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Abstract—Confidential virtual machines (CVMs) based on
trusted execution environments (TEEs) enable new privacy-
preserving solutions. Yet, they leave side-channel leakage outside
their threat model, shifting the responsibility of mitigating such
attacks to developers. However, mitigations are either not generic
or too slow for practical use, and developers currently lack a
systematic, efficient way to measure and compare leakage across
real-world deployments.

In this paper, we present SNPeek, an open-source toolkit that
offers configurable side-channel tracing primitives on production
AMD SEV-SNP hardware and couples them with statistical
and machine-learning-based analysis pipelines for automated
leakage estimation. We apply SNPeek to three representative
workloads that are deployed on CVMs to enhance user privacy—
private information retrieval, private heavy hitters, and Wasm
user-defined functions—and uncover previously unnoticed leaks,
including a covert channel that exfiltrated data at 497 kbit/s.
The results show that SNPeek pinpoints vulnerabilities and
guides low-overhead mitigations based on oblivious memory and
differential privacy, giving practitioners a practical path to deploy
CVMs with meaningful confidentiality guarantees.

I. INTRODUCTION

Cloud providers now offer confidential virtual machines
(CVMs) based on hardware architectures such as AMD SEV-
SNP, and Intel TDX. These CVMs encrypt guest memory
and enforces security via the hardware, allowing a tenant to
run unmodified binaries while keeping data hidden from the
hypervisor and other co-tenants. Unfortunately, Intel, AMD,
and ARM (e.g., CCA) explicitly exclude leakage through page-
table activity and processor-cache state from their CVM’s
threat model. Therefore, such side-channel attacks based on
page tables [1] and caches [2], [3] can track memory accesses
at 4 kB and 64 B granularities, respectively. They have been
very successful at, e.g., inferring cryptographic keys [4], [5].
That setting matches the traditional notion of (architectural)
side-channel attack, where the adversary’s goal is to extract
a private key, e.g., a signing key, from a confidential VM
by exploiting or inducing side-channel leakage. While imple-
menting successful mitigations has proven challenging, best

practices such as constant-time code are well understood for
concrete cryptographic applications, e.g., RSA-based signature
schemes. This is the result of a fruitful line of security research
that provided a feedback mechanism to chip manufacturers.

From cryptographic applications to privacy-preserving
data analyses. A recent trend in industry involves adopting
CVMs for user data processing, e.g., computing user statistics,
distributed secure computation, and oblivious data retrieval [6],
[7], [8], [9]. Just like with cryptographic code, these data-
driven applications inherit a large attack surface when de-
ployed in CVMs [10], [11], and mitigations are delegated to
the application developers.

Privacy threats in these data-driven applications are less
precisely defined and more challenging to quantify compared
to those in cryptographic applications. An attacker clearly
defeats a cryptographic application when they recover a pseu-
dorandom key. In contrast, when an attacker recovers an
input to a data-processing application, their success must be
evaluated in light of both their prior knowledge and the goals
of the application itself. Without a rigorous formalization of
the threat model and attack success, it will be tempting to
fall back to impractical mitigations like constant-time code for
general software [12], [13], [14], [15], instead of optimizing
defenses based on the specific workload. Aside from a strong
definition, practitioners also need a systematic way to quan-
tify, measure, compare, and reduce the leakage of real
workloads in the deployed scenario.

In this paper, we provide formal definitions and an eval-
uation framework called SNPeek. Our goal is to enable the
systematic investigation of side-channel leakage in privacy-
preserving workloads, and potential mitigations.

Quantifying Attacker’s Success (Section III). Taking in-
spiration from the literature on cryptography and differential
privacy, we define and measure success of privacy attacks in a
relative sense: assuming the attacker has some prior knowledge
about a target’s data, we measure success by comparing the
attacker’s probability of correctly guessing the data before
and after the attack. If the prior probability of a successful
guess is already high, our formulation captures the intuition
that there is not much more information an attacker can
learn. Additionally, our model accounts for the fact that the
party connecting the CVM to the outside world can introduce
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Sybils, i.e., arbitrarily well-crafted values that can trigger more
leakage than naturally-occurring inputs.

Automated Side-channel Extraction and Analysis (Sec-
tion IV). Our open-source toolkit, currently implemented
for AMD SEV-SNP, consists of a trace extraction and a
trace analysis phase. In the former, SNPeek records low-
noise page-table [1], [16], [17] and cache traces [18], [2],
[3], and optionally also performance-counter values [19], [20]
and ciphertexts [21], [22], from commodity SEV-SNP guests.
We introduce a noise-free and efficient Multi-Prime+Probe
attack targeting 64 cache sets on AMD CPUs with a non-
inclusive last-level cache by exploiting model-specific registers
that allow restriction of the L3 cache. Our optimizations
significantly reduce measurement noise and improve the prac-
ticality of the cache attack. Additionally, we devise filtering
strategies that restrict trace collection to the relevant part of the
application, thereby speeding up measurement. In the analysis
phase, SNPeek analyzes those traces with a set of predefined
statistics and machine-learning models for automated side-
channel traces analysis. These predefined models allow for
easy pinpointing of the leakage source and experimentation
with attackers of various capabilities.

Evaluation on Real-World workloads (Sections V, VI, VII).
We apply SNPeek to evaluate side-channel leakage of three
real-world privacy applications that are executed on top of
CVMs: Private Information Retrieval (PIR), Private Heavy Hit-
ters (PHH), and User Defined Functions (UDF). In PIR, a party
wishes to retrieve an element from a remote database without
letting the database’s maintainer(s) learn which element was
accessed. TEE-based PIR implementations are available as
open-source projects such as Project Oak [23] and the Signal
messenger [24]. We analyze the effectiveness of mitigations
such as ORAM [25], [24] and demonstrate how our framework
can uncover and pinpoint subtle leakage. Surprisingly, we
show that even constant-time ORAM may exhibit leakage
when deployed on AMD SEV-SNP due to ciphertext side
channel leakage.

We additionally demonstrate how SNPeek can evaluate
the privacy guarantee of a PHH application as implemented
by the TensorFlow Federated project [26] and deployed by
Google [8]. In this application, a large number of personal de-
vices (e.g., smartphones) hold sensitive data, such as location
or browser history, and the service provider wishes to identify
frequently occurring entries in this distributed data store in a
differentially private manner. We show that the Tensorflow-
Federated implementation [27], which is not leakage-aware,
is vulnerable to a privacy attack due to its data-dependent
execution behavior when deployed on AMD SEV-SNP. We
present a series of examples to illustrate the use of our
framework to detect issues, develop and evaluate defenses,
and advanced attacks. Along the way, we also introduce a
partial mitigation based on differential privacy that might be
of independent interest.

Finally, we demonstrate how SNPeek can evaluate private
user-defined functions. In-memory data stores such as those

used in PIR or PHH may also support custom queries via
a user-defined function (UDF) [28], [29]. For example, in the
context of Google’s Privacy Sandbox [11], UDFs based on the
Wasm language are written by AdTechs to customize higher-
level (privacy-preserving) aggregations about end-users’ web
browsing behavior [30], [23]. Private UDFs introduce an attack
scenario where the attacker can not only collect side-channel
traces outside the CVM, but also introduce new queries on
processed data sources and efficiently steal data via a covert
channel. Our results show that a covert-channel attack can leak
data from a UDF inside the Wasm language runtime [29] to
a colluding hypervisor at a rate of at least 497 kbit/s.
Contributions. We summarize our contributions as follows.

1) We introduce SNPeek, a modular framework that gathers
various side-channel traces, including a novel noise-
resilient Prime+Probe, from unmodified AMD SEV-SNP
guests and provides different trace filters to reduce col-
lection overhead. The framework includes statistical and
machine-learning models to automatically analyze gath-
ered side-channel traces to enable leakage estimates for
non-domain experts.

2) We introduce and motivate rigorous quantitative notions
of privacy leakage via side-channel in the presence of
a malicious attacker, i.e., the attacker’s advantage. Our
notion is inspired by the privacy attacks literature and
can be easily estimated empirically using SNPeek’s ML
components.

3) We evaluate three representative privacy workloads—
PIR, private heavy hitters (PHH), and user-defined func-
tions (UDFs) based on Wasm—and show how SNPeek
guides the design of effective, low-overhead mitigations.

Although our toolkit is currently implemented on AMD SEV-
SNP, we anticipate many of our attacks carry over to other
vendors with minimal changes.

Responsible Disclosure. Our research follows established
responsible disclosure guidelines. We notified maintainers of
all open-source projects whose applications showed vulnera-
bilities under our framework—specifically Project Oak [23],
TensorFlow Federated [26], and the Privacy Sandbox [29].
Each project acknowledged the security impact of software-
based side-channel attacks and indicated ongoing work to
strengthen its privacy protections.

Availability. The source code of SNPeek is open-sourced at
https://github.com/google-parfait/cvm-side-channel-analysis.

II. PRELIMINARIES

A. Confidential VMs

Confidential VMs are based on hardware-based trusted
execution environments, such as AMD SEV-SNP [31] or
Intel TDX [32]. They rely on hardware-based access control
and memory encryption to prevent other VMs and privileged
software (hypervisor, BIOS) from accessing the memory of
a trusted domain (a CVM instance). Additionally, memory is
encrypted as soon as it leaves the CPU. The operating system
is only responsible for the availability of trusted workloads
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(e.g., scheduling workloads, mapping memory, and handling
I/O), and can thus be untrusted.

CVMs additionally rely on a hardware-based root of trust
(external to the CPU core) and a remote-attestation protocol
to guarantee the integrity of the software and hardware com-
ponents responsible for executing a trusted domain. Therefore,
before a user sends encrypted data to the CVM, they can
verify that the data is processed by genuine hardware and the
right software components, including the latest firmware and
microcode security patches.

B. Software-Based Side Channels

Software-based side-channel attacks exploit shared re-
sources and exposed system interfaces to leak information
about computation of other users on the system. Some of the
attack primitives that are relevant to our work focusing on
CVMs include:
Page table. Controlled-channel attacks target page tables,
allowing a malicious hypervisor to track a program’s memory
access pattern at page-level granularity (typically 4 kB). This
attack vector applies to various CVM platforms. For instance,
a hypervisor can unmap a guest memory page on AMD
SEV-SNP. While Intel TDX (and ARM CCA) restricts such
direct page-table manipulation, similar leakage is achievable:
privileged software can leverage the TDX module to block
and unblock memory ranges, resulting in a similar VM exit
as soon as a trusted domain accesses the memory ranges [1].
Cache. Cache attacks, such as the Prime+Probe tech-
nique [33], target shared caches in modern CPUs. These
remain applicable to CVM platforms like AMD SEV-SNP,
Intel TDX, and ARM CCA, given their reliance on shared-
cache architectures. In a Prime+Probe attack, the attacker fills
a cache set with known addresses and waits for the victim
to access data mapping to the same cache set. After the
victim’s access, the attacker detects which parts have been
evicted by measuring timing differences of re-accessing its
own addresses.
HPC. Hardware performance counters (HPCs) are special
registers in modern CPUs that track various microarchitectural
events, such as cache hits, misses, and branch predictions.
Privileged attackers can use performance counters to gather
detailed information to infer sensitive information, such as
cryptographic keys or execution-flow patterns [19].
Ciphertext visibility. Ciphertext side-channel attacks [21]
exploit the memory encryption scheme in AMD SEV-SNP.
Each 16-byte-aligned memory block is encrypted individually,
using a tweak value derived from its physical address. At a
specific address, the same plaintext always produces the same
ciphertext. Although SEV-SNP aims to provide confidentiality
and integrity, a malicious hypervisor can read the encrypted
memory. By observing changes in ciphertexts, the attacker can
infer changes in the underlying plaintexts, beyond learning that
a given region in memory did change.
System-level mitigations. Table I presents the current state
of system-level mitigation for our attack vectors. Ciphertext

TABLE I: : vulnerable, : mitigated, : partially,
: mitigation planned

Platform Page-level Cache-level Ciphertext HPC

SEV-SNP Zen3/4
SEV-SNP Zen5 [34] [35]
TDX [36] [36], [37] [38]
CCA

side-channel attacks [21] are specific to SEV-SNP, and AMD
has provided software workarounds that make constant-time
code even harder to implement [39]. Intel TDX and ARM
CCA prevent the hypervisor from accessing guest-encrypted
memory [36]. AMD plans to address the leaks from ciphertext
and HPCs on Zen 5 processors using ciphertext hiding [34]
and PMC virtualization [35], respectively. Currently, neither is
supported in KVM. For ARM CCA, which defines a broader
architecture, performance monitoring virtualization for the
trusted realm is platform dependent. However, cache attacks
and page-level leakage remain unmitigated across SEV [31],
TDX [36], [37], and CCA [40]. They are considered out of
scope by the vendors. Thus, from the vendor’s perspective,
attacks on a given workload leveraging these side-channels
are the responsibility of the application developer.

C. Differential Privacy (DP)

Suppose there are n distinct inputs X = X1, . . . , Xn to
a computational service S, where each input Xi may be
a sensitive value (i.e., proprietary information or personal
attribute) of a distinct input provider. Let V A

S (X) denote
attacker A’s view of that service when X is given as in-
put. In the textbook central model, the view is the output
of the service, like an estimate of a mean or a table of
synthetic data [41]. S ensures (ε, δ)-DP against A if, for
any X,X ′ that differ on any one input and any possible Y ,
P
[
V A
S (X) ∈ Y

]
≤ eε ·P

[
V A
S (X ′) ∈ Y

]
+ δ.

We emphasize that the guarantee must hold for all neigh-
boring inputs X,X ′. This effectively means that the attacker
has narrowed down a target’s input to one of two different
values and controls all other inputs (Sybils).

There is considerable risk in underestimating the scope of
an adversary’s view. As highlighted in prior work [42], [43],
consider a service that outputs the same mean estimate on two
neighboring datasets but whose running time differs dramat-
ically: an adversary can deduce the target’s input whenever
it can measure elapsed time. Haeberlen et al. [42] attempt
to mitigate this by modeling the adversary as only able to
access S via a network connection and a restricted query
language. Meanwhile, Ratliff and Vadhan [43] carefully reason
about sensitivity and inject random-length delays, following
the pattern of the Laplace and Gaussian mechanisms. We note
that our definition of DP is a strict generalization of the one
by Ratliff and Vadhan [43], since our adversary’s view can
encompass more than the timing side channel (e.g., memory
access patterns).
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Fig. 1: The user requests an attestation report and a public
key before sending encrypted data to the isolated CVM. The
service provider and other users are untrusted. The CVM and
application binary is trusted, but it may have the ability to
execute user-defined queries from an untrusted source.

III. DEFINING SIDE-CHANNEL PRIVACY ATTACKS

Here, we formalize how an attacker in the CVM threat
model can recover information about sensitive inputs using
side channels [44]. This includes personal attributes that are
processed by software running in the CVM (e.g., location,
webpage visits), not just cryptographic keys.

We assume a shared cloud environment where the hypervi-
sor and other VMs are untrusted. Figure 1 shows the structure
of a CVM-based data analysis system. Data and/or custom
queries are ingested from input providers, also known as users.
An untrusted service provider—the party operating the data
analysis service—seeks to reconstruct more information about
the inputs than what is contained in the output. We use the
term attacker as a short synonym for the service provider.
We assume no collusion between the service provider and the
hardware manufacturer. In Section VII, we extend the model
to assume that the attacker can provide custom queries to the
protected key-value service.

Sybils [45] are a significant feature in our model. We do not
assume public key infrastructure free from the influence of the
service provider, which means the attacker can generate fake
identities to take over a service: they can inject maliciously-
generated inputs, and suppress honest inputs. Sybil attacks
in distributed data analysis are a known issue, particularly
in the context of federated learning [7]. The attacks we
design reaffirm this deep challenge. However, we acknowledge
a practical limitation against hardened systems using third-
party privacy gateways [46]. To guarantee a victim’s input is
routed to a compromised machine for side-channel analysis,
an attacker must collude with the gateway, as monitoring all
endpoints is undesirable. This countermeasure is thus effective
against attackers when the external party gateway remains
uncompromised.

Like previous work on software-based attacks, we leave
physical attacks out of the scope [47], [48], assuming ap-
propriate physical security is in place. Likewise, we exclude
CPU bugs such as transient-execution attacks [49], [50], [51],
[52] and CacheWarp [53], and software-based fault attacks
like Rowhammer [54] and Plundervolt [55]. We also assume

that all applications are protected against rollback attacks, and
therefore, honest client contributions cannot be duplicated or
replayed by the attacker without aborting the application.

We sketch the steps of a generic data-analysis service by
breaking it into an offline and online phase. The offline phase
describes what happens before any interactions.
Offline phase:

1) Input Preparation: The input providers generate their in-
puts. The attacker does not know any target’s input with
complete certainty, but might have some prior knowledge;
we model that input as being drawn from a probability
distribution known to the attacker.

2) Setup: The guest VM binary is made reproducible for
the purposes of verifiability. Here, an attacker has full
control to assess the behavior of the binary on their
TEE-supporting hardware (e.g., debug mode) but does
not have access to the (secret) data. In particular, the
attacker can obtain statistical information to characterize
secret inputs given side-channel information, either by
“manual” inspection, or by training ML models.

Online phase:
1) Launch of CVM: The service provider triggers the ini-

tialization of the trusted environment.
2) Establishing trust: The CVM’s attestation report and pub-

lic key are forwarded by the service provider to the users,
who validate the report.

3) Input Ingestion: The service provider forwards a stream
of encrypted user data and/or user-defined functions for
the CVMs. Here,
a) the attacker can drop honest inputs and insert Sybils,

specially-crafted inputs that are meant to trigger more
side-channel leakage. However, we assume they do not
duplicate or replay honest inputs.

b) the attacker monitors side channels of the ingestion
computation.

4) Report: the guest VM computes a plaintext output that
the service provider relays to its recipient. The attacker
monitors side channels of the report computation.

This gives a high-level idea of the actions an attacker
can perform. Next, we provide a notation for the attacker’s
knowledge and define what it means for an attack to succeed.

A. Attacker Knowledge & Success

The attacker is not necessarily limited to the knowledge
gleaned from the service’s execution: they may have prior
information about a target input provider. For example, they
may know Alice is contributing URLs as input and that she
only reads English. This means the attacker can rule out strings
that are not URLs while also weighing URLs with a “jp”
extension as less likely to have been visited by Alice. We will
use W to denote the probability distribution that describes this
prior knowledge about a target.

Although it is tempting to use the likelihood of recon-
structing secrets (e.g., pseudorandom keys) as the metric of
success, this is not always the correct choice: if the prior W
is sufficiently skewed, the attacker may have a high probability
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of a correct guess even without looking at any side channels or
CVM output. In the case of URL visits, they are not uniformly
random: if example.com is known to be p% of all visits,
then the baseline “attack” that simply outputs example.com
has a p% chance of being correct for a target. Thus, a high
probability of a correct guess could be due to using leakage
or reporting an argmax of a heavily-skewed W . As such, it is
a poor metric to gauge success.

We take the stance that the quantity to measure is the
advantage afforded by the attack over the baseline argmax-
of-W strategy, the improvement in the probability of a correct
guess1. We note that Ω(1) advantage is permissible in some
applications; for example, DP computations already grant a
“privacy budget” ε and we show ε = Ω(1) permits Ω(1)
advantage (see next section). Otherwise, the advantage should
be bounded by a negligible function.

B. Pairwise Distinguishability Attacks

Let us consider a specific class of prior W : those dis-
tributions over two values that give equal probability to
each. This occurs when the attacker is evenly split between,
say, whether the last URL entered by a target individual
was example1.com or example2.com. Without the side-
channel leakage, the baseline argmax-of-W strategy results in
a guess that is right 1/2 of the time. With the side-channel
leakage, we would like to bound the advantage over that
baseline chance. The adversary observes these side channels
via the pairwise distinguishability game:

Definition 1 (Pairwise Distinguishability Game). Let A be
an attacker, and let B be a binary executed in a CVM. Let
SCB
A(D) denote the leakage function for A when running B

on input D. Assuming uniform prior W over {x0, x1}, the
distinguishability game proceeds as follows:

1) (Input Preparation) c is chosen randomly from {0, 1},
such that user’s data xc is x0 or x1 with a 1/2 chance

2) (Before Input Ingestion) Attacker chooses Sybils X
3) (Input Ingestion) Whole dataset D is formed by append-

ing xc to X
4) (After Report) outputA := A(SCB

A(D))

The distinguishability advantage of attacker A is AdvA :=
max(0,Pr[outputA = c]− 0.5). The maximum value for this
is 0.5; we compute a normalized advantage AdvA/(0.5) that
ranges from 0 to 1 (least to most successful attack). Note
that we can derive a bound on this advantage when leakage
SCB
A(D) satisfies DP:

Lemma 1 (DP bounds advantage). If the leakage of B guar-
antees (ε, δ)-DP, a pairwise distinguishability attack against
B has advantage bounded by (eε − 1)/4 + δ/2.

The proof can be found in Appendix A. For an example,
consider ε = 0.5, δ = 0.01: advantage is bounded by < 0.17
which normalizes to < 0.34.

1For cryptographic keys, the baseline is close to zero, so the advantage of
an attack is close to the probability of reconstructing keys.

Our definition of distinguishability attack can be compared
to membership inference attacks [56], [57], [58]. In both cases,
an attacker wants to learn a binary predicate about the target.
The predicate is membership for membership inference, while
our predicate concerns value.

C. Fingerprinting Attacks

One way to generalize pairwise distinguishability is k-wise
distinguishability, where prior knowledge W covers a large set
{x1, x2, . . . , xk}. We additionally refer to an interest set I . To
continue our URL example, the adversary may be interested
in URLs that end in country codes. The adversary has two
objectives: to determine whether the target’s URL is interesting
and, if it is, to identify which interesting URL it is. The country
code can serve as a hint about the target’s location or language.
Reconstruction of uninteresting URLs is not a priority.

Similar to the pairwise distinguishability attack, the prior W
grants the adversary baseline strategies that do not involve side
channels at all. Specifically, to determine whether the target x
is in I , the baseline strategy is to report “interesting” if and
only if the mass placed on set I by W is larger than the mass
placed outside it. In our example, this amounts to comparing
the prior probability of visiting a URL with a country code
against that of visiting a URL without one. To fingerprint
x assuming it is in I , the baseline strategy is to report the
likeliest element according to the distribution WI , which is
W conditioned on I; this amounts to reporting the most
frequently visited URL ending in a country code. Note that the
success rate of the baseline interesting/not-interesting classifier
is sc := max( P

x←W
[x ∈ I], P

x←W
[x /∈ I]), while the baseline

fingerprinting success rate is sf := maxi∈I P
x←WI

[x = i].

With side-channel leakage, we again would like to bound the
advantage over these baseline rates. The adversary observes
side channels via the fingerprinting game:

Definition 2 (Fingerprinting Game). Assuming prior W , the
fingerprinting game proceeds as follows:

1) (Input Preparation) Target user’s data x randomly chosen
according to W

2) (Before Input Ingestion) Attacker chooses Sybils X and
chooses I

3) (Input Ingestion) Whole dataset D is formed by append-
ing x to X

4) (After Report) outputA := A(SCB
A(D),W, I)

The interest-classification advantage is AdvA :=
max(0, P

x←W
[(outputA == “interesting”) = x ∈ I]−sc). We

can normalize this advantage to the range [0, 1] by dividing
by its maximum value 1− sc. The fingerprinting advantage is
max(0, P

x←WI

[outputA = x] − sf ). We can again normalize

by dividing by its maximum value 1− sf .

Example 1 (Fingerprinting Game). Suppose an attacker picks
I = {any example site ̸= ’example.com’} and the prior
probability distribution for visiting a website is

60% example.com 10% example.co.jp
10% example.co.uk 20% other URLs
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Fig. 2: The overview of SNPeek. The corresponding section
numbers § are listed for each component. The offline phase
consists of building an ML attacker model using labeled traces
(Section IV-C). The online phase uses this model on a single
CVM trace that includes victim data, to launch a privacy attack
A that reveals this victim data.

The real site visited (x) is drawn randomly from W .
The baseline chance of guessing (non-)membership in I is
sc = max(0.2, 0.8) = 0.8; absent side-channels, the best
guess is that the target is not in I . The baseline chance of
reconstructing an element of I is 0.5; absent side-channels,
there is an even chance between example.co.uk and
example.co.jp.

If the side-channel leakage observed by the attacker
(outputA) leads to a 0.9 probability of guessing whether
x ∈ I , then the interest-classification advantage is 0.1 =
0.9 − 0.8. If the leakage grants a 0.7 chance of recovering
an element of I , the attacker has a fingerprinting advantage
of 0.2 = 0.7− 0.5.

In our empirical evaluation of TF-Federated’s PHH imple-
mentation (Section VI), we set W to be the actual distribution
of the data going into the CVM, thus assuming the adversary
has perfect prior knowledge about the distribution. Note that
this sets a high bar for what constitutes a successful side-
channel attack to reconstruct a victim’s input.

IV. SNPEEK FRAMEWORK

Figure 2 presents an overview of SNPeek. The offline
phase allows developers to model attacks of various strengths
and capabilities, and analyze privacy leakage under these
instantiations. This is achieved by collecting a labeled dataset
of traces corresponding to the attack, and using statistics and
ML tools to build leakage-analysis tools. In the online phase,
the leakage-analysis tool is used to conduct an attack A on
a single trace containing the victim data, to quantify privacy
leakage. This resembles an attacker who collects side-channel
information offline to build a leakage detector for online use,
on a victim CVM through a malicious hypervisor. We present
how SNPeek implements the collection of different side-
channel signals, feature extraction, and the leakage-analysis
tools.

Fig. 3: The overview of SNPeek trace collection. A user-space
controller uses shared memory to configure each collection
run with a modified KVM module. Grey lighting marks any
interrupt allowing the hypervisor to read the configuration;
yellow lighting is a page fault interrupt as the hypervisor clears
the present bit of guest pages.

A. Trace Collection

Figure 3 gives an overview of the side-channel trace collec-
tion in SNPeek, which consists of a modified KVM module
and a user-space controller, communicating through shared
memory. Besides configuring trace collection runs (e.g., via
number of traces, optimizations), the shared memory enables
a developer to control the two key components of trace
collection: temporal resolution – determining the frequency
of side-channel event collection, and spatial resolution – the
side-channels with different granularities.

Nevertheless, in contrast to cryptographic targets, there
are significant challenges in automating trace collection and
analysis in privacy applications. This requires strategies to
improve collection speed by ignoring uninteresting parts of
the execution flow, mapping only relevant code pages, and
supporting generic analysis through various attack primitives.
SNPeek achieves this through two key insights during temporal
and spatial resolution, which allow developing general and
platform-specific optimization strategies.

1) Temporal Resolution: We introduce our technique to
synchronize the hypervisor’s side-channel collection with the
target running inside the SEV-SNP VM. The hypervisor re-
quires a trigger point to halt the VM execution and control
its execution. Well-known methods include inducing page
faults [1], triggering interrupts with APIC timers [59], [60], or
using a combination of both [61], [53]. APIC interrupts allow
the attacker to pause the VM at short intervals, ensuring that
only one instruction is completed after each context switch,
known as single-stepping [59].

While single-stepping might seem like an obvious solution
for temporal resolution, it is suboptimal for privacy attacks
for two reasons. First, single-stepping is inherently slow. Each
step requires at least one context switch, and it takes even
longer when zero stepping occurs (i.e., no progress after a
context switch). For example, our fingerprinting testcase (see
Section VI-B) completes in 0.46ms without monitoring. With
a filtered controlled channel, SNPeek collects 1.06×105 entries
in 0.56 s, incurring approximately 1217x overhead, which
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remains acceptable for offline auditing. In contrast, after inte-
grating single-stepping, SNPeek generates 2.8×105 zero-step,
1.6× 106 single-step, and 6.7× 105 two-instruction entries in
8.67 s, yielding an approximately 18 848x overhead. Such high
overhead typically necessitates narrowing analysis to a limited
code section, as in cryptographic libraries [22], [62], [63],
[64]. However, privacy-preserving applications often have
code bases much larger than cryptographic libraries, making
such an analysis prohibitively time-consuming. Importantly,
unlike in cryptographic libraries – where the attacker’s goal
can be clearly identified (i.e., stealing the secret keys), privacy-
preserving applications generally do not reveal where leakage
may occur, making binary analysis much more challenging.

Second, single-stepping could be restricted in future archi-
tectures. While current tools can use performance counters to
detect if a single-step was successful [60], AMD claims to
prevent the hypervisor from reading performance counters for
guest events starting with Zen 5 [35]. Moreover, Intel TDX
mitigates single-stepping by ensuring sufficient VM progress
between context switches [65]. Therefore, although supporting
single-stepping is not a limitation of our framework, it was not
included in our evaluation.

Key Insight 1: Filtered Controlled-Channel. We choose
nested page faults for SNPeek, which, besides being much
faster, represent a design choice that cannot be mitigated
without major architectural changes. As shown in Figure 3, the
untrusted hypervisor clears the present bit of all the VM pages
at the beginning of the execution. When the guest VM triggers
page faults, the error code reveals whether the faulting page is
used for instruction or data and whether it is encrypted. If the
page is not encrypted, the hypervisor considers it uninteresting
and retains its mapping in subsequent executions. Similarly, if
a faulted page address belongs to the reserved memory of
the guest system, it is likely associated with kernel activity
and can be skipped. To ensure accurate control and data
flow tracking, SNPeek maps the newly accessed page and
conditionally unmaps the previous one at each page fault.

Platform-specific optimizations. To further refine page-
level analysis, SNPeek also supports additional platform-
specific optimizations. For AMD EPYC CPUs, we leverage
performance counters that allow the hypervisor to monitor
guest events in either user-space or OS-space. Our implemen-
tation uses two of these: one tracking retired instructions from
guest user-space and another tracking retired micro-operations
(uops) from the guest OS. As a result of these optimizations,
pages containing only kernel code are labeled irrelevant and
excluded from analysis. This optimization is optional to im-
prove runtime on AMD EPYC, and is not necessary for page-
level analysis. As a result, SNPeek also generalizes to other
architectures [36]. We analyze the collection speed in Table V
(Appendix A).

2) Spatial Resolution: We use SNPeek to collect runtime
side channels of the target program at granularity levels
ranging from 4 kB to 16 B. These include both generalizable
platform-independent ones (controlled-channel and cache),
and platform-dependent ones (ciphertext and PMCs). Fig-

ure 10 in Appendix A shows an example trace with collected
side channels.

Platform-independent: Controlled-channel. We monitor ac-
cess patterns of the victim at page granularity with controlled-
channel techniques, distinguishing between code fetches and
data accesses. SNPeek follows a principle of mapping only
one interesting code page at a time, unmapping the current
code page whenever the guest jumps to a new one2. For data
accesses, SNPeek manages a queue for mapping data pages.
The queue size is adjusted dynamically to avoid deadlocks
when a single instruction accesses more pages than the queue
size. This ensures precise control over memory access patterns,
without losing track of any accessed pages.

Platform-independent: Cache attacks. While controlled-
channel techniques have a 4 kB page granularity, access pat-
terns with a 64 B granularity are possible via cache attacks.
When handling an NPF, the hypervisor iterates the nested page
table and maps the faulted page before returning control to
the VM. As an attacker cannot predict which 64 B blocks of a
page the victim accesses, we mount a Multi-Prime+Probe on
all 64 cache sets before the context switch. At the next NPF,
the hypervisor probes all cache sets to identify the accessed
64 B blocks.

Developing a precise Multi-Prime+Probe attack poses sig-
nificant challenges. On newer AMD CPUs, such as EPYC,
the shared L3 last-level cache is non-inclusive. Therefore, per-
forming L3 Prime+Probe on each cache set requires accessing
at least 24 addresses, accounting for both L2 and L3 cache
set entries [66]. Although the untrusted hypervisor shares an
internal L2 cache with the target VM, the timing difference
between L2 hits and misses is only about 40 cycles. This
small difference introduces significant noise when attempting
to probe across 64 different cache sets, as we will see below.

Key Insight 2: Noise reduction via MSRs. We introduce
a novel approach to improve L2 Prime+Probe by exploiting
model-specific-registers (MSRs) to reserve L3 cache usage.
The MSRs 0xC001_1095 and 0xC001_1096 define a
memory range for which the number of L3 ways can be
configured via the MSR 0xC001_109A. We allocate our
buffer for eviction set at a high memory address beyond 30 GB,
and use the MSRs to reserve all L3 ways for memory addresses
below 30 GB. Consequently, the addresses from our eviction
set cannot be cached in the last-level cache, as there is no
available way. Hence, if an address in the eviction set is
evicted from the L2 cache, it is directly evicted to the main
memory, increasing the measured timing difference for Multi-
Prime+Probe to more than 700 cycles. This approach improves
the speed of the prime stage from 24 distinct addresses
accessed to only 8 (the capacity of an L2 cache set), without
introducing noticeable performance overhead, as the memory
space above 30 GB is rarely used.

2Corner cases, such as a single instruction spanning a page boundary, can be
handled by detecting a threshold of two repeated page faults without execution
progress, using PMCs.
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While these specific MSRs were introduced in the Zen3
microarchitecture, similar cache reservation technologies (e.g.,
Intel’s Cache Allocation Technology, or CAT) can achieve a
comparable effect on older AMD CPUs and Intel CPUs. We
demonstrate a proof-of-concept improving Prime+Probe using
Intel CAT in Appendix C.

Platform-specific: Ciphertext. Similar to cache attacks, be-
fore the guest writes to an unmapped page, the hypervisor
reads all 256 ciphertext blocks of the page [21]. At the
next NPF, SNPeek compares all blocks to their prior values
to pinpoint the ones modified by the victim, and highlight
ciphertext differences. This exploit provides insights into the
victim code at an even deeper spatial side-channel level.

Platform-specific: PMC leakages. In addition to the two
events we introduce for optimizing temporal resolution on
AMD EPYC, SNPeek uses three other events used by Gast
et al. [19], Retired Branch Instructions, Retired Taken Branch
Instructions, Retired Near Returns, that leak the control flow
of the victim. The former is updated at each NPF, and the
latter during instruction fetch NPFs. This method leverages
performance counters to provide detailed insights into the ex-
ecution flow, further enriching the side-channel data available
for analysis.

3) Targeted Trace Collection: In addition to tracking across
the entire target call flow, SNPeek enables precise leakage
analysis by offering configurable controls over the monitoring
phase. This allows developers to instrument applications with
code pages containing specific assembly instructions, provided
these instructions can be tracked by performance counter
events. In the offline phase, the developer wraps the target
code snippet with two code pages that execute the clflush
instruction multiple times, enabling the framework to treat
these pages as signals to start or stop tracking. As we show
in Section VII, in real-world exploits, this is equivalent to an
attacker who would monitor specific I/O, network traffic, and
access patterns in the online phase.

B. Feature Extraction

Given a set of execution traces, SNPeek extracts features
to model privacy attacks as discriminative machine learning
problems, which aim to separate traces depending on the value
of the target. The types and complexity of features chosen
often result in a trade-off between interpretability and utility.
Simpler features tend to be more suitable for pinpointing the
source of the leakage, while high-level features are capable of
producing a tighter empirical lower bound of the side channel.
To support the automated audit process and balance this trade-
off, SNPeek employs both handcrafted features and automatic
feature learning.

1) Handcrafted features: We engineer five sets of hand-
crafted features as summarized in Table II. These features do
not exhaustively capture all the distinguishing patterns that can
be extracted from traces, but, as we show in Sections V and VI,
highlight the utility of the framework in pinpointing sources
of leakage. Feature set F1 focuses on a page-level granularity

and counts the number of total and distinct pages observed
for the controlled channel, across a particular trace, while F2

operates at block- and cache-level granularity. F3 captures a
lower level of spatial granularity by computing histograms for
the number of times individual cache lines and page blocks are
accessed in cache and ciphertext side channels, respectively.
F4 looks at the side channel for each individual page level,
computing how many data accesses, cache lines, and blocks
are being accessed, and providing statistics for these across
a trace. F5 captures aspects of the control and data flow by
counting how many times individual pages are accessed during
the execution.

2) Automatic feature learning: Alternatively, we rely on
representation learning, allowing analysts to train deep learn-
ing models for automated analysis of the leakage. This in-
volves feeding the trace information to the models and relying
on their representational power to expose discriminative fea-
tures from the sequences encoded in the traces. To aid learning,
we pre-process the traces by abstracting the memory space and
ciphertext information. More precisely, we extract only the
distinct page-table accesses (code and memory pages) and the
ciphertext changes observed through the ciphertext visibility
channel. This transformation is described in Appendix A.

C. Leakage Analysis

To conduct a leakage discovery task, one can build different
analysis models using the framework. We implement several
analytics and machine learning tools for evaluating features
against datasets and identifying leakage. Collected traces first
need to be separated into different classes to define a classi-
fication problem. The labeling depends on the threat model.
A distinguishing attack (Section III-B) can be modeled using
two classes, indicating whether the targeted entity is present in
the input set for a particular trace. In contrast, fingerprinting
attacks (Section III-C) can be modeled as two consecutive
distinguishing problems: a two-class setting reflecting whether
the targeted entity is part of a set of labels of interest, followed
by a multi-class setting that identifies which of the labels the
entity corresponds to.

After collecting and labeling the traces, the frameworks
can discover the source and severity of the leakage across
different labels. This is achieved by choosing the feature sets,
localizing the portion of the program suspected of leakage,
and computing features over the collected traces. After feature
extraction, the leakage-analysis tools are applied. To identify
leakage sources, we provide statistical tests and visualization
tools to verify whether the distributions of features across
labels are distinct. For quantifying the leakage, we implement
supervised learning models that allow measuring leakage in the
online phase. Our implementation relies on scikit-learn [67]
for classifiers based on handcrafted features, and on Tensor-
Flow [68] for feature learning through sequence models.
Evaluation To measure the leakage and highlight the empirical
advantage through SNPeek, in Sections V and VI we use an
L2-regularized logistic regression classifier trained for 1000
iterations with L-BFGS. For feature learning, we implement
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Name Feature Set Description Count

CF Count F1 Number of total & unique code pages fetched 2
DA Count F1 Number of total & unique data pages accessed 2
Cache Count F2 Number of total & unique intercepted cache lines in cache attacks 2
CI Count F2 Number of total & unique modified ciphertext blocks in memory 2
Cache Frequency F3 Number of times each of the 64 4 kB cache lines was accessed 64
CI Frequency F3 Number of times each of the 256 blocks of any page was modified 256
DA Stats F4 Stats over the number of data page accesses following a code page fetch 11+N
Cache Stats F4 Stats over the number of total & unique cache lines accessed for a page 2*(11+N)
CI Stats F4 Stats over the number of total & unique blocks accessed for a page 2*(11+N)
CF Page Frequency F5 Frequency of code fetches for individual code pages MCF

DA Page Frequency F5 Frequency of page accesses for individual data pages MDA

TABLE II: Summary of handcrafted features in SNPeek. F4 Stats correspond to features describing the distribution: min, max,
first to ninth quantiles, and a histogram with N bins. F5 frequencies are over the M first seen pages in a trace.

a bidirectional LSTM with attention (see Appendix A). The
model has 751 554 parameters and is trained with Adam using
a learning rate of 2e-5. We compute the empirical advantage
by training and validating on 80% of the samples and testing
on the remaining 20%. For the logistic regression, we report
the average over 5 trials.

V. OAK PRIVATE INFORMATION RETRIEVAL

In this section, we evaluate SNPeek on Oak [23], [69]
private information retrieval (PIR). Project Oak is a software
platform developed by Google for constructing distributed
systems with built-in transparency and guarantees of confiden-
tiality and integrity. It provides core components for develop-
ing enclave applications and supports remote attestation. Oak
includes an untrusted launcher on the host and uses a Wasm
runtime to execute Wasm enclave applications within a CVM.
The launcher handles requests using gRPC, providing end-to-
end encryption for data in transit. This architecture supports
PIR for in-memory key-value lookups, enabling sensitive
data queries while preserving the confidentiality of data and
queries.

PIR generally allows a client to retrieve an element from
a (typically public) database, without revealing the accessed
element to the server that hosts the database. Cryptographic
solutions to PIR are well-established [70], but even the most
efficient constructions fundamentally require the server to
scan the entire database to answer a query, which limits the
scalability. To overcome these issues, many solutions [23],
[24], [71] instead use a TEE with the goal of protecting the
queried index from the server.

A. Distinguishing Attack on Oak PIR

As a motivating example, we distinguish the request of a
missing key and a key with a value, capturing the resulting
traces on the hypervisor. Figure 4 shows sequences of the
number of data page accesses at each code page. The traces are
clearly distinguishable, and we omit a more detailed analysis
using machine learning.

For a more realistic scenario, we expand the dataset to
include 1,000 key pairs. The keys are the strings key0
through key999, resulting in lengths of 4 to 6 bytes. Each
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Fig. 4: Traces of the Wasm runtime for the oak key_lookup
module with a missing and a test key [72].

corresponding value is randomly generated with a size of up to
1,000 bytes. Although the sequences shown in Figure 4 remain
the same across these keys, we can still distinguish individual
lookups by observing variations in page and cache accesses at
specific code pages, as shown in Table III. The lookup module
must load the key-value pairs from different pages containing
distinct cache lines for the second to fifth data page accesses
from this code page. The number of cache-line accesses also
reflects the size of the values, which can be up to 1,000 bytes
and span multiple cache lines. Note that we use manual exam-
ination to showcase and validate this leakage. We collected the
traces using Targeted Trace Collection (Section IV-A3). Fully
automating the end-to-end exploit would require an attacker
to recognize a pattern targeting the vulnerable code and train
a new model offline.

Following Definition 1, the goal for the attacker is to
distinguish two sequences of memory accesses into a database
of 1000 elements: one consisting of 10 identical PIR retrievals
of the first element, and the other consisting of 9 identical
retrievals of the first element, followed by a single retrieval of
the last element. We collect 1500 traces for each case and use
them to evaluate the effectiveness of using SNPeek to evaluate
PIR mitigations.

B. Evaluating Mitigations

To mitigate the above leakage, we can apply a linear
scan, i.e., a std::vector accessed through a scan, using
a constant-time compare-and-swap, and the PathORAM [73]
used by Signal [24]. We run both applications inside a CVM.
We collect traces with SNPeek and evaluate the collected traces
using the methods described in Section IV.
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key0 key1 key60 key61 key998 key999

1st 123dce 123dce 123dce 123dce 123dce 123dce
31 31 31 31 31 31

2nd 106835 106aea 106ae9 106ae9 106835 106835

3rd 106b9e 123e6e 123e6e 123e6e 106b9d 106b9d

4th 123e6e 10696c 10696b 10696b 123e6e 123e6e

5th 139213 142816 13a018 139010 136617 136a1a
48,49,63 7,16-31 32,50-52 58,60,63 0-6,22,62 6,32

6th 123dce 123dce 123dce 123dce 123dce 123dce
31 31 31 31 31 31

TABLE III: An example of distinct page- and cache-access
sequences appears in one of the code pages (index 1,642)
within the oak key_lookup trace for six different key
lookups. The page number refers to the guest’s physical page
number (gPN), followed by cache-line accesses within this
page. We repeat the lookup on each key five times.

Distinguishing attack via handcrafted features. First, we
analyze the leakage exposed via handcrafted feature sets
summarized in Table II. We train a logistic regression model
on each of the feature sets, as well as their union. The results
are summarized in Table IV. While none of these features
reveals a significant advantage against the constant-time linear
scan implementation, feature sets F5 reveal leakage in Signal’s
ORAM. The leakage originates from a ciphertext side-channel
related to how zero-value items are handled. When an item
with a zero value is retrieved, it is added back to memory,
leaving the ciphertext unchanged. In contrast, retrieving a non-
zero value causes the plaintext to change, which results in a
changed ciphertext. This is consistent with the observation that
retrieving different non-zero values produces no discernible
difference in the trace.
Distinguishing attack via feature learning. To explore what
information can be observed without any feature engineering,
we also train an LSTM model on the pre-processed traces. The
advantages obtained through the LSTM on the test dataset
are shown in Table IV. Using only page-level information,
the LSTM cannot get any significant advantage against the
two mitigations. However, once we add the ciphertext block-
level visibility side channel, we observe that both linear scan
and ORAM are distinguishable. This finding aligns with the
handcrafted features-based analysis, reinforcing the vulnera-
bility in these implementations: side-channel visibility into the
exact ciphertext changes reveals more than just the number of
changes. Nevertheless, the larger attacker advantage obtained
through automatic feature learning over handcrafted features
highlights the complementary role of the two in SNPeek: while
handcrafted features are useful for pinpointing the source
of the leakage, feature learning provides tighter empirical
advantage estimates.
Remark. While our experiments highlight leakage through
the ciphertext channel, this is due to our experiments using
AMD SEV-SNP, which is known to be vulnerable. In contrast,
Signal’s ORAM was implemented with Intel SGX as its target
architecture, which does not suffer from this side channel in

Logistic Regression LSTM
∪ F1 F2 F3 F4 F5 Page Page+Block

Linear Scan 0.02 0.00 0.00 0.01 0.01 0.02 0.03 0.80
Signal ORAM 0.19 0.03 0.04 0.18 0.02 0.07 0.03 0.32

TABLE IV: Normalized advantage (Definition 1) obtained
through a Logistic Regression on all (∪) and sets of (F) hand-
crafted features, and an LSTM on sequence-based features at
page- and block-level, across PIR implementations.

the same way. We therefore cannot confirm any vulnerability
in Signal’s deployment of ORAM.

VI. PRIVATE HEAVY HITTERS IN TF-FEDERATED

The private heavy hitters (PHH) problem has received
immense research attention, with cryptographic solutions de-
ployed under multiple threat models. PHH aims to compute
a histogram of the user data, while providing a (differential)
privacy guarantee to individual users, with n users 1, . . . , n
each holding one datapoint from some large domain. Recent
deployments by Google [8] and Meta [9] leverage AMD SEV-
SNP and Intel SGX for this task, respectively.

In this section, we evaluate SNPeek on the TensorFlow-
Federated [27] implementation of Private Heavy Hitters in
Confidential VMs by Google, as deployed in Gboard via AMD
SEV-SNP [8]. The specific application is out-of-vocabulary
word discovery: “discovering new common words to incor-
porate them into the typing model, without revealing any
uncommon private words.” The work of Srinivas et al. [9]
describes a deployment of the same algorithm based on SGX,
but does not discuss mitigations to architectural side channels
nor make any code available.

Algorithm for DP Heavy Hitters. TEE-based solutions for
PHH [7], [8], [9] apply a textbook DP algorithm inside a
TEE [74] (the so-called stability-based histograms or noise-
and-threshold), and rely on the TEE to safeguard inputs
and keep sampled DP noise confidential. In particular, the
TensorFlow-Federated implementation [27], [8] closely fol-
lows the textbook DP mechanism for large domain histograms.
Figure 5 shows a basic C++ reference implementation, for
illustrative purposes.

Case Study: Counting Common URLs. A typical application
of PHH is in browser telemetry [75], [76], where clients report
URLs that crashed their browser and the related context (see
Network Error Logging [77]). In the rest of this section, for
illustrative purposes, we consider a DP algorithm that attempts
to identify frequent URLs submitted by devices. The goal
of the attacker is to extract additional information (beyond
the result histogram) about the URLs submitted by individual
devices, as formalized in Definitions 1 and 2. This attack
model also incorporates Sybil attacks (Section III).
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// batch, epsilon, and threshold in the context
std::unordered_map<string, int> hist;
std::vector<std::pair<string, int>> result;
...
while(!batch.empty()){ // Aggregate inputs
hist[batch.front()]++;
batch.pop();

}
for (auto [k, v]: hist) { // Noise and Threshold
auto noisy_val = v + sample_centered_laplace(epsilon);
if (noisy_val >= threshold)
result.push_back(std::make_pair(k, noisy_val));

}

Fig. 5: Baseline unprotected PHH application example code.
“batch” refers to user data to be protected. The variance of
the noise and the threshold are set according to ϵ and δ, to
achieve (ϵ, δ)-DP.

A. TF-Federated Evaluation

We analyze the leakage of the aggregation and noise-and-
threshold phases of the DP algorithm3. As in the snippet in
Figure 5, the aggregation phase accumulates inputs into a hash
map and places the keys into a vector. The noise-and-threshold
phase iterates through the vector, adding DP noise to each
histogram entry, and then thresholding.

Findings. In both parts of the code (aggregation and noise-
and-threshold), the code leaks sufficient information to enable
a distinguishing attack (Definition 1). Figures 6a and 6b
show page-level leakage in the application. We plot the count
of data page accesses after each code page fetch (feature
set F4) in two neighboring executions: in the first one, we
ingest “normal.com” 10 times, while in the second one, we
ingest into the application “normal.com” 9 times, followed
by “embarrassing.com”. This corresponds to an instance of a
distinguishing attack from Definition 1. The plots show that
the execution length is data-dependent for both the aggregation
and noise-and-threshold phases. We examine this further, along
with a potential mitigation, in the following section.

B. Advanced Attacks and Mitigations

In the rest of this section, we discuss different flavors
of attacks and mitigations, and how their effectiveness can
be evaluated with SNPeek. Instead of working with the TF-
Federated codebase from the previous section, the results in
this section are with respect to a smaller example (partially
reported in Figure 5) and included with our library. This
simpler example is less leaky than a larger codebase, and
allows us to better identify the origin of the leakage when
using automatic ML approaches to exploit it. Moreover, any
attack found in the simpler codebase translates to the more
complex TF-Federated implementation, and mitigations are
easier to implement and evaluate.

We start by discussing an attack based on data-dependent
execution. This attack is analogous to the one reported in
Figure 6b, and mentioned above.

3Source code available at: google-parfait/tensorflow-federated, file:
dp open domain histogram test.cc, line 655, commit e245ed4

Distinguishing attack via simple features. Assume the target
device has either URL0 or URL1. The attacker injects 99 Sybils
with URL0 before the target, so the input is either 100 copies
of URL0 or 99 copies of URL0 and one URL1. The attacker
obtains 1500 traces for each case and uses them to learn how to
distinguish URL0 and URL1. One leakage source in Figure 5
is the noise-and-threshold loop iteration count, which depends
on the number of keys in the input set.

If the target visited URL0, there is just one key in the
map, while a URL1 visit results in 2 keys and therefore
one more iteration. Figure 7 highlights how we capture this
leakage: The distributions of code fetches and data accesses
in the noise-and-threshold phase are different across the two
labels. This leakage can also be confirmed through a logistic
regression classifier trained on the F1 feature set with perfect
accuracy, giving the attacker a normalized advantage of 1.0
(Definition 1).

Mitigation. While padding the unordered map to the maxi-
mum number of possible keys is an obvious mitigation, it is
extremely inefficient. Thus, we propose a DP-based mitigation.
Observe that the noise-and-threshold loop iteration count—the
quantity used by the previous attacker—has limited sensitivity
to the target’s value: switching from URL0 to URL1 changes
it by only 1. If there is just enough variance in the number of
iterations, the attacker will have a hard time distinguishing
the two cases. We accomplish this by injecting a random
number of distinct “dummy” elements. More precisely, we add
a number of dummies distributed as a discrete shifted Laplace
random variable with parameters ϵ, δ, to ensure that the
number of loop iterations is (ϵ, δ)-DP and the corresponding
leakage is bounded. Figure 9 in Appendix A shows model
code. The idea of DP-fying side-channel leakage by adding
dummy contributions appears in related work [78], [79]. We
show that SNPeek can help determine appropriate values for
DP parameters.

We evaluate this mitigation by computing the empirical
advantage of the attacker over the noise-and-threshold stage,
across a range of ϵ values for the dummies, and comparing
it with the analytical lower bound computed in Appendix A
(Figure 8, top). The results show that the mitigation succeeds
for the noise-and-threshold phase, dropping the attacker ad-
vantage below and bringing it close to the analytical lower
bound for sufficiently small ϵ, across all feature sets described
in Table II. This highlights that SNPeek can evaluate defenses
and also discover parameters for effective mitigations. Re-
garding performance, the expected number of dummies for
δ = 10−9, ϵ = 0.1 is about 200, offering a very good
tradeoff between privacy and performance for large enough
deployments, e.g., with n ≥ 10000.

Distinguishing attack via advanced features. Despite the
above mitigation, there could be leakage in the aggregation
stage. In Figure 8 (bottom), we evaluate the mitigation against
attacks that use all feature sets over the aggregation subroutine.
The input-dependent memory usage—code fetches and data
accesses per page—expressed through F5 suffices for a logistic
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(a) Last iteration of the accumulation phase
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(b) The noise-and-threshold phase

Fig. 6: Page-level leakage of TensorFlow Federated PHH code during accumulation and noise-and-threshold phases. We ingest
“normal.com” 9 times, then either “normal.com” or “embarrassing.com”. Adding a new key triggers a longer code path in
accumulation and an extra iteration in the noise-and-threshold phase.
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Fig. 7: The separable distribution of the CF and DA Count
features across labels in the noise-and-threshold phase of the
vanilla PHH implementation.
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Fig. 8: Advantage of the F1, F2, F3, F4 and F5 Distinguishing
attacker for PHH protected by dummy operations for various ϵ.
The Empirical advantage is computed using a logistic regres-
sion for the noise-and-threshold (top) and Aggregate (bottom)
stages, averaged over 5 trials. We compute the analytical upper
bound using the formula in Appendix A.

regression classifier to bypass the mitigation. The attacker by-
passes the analytical upper bound because it is computed under
the assumption that such features were hidden. Mitigations for
this attack would need to randomize a histogram of accesses,
rather than just one count. We leave this for future work.
Fingerprinting attack. Recall that fingerprinting attacks are
applicable when the attacker knows the distribution W of a
target’s data over a (possibly large) domain and is interested
in a (possibly small) set I . In our example, we instantiate
W with a power-law distribution with parameter 0.5 over the

list L of the top 1000 most common sites in Alexa Top 1
Million Sites dataset [80]. The choice of 0.5 is arbitrary but
realistic, in that it corresponds to a skewed distribution. The list
L contains URLs such as “google.com” and “wikipedia.org”,
but also URLs that might leak additional information, such as
“google.co.jp”. I are the 301 URLs in L not ending in “.org”,
“.com” or “.net”, and thus often carrying information about
the user’s language or location.

The offline phase of the attack trains two classifiers: the
membership binary classifier to identify whether or not the
target’s value is in I and the fingerprint classifier to predict
which of the 301 values in I the target had, assuming it had
one. The offline phase has the following steps

1) Create a dataset as follows:
a) Sample target’s data x from W .
b) Create one instance of each element in I .
c) To boost fingerprinting success, create enough Sybil

data that is out-of-domain (e.g., not URLs) such that
it is unlikely that the memory locations maintaining
counts of elements in I will be close to each other. This
permits control over the granularity of side channels
needed to effectively fingerprint I .

d) To improve membership detection in I , create enough
Sybils such that a rehash event is guaranteed when x ̸∈
I . This can easily be done by inspecting the hashtable
code, which is available to the attacker.

2) Capture side-channel traces produced by running PHH
algorithm on the above input.

3) Repeat above to create sufficiently many unlabeled ex-
amples (traces).

4) Train the membership classifier on all examples, each
labeled by the bit indicating if x ∈ I .

5) Train the fingerprint classifier on only examples where
x ∈ I , each labeled by x.

In the online phase, the attacker runs the membership
classifier to determine whether or not the target has interesting
data (∈ I). If the target is deemed interesting, they will run
the fingerprint classifier.

We evaluate the fingerprinting attack by building a dataset of
5000 instances, corresponding to traces of samples collected
from W . We instantiate the membership and fingerprinting
classifiers as logistic regression models based on all F1-
F5 features. The membership classifier obtains a normalized
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advantage of 1.0 (Definition 1), which is a perfect score.
This underscores the power of Sybils to exploit the vulner-
ability in the std:unordered_map implementation. The
fingerprinting classifier yields a normalized advantage of 0.44
(Definition 2), highlighting attack feasibility due to substantial
leakage of the victim URL label through the PHH workflow.

VII. USER-DEFINED FUNCTIONS IN PRIVACY SANDBOX

TEE-isolated user-defined functions aim to enable new
privacy-preserving applications such as data source verifi-
cation [81], outsourcing computation [82], private function-
as-a-service [83], and ads targeting [29]. UDFs run atop a
language sandbox (e.g., JavaScript/Wasm) to enable third-
party queries on user data. The language sandbox restricts
third-party code from extracting user data, limits interfaces,
and enforces constraints like time limits and accounting [82].
We focus on the side-channel evaluation of an example UDF
that is implemented by the Protected Auction Key/Value
service, part of the Privacy Sandbox [30]. Privacy Sandbox,
as an alternative to third-party cookies, enables third-party
advertisers (AdTechs) to access advertising signals stored in an
in-memory TEE-protected key/value database. They use UDFs
to run custom queries without direct access or logging. The
query’s output is aggregated and protected by DP techniques.

However, the requirement to keep the attacker out of the
hypervisor requires special care for secure on-premise deploy-
ments of such privacy-preserving systems. Consider a hypo-
thetical scenario where a malicious AdTech tries to run their
own deployment of Privacy Sandbox on machines they fully
control, including the hypervisor. Although the TEE would
properly attest their key-value service deployment with the
isolated UDF, they can still exploit side-channels to extract raw
data from the key-value service. Hence, specialized mitigations
intended to prevent or detect side-channel signaling behavior
by a UDF would be advisable.

A. Stealing User Data via Covert Channel

We evaluate a covert channel attack where a malicious UDF
steals user query arguments. Because the UDF is maliciously
constructed, the attacker does not need to train a model to
learn correlations. The UDF can use a deterministic encoding
that gives a clear view of the data. As a result of this noiseless
recovery, the normalized advantage is 1.0.

Profiling UDF runtime. We analyze the UDF runtime to
identify a trigger point for our covert-channel attack—when
the receiver expects to see data from the sender. The UDF in
the Protected Auction Key/Value service [30] is based on the
V8 engine [84]. It supports JavaScript or inline Wasm, where
the Wasm code must be invoked by JavaScript driver code,
ensuring the UDF entry point remains in JavaScript. When
the V8 engine creates a typed array, it first executes one code
page, writes to this page, and then executes this page again.
This X+W+X access pattern serves as an indicator of the start
and end of the UDF execution. We mark the inline Wasm by
surrounding it with two typed arrays, enabling SNPeek to only
track the Wasm execution.

Encoding data over ciphertext. In the inline Wasm, we
choose the ciphertext side channel to encode secret data.
Specifically, we create a 4 kB memory buffer that contains
256 ciphertext blocks. As we iterate over the data stream byte
by byte, we write to one of the 16-byte blocks in the 4 kB
buffer. The index of the block depends on the value of each
secret byte. We observe that in each iteration, the V8 engine
consistently accesses four distinct memory pages in addition to
our 4 kB encoding buffer. Among these, two page faults occur
with a single specific block modification, which we attribute
to updates in the loop counter and a temporary variable. The
other two page faults are caused by memory reads. Therefore,
we check the ciphertext changes of the previous faulted page
every time a new memory page fault occurs. Thus, we can
encode one byte with only five page faults, i.e., five context
switches.
Evaluation. We evaluate the performance of our covert chan-
nel by transmitting 48 bytes of user-supplied input arguments
100 times. We ignore three page faults when transferring
each byte, as only one additional page fault is enough to
trigger checking the ciphertext changes. Since these faulted
pages have distinct page numbers, SNPeek can simply skip
unmapping them. Our covert channel achieves an average
transmission rate of 497 kbit/s with an error rate of 0. The
speed of this attack can be further increased by combining
page numbers and ciphertext to encode secrets more effi-
ciently. For example, using 256 pages, an attacker can encode
an extra byte per access through a controlled channel. We
verify this with a page fault-based covert channel spanning
256 pages. To apply it, the attacker only needs a profiling step
to map each page to its corresponding byte value, since the
guest operating system controls the gPN, resulting in a non-
contiguous mapping. Given that the memory limit of the V8
engine is 4 GB [29], this optimization meets such constraints.

By enabling this practical exploit, SNPeek reveals that
simply placing the UDF in a language sandbox and restricting
access to logging interfaces does not prevent the covert transfer
of sensitive data across isolation boundaries.

VIII. RELATED WORK

SGX-STEP [59] is a framework for rapid prototyping of
side-channel attacks in SGX [85], [65]. Similarly, Stacco [86]
offers a framework for collecting and differentially analyzing
multiple side-channel traces (e.g., page faults, cache attacks)
against SGX enclaves. While Stacco focuses on using dif-
ferential analysis to automatically detect vulnerabilities in
cryptographic implementations such as SSL/TLS, our work
aims to quantify information leakage in data-privacy applica-
tions. Within this evolving threat model, attackers use system
interfaces to construct new side channels [1], [17] and improve
the reliability and bandwidth of side channels [61], [59], [87].
Unlike traditional side channels, these attacks can completely
circumvent system noise. We provide a more detailed discus-
sion in Appendix D.

SEV-SNP relies on encryption for hiding memory, but does
not protect the ciphertext, which enables the new class of
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ciphertext side channels [21], [22]. Attackers can also exploit
privileged interfaces such as performance counters [19] and
power reporting [88] to leak side-channel information from
CVMs. TDXDown [37] exploits gaps in system-level coun-
termeasures against timer interrupt attacks. SEV-STEP [60]
is a framework for prototyping single-stepping and L1 cache
attacks on SEV-SNP.

Software-based side-channel attacks have impacted TEEs
in real products to steal cryptographic keys [89], [90], [86].
The industry consensus to mitigate these attacks is to ap-
ply constant-time coding practices [91]. Previous work has
proposed automated tools to test such implementations [92],
[93], [94], [95]. However, these tools and constant-time coding
practices are not applicable and practical for general-purpose
programs. Yuan et al. applied manifold learning to evaluate
side-channel attacks on media software [12]. Ciphertext side
channels have been demonstrated as an effective technique
to steal ML models’ inputs and hyperparameters [96],
[97]. Further, side-channel-assisted information retrieval has
been demonstrated against SQLite [13]. We focus on auto-
mated side-channel testing of privacy-preserving applications
in CVMs.

Haeberlen et al. argue that differentially private query re-
lease may be vulnerable to covert channel attacks via side-
channel leakage [42]. Their threat model explicitly separates
the service provider from the adversary and leaves only the
privacy budget and query time as side-channels. Jin et al.
demonstrate that the running time of noise sampling algo-
rithms could be used to circumvent DP guarantees [98].
Ratliff & Vadhan formalize DP against adversaries observing
that side-channel and propose padding-based methods for
achieving that objective [43].

IX. CONCLUSION

We conclude that automated analysis of side-channel leaks
is crucial to improve the privacy guarantees of applications
running within CVMs. The status quo of relying solely on
software techniques to mitigate side-channel attacks is imprac-
tical, and developers of privacy-preserving applications need
to constantly evaluate an app’s threat model and execution
traces to ensure sufficient mitigation. Toward this goal, a
comprehensive framework like SNPeek can significantly help
developers assess their threat model and mitigation strategy. In
the future, defense-in-depth mitigations such as reducing side-
channel information at the architecture level, preventing Sybil
attacks, and carefully applying data-oblivious data structures
like ORAM are promising but require further investigation.

X. ETHICS CONSIDERATIONS

This work builds upon the observation that Confidential
Virtual Machines (CVMs) are not invulnerable to side-channel
attacks. Although hardware vendors generally consider these
attacks outside their threat models, practitioners deploying
privacy-preserving solutions using CVMs are responsible for
mitigating such attacks. Our proposed tool, SNPeek, is de-
signed to assist security researchers in identifying and mitigat-

ing side channels rather than serving as a tool for malicious
exploitation. Although it could theoretically support attackers,
our intent is to facilitate better defensive measures by quanti-
fying risks and evaluating countermeasures.

We performed all experiments on local systems, did not
use personal data or involve human subjects, and thus did not
encounter any additional ethical concerns regarding privacy
or user consent. By openly reporting vulnerabilities to the
affected projects and contributing a framework for enhanced
side-channel analysis, we aim to improve the overall security
posture of CVM-based privacy solutions.

ACKNOWLEDGEMENTS

We would like to thank Kobbi Nissim, Jonathan Katz, Sarah
Meiklejohn, Marco Gruteser, Peter Kairouz, Daniel Ramage
and Shabsi Walfish for their constructive feedback and support.

REFERENCES

[1] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015.

[2] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level
cache side-channel attacks are practical,” in 2015 IEEE symposium
on security and privacy. IEEE, 2015.

[3] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How sgx
amplifies the power of cache attacks,” in Cryptographic Hardware and
Embedded Systems–CHES 2017: 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings. Springer, 2017.

[4] D. F. Aranha, F. R. Novaes, A. Takahashi, M. Tibouchi, and Y. Yarom,
“Ladderleak: Breaking ecdsa with less than one bit of nonce leakage,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020.

[5] Y. Lyu and P. Mishra, “A survey of side-channel attacks on caches and
countermeasures,” Journal of Hardware and Systems Security, 2018.

[6] R. Li, Q. Wang, Q. Wang, D. Galindo, and M. Ryan, “Sok: Tee-assisted
confidential smart contract,” arXiv preprint arXiv:2203.08548, 2022.

[7] H. Eichner, D. Ramage, K. Bonawitz, D. Huba, T. San-
toro, B. McLarnon, T. Van Overveldt, N. Fallen, P. Kairouz,
A. Cheu et al., “Confidential federated computations,” arXiv preprint
arXiv:2404.10764, 2024.

[8] D. Ramage and T. Van Overveldt, “Discovering new words
with confidential federated analytics,” https://research.google/
blog/discovering-new-words-with-confidential-federated-analytics/,
accessed: 2025-05-28.

[9] H. Srinivas, G. Cormode, M. Honarkhah, S. Lurye, J. Hehir, L. He,
G. Hong, A. Magdy, D. Huba, K. Wang et al., “Federated analytics
in practice: Engineering for privacy, scalability and practicality,” arXiv
preprint arXiv:2412.02340, 2024.

[10] Google, “Confidential federated compute,” https://github.com/
google-parfait/confidential-federated-compute.

[11] privacysandbox.com, “Protecting your privacy online,” https://
privacysandbox.com/intl/en us/.

[12] Y. Yuan, Q. Pang, and S. Wang, “Automated side channel analysis
of media software with manifold learning,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022.

[13] A. Shahverdi, M. Shirinov, and D. Dachman-Soled, “Database re-
construction from noisy volumes: A cache {Side-Channel} attack on
{SQLite},” in 30th USENIX Security Symposium (USENIX Security
21), 2021.

[14] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging
shared resource attacks to learn {DNN} architectures,” in 29th USENIX
Security Symposium (USENIX Security 20), 2020.

[15] H. Wang, S. M. Hafiz, K. Patwari, C.-N. Chuah, Z. Shafiq, and
H. Homayoun, “Stealthy inference attack on dnn via cache-based
side-channel attacks,” in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2022.

14



[16] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page {Table-Based}
attacks on enclaved execution,” in 26th USENIX Security Symposium
(USENIX Security 17), 2017.

[17] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land:
Understanding memory side-channel hazards in sgx,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017.

[18] C. Percival, “Cache missing for fun and profit,” 2005.
[19] S. Gast, H. Weissteiner, R. L. Schröder, and D. Gruss, “Counterseveil-
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APPENDIX

A. Connecting DP & Advantage

Lemma 2 (DP bounds advantage). If the leakage of B guar-
antees (ε, δ)-DP, a pairwise distinguishability attack against
B has advantage bounded by (eε − 1)/4 + δ/2.

Let c be the bit that indicates whether the target has x0 or
x1. Observe that

Pr[outputA = c] =
1

2

(
Pr[outputA = 0 | c = 0]

+ Pr[outputA = 1 | c = 1]
)

16



because c is uniform over {0, 1}.
Because Pr[outputA = c] > 1/2, there must be at least one

i ∈ {0, 1} where Pr[outputA = i | c = i] > 1/2 otherwise the
mean would be ≤ 1/2. We rewrite the above equality using i:

Pr[outputA = c]

=
1

2

(
Pr[outputA = i | c = i]

+ Pr[outputA = 1− i | c = 1− i]
)

≤ 1

2

(
Pr[outputA = i | c = i]

+ eε Pr[outputA = 1− i | c = i] + δ
)

The inequality comes directly from the definition of DP.
We can continue the analysis by adding and subtracting the

quantity Pr[outputA = 1− i | c = i]:

=
1

2

(
Pr[outputA = i | c = i] + Pr[outputA = 1− i | c = i]

+ (eε − 1)Pr[outputA = 1− i | c = i] + δ
)

=
1

2

(
1 + (eε − 1)Pr[outputA = 1− i | c = i] + δ

)
Now notice that Pr[outputA = 1 − i | c = i] is at most 1/2
by virtue of the definition of i. Hence,

Pr[outputA = c] ≤ 1

2

(
1 +

eε − 1

2
+ δ

)
which in turn means that the advantage is ≤ eε−1

4 + δ
2 . We

remark that this analysis is only useful for ε < ln(3 − 2δ);
otherwise, the advantage would be bounded by a number ≥
1/2.

Figure 9 shows our proposed DP-based mitigation.

B. Trace and Collection Speed

Time per NPF NPF Tracked/sec

Page-level 18,841 CPU cycles 159,227
Ciphertext 22,543 CPU cycles 133,079
Cache attacks 248,568 CPU cycles 12,069

TABLE V: The collection speed with different leakage choices
with a 3.0 GHz CPU.

Figure 10 shows an example of the raw trace, where MA
141b69 CL 60 indicates access to the 60th 64B of the guest
page at 0x141b69. ci bk is followed by the 16B index
in the page and the ciphertext value before and after the
change. Table V shows the collection speed of SNPeek under
different leakage choices, averaged over 10,000 NPF using
the Vanilla application in Section V as the benchmark. In
cache attacks, we disable the hardware prefetcher and ensure a
clean cache state at the prime state by executing the wbinvd
instruction [53].
Automatic Feature Learning To aid the sequence model, we
pre-process the traces by abstracting the memory space, and
maintaining information about the ciphertext. In Figure 11 we
show the result of pre-processing the trace in Figure 10.

// batch, epsilon, and threshold are defined in
// the context
std::unordered_map<string, int> hist;
std::vector<std::pair<string, int>> result;
...
// Mitigation params
double kEpsilonDummies = atof(argv[1]);
double kLaplaceScaleDummies = 2 / kEpsilonDummies;
double kTailBound = log(1 / kDelta) / kEpsilonDummies;
std::exponential_distribution<double>

expDummies(1 / kLaplaceScaleDummies);

// Aggregate inputs
...

// Add dummies
int nDummies = 0;
if (kEpsilonDummies > 0) {

nDummies = 1 +
int(sample_centered_laplace(expDummies)) +
kTailBound;

}
for (int i = 1; i <= nDummies; ++i) {

hist[-i]++;
}

// Noise and Threshold
...
}

Fig. 9: A mitigation for the obvious leakage in the Noise &
Threshold phase of the vanilla PHH implementation.

Fig. 10: The syntax and example of side-channel trace. “gpn”
represents the guest physical page number and “num” records
the number of code pages monitored. “pn” represents the
performance counter values of attacker-chosen events.

Fig. 11: The trace in Figure 10 after pre-processing for
sequence model.

Sequence Model We implement an LSTM model according
to the architecture described in Table VI. The vocabulary size
is set to 10,000, and the traces are truncated to the last 5000
tokens. The model uses a batch size of 32 and is trained for
50 epochs using early stopping.
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Layer Dimm # Params

Input 10,000 0
Embedding 64 640,000
Bidirectional 128 66,048
Bidirectional 64 41,216
Dense 64 4,160
Dropout 64 0
Dense 2 130

TABLE VI: The architecture of the LSTM model used
throughout the case studies.

C. Intel CAT

We evaluate our optimized Prime+Probe attack on an Intel
Xeon E5-2697 v4. This platform features a 20-way inclusive
L3 cache, where a ”perfect” eviction set normally requires 22
(20+2) candidates mapping to the same slice and set [99]. We
employed the pqos utility to leverage Intel CAT, defining a
new Class of Service (CLOS) with an L3 Capacity Bitmask
(CBM) of 0xff. This restricted assigned cores to 8 L3-cache
ways (down from the default 20). We then associated the
core executing the AES T-table benchmark with this restricted
CLOS [100]. This intervention yielded the expected outcome,
reducing the required perfect eviction set size from 22 to just
10 (8+2) candidates. This finding confirms that a privileged
attacker can co-opt hardware-based cache reservation mecha-
nisms (e.g., Intel CAT or AMD MSRs) to force a victim into
a shared, low-associativity partition. This makes a successful
Prime+Probe attack quantifiably less complex and resource-
intensive.

D. System Noise Circumvention

In this section, we discuss the noise sources for the four
side-channel types and the hypervisor’s ability to circumvente
them.
• Page Faults and Ciphertext: Both of these channels are

inherently deterministic. The sequence of page accesses
is dictated by the victim program’s execution flow, just
as the ciphertext leakage is dictated by its memory
write operations. Consequently, these channels are not
susceptible to external system noise.

• PMCs: PMCs are a per-core resource. A hypervisor can
configure them to record only events originating from
the guest VM. By scheduling other VMs (if any) to
different cores, the hypervisor can dedicate a core to the
victim, effectively eliminating any cross-VM interference
and ensuring a noise-free PMC trace.

• Cache Attacks: The noise profile for cache attacks
depends on the targeted cache level. We target the L2
cache, which is shared only within the physical core.
Importantly, the shared L3 cache in the targeted AMD
microarchitecture is non-inclusive. This means memory
activities on other physical cores do not cause evictions in
the L2 cache where the victim is sharing, thus preventing
them from interfering with our L2-based Prime+Probe.
The only remaining potential noise source is the sibling

hyper-thread (SMT) on the same core. However, a priv-
ileged hypervisor can easily eliminate this by disabling
SMT, granting the victim VM exclusive access to all L2
cache ways.
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APPENDIX A
ARTIFACT APPENDIX

A. Description & Requirements

This artifact contains the framework for auditing privacy
applications running inside Confidential VM, described in the
paper “SNPeek: Side-Channel Analysis for Privacy Applica-
tions on Confidential VMs”. It includes everything needed to
reproduce the experiments in the paper, such as the customized
hypervisor with instrumentation, data collected from confiden-
tial VMs, and the scripts for processing that data.

1) How to access: The artifact is publicly available
in a GitHub repository: https://github.com/google-parfait/
cvm-side-channel-analysis. It is also available on Zenodo at:
https://doi.org/10.5281/zenodo.17542706.

2) Hardware dependencies: This artifact requires AMD
SEV-SNP VMs, and thus an AMD EPYC server (Zen 3, 4,
or 5 generation) with SEV-SNP support is necessary. The
experiments in the paper were conducted on a 16-core AMD
EPYC 9124 CPU. Root privileges are required to install and
run a customized kernel, along with the ability to reboot the
machine, in order to fully evaluate the artifact.

3) Software dependencies: All our experiments are tested
on Ubuntu 24.04 LTS (Linux kernel 6.11.0). QEMU and
OVMF are required to launch SEV guest VMs, as referenced
from AMD’s official GitHub repository4. Finally, we use the
libtea framework to modify page table entries and configure
the APIC timer5.

4) Benchmarks: None.

B. Artifact Installation & Configuration

This section describes how to install the software compo-
nents for inspection, though running the experiments requires
the specific hardware listed above.

C. Experiment Workflow

To access the artifact, clone the repo.

git clone https://github.com/google-parfait/cvm-side
-channel-analysis.git

cd cvm-side-channel-analysis

To prepare the host OS and guest VM, following the
guidance under trace collection /kernel patch/ :

cd trace_collection/kernel_patch

To collect traces from applications running inside the guest
VM, you can follow the step-by-step instructions in the
README under trace collection . The script for setting up
the environment and batching the collection process is located
in trace collection/sca dp.

The trace processing folder contains basic pipelines for
processing traces, extracting features, analyzing data, and
applying machine learning.

4https://github.com/AMDESE/AMDSEV
5https://github.com/libtea/frameworks
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