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Abstract—Prompt injection attacks aim to contaminate the
input data of an LLM to mislead it into completing an attacker-
chosen task instead of the intended task. In many applications
and agents, the input data originates from multiple sources, with
each source contributing a segment of the overall input. In these
multi-source scenarios, an attacker may control only a subset
of the sources and contaminate the corresponding segments, but
typically does not know the order in which the segments are
arranged within the input. Existing prompt injection attacks
either assume that the entire input data comes from a single
source under the attacker’s control or ignore the uncertainty in
the ordering of segments from different sources. As a result, their
success is limited in domains involving multi-source data.

In this work, we propose ObliInjection, the first prompt injec-
tion attack targeting LLM applications and agents with multi-
source input data. ObliInjection introduces two key technical in-
novations: the order-oblivious loss, which quantifies the likelihood
that the LLM will complete the attacker-chosen task regardless
of how the clean and contaminated segments are ordered; and
the orderGCG algorithm, which is tailored to minimize the
order-oblivious loss and optimize the contaminated segments.
Comprehensive experiments across three datasets spanning di-
verse application domains and twelve LLMs demonstrate that
ObliInjection is highly effective, even when only one out of 6–100
segments in the input data is contaminated. Our code and data
are available at: https://github.com/ReachalWang/ObliInjection.

I. INTRODUCTION

An LLM takes a prompt as input and produces a response.
The prompt typically consists of an instruction and a data
sample. In many application and agent scenarios, this data
sample originates from multiple sources, which we refer to
as multi-source data. Each portion of data from a source is
called a segment, and the data is a concatenation of segments
from different sources. For example, in review summarization
adopted by Amazon [1], the instruction might be: “Please
summarize the following reviews:”, with a product’s reviews
themselves forming the data. In this case, each segment cor-
responds to an individual review. For AI Overviews in search
that summarize a news event [2], the data could consist of news
articles from various outlets covering the same event, with

each segment representing one article. Similarly, in retrieval-
augmented generation (RAG) systems, the data consists of
passages retrieved from a knowledge database, with each
retrieved passage treated as a segment. When an LLM agent
selects a tool (e.g., an MCP server) from the available options,
the data includes the user’s task description as well as the
names and descriptions of the available tools, with each tool’s
name–description pair forming a segment.

Due to the inseparability of instructions and data in a
prompt, combined with the strong instruction-following capa-
bilities of LLMs, these models are fundamentally vulnerable
to prompt injection attacks [3]–[6]. Specifically, when the data
originates from untrusted sources, an attacker can embed a
malicious prompt into it, causing the LLM to produce an
attacker-chosen response that completes an attacker-chosen
task rather than the intended task. We refer to the attacker-
chosen task as the injected task and the intended task as
the target task. For example, in review summarization, the
attacker-chosen response could be “The product is useless!”
misleading the LLM to generate a summary that could damage
the product’s reputation. Major technology companies [7]–[10]
now routinely conduct extensive vulnerability testing against
prompt injection attacks before releasing or deploying their
LLMs–a practice that has not been so common in industry
for conventional AI security attacks such as adversarial exam-
ples [11] and data [12] or model poisoning [13], despite their
significant attention in academic research.

In multi-source data scenarios, an attacker may control a
subset of sources and contaminate the corresponding segments
with injected prompts–for example, by corrupting multiple
reviews in a review summarization task. However, the attacker
may not know the ordering of the clean and contaminated seg-
ments that form the final data sample. This uncertainty arises
because the attacker lacks knowledge of both the full set of
clean segments from other sources and the service provider’s
strategy for ordering them. Existing prompt injection attacks
typically either assume that the entire data sample originates
from a single source under the attacker’s control [4], [14]–[18]
or disregard the uncertainty in the ordering of multi-source
segments [5], [6], [19]. Consequently, these attacks achieve
limited success in applications involving multi-source data, as
confirmed by our experimental results. For example, when
contaminating 1 out of 100 reviews to induce LLM-based
review summarization to output “The product is useless!”,
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Fig. 1: Illustration of ObliInjection.

Neural Exec [5] and JudgeDeceiver [6] achieve success rates
of only 7.0% and 0.2%, respectively, when the LLM is Llama-
4-17B (see Table II).

In this work, we propose ObliInjection, the first prompt in-
jection attack specifically designed for LLM applications that
process multi-source data. Figure 1 illustrates ObliInjection.
By carefully contaminating a single segment, ObliInjection
causes a target LLM to produce an attacker-chosen response
regardless of the ordering of the clean and contaminated
segments used to construct the final data sample. A central
challenge is efficiently identifying such a contaminated seg-
ment, given the immense search space.

ObliInjection introduces two key innovations to address this
challenge. First, our order-oblivious loss quantifies how likely
a given contaminated segment is to cause the target LLM
to produce the attacker-chosen response, regardless of the
ordering of the segments. Specifically, the order-oblivious loss
measures the expected cross-entropy loss of the target LLM
when generating the attacker-chosen response, under random
ordering of the clean and contaminated segments forming
the data sample. A smaller order-oblivious loss may indicate
a higher probability of attack success across all possible
orderings. Because the attacker does not have access to the
clean segments from the target task, we leverage another LLM
to synthesize segments, referred to as shadow segments, which
are used to compute the order-oblivious loss.

Second, we introduce the orderGCG algorithm to optimize
the contaminated segment by minimizing the order-oblivious
loss. A natural baseline to minimize the loss is the widely used
GCG algorithm [20]–[22], which exploits the gradient of the
loss with respect to the token embeddings of the contaminated
segment. However, GCG performs suboptimally in our setting.
The core issue lies in the difficulty–or even impossibility–of
exactly computing the order-oblivious loss when the number
of data sources or segments is large. As a result, the loss
must be approximated during optimization. Unfortunately,
relying only on approximate losses computed within a single
iteration, as GCG does, often leads to suboptimal contaminated
segments. Unlike GCG, orderGCG accumulates approximate
loss values for each segment candidate across iterations rather

than depending solely on estimates from the current step.
Moreover, it incorporates a beam search strategy to maintain
and update each candidate solution within a buffer.

We evaluate ObliInjection across three datasets representing
diverse application domains and twelve LLMs. Our results
show that ObliInjection is highly effective: for example, it
achieves an Attack Success Rate (ASR) close to 100% in most
scenarios, even when only one out of 6–100 segments of a tar-
get task is contaminated. Moreover, ObliInjection substantially
outperforms existing prompt injection attacks when applied to
multi-source data settings. We also conduct extensive ablation
studies. For instance, we demonstrate that ObliInjection re-
mains effective when the shadow segments differ significantly
from the clean segments of the target task in both length and
semantic embeddings. Additionally, contaminated segments
optimized by ObliInjection based on diverse shadow LLMs
remain highly effective against unknown target LLMs such
as GPT-4o. Finally, we show that existing defenses–both
prevention-based [23], [24] and detection-based [25], [26]–
are insufficient to mitigate ObliInjection.

In summary, our key contributions are as follows:
• We propose ObliInjection, the first prompt injection at-

tack specifically designed for LLM applications involving
multi-source data.

• We propose an order-oblivious loss to quantify the ef-
fectiveness of a contaminated segment, along with the
orderGCG algorithm to optimize the contaminated seg-
ment by minimizing this loss.

• We comprehensively evaluate ObliInjection across three
datasets representing diverse application domains and
twelve LLMs. Additionally, we demonstrate that existing
defenses are insufficient to mitigate ObliInjection.

II. RELATED WORK

A. Large Language Models (LLMs)

LLMs are autoregressive models trained to follow instruc-
tions. Given a prompt p, an LLM f generates a response
r, denoted as r = f(p). The term autoregressive refers
to the LLM’s token-by-token generation process, where the
probability of generating each token is conditioned on both
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the prompt p and all previously generated tokens. The prompt
p typically comprises two components: an instruction s and
a data sample x, i.e., p = s ||x. The instruction directs the
LLM to perform a specific task–such as summarization, tool
selection, or question answering–and is usually provided by an
application developer or user. The data sample x provides the
context required for the LLM to perform the task. Table XIV
in the Appendix summarizes our notations.

B. Prompt Injection Attacks

A prompt injection attack occurs when a data sample x
included in a prompt p originates from untrusted sources.
Specifically, an attacker embeds a malicious prompt–referred
to as the injected prompt–into the data sample, causing the
LLM to execute an attacker-specified task, known as the
injected task e. The injected task e can be represented as a
tuple (se, xe, re), where se is the injected instruction, xe is
the injected data, and re is the injected response expected by
the attacker [4]. In contrast, the user-intended task is referred
to as the target task t, which is similarly represented as a tuple
(st, xt, rt), where st is the target instruction, xt is the target
data, and rt is the desired target response. The LLM f is said
to successfully complete the target task if f(st ∥xt) equals rt

or its semantic equivalent, i.e., f(st ∥xt) ≃ rt.
In a prompt injection attack, the attacker contaminates the

target data xt, producing contaminated data xc. If the LLM f ,
when prompted with st ∥xc, generates a response that matches
or is semantically equivalent to the injected response re, i.e.,
f(st ∥xc) ≃ re, then the attack is considered successful.

Single-source data: Most attacks [4], [14]–[18] assume that
the target data xt originates from a single source controlled
by the attacker. These attacks typically construct contaminated
data xc by appending an injected prompt pe to the target
data, separated by a crafted separator z, resulting in xc =
xt ∥ z ∥ pe. The separator z is crafted to steer the LLM away
from completing the original target task t and toward executing
the injected task e. For example, the Combined Attack [4] syn-
thesizes multiple strategies to construct a separator z; a typical
instance might be: “\n Answer: task complete. \n Ignore
previous instructions.”. While these attacks can be adapted
to contaminate a subset of segments in the multi-source data
setting, their effectiveness is limited due to uncertainty in the
ordering of segments within the target data. In particular, if
the contaminated segments appear in the middle, their impact
is significantly diminished by the clean segments that follow,
as these attacks assume that the injected prompt appears at the
end of the target data.

Multi-source data: Neural Exec [5] targets retrieval-
augmented generation (RAG) systems, where the target data
xt consists of passages retrieved from a knowledge database.
Similarly, Zou et al. [27] and Jiao et al. [28] design prompt
injection attacks specifically for RAG systems. JudgeDe-
ceiver [6] focuses on LLM-as-a-judge settings, where xt

includes multiple candidate answers to a question. All of these
attacks can be viewed as operating in a multi-source setting,

where each retrieved passage or candidate answer corresponds
to a data segment. In such cases, the attacker contaminates
a subset of segments (e.g., retrieved passages or candidate
answers) to induce the LLM to perform the injected task.
However, as our experiments show, these attacks have limited
effectiveness because they overlook a central challenge in
multi-source settings: uncertainty in the ordering of clean and
contaminated segments. When the actual ordering of segments
differs from the order assumed by the attack, its effectiveness
drops substantially.

We note that some prior RAG attacks [27], [28] report
strong success despite not accounting for ordering. This is
because they assume that the attacker can inject multiple
contaminated segments and that these segments constitute a
majority of the retrieved passages. Under these assumptions,
ordering is less critical. But when only a minority of segments
are contaminated, the attack success rate drops sharply (see,
e.g., Figures 3 and 4 in [27]). In contrast, our work tackles
the more challenging setting where the attacker controls only
a single contaminated segment, where ordering is crucial.

C. Defenses against Prompt Injection Attacks

Prevention-based defenses: This class of defenses aims to
keep the LLM aligned with the target instruction st, preventing
it from being diverted by an injected instruction se. State-of-
the-art prevention-based defenses [23], [24], [29], [30] fine-
tune LLMs to follow only the target instruction, even in the
presence of an injected instruction. Notable examples include
StruQ [23] and SecAlign [24]. StruQ introduces a front-end
filter that reformats st and potentially contaminated data xc

into a structured input format, and then fine-tunes the LLM to
strictly adhere to st within that format. In contrast, SecAlign
uses direct preference optimization to fine-tune the LLM to
favor legitimate over illegitimate outputs. However, as shown
by Jia et al. [31] and corroborated by our findings, these
fine-tuned models often provide limited defense effectiveness
and/or suffer from reduced utility.

Another line of defenses leverages software security tech-
niques to enforce security policies on the actions (e.g., tool
calls) an LLM agent is allowed to perform [32]–[35]. How-
ever, in many tasks involving multi-source data–such as AI
Overview, review summarization, and RAG–the LLM does
not need to invoke external actions at all. Consequently, these
defenses are not applicable in such application scenarios.
Detection-based defenses: In the multi-source data setting,
these defenses can be applied to detect whether each individ-
ual segment has been contaminated by an injected prompt.
One approach is Perplexity-based Detection (PPL) [25], [36],
which measures the perplexity of a segment and flags it as
contaminated if the perplexity exceeds a certain threshold.
Known-answer Detection (KAD) [4], [37] prepends a detection
instruction–which has a known answer–to a segment and
queries an off-the-shelf LLM (referred to as the detection
LLM); if the LLM’s response does not contain the known
answer, the segment is flagged as contaminated. DataSen-
tinel [26] enhances this idea by fine-tuning the detection LLM
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using a game-theoretic strategy to better distinguish clean and
contaminated segments. PromptLocate [38] further pinpoints
the location of the injected prompt after it is detected.

As shown in our experiments, ObliInjection can be adapted
to evade these detectors while still misleading the LLM
into successfully completing the injected task. For example,
by prepending a clean shadow segment to the contaminated
segment, we can lower its perplexity to bypass PPL.

III. PROBLEM FORMULATION

A. Multi-Source Target Data

In many application scenarios–such as review summa-
rization, news summarization, retrieval-augmented generation
(RAG), and tool selection for LLM agents–the target data
xt originate from multiple sources. We refer to the part
of the target data from a single source as a segment. For
example, in review summarization, a segment corresponds to a
product review written by a reviewer; in news summarization,
a segment is a news article from a particular source; in RAG, a
segment is a retrieved passage; and in tool selection, a segment
represents the name/description of a tool.

Formally, we consider n sources, where xt
i denotes the

segment from the ith source. The target data xt is then formed
by concatenating the n segments in a certain order: xt =
xt
i1
∥xt

i2
∥ · · · ∥xt

in
, where {i1, i2, · · · , in} is a permutation of

the source indices {1, 2, · · · , n}. In some applications, there
may exist a natural segment ordering based on contextual
information. For example, reviews or news articles may be
sorted by timestamp. However, in many scenarios–such as
RAG and tool selection–there is often no inherent ordering
among the segments. Moreover, even when a natural ordering
exists, service providers may intentionally shuffle segments to
prevent attackers from exploiting the segment order.

B. Threat Model

Attacker’s goal: The attacker’s goal is to manipulate the LLM
into completing an attacker-specified injected task e with a
corresponding desired response re, by contaminating a single
segment in the target data. The attack is considered successful
if the LLM generates a response that matches or is seman-
tically equivalent to re when given the contaminated data as
input, i.e., f(st ∥xc) ≃ re, where xc is the concatenation of
the clean and contaminated segments in a certain order. For
example, in a review summarization task, the attacker may act
as a reviewer and submit a contaminated review such that the
LLM outputs re = “The product is useless!” damaging the
product’s reputation. In tool selection, the attacker may be a
tool developer who crafts a malicious tool with a specifically
contaminated tool description, leading the LLM to select the
malicious tool when processing the target task.
Attacker’s background knowledge: When the LLM is open-
weight, we assume the attacker has white-box access to its
model parameters. In contrast, when the LLM is closed-
source, the attacker conducts attacks using multiple open-
weight LLMs. As demonstrated in our experiments, our Obli-
Injection exhibits good transferability to closed-source LLMs

under this setting. We assume the attacker does not have access
to the specific target instruction st, which may be provided
by an application developer and kept confidential. However,
the attacker is assumed to know the general nature of the
target task (e.g., review summarization, news summarization,
or question answering).

The attacker is assumed to be unaware of the number of
segments n in the target data. While the attacker may, in some
cases, have access to the content of certain clean segments–
e.g., by collecting public reviews of a product for a review
summarization task–our threat model does not require such
access. Moreover, the attacker is assumed to lack knowledge
of the ordering of clean and contaminated segments within the
target data. This uncertainty arises when the attacker does not
have access to the complete set of clean segments from other
sources or the service provider’s strategy for ordering them.
Attacker’s capabilities: An attack is considered stronger if it
requires fewer capabilities from the attacker. Accordingly, we
focus on a highly constrained setting in which the attacker is
permitted to contaminate only a single segment of the target
data. Given knowledge of the general nature of the target
task, the attacker can leverage an LLM to synthesize a proxy
target instruction, referred to as a shadow target instruction.
Additionally, we assume the attacker can synthesize clean
segments relevant to the target task. For example, if the target
task is to summarize reviews for a product, the attacker may
generate synthetic reviews–based on the product description–
using an LLM. These synthetic data segments, termed shadow
segments, are used by our attack to guide the manipulation of
the contaminated segment.

IV. OUR OBLIINJECTION

We begin by formulating the task of identifying a con-
taminated segment as an optimization problem, where the
optimization variables are the tokens of the contaminated seg-
ment. The objective function quantifies the likelihood that the
target LLM produces the attacker-specified injected response.
A key innovation in our formulation is the order-oblivious
loss, which considers different permutations of the clean and
contaminated segments in the target data–more accurately
capturing the attacker’s goal.

To solve this optimization problem, we first carefully design
prompts to query an auxiliary LLM to generate a shadow
target instruction and a set of shadow data segments, since
the attacker lacks access to the true target instruction and
segments under our threat model. We then introduce an
algorithm called orderGCG, which is specifically designed
to minimize the order-oblivious loss and generate multiple
candidate contaminated segments. Finally, we evaluate these
candidates on a validation set of shadow segments and select
the one that achieves the highest attack success rate.

A. Formulating an Optimization Problem

Quantifying the attacker’s goal using our order-oblivious
loss: The attacker’s objective is to manipulate a single
segment so that the LLM f produces an attacker-chosen
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Fig. 2: Illustration of how ObliInjection optimizes a contaminated segment.

injected response re when processing the contaminated data,
i.e., f(st||xc) ≃ re. Here, xc represents the concatenation
of clean and contaminated segments in an unknown order.
A straightforward approach to quantify this goal is to use
the standard cross-entropy loss between f(st||xc) and re, as
employed in prior prompt injection attacks [5], [6]. A smaller
loss indicates better achievement of the attacker’s goal.

However, this standard cross-entropy loss faces two key
challenges: (1) the target instruction st, the number of data
sources n, and the content of clean segments are unknown,
and (2) the ordering of segments within the target data is also
unknown. To address the first challenge, we use an LLM to
synthesize a shadow target instruction sts based on the general
nature of the target task. We also define a proxy number of
data sources ns, termed the shadow number of sources, and
generate a set of shadow segments relevant to the target task,
denoted as Xs = {x(1)

s , x
(2)
s , · · · }, where x

(i)
s is the ith shadow

segment. Details on generating the shadow target instruction
and segments are provided in Sections IV-B and V-A.

To tackle the second challenge, we account for the unknown
segment ordering by introducing an order-oblivious loss. This
loss represents the expected cross-entropy loss when clean and
contaminated segments are randomly permuted to form the
target data. A smaller order-oblivious loss indicates a higher
likelihood of attack success, regardless of how segments are
permuted to form the target data. Formally, given the shadow
target instruction sts, shadow number of sources ns, shadow
segments Xs, a contaminated segment x, and an injected
response re, our order-oblivious loss L(x) is defined as:

L(x) = EX ′
s⊆Xs,xc

s∼Per(X ′
s∪{x})

[
ℓ
(
f(sts||xc

s), r
e
)]

, (1)

where E denotes the expectation; X ′
s is a subset of ns − 1

segments sampled uniformly from Xs (so that, together with
the contaminated segment, we have ns shadow data sources);
xc
s ∼ Per(X ′

s ∪ {x}) indicates that xc
s is the concatenation of

segments in X ′
s ∪ {x}, permuted uniformly at random; and ℓ

is the standard cross-entropy loss.

Formally, the loss ℓ is defined using the tokens of the
injected response re and the token probability distribution
output by the LLM f . Suppose re consists of N tokens
[re1, r

e
2, · · · , reN ]. The standard cross-entropy loss is given by:

ℓ
(
f(sts||xc

s), r
e
)
= −

N∑
j=1

logP
(
rej | sts∥xc

s∥re<j

)
, (2)

where re<j denotes the first j − 1 tokens of re, and
P
(
rej | sts∥xc

s∥re<j

)
is the probability assigned by the LLM

f to token rej conditioned on the input sts∥xc
s∥re<j .

Formulating an optimization problem: The attack may
be more effective when the order-oblivious loss is smaller.
Therefore, our objective is to identify a contaminated segment
x that minimizes this loss. Formally, we express this as the
following optimization problem: minx L(x).

B. Solving the Optimization Problem

Challenges and overview of our solution: Solving the
optimization problem presents two key challenges: (1) how
to collect a shadow target instruction sts and shadow segments
Xs that are relevant to the target task t, and (2) how to identify
a contaminated segment x that minimizes the order-oblivious
loss. To address the first challenge, we leverage an LLM (e.g.,
GPT-4o in our experiments) to synthesize a shadow target
instruction and a corresponding set of shadow segments based
on metadata about the target task t that the attacker can collect.
This forms Step I of ObliInjection as shown in Algorithm 1.

For the second challenge, we introduce orderGCG, an
optimization algorithm specifically tailored to minimize order-
oblivious loss. orderGCG incorporates two key innovations:
(1) it accumulates approximate loss values across iterations,
and (2) it employs a beam search strategy to update each
candidate solution in the buffer. Specifically, orderGCG ex-
ecutes Steps II-IV iteratively. At the end, orderGCG produces
multiple candidate segments. Step V selects the segment that
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Algorithm 1 ObliInjection

Require: LLM f , metadata Mt of the target task, and in-
jected response re

Ensure: Contaminated segment x
1: // Step I: Generate sts and Xs

2: sts ← generate shadow target instruction
3: Xs ← generate shadow segments
4: // Step II-IV: Use orderGCG to find candidate segments
5: Initialize a segment x = [x1, x2, · · · , xk]
6: // Approximate loss of x
7: Sample shadow segment subset X ′

s ⊂ Xs

8: l← order oblivious loss(f,X ′
s, x, s

t
s, r

e)
9: Initialize buffer B ← {(x, l, 1)}

10: for iter = 1 to diter do
11: Sample shadow segment subset X ′

s ⊂ Xs

12: // Initialize the set of new segment candidates Xnew
13: Xnew ← ∅
14: for (x, lx, dx) ∈ B do
15: // Step II: Generate candidates Tj for each xj ∈ x
16: {Tj}kj=1 ← gen token cands(f, sts, r

e, x,X ′
s)

17: // Step III: Generate segment candidates
18: X ′

new ← gen segment cands({Tj}kj=1, x)
19: Xnew ← Xnew ∪ X ′

new
20: end for
21: // Step IV: Update the buffer
22: B ← update buffer(f,B, sts, re,Xnew,X ′

s)
23: end for
24: // Step V: Select contaminated segment via validation
25: x ← the segment in B that achieves the highest attack

success rate on the validation shadow segments
26: return x

achieves the highest attack success on a validation set of
shadow segments as the final contaminated segment.

Next, we detail each of the five steps (Step I–Step V)
of ObliInjection. Figure 2 illustrates this overall workflow.
Without loss of generality, we assume that the contaminated
segment x consists of k tokens, i.e., x = [x1, x2, · · · , xk],
where each token xj belongs to the LLM f ’s vocabulary V .

Approximate order-oblivious loss: We first describe how we
approximate the order-oblivious loss L(x) for any segment x,
which is used in multiple steps of ObliInjection. This approx-
imation is implemented via the function order oblivious loss,
as shown in Algorithm 2. Specifically, we uniformly sample
one subset X ′

s ⊆ Xs of size ns − 1, and then draw dper
random permutations of the combined segments X ′

s ∪ {x}.
Each permutation yields a shadow contaminated data sample,
resulting in dper samples, denoted as {xc

s,p}
dper
p=1. For each sam-

ple xc
s,p, we compute the cross-entropy loss ℓ(f(sts||xc

s,p), r
e).

The approximate order-oblivious loss is then computed as the
average cross-entropy loss across these dper samples.

Step I: Generate shadow target instruction sts and shadow
segments Xs: Since the target instruction and data seg-
ments are inaccessible under our threat model, we construct a

Algorithm 2 order oblivious loss

Require: LLM f , shadow segment subset X ′
s, contaminated

segment x, shadow target instruction sts, and injected
response re

Ensure: Approximate order-oblivious loss l
1: Sample dper random permutations of X ′

s ∪ {x} and con-
struct dper shadow contaminated data samples {xc

s,p}
dper
p=1

2: l← 0
3: for p = 1 to dper do
4: l← l + ℓ(f(sts||xc

s,p), r
e)

5: end for
6: l← l

dper
// Average over dper samples

7: return l

shadow target instruction sts and a set of shadow segments
Xs, which we then use to optimize a contaminated data
segment. Specifically, we prompt an LLM (GPT-4o in our
experiments), referred to as the auxiliary LLM, using metadata
Mt from the target task t to generate both sts and Xs. This
metadata may include the task type (e.g., summarization or
question answering) and public attributes of the target entity–
such as a product’s name and category in a product review
summarization task. Details about the metadata used in our
experiments are provided in Section V-A.

The key to generating the shadow target instruction and
shadow segments lies in carefully designing prompts to query
the auxiliary LLM. To generate the shadow target instruction,
we leverage task-type information, which reflects the intent of
the target instruction. We also enrich the prompts with detailed
textual descriptions to enhance the clarity and expressiveness
of the generated shadow target instructions. This improved
expressiveness enhances the effectiveness of ObliInjection,
as shown in our experiments. The prompts used to generate
shadow target instructions for each dataset in our experiments
are listed in Table IX in the Appendix.

To generate a shadow segment, We construct a prompt that
incorporates the public attributes of the target entity. To ensure
diversity of shadow segments, we craft prompts that encourage
variation in length, emotion, textual style, and tone. Detailed
prompt templates used in our experiments are provided in
Table X and Table XI in the Appendix.

Step II-IV: Find contaminated segment candidates via
orderGCG: Given the shadow target instruction and shadow
segments, we then apply our orderGCG algorithm to identify
candidate contaminated segments that approximately minimize
the order-oblivious loss. Specifically, orderGCG maintains a
buffer of tuples (x, lx, dx), where x is a segment candidate,
lx is the approximate order-oblivious loss averaged across the
iterations in which x’s loss has been computed, and dx is the
number of such iterations used to compute lx. This buffer
enables orderGCG to leverage loss estimates accumulated
across iterations to better approximate the order-oblivious loss
for each segment x.

In each iteration, for every segment candidate x in the
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buffer, orderGCG first generates multiple token-level candi-
dates to replace each token of x (Step II), and then constructs
new segment candidates from these token-level candidates
(Step III). These two steps result in a set of new segment
candidates. In Step IV, orderGCG updates the average approx-
imate loss lx for existing segments in the buffer, computes
the approximate order-oblivious loss for each new candidate,
and retains the candidates with the lowest losses in the buffer.
orderGCG repeats Steps II–IV for diter iterations.

Step II: Generate token-level candidates for each token.
This step, implemented in gen token cands of Algorithm 3 in
the Appendix, generates token-level candidates for each token
in a given segment x in the buffer. Specifically, for each token
xj in x, we search the vocabulary V of the LLM for alternative
tokens that are likely to reduce the segment’s order-oblivious
loss when substituted for xj . A naive approach would replace
xj with every token in V , compute the approximate order-
oblivious loss for each resulting segment, and select the
tokens with the lowest losses. However, this is computationally
infeasible due to the large vocabulary size. To address this,
we draw inspiration from prior work [20], and use a gradient-
based method based on Taylor expansion.

Each token is represented as a one-hot vector in {0, 1}|V |×1,
where the entry corresponding to the token is 1 and all others
are 0. Let l(xj) denote the approximate order-oblivious loss
of the segment when its jth token is xj . If xj is replaced
by another token x′

j , the loss becomes l(x′
j). Using Taylor

expansion, we can approximate this loss as:

l(x′
j) ≈ l(xj) +∇xj l(xj)

⊤(x′
j − xj), (3)

where ⊤ denotes the transpose operator. This approximation
allows efficient estimation of l(x′

j) for all candidate tokens x′
j .

We then select the top dtok tokens with the lowest estimated
loss as potential replacements for xj and we denote them as a
set Tj . This process is repeated for each token in x, resulting
in a set of token-level candidates for every position. We
select multiple candidates per position to mitigate inaccuracies
introduced by the Taylor approximation.

Step III: Generate segment-level candidates. Given the
token-level candidates Tj for each token xj in a seg-
ment x from the buffer, this step–which is implemented in
gen segment cands of Algorithm 4 in the Appendix–generates
segment-level candidates by modifying multiple tokens in x
using their respective token-level candidates. Specifically, we
create each segment-level candidate by replacing drep tokens in
x. To do this, we first uniformly sample drep positions J from
the set {1, 2, · · · , k}, where k is the length of the segment.
For each selected position j ∈ J , we randomly sample a
replacement token x′

j from the token-level candidate set Tj and
substitute xj with x′

j in x. We repeat this process to generate
dseg segment-level candidates for each segment in the buffer.

Step IV: Update the buffer. This step updates the buffer
to retain the segment candidates with the lowest approxi-
mate order-oblivious losses observed so far. As shown in
Algorithm 5 in the Appendix, the buffer update procedure
consists of two parts: (1) updating the stored losses of existing

segments in the buffer, and (2) incorporating new segment-
level candidates if they demonstrate lower approximate losses.

For the first part, we re-evaluate the order-oblivious loss of
each segment currently in the buffer using the newly sampled
shadow segment subset X ′

s. We then update each segment’s
stored loss via a running average over all evaluations con-
ducted for that segment. This refinement is essential because
each evaluation relies on random sampling of shadow segment
subsets and permutations, which can introduce variability.
Without this running average, the loss value may reflect only
a specific sampled context. By aggregating evaluations across
multiple iterations, we approximate the expected loss over
a diverse set of shadow segment subsets and permutations,
yielding a more reliable ranking of segment candidates.

For the second part, we evaluate the order-oblivious loss
of each new segment-level candidate on the current shadow
segment subset X ′

s. If the buffer has not yet reached its
maximum capacity, the candidate is directly added. Otherwise,
a new candidate is inserted only if its approximate loss is
lower than that of the worst-performing segment in the buffer,
which is then removed. This replacement strategy ensures
that the buffer retains only the most promising candidates,
as measured by their performance under the current sampled
shadow segment subset and permutations.

Step V: Select the best segment in the buffer via valida-
tion: This step selects the final contaminated segment from
the buffer. A naive approach would be to simply choose the
segment with the lowest stored loss. However, we observe that
this may result in a suboptimal ASR. This discrepancy arises
because the loss estimates are based on randomly sampled
shadow segment subsets and permutations, which may differ
from those encountered during attack deployment.

To address this challenge, we introduce a selection strategy
based on ASR evaluated on a held-out validation set of shadow
segments. Specifically, we use the same procedure as in Step
I to generate multiple validation shadow segments. For each
candidate segment in the buffer, we simulate attack scenarios
by randomly sampling ns segments from the validation set
and permuting them with the candidate segment to form
shadow contaminated data xc

s. The ASR is then defined as
the fraction of such scenarios where f , when prompted with
sts ∥xc

s, produces re, i.e., f(sts ∥xc
s) ≃ re. ObliInjection selects

the candidate segment with the highest validation ASR as the
final contaminated segment.

Different forms of contaminated segment x: In the descrip-
tion above, we treat all tokens in x as optimization variables.
Alternatively, we can constrain x to take the structured form
x = z||pe||z′, where pe is the injected prompt corresponding
to the injected task with response re, and only z and z′

are treated as optimization variables. The prefix z aims to
mislead the LLM into ignoring the context preceding the
contaminated segment, while the postfix z′ aims to mislead the
LLM into ignoring the context following it. As demonstrated
in our experiments, this structured form of x enhances the
effectiveness of ObliInjection, as it facilitates the discovery
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TABLE I: Statistics of the three datasets used in our experiments. QA stands for question answering.

Dataset Task Type Application #Target Tasks #Segs/Task Avg Segment Len Max Segment Len Min Segment Len

Amazon Reviews Summarization Review Highlights 100 100 40 1357 2
Multi-News Summarization AI Overview 100 6 335 1742 19
HotpotQA RAG-based QA Question Answering 100 10 139 784 21

of contaminated segments that reliably mislead LLMs into
completing the injected task.

Attack multiple target tasks simultaneously: In the above
discussion, we focus on optimizing a contaminated segment x
for a single target task. However, an attacker may instead seek
to optimize a contaminated segment that is effective across
multiple target tasks–for example, to improve attack efficiency.
In addition, this is also relevant in scenarios where the at-
tacker lacks information about the specific target task, such
as when attacking a RAG-based question-answering system
without access to the exact question types. In such cases,
optimizing the contaminated segment across multiple target
tasks increases the likelihood that the segment generalizes and
remains effective in unknown task settings.

Our ObliInjection can be naturally extended to this multi-
target-task setting. Specifically, in Step I, we generate a
shadow target instruction and a set of shadow segments
for each target task based on its metadata. When applying
the orderGCG algorithm to produce segment candidates, we
modify the function order oblivious loss in Algorithm 2 to
incorporate all target tasks. Given a segment x, we compute
its approximate order-oblivious loss for each individual target
task and then take the average across all target tasks as the final
loss value. In Step V, we generate validation shadow segments
for each target task and select the segment in the buffer that
achieves the highest average ASR across all target tasks.

Transfer to unknown LLMs: When the target LLM is open-
weight, an attacker can directly apply the above algorithm
to optimize the contaminated segment x. However, when the
target LLM is unknown–such as in the case of a closed-source
model–the algorithm is not directly applicable, as it requires
access to model parameters. In this case, the attacker can
instead optimize the contaminated segment using a diverse
set of open-weight LLMs, referred to as shadow LLMs. As
demonstrated in our experiments, the resulting contaminated
segment remains effective against unknown LLMs.

A key challenge in optimizing the contaminated segment
across multiple shadow LLMs is that these models often use
different tokenizers, resulting in distinct token vocabularies.
To address this, we restrict the contaminated segment to use
only tokens shared across all shadow LLMs. In addition to
this constraint, another primary adaptation to ObliInjection
is modifying Algorithm 2 to compute an approximate order-
oblivious loss averaged across the shadow LLMs.

V. EVALUATION

A. Experimental Setup

LLMs: We conduct experiments on seven representa-
tive open-weight LLMs: Llama-3-8B-Instruct, Llama-3.1-

8B-Instruct, Mistral-7B-Instruct-v0.3, Qwen-2.5-7B-Instruct-
1M, Falcon3-7B-Instruct, Llama-4-Scout-17B-16E-Instruct,
and Qwen3-4B-Instruct-2507, which are denoted as Llama-
3-8B, Llama-3.1-8B, Mistral-7B, Qwen-2.5-7B, Falcon3-7B,
Llama4-17B, and Qwen3-4B, respectively. Additionally, we
evaluate GPT-4o and Gemini-2.5-flash. In Section VI, we
further evaluate three LLMs that are protected by prevention-
based defenses.

Target tasks and datasets: We consider three categories
of target tasks: review summarization, news summarization,
and RAG-based question answering. For each category, we
adopt a widely used dataset: Amazon Reviews, Multi-News, and
HotpotQA. Each dataset contains 100 target tasks, represented
as tuples {(st, {xt

i}ni=1, r
t)}, where st is the target instruction,

{xt
i}ni=1 denotes the n segments whose permutation forms the

target data, and rt is the target response. Specifically, the value
of n is 100, 6, and 10 for the three datasets, respectively. While
a product may contain more than 100 reviews, the open-weight
LLMs supported by our computing resources have limited
context window sizes, so we cap the number of Amazon
reviews per product at n = 100. The segments in these datasets
vary in length and writing style, both within individual target
tasks and across different tasks. We summarize the dataset
statistics in Table I.

• Amazon Reviews [1]. This dataset focuses on review
highlights, where each target task involves generating a
summary for a product based on its reviews. Each data
segment corresponds to a single review.

• Multi-News [39]. This dataset focuses on news summa-
rization. Each target task involves generating a summary
of a news event based on multiple articles from different
outlets. Each data segment corresponds to an individual
news article.

• HotpotQA [40]. This dataset represents RAG-based ques-
tion answering. Each target task involves answering
a question using multiple supporting documents from
Wikipedia as context. Each data segment corresponds to
one such document.

Injected tasks: For each of the three categories of target
tasks, we design an injected task that can be applied to any
specific instance within the category. Each injected task is
crafted to cause the target LLM to fail on its target task and
instead output an attacker-specified injected response re. The
injected responses for the three categories of target tasks are:
“The product is useless!” (review summarization), “The news
is fake!” (news summarization), and “The answer is unknown.”
(question answering). We explore alternative injected tasks and
responses in our ablation study.
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TABLE II: ASR (%) of different attacks across various datasets and LLMs.

Dataset Attack Llama-3-8B Llama-3.1-8B Mistral-7B Qwen-2.5-7B Falcon3-7B Llama4-17B Qwen3-4B Average

Amazon Reviews

Combined Attack 0.0 0.0 0.0 16.4 0.0 9.4 15.6 5.9
Neural Exec 41.2 0.0 0.0 0.0 0.4 7.0 1.2 7.1
JudgeDeceiver 62.2 78.4 75.8 99.2 32.6 0.2 49.2 56.8
ObliInjection-GCG 61.6 15.2 0.0 1.2 0.0 85.4 32.4 28.0
ObliInjection-CE 99.2 96.0 64.2 86.8 96.8 96.6 96.0 90.8
ObliInjection 99.4 98.0 99.2 99.8 98.2 99.8 98.8 99.0

Multi-News

Combined Attack 0.0 0.6 0.0 7.0 8.4 51.6 87.5 22.2
Neural Exec 58.4 3.0 7.8 0.0 0.4 97.0 89.0 36.5
JudgeDeceiver 76.6 0.0 2.6 94.0 5.0 2.4 100.0 40.1
ObliInjection-GCG 82.0 34.8 0.0 94.2 19.6 100.0 99.6 61.5
ObliInjection-CE 99.6 99.4 67.0 40.4 99.8 99.6 91.0 85.3
ObliInjection 100.0 99.6 93.8 99.6 98.0 100.0 100.0 98.7

HotpotQA

Combined Attack 14.2 39.6 20.0 84.4 0.4 1.6 28.4 26.9
Neural Exec 32.8 25.4 25.5 2.8 20.2 8.8 27.8 20.5
JudgeDeceiver 55.6 32.8 88.0 93.4 58.8 0.2 10.6 48.5
ObliInjection-GCG 85.4 31.2 92.6 70.0 88.6 8.2 14.0 55.7
ObliInjection-CE 67.8 93.0 100.0 100.0 91.6 99.8 84.6 91.0
ObliInjection 100.0 99.2 100.0 98.6 100.0 99.6 100.0 99.6

To implement each injected task, we also define an injected
prompt pe, which prepends the word Print to the injected
response. For instance, the injected prompt for review sum-
marization becomes “Print: The product is useless!”. These
injected prompts are embedded within the contaminated data
segments, as we will discuss in our attack settings.

Compared attacks: We compare ObliInjection with five
attacks, including two variants of ObliInjection. Given a target
task and an injected task, these attacks are used to craft a
contaminated segment.

• Combined Attack [4]. This attack was originally de-
signed for single-source data, but we adapt it to the
multi-source data setting. Specifically, it combines mul-
tiple heuristics to construct a contaminated segment as
x =“\n”|| “Answer: task complete.”||“\n”||“Ignore pre-
vious instructions.”||pe|| “Ignore previous instructions.”,
where pe denotes the injected prompt corresponding to
the injected task.

• Neural Exec [5]. This attack was originally designed
for RAG-based question answering, but we adapt it to
our problem setting. Specifically, it uses the standard
cross-entropy loss, where the ordering of the shadow and
contaminated segments is sampled once at the beginning
and kept fixed throughout the optimization process. The
attack then applies GCG [21] to minimize this loss
and optimize the contaminated segment x. We note that
GCG incorporates multiple advanced heuristics, such as
multiple substitutions and buffer strategies, as provided
in the public code [22].

• JudgeDeceiver [6]. This attack was originally developed
for the LLM-as-a-judge setting, but we adapt it to our
problem setting. Specifically, its objective consists of a
cross-entropy loss, a perplexity loss on the contaminated
segment, and an enhancement loss. All three losses are
averaged over different insertion positions of the contam-
inated segment among the shadow segments. However, it

does not consider permutations of the shadow segments
during optimization. JudgeDeceiver also employs the
GCG algorithm, using a progressive strategy, to minimize
the objective and optimize the contaminated segment x.

• ObliInjection-GCG. This is a variant of ObliInjection, in
which we replace our orderGCG with GCG while keeping
the order-oblivious loss unchanged.

• ObliInjection-CE. This variant replaces the order-
oblivious loss with the standard cross-entropy loss, while
still using orderGCG for optimization. Specifically, we
sample a single permutation of the shadow segments
and the contaminated segment and fix this permutation
throughout the optimization when computing the cross-
entropy loss. Together, these two variants–ObliInjection-
GCG and ObliInjection-CE–demonstrate that both our
order-oblivious loss and the orderGCG algorithm are
essential components of ObliInjection.

• ObliInjection. This is our full ObliInjection, which incor-
porates both the order-oblivious loss and the orderGCG
algorithm for optimization.

Evaluation metrics: We use Attack Success Rate (ASR) to
evaluate the effectiveness of an attack. Suppose an attack
crafts a contaminated segment x. Given a target task with
instruction st and a set of clean data segments X , the clean
segments in X and the contaminated segment x are permuted
in an unknown order to form the contaminated target data
xc. The attack is considered successful if the target LLM f
generates the injected response re when given st||xc as input.
ASR is defined as the average success rate across all possible
permutations of the segments. Formally, we define ASR as:

ASR = Exc∼Per(X∪{x})
[
I
(
f(st||xc), re

)]
, (4)

where Per denotes the uniform distribution over all permuta-
tions of the segments in X ∪ {x}, and I(·, ·) is the indicator
function, which returns 1 if the output of the LLM f(st||xc)
is semantically equivalent to the injected response re, and 0
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otherwise. Specifically, for the three injected tasks/responses,
we consider f(st||xc) semantically equivalent to re if the
former contains the keyword “useless”, “fake”, or “unknown”.
In our experiments, we calculate ASR by sampling 50 permu-
tations of X ∪ {x}. When an attacker attacks multiple target
tasks simultaneously using a single optimized contaminated
segment, we report the average ASR across all target tasks to
evaluate overall effectiveness.
Attack setting: By default, we attack 10 target tasks in
each dataset simultaneously by optimizing a single contam-
inated segment to reduce computational cost. In Step I of
ObliInjection, generating the shadow target instruction and
shadow segments requires metadataMt from the target tasks.
The metadata include product name and category for review
summarization, key event details such as time and location
for news summarization, and question type for RAG-based
question answering. We generate 100 shadow segments for
each of the review summarization target tasks, and 10 shadow
segments for the other target tasks.

We assume the contaminated segment x takes the form
z ∥ pe ∥ z′, where pe is the injected prompt for the injected
task, and we optimize (z, z′) over diter = 200 iterations of
orderGCG. In each iteration, we sequentially sample 2 out of
the 10 target tasks and, for each, select a shadow segment
subset of size ns–with ns = 10 for Amazon Reviews and
ns = 3 for the other two datasets. Unless otherwise specified,
we set the following hyperparameters: dbuf = 5, dtok = 128,
dseg = 30, and drep = 2. In Step V of ObliInjection,
we generate an additional 100 shadow segments for review
summarization target tasks and 10 shadow segments for the
other target tasks to serve as the validation dataset.

Notably, for attacks such as Neural Exec, JudgeDeceiver,
and ObliInjection-GCG that do not employ a beam search
strategy, we set dseg = 5×30 to ensure the total computational
cost remains approximately consistent across different attack
methods, enabling fair comparisons.

B. Main Results
Table II reports the average ASR across target tasks for

different attacks evaluated on various datasets and LLMs.
Our ObliInjection is highly effective: The results show
that ObliInjection consistently achieves high ASRs across all
three datasets and seven LLMs. Specifically, ObliInjection
attains an average ASR of 99.0%, 98.7%, and 99.6% on the
three datasets, respectively, when averaged across the seven
LLMs. These results demonstrate the strong effectiveness of
ObliInjection even under the challenging scenario of prompt
injection in multi-source target data, where only a single
source is contaminated. Despite substantial architectural dif-
ferences among the seven LLMs, ObliInjection consistently
maintains high effectiveness across all of them. It achieves an
ASR of at least 98.0% across all datasets and models, with
the only exception being the Multi-News dataset when attack-
ing Mistral-7B, where the ASR remains as high as 93.8%.
These findings underscore the effectiveness and generality of
ObliInjection across a diverse range of LLMs.
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Fig. 3: (a) Length distributions of shadow segments and target
segments. (b) Cosine similarity distributions between segment
embeddings for shadow–shadow (S-S), target–target (T-T), and
shadow–target (S-T) pairs.

Furthermore, ObliInjection remains highly effective even
when the shadow segments differ substantially from the target
segments. For example, the number of shadow data sources
differs significantly from the number of target data sources–
e.g., 10 shadow segments vs. 100 target segments for a target
task in the Amazon Reviews dataset. Figure 3a illustrates
the length (i.e., number of tokens) distributions of shadow
and target segments for one target task in the Amazon Re-
views dataset. Additionally, Figure 3b presents cosine similar-
ity scores between segment embeddings for shadow-shadow,
shadow-target, and target-target pairs, where embeddings are
computed using the all-MiniLM-L6-v2 model. The results
indicate substantial differences between shadow and target
segments in both length and semantic representation. Despite
these discrepancies, the contaminated segments optimized
using the shadow segments remain highly effective when
applied to the target segments, highlighting ObliInjection’s
strong generalization capabilities across datasets.

Our ObliInjection outperforms baselines: Table II shows
that ObliInjection substantially outperforms all baseline at-
tacks. In particular, the Combined Attack demonstrates the
weakest effectiveness, achieving only 5.9% average ASR
on Amazon Reviews and 22.2% on Multi-News. This poor
performance is primarily due to its design for single-source
data; it does not account for segment ordering when applied
in the multi-source setting.

Neural Exec and JudgeDeceiver are more effective than
Combined Attack but still yield suboptimal performance. For
instance, Neural Exec achieves only 7.1% ASR on Amazon
Reviews, 36.5% on Multi-News, and 20.5% on HotpotQA.
These limitations stem from the fact that these attacks do
not account for segment permutation–a unique and critical
challenge in prompt injection against multi-source data.

ObliInjection also significantly outperforms the two vari-
ants, ObliInjection-GCG and ObliInjection-CE. These re-
sults highlight the importance of both core innovations in
ObliInjection–the order-oblivious loss and the orderGCG al-
gorithm. Replacing either component leads to substantially de-
graded attack effectiveness, confirming that both are essential
to ObliInjection’s success.
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TABLE III: Model transfer performance between shadow and target LLMs.

Shadow LLM Target LLM

Llama-3-8B Mistral-7B Llama-3.1-8B Qwen-2.5-7B Falcon3-7B Mistral-7B Llama-3.1-8B Qwen-2.5-7B Llama4-17B Qwen3-4B GPT-4o Gemini-2.5-flash

✓ 0.0 78.4 8.5 88.2 52.2 0.0
✓ ✓ – 67.3 92.4 20.4 56.8 1.3
✓ ✓ ✓ – – 85.6 63.0 98.6 3.0
✓ ✓ ✓ ✓ – – – 99.6 99.6 0.0
✓ ✓ ✓ ✓ ✓ – – – 96.8 99.8 24.0 (95.2) 87.3

TABLE IV: ASR (%) of ObliInjection on target tasks not
used during contaminated–segment optimization.

LLM Amazon Reviews Multi-News HotpotQA

Llama-3-8B 89.8 98.7 93.6
Llama-3.1-8B 95.3 97.6 98.4
Mistral-7B 99.4 93.1 97.0
Qwen-2.5-7B 99.3 99.6 95.3
Falcon3-7B 97.5 96.4 92.6
Llama4-17B 99.0 100.0 95.6
Qwen3-4B 99.7 97.9 100.0

Average 97.1 97.6 96.1

Computation cost of ObliInjection: ObliInjection’s com-
putation cost is acceptable. For example, on the Amazon
Reviews dataset, optimizing a contaminated segment for 10
target tasks takes fewer than 4 hours on a single A100 GPU
for all evaluated LLMs except Llama-4-17B, and about 13
hours for Llama-4-17B using two H200 GPUs. We emphasize
that ObliInjection performs this optimization offline and only
once, rather than during a real-time attack. Thus, the overall
computational overhead is acceptable.

C. Ablation Studies

Transferability across target tasks: In practice, it may be
infeasible for an attacker to optimize the contaminated segment
across a large number of target tasks simultaneously, due
to computational constraints. This raises a natural question:
is a contaminated segment optimized on a subset of target
tasks still effective on unseen target tasks? Table IV reports
the averaged ASR of contaminated segments optimized by
ObliInjection using 10 target tasks, but evaluated on the
remaining 90 tasks in each dataset across various LLMs. We
observe that ObliInjection consistently achieves high ASRs
on these unseen target tasks–for example, 97.1% on Amazon
Reviews, 97.6% on Multi-News, and 96.1% on HotpotQA,
on average. Notably, these ASRs are only slightly lower than
those obtained on the target tasks used during optimization
(see Table II). These results show that ObliInjection general-
izes well to unseen target tasks, and its strong transferability
substantially improves attack efficiency by removing the need
to re-optimize the contaminated segment for each target task.
Transferability across LLMs: When the target LLM is un-
known, the attacker cannot optimize the contaminated segment
using its model parameters. Therefore, we evaluate the trans-
ferability of ObliInjection across LLMs. Specifically, Table III
reports the ASR of ObliInjection when contaminated segments

are optimized using varying numbers of shadow LLMs and
then evaluated on different target LLMs. We observe that
ObliInjection achieves significantly better transferability when
more shadow LLMs are incorporated during optimization. For
instance, ASR on Falcon3-7B increases from 0.0% to 95.6%
as the number of shadow LLMs increases from 1 to 4.

The ASR for GPT-4o is lower at 24.0% when ObliInjec-
tion does not have any access to GPT-4o’s API. However,
ObliInjection can leverage log probabilities returned by the
API to further enhance transferability. Specifically, we use the
API’s output log probabilities to compute the approximated
order-oblivious loss, while all other steps in optimizing the
contaminated segment still rely on shadow LLMs. In Line 4 of
Algorithm 2, the log probabilities returned by the API are used
to compute the cross-entropy loss ℓ(f(sts||xc

s,p), r
e). Given an

input, the GPT-4o API returns the log probabilities of the
top-20 predicted tokens at each position of the response. If
a token in the injected response re appears among these top-
20 tokens, its log probability is used to compute the loss at that
position; otherwise, a large value (e.g., 30 in our experiments)
is assigned to the loss. With such access, the ASR on GPT-
4o improves to 95.2% when five shadow LLMs are used.
We note that leveraging log probabilities to approximate the
candidate segments’ cross-entropy loss during ObliInjection’s
optimization incurs 120K API queries in our experiments.
These results suggest that attackers can substantially improve
ObliInjection’s effectiveness on unknown target LLMs by
leveraging more shadow LLMs and exploiting any available
log-probability information, at the cost of some API queries.
Note that contaminated segments optimized using GPT-4o’s
log probabilities achieve an 87.3% ASR on Gemini-2.5-flash.

Different forms of contaminated segment x: By default, we
assume that the contaminated segment x takes the structured
form x = z||pe||z′, where pe is the injected prompt corre-
sponding to the injected task. To explore the design choices
for x, we additionally evaluate two alternative forms: (1) a
fully unconstrained form where all tokens of x can be freely
optimized, and (2) a more constrained form x = xi

s||z||pe||z′,
where xi

s is a randomly sampled shadow segment. For a fair
comparison, we ensure that the total length of x is kept the
same across all three forms.

Table V reports the ASR of ObliInjection for each form
across different LLMs. The results show that the structured
form x = z||pe||z′ consistently achieves the highest ASR. It
outperforms the constrained form with the prepended shadow
segment x = xi

s||z||pe||z′, which in turn outperforms the
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TABLE V: ASR (%) of ObliInjection when using different forms of contaminated segment x across LLMs.

Form of x Opt. var. Llama-3-8B Llama-3.1-8B Mistral-7B Qwen-2.5-7B Falcon3-7B Llama4-17B Qwen3-4B Average

x x 94.6 90.8 67.4 82.6 63.8 98.8 63.2 80.2
x = z||pe||z′ (z, z′) 99.4 98.0 99.2 99.8 98.2 99.8 98.8 99.0
x = xi

s||z||pe||z′ (z, z′) 100.0 97.2 78.8 98.8 88.4 99.2 98.4 94.4
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Fig. 4: Impact of (a) number of target tasks attacked simultaneously, (b) buffer size dbuf, and (c) number of shadow sources
ns on the ASR of ObliInjection.

TABLE VI: ASR (%) of ObliInjection with expressive and
concise shadow target instructions.

LLM Expressive Concise

Llama-3-8B 99.4 97.0
Llama-3.1-8B 98.0 86.1
Mistral-7B 99.2 83.3
Qwen-2.5-7B 99.8 90.7
Falcon3-7B 98.2 79.8
Llama4-17B 99.8 95.0
Qwen3-4B 98.8 93.8

fully unconstrained form. The reduced performance of x =
xi
s||z||pe||z′ can be attributed to the fact that the prepended

shadow segment xi
s is unrelated to the injected task and limits

the optimization space available to adapt x.
Although the unconstrained form theoretically has a larger

search space–making it possible to contain the optimal struc-
tured solution–the discrete nature of the optimization makes
this problem difficult to solve effectively in practice. These
results suggest that the structured form x = z||pe||z′ makes
it more efficient to discover effective contaminated segments
that mislead LLMs into completing the injected task.

Impact of the shadow target instruction sts: Recall that
ObliInjection generates shadow target instructions containing
detailed textual descriptions to enhance expressiveness. We
also explore an alternative design that produces more concise
shadow target instructions. Table VI shows the ASR of ObliIn-
jection using expressive versus concise shadow target instruc-
tions across various LLMs on the Amazon Reviews dataset,
where the expressive and concise instructions have 55 and 27
tokens on average, respectively. The results demonstrate that
incorporating detailed, expressive shadow target instructions
improves the effectiveness of ObliInjection.

Impact of the hyperparameters of ObliInjection: Figure 4
shows the impact of the number of target tasks attacked

simultaneously, buffer size dbuf, and the number of shadow
sources ns on ObliInjection for Falcon3-7B and the Ama-
zon Reviews dataset. We observe that overall, ObliInjection
becomes slightly less effective as the number of target tasks
increases, since it becomes more challenging to optimize a
single contaminated segment that performs equally well across
many target tasks. The effectiveness of ObliInjection improves
as the buffer size increases, because more segment candidates
are considered in each iteration. Moreover, ObliInjection is
relatively insensitive to the number of shadow sources as long
as it is sufficiently large, e.g., greater than 10.

Additional experiments: Additional experimental results
on alternative injected tasks and other hyperparameters of
ObliInjection can be found in Section A of the Appendix.

VI. DEFENSES

A. Prevention-based Defenses

Experimental setup: We evaluate the following prevention-
based defenses.

StruQ [23] and SecAlign [24]. Both approaches fine-tune
LLMs to improve robustness against prompt injection attacks.
We evaluate the publicly available fine-tuned models provided
by these defenses, including LLama-3-8B-StruQ and LLama-
3-8B-SecAlign. Since these defenses rely on delimiters to
clearly separate the instruction, data, and response, we also
incorporate delimiters to isolate our contaminated segment.
However, their secure front-end filters out these delimiter
tokens when they appear in the data, preventing us from using
them directly. To address this, following Jia et al. [31], we
identify alternative tokens with embeddings most similar to
the original delimiters and use them to approximate the same
separation effect. Other than this delimiter substitution, we use
the default attack settings described in Section V-A.

Moreover, we further adapt Llama-3-8B-SecAlign using
our attack. Specifically, we construct a preference dataset
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TABLE VII: (a) ASR (%) of ObliInjection against prevention-
based defenses. (b) FPR (%) and FNR (%) of PPL and
DataSentinel at classifying contaminated and clean segments.

(a)

Prevention ASR

Llama-3-8B-StruQ 77.9
Llama-3-8B-SecAlign 63.8
Llama-3-8B-SecAlign-Adapt 53.3
Leave-one-segment-out 99.3
Segment Delimiters 96.3

(b)

Detector FPR FNR

PPL 3.6 92.6
DataSentinel 0.2 79.6

with 5,000 samples: half are clean examples sampled from
Alpaca [41], and the other half are injected examples. Each
injected sample contains: (1) a contaminated input consisting
of 10 randomly ordered Amazon Review segments (the maxi-
mum that fits within the recommended training context length),
plus one contaminated segment inserted at a random position;
(2) a desired response, defined as the model’s output when
the contaminated segment is removed; and (3) an undesired
response, representing the injected output. We also vary the
injected tasks to prevent the model from simply learning to
ignore one fixed undesired response. Following [24], we fine-
tune Llama-3-8B-SecAlign with DPO for 3 epochs, yielding a
model we denote as Llama-3-8B-SecAlign-Adapt. After fine-
tuning, we apply ObliInjection to Llama-3-8B-SecAlign-Adapt
to generate new contaminated segments.

Leave-one-segment-out and segment delimiters. Given a
data sample consisting of n segments, the leave-one-segment-
out defense removes one segment at random and generates
a response using the remaining segments. This procedure
is repeated multiple times (50 in our experiments), and the
resulting responses are aggregated into a final decision. If the
majority of these responses are deemed semantically similar
to the attacker’s injected response, we consider the attack
successful. The segment delimiters defense prepends explicit
markers–such as “Review i says:”–to each segment to clearly
indicate that each segment corresponds to a single review.

Experimental results: Table VIIa reports the ASR of Obli-
Injection against prevention-based defenses on the Amazon
Reviews dataset. The results for leave-one-segment-out and
segment delimiters are averaged across the seven LLMs (the
per-model breakdown is provided in Table VIII in the Ap-
pendix). Compared with the baseline results in Table II, both
StruQ and SecAlign reduce the ASR of ObliInjection, but
the reductions are limited. For example, ObliInjection still
achieves an ASR of 63.8% against LLaMA-3-8B defended by
SecAlign. These results indicate that although these defenses
provide some protection, they remain insufficient to defend
against ObliInjection. Adapting SecAlign using attack samples
generated by ObliInjection provides only marginal benefit:
the ASR decreases to 53.3% when the attack samples used
for fine-tuning and evaluation are generated under the same
setting. However, when the attack uses a slightly different
configuration–for example, optimizing the entire contaminated

segment x rather than assuming the structured form x =
xi
s||z||pe||z′–the ASR rises to 81.0%. This behavior aligns

with a common limitation of adversarial-training–based adap-
tive defenses [42], which often fail to generalize beyond the
specific attack settings seen during training. Moreover, leave-
one-segment-out and segment delimiters fail almost entirely
against ObliInjection, as reflected by their high ASRs.

B. Detection-based Defenses

Experimental setup: We evaluate two detection-based de-
fenses: Perplexity-based detection (PPL) [25] and DataSen-
tinel [26]. Since the service provider has access to individual
segments, we apply each defense to classify segments as either
clean or contaminated. Specifically, PPL flags a segment as
contaminated if its perplexity exceeds a predefined threshold.
Following prior work [4], we set this threshold such that
fewer than 1% of clean validation segments are incorrectly
flagged. In our experiments, we compute perplexity using
LLaMA-3-8B and use 10,000 Amazon reviews–distinct from
the evaluation segments in the Amazon Reviews dataset–as
the clean validation segments. DataSentinel, on the other hand,
classifies a segment as contaminated if the detection LLM’s
response fails to include the secret key when provided with
both a detection instruction containing the key and the segment
as input. For this defense, we use the detection LLM fine-tuned
from Mistral-7B, as publicly released by the authors.

We adopt the adaptive attacker threat model, where the
attacker is aware of the deployed defense and has access to the
corresponding detection API, consistent with the threat model
of these defenses. Under this setting, we adapt ObliInjection
to bypass the defenses. Specifically, during optimization, we
constrain the contaminated segment to the structured form
z||pe||z′. When updating the buffer in Algorithm 5, we first
filter out segment candidates flagged as contaminated by
DataSentinel before proceeding with the remaining steps. In
addition, to lower the perplexity of the final contaminated
segment and evade PPL, we prepend a randomly selected
shadow segment after optimization.

We generate 50 contaminated segments on the Amazon
Reviews dataset across five LLMs. This dataset also includes
10,000 clean segments. We report the False Positive Rate
(FPR)–the fraction of clean segments incorrectly flagged as
contaminated–and the False Negative Rate (FNR)–the fraction
of contaminated segments mistakenly classified as clean.

Experimental results: Table VIIb reports the FPR and FNR
of both PPL and DataSentinel. Both methods exhibit high
FNRs, indicating that they fail to reliably detect contaminated
segments crafted by ObliInjection. We stress that the contam-
inated segments still achieve high ASRs: 85.5% on LLaMA-
3-8B, 100% on LLaMA-3.1-8B, 97.6% on Mistral-7B, 86.2%
on Qwen-2.5-7B, and 90.8% on Falcon3-7B. These results
demonstrate that ObliInjection can effectively evade existing
detection-based defenses while preserving its attack success.
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VII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we demonstrate that by leveraging the order-
oblivious loss and the orderGCG algorithm, an attacker can
strategically contaminate just a single segment to mislead an
LLM into completing an attacker-chosen task, regardless of
how the clean and contaminated segments are ordered to form
the target data. Moreover, the resulting contaminated segments
exhibit good transferability across different target tasks and
LLMs. Existing defenses, including both prevention-based
and detection-based approaches, are insufficient to mitigate
our attack. Designing more effective defenses remains an
important and promising direction for future research.

When evaluating ASR, we check for the presence of key-
words such as “useless,” “fake,” or “unknown.” We acknowl-
edge that this simplified metric may introduce inaccuracies.
For example, an LLM might produce a response like: “Some
people might think the product is useless, but others love
it.” Although the semantic meaning contradicts the attack
objective, our metric would still count this as a success.
However, after manually reviewing the results we report, we
found no cases in which a keyword appeared with an oppo-
site meaning. For instance, in the Amazon Reviews dataset,
among all responses containing the keyword “useless,” 93.1%
exactly match the attacker’s intended output – “The product
is useless!” – and the remaining 6.9% differ only in trivial
formatting, such as “The product is. . . USELESS!”.
Acknowledgements: We thank the anonymous reviewers for
their constructive comments. This work was supported by NSF
under grant no. 2450935, 2131859, 2125977, 2112562, and
1937787.

VIII. ETHICS CONSIDERATIONS

This work explores prompt injection attacks on multi-
source LLM applications. All experiments were conducted in
controlled settings, without posing any risk to real users or
systems. The contaminated segments generated in our work
have not been disclosed on any public platform nor shared
outside the author team. Experimental results and code were
processed and stored locally to avoid any disruption to real-
world systems. To support transparency while minimizing
misuse, we will release code and data under restricted access.
Interested parties must request permission and disclose their
intended use before access is granted. We have responsibly no-
tified relevant companies whose LLMs or applications are po-
tentially vulnerable to ObliInjection, including OpenAI, Meta
AI, Mistral AI, Alibaba Cloud, TII, Amazon, and Google, and
we are currently awaiting their responses. We recognize the
potential for misuse of prompt injection techniques and have
taken steps to mitigate this risk through access restrictions
and responsible disclosure. At the same time, we believe
that sharing our experimental findings with the academic and
development communities is ultimately beneficial for raising
awareness of multi-source prompt injection vulnerabilities and
promoting the development of effective defenses. By respon-
sibly publishing our work, we hope to contribute to a more
secure LLM ecosystem.
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APPENDIX

A. Additional Experiments

Other injected responses: To evaluate the effectiveness
of ObliInjection for different injected responses, we conduct

experiments on the Amazon Reviews dataset using three
variants of re: “The product is useless!”, “The product is
amazing!”, and “The product is average.” These reflect differ-
ent attacker intents, such as demoting or promoting a product,
while the injected task is still review summarization. During
optimization, we keep the injected prompt pe consistent with
the corresponding response when constructing the contami-
nated segment. We consider the model output f(st||xc) to
be semantically equivalent to re if it contains the keyword
“useless”, “amazing”, or “average”, respectively. As shown in
Table XII, ObliInjection achieves high ASR across all three
cases–99.0% for “The product is useless!”, 97.7% for “The
product is amazing!”, and 98.8% for “The product is average.”
This demonstrates that ObliInjection can be effectively tailored
to different attacker goals with various injected responses.

Algorithm 3 gen token cands – Step II

Require: LLM f , shadow target instruction sts, injected re-
sponse re, segment x = [x1, · · · , xk], and shadow seg-
ment subset X ′

s

Ensure: Token-level candidates {Tj}kj=1

1: l← order oblivious loss(f,X ′
s, x, s

t
s, r

e)
2: for j = 1 to k do
3: // Find candidates to replace xj

4: for x′
j ∈ V do

5: // Approximate the loss if replacing xj with x′
j

6: l(x′
j) ≈ l(xj) +∇xj l(xj)

⊤(x′
j − xj)

7: end for
8: Tj ← the dtok tokens with the lowest loss l(x′

j)
9: end for

10: return {Tj}kj=1

Algorithm 4 gen segment cands – Step III

Require: Token-level candidates {Tj}kj=1 and segment x =
[x1, x2, · · · , xk]

Ensure: Segment-level candidates X ′
new

1: X ′
new ← ∅

2: for i = 1 to dseg do
3: J ← random drep positions from {1, 2, · · · , k}
4: Construct a segment-level candidate xnew by:

xnew
j =

{
x′
j ∼ Tj if j ∈ J

xj otherwise
for j = 1, 2, · · · , k

5: X ′
new ← X ′

new ∪ {xnew}
6: end for
7: return X ′

new
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TABLE IX: Our prompt used to query the auxiliary LLM to generate a shadow target instruction for each dataset.

Dataset Prompt

Amazon Reviews You are a prompt designer. Your task is to craft a clear and effective prompt for LLM to summarize Amazon product
reviews. The summary should highlight key strengths, weaknesses, and the overall product highlights. Make sure the
prompt is suitable for use in an automated pipeline and encourages informative, customer-friendly summaries.

Multi-News You are a prompt designer. Your task is to write a clear and effective prompt for LLM to summarize news articles. The
summary should capture the main events, key facts, and overall context in a concise and neutral tone. Ensure the prompt
is suitable for automated summarization and encourages factual, well-structured output.

HotpotQA You are a prompt designer. Your task is to write a clear and effective prompt for LLM to answer a question based on
multiple source documents or materials. The prompt should encourage the model to reason across the materials, synthesize
relevant information, and provide a coherent, well-supported answer. Ensure the prompt is suitable for multi-hop question
answering tasks.

TABLE X: Prompt used to query the auxiliary LLM to generate shadow segments for the Amazon Reviews dataset.

Dataset Prompt

Amazon Reviews You are asked to generate 100 unique customer reviews based on the product details provided below. These reviews should
simulate real user experiences with a variety of tones and formats.
Product Metadata:

• Category: {Category from metadata Mt}
• Name: {Product name from metadata Mt}
• Features: {Product features from metadata Mt}
• Description: {Product description from metadata Mt}
• Price: {Product price from metadata Mt}

Each review should:
• Address aspects such as quality, performance, usability, durability, and value
• Align with the rating in tone and sentiment
• Vary in style—ranging from concise comments and detailed narratives to pros/cons lists and casual formats with

typos or emojis
Output Format:
{ “Title”: “[Review title]”, “Text”:“[Review text]”, “Rating”: [Rating from 1 to 5] }
Example:
{ “Title”: “Five Stars”, “Text”: “On time. Works great!”, “Rating”: 5.0 }
Now generate 100 reviews that follow the above guidelines and metadata.

Other injected tasks: The experiments above assume that the
injected task is text summarization, while varying the injected
responses. To evaluate the effectiveness of ObliInjection across
a broader range of injected tasks, we conduct experiments on
five types of natural language tasks, following Liu et al. [4]:
duplicate sentence detection using the MRPC [43] dataset, hate
content detection using HSOL [44], natural language inference
using RTE [45], sentiment analysis using SST2 [46], and spam
detection using the SMS Spam [47] dataset. For each type
of task, we randomly sample one injected task (se, xe, re) to
construct a contaminated segment in the form z||pe||z′, where

pe = se||xe. All other settings follow the default configuration
described in Section V-A. During evaluation, we consider
the attack successful if the model’s output f(st||xc) exactly
matches re, where xc is the contaminated data formed by
randomly permuting the clean and contaminated segments.

As shown in Table XIII, ObliInjection demonstrates strong
attack effectiveness across all five injected tasks and five
LLMs, achieving average ASRs of 97.7% on duplicate sen-
tence detection, 97.3% on hate detection, 95.4% on natural
language inference, 97.4% on sentiment analysis, and 94.2%
on spam detection. Each LLM achieves an ASR above 91%,
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Fig. 5: Impact of (a) number of token candidates per position dtok, (b) number of segment candidates dseg, and (c) number of
positions drep to replace in a segment on the ASR of ObliInjection.
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TABLE XI: Prompts used to query the auxiliary LLM to generate shadow segments for Multi-News and HotpotQA datasets.

Dataset Prompt

Multi-News You are asked to write 10 synthetic news articles based on the event summary provided below. Each article should reflect
the style and voice of a different media outlet.
News Metadata:

• Event Summary: {Key facts from metadata Mt}
Each article should:

• Present a distinct journalistic voice (e.g., objective, opinionated, local, informal)
• Vary in structure, tone, and length (between 100–500 words)
• Rephrase and elaborate on the provided facts without copying them verbatim
• Read fluently and realistically, as if written by a professional journalist

Output Format:
{ “Title”: “[Headline (1 to 20 words)]”, “Text”: “[News article (100 to 500 words)]” }
Example:
{ “Title”: “Community Rallies After Storm Damage”, “Text”: “Local residents and volunteers are working together...” }
Now generate 10 news articles that follow the above requirements and metadata.

HotpotQA You are asked to generate a question and a list of supporting facts based on the provided question type. Write 1 natural-
sounding question followed by 10 supporting facts, each written as if sourced from a credible publication.
Question Metadata:

• Question Type: {Type from metadata Mt}
Each supporting fact should:

• Be relevant, informative, and topically related to the question
• Mix factual and plausible (but fictional) content
• Appear well-grounded and realistic in style and phrasing

Output Format:
{ “Question”: “[The question]”, “Title”: “[Informative title for the fact]”, “Text”: “[100 to 300 word paragraph]” }
Example:
{ “Question”: “Are Jean Genet and Mark Sandrich both from France?”, “Title”: “Mark Sandrich: Hollywood Director”,
“Text”: “Mark Sandrich was a prominent American film director...” }
Now generate the question and 10 supporting facts according to the above instructions.

TABLE XII: ASR (%) of ObliInjection for different injected responses across LLMs.

Injected response re Llama-3-8B Llama-3.1-8B Mistral-7B Qwen-2.5-7B Falcon3-7B Llama4-17B Qwen3-4B Average

The product is useless! 99.4 98.0 99.2 99.8 98.2 99.8 98.8 99.0
The product is amazing! 94.0 99.4 94.0 100.0 99.4 99.6 97.6 97.7
The product is average. 100.0 100.0 95.4 98.2 98.6 100.0 99.4 98.8

TABLE XIII: ASR (%) of ObliInjection for different injected tasks across LLMs.

Injected task Llama-3-8B Llama-3.1-8B Mistral-7B Qwen-2.5-7B Falcon3-7B Llama4-17B Qwen3-4B Average

Duplicate Sentence Detection 94.6 96.8 96.4 99.2 97.8 100.0 98.8 97.7
Hate Detection 100.0 99.0 91.0 95.8 99.8 96.0 99.5 97.3
Natural Language Inference 97.0 91.4 98.0 94.0 96.8 91.0 99.6 95.4
Sentiment Analysis 98.4 96.6 92.0 100.0 98.0 100.0 97.0 97.4
Spam Detection 91.2 92.8 93.8 91.6 99.0 100.0 91.2 94.2

highlighting the effectiveness of ObliInjection across both
diverse tasks and model architectures.

Other hyperparameters of ObliInjection: Figure 5 shows
how the ASR on Falcon3-7B varies with three hyperparam-
eters of ObliInjection: the number of token candidates per
position dtok in Algorithm 3, the number of segment candidates
dseg in Algorithm 4, and the number of positions drep to
replace in a segment in Algorithm 4. For dtok, too small or
too large values lead to lower ASR. A too small dtok limits
new token candidates to those with low estimated loss, which
may be inaccurate due to approximation errors in the Taylor
expansion. Conversely, a too large dtok introduces high-loss
candidates that can mislead optimization. For dseg, increasing
its value generally improves ASR, as more segment candidates

increases the likelihood of identifying one that yields a higher
ASR. Finally, ASR drops when drep is too large (e.g., exceeds
2), likely because the new segment diverges too much from
the original, reducing the attack’s effectiveness.

17



TABLE XIV: Important notations.
Notation Description

f LLM
Superscript t Information about target task
Superscript e Information about injected task
st, xt, or pt Target instruction, data, or prompt
se, xe, or pe Injected instruction, data, or prompt

xc Contaminated data
pc = st||xc Contaminated target prompt

n Number of data sources
Subscript s Shadow information

sts Shadow target instruction
ns Shadow number of data sources
xt
i Segment from ith source
x Contaminated segment
xj jth token of x
x
(i)
s The ith shadow segment for the target task
Xs Set of shadow segments for the target task
diter Number of iterations

dper
Number of permutations to approximate

the order-oblivious cross-entropy loss
dtok Number of candidates per token
dseg Number of segment candidates
dbuf Buffer size
drep Number of positions to replace in a segment

Algorithm 5 update buffer – Step IV

Require: LLM f , buffer B, buffer size dbuf, shadow target
instruction sts, injected response re, segment-level candi-
dates Xnew, and shadow segment subset X ′

s

Ensure: Updated buffer B
1: // Update losses of existing segments in the buffer
2: for (x, lx, dx) ∈ B do
3: l← order oblivious loss(f,X ′

s, x, s
t
s, r

e)
4: lx ← dx

dx+1 · lx + 1
dx+1 · l

5: dx ← dx + 1
6: end for
7: // Update the buffer with better candidates (if any)
8: for x ∈ Xnew do
9: lx ← order oblivious loss(f,X ′

s, x, s
t
s, r

e)
10: if |B| < dbuf then
11: B ← B ∪ {(x, lx, 1)}
12: else
13: // Worst segment in the buffer
14: (xmax, lxmax , dxmax)← argmax(x′,lx′ ,dx′ )∈B lx′

15: if lx < lxmax then
16: // Replace the worst segment in the buffer
17: B ← B \ {(xmax, lxmax , dxmax)}
18: B ← B ∪ {(x, lx, 1)}
19: end if
20: end if
21: end for
22: return B
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