability discovery.

E. Case Study

When we manually analyzed the detected vulnerabilities,
we found two noteworthy cases, which affected the identity
authentication service of kubernetes, and the SMTP authenti-
cation service of Apache/James-project.

Case Study 1: Authentication Bypass in Kubernetes
This vulnerability corresponds to the JWT Format Confu-

sion issue discussed earlier. Kubernetes [3] (K8s) is a widely
adopted open-source system for automating the deployment,
scaling, and management of containerized applications. In
such distributed systems, authentication and authorization
are frequently built upon JWTs, which serve as portable,
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Configuration Sign/Encrypt
Confusion

Algorithm
Confusion

JWT Format
Confusion

Billion Hashes
Attack

Compression
Attack

JWTeemo 43.2 8.7 27.2 2535.6 5349.4
JWTeemo w/o UCT Update 60.2 56.3 66.9 3204.4 20106.2

JWTeemo w/o Mutator 46.8 9.7 31.3 N/A N/A

TABLE II: Time to Discover Vulnerabilities (in seconds) under different ablation settings.

Tools
Time to Discover (s)

Covered EdgesSign/Encrypt
Confusion

Algorithm
Confusion

JWT Format
Confusion

Billion Hashes
Attack

Compression
Attack

JWTeemo 43.2 8.7 27.2 2535.6 5349.4 780
JWT Tool N/A 1.1 N/A N/A N/A 473

JWT Editor N/A 60✱ N/A N/A N/A 509

TABLE III: Comparison of JWTeemo with existing tools. ✱ indicates manual assistance is required.

Verify JWS in
JSON FormatAttacker

Kubernetes API Server

Forge JWS

Extract iss in
Compact Format

issuer
admin

JWT LIB
Go-JOSE

Status
Valid

Access Control Mechanism

ActionPod

Allowadmin

Vuln: Bypass Authentication

Fig. 10: Authentication Bypass in Kubernetes

cryptographically verifiable identity credentials. For example,
Kubernetes uses JWT-based ServiceAccount tokens to allow
pods to authenticate to the API server and to other services.

When verifying a ServiceAccount token, the Kubernetes
API server must ensure the token was issued by the cluster’s
internal identity provider. This typically involves checking the
iss (issuer) claim against the configured expected issuer.
This validation step is crucial for establishing trust boundaries
between workloads and control-plane components.

However, we discovered a logic flaw in Kubernetes token
verification flow that leads to bypassing authentication, as
shown in Figure 10. This vulnerability corresponds to the
JWT Format Confusion issue discussed earlier, which arises
from a discrepancy between how Kubernetes extracts the iss
claim and how it verifies the JWT’s signature. Specifically,
the Kubernetes API server attempts to parse incoming tokens
as if they are always in Compact format JWT—splitting
on dots (".") and base64-decoding the middle segment to
extract claims like iss. In contrast, Kubernetes delegates
cryptographic validation to the go-jose library [25], which
also supports JSON format JWT, where the payload is stored
in a named field of a JSON object. This mismatch can be
exploited by crafting a JWT in JSON format that embeds
a spoofed payload string (e.g., in the fakeiss field), as
demonstrated in Listing 2.

Here, the fakeiss field contains a base64url-encoded
string that decodes to {"iss":"fakeissuer"}. When
Kubernetes’s validation logic naively splits and decodes this
string, it mistakenly interprets the forged issuer as valid.

{
"fakeiss": ".eyJpc3MiOiJmYWtlaXNzdWVyIn0.",
"protected": "real_header",
"payload": "real_payload",
"signature": "real_signature"

}

Listing 2: Simplified payload for exploiting the JWT
vulnerability in Kubernetes.

James Mail 
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Crafted JWT Decompress Payload

Without Verification
Remove

Signature Part JWT Lib
JJWT

Memory 
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Vuln: Denial of Service

Fig. 11: Denial Of Service in Apache/James

Meanwhile, the actual JWT signature remains intact and is
verified by go-jose using the legitimate payload, which does
not contain the spoofed issuer. As a result, the attacker can
pass issuer validation while controlling the effective identity
used for authorization. We reported this vulnerability to the
Kubernetes security team and received a bug bounty for our
disclosure.

Beyond Kubernetes, we identified a similar JWT vulnerabil-
ity in another widely deployed distributed system: OpenShift’s
Telemeter [26], a Red Hat-operated telemetry component
responsible for securely collecting and forwarding cluster met-
rics. Telemeter uses JWTs to authenticate incoming telemetry
data sources. By applying the same exploitation technique,
we were able to bypass Telemeter’s authentication mecha-
nism using a forged JSON-serialized token. This vulnerability
was responsibly disclosed and has been assigned CVE-2024-
5037 [27]. These findings illustrate that JWT format confusion
in token processing is not an isolated mistake but a recurring
class of bugs in real-world cloud-native systems, highlighting
the importance of maintaining semantic consistency in token
parsing and validation to ensure end-to-end security.

Case Study 2: Compression DoS in Apache James-
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Project.
This vulnerability corresponds to the Compression DoS

issue discussed earlier. Apache James-Project [28] is a com-
plete, stable, secure, and scalable mail server developed by
Apache. During SMTP login, it supports OAuth authentication
where users provide a JWT token verified against an internally
configured JWKs.

However, we discovered a logic flaw in Apache James-
Project’s token verification that leads to Denial-of-Service
(DoS) attacks, as shown in Figure 11. In its JWT implemen-
tation, James-Project directly extracts the kid claim from the
JWT payload to locate the verification key before signature
verification. The JWT implementation used JJWT library [23],
which supports the use of the zip claim in the header of
JWS to indicate payload compression. Attackers can exploit
this feature by crafting a JWT with a highly compressed
long string. Because James-Project decompresses the payload
before verification to extract the kid, an attacker can trigger
excessive resource consumption without knowing the key,
resulting in Denial-of-Service (DoS) attacks. We reported this
vulnerability to the developers, who acknowledged and fixed
this vulnerability.

VI. DISCUSSION

A. Root Cause Analysis

The JWT security we discovered can be attributed to
three major factors. First, JWT implementations often mis-
understand the proper use of different JWT algorithms. For
instance, in the case of Algorithm Confusion, developers allow
public keys, intended for verifying asymmetric signature, to
validate symmetric JWS signature without verifying whether
the key is appropriate for symmetric algorithms. Similarly, in
Sign/Encryption Confusion, while developers restrict keys to
asymmetric algorithm, they fail to enforce further constraints
limiting the key’s use to either signature verification or de-
cryption. These issues stem from a lack of enforcement in
restricting keys to specific cryptographic functions.

Second, while the JWT RFC standard [6] supports a broad
range of features, implementations often fail to implement
these features in strict compliance with the specification.
For example, in JWT Format Confusion, developers provide
support for JSON Format JWS, which is explicitly not allowed
in JWT RFC. Additionally, as discussed in Section V-E,
developers implement the zip claim in JWS but it is also
not allowed in JWT RFC.

Third, the JWT specification lacks sufficient risk warnings
for certain claims, and many implementation developers may
lack the necessary cryptographic expertise. Specifically, in
the Billion Hashes Attack, the specification does not caution
that the p2c claim could lead to excessive CPU consump-
tion. Similarly, the specification does not address the risks
associated with the zip claim, which can be exploited for
a Compression DoS attack. RFC8725 [29] defines the Best
Current Practices (BCP) for JSON Web Tokens. However, this
standard is not actively maintained and has become outdated,
failing to address the security issues identified in our research.

By exposing these vulnerabilities, our work highlights the need
for stronger security practices in JWT library development and
calls for enhancements in the JWT specification to provide
clearer guidance on potential risks.

B. Mitigation

While RFC 8725 provides valuable document for JWT
best current practice, we found four types of vulnerabilities
we discovered are not covered in RFC 8725. We proposed
new mitigations based on our findings: (1) Billion Hashes
Attack: Recommend limiting the p2c claim size in PBES2-
encrypted JWEs to prevent denial of service. (2) JWT Format
Confusion: Advise against parsing JSON-type JWS in JWT
implementations to mitigate authentication bypass risks. (3)
Compression DoS: Suggest an upper limit on JWE payload
lengths to prevent resource exhaustion attacks. (4) Sign/En-
cryption Confusion: Recommend excluding both public and
private keys in JWKs, enforcing use claim checks, and
clarifying JWS/JWE handling.

For JWT implementation developers, adherence to JWT
standards is crucial. Developers should focus on the following
aspects: (1) The usage of a JSON Web Key (JWK) must be
strictly constrained to enhance security. According to RFC
7517, the use claim should be specified to distinguish whether
a public key is intended for encrypting JWE or verifying
JWS, reducing the risk of Sign/Encryption Confusion attacks.
Additionally, the alg claim should also be implemented
to restrict the key to specific algorithms, thereby mitigating
Algorithm Confusion attacks. Developers must ensure that
these claims are properly handled when processing JWKs.
(2) JWT implementation developers should avoid supporting
excessive or unnecessary features, such as parsing JWT in
JSON format. By implementing these recommendations, both
the JWT standard and JWT library developers can significantly
reduce the risk of security vulnerabilities.

We contacted the IETF with the proposed mitigations to
RFC 8725. The RFC 8725 authors have acknowledged our
work are worthy of inclusion in the RFC and recognized that
they would draft a new Best Current Practices (BCP) document
to include our proposed mitigations.

C. Limitation

Although JWTeemo can automatically detect parsing dis-
crepancies among different JWT implementations, determin-
ing whether these discrepancies constitute security issues still
requires manual analysis. In addition, since different JWT
implementations support different algorithms and JWT struc-
tures (JWS/JWE), false positives may arise due to functional
differences rather than security flaws. As large language
models (LLMs) can understand and summarize discrepancies
described in natural language, future work could leverage
LLMs (e.g., GPT [30], Gemini [31], LLaMA [32]) to analyze
and cluster these discrepancies, thereby reducing manual effort
and improving analysis efficiency.
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VII. RELATED WORK

A. JWT Security

Previous work on JWT security can be broadly classified
into two categories. On the one hand, tools like JWTKey [5]
focus on identifying vulnerabilities related to key management,
but overlook security risks arising from JWT implementations.
On the other hand, approaches that attempt to address security
issues caused by the characteristics of JWTs, such as the
rule-based scanner JWT Tool [13], are often ad-hoc and rely
on manually crafted rules. This method lacks the ability to
uncover new variants of attacks, as rules are often static and
do not cover the evolving landscape of novel vulnerability
patterns. To date, no systematic study has been conducted for
JWT vulnerability. The attack in JWT Parkour [11] aims to
”bypass the signature mechanism”, and 5 attack methods and
five mitigation measures are proposed; however, the attack
methods proposed in this work are relatively scattered, and
only target JWS, and no automated detection solution is pro-
posed. In Three New Attacks Against JSON Web Tokens [12],
the author proposed three new types of attack methods and
proposed mitigation measures for JWT specification develop-
ers, JWT library developers, and JWT application developers.
However, this work did not propose an automated detection
solution. In summary, there is currently a lack of automated
methods for exploiting vulnerabilities implemented by JWT,
and most studies do not fully consider JWT’s security issues.
In contrast, our work systematically covers all forms of JWT
and implements automated detection.

B. Grammar-based Fuzzing

Grammar-based fuzzing has also been used in many works
to automate vulnerability detection [19], [33], [34], [35], [36],
[17]. One of the works is Wafmanis [33], which uses grammar-
based fuzzing to discover the differences in HTTP protocol
parsing between WAF and web applications, and bypass the
WAF. REQSMINER [19] uses grammar-based fuzzing and
UCT-Rand algorithm to detect inconsistencies in CDN for-
warding. Both of the above works have achieved good results
through Grammar-based Fuzzing.

VIII. CONCLUSION

In this paper, we conducted the first systematic study of
JWT vulnerability. We have introduced JWTeemo, a novel
automated tool designed to detect JWT application vulnerabil-
ities. We evaluated JWTeemo on 43 real-world JWT libraries.
JWTeemo discovered 31 new JWT vulnerabilities and 20 new
CVE IDs were assigned, demonstrating the practical utility
of JWTeemo in JWT vulnerability detection. We responsibly
disclosed our vulnerabilities and provided mitigation measures
for different JWT users. We hope our work can aid the com-
munity in addressing the rising threats of JWT vulnerabilities.

IX. ETHICS CONSIDERATIONS

First, our research sets up testing environments on our
local server to avoid interfering with real-world websites
and networks. Second, we responsibly reported all identified

vulnerabilities in detail to the corresponding vendors and CVE
Numbering Authorities, and received positive responses and
acknowledgments. Specifically, we followed the responsible
disclosure procedures described in each vendor’s Security
Policy when available. If a vendor did not provide a public
Security Policy, we reported the issue through their official
repository channels, such as GitHub or Bitbucket issue track-
ers. Among them, 23 vulnerabilities have been patched with 20
CVEs assigned. The remaining cases are still under evaluation
by developers. Up to now:

• Apache acknowledged our vulnerability report to James-
Project [28] and released a fix.

• Connect2id acknowledged our report to nimbus-jose-
jwt [37] and has assigned a CVE identifier for the
reported vulnerabilities.

• Kubernetes accepted our report, fixed the vulnerability,
and awarded us a bug bounty.

• Latchset acknowledged our report to jwcrypto [38] and
jose [39] and has assigned CVE identifiers for the re-
ported vulnerabilities.

• Let’s Encrypt acknowledged our report to go-jose [25]
and has assigned a CVE identifier for the reported vul-
nerability.

• RedHat acknowledged our reports to OpenShift Teleme-
ter [26], a RedHat-operated telemetry service, and as-
signed a CVE identifier for the reported vulnerabilities.

In addition, we have reported the mitigation strategies
proposed in this paper to the authors of RFC 8725. These
mitigations have been formally presented and discussed at
an IETF meeting, encouraging feedback from participating
experts. The working group is currently incorporating our
findings into the new JWT Best Current Practice (BCP) Draft
RFC, which has reached version 022 and is expected to enter
Working Group Last Call soon.
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APPENDIX

A. Definitions for Function Invocation and Function Selection

Listing 3 defines the formal ABNF-style grammar used
to specify the structure of function invocations and function
selection expressions. The rules describe how a function name,
its parameters, conditional selection constructs, and key–value
selection mappings are syntactically formed.

Listing 3: Formal ABNF-style Definitions for Function
Invocation and Function Selection

1 func-invocation = func-name "(" [ parameters ] ")"
2 func-name = ALPHA *( ALPHA / DIGIT / "_" )
3 parameters = parameter *( "," parameter )
4 parameter = rulename
5

6 func-selection = "if" "(" condition "," selection-map ")
"

7 condition = rulename
8 selection-map = "{" selection-entry *( "," selection-

entry ) "}"
9 selection-entry = quoted-key ":" rulename

10

11 quoted-key = DQUOTE *( %x21-21 / %x23-5B / %x5D-7E )
DQUOTE
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B. Evaluation Dataset

Table IV lists the JWT libraries included in the evaluation dataset. For each library, the table provides its programming
language, version, and GitHub star count where available.

Language Library Version Stars

Python pyJWT[40] 2.8.0 4.8k
Python python-jose[41] 3.3.0 1.5k
Python jwcrypto[38] 1.5.0 430
Python authlib[42] 1.2.1 4.5k
Python python-jwt[43] 1.3.1 140

C jose[39] 11 170
C libjwt[44] 2.1.0 368
C l8w8jwt[45] 2.2.1 111

C++ poco[46] 1.12.5p2 7.6k
C++ jwt-cpp[47] 0.7.0 681
C++ cpp-jwt[48] 1.4 387
Java jjwt[23] 0.12.3 10.1k
Java java-jwt[49] 4.4.0 5.5k
Java fusionauth-jwt[50] 5.3.0 153
Java jose4j[51] 0.9.3 N/A
Java nimbus-jose-jwt[37] 9.37.1 N/A
C# jose-jwt[52] 4.1.0 933
C# jwt[53] 10.1.1 2.1k
C# System.IdentityModel.Tokens.Jwt[54] 7.2.0 1k

JavaScript jose[55] 5.1.3 5.3k
JavaScript jsonwebtoken[56] 9.0.2 17.1k
JavaScript node-jose[57] 2.2.0 699
JavaScript aws-jwt-verify[58] 4.0.0 518

PHP jose-php[59] 2.2.1 138
PHP jwt-framework[60] 3.2.8 881
PHP jwt[61] 5.2.0 7.1k
PHP adhocore/php-jwt[62] 1.1.2 271
PHP cdoco/php-jwt[63] 1.0.0 232
PHP jose[64] 7.2.3 1.8k
PHP firebase/php-jwt[65] 6.10.0 1.4k
Go golang-jwt/jwt[66] 5.2.0 16.4k
Go jose2go[67] 1.5.0 186
Go go-jose[25] 3.0.1 2.3k
Go jwx[24] 2.0.17 1.9k
Go gbrlsnchs/jwt[68] 3.0.1 442
Go cristalhq/jwt[69] 5.4.0 626
Go kataras/jwt[70] 0.1.12 188
Go pascaldekloe/jwt[71] 1.0.12 339
Go sjwt[72] 0.5.1 114

Ruby json-jwt[73] 1.16.3 297
Ruby ruby-jwt[74] 2.7.1 3.5k
Swift JSONWebToken[75] 2.2.0 763
Swift jwt-kit[76] 4.13.4 180

TABLE IV: The targets evaluated by JWTeemo. N/A indicates the library is not an open source on GitHub.
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C. Differences between implementations

Figure 12 illustrates the five types of differences between JWT implementations found by JWTEEMO, including Sign/En-
cryption Confusion, Algorithm Confusion, JWT Format Confusion, Different Claims Checker, Different Algorithm Support.
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Fig. 12: The five types of differences between JWT implementations.
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D. Payload Generation via FBNF Graph

Figure 13 shows how the JWTs that trigger vulnerabilities are derived from the FBNF definitions and how the mutator
module operates on them. Each subfigure shows the FBNF subgraph used by JWTEEMO, where opaque nodes mark the
elements selected by the generator and used to construct the resulting JWTs.
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Fig. 13: Payload generation from the FBNF graph.
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