Demystifying the Access Control Mechanism
of ESX1 VMKernel

Yue Liu*®, Zexiang Zhang'®, Jiaxun Zhu!, Hao Zheng, Jiaging Huang, Wenbo Shen?
Gaoning Pan®Y, Yuliang Luf, Min Zhang!, Zulie Panf, Guang Cheng*=

*Southeast University, China
iZhejiang University, China

National University of Defense Technology, China
§Hangzhou Dianzi University, China

9Zhejiang Provincial Key Laboratory of Sensitive Data Security and Confidentiality Governance, China

Abstract—VMware ESXi is a widely deployed enterprise-grade
Type-1 hypervisor that serves as the foundation for modern cloud
infrastructure. To reinforce privilege isolation, ESXi introduced a
mandatory access control mechanism in VMKernel. However, due
to VMKernel’s proprietary and closed-source nature, its internal
access control architecture remains largely opaque and under-
explored. Prior research has focused primarily on virtual device
vulnerabilities and virtual machine escape, leaving the internal
access control mechanisms and privilege model of VMKernel
largely unexamined.

To address this gap, we conduct the first comprehensive
security analysis of VMKernel’s access control mechanism. We
develop a domain-control structure oriented analysis method to
reconstruct key internal permission logic, and design a structure-
aware debugging framework to support fine-grained runtime
validation. Using this framework, we uncover several critical de-
sign flaws, including writable and unprotected in-memory control
structures and exploitable developer-reserved syscall interfaces.
We demonstrate three practical attack scenarios that abuse these
flaws to bypass sandbox restrictions, escalate privileges, and
gain persistent access. In total, we discovered and reported 14
vulnerabilities to VMware, all of which have been confirmed and
fixed, with a total of $42,000 in bug bounties awarded.

I. INTRODUCTION

VMware ESXi is a leading enterprise-grade Type-1 virtual-
ization platform, widely deployed in private clouds, enterprise
data centers, and other mission-critical environments. It is
built on a bare-metal architecture that delivers high perfor-
mance, strong isolation, and fine-grained resource scheduling,
enabling large-scale virtual machine(VM) deployments and
high-availability cluster management. Within the bare-metal
hypervisor segment, ESXi holds over 45% of the global market
share [1]], establishing itself as a cornerstone of modern cloud
infrastructure and playing a critical role in business continuity,
security, and elastic resource management.

©Both authors contributed equally.
=1 Corresponding author: Guang Cheng (chengguang @seu.edu.cn)

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240700
www.ndss-symposium.org

However, the widespread adoption of ESXi also makes
it a high-value target for attackers. In real-world incidents,
the APT group “Dark Angels” reportedly compromised ESXi
systems and conducted large-scale ransomware campaigns,
extorting over $135 million [2]. Additionally, at the Pwn20wn
hacking competition, a successful ESXi exploit was valued
at $150,000, topping the event’s bounty leader board [3].
These cases demonstrate the critical importance and urgency
of reinforcing ESXi’s security mechanisms.

To enhance its security, ESXi has incorporated a dedi-
cated access-control mechanism since version 6.5, serving
as a foundational layer for regulating system behavior and
enforcing privilege separation across kernel components. This
mechanism is implemented within VMKernel, the core kernel
of ESXi responsible for system-wide resource management. It
adopts a sandbox-like isolation model, partitioning system pro-
cesses into distinct security domains and enforcing whitelist-
based restrictions on critical operations such as syscalls, file
access, and network communication. This architecture estab-
lishes a strong internal security boundary within ESXi, while
structurally limiting the attack surface, particularly for threats
involving virtual machine escape.

ESXi’s access-control mechanism is pivotal in defending
against VM escape threats, yet its design and security guaran-
tees remain largely unexamined. One reason is that VMKer-
nel—the proprietary, closed-source core of ESXi—Ilacks pub-
lic documentation and symbol information, and analyzing its
permission-management strategy is exceptionally challenging.
Prior research has concentrated on vulnerabilities in the VMX
module or virtual devices to achieve VM escape [4]-[6],
while little attention has been paid to how VMKernel enforces
system-wide privilege constraints that ensure access isolation
and resource security among internal kernel components. This
knowledge gap limits the understanding of ESXi’s overall
security boundary and impedes further enhancement of its
protective mechanisms.

To bridge this gap, we conduct a in-depth analysis of
VMKernel’s access-control mechanism, aiming to reveal its
internal privilege-management architecture, validation logic,
and vulnerabilities. Our study pursues two core objectives:
(1) to understand, through static analysis, the data structures
and algorithms VMKernel employs to enforce permission

checks on critical resources; and (2) to examine these en-
forcement paths at runtime, evaluating whether adversaries
can circumvent the intended policies—such as via structural
tampering—and thereby expose hidden security threats.

Achieving these objectives, however, is non-trivial due to
two key challenges. First, VMKernel’s access-control mech-
anism spans a wide range of heterogeneous resources, in-
cluding system calls, file access, and network communication.
Our preliminary analysis reveals that permission checks are
scattered across diverse execution paths without a centralized
entry point, resulting in fragmented analysis and a lack of
structural guidance. Second, debugging support is severely
limited. Although VMware DebugStub [[7] provides basic
system-level tracing, it lacks semantic and structural awareness
of VMKernel’s internal components. Given the complexity
and high frequency of access-control logic execution, existing
tools fail to deliver the necessary breakpoint precision or
path control, thereby hindering effective dynamic analysis and
exploit validation.

To address these challenges, we propose two techniques.
First, we introduce a domain-control structure oriented VMK-
ernel access-control mechanism analysis method that compre-
hensively reconstructs VMKernel’s access-control data struc-
tures and validation paths. Second, we extend VMware’s De-
bugStub interface to build a structure-aware VMKernel access-
control mechanism debugging framework, enabling precise
runtime observation of permission checks and validation of
potential attack paths.

Our study uncovers multiple security weaknesses in VMK-
ernel’s access-control mechanism that undermine its ability
to enforce isolation. We find that its access-control mecha-
nism relies on a centralized in-memory structure that lacks
write protection and integrity checks, rendering it vulnerable
to tampering. We further identify several developer-reserved
debug syscalls that expose high-privilege debug interfaces and
can be abused after sandbox escape. Additionally, more than a
dozen syscall handlers suffer from memory safety flaws such
as stack overflows and information leaks, creating a broad and
exploitable attack surface.

Based on these findings, we conducted controlled proof-
of-concept attacks in a secure environment, demonstrating
successful privilege escalation and other practical exploit
effects on ESXi. We responsibly disclosed all 14 identified
vulnerabilities to VMware, all of which have been confirmed
and patched, with a total of $42,000 awarded through its
official bug bounty program.

In sum, this paper makes the following contributions.

o We develop the first analysis framework specifically tar-
geting the VMKernel access-control mechanism.

o We propose two novel analysis techniques for analyzing
and deconstructing VMKernel’s access-control logic.

o We identify three critical security flaws in VMKernel’s
access-control design.

« We design three practical attacks that exploit the flaws to
compromise system integrity.

I
Guest Machine (Guest ring 0) l

ESXi Hypervisor

' Thostd | | | Sandbox ———————y H I

! L VMX(Host ring3) yperea

I [Virtual

} otc : : Hardware h

l—— L _Z__—___

UserWorld API VMM

VMKernel (Host ring 0)

(Hardware Drivers | [File System (VMFS) | [10 Stack |
|

v

Physical Hardware

Fig. 1: Architecture of VMware ESXi

o We responsibly disclosed 14 security vulnerabilities to
VMware, all of which have been confirmed and fixed.

II. BACKGROUND

In this section, we first introduce the architecture of ESXi,
outlining the roles and interactions of its core components.
We then analyze the major security threats it currently faces.
Finally, we briefly present the access-control mechanisms
implemented by ESXi to mitigate such threats, laying the
groundwork for subsequent security analysis.

A. Architecture of ESXi

VMware ESXi is a proprietary, closed-source Type-1 hyper-
visor known for its strong security guarantees and widespread
use in private cloud deployments [8]. As shown in Fig.
ESXi adopts a modular architecture comprising four core
components: the Guest Machine, the Virtual Machine Monitor
(VMM), the Virtual Machine Extension (VMX), and the
VMKernel. The VMM provides the execution environment
for guest OSes and manages their I/O, while the VMX,
running in the host’s ring-3 layer, integrates virtual hardware
functions. Each Guest Machine is paired with a dedicated
VMM and VMX process. At the core, the VMKernel contains
physical device drivers, a lightweight file system (VMES),
and a syscall interface, enforcing unified access control and
resource scheduling. Additionally, ESXi includes auxiliary
service components such as hostd, which processes vCenter
management requests, and slpd, which provides Service
Location Protocol (SLP) services. User World [9]] is a minimal
user-space environment within VMKernel for running essential
system processes like VMX, it exposes limited APIs and file
access, providing a controlled runtime that extends VMKernel
functionality while maintaining process-level isolation.

In ESXi, guest access to host hardware is accomplished
through the coordinated operation of multiple components.
Specifically, a guest initiates a request via memory-mapped I/O
(MMIO), port-mapped I/O (PIO), or a hypercall. The Virtual
Machine Monitor (VMM) captures and interprets the request,

then invokes the corresponding virtual device in the VMX
process using a Remote Procedure Call (RPC). The virtual
device, in turn, forwards the request to the VMKernel via
the User World API interface. After performing access-control
checks and resource scheduling, the VMKernel carries out the
low-level hardware interaction. The result is then propagated
back to the guest system along the original path.

B. Security Threats to ESXi

The primary security threats faced by ESXi mainly stem
from attacks targeting its internal components. Attackers typ-
ically craft malicious inputs to trigger memory corruption
vulnerabilities within these components, allowing arbitrary
command execution in the context of the compromised process
on ESXi. The impact of such attacks varies depending on the
targeted component, with the most representative categories
being Remote Code Execution (RCE) and virtual machine
escape. RCE attacks usually target ESXi components that
directly interact with the Internet. For example, CVE-2021-
21974 [10] exploits a vulnerability in the SLP protocol,
enabling attackers to launch remote attacks and execute com-
mands on ESXi with the privileges of the slpd process.
In contrast, virtual machine escape attacks primarily target
components related to virtual machine management, such as
VMX or VMM. A representative case is CVE-2024-22252
[11]], which exploits a vulnerability in the XHCI virtual device
implementation within the VMX process, allowing an attacker
to initiate the exploit from within a virtual machine and
ultimately execute commands on the host with VMX process
privileges. The virtual machine escape attack poses a severe
threat to virtualization platforms, as it breaks the boundary
between the guest and the host, fundamentally undermining
the isolation and trust model upon which hypervisors are built.

C. Access-Control Mechanism of ESXi

To establish strong privilege separation and runtime iso-
lation across critical components, as well as to mitigate the
practical threat of high-risk attacks such as virtual machine
escape, VMware ESXi introduced a mandatory access-control
mechanism starting from version 6.5, further enhancing the
platform’s security posture. [4] This mechanism is enforced by
the VMKernel and establishes sandbox-like isolation by divid-
ing the system into security domains and applying whitelist-
based access controls.

Specifically, VMKernel first classifies system components
into different security domains based on their usage scenarios.
For example, the globalVMDom domain, which contains the
VMX, and the appDom domain, which hosts multiple service
process components. Then, it defines fine-grained access-
control policies for each domain, specifying the allowed socket
types, accessible file paths along with their permissions, and
the list of permitted syscalls. For instance, Listing[T| shows the
policy configuration for the globalVMDom domain, which
explicitly restricts VMX processes in terms of network usage,
file access, and syscall capabilities.

dgram_vsocket_bind grant

1

2 dgram_vsocket_create gran

3 dgram_vsocket_send grant

4 .

5 tpm2emuObj tpm2emuDom file_exec grant
6 .

7 genericSys grant

8 vmxSys grant

9 ioctlSys grant

11 inet_socket_bind all grant

12 inet_socket_connect loopback grant
13 inet_socket_connect nonloopback gran
14 .

15 /usr/share/certs r

16 /bin/remoteDeviceConnect rx

17 /bin/vmx rx

18

Listing 1: Access-control rules for the globalVMDom
domain: —c for socket operations, —d for object execu-
tion, —s for syscall groups, —p for connections, and —r
for file access.

This security model ensures that even if an attacker success-
fully exploits a vulnerability to execute arbitrary instructions
on ESXi, the resulting privileges remain strictly confined
within the security domain of the compromised component.
Access to other domains or critical system resources is
effectively blocked, thereby limiting the scope of potential
damage. For example, the globalVMDom domain explicitly
disallows the execution of high-privilege sensitive syscalls
such as execve and restricts access to protected files like
/etc/shadow. Consequently, even if successfully escaped
from the guest machine and breached the isolation between the
guest and host , the attacker is prevented from establishing a
remote shell, escalating privileges, or launching lateral attacks
against other virtual machines. This enforcement mechanism
significantly reduces the overall attack surface and enhances
the depth of protection across the virtualization platform.

D. Motivation

Existing research has primarily focused on concrete ex-
ploitation cases such as RCE and virtual machine escape [4]—
[6]], while targeted studies of the access-control mechanisms
implemented in VMKernel remain limited. In fact, the access-
control mechanism plays a crucial role in constraining the
internal attack surface of ESXi. Unlike the Seccomp [12]
mechanism in Linux, which is an BPF-based syscall whitelist-
ing mechanism applied per process, ESXi’s access-control
mechanism is a standalone, integrated subsystem within the
VMKernel that governs multiple privileged resources under
a unified design. This broader and more centralized model
exposes a fundamentally different security surface and there-
fore merits dedicated analysis. This integrated design means
that once a weakness in this system is exploited, it is often
more covert and easier to execute than conventional full-
compromise approaches, such as installing maliciously signed
drivers in controlled environments. In other words, flaws at

S
‘5 ! RCE |
| Remote PC I i { sipd } Ej Access
N Control
D -
% | B4
| o) | I /
|
Guest Machine ; i
']
Host ring 3 (VMX/slpd) | Host ring 0 (VMKernel)

| Previous Research > | Our Work >

Fig. 2: Our work aims to identify weaknesses in VMKernel’s
access-control mechanism and break through its sandbox.

the access-control level not only enable privilege escalation
but also reveal a underlying weakness in ESXi’s defense-in-
depth design, underscoring the need for deeper mechanism-
level analysis and reinforcement.

Against this backdrop, as illustrated in Fig. |2 this study
aims to bridge this gap through a comprehensive reverse engi-
neering study of VMKernel’s access-control system. Our goal
is to identify weaknesses that could potentially break through
the access-control sandbox, uncover previously undisclosed
security issues, and provide insights for VMware to strengthen
its protection mechanisms. By analyzing this critical yet un-
derstudied component, we seek to deepen the understanding of
ESXi’s internal privilege enforcement and enhance the overall
security of private cloud deployments.

III. FRAMEWORK DESIGN AND IMPLEMENTATION

To enable in-depth analysis of VMKernel’s access-control
mechanism, we develop a tailored framework designed around
its proprietary architecture and enforcement model. The frame-
work aims to reconstruct internal permission logic, monitor
runtime validation behavior, and expose potential attack sur-
faces. This section begins by outlining the analysis objectives
and technique challenges, then introduces the framework’s
overall design and key implementation components.

A. Analysis Objectives

VMKernel employs a sandbox-like access-control mecha-
nism that partitions processes into distinct security groups,
each governed by dedicated security policies. This design
enables fine-grained permission control over operations such
as syscalls, file access, and network communication. Rather
than being scattered or ad hoc, its access-control logic is
centrally organized through unified data structures and a con-
sistent policy framework, exhibiting a clearly structured im-
plementation style. As illustrated in Fig. [3| this paper aims to
thoroughly dissect the implementation of VMKernel’s access-
control mechanism, with a particular focus on its control
structure and the permission allocation strategies for regulated
resources such as syscalls, in order to uncover potential
security vulnerabilities and exploitable attack surfaces. To this

| i
: Dom Sanbox } Syscall id VMKernel

| T

| +
! VMX = File Path l °
Ml -t b =
9 | | | <
= L—) Domain Control Structure | S
"5 Domain Info L R E
: [] &
% File Syscall =
2 System Dispatch Table 8
g 4
[Group 1] [Group n ‘ i

ESXi Hypervisor

Fig. 3: The Analysis Objective of our work. The components
highlighted in white within VMKernel represent the primary
focus of this study.

end, we design a analysis framework for the VMKernel, which
is intended to fulfill the following two core goals:

Goal 1: Reveal the internal access-control logic of VMK-
ernel. Our first goal is to achieve a comprehensive under-
standing of the architectural design and enforcement principles
underpinning VMKernel’s access-control mechanisms. Due to
its proprietary and undocumented nature, little is publicly
known about how VMKernel defines privilege boundaries
or performs permission validation. This lack of transparency
hinders rigorous security analysis and defense modeling. By
clarifying its internal control structures and identifying how
access policies are implemented and enforced, we seek to
expose potential design flaws or hidden vulnerabilities that
may compromise system integrity.

Goal 2: Enable runtime validation of access-control
behavior. The second goal focuses on observing and vali-
dating the dynamic behavior of VMKernel’s access-control
mechanisms during execution. While static analysis provides
insights into structural logic, it is insufficient to capture the
real-time enforcement of permissions. This goal aims to enable
accurate, fine-grained monitoring of access checks at runtime,
allowing us to verify security properties, detect inconsistencies
or bypasses in the enforcement logic, and evaluate the practical
feasibility of potential attacks under real-world conditions.

B. Challenges

To achieve the above goals, our analysis must address two
key technical challenges:

Challenge 1: Fragment and Opaque access-control logic.
As a commercial closed-source Type-1 hypervisor, VMK-
ernel exhibits a highly complex and fragmented access-
control mechanism. As shown in Listing [I] it manages
security-domain privileges across multiple dimensions, includ-
ing syscall execution, file access, and network communica-
tion. Because the types of controlled resources and their
management approaches differ, the corresponding validation
logic is dispersed across various subsystems, lacking a unified
verification framework or centralized checkpoint. Our prelim-
inary analysis of the VMKernel binary reveals that permis-
sion checks for file-access operations alone are distributed

across as many as 28 different functions. Such a decentral-
ized implementation significantly increases the difficulty of
identifying privilege boundaries and modeling access-control
behavior, any attempt to manually locate permission-checking
instructions across these scattered components would demand
extensive human effort and be highly inefficient. Furthermore,
as a kernel-level program, VMKernel lacks conventional entry
symbols (e.g., main, start_kernel), which further com-
plicates control-flow analysis.

To date, no prior work has conducted an in-depth study
of VMKernel’s access-control mechanism. In the absence of
symbols, documentation, or prior research, identifying and
modeling the internal privilege-management mechanisms of
a closed-source Type-1 hypervisor represents a task of con-
siderable technical difficulty and scientific significance.

Challenge 2: Limited dynamic debugging support for
fine-grained tracing. Traditional kernel debugging methods,
such as QEMU-based virtualization debugging, can be applied
to certain Type-1 hypervisors (e.g., KVM, XEN). However,
due to the lack of complete hardware emulation and full
support for privileged instructions, they cannot reliably run
or debug ESXi [13]], the closed-source Type-1 hypervisor.
Because VMware Workstation shares a substantial amount
of code and system mechanisms with ESXi, using its na-
tive DebugStub interface represents the ideal practical op-
tion for debugging [14]. Nevertheless, DebugStub operates
by emulating breakpoints across the entire virtual machine
address space, which imposes significant limitations on both
precision and performance—it supports only a small number
of breakpoints and lacks fine-grained conditional monitoring
capabilities. These constraints make it unsuitable for analyz-
ing the highly distributed permission-validation logic within
VMKernel’s access-control mechanism. Moreover, VMKernel
continuously issues large numbers of system calls during
execution; relying solely on conventional breakpoints without
structural or semantic awareness results in excessive break-
point hits, disrupts normal execution, and introduces analytical
bias.

Consequently, existing debugging tools cannot provide suffi-
cient observability or semantic depth to trace permission-check
operations and structural updates at runtime, severely limiting
the ability to validate and evaluate potential attack behaviors.
This limitation has become a central technical bottleneck in
deeply analyzing the access-control mechanism of VMKernel.

C. Analysis Framework Overview

To achieve our analysis objectives, we design and imple-
ment an analysis framework, as illustrated in Fig. 4] Specif-
ically, we construct a three-tier nested virtualization envi-
ronment: We adopt VMware Workstation as the underlying
hypervisor and deploy an ESXi instance as the primary target
for analysis. In parallel, a Linux virtual machine is configured
as the monitoring host, which simultaneously performs static
analysis of the VMKernel and establishes dynamic debugging
via VMware Workstation’s DebugStub [7]] interface. To simu-
late a realistic cloud computing environment, a nested Linux

[0 Domain-Control Structure

Guest Machine oriented Analysis

[0 Structure-Aware Debugging

Linux

VMware ESXi ‘

Static
VM Kernel ------------
Debug | Bl
Stub
r VMware Workstaion _|

— Control/data flow observed during dynamic debugging

————— + Information identified via static analysis

Fig. 4: Overview of Analysis Framework. Based on this
framework, we design two techniques in section and
111-E

guest is instantiated within the ESXi hypervisor to trigger
the activation of core VMKernel components under typical
workload conditions.

In addition, based on this architecture, we developed two
key techniques to address our research challenges: a domain-
control structure oriented VMKernel access-control mech-
anism analysis approach and a structure-aware VMKernel
access-control mechanism debugging method. The following
two sections provide a detailed exposition of each technique.

D. Domain-Control Structure oriented VMKernel Access-
Control Mechanism Analysis

As discussed in[[II-B] analyzing VMKernel’s access-control
mechanism is particularly difficult due to the highly frag-
mented nature of permission checking logic and the lack of
clear analysis entry points. However, as described in
VMKernel applies a unified permission and access-control
policy to all processes within the same security domain.
This one-to-many design, where multiple processes share a
single domain, implies that permission enforcement relies on
a centralized data structure and a consistent policy mechanism.

This design provides a natural entry point for our analysis.
In this work, we take the reconstruction of the security domain
control structure as the foundation, and progressively extract
the underlying access-control logic and implementation details
throughout the process. Our approach consists of three main
steps. First, we locate and reconstruct the internal VMKernel
structure responsible for managing security domain permis-
sions, identifying its overall layout and the specific roles of
each field. Second, to more effectively trigger permission-
checking behavior, we analyze VMKernel’s syscall mecha-
nism, including the call entry points, dispatch table structures,
and permission-related metadata. Finally, we take the syscall
handling process as an entry point and, with the aid of dynamic

Rl

|
|
|
|
|
test | edx, edx |
|
|
|
|

e Separate
lea rex , [rdi+80h] Field
bt [

rex], r8

(=}

-\I_’ ____________

Estimate |

cmp | dword ptr [rdi+28h], r12

__
w N
)
w2
»
N
[¢]
Il
1)
>
El
[@))
o0
“:7‘
o0
o
\.LT‘
[\S)
o0
\.'_"—
N
|
g
R
N
[¢]
S

Dynamic Debug and Verification
(8III-E)

-

Permission Validation Behavior Analysis

Syscall Rule

Debug

ESXi Machine

File Policy

[Domain Control Stucture Identification] [Syscall Mechanism Reconstruction]
| ! | % i
| VMFS Kernel Log Error String | - _ : Syscall Field Layout |
| I : Signature instruction Entry Inference |
| L. a XREF Lo VMKernel |
: Permission Check Functions : | C«\ Binary Privilege :
X | :
A ; N | S t

| 1f[mov rsi,:10n | Group Name String cpeeon) Syscall :
I, L P Dispatch Table

.. ocate | | |
: 3|/mov rdi |, [rsi+] Address __ __ U BV 2
: 4| jmp short loc 420000582394

Y A

I 5] I
: 6| mov edx, [rdi+68h] Dom Struct : v
| 7
|
| 8
|
|
|
|
|
|
|
|
|

Fig. 5: Domain-Control Structure oriented VMKernel Access Mechanism Analysis

debugging, conduct an in-depth analysis of how the security
domain control structure participates in permission checks
within the access-control mechanism.

1) Domain Control Structures Identification

We designed a method for automatically identifying the
control structure of security domains, which includes four
main steps: identifying permission-checking related functions,
locating the control structure, determining permission-related
fields, and validating the structure layout and boundary. First,
we use the dynamic debugging framework to construct diverse
security domain contexts and issue random syscall requests,
triggering permission check behaviors in VMKernel. We then
extract error strings from kernel logs and search the VMKernel
binary to locate the corresponding permission-checking func-
tions. Second, in the structure location and field determination
stage, based on the characteristic that “multiple processes share
a single security domain,” we infer that VMKernel must access
the security domain control structure from the process context
during permission checks. We analyze the instructions ac-
cessing contextual information to locate the control structure.
Third, by analyzing how this structure is referenced during
permission checks, we infer its field layout and overall size.
Finally, we perform dynamic testing to validate and refine the
inferred distribution of the control structure, eliminating false
positives and ensuring the correctness of the reconstructed
layout.

As shown in Fig. 5] we first extract error strings from kernel
logs to locate the functions of permission validation. Within
the function, we identify instructions that access the gs or £s
segment registers (line 1) and trace their reference chains to
determine the memory address of the security domain control
structure (line 3). We then search for logic-related opcodes
such as test, bt, and cmp (line 7,10,12), and identify the
key instructions used for permission checks. Since this analysis

is performed only within the identified permission-validation
functions or corresponding basic blocks, the targeted strategy
confines the search to semantically relevant regions, thereby
effectively reducing false positives that would otherwise arise
from global binary scanning. By performing reaching value
analysis [15] on the operands of key instructions, we ex-
tract the field offsets within the structure that are involved
in permission checks. Based on the register width used in
offset access, we further infer the positions and sizes of
the relevant fields, and estimate the overall structure size
using the maximum offset. Finally, to address potential false
negatives, we leverage the fact that the control structure is
allocated as a heap object within the kernel. By examining
the surrounding heap layout through our dynamic debugging
framework, we can accurately determine the structure’s full
memory boundary and ensure that all managed fields are
identified. We further perform manual validation to confirm
completeness and eliminate residual false negatives.

2) Syscall Mechanism Reconstruction

Among permission-restricted behaviors, syscalls are the
most accessible and thus serve as an ideal entry point for
analyzing the VMKernel access-control mechanism. However,
ESXi’s closed syscall interface and undocumented grouping
(Listing (1)) complicate permission modeling, necessitating a
reconstruction of its syscall architecture. To this end, we
propose an automated method for reverse-engineering the
VMKernel syscall mechanism (as illustrated in Fig. [5), which
consists of three key steps: syscall entry identification, dispatch
table structure inference, and group pattern recovery.

First, we observe that syscall dispatching in VMKer-
nel typically exhibits characteristic instruction patterns, such
as call [base_addr + syscall_id % offset] or
mov edi, [base_addr + syscall_id * offset].
By statically scanning for such instructions, we locate the

address of the syscall dispatch table. Based on the extracted
offset value, we derive the mapping between syscall IDs
and their corresponding handler functions, thereby identifying
multiple syscall handler entry points.

Second, based on our observations and prior experience, we
find that each syscall entry in the dispatch table is managed by
a uniform minimal structure. Accordingly, the address differ-
ences between handler functions should be integer multiples
of the structure’s size. Under this assumption, we calculate
the address gaps between the identified handlers and use
their greatest common divisor (GCD) to infer the size of
the base structure unit. We then enumerate the remaining
entries in the dispatch table using this structure size as the
step interval to identify additional, previously unrecognized
handlers. Building on this, we further analyze the memory
layout between handler entries at word-level granularity to
reconstruct the structure’s internal fields, ultimately recovering
the complete syscall dispatch table along with its underlying
structure definition. Since the analysis covers the entire address
space of the dispatch table, the completeness of the identified
syscall entries is guaranteed.

Finally, we identify syscall group semantics by searching
for group name strings in Listing [I] (e.g., genericSys,
vmxSys) in the binary and correlating them with group-
related fields in the dispatch table, thereby recovering the
syscall grouping logic.

3) Permission Validation Behavior Analysis

Based on the previously reconstructed syscall dispatch table,
we generate diverse syscall sequences under various privilege
contexts within a dynamic debugging framework. Meanwhile,
we trace the execution paths of permission-checking functions
to observe which fields in the permission structure are accessed
and verified under different combinations of contexts and
syscalls. Through comparative analysis, we identify the key
fields that are associated with syscall behavior and have a
tangible impact on access decisions, then we label them as the
syscall control fields. We further analyze the meaning of each
byte within these control fields to determine how individual
bits correspond to specific syscall groups and how their values
regulate permission enforcement. We employ a method that
combines dynamic execution tracing with validation logic
analysis to reconstruct the effect of each byte within the
field, enabling us to precisely interpret its semantic role in
the access-control process and conduct tampering tests.

In addition, considering that most file operations are indi-
rectly triggered by syscalls, we apply the same approach to
analyze the control fields and validation logic involved in file
read/write operations. As the procedure is largely similar, the
corresponding details are omitted in this paper.

E. Structure-Aware VMKernel Access-Control Mechanism De-
bugging
As described in we build a nested virtualization-based
dynamic debugging framework using VMware Workstation’s
DebugStub. However, as discussed in the challenges, analyzing
VMKernel’s access-control mechanism via DebugStub still

faces several obstacles, such as imprecise breakpoint place-
ment and difficulty in interpreting control logic. To address
these limitations, we incorporate semantic awareness and
structural understanding into the debugging process to improve
both precision and observability. As illustrated in Fig. [6]
our technical approach is designed to address the challenges
mentioned above and consists of two core components: Symbol
Recovery and Structure Injection and Privilege Context Emu-
lation and Execution. In the following, we provide a detailed
explanation of these two components.

1) Symbol Recovery and Structure Injection

We observe that although VMKernel is a closed-source
component, the ESXi runtime loads several auxiliary modules
such as device drivers. The executable files corresponding to
these modules can be extracted and unpacked to recover partial
symbol information, and parsing ESXi’s runtime configuration
allows us to determine the modules’ memory load addresses.
During debugging, we load the recovered symbol tables at
the modules’ base addresses and inject our reverse-engineered
structural definitions into the debugger. These imports improve
the readability of call stacks and memory contents, enabling
precise breakpoint control at permission-checking instructions
to observe changes in permission-related structures and fields.
Additionally, we configure the debugger to capture sponta-
neously issued syscalls during VMKernel execution, collecting
syscall parameter ranges that support our violating analysis.

2) Privilege Context Emulation and Execution

To better trigger various permission validation processes
and test potential security issues, we designed a privilege
context emulation and execution approach. Specifically, we
inject an execution agent into the ESXi environment. This
agent can simulate different security domain identities by
adjusting its parameters and modifying configuration data,
and then initiate different syscalls accordingly. In doing so,
it emulates diverse privilege contexts and helps activate the
full permission validation workflow.

Combining the above two components, our framework
achieves both fine-grained observability and controllable exe-
cution. The integration of structural awareness with privilege-
context emulation enables us to comprehensively analyze
VMKernel’s runtime behavior and effectively validate our
attack hypotheses during dynamic testing.

F. Framework Implementation

As shown in the Fig.] we have built and implemented
a unified framework for VMKernel analysis and debugging
based on the methods described earlier.

The analysis framework comprises two core modules: a
static analysis module for domain-control-structure—oriented
access-control analysis and a dynamic debugging module for
structure-aware access-control debugging. The static module,
implemented on the debugging workstation, includes a custom
VMES parser to extract the VMKernel binary and configura-
tion data, and IDA-based plugins for structure identification,
control-structure recovery, and syscall reconstruction. The dy-
namic module operates across the ESXi target and the monitor

Guest Machine

[0 Symbol Recovery and Structure Injection
O Privilege Context Emulation and Execution

ESXi Hypervisor Extract and Unpack Linux
gys@m] S Fltle] VMKernel System VMKernel
ervice ystem Binary File Configuration) Modules
e syscall read/write Parse
C_ - Dom Struct y v
VMKernel <—>| Access Control Check | i L s Image file Module Load | Module
(8III-D) .
— A e Address Symbol File
| Emulated | | [[
. I Dom Sandbox |
Monitor | | A
| L Syscall Dispatch
: L Table Debugger
————————————— | 'y J
Structure Injection
DebugStub
Feedback of Domain Control Structure information

VMware Workstaion

Fig. 6: Structure-Aware VMKernel Access-Control Mechanism Debugging

machine, a GDB plugin on the monitor side locates VMKernel
and imports extracted symbols in a compatible format, while
a privilege simulation tool on the target side creates custom
user contexts and environment variables to emulate different
domain identities, enabling detailed observation of privilege-
related execution paths.

To distinguish between automated and manual components,
we classify the workflow by the extent of human involve-
ment. Domain Control Structure Identification and Syscall
Mechanism Reconstruction are fully automated, allowing the
framework to locate permission-checking functions, extract
structure layouts, and rebuild syscall dispatch tables without
human intervention, reducing the analysis time from several
hours of manual effort to just a few minutes. In contrast, Per-
mission Validation Behavior Analysis remains semi-automated,
as it requires manual inspection and reasoning about runtime
behaviors observed during dynamic debugging. This hybrid
design combines automated large-scale structural inference
with manual semantic verification, ensuring both analytical
scalability and precision.

IV. OUR FINDINGS

In this section, we first provide a summary of our analysis
results, followed by a detailed exposition of each of our
findings.

A. Findings Overview

Our analysis was conducted on a workstation equipped with
an Intel i9-14900 CPU and 64 GB of RAM, we spent four
man-months building the debugging framework and perform-
ing reverse engineering. As illustrated in Fig. [/ our findings
primarily consist of two key components:

Insecure Proprietary Syscall Mechanism. We found that
the VMKernel’s syscall mechanism includes three types of
syscalls. VMKernel maintains separate dispatch tables for
each type, with execution privileges recorded for each syscall.
Based on these privileges, syscalls are grouped into differ-
ent categories. However, despite this design, several security
issues still exist in the actual implementation of the system
call mechanism, including the presence of developer-intended
high-privilege debug interfaces that could be misused.

Unprotected Structured Access Control Design. We
found that VMKernel implements access control by main-
taining a dedicated domain control structure for each security
domain. For syscall control, the structure includes a bitmap
field that indicates the set of syscalls accessible to the domain.
For file access control, it maintains a linked list, where each
node contains a file path and corresponding permission codes
to determine whether read or write access is allowed. Notably,
the memory region where this control structure resides is not
protected by any enforced write restrictions, posing a risk of
malicious tampering to bypass access restrictions.

B. The Syscall Mechanism of VMKernel
1) Overview of the Syscall Mechanism of VMKernel

Through reverse analysis, we identified that the
syscall interface in the VMKernel is divided into
three primary categories: Linux64_Syscall,

VMKSyscall, and VMKPrivateSyscall. Specifically,
we identified 197 entries under Linux64_Syscall,
284 entries under VMKSyscall, and 388 entries under
VMKPrivateSyscall. These three categories of syscalls
exhibit significant differences in terms of functionality and
application scenarios. The Linux64_Syscall category is
primarily intended to maintain compatibility with standard

[_i ________________
: Dom Sanbox ! VMKernel |
i ! Linux64 Syscall : Linux64 Syscall
1| VMX [Dispatch Table | Dispatch Table |
| I
[Syscall ID VMK PrivateSyscall Privilege | VMKPrivateSyscall |
yse Privilege Table Bit | Handler Table :
VMKSyscall : l VMK Syscall] I
Privilege Table Handler Table I
Boolean | |
check b - — =
__________________________________ 1072300 I
f] Locate | Dom Struct :2 [1] 3: nsecure
Dom Info f “I""" Unprotected
P . 1
E Syscall Rule 4>[Syscall Privilege Bitmap] i— ____________ A
Path Hash ; File .}iolicy 4’[Path Privilege Mask]—E——'[Invalid Privilege ?
I 1
! J
Hash — moooooooooooooo oo oo —»[Valid Privilege ?
— Path Extraction
File Path Dir Path (Invalid Path |<—

Fig. 7: Findings Overview

Linux syscall, offering basic functionalities such as file
I/O, memory management, and signal handling. The
VMKSyscall category serves as the core interface of the
VMKernel, responsible for managing virtual machine life
cycles, controlling low-level hardware, handling host resource
scheduling, and supporting RPC communication services.
These syscalls are widely used across various ESXi modules.
For instance, in the open-source project VMtools [16],
the names of some syscalls can be observed. In contrast,
VMKPrivateSyscall refers to a set of private VMKernel
interfaces primarily used for internal communication between
kernel modules, control of testing procedures, and low-level
hardware debugging. Since this category is not documented
publicly, it is virtually inaccessible to external parties.

Finding 1: Developer-reserved debug syscalls in
VMKPrivateSyscall expose high-privilege debug
interfaces that can be abused for system compromise.

We discovered that the VMKPrivateSyscall retains
several developer-specific debug interfaces, including syscalls
that allow direct establishment of physical memory mapping
regions or the modification of virtual machine states. These
interfaces typically operate at high privilege levels. Once an
attacker escapes from the VMX sandbox, they can invoke these
syscalls to carry out attacks with severe impact on system
integrity and isolation.

2) Structure of the Syscall Dispatch Table

At the implementation level, the Linux64_Syscall cat-
egory employs a unified syscall dispatch table to manage the
mapping between system calls and their privilege metadata.
The table maintains a basic structural object for each syscall,
containing three semantically meaningful fields: a handler
pointer responsible for executing the corresponding syscall

logic, a privilege bit used for runtime validation against
the security-domain control structure of the calling process,
and a syscall name string that records the symbolic iden-
tifier of each syscall to facilitate unified management and
selective extension in later versions. Unlike standard Linux
kernels that support the full syscall set, ESXi implements
only a subset of frequently used syscalls. This table-based
design allows centralized management of supported calls and
simplifies future expansion. Unlike the structure-based ap-
proach used for Linux64_Syscall, the VMKSyscall and
VMKPrivateSyscall categories, as illustrated in Fig.
maintain syscall information through two separate tables: one
for privilege control bits and the other for handler function
pointers. This design separates permission management from
function implementation, offers greater flexibility in permis-
sion verification and access control. It facilitates modular se-
curity policy management and enables dynamic configuration
of privileges.

3) Syscall Grouping Based on Privilege Control Bits

The syscall access-control policy within the VMKernel
differs fundamentally from the Secure Computing Mode mech-
anism used in Linux. Instead of applying a per-process syscall
whitelist filter, ESXi first categorizes processes into distinct
security domains. It then classifies all syscalls into functional
groups. By restricting each security domain to a specific set
of permitted syscall groups, the VMKernel implements a fine-
grained syscall access-control policy. As shown in Listing [2]
the configuration illustrates the set of syscall groups authorized
for the globalVMDom security domain.

We conducted an in-depth analysis of the syscall group-
ing mechanism built into VMKernel and found a one-to-
one correspondence between syscall groups and permission
bits, syscalls within the same group share the same per-
mission bit. Based on this observation, we identified the
permission bits associated with each of the three syscall

1 genericSys grant
2 vmxSys grant

3 ioctlSys grant

4 getpgidSys grant
5 getsidSys grant
6 vobSys grant

7 vsiReadSys grant
8 rpcSys grant

9 killSys grant

10 sysctlSys grant
11 syncSys grant

12 forkSys grant

13 forkExecSys grant
14 cloneSys grant
15 openSys gran

16 mprotectSys grant
17 iofilterSys grant
18 crossfdSys grant
19 pmemGenSys grant
20 keyCacheGenSys grant
21 vmfsGenSys grant

Listing 2: The Syscall rule of globalVMDom

categories and established a mapping to their correspond-
ing syscall groups (see Appendix Table [[I). By compar-
ing this mapping with the syscall groups accessible by the
globalVMDom security domain (as shown in Listing [2), we
found that this domain is primarily allowed to access syscalls
in the Linux64_Syscall category, while the majority of
VMKSyscall and VMKPrivateSyscall interfaces are
restricted.

Furthermore, we conducted a functional classification analy-
sis of the various syscall categories. We found that the syscalls
accessible by the globalVMDom domain are primarily related
to relatively safe operations such as VMX process manage-
ment, input I/O, and system information queries. In contrast,
syscalls involving write operations or executable behaviors are
largely restricted. This observation indicates that VMKernel
employs a fine-grained permission bit mechanism to effec-
tively limit unnecessary syscall access, thereby strengthening
the system’s overall security posture and reducing the potential
risk of virtual machine escape attacks.

Finding 2: We identified memory safety vulnerabili-
ties in over a dozen syscalls, which can lead to memory
corruption within the VMKernel.

We found that certain syscalls in VMKernel exhibit in-
herent security risks. Although VMKernel enforces manage-
ment through dispatch tables and permission groups, it lacks
fine-grained validation when parsing syscall parameters and
accessing structure fields. This creates potential for memory
corruption, which could compromise kernel stability and isola-
tion. Due to ESXi’s closed-source architecture and the absence
of public syscall documentation, this area has received little
security analysis. As a result, such vulnerabilities constitute a
previously undisclosed attack surface within the VMKernel
and warrant further investigation and defense.

10

globalVMDom struct

Syscall Rule [— 0x29e8d79b43

0x26 0x00

(T T T TV o T T T T T T T T o T T 1

0 genericSys 10 adminSys 20 D forkSys 30 [iofilterSys

1 vmxSys 11 vobSys 21 execSys 31 crossfdSys

2|] vmkacSys 12 B vsiReadSys 22 1 forkExecSys 32 B pmemGenSys

3 (0] mountSys 13 o] vsiWriteSys 23 1| cloneSys 33 o] pmemVolSys

4 o] umountSys 14 (o] moduleSys 24 0] ptraceSys 34 (o] pmemDirectSys
5 timeSys 15 D rpcSys 25 (o] storageSys 35 D keyCacheGenSys
6 D ioctlSys 16 B killSys 26] ioplSys 36 keyCacheAdminSys
7L setpgidSys 17 : sysctlSys 27 D openSys 37 D vmfsGenSys

8 getpgidSys 18 || syncSys 28 iofilterExitSys 38 L vmfsAdminSys
9 : getsidSys 19 schedulerSys 29 D mprotectSys

Fig. 8: Syscall Permission Bitmap of globalVMDom

Permission Checking Behavior Based on Domain Control
Structure

1) Overview of the Access-Control Mechanism of VMKernel

The VMKernel maintains a dedicated structure for each
security domain in the system, representing the set of operation
privileges currently granted to that domain. This structure
includes multiple permission fields covering syscall access, file
I/O permissions, socket usage rights, and more. At runtime, it
remains bound to the current process context and is accessed
via the gs register. This design ensures that the VMKernel
can efficiently retrieve the relevant privilege information when
handling user requests.

2) Syscall Permission Validation Behavior

The control structure of each security domain includes a
bitmap field that precisely governs access to syscalls. Fig.
illustrates the syscall permission field for the globalVMDom
domain. By decoding this bitmap based on the mapping
between privilege bits and syscalls defined in TABLE [II, we
can reconstruct the set of syscall groups that this domain is
authorized to invoke. This result is consistent with Listing
and further confirms the correctness of our reverse analysis.

When a syscall is invoked, as illustrated in Fig. the
VMKernel first consults the syscall privilege table to determine
the corresponding privilege bit index i. It then retrieves
the permission bitmap field syscall_rule[] from the
security-domain structure associated with the current execution
context. The bit at position i indicates whether the syscall is
authorized for that domain, if the bit is enabled, the request
proceeds; if disabled, the VMKernel rejects the invocation.
This bit-wise mapping mechanism provides an efficient and
fine-grained means of enforcing syscall-level privilege control.

3) File Operation Permission Validation Behavior

Each security-domain control structure maintains a pointer
to a linked list of file permission nodes that define the access
rights of specific files within the domain. Each node in this list
contains several semantically meaningful fields: two pointers
link the node to its predecessor and successor in the list, a
pair of identifiers record the node’s unique ID and the hash
of the corresponding file path, a permission code specifies the
access privileges associated with that file, and a variable-length

field stores the actual path string. This linked design enables
VMKernel to efficiently organize, traverse, and enforce fine-
grained file access policies within each security domain.

When handling a file access request, the VMKernel re-
trieves the current security-domain structure and accesses its
file permission list. It compares the hash of the target file
path—computed using the DJB2 [17]] algorithm—with the
entries in this list to locate the corresponding permission node.
If no exact match is found, the kernel performs hierarchical
backtracking along the directory path until a relevant permis-
sion entry is identified. The access decision is then made by
comparing the required operation type with the permission
code stored in the matched node. This hierarchical lookup
mechanism enables efficient enforcement of fine-grained file
access control within each security domain.

4) Dynamic Adjustment of Permission Fields

We also identified a special control field within the domain
control structure that dynamically influences access decisions
during permission validation. When this field is set to certain
specific values, the VMKernel may temporarily override stan-
dard access restrictions. Even if the security domain does not
originally possess permission to invoke a particular syscall
or access a given file path, the VMKernel can, during the
permission check, dynamically set the corresponding syscall
permission bit or modify the file permission code, thereby
granting temporary access to the request. We speculate that
this mechanism is designed to provide greater permission
flexibility for high-privilege components such as VMX, en-
abling them to dynamically activate permissions at runtime
based on operational requirements. This dynamic permission-
overwriting mechanism reflects VMKernel’s unique security
strategy in coordinating trusted components.

Finding 3: The domain control structure lacks write
protection, as well as integrity mechanisms such as
signing or encryption, leaving it vulnerable to unautho-
rized modification and potential privilege escalation.

We found that VMKernel does not mark the memory region
containing domain control structures as read-only; instead, it
relies solely on locking mechanisms to prevent concurrent
modifications, lacking strict enforcement against write oper-
ations. Moreover, the permission-related fields within these
structures are not protected by integrity checks or crypto-
graphic safeguards, leaving them vulnerable to tampering. As
a result, an attacker with arbitrary kernel write capability
could directly modify critical fields in the control structure,
bypassing permission checks and enabling restricted syscalls
or access to protected resources within the same security
domain.

Moreover, our investigation confirmed the presence of cer-
tain systemic weaknesses previously noted in prior work [14].
For instance, VMKernel’s implementation of KASLR [18] ap-
pears incomplete, with some memory segments exhibiting low
entropy—creating a feasible window for address brute-forcing.

11

Additionally, we observed that the system does not enable
Supervisor Mode Access Prevention (SMAP), thereby allow-
ing kernel-mode code to directly access user-space memory
regions. These factors collectively expand the kernel’s attack
surface and introduce latent risks exploitable by adversaries.

V. SECURITY ANALYSIS AND PRACTICAL ATTACKS

In this chapter, we first present the threat model considered
in this work, then validate the identified security issues, and
finally examine three practical attack scenarios along with their
potential impacts.

A. Threat Model

We assume the goal of the attack is to break the sandbox
implemented by VMKernel, which means the attacker has
exploited a vulnerability, such as a remote code execution or
a virtual machine escape flaw to gain the ability to execute
arbitrary code within the security domain of the compromised
component in the hypervisor. This assumption is practical
and supported by real-world cases. For example, in CVE-
2018-6981 [19] and CVE-2018-6982 [20], attackers leveraged
memory corruption vulnerabilities in the vmxnet3 virtual NIC
to achieve code execution in the context of the VMX process
[4].

Building on this foothold, the attacker can further exploit
memory safety flaws in the implementation of VMKernel
syscalls to tamper with the domain control structure. This
manipulation allows the attacker to bypass existing access-
control mechanisms and escalate privileges or escape the
sandbox environment. It is important to note that the at-
tack path discussed in this paper focuses solely on memory
vulnerabilities and permission control deficiencies within the
VMKernel syscall implementation. We do not examine logical
flaws or side-channel attacks targeting the VMKernel sandbox
itself.

B. Result Validation

1) Syscall Vulnerability Discovery

We performed a security analysis of syscall handler func-
tions by combining static analysis to identify potential targets
with dynamic testing to verify exploitability. In the dynamic
phase, we leveraged all identified syscalls for vulnerability
exploration, crafting parameters to reach boundary values and
issuing randomized syscall sequences to violate permission-
checking logic. Through this process, we identified 14 memory
safety vulnerabilities across syscall implementations, including
stack overflows, information leaks, null pointer dereferences,
and other flaw types. All discovered vulnerabilities were
triggered by sequences of at most three syscalls. These results
reveal systemic weaknesses and widespread fragility in the
design and implementation of syscall mechanism within the
VMKernel.

2) Manipulation of the Domain Control Structure

To verify whether the permission bitmap in VMKernel’s
access-control structure is writable and lacks integrity pro-
tection at runtime, we used our dynamic debugging frame-
work to directly modify the control structure of the current

execution domain during a syscall. After booting ESXi, we
set a breakpoint at the identified permission check function,
issued a syscall under a globalVMDom identity, and altered
the domain’s syscall bitmap via the debugger. Execution
then resumed without triggering any integrity violation or
runtime error, confirming that the structure lacks proper write
protection and is susceptible to unauthorized tampering.

C. Practical Attacks

We conducted practical exploit experiments to assess
the real-world impact of the identified security issues in
VMKernel’s access-control mechanism. By exploiting the
memory-safety vulnerabilities in Section we gained
arbitrary read/write access within VMKernel. Building on
our finding that control-structure fields are writable at run-
time (Section and the reverse-engineering results of
Sections [[IV-C2| and [[V-C3] We derived two attack prim-
itives corresponding to the two categories of controllable
fields, namely syscall privilege bits and file permission codes,
which together represent the full exploitable scope of the
reconstructed access-control design. Primitive 1. Tampering
with Syscall Privilege Bits: By modifying the privilege bits
associated with specific syscall groups in the access-control
structure, an attacker can grant the current security domain the
ability to invoke system calls that were originally disallowed.
Primitive 2. Tampering with File Path Permission Codes: By
altering the permission codes assigned to specific file paths, the
attacker can enable unauthorized access to restricted files from
within the current security domain. Based on the two attack
primitives described above, we conducted the following three
types of attack attempts and analyzed their potential security
impacts. Specifically, Primitive 1 was used to construct Attack
1 and Attack 2, while Primitive 2 was used to construct
Attack 3. These three representative attack scenarios illustrate
the practical exploitation potential and real-world impact of
access-control vulnerabilities.

Attack 1: Denial-of-Service Attack via Privileged Debug
Interface Exploitation. As shown in Fig. Pa the attacker
exploits Primitive 1 to activate privileged debug syscalls
within VMKPrivateSyscall, such as those that allow
direct mappings to physical memory. With this capability, the
attacker can repeatedly manipulate physical memory regions,
gradually corrupting kernel data structures or polluting page
caches. These actions may cause scheduling inconsistencies or
memory corruption, ultimately leading to a denial-of-service
(DoS) condition within the VMKernel.

Attack 2: Persistent Access through Unauthorized Service
Activation. As illustrated in Fig. Pb] the attacker again uses
Primitive 1 to re-enable the restricted execve syscall by
altering its corresponding privilege bit. Normally limited to
the host domain for legitimate binary execution, this syscall
enables the attacker to spawn a lightweight remote service
for external control. Once established, the service provides
persistent and stealthy access to the host system, allowing the
attacker to maintain control without further exploitation.

12

Syscall Rule

_

(a) Denial-of-Service Attack via Privileged Debug Interface
tion

&

Exploita-

ESXi
Syscall Rule
;’"_"""s;n&?o;_,
@0 | =l

(@ Connect to the Service ‘

ESXi

(b) Persistent Access through Unauthorized Service Activation
&) @ Exploit Bug

R " Vulnerable

DN

ﬂ ‘ — (@ Edit /etc/shadow ﬁ

(3 Authenticate to the System

File Poli

(c) Credential Forgery for Persistent Host Access

Fig. 9: Illustration of three practical attacks under the assumed
threat model.

Attack 3: Credential Forgery for Persistent Host Access. As
shown in Fig. the attacker leverages Primitive 2 to gain
unauthorized read—write access to the /etc/ directory. By
modifying the /et c/shadow file, either injecting credentials
for a custom account or replacing existing ones—the attacker
forges valid authentication entries. This grants persistent priv-
ilege escalation through legitimate login or remote access,
effectively bypassing the system’s authentication safeguards.

We exploited a heap overflow in a syscall implementation
to execute the three practical attacks within our framework,
all achieving their intended effects. These results show that
once the sandbox is bypassed, limited manipulation of the
access-control mechanism can grant persistent control over
host resources, revealing its fragility against such threats.

VI.

We reported the identified security issues to VMware. This
section outlines VMware’s official response and remedia-
tion status, presents our proposed mitigation strategies for
strengthening VMKernel’s access-control design, and extends
the analysis to another closed-source Type-1 hypervisor to
evaluate the generality of our approach.

DISCUSSION

A. Official Fix

We reported 14 vulnerabilities in the VMKernel syscall
mechanism to VMware, all officially confirmed and rewarded
through the Security Bounty Program ($3,000 each, totaling

TABLE I: List of Confirmed Vulnerabilities

No. Vulnerability Type Syscall Category Status
1 NPD Linux64_syscall Fixed
2 Double Free Linux64_syscall Fixed
3 Stack Overflow VMKSyscall Fixed
4 Stack Overflow VMKSyscall Fixed
5 NPD VMKSyscall Fixed
6 NPD VMKSyscall Fixed
7 Heap Overflow VMKSyscall Fixed
8 Heap Overflow VMKSyscall Fixed
9 Heap Overflow VMKSyscall Fixed
10 Memory Leak VMKSyscall Fixed
11 Stack Overflow VMKPrivateSyscall Fixed
12 Stack Overflow VMKPrivateSyscall Fixed
13 Heap Overflow VMKPrivateSyscall Fixed
14 Memory Leak VMKPrivateSyscall Fixed

Note: NPD is Null Pointer Dereference

$42.000; see Table E]) These issues were patched in the
latest ESXi release [21] without VMSA or CVE assignment.
In addition, we also reported mechanism-level weakness in
VMKernel’s access-control design, which VMware acknowl-
edged as a previously undisclosed and critical attack surface.

B. Mitigation Suggestions

Based on the current patch status, we further propose the
following two mitigation strategies. We emphasize that these
recommendations are intended to complement existing fixes.
Our proposed measures provide additional protection with
minimal overhead and can effectively mitigate the security
issues and threats identified in this paper.

Minimize or eliminate debug syscall interfaces: As an-
alyzed in Section VMware ESXi retains certain private
interfaces originally intended for internal debugging purposes
(mainly VMKPrivateSyscall), which are attractive targets
for exploitation. Since ordinary users do not rely on these
syscalls, disabling or removing them in production builds will
not affect functionality and can be achieved with minimal
overhead. We recommend removing such interfaces from
release versions to reduce the attack surface.

Enhance integrity protection for domain control struc-
tures: In our practical attack design, the core security risk
stems from sensitive fields in VMKernel’s domain control
structures being writable at runtime without integrity pro-
tection. We recommend implementing lightweight integrity
checks,such as compact hash verification or page-level write
protection. These protection methods incur minimal overhead
and would prevent unauthorized modification of control struc-
tures, thereby effectively blocking the two attack primitives
and three concrete attacks demonstrated in this paper.

C. Method Generalization

To validate our method’s generality, we applied it to another
closed-source Type-1 hypervisor, Microsoft Hyper-V. Starting

13

Root/Child Partition

Partition Info

Hypercall Input
Parse ID
[Hypercall Dispatch Table]

Hypercall Handler |

Partition Struct

Theck Validity

Partition Privilege i | Input Check :

Mask i v '

—:—' Hypercall Privilege Check | i

Partition State { v !

—:—| Partition State Check | 4

Virtual Trust Level i ¥ i

(VTL) . Trust Level Check | }

i Error Handling i

i Handling Process E

Hypervisor
Physical Hardware

Fig. 10: The access control procedure of Hyper-V’s
HvDeletePartition Hypercall

from the Hypercall execution flow, we analyzed its access-
control mechanism. Although Hyper-V adopts a root/child par-
tition model instead of ESXi’s hypervisor/guest design, it sim-
ilarly manages partition privileges through in-memory struc-
tures, allowing our domain-control-structure—oriented anal-
ysis(Section to be readily adapted to a partition-
control-structure—oriented one.

In the analysis, we employed a Partition(Domain) Control
Structure Identification (Section [lII-D1) method to locate
the key privilege control structures in Hyper-V. By tracing
the vmcall instruction, we identified the entry points of
Hypercalls and then examined references to the context as-
sociated with the gs register to determine the correspond-
ing permission-control structure for the current partition. We
further traced how the fields of this structure were refer-
enced and involved in comparison instructions to reconstruct
the complete layout of the control structure. Since Hyper-
V’s Top-Level Functional Specification (TLFS) [22] publicly
defines all hypercalls and their invocation IDs, we were
able to skip the Hypercall(Syscall) Mechanism Reconstruc-
tion (Section step required in ESXi analysis and
proceed directly to Permission Validation Behavior Analysis
(Section [[II-D3)), reusing our debugging framework for further
analysis.

Because Hyper-V performs distinct permission validation
logic for each Hypercall, we take HvDeletePartition as
a representative example and provide a detailed analysis of
its permission-checking process during execution. As shown
in Fig. when this Hypercall is issued by a child partition,
Hyper-V parses the caller’s context and parameters, dispatches
the request to the corresponding handler, and validates par-
tition permissions. Owing to the multi-level privilege model
defined in TLFS (e.g., VTL), permission checks are distributed
across handlers. Our structure-oriented method remains effec-

tive under this loosely coupled design, accurately reconstruct-
ing Hyper-V’s access-control mechanism and demonstrating
strong adaptability.

VII. RELATED WORKS

Hypervisor Vulnerability Discovery. Hypervisor security
has attracted growing attention in recent years. Most prior
work applies fuzzing techniques to uncover vulnerabilities in
hypervisor components, with a focus on virtual devices [23]-
[28] and virtual CPUs [29], [30]. For example, HyperPill
[26]] adopts snapshot mutation-based fuzzing, while Truman
[27] uses Linux driver knowledge to enhance seed generation.
These methods have proven effective in discovering vulner-
abilities in VMware ESXi. However, existing efforts largely
target user-space components, leaving the hypervisor kernel
and its internal logic insufficiently explored.

Kernel Security Analysis. Kernel security has been a long-
standing focus of academic research. Tools like Syzkaller [31]
and its derivatives [32]-[34] target Linux by auto-generating
syscall sequences, while systems like AlphaExp [35]] and Ker-
nelSnitch [36] enhance attack surface analysis through object
modeling and side-channel techniques. Although recent efforts
have extended to macOS [37], [38] and gVisor [39], VMware
ESXi’s VMKernel remains underexplored. This paper fills that
gap by thoroughly analyzing VMKernel’s syscall interface and
privilege control mechanisms.

Breaking vSphere Security. In recent years, vSphere
(VMware’s virtualization suite that includes ESXi) has be-
come a frequent target of successful exploits and an active
subject of industrial security research [4]-[6], [40], [41]. Prior
works have demonstrated virtual machine escapes via device
vulnerabilities [4] and analyzed ESXi’s architecture through
reverse engineering [41]. However, most efforts focus on
exploit chains, while VMKernel’s internal privilege model
remains understudied. This work fills that gap by comprehen-
sively analyzing the security architecture and attack surface of
VMKernel.

VIII. CONCLUSION

This paper presents a comprehensive analysis of the ac-
cess control mechanism implemented in VMware ESXi’s
VMKernel. We develop a domain-control-structure oriented
analysis approach and a structure-aware debugging framework
to uncover how permissions are enforced and identify security
flaws. Our findings reveal that ESXi’s access control relies
on centralized domain structures lacking write protection, and
multiple syscall handlers suffer from memory safety vulner-
abilities. We demonstrate three exploit scenarios to bypass
access restrictions using these flaws. In total, we report 14
vulnerabilities to VMware, all of which were confirmed and
fixed, earning our team $42,000 in bug bounties and official
acknowledgment from VMware.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful
comments on our work. This work is supported by the

14

National Natural Science Foundation of China (Grant No.
U22B2025, 62172093, and 62402147), the “Pioneer” and
“Leading Goose” R&D Program of Zhejiang, China (Grant
No. 2025C02261, 2025C02263), Zhejiang Provincial Key Lab-
oratory for Sensitive Data Security Protection and Confiden-
tiality Management No. 2024E10048.

ETHICS CONSIDERATION

This study presents a systematic analysis and vulnerabil-
ity assessment of the VMKernel access-control mechanisms
within the VMware ESXi platform, aiming to uncover poten-
tial security risks in real-world deployments and to promote
architectural hardening of virtualization systems. Throughout
the research, we adhered strictly to responsible disclosure prac-
tices: all identified vulnerabilities were promptly reported to
VMware through official channels and were only documented
and published after confirmation and remediation. The paper
does not disclose any unpublished vulnerabilities or attack-
ready methods. All validation experiments were conducted in
isolated environments, without involving third-party data or
unauthorized operations.

REFERENCES
[1] Liquid Web, “Bare metal hypervisors: What they are & when
to use one,” https://www.liquidweb.com/blog/bare-metal-hypervisors/,
2023, accessed: 2025-08-07.
Zscaler ThreatLabz, “Shining light on the dark an-
gels ransomware group,” Blog post, Zscaler, Oct. 2024.
[Online]. Available: https://www.zscaler.com/blogs/security-research/
shining-light-dark-angels-ransomware- group
VMware Security Team, “Vmware and pwn2own
2025 berlin,” https://blogs.vmware.com/security/2025/05/
vmware-and-pwn2own-2025-berlin.html, May 2025, accessed: 2025-
08-06.
H. Zhao, Y. Zhang, K. Yang, and T. Kim, “Breaking turtles all the way
down: An exploitation chain to break out of VMware ESXi,” in 13th
USENIX Workshop on Offensive Technologies (WOOT 19), 2019.
Z. Sialveras, “Bugs of yore: A bug hunting journey on vmware’s
hypervisor,” Presented at Black Hat USA 2024, Las Vegas,
NV, Aug. 2024, https://1.blackhat.com/BH-US-24/Presentations/
US24-Sialveras-Bugs- Of- Yore- Wednesday.pdf,
Y. Jiang and X. Ying, “Urb excalibur: The new vmware all-
platform vm escapes,” Presented at Black Hat Asia 2024,
Singapore, Apr. 2024, https://i.blackhat.com/Asia-24/Presentations/
Asia-24-Jiang- URB-Excalibur-The-New- VMware- All-Platform- VM\
-Escapes.pdf.
VMware Community, “Using debugstub to debug a
linux kernel,” VMware Fusion Discussions Forum,
https://communities.vmware.com/t5/VMware- Fusion-Discussions/
Using-debugStub-to-debug- a- guest- linux-kernel/td-p/394906.
VMware. (2024) Idc business value study: Vmware cloud foundation
delivers 564% 3-year roi with a 10-month payback. VMware Cloud
Foundation Blog. [Online]. Available: https://www.vmware.com/docs/
vmw-white- paper-business- value- of-cloud-foundation,
VMware, Inc., “VMware ESXi Architecture Overview,” https:
//microage.com/wp-content/uploads/2016/02/ESXi_architecture.pdf,
2016, accessed: 2025-08-01.
“CVE-2021-21974: VMware ESXi Service Location Protocol (SLP)
Heap Overflow Vulnerability,” https://www.cve.org/CVERecord?id=
CVE-2021-21974, MITRE Corporation, 2021, accessed: 2025-11-06.
MITRE Corporation, “CVE-2024-22252: VMware ESXi, Workstation,
and Fusion XHCI USB Controller Use-After-Free Vulnerability,” https:
/Iwww.cve.org/CVERecord?1d=CVE-2024-22252, 2024.
T. L. Foundation, “Seccomp filter,” https://www.kernel.org/doc/html/
v4.13/userspace-api/seccomp_filter.html, The Linux Foundation, 2025,
accessed: 2025-02-10.

[2]

[3]

[4]

[5]

[6]

[7]

guest
2014,

[8]

[9]

[10]

[11]

[12]

https://www.liquidweb.com/blog/bare-metal-hypervisors/
https://www.zscaler.com/blogs/security-research/shining-light-dark-angels-ransomware-group
https://www.zscaler.com/blogs/security-research/shining-light-dark-angels-ransomware-group
https://blogs.vmware.com/security/2025/05/vmware-and-pwn2own-2025-berlin.html
https://blogs.vmware.com/security/2025/05/vmware-and-pwn2own-2025-berlin.html
https://i.blackhat.com/BH-US-24/Presentations/US24-Sialveras-Bugs-Of-Yore-Wednesday.pdf
https://i.blackhat.com/BH-US-24/Presentations/US24-Sialveras-Bugs-Of-Yore-Wednesday.pdf
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Jiang-URB-Excalibur-The-New-VMware-All-Platform-VM\-Escapes.pdf
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Jiang-URB-Excalibur-The-New-VMware-All-Platform-VM\-Escapes.pdf
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Jiang-URB-Excalibur-The-New-VMware-All-Platform-VM\-Escapes.pdf
https://communities.vmware.com/t5/VMware-Fusion-Discussions/Using-debugStub-to-debug-a-guest-linux-kernel/td-p/394906
https://communities.vmware.com/t5/VMware-Fusion-Discussions/Using-debugStub-to-debug-a-guest-linux-kernel/td-p/394906
https://www.vmware.com/docs/vmw-white-paper-business-value-of-cloud-foundation
https://www.vmware.com/docs/vmw-white-paper-business-value-of-cloud-foundation
https://microage.com/wp-content/uploads/2016/02/ESXi_architecture.pdf
https://microage.com/wp-content/uploads/2016/02/ESXi_architecture.pdf
https://www.cve.org/CVERecord?id=CVE-2021-21974
https://www.cve.org/CVERecord?id=CVE-2021-21974
https://www.cve.org/CVERecord?id=CVE-2024-22252
https://www.cve.org/CVERecord?id=CVE-2024-22252
https://www.kernel.org/doc/html/v4.13/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.13/userspace-api/seccomp_filter.html

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Reddit User Community, “Virtualized esxi on kvm?”
https://www.reddit.com/r/virtualization/comments/1 7h4rpg/virtualized_
esxi_on_kvm/?tl=zh-hans, Reddit, 2023, discussion thread on
r/virtualization, accessed on November 10, 2025.

Zero Day Initiative. (2023) CVE-2022-31696: An Analysis of
a VMware ESXi TCP Socket Keepalive Type Confusion LPE.
[Online]. Available: |https://www.zerodayinitiative.com/blog/2023/6/21/
cve-2022-31696-an-analysis-of-a- vmware-esxi-tcp-socket-keepalive \
-type-confusion-Ipe

J. Zhao, K. Zhu, L. Yu, H. Huang, and Y. Lu, “Yama: Precise opcode-
based data flow analysis for detecting php applications vulnerabilities,”
IEEE Transactions on Information Forensics and Security, 2025.
VMware, Inc., “open-vm-tools: Official repository,” https://github.com/
vmware/open-vm-tools, 2025.

S. Shah and A. Shaikh, “Hash based optimization for faster access
to inverted index,” in 2016 International Conference on Inventive
Computation Technologies (ICICT), vol. 1. IEEE, 2016, pp. 1-5.

D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Man-
gard, “Kaslr is dead: long live kaslr,” in International Symposium on
Engineering Secure Software and Systems. Springer, 2017, pp. 161-
176.

National Vulnerability Database, “Cve-2018-6981 detail,” |https://nvd.
nist.gov/vuln/detail/CVE-2018-6981} 2018.

_ “Cve-2018-6982 detail,” https://nvd.nist.gov/vuln/detail/
CVE-2018-6982, 2018.

VMware by Broadcom, “VMware Cloud Foundation
9.0 Release Notes,” 2025. [Online]. Available:

https://techdocs.broadcom.com/us/en/vmware-cis/vct/vet-9-0-and-later/
9-0/release-notes/vmware- cloud- foundation-90-release-notes.html

Microsoft ~ Corporation, “Hyper-v top-level functional speci-
fication (tlfs),” https://learn.microsoft.com/en-us/virtualization/
hyper-v-on-windows/tlfs/tlfs, 2025, version 7.x. Accessed: 2025-
11-06.

G. Pan, X. Lin, X. Zhang, Y. Jia, S. Ji, C. Wu, X. Ying, J. Wang,
and Y. Wu, “V-shuttle: Scalable and semantics-aware hypervisor virtual
device fuzzing,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, 2021, pp. 2197-2213.

A. Bulekov, B. Das, S. Hajnoczi, and M. Egele, “Morphuzz: Bend-
ing (input) space to fuzz virtual devices,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 1221-1238.

Q. Liu, F. Toffalini, Y. Zhou, and M. Payer, “Videzzo: Dependency-
aware virtual device fuzzing,” in 2023 IEEE Symposium on Security
and Privacy (SP). IEEE, 2023, pp. 3228-3245.

A. Bulekov, Q. Liu, M. Egele, and M. Payer, “Hyperpill: Fuzzing for
hypervisor-bugs by leveraging the hardware virtualization interface,” in
33rd USENIX Security Symposium (USENIX Security 24), 2024.
Z.Ma, Q. Liu, Z. Li, T. Yin, W. Tan, C. Zhang, and M. Payer, “Truman:
Constructing device behavior models from os drivers to fuzz virtual
devices,” in 32nd Annual Network and Distributed System Security
Symposium, NDSS, 2025, pp. 24-28.

Z. Zhang, G. Pan, R. Wang, Y. Tao, Z. Pan, C. Tu, M. Zhang,
Y. Li, Y. Shen, and C. Wu, “Insvdf: Interface-state-aware virtual device
fuzzing,” in 2025 IEEE/ACM 47th International Conference on Software
Engineering (ICSE). IEEE Computer Society, 2025, pp. 727-727.

P. Fonseca, X. Wang, and A. Krishnamurthy, “Multinyx: a multi-
level abstraction framework for systematic analysis of hypervisors,” in
Proceedings of the Thirteenth EuroSys Conference, 2018, pp. 1-12.

X. Ge, B. Niu, R. Brotzman, Y. Chen, H. Han, P. Godefroid, and
W. Cui, “Hyperfuzzer: An efficient hybrid fuzzer for virtual cpus,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 366-378.

Google, “syzkaller: Linux kernel fuzzer,” https://github.com/google/
syzkaller, 2024.

K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee, “Hfl:
Hybrid fuzzing on the linux kernel.” in NDSS, 2020.

S. Pailoor, A. Aday, and S. Jana, “{MoonShine}: Optimizing {OS}
fuzzer seed selection with trace distillation,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 729-743.

B. Zhao, Z. Li, S. Qin, Z. Ma, M. Yuan, W. Zhu, Z. Tian, and
C. Zhang, “{StateFuzz}: System {Call-Based}{State-Aware} linux
driver fuzzing,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 3273-3289.

R. Wang, K. Chen, C. Zhang, Z. Pan, Q. Li, S. Qin, S. Xu, M. Zhang,
and Y. Li, “{AlphaEXP}: An expert system for identifying {Security-

15

[36]

(37]

[38]

[39]

[40]

[41]

Sensitive} kernel objects,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 4229-4246.

L. Maar, J. Juffinger, T. Steinbauer, D. Gruss, and S. Mangard, “Kernel-
snitch: Side-channel attacks on kernel data structures,” in Network and
Distributed System Security Symposium 2025: NDSS 2025, 2025.

T. Yin, Z. Gao, Z. Xiao, Z. Ma, M. Zheng, and C. Zhang, “{KextFuzz}:
Fuzzing {macOS} kernel {EXTensions} on apple silicon via exploiting
mitigations,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 5039-5054.

Z. Cai, J. Zhu, W. Shen, Y. Yang, R. Chang, Y. Wang, J. Li, and K. Ren,
“Demystifying pointer authentication on apple ml,” in 32nd USENIX
Security Symposium (USENIX Security 23), 2023, pp. 2833-2848.

Y. Li, Y. Chen, S. Ji, X. Zhang, G. Yan, A. X. Liu, C. Wu, Z. Pan,
and P. Lin, “G-fuzz: A directed fuzzing framework for gvisor,” IEEE
Transactions on Dependable and Secure Computing, vol. 21, no. 1, pp.

168-185, 2023.

H. Zheng, Z. Li, and Y. Liu, “vcenter lost: How the dcerpc
vulnerabilities changed the fate of esxi,” Presented at Black Hat
Asia 2024, Singapore, Apr. 2024, http://i.blackhat.com/Asia-25/
Asia-25-Zheng- vCenter-Lost- How- the-DCERPC- Vulnerabilities
-Changed- the- Fate-of-ES Xi.pdf.

J. Huang, H. Zheng, and Y. Liu, “Dragon slayingguide:
Bug hunting in vmware device virtualization,” Presented at
DEFCON 32, Las Vegas, NV, Aug. 2024, https://media.

defcon.org/DEFCON32/DEFCON?32presentations/DEFCON32-\
JiaQingHuangHaoZheng YueLiu-DragonSlayingGuideBugHuntingIn\
VMwareDevice Virtualization.pdfl

https://www.reddit.com/r/virtualization/comments/17h4rpg/virtualized_esxi_on_kvm/?tl=zh-hans
https://www.reddit.com/r/virtualization/comments/17h4rpg/virtualized_esxi_on_kvm/?tl=zh-hans
https://www.zerodayinitiative.com/blog/2023/6/21/cve-2022-31696-an-analysis-of-a-vmware-esxi-tcp-socket-keepalive \ -type-confusion-lpe
https://www.zerodayinitiative.com/blog/2023/6/21/cve-2022-31696-an-analysis-of-a-vmware-esxi-tcp-socket-keepalive \ -type-confusion-lpe
https://www.zerodayinitiative.com/blog/2023/6/21/cve-2022-31696-an-analysis-of-a-vmware-esxi-tcp-socket-keepalive \ -type-confusion-lpe
https://github.com/vmware/open-vm-tools
https://github.com/vmware/open-vm-tools
https://nvd.nist.gov/vuln/detail/CVE-2018-6981
https://nvd.nist.gov/vuln/detail/CVE-2018-6981
https://nvd.nist.gov/vuln/detail/CVE-2018-6982
https://nvd.nist.gov/vuln/detail/CVE-2018-6982
https://techdocs.broadcom.com/us/en/vmware-cis/vcf/vcf-9-0-and-later/9-0/release-notes/vmware-cloud-foundation-90-release-notes.html
https://techdocs.broadcom.com/us/en/vmware-cis/vcf/vcf-9-0-and-later/9-0/release-notes/vmware-cloud-foundation-90-release-notes.html
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/tlfs
https://learn.microsoft.com/en-us/virtualization/hyper-v-on-windows/tlfs/tlfs
https://github.com/google/syzkaller
https://github.com/google/syzkaller
http://i.blackhat.com/Asia-25/Asia-25-Zheng-vCenter-Lost-How-the-DCERPC-Vulnerabilities\-Changed-the-Fate-of-ESXi.pdf
http://i.blackhat.com/Asia-25/Asia-25-Zheng-vCenter-Lost-How-the-DCERPC-Vulnerabilities\-Changed-the-Fate-of-ESXi.pdf
http://i.blackhat.com/Asia-25/Asia-25-Zheng-vCenter-Lost-How-the-DCERPC-Vulnerabilities\-Changed-the-Fate-of-ESXi.pdf
https://media.defcon.org/DEF CON 32/DEF CON 32 presentations/DEF CON 32 - \JiaQing Huang Hao Zheng Yue Liu - Dragon SlayingGuide Bug Hunting In \VMware Device Virtualization.pdf
https://media.defcon.org/DEF CON 32/DEF CON 32 presentations/DEF CON 32 - \JiaQing Huang Hao Zheng Yue Liu - Dragon SlayingGuide Bug Hunting In \VMware Device Virtualization.pdf
https://media.defcon.org/DEF CON 32/DEF CON 32 presentations/DEF CON 32 - \JiaQing Huang Hao Zheng Yue Liu - Dragon SlayingGuide Bug Hunting In \VMware Device Virtualization.pdf
https://media.defcon.org/DEF CON 32/DEF CON 32 presentations/DEF CON 32 - \JiaQing Huang Hao Zheng Yue Liu - Dragon SlayingGuide Bug Hunting In \VMware Device Virtualization.pdf

APPENDIX A
STATISTICS OF SYSCALL PERMISSION GROUPS

TABLE II: Mapping of Syscall Groups and Syscall Counts by
Permission Bit

Control Bit | Privilege Group Lo4 VMK VMKP
0 genericSys 0 24 4
1 vmxSys 0 198 329
2 vmkaeSys 0 1 17
3 mountSys 1 1 0
4 umountSys 1 1 0
5 timeSys 0 6 0
6 ioctlSys 1 1 0
7 setpgidSys 1 1 0
8 getpgidSys 1 1 0
9 getsidSys 1 1 0

10 adminSys 0 0 0
11 vobSys 0 10 10
12 vsiReadSys 0 0 10
13 vsiWriteSys 0 0 1
14 moduleSys 0 0 0
15 rpcSys 0 0 0
16 killSys 3 3 0
17 syscallSys 0 1 1
18 sysSys 1 1 0
19 schedulerSys 0 1 0
20 execSys 1 1 0
21 forkSys 1 1 0
22 forkExecSys 0 1 1
23 cloneSys 1 0 0
24 ptraceSys 1 0 0
25 storageSys 0 0 0
26 ioplSys 0 0 0
27 openSys 2 1 0
28 iofilterExitSys 0 0 1
29 mprotectSys 1 0 1
30 iofilterSys 0 0 14
31 crossfdSys 0 0 5
32 pmemGenSys 0 0 12
33 pmemVolSys 0 0 1
34 pmemDirectSys 0 0 0
35 keyCacheGenSys 0 0 0
36 keyCacheAdminSys 0 1 1
37 vmfsGenSys 0 1 0
38 vmfsAdminSys 0 1 0
Oxff Unclassified 170 0 0
Total 197 284 388

Note: L64 is Linux64_Syscall; VMK is VMKSyscall; VMKP
is VMKPrivateSyscall.

Syscalls classified as "Unclassified” are defined by a privi-
lege control bit set to 0x £ £, which causes them to be bypassed
during permission validation. All such syscalls fall under the
linux64_Syscall category and include standard, com-
monly used syscalls such as open, close, and mmap. Given
their functional analysis, we infer that these syscalls do not
involve access to sensitive resources and therefore do not
require inclusion in the privilege grouping mechanism.

	Introduction
	Background
	Architecture of ESXi
	Security Threats to ESXi
	Access-Control Mechanism of ESXi
	Motivation

	Framework Design and Implementation
	Analysis Objectives
	Challenges
	Analysis Framework Overview
	Domain-Control Structure oriented VMKernel Access-Control Mechanism Analysis
	Domain Control Structures Identification
	Syscall Mechanism Reconstruction
	Permission Validation Behavior Analysis

	Structure-Aware VMKernel Access-Control Mechanism Debugging
	Symbol Recovery and Structure Injection
	Privilege Context Emulation and Execution

	Framework Implementation

	Our Findings
	Findings Overview
	The Syscall Mechanism of VMKernel
	Overview of the Syscall Mechanism of VMKernel
	Structure of the Syscall Dispatch Table
	Syscall Grouping Based on Privilege Control Bits

	Permission Checking Behavior Based on Domain Control Structure
	Overview of the Access-Control Mechanism of VMKernel
	Syscall Permission Validation Behavior
	File Operation Permission Validation Behavior
	Dynamic Adjustment of Permission Fields

	Security Analysis and Practical Attacks
	Threat Model
	Result Validation
	Syscall Vulnerability Discovery
	Manipulation of the Domain Control Structure

	Practical Attacks

	 Discussion
	Official Fix
	Mitigation Suggestions
	Method Generalization

	Related Works
	Conclusion
	References
	Appendix A: Statistics of Syscall Permission Groups

