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Abstract—The rapid augmentation of Internet of Things (IoT)
devices that are resource-constrained in nature has significantly
expanded the attack surface, exposed critical vulnerabilities in
the network. As a result, traditional Intrusion Detection Systems
(IDS), which rely on static, signature-based approaches, have
become increasingly obsolete. Modern adversaries now employ
sophisticated, automated, and often novel (zero-day) attacks
that can easily bypass such conventional defenses. Moreover,
the existing IDS models with machine learning often fail in
real-world scenarios to handle challenges like concept drift
and an inability to generalize to unseen threats. To address
these gaps, we introduce PANDORA (Probabilistic Adversarial
Network Defense Over Resource-constrained Architectures), a
novel, end-to-end framework for detecting zero-day attacks on
edge devices. PANDORA makes three key contributions: 1)
It learns uncertainty-aware probabilistic embeddings to create
robust representations of network traffic; 2) It introduces a novel
Probabilistic Manifold Structuring and Distance (PMSD) Loss
function that enables effective zero-shot generalization; and 3)
It utilizes an efficient Mamba-Mixture of Experts (MoE) archi-
tecture for on-device deployment. To validate our approach, we
also introduce the TTDFIoTIDS2025 dataset, a new, high-fidelity
benchmark featuring complex, programmatically generated at-
tacks. Our extensive evaluations demonstrate that PANDORA
significantly outperforms state-of-the-art models, achieving an
F1-score of 0.971 with just 10-shot adaptation on CICIDS2017.
Critically, it achieves up to 99% accuracy in zero-shot detection
under domain shift and, when deployed on a Raspberry Pi,
maintains a low memory footprint of 24 MB and a throughput of
up to 4.26 flows/sec, proving its practical viability for real-time
edge security.

I. INTRODUCTION

The continual drive for hyper connectivity, data, and au-
tomation used in billions of resource-constrained Internet of
Things (IoT) devices has fundamentally reshaped the secu-
rity landscape, powering everything from smart cities [1]
and industrial automation (Industry 4.O, and Industry 5.O)
[2] to connected healthcare [3]. This hyper-connectivity has
dissolved traditional network perimeters, giving rise to a vast

and heterogeneous attack surface composed of devices that
are difficult to secure [4]–[7]. Compounding the challenge,
these devices often rely on lightweight protocols like Mes-
sage Queuing Telemetry Transport (MQTT) and Constrained
Application Protocol (CoAP), rendering conventional endpoint
protection ineffective [8]. Consequently, attackers now exploit
this surface with sophisticated, automated attacks designed
to evade static defenses, often employing novel or subtle
variations of known threats such as Distributed Denial of
Services (DDoS), amplification attacks and etc [9], [10].

To counter such threats, Network Intrusion Detection Sys-
tems (NIDS) have served as a foundational line of defense.
This approach is based on AI-driven anomaly detection [11],
[12]. By learning a model of normal behavior, anomaly-based
systems can identify previously unseen threats as deviations
from an established baseline. Therefore, an effective, modern
NIDS must combine the precision of signature-based clas-
sification for known threats with the adaptive intelligence
required to detect entirely unknown attacks.

Recent modern NIDS methodologies have increasingly
adopted Machine Learning (ML) and Deep Learning (DL)
algorithms and architectures [13]–[18]. Although existing
modern NIDS models demonstrate high efficacy on static
datasets, their performance often degrades significantly in
dynamic, real-world network environments - a phenomenon
known as model decay. A primary driver of this model
decay is the inherent heterogeneity within attack categories, a
challenge that can be formalized as the problem of intra-class
fragmentation. A high-level threat category, Ck, is not always
a monolithic entity with a single modal data distribution.
Instead, its probability distribution, P (x|y = Ck), is more
accurately described as a mixture of N distinct sub-class
distributions:

P (x|y = Ck) =

N∑
i=1

wi · Pi(x|y = Ck,i) (1)

Where Ck,i represents the i-th sub-class of Ck, and wi are
the mixture weights. Each sub-class Ck,i possesses distinct
statistical characteristics, such as a distinct mean µk,i and
covariance Σk,i, dominant in separate feature dimensions.
Consequently, a model trained primarily on samples from one
mode of the distribution (Ck,i) will fail to generalize when
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faced with a novel variant from a different mode (Ck,j where
j ̸= i) that manipulates an alternative set of features.

Beyond the challenge of this internal diversity faced by
an NIDS model, additional challenges are posed by external
temporal and environmental pressures. The temporal pressure
of concept drift describes the gradual evolution of benign
and malicious traffic, slowly degrading a model’s accuracy
as feature relevance shifts [19]–[21]. A more severe temporal
challenge is concept shift, an abrupt change defined by the
emergence of a new class of threat. It very definition of a zero-
day attack is a statically trained model that has no mechanism
to recognize in the present NIDS scenarios [22]. Finally, the
threat model environmental pressure of domain shift describes
a model’s inability to generalize when deployed in a new
NIDS-related environment, such as a transition from an en-
terprise testbed to a live IoT network with different protocols
and baseline feature distributions [23], [24]. Consequently, an
effective IDS cannot be a static artifact, but it must be an
adaptive system capable of handling the future multifaceted
forms of model decay.

The most acute of these challenges is the concept shift
accompanying the abrupt emergence of a zero-day attack.
Conventional supervised models are not better for this task
because, by design, they learn to map inputs to a fixed,
predefined set of output classes when presented with a zero-
day attack; such a model lacks the category unknown. It is
forced to misclassify the new threat as one of the known
classes it was trained on, leading to a critical security failure.
To overcome this, the supervised learning approach for NIDS
moves towards Zero-Shot Learning (ZSL) and its complete
framework, a paradigm designed to classify and generalize for
unseen classes. Instead of learning rigid decision boundaries,
a ZSL system learns a rich embedding space where similarity
corresponds to proximity, enabling it to generalize to unseen
classes of threats [25]–[28].

We contend that the Manifold Hypothesis governs the
success of any such ZSL system for NIDS; namely, that
an effective model must learn to project different classes of
network traffic into distinct, separable clusters, or manifolds,
within this embedding space [29] [30]. However, current ZSL
approaches for NIDS are fundamentally limited in their ability
to structure this manifold effectively. They typically rely on
two simplifying assumptions that create a brittle embedding
space first they use deterministic embeddings, which represent
a complex and variable network flow as a single point,
failing to capture its inherent uncertainty; and second they
employ fixed distance metrics like Euclidean distance, cosine
similarity etc, which are sensitive to volumetric changes but
often fail to distinguish the subtle, pattern-based signatures of
stealthy attacks. This creates a clear research gap for a more
robust learning framework to structure an uncertainty-aware,
probabilistic manifold.

To address this research gap, we present PANDORA
(Probabilistic Adversarial Network Defense Over Resource-
constrained Architectures). This novel, end-to-end framework
achieves proactive anomaly detection through three key ar-

chitectural innovations: 1) uncertainty-aware probabilistic em-
beddings that model the variance of each network flow;
2) a new Probabilistic Manifold Structuring and Distance
(PMSD) Loss; and 3) an efficient Mamba-Mixture of Experts
(MoE) architecture that makes the fine-grained analysis needed
to distinguish between subtle and complex attack variations
computationally feasible on resource-constrained devices.

A persistent practicality gap challenges NIDS research.
Models are often evaluated on outdated and homogeneous
datasets where threat classes are artificially separable. This
allows a model to learn a simple, biased decision boundary
that performs well in testing but fails to generalize to real-
world complexity. Consequently, high accuracy scores are
meaningless if the model is also too computationally expensive
for the resource-constrained hardware where it is needed most
[31]. To bridge this gap, we developed a modern dataset
designed to exhibit complex intra-class fragmentation across
heterogeneous IoT scenarios. We leverage this dataset within
our physical IoT testbed to validate the practical, on-device
efficacy of NIDS architectures.

• Adversarial IoT Dataset: We release a high-fidelity IoT
intrusion dataset with subclass-level attacks and hetero-
geneous traffic.

• PANDORA Framework: We propose an edge-efficient
architecture integrating uncertainty-aware embeddings,
a new PMSD loss for zero-shot generalization, and a
lightweight Mamba-MoE backbone.

• Adaptation and Intelligence: We enable zero-shot detec-
tion and few-shot prototype adaptation, offering contex-
tual threat insights beyond binary alerts.

• Real-World Validation: We demonstrate end-to-end de-
ployment on a resource-constrained IoT testbed, showing
field-ready performance.

• Code and Dataset Availability: Code is available at https:
//doi.org/10.5281/zenodo.17881774.

The remainder of the paper is organized as follows: Sec-
tion II introduces background concepts, Section III reviews
related work, Section IV details the PANDORA architecture,
Section V describes the TTDFIOTIDS2025 dataset, Section
VI presents the evaluation, Section VII provides discussion,
and Section VIII concludes the paper.

II. BACKGROUND

Our methodology is built upon synthesizing three advanced
concepts representing data not as points but as distributions,
learning a generalizable similarity metric, and using highly
efficient neural architectures for feature encoding.

A. Probabilistic Embeddings and Manifolds

Traditional neural network encoders and layers map high-
dimensional inputs like network flows and attack threat vectors
to a single, deterministic vector in a latent space for clas-
sification, which inherently assumes that each input can be
represented with perfect certainty [32]–[34]. This assumption
is a poor fit for network traffic because flows belonging to the
same class can exhibit significant statistical differences due to
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variations in protocol implementation, attack tools, or network
conditions.

Probabilistic embeddings address this limitation by repre-
senting each input not as a single point, but as a full probability
distribution. This inherent uncertainty in the data is addressed
and quantified in our work, where an encoder network, with
Wasserstein distance fϕ, maps an input feature vector x to the
parameters of a Gaussian distribution in the latent space Z.
This mapping can be expressed as:

fϕ(x)→ (µ, σ2) (2)

Here, the mean vector (µ) captures the central characteristics
of the flow, while the variance vector (σ2) explicitly models its
uncertainty or ambiguity. This provides a richer, more robust
representation. The geometric space these distributions inhabit
is known as a probabilistic manifold, and learning to structure
this manifold is a core objective of our framework.

B. Meta Learning for Zero Shot Classification

Zero-shot classification aims to identify instances of a class
that were never seen during training. This is impossible for
conventional anomaly-based intrusion detection systems to
identify, which learn to map inputs to a fixed set of predefined
labels.

While SOTA unsupervised anomaly detection methods such
as autoencoders and isolation forests [35], [36] can identify
outliers with labelled data. However, they typically provide
binary decisions, namely normal and anomalous, and lack
the semantic capability to distinguish between specific types
of novel attacks. Furthermore, they cannot rapidly adapt to
categorise these new threats once identified.

Meta-learning offers a solution through a paradigm known
as metric-learning [37]–[40]. A prime example is the proto-
typical network framework. Instead of learning to classify,
the model learns a generalizable similarity metric within an
embedding space. Training is conducted in an episodic manner.
Each episode gives the model a small, labeled support set and
an unlabeled query set. It computes a single prototype for each
class in the support set, typically by averaging the embeddings
of its samples. Query samples are then classified by assigning
them the label of the nearest class prototype [41], [42]. This
process teaches the model to create an embedding space where
proximity corresponds to semantic similarity, a concept that
naturally generalizes to new, unseen classes.

C. Interpretable Feature Attention

While neural network and transformer-based model archi-
tectures are robust, they are often criticised for being black
boxes, making it difficult to understand their decision-making
process and developing a lack of trust [43]–[45]. To develop
this trust, feature attention is a mechanism that provides a
direct form of interpretability by not treating all input features
equally. Adding an attention layer learns a set of weights that
correspond to the importance of each feature.

D. Advanced Sequential Architectures Design Rationale

The Transformer architecture, while powerful, suffers from
quadratic computational complexity (O(n2)) concerning se-
quence length, making it inefficient for the high-dimensional
feature sets standard in NIDS. Mamba, a recent State-Space
Model (SSM), overcomes this with linear-time complexity
(O(n)) [46], [47]. It uses an input-dependent selection mech-
anism to efficiently model long-range dependencies, making it
more suitable for analyzing complex feature vectors and under-
standing feature heterogeneity. Mixture of Experts (MoE) is a
technique for scaling a model’s capacity, that is, the number of
parameters, without a proportional increase in computational
cost, which replaces a single, monolithic network layer with
a collection of smaller expert networks and a gating network
that routes each input to a small subset of these [48]. This
fosters expert specialization, allowing different parts of the
model to learn distinct patterns, a feature well-suited to
network attacks’ diverse and multi-modal nature. Furthermore,
based on the modality of the data, gating is performed to
activate only the layers required for decision-making for the
particular modality and packets, thereby drastically reducing
computational efficiency.

III. RELATED WORK

This section reviews the literature across two critical axes
for NIDS development. This establishes the context for our
work and motivates our novel contributions in addressing these
identified gaps.

A. From static classification to zero shot learning

The application of standard Machine Learning (ML) and
Deep Learning (DL) models to IoT-based NIDS has been
extensively studied and demonstrated high accuracy and a
lower false positive rate in classifying attacks within static
datasets [49]–[52]. However, this traditional supervised learn-
ing approach is fundamentally brittle in real-world security
operations. These models are static classifiers, learning fixed
decision boundaries for a predefined set of threats. This creates
two critical failure modes. First, they are inherently incapable
of handling zero-day attacks (concept shift), as they can only
misclassify a zero-day threat as one of the known classes they
were trained on. Second, their performance degrades over time
even on known attacks due to concept drift, as adversaries
continually evolve their techniques and network behaviors
change.

To overcome this static learning problem, a more adaptive
paradigm is required. Recent work, such as MATEEN, has
focused on building online learning frameworks to handle
concept drift in benign traffic, using ensembles of autoen-
coders to adapt to evolving network behaviors [53]. While
effective for adapting to known classes, this approach does
not explicitly address the zero-day problem. For that challenge,
meta-learning is a more suitable approach [54], [55]. Instead of
learning what to classify, a meta-learning model learns a gen-
eralizable similarity metric, enabling it to recognize and adapt
to new classes from a few examples. This makes it a natural fit
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for Zero-Shot Learning (ZSL) and Few-Shot Learning (FSL)
in the data-scarce security domain. Frameworks based on
Model-Agnostic Meta-Learning (MAML) have been proposed
to enable rapid adaptation to new threats [56], [57]. However,
continual adaptation can lead to catastrophic forgetting, where
a model’s performance on previously learned attacks degrades;
recent systems address this by preserving and recalling older
models as needed during online learning [55].

The most similar work is based on prototypical networks,
which explicitly apply metric learning to few-shot intrusion
detection [58]. This approach provides a crucial baseline,
confirming that metric learning is a promising direction for
NIDS. More advanced systems like Helios have evolved
this concept, using Supervised Mixture Prototypical Learning
(SMPL) to learn multiple prototypes per class with hardware-
aware distance metrics for in-network deployment [59]. How-
ever, these methodologies and related meta-learning works
reveal two fundamental limitations that PANDORA is designed
to overcome. First, they rely on deterministic embeddings
and fixed distance metrics, which can be insensitive to the
subtle, pattern-based signatures of stealthy threats. Second,
they operate almost exclusively on flow-level features, Over-
looking critical payload and time-window-based contextual
information that is essential for detecting sophisticated [60].

Our work directly addresses these identified gaps. We move
beyond the deterministic representations used in prior models
by introducing Uncertainty-Aware Probabilistic Embeddings,
which model each flow as a full distribution. Furthermore, we
replace the fixed metric with our novel Probabilistic Manifold
Structuring and Distance (PMSD) Loss. This hybrid objective
uses a more appropriate distributional distance for classifica-
tion and globally structures the embedding manifold, creating
a more robust and generalizable framework for accurate zero-
shot detection.

B. Advanced Architectures for Network Traffic Analysis

The effectiveness of any learning based intrusion detection
system is heavily dependent on the power of its underlying en-
coder architecture to model complex relationships within net-
work traffic features. Early models evolved from simple feed-
forward networks to sequential models like LSTMs, CNNs,
etc [61]. With its self-attention mechanism, the advent of the
transformer architecture marked a significant leap in perfor-
mance, demonstrating the ability to model global relationships
between features for early and accurate intrusion detection [62]
[63]. However, self-attention-based transformers are powerful
but inefficient for high-dimensional intrusion detection tasks.
Recent innovations address this with state space models like
Mamba, which efficiently capture long-range dependencies,
and Mixture-of-Experts (MoE) architectures, which enhance
model capacity with minimal computational cost. However,
these approaches alone struggle with the diverse feature types
in complex network environments. PANDORA introduces a
novel Mamba-MoE integration that combines Mamba’s se-
quential modeling strength with MoE’s specialization. This
synergy enables efficient, high-capacity analysis suitable for

complex traffic on resource-limited devices setting it apart
from earlier, less integrated approaches.

A primary criticism of deep learning NIDS is their black box
nature, a challenge often addressed post-hoc with resource-
intensive explainability models like SHAP and [64] [65]
[66]. In contrast, our architecture addresses this challenge by
design, directly integrating an Interpretable Feature Attention
mechanism at the input layer. This provides a robust and com-
putationally efficient method for feature analysis immediately
after training. While other works, such as R1DIT, have used
attention for malware traffic classification [67], our approach
is distinct. It is a dedicated, interpretable layer that precedes
the powerful Mamba-MoE encoder. This architectural decision
provides us with the opportunity to offer an immediate view
into the model’s first decision-making process by changing
the importance of features dynamically before the complicated
sequential analysis takes place. This potentiality is pivotal
for grasping the general, class-based verdicts and scrutinizing
the features that participate in the differentiation between the
attack sub-classes, which is a very detailed analysis not found
in the SOTA studies.

IV. THE PANDORA FRAMEWORK: SYSTEM DESIGN

This section details the architecture of PANDORA, an end-
to-end framework designed for zero-shot detection and few-
shot adaptation to zero-day attacks in heterogeneous network
environments, making it suitable for resource-constrained de-
vice deployment. Our design is guided by five core principles:
tackling feature heterogeneity and data heterogeneity, ensuring
interpretability and uncertainty-awareness, and maintaining
computational efficiency.

A. PANDORA Architecture Overview

PANDORA’s pipeline begins by processing an incoming
network flow, which is mathematically represented as a D-
dimensional feature vector x ∈ RD. To contend with the
significant feature heterogeneity present in network traffic,
where different attack types manifest across different feature
sets, we partition x into two logical modalities: a Temporal
feature vector xt ∈ RDt and a Volumetric feature vector
xv ∈ RDv , such that D = Dt + Dv as illustrated in Fig. 1,
each vector modality is then fed into a dedicated probabilistic
encoder. An encoder applies an interpretable attention mecha-
nism before processing the data through Mamba-MoE blocks.
The encoders transform each modality into a probabilistic
embedding, parameterized by a mean vector and a variance
vector (µt,σ

2
t ) for the temporal features and (µv,σ

2
v) for

the volumetric features. A Cross-Attention Fusion module
then intelligently merges these representations to produce a
final, fused embedding (µf ,σ

2
f ). This final, uncertainty-aware

representation is subsequently used within our episodic meta-
learning framework, which is optimized by our novel PMSD
Loss function to produce either a classification for a known
threat or an actionable alert for a zero-day attack. Furthermore,
we detail its three core stages: the multi-modal probabilis-
tic encoders that generate uncertainty-aware embeddings, the
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Fig. 1. The PANDORA System Architecture. The diagram illustrates the end-to-end data flow, from the initial partitioning of features into Temporal and
Volumetric modalities, through the parallel Probabilistic Encoders and Cross-Attention Fusion, to the final classification within the episodic meta-learning
framework.

PMSD loss function that structures the embedding space, and
the zero-shot inference framework that provides actionable
intelligence.

B. Multi-Modal Probabilistic Encoders

The core of PANDORA’s representation learning is its
multi-encoder architecture, which transforms the partitioned
feature vectors into rich, uncertainty-aware probabilistic em-
beddings. This process, detailed in Algorithm 1 added in
Appendix 1, consists of four key stages for each modality.
First, an interpretable attention mechanism weighs the input
features. Second, a series of Mamba-MoE blocks encode
the attended features to capture complex patterns efficiently.
Third, a probabilistic head maps the final representation to
a mean and variance. Finally, a cross-attention module fuses
the embeddings from both modalities into a single, unified
representation. In comparison to traditional methods such
as simple concatenation or averaging, cross-attention enables
each modality to selectively attend to the most relevant fea-
tures of the other, resulting in a more discriminative, unified
embedding.

1) Interpretable Feature Attention: Before encoding, each
modality’s feature vector, denoted generally as xm (where
m ∈ {t, v} for temporal and volumetric respectively), is
passed through a feature attention mechanism. This module
enhances interpretability and allows the model to dynamically
focus on the most salient features for a given input. The

layer learns a modality-specific, learnable parameter vector
wm ∈ RDm , where Dm is the modality’s dimensionality.
This vector is transformed into an attention weight vector
αm ∈ RDm via a softmax function:

αm,i =
exp(wm,i)∑Dm

j=1 exp(wm,j)
(3)

This weight vector, representing feature importance, is then
applied to the input features xm using element-wise multi-
plication (Hadamard product ⊙ [68]) to produce an attended
feature vector x′

m:

x′
m = αm ⊙ xm (4)

2) The Mamba-MoE Encoder Block: o efficiently capture
complex dependencies while maintaining a low computational
footprint, we construct our encoders from a series of Mam-
baMoEBlocks. The attended feature vector from the previous
stage, x′

m, serves as the initial input, which is first projected
by an embedding layer to form the initial hidden state, h0.
This state is then processed sequentially through the stack of
Mamba-MoE blocks.

Within each block, the input representation hi is trans-
formed by the Mamba and MoE layers to produce the block’s
final output, hi+1. Specifically, the MoE layer processes an
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intermediate representation to produce its output, y, as a
weighted sum of expert outputs:

y =

N∑
i=1

G(h)i · Ei(h) (5)

This intermediate output y is then combined with the output
from the Mamba layer and a residual connection to the original
input hi to form the block’s final output, hi+1. This complete
representation is then passed to the next block. The final
hidden state from the last block in the stack is denoted
as hm, which is the final, refined feature representation for
the modality. This representation is subsequently passed to
the Probabilistic Embedding Head. This architecture enables
PANDORA to learn a large number of specialized features
without incurring a proportional increase in computational
cost, as only the relevant experts are activated for any given
input.

3) Probabilistic Embedding Head: The final step of the
encoding process is to convert the deterministic feature repre-
sentation into a probability distribution. After passing through
the stack of Mamba-MoE blocks, the final hidden state, hm,
is fed into two separate linear heads, fcµ and fclog σ2 .
These heads project hm into the parameters of a Gaussian
distribution: a mean vector µm, which represents the most
likely location of the embedding, and a log-variance vector
log(σ2

m), which represents its uncertainty. Together, these vec-
tors parameterize the final distribution, from which a specific
embedding zm can be sampled: zm ∼ N (µm, diag(σ2

m)).For
subsequent loss calculations, the framework utilizes the full
distribution parameters (µm and σ2

m) directly, rather than a
single stochastic sample zm, to ensure training stability and a
more robust similarity metric.

4) Cross-Attention Fusion: To create a single, unified rep-
resentation, a CrossAttentionFusion module intelli-
gently merges the probabilistic embeddings from the temporal
(µt, logσ

2,t) and volumetric (µv, logσ
2,v) encoders. The

fusion process first combines the mean vectors. We employ
a bidirectional attention mechanism, which we denote as
A(Q,K), where Q is a query vector and K is a key vector.
Each modality’s mean vector acts as a query to attend to
the other. The resulting context vectors are then concatenated
(denoted by ∥) and passed through a Feed-Forward Network
(FFN) to produce the final, fused mean vector µf :

µf = FFN(A(µt,µv) ∥ A(µv,µt)) (6)

Assuming the uncertainties of the two modalities are condi-
tionally independent, the final fused variance is their sum.
We implement this aggregation in log-space for numerical
stability:

logσ2,f = log(exp(logσ2,t) + exp(logσ2,v)) (7)

C. Adaptive Metric Learning with PMSD Loss

PANDORA’s ability to generalize to zero-day attacks is
driven by its meta-learning framework, which uses zero-shot
detection optimized by a novel loss function. Algorithm 1

added in Appendix A-B details the complete episodic training
process.

1) Episodic Training Framework: We employ a prototyp-
ical network framework for training based on Mamba-MoE.
In each training episode, the model is presented with a small,
labeled support set S = {(xs

i , y
s
i )}

N×K
i=1 and an unlabeled

query set Q = {(xq
j , y

q
j )}

N×Q
j=1 . The model learns by creating

a prototype ck for each class k from the support set and
then attempting to classify the query samples based on their
similarity distance to these prototypes using the PMSD loss.

2) The PMSD Loss Function: We introduce the Probabilis-
tic Manifold Structuring and Distance (PMSD) Loss, a hybrid
objective designed to create a robust and well-structured
embedding space, identify distance-based clusters effectively,
and make adaptive boundary decisions. It is formulated as a
weighted sum of two components. The total loss LPMSD is
the sum of the Wasserstein distance loss LWass and the Triplet
margin loss LTriplet, weighted by a hyperparameter λ. How-
ever, fixed weights can be highly susceptible to manipulation
because of their sensitivity.

LPMSD = LWass + λ · LTriplet (8)

To eliminate the sensitivity associated with manually tuning
the hyperparameter λ, we have several approaches, such as
GradNorm [69] and DWA [70]. Furthermore, constraint-based
optimisation methods, such as Augmented Lagrangian [71],
effectively enforce hard boundaries for adversarial evasion,
and we adopted and employed it in Homoscedastic Un-
certainty [72]. This aligns with PANDORA’s probabilistic
nature, allowing the model to dynamically balance manifold
structuring and classification based on task-inherent noise. By
modelling inherent noise variance (σ2), it acts as a learnable
regularizer that automatically scales task weights based on
precision, effectively balancing objectives without the over-
head of gradient-based methods and no rigid boundaries. We
formulate the Probabilistic Manifold Structuring and Distance
(PMSD) Loss using a multi-task learning approach based on
homoscedastic uncertainty. Rather than giving a fixed weight,
we consider the loss balancing to be the process of maximizing
the Gaussian likelihood of the model’s uncertainty. We add
noise parameters that can be adjusted, σWass and σTriplet,
that are linked to the Wasserstein classification loss and the
Triplet structuring loss, respectively. The goal is restructured in
such a way that the different losses are weighted automatically
during backpropagation:

LPMSD =
1

2σ2
Wass

LWass +
1

2σ2
Triplet

LTriplet

+ log(σWass) + log(σTriplet) (9)

In this case, the first couple of terms penalize the model
error it gives out in accordance with the variance (precision)
while the logarithmic parts serve to limit the variance (σ2)
to a non-infinite value which is more or less like negative
growth or regularization. During the training, if the Triplet
loss at first is high (showing a great difficulty in structuring

6



the manifold), then the model will pick a higher σTriplet to
reduce its gradient effect. As the manifold gets stable, σTriplet

is lower, and the model is now ready for the coarse-fine
classification through LWass with the help of a sharper σ.
This way, it is automatically and optimally accomplished that
the global manifold structure is not only maintained but even
enhanced with local classification accuracy.

a) Distance Component (LWass): This component is the
primary classification loss, computed over the query set. It
is based on the negative log-probability of a query sample
xj belonging to its true class yj . The probability is derived
from a softmax function applied over the negative Wasserstein
distances between the query sample’s embedding, fϕ(xj), and
each of the N class prototypes, ck.

LWass = − log
exp(−d(fϕ(xj), cyj

))∑N
k=1 exp(−d(fϕ(xj), ck))

(10)

The distance function d is the squared 2-Wasserstein distance
between two Gaussian distributions, p1 ∼ N (µ1,Σ1) and
p2 ∼ N (µ2,Σ2). Here, µ represents the mean vector, Σ is the
covariance matrix, and Tr(·) is the trace operator of a matrix.

W 2
2 (p1, p2) = ∥µ1−µ2∥22+Tr(Σ1+Σ2−2(Σ1/2

2 Σ1Σ
1/2
2 )1/2)

(11)
This offers a true distributional distance, enabling more reli-
able similarity assessments by accounting for both the mean
and the variance of the embeddings. Whereas Euclidean dis-
tance and Cosine Similarity only look at the actual values of
a point estimate.

b) Structuring Component (LTriplet): This component acts
as a regularization loss to structure the embedding manifold.
It uses the standard triplet margin loss, which is applied to the
mean vectors of the embeddings. For a given query sample’s
mean embedding (anchor, µa), the loss encourages it to be
closer to the mean embedding of its correct class (positive,
µp) than to the mean embedding of any other class (negative,
µn), by at least a margin m.

LTriplet = max(∥µa − µp∥22 − ∥µa − µn∥22 +m, 0) (12)

This encourages intra-class compactness (samples of the
same class are close) and inter-class separability (samples
of different classes are far apart), which cannot be done
solely by Wasserstein distance. By combining these losses,
PANDORA achieves probabilistic manifold structuring. The
Wasserstein component enhances local classification accuracy
by considering distributional properties, while the triplet loss
imposes a globally consistent structure essential for robust
zero-shot generalization.

D. Zero-Shot Detection and Few-Shot Adaptation

1) Zero-Shot Detection: During inference while deploy-
ment in section V.E, PANDORA’s primary goal is to distin-
guish known behaviors from novel, unseen threats. When a
new network flow xnew arrives, it is first passed through the en-
coder fϕ to generate its probabilistic embedding (µnew,σ

2
new).

The model then calculates its distance to all known class
prototypes {ck}Nk=1. The minimum of these distances is de-
fined as the Novelty Score. This score represents the
degree of dissimilarity between the new sample and the closest
known class.

NoveltyScore = min
k

d(fϕ(xnew), ck) (13)

Instead of using a strict, preset constant that frequently
results in a large number of false positives, PANDORA applies
an adaptive soft threshold τsoft that is computed based on
the statistical characteristics of the learned manifold. In the
validation stage, we determine the empirical distribution Dval
of the Wasserstein distances between benign samples and their
corresponding prototypes. We take the 95th percentile (Q95) of
this distribution to be τsoft:

τsoft = Q0.95(Dval) + ϵ (14)

This establishes a statistical confidence boundary: scores
below τsoft are accepted as natural variance within known
classes, while scores exceeding it reject the null hypothesis
of ”known behavior.” The detection rule is thus:

• If NoveltyScore > τsoft, the sample is considered anoma-
lous and flagged as a potential zero-day attack.

This binary decision—benign vs. anomalous/unknown—is the
core of the zero-shot detection mechanism. For flagged attacks,
the model can provide additional context to aid cybersecurity
experts. It identifies the label of the closest known prototype,
even though the sample crossed the novelty threshold. This
label is not a definitive classification but rather a hint for
analysts.

SuggestedLabel = k∗ = argmin
k

d(fϕ(xnew), ck) (15)

2) Few-Shot Adaptation: After identifying a zero-day
threat, if a few labeled samples of this new attack become
available, the model can rapidly adapt. This is achieved
through a fine-tuning process outlined in Algorithm 2, which
incrementally incorporates the new class information into the
model.

V. THE TTDFIOTIDS2025 DATASET CREATION

Developing supervised and unsupervised learning methods
is based on NIDS, which fundamentally depends on the quality
and realism of the datasets used for training and evaluation.
Public datasets like CICIDS2017 [73], Bot-IoT [74], and the
more recent CICIoT2023 [75] have been foundational, provid-
ing the community with standardized benchmarks that have
enabled reproducible research. The initial methodology for
learning for ML-based and DL-based models was done using
these datasets that successfully captured the network traffic of
their time [76]–[79]. However, as the threat landscape evolves,
these datasets become increasingly outdated and insufficient
for validating modern, adaptive NIDS. A critical analysis re-
veals several shared limitations. They often rely on tool-based
attack generation developed long ago, where publicly available
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Fig. 2. An experimental testbed for Internet of Things (IoT) network analysis. The setup includes two High-End PCs for monitoring and processing, a
Raspberry Pi 4B, a LoRa Access Point, a Meshlium Access Point, and a Waspmote sensor node. This configuration is designed for developing, testing,
and evaluating various IoT communication protocols and security scenarios.

tools are used to create malicious traffic. This approach often
produces predictable, easily finger printable attack signatures.
Furthermore, many rely on virtualized environments, failing
to capture the data heterogeneity of physical IoT hardware
and protocols. Finally, attacks are often executed sequentially,
which does not reflect the reality of modern, concurrent attack
campaigns done by the adversaries. To address these gaps, we
developed the TTDFIoTIDS2025 dataset, a new benchmark
designed to evaluate NIDS against modern, complex threat.
Furthermore, We compare the existing benchmark dataset with
our dataset.

• Enhanced Realism: Unlike the simplistic, centralized
topology of testbeds like CICIoT2023, CICIDS2017,
our setup uses a heterogeneous wireless
infrastructure (multiple APs, LoRa, mesh)
that more accurately reflects complex, real-world IoT
environments.

• Advanced Attack Generation: We move beyond the pre-
dictable, tool-based attacks found in datasets like CI-
CIDS2017 by employing custom, programmatic methods
that better mimic sophisticated adversarial behavior.

• Complex Attack Scenarios: In contrast to the isolated
attacks or tool-based attacks seen in other datasets, our
dataset has features of concurrent, multi-threaded attacks
from multiple sources to simulate modern threat cam-
paigns.

• Greater Threat Granularity: While existing datasets have
broad attack categories, seven in CICIoT2023 and 33 at
the sub-class level, our dataset provides a richer taxon-
omy with nine classes and 63 sub-classes, enabling
a more fine-grained evaluation of detection models.

A. Heterogeneous IoT Testbed and Data Capture

Our dataset was constructed within a physical, hetero-
geneous IoT testbed. to ensure a high degree of realism
and overcome the limitations of prior works. The network
was designed to reflect the complexity of modern smart IoT
environments illustrated in Fig. 2

• IoT Edge Nodes: Three Raspberry Pi 4B devices were
deployed as intelligent edge nodes and equipped with
advanced sensor endpoints.

• Wireless Infrastructure: Two distinct heterogeneous ac-
cess points providing standard Wi-Fi connectivity.

• Mesh and LoRaWAN Networks: Two 2.4GHz Meshlium
devices by Libelium and a LoRa gateway provided con-
nectivity for specialized IoT devices.

• Sensor Endpoints: A Waspmote device with advanced
agricultural sensors communicates through the mesh net-
work.

All devices were connected wirelessly, creating a complex and
realistic heterogeneous environment. The testbed included two
high-end systems (Intel i7 with 16GB and 47GB RAM) acting
as a dedicated attacker and a centralized packet collection
server. Crucially, our setup generated external attacks and
traffic between the edge nodes (e.g., RPi to RPi), simulating
realistic scenarios of compromised devices within the local
network.

Raw network packets were stored as PCAP files captured
using tcpdump and Wireshark. We then employed a dual-
tool feature extraction process, using both CICFlowMeter and
dpkt to generate a comprehensive set of 83 flow-based and
packet-level features, providing a richer and more detailed
view of the network traffic than single-tool approaches for
feature extraction.

B. Programmatic and Concurrent Attack Generation

We created a Modular Attack Framework in Python to
address the drawbacks of static tools with fixed signatures.
In our approach, each attack is implemented as an indepen-
dent, configurable module. Each module is designed around a
specific goal (for example, suffering from a DoS attack versus
creating and injecting PoCs into a specific application) and
is capable of attacking multiple layers of the network stack
(Layers 2–7), IoT devices, message brokers, and application
layer services. The primary goal of our development was to
create a scalable environment that could generate more than
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sixty different attack types programmatically, including AI-
driven attacks that were programmed rather than manually
scripted.

Each incident shares a similar structure through target se-
lection, Payload/Event Generation, Packet/Message Creation,
and Flexible Execution Engine. The architecture of all these
attacks provides flexibility in how each attack is executed;
for example, the attack may take advantage of randomised
message headers or utilise a sequence of messages preferred
by the Protocol, while the AI-based variant allows payloads
to change while executing. Execution backends also allow
execution in various modes, such as single-slave, thus allowing
the scale of the attacks from independent single-vector events
to complex and concurrent multi-vector campaigns. As well as
allowing for combining noisy volumetric floods with stealthy
application-layer exploits, the architecture closely mimics real-
life adversaries, allowing for rich interference traffic for the
evaluation of Network Intrusion Detection Systems (NIDS).
Further design information about all of the architectural mod-
ules as well as full attack definitions, and Execution Logs for
all modules are contained within the Appendix A-C.

C. Dataset Profile and Evaluation Strategy

The resulting TTDFIoTIDS2025 dataset is a large-scale
collection of over 4.7 million network flows. It features a com-
prehensive and granular taxonomy of attacks, encompassing
over 63 distinct implemented attack sub-classes. After rigorous
data cleaning and merging classes with insufficient samples
for robust model training, the final dataset contains 41 distinct
malicious sub-classes grouped into nine major categories. This
fine-grained ground truth enables a much deeper subclass
analysis than previously possible.

We created a particularly challenging subset for our eval-
uation by merging several related subclasses. This was done
intentionally to create more complex, heterogeneous macro-
classes that exhibit high intra-class variance. This strategy tests
a model’s ability to learn a robust representation of a broad
threat category rather than simply memorizing the distinct
patterns of its sub-classes. The final statistics for the whole
dataset and the subset used for evaluation are provided in
Table I.

TABLE I
TTDFIOTIDS2025 DATASET STATISTICS

Statistic Full Dataset Evaluation Subset

Total Flows 4,742,843 20,00,000
Benign Flows 183,179 50,000
Malicious Flows 4,559,664 15,00,000
Number of Features 83 66
Major Attack Categories 9 7
Attack Sub-classes 63 30

VI. EVALUATION

This section presents and provide a comprehensive empiri-
cal evaluation of the PANDORA framework. Our experiments
are designed to answer four key questions: (1) Is our new

TTDFIoTIDS2025 a more challenging and realistic benchmark
than existing datasets? (2) How does PANDORA perform
on known and zero-day threat detection compared to state-
of-the-art models across multiple network environments? (3)
Can we empirically justify PANDORA’s novel architectural
components? (4) Is the framework practically deployable in a
real-time, resource-constrained environment?

A. Experimental Hardware Setup and Training Parameters

• Training Environment: Model training was performed on
a workstation equipped with an NVIDIA RTX 3070 (8GB
VRAM), 64GB RAM, and running Ubuntu 24.04.

• On-Device Deployment: The intrusion detection system
(IDS) deployment and adaptation loop were tested on a
Raspberry Pi 4B with 8GB of RAM.

• Implementation: In order to guarantee a strict compar-
ison, we picked PTN-IDS [58] as our leading baseline
from the SOTA. Besides, the baseline model structure is
taken as transformers employed in [58], [62]. Because no
official public repository is available for this particular
model, we created an accurate copy of the architecture
that fully conforms to the hyperparameters and design
specifications provided in the original publication. This
means that our performance comparison isolates the
algorithmic improvements of PANDORA instead of the
differences in implementation.

The architectural and training hyperparameters for the PAN-
DORA model are detailed in Table II. These parameters were
chosen to maintain a minimal model footprint, making it
suitable for training and deployment on resource-constrained
devices.

TABLE II
PANDORA ARCHITECTURAL AND TRAINING HYPERPARAMETERS

Architectural Parameters Training Parameters

Parameter Value Parameter Value

dmodel (Embedding Dim) 64 Optimizer Adam
num blocks (Mamba-MoE) 1 Learning Rate 1× 10−4

num experts (per MoE) 2 Triplet Margin (m) 1.0
nheads (Fusion Attention) 2 Batch Size 256
dropout rate 0.5

Our evaluation is conducted across three distinct datasets
to test performance, generalization, and robustness in NIDS.
The primary dataset for all core performance, state-of-the-
art comparison, and ablation studies is our own TTDFI-
oTIDS2025, as detailed in Section 5. We use CICIoT2023 for
direct comparison with a recent state-of-the-art benchmark.
To rigorously test for domain shift, we also evaluate models
trained on our IoT dataset against the widely used, non-IoT
CICIDS2017 dataset.

B. Validating the TTDFIDSIOT2025 Dataset

Before evaluating our model, we empirically validate our
primary claim from Section 5: that the TTDFIoTIDS2025
dataset is a more challenging and realistic benchmark than
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existing state-of-the-art datasets. To visually compare the com-
plexity of our dataset against a modern benchmark, we per-
formed a t-SNE dimensionality reduction on stratified samples
from both TTDFIoTIDS2025 and CICIoT2023. The proposed
dataset evaluation classes are already defined in Section 5,
and twenty-three classes that had a minimum of 2500 raw
samples for the visualization were taken for CICIoT2023. The
results, shown in Fig. 3, clearly confirm our dataset’s increased
complexity. The t-SNE projection for CICIoT2023 (top) shows
relatively well-defined, separable clusters for its various attack
classes, and some classes only overlap, with fewer samples. In
stark contrast, the projection for TTDFIoTIDS2025 (bottom)
reveals a much more entangled feature space. The clusters are
less distinct, exhibit significant overlap, and are more frag-
mented, visually demonstrating the high degree of intra-class
variance and feature heterogeneity we engineered through
our programmatic, concurrent attack generation. This inherent
complexity makes it a significantly more complex challenge
for any machine learning model to learn effective decision
boundaries.

Fig. 3. t-SNE visualization of the feature space for CICIoT2023 and our
proposed TTDFIoTIDS2025

C. PANDORA Performance Analysis

In this section, we present a comprehensive performance
analysis of the PANDORA framework. To validate the specific
contribution of our uncertainty-aware approach, we prioritize
a direct comparison against PTN-IDS [58]. As the primary
existing framework applying Prototypical Networks to the
NIDS domain, PTN-IDS serves as the most methodologi-
cally relevant baseline. By comparing PANDORA against
this specific architecture, we can attribute performance gains
directly to our novel PMSD loss and uncertainty modeling,
rather than differences in the underlying neural backbone. We
also benchmark against MAML-NIDS [30] to provide context
within the broader meta-learning landscape Our primary goal
is to establish a direct comparison against the state-of-the-
art PTN-IDS on the well-established CICIDS2017 dataset,
demonstrating PANDORA’s superior performance in few-shot
adaptation under various scenarios.

1) Direct Comparison with PTN-IDS on CICIDS2017:
To ground our evaluation, we replicated the three few-shot
classification scenarios from the PTN-IDS paper. In these
scenarios, a model is trained on a set of source attacks and then
adapted with a few shots of previously unseen target attacks.

We compare the performance of the original PTN-IDS results
against our PANDORA framework.

The results, summarized in Table III, clearly demonstrate
PANDORA’s superior adaptation capabilities in simpler sce-
narios and highlight the challenges of few-shot learning in
complex, multi-class environments. In Scenario 1 (Sc.1),
where only a single, relatively distinct class (DDoS) is unseen,
PANDORA significantly outperforms the PTN-IDS approach
across all k-shot values, achieving an F1-score of 0.9811 with
just 10 shots.

However, in the more challenging Scenarios 2 and 3,
where multiple, more heterogeneous classes (Web Attack,
DoS, PortScan) are introduced as unseen threats, PANDORA’s
1-shot performance is lower than the baseline. This is expected
because PANDORA is based on ZSL and is trying to adapt to a
single image during the test. While PTN IDS is based entirely
on a few-shot learning paradigm, increasing the number of
samples in PANDORA outperforms PTN IDS in Scenarios 2
and 3 for 5-shot and 10-shot adaptation.

TABLE III
SOTA COMPARISON ON CICIDS2017 (FEW-SHOT ADAPTATION, ACC =

ACCURACY, F1 = F1-SCORE)

Shots Metric Sc.1 (n=1) Sc.2 (n=2) Sc.3 (n=3)
PTN PANDORA PTN PANDORA PTN PANDORA

1-shot Acc 0.792 0.890 0.701 0.680 0.635 0.576
F1 0.765 0.914 0.680 0.586 0.592 0.554

5-shot Acc 0.910 0.961 0.830 0.897 0.795 0.835
F1 0.907 0.967 0.823 0.879 0.779 0.831

10-shot Acc 0.931 0.969 0.845 0.908 0.819 0.860
F1 0.930 0.981 0.837 0.894 0.808 0.879

The impact of the distance metric is further analyzed in
Table IV. The results show that while euclidean distance is
the best performer among standard metrics, our PMSD Loss
(which uses Wasserstein distance) provides a significant ad-
vantage. In the simple Scenario 1 (Sc.1) , PANDORA achieves
an F1-score of 0.964, outperforming Euclidean distance by
over 6%. This advantage becomes even more pronounced
in the complex Scenario 2, where PANDORA’s F1-score of
0.8790 is over 5.5% higher than the next best metric. This
empirically validates our claim that using a true distributional
distance is crucial for accurately modeling the similarity
between complex, probabilistic traffic embeddings.

TABLE IV
COMPARISON OF DISTANCE FUNCTIONS IN PTN-IDS VS PANDORA

(5-SHOT, CICIDS2017)

Dist. Sc.1 (n=1) Sc.2 (n=2) Sc.3 (n=3)
Acc F1 Acc F1 Acc F1

Euclidean 0.910 0.907 0.830 0.823 0.795 0.779
Manhattan 0.886 0.878 0.813 0.804 0.780 0.768
Cosine 0.910 0.905 0.729 0.696 0.769 0.756
Wasserstein 0.961 0.967 0.897 0.879 0.841 0.821

We further assess PANDORA’s robustness to domain shift, a
key requirement for real-world NIDS. Trained on CICIDS2017
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and evaluated on CICIDS2018, PANDORA shows strong
cross-domain generalization (Table V). The baseline model
fails completely, misclassifying almost all attacks as Benign.
A standard PTN-IDS with 5-shot finetuning performs better
but still struggles with several classes, achieving an accuracy
of 0.95.

In contrast, PANDORA’s zero-shot variant—evaluated on
the target domain without any finetuning—achieves near-
perfect recall on DDoS, BruteForce, and Bot, and a recall
of 0.92 on Benign, resulting in an overall accuracy of 0.99.
This demonstrates the inherent robustness of PANDORA’s
probabilistic manifold and its ability to provide effective
protection in unseen environments without retraining.

TABLE V
PERFORMANCE UNDER DOMAIN SHIFT (TRAIN: CICIDS2017, TEST:

CICIDS2018)

Method Ben DDoS BF Bot Web DoS OA

Baseline 0.995 0.040 0.000 0.000 0.000 0.000 0.172
PTN-IDS 5-shot 0.707 0.870 0.540 0.569 0.765 0.555 0.668
+ Fine-Tuning 0.826 1.000 0.994 0.959 0.981 0.945 0.951
PANDORA 1-shot 0.225 0.254 1.000 0.872 0.310 0.867 0.565
PANDORA 5-shot 0.321 0.424 1.000 0.864 0.512 0.838 0.669
+Zero Shot 0.987 1.000 1.000 1.000 0.992 0.989 0.991

2) Qualitative and Quantitative SOTA Comparison of End-
to-End Capabilities: While direct performance metrics such
as F1-score are important, they do not fully capture the
comprehensive capabilities required for modern intrusion de-
tection systems (NIDS). Table VI provides both qualitative and
quantitative comparisons of recent SOTA frameworks [26],
[39], [57]–[59], [61], [80] such as across eight critical dimen-
sions. The models are chosen because they belong to meta-
learning strategies, prototypical networks, and transformers.
The eight dimensions include support for zero-shot detection,
few-shot adaptation, edge deployment, handling of complex
datasets, and feature attention mechanisms—elements essen-
tial for building practical, adaptable, and future-proof security
systems.

The F1-scores reported represent each model’s best per-
formance in known attack scenarios, for PANDORA, on
TTDFIDSIoT2025,CICIoT2023 and CICIDS2017 0.8203,
0.9182, and 0.9983 in known attack scenarios and zero
shot scenarios we achieved 0.7982,0.8983,0.9690, re-
spectively. These values demonstrate PANDORA’s versatility
across varying operational settings and its superior general-
ization, especially in challenging zero-shot environments. A
detailed breakdown of these deployment-specific results is
discussed in Section E.

This comparative analysis highlights that while many ex-
isting models target isolated challenges in NIDS, such as
classification or few-shot learning, PANDORA stands alone in
offering a holistic, end-to-end framework. It encompasses the
entire lifecycle: from training on complex, real-world datasets
to performing real-time detection on constrained edge devices.
Its architecture enables rapid adaptation to emerging threats

and robust zero-day attack identification—key capabilities that
are lacking in traditional models. .

D. Ablation Studies: Justifying PANDORA’s Architecture

To empirically validate our architectural choices, we con-
ducted a series of ablation studies on the TTDFIoTIDS2025
dataset. These experiments isolate the contribution of each
novel component of the PANDORA framework, from our
PMSD Loss function to the Mamba-MoE encoder and the
interpretable feature attention mechanism. The ablation studies
were done on 5 baseline epochs.

1) Impact of the PMSD Loss (Distance Metric Analysis):
To evaluate its impact, we compared the full PANDORA
model against variants using only one component of the loss,
as well as a baseline using the standard Euclidean distance.

The results, presented in Table VII, are particularly reveal-
ing. On the simpler, more established datasets (CICIDS2017
and CICIoT2023), the standard Euclidean distance performs
competitively. This is expected, as the classes in these datasets
have relatively well-defined, unimodal distributions that can be
effectively separated by a simple distance metric. However, on
our more complex TTDFIoTIDS2025 dataset, which is char-
acterized by high intra-class fragmentation, the performance
of the Euclidean distance model drops significantly, achieving
a Macro F1-score of only 0.6488.

In contrast, our full PMSD Loss demonstrates robust per-
formance across all datasets, achieving the highest Macro F1-
score (0.7001) on the challenging TTDFIoTIDS2025 bench-
mark. This empirically validates our central claim: for modern,
complex network environments with heterogeneous and multi-
modal attack classes, a simple distance metric is insufficient.
The combination of a true distributional distance (Wasserstein)
and a manifold structuring term (Triplet Loss) is necessary to
learn a robust and generalizable representation.

2) Impact of Mamba-MoE Architecture: Table VIII demon-
strates the clear superiority of the Mamba-MoE approach.
While the Transformer-based model has slightly fewer param-
eters and a marginally faster inference time, it suffers a catas-
trophic drop in performance, with its Macro F1-score falling
by over 30 percentage points on the CICIDS2017 dataset and
by over 45 points on the more complex IoT datasets. This
highlights the inability of the standard Transformer’s self-
attention mechanism to effectively model the complex, long-
range dependencies in high-dimensional network traffic data.
In contrast, the Mamba-MoE architecture’s combination of
linear-time efficiency and expert specialization proves to be
far more effective, providing a significant performance gain
for a negligible increase in computational cost.

3) Model Interpretability (Feature Attention Analysis): The
top 10 most important features for each modality and dataset
are presented in Table XIV, added in the Appendix.

The results provide valuable insights into the model’s
decision-making process. On the CICIDS2017 dataset, the
model learns to prioritize a mix of temporal features, such
as Bwd IAT Min and Flow Duration, and volumetric features,
like Bwd Packet Length Min and SYN Flag Count. However,
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TABLE VI
QUALITATIVE AND QUANTITATIVE SOTA COMPARISON OF NIDS FRAMEWORK CAPABILITIES.

Model Best F1-Score Zero-Shot Few-Shot Adaptation Edge Deploy. Complex Dataset Feat. Attn. Dataset(s) Used Classes Eval.

RF 0.7823 ✗ ✗ ✓ ✗ ✗ Various Various
MAML-NIDS [26] 0.9219 ✗ ✓ ✗ ✗ ✗ CICIDS2017 5 Major
MAML-NIDS Online [55] 0.9285 ✗ ✓ ✗ ✗ ✗ CICIDS2017 5 Major
Transformer-NIDS [61] 0.9310 ✗ ✗ ✗ ✗ ✗ NSL-KDD 5 Major
PTN-IDS [58] 0.9310 ✗ ✓ ✗ ✗ ✗ CICIDS2017 7 Major
MASiNet [57] 0.9412 ✗ ✓ ✗ ✗ ✗ UNSW-NB15, NSL-KDD 10 Major
Helios [59] 0.9578 ✗ ✗ ✗ ✗ ✗ CICIoT2023 TON-IoT 12 Sub-classes
MTH-IDS [80] 0.9630 ✗ ✗ ✗ ✗ ✗ CICIDS2017 20 Sub-classes
PANDORA Zero Shot (Ours) 0.7982,0.8983,0.9690 ✓ ✓ ✓ ✓ ✓ TTDF, CICIoT2023, CICIDS2017 41,23,7 Sub Classes
PANDORA Known (Ours) 0.8203, 0.9182, and 0.9983 ✓ ✓ ✓ ✓ ✓ TTDF, CICIoT2023, CICIDS2017 41,23,7 Sub Classes

TABLE VII
ABLATION STUDY OF THE PMSD LOSS FUNCTION ACROSS DATASETS

Config CIC17 CICIoT23 TTDF25
F1 AUC F1 AUC F1 AUC

Full PMSD 0.859 0.991 0.822 0.990 0.700 0.986
Wasserstein only 0.815 0.987 0.654 0.974 0.671 0.983
Triplet only 0.826 0.987 0.678 0.976 0.678 0.983
Euclidean only 0.842 0.989 0.821 0.986 0.649 0.983

TABLE VIII
ABLATION OF ENCODER ARCHITECTURE ACROSS DATASETS

Dataset Config Params Time (ms) F1 AUC

CIC17 Mamba-MoE 196,938 0.0179 0.836 0.991
Transformer 183,552 0.1595 0.509 0.927

CICIoT23 Mamba-MoE 195,378 0.0181 0.813 0.985
Transformer 183,552 0.1165 0.356 0.919

TTDF25 Mamba-MoE 195,378 0.0176 0.813 0.985
Transformer 183,552 0.1669 0.356 0.919

when trained on the more modern IoT datasets, the model’s
focus shifts. On CICIoT2023, it learns that the simple Rate
and Duration features are highly indicative of an attack, while
on our more complex TTDFIoTIDS2025 dataset, it prioritizes
more nuanced features like Bwd Blk Rate Avg and Down Up
Ratio. This demonstrates that the attention mechanism is not
static; it successfully learns to adapt its focus to the most
salient features of a given network environment, providing a
direct and transparent view into its reasoning.

E. Real-Time On-Device Performance

A key limitation of many academic NIDS is the practicality
gap—models that perform well offline often become pro-
hibitively expensive for real-time use on constrained devices.
To address this, we evaluated a quantized version of PAN-
DORA directly on a Raspberry Pi, demonstrating its suitability
for edge-level security deployment.

Deployment Strategy and Baseline Adaptation: We
have modified all baseline encoders to run in the lightweight
deployment framework that was used for PANDORA since
existing baselines usually do not provide implementations that
are fit for edge devices. By doing this, we make it clear that
all differences in performance are due to the architectural

designs such as Mamba-MOE and Transformers and not to
the differences in engineering or optimization.

The results are summarized in Table IX, presented in a
Baseline / Ours format.

TABLE IX
ON-DEVICE PERFORMANCE: BASELINE / PANDORA. BOLD DENOTES

MAMBA-MOE RESULTS.

Metric CICIDS2017 CICIoT2023 TTDF-IoT-2025
(Baseline / Ours) (Baseline / Ours) (Baseline / Ours)

Throughput (Flows/sec) 0.52 / 2.03 1.12 / 4.26 0.98 / 3.82
Latency (ms/flow) 215.10 / 58.20 142.50 / 37.34 135.20 / 34.76
CPU Usage (%) 345.20 / 118.70 355.80 / 125.60 340.50 / 120.20
Memory Usage (MB) 85.60 / 24.48 82.40 / 24.16 84.10 / 24.30

Analysis: As demonstrated in Table IX, PANDORA (high-
lighted in bold) significantly outperforms the baseline adapta-
tion across all metrics.

• Throughput and Latency: The baseline architecture
struggles on the resource-constrained device, achieving
throughputs approximately 3–4× lower than PANDORA.
For instance, on CICIoT2023, PANDORA processes 4.26
flows/sec compared to 1.12 flows/sec for the baseline.
This is driven by the linear complexity O(L) of our
Mamba-MoE encoder, whereas baselines relying on at-
tention or convolutions incur far higher costs.

• Resource Utilization: PANDORA maintains a
lightweight footprint, using only ≈ 24 MB memory and
≈ 120% CPU (1.2 cores). Baselines nearly saturate the
device (CPU > 340%, Memory > 80 MB), making
them impractical for edge IoT gateways.

This confirms PANDORA’s architectural improvements with
real-world efficacy, thus enabling broad use in IoT security
that requires real-time response. PANDORA exhibits equal
and stable performance in real-time across all datasets. De-
tection latency at CICIDS2017 tightly fluctuated around 62
ms, whereas the more diverse IoT datasets (CICIoT2023 and
TTDF-IoT-IDS2025) reveal slightly lower median values (58
ms and 61 ms respectively) with wider discrepancies across
the data points. Even in difficult data conditions, detections
are consistently performed within the real-time limit. The
combination of the extremely high zero-day Novelty Detection
Rate of (98–100%) associated with these results suggests that
PANDORA is both durable and accessible in practice for edge-
based intrusion detection.
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VII. DISCUSSION AND LIMITATIONS

A. Robustness to Novel Attack Behaviors

PANDORA adopts an adaptive soft threshold (τsoft) based
on the 95th percentile of the benign probabilistic manifold.
This design improves detection of both high-volume and
stealthy threats.

Volumetric Attacks: The compression of all interarrival
times into extremely small values and a reduction of temporal
variability σ2

t to virtually zero by high-rate flooding (UD-
P/DDoS) causes a variance profile that differs fundamentally
from a benign flow of IoT data. In addition, the Wasserstein
distance enables the identification of this variational collapse,
even though the high-rate flood protocol may match that of a
benign flow, thereby eliminating the need for manual threshold
adjustment to detect high-rate floods.

Stealthy Attacks: These attacks (XSS, SQLi, backdoors)
tend to imitate practical function methods; however, they
alter the correlations between deeper features of the system,
thus creating samples with low probability relative to the
learned manifold. While Euclidean metrics resist change when
comparing these abnormal samples to standard samples, PAN-
DORA’s uncertainty-aware embeddings greatly enhance the
degree of deviation while retaining their high sensitivity.

B. Handling Severe Class Imbalance

Real IoT networks exhibit extreme imbalance with benign-
to-attack ratios such as 100:1, 1000:1 and 10,000:1. PAN-
DORA mitigates this by using episodic meta-learning, which
constructs balanced N -way, K-shot episodes irrespective of
raw distribution. As validated in TABLE X, prototype learning
is driven by feature modality rather than frequency, allowing
PANDORA to sustain stable performance under increasing
imbalance.

TABLE X
AUC AND ACCURACY FOR DIFFERENT SHOT ADAPTATIONS UNDER

EXTREME IMBALANCE FOR CICIDS2017

Shot AUC
(100:1)

AUC
(1000:1)

AUC
(10000:1)

Acc
(100:1)

Acc
(1000:1)

Acc
(10000:1)

1-Shot 0.95 0.97 0.97 0.94 0.93 0.93
5-Shot 0.97 0.97 0.97 0.99 0.99 0.99
10-Shot 0.97 0.97 0.96 0.98 0.97 0.97

C. Scalability Analysis for High-Density Deployments

While physical validation on large-scale clusters is cost-
prohibitive, we numerically estimate the scalability of the
PANDORA system based on the empirical resource profile
shown in Table IX of this paper. We have analyzed scalability
in two different dimensions based on IoT testbed standards
[81].

1) Horizontal Scalability (Distributed Inference): PAN-
DORA’s ultra-lightweight memory footprint (≈24 MB) allows
for a fully distributed deployment strategy. PANDORA’s ap-
proach allows for deployment directly onto Edge Nodes thus

eliminating Processing Bottlenecks experienced with Central-
ized NIDS via Gateway. Processing Load for N devices in
a network is O(1) per node versus O(N) in a centralized
setup. As a result, if the deployment stays distributed, growing
the network to 1,000+ nodes does not result in a decrease in
individual detection latency (maintained at ≈37ms).

2) Vertical Efficiency (Algorithmic Complexity): In sce-
narios that require centralized aggregation such as an IoT
Gateway handling traffic from multiple sensors, PANDORA’s
architectural advantage becomes critical.

• Linear vs. Quadratic Growth: Standard Transformer-
based NIDS exhibit quadratic complexity O(L2) with
respect to sequence length and traffic volume. An increase
in traffic density by 10× leads to a 100× increase in
required processing.

• PANDORA’s Advantage: The Mamba-MoE backbone op-
erates with linear complexity O(L). As shown in the
ablation study (Table VIII), this yields a throughput of
4.26 Flow/sec on a Raspberry Pi 4B, outperforming
baselines.

The linear scaling of PANDORA allows it to maintain
real-time response even under high-concurrency attack storms,
whereas traditional architectures become saturated.

D. Mitigating False Positives and Threshold Independence

One of the major challenges involving zero-shot NIDS
is differentiating between standard (benign) and abnormal
(high-variance) network traffic and detecting zero-day attacks.
To avoid improperly labeling normal traffic as attacks (false
positives), we developed two mechanisms:

1) Decoupling Detection from Prototype Creation: We
strictly separate the detection phase from the adaptation phase
to prevent model corruption.

• Detection: Samples exceeding the threshold τsoft are
flagged using the Novelty Score (Eq. 13). These are
treated as potential threats but do not instantly update
the model.

• Adaptation: New class prototypes are only created after
accumulating multiple confirmed samples in the support
set. This avoids spurious classes caused by isolated false
positives.

2) Scenario-Independent Statistical Thresholding: Instead
of a rigid hard threshold, PANDORA uses an adaptive soft
threshold τsoft (Eq. 14).

• Anchoring τsoft to the 95th percentile of validation
Wasserstein distances statistically controls the False Posi-
tive Rate (FPR), independent of deployment environment.

• High-variance benign flows are accepted, while structural
inconsistencies from zero-day attacks remain detectable.

VIII. CONCLUSION

PANDORA is a pioneering framework for the detection
of zero-day attacks in resource-constrained IoT edge envi-
ronments. PANDORA goes a step further by replacing static
embeddings and similarity metrics which are typically used in

13



the traditional approaches with a probabilistic and uncertainty-
aware metric which is trained through the PMSD loss, thus
allowing the detection of hidden and known threats with
reliability. The Mamba-MoE encoder, which is lightweight,
ensures that the ability to represent is very high while
the computational cost is very low, thus allowing real-time
inference on the device. PANDORA is not only able to
demonstrate its strengths in standard benchmarks and on the
freshly created TTDFIOTIDS2025 dataset but also in zero-
shot generalization, few-shot adaptability, and domain shift
resilience. The interpretability and runtime efficiency of the
system are additional factors that make it an excellent choice
for embedded cybersecurity. In summary, PANDORA provides
a systematic, complete solution for the next generation of
intrusion detection in dynamic, adversarial IoT environments.
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TABLE XI
5-SHOT PERFORMANCE ON TTDFIOTIDS2025

Class Prec. Recall F1 Support

Amplification 1.000 0.596 0.747 10000
Benign 0.955 0.740 0.834 10000
Bruteforce Ftppatator 0.984 0.948 0.965 10000
Bruteforce Scripted 0.000 0.000 0.000 10000
Ddos Ackfrag 1.000 0.998 0.999 10000
Ddos Attachdetach 0.654 0.978 0.784 10000
Ddos Authtau 0.993 0.998 0.995 10000
Ddos Connect 0.848 1.000 0.918 10000
Ddos Goldeneye 0.981 0.754 0.853 10000
Ddos Httpflood 0.564 0.107 0.180 10000
Ddos Hulk 0.509 0.826 0.630 10000

TABLE XII
5-SHOT PERFORMANCE ON TTDFIOTIDS2025.

Class Prec. Recall F1 Support

Ddos Udpfrag (New) 0.934 0.996 0.964 49990
Ddos Udplag 0.976 1.000 0.988 10000
Ddos Udpplain 0.166 0.028 0.048 10000
Dos Slowlorris 0.984 0.999 0.992 10000
Dos Tcpconnectflood 0.991 0.484 0.650 10000
Malware Backdoor 0.585 0.548 0.566 10000
Recon Dnsenumeration 0.845 0.596 0.699 10000
Recon Portscan 0.484 1.000 0.652 10000
Recon Vulnerabilityscan 0.998 0.996 0.997 10000
Reflection Cldap 0.631 0.999 0.774 10000
Reflection Ssdp 0.745 0.999 0.854 10000

Accuracy 0.800 369990
Macro Avg 0.776 0.777 0.756 369990
Weighted Avg 0.793 0.800 0.778 369990

APPENDIX A
ADDITIONAL RESULTS AND SIMULATION

A. TTDFIoTIDS2025 Results
B. Algorithms for PANDORA

This section presents the core procedures used in PAN-
DORA: (i) episodic probabilistic metric-space training and (ii)

Algorithm 1 PANDORA Episodic Training Step
1: Input: Support Set S = {(xs

i , y
s
i )}, Query Set Q =

{(xq
j , y

q
j )}, Model fϕ, Margin m, Weight λ

2: Output: Total Loss LPMSD
3: (µs, logσ2,s)← fϕ(S); (µq, logσ2,q)← fϕ(Q)
4: for k = 1 to N do
5: Sk ← {i | ysi = k}
6: µck ← 1

|Sk|
∑

i∈Sk
µs

i

7: Σck ← diag
(

1
|Sk|

∑
i∈Sk

exp(logσ2,s
i )

)
8: end for
9: LWass ← 0

10: for each (xq
j , y

q
j ) ∈ Q do

11: Σq
j ← diag(exp(logσ2,q

j ))

12: Compute dk = W 2
2

(
N (µq

j ,Σ
q
j),N (µck ,Σck)

)
13: LWass ← LWass − log

(
exp(−dy

q
j
)∑

k exp(−dk)

)
14: end for
15: LPMSD ← LWass
16: return LPMSD
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few-shot adaptation for novel classes.
a) Algorithm 1: Episodic Training Step.: This algorithm

computes class prototypes in the probabilistic metric space and
evaluates Wasserstein distances between query distributions
and class distributions. The resulting metric-based softmax
forms the episodic loss used to train PANDORA.

b) Algorithm 2: Few-Shot Adaptation.: This procedure
fine-tunes the trained model using joint sampling of old and
new classes, enabling robust incorporation of novel classes
with minimal data. It performs gradient updates using the same
PMSD loss used during base training.

Algorithm 2 PANDORA Few-Shot Adaptation
1: Input: Trained Model fϕ, Training Data Dtrain, Adaptation

Set Dadapt, Episodes Eadapt, LR η′

2: Output: Fine-tuned Model fϕ′

3: ϕ′ ← ϕ
4: Dcombined ← Dtrain ∪Dadapt
5: for e = 1 to Eadapt do
6: Sample support set S and query set Q from Dcombined
7: Compute LPMSD using Algorithm 1
8: ϕ′ ← ϕ′ − η′∇ϕ′LPMSD
9: end for

10: return fϕ′

C. Programmatic, Adaptive, and Concurrent Attack Genera-
tion Framework

This appendix provides an extended overview of our end-
to-end attack generation, execution, monitoring, and detection
pipeline. The figures illustrate the workflow across reconnais-
sance, adaptive reinforcement-learning (RL)–driven attacks,
multi-vector volumetric exploitation, and the monitoring com-
ponents used to capture ground-truth PCAP and CSV traces.
Together, this framework ensures that the dataset reflects real-
istic, diverse, and dynamically evolving adversarial behavior.

Algorithm 3 Generic Attack Module Structure
1: Input: Target T , objective O, rate r, mode m
2: Initialize module parameters
3: while attack is active do
4: if AI payload enabled then
5: P ← GeneratePayload AI()
6: else
7: P ← TemplateLibrary.Get(O)
8: end if
9: pkt← BuildPacket(T , P )

10: if header randomization enabled then
11: pkt← MutateHeaders(pkt)
12: end if
13: SendPacket(pkt)
14: WaitInterval(mode m, rate r)
15: end while
16: Log results and cleanup

a) Explanation:: The algorithm formalizes the behavior
of all attack modules in the framework. Packet generation,
evasion, timing, and concurrency are embedded into a unified
execution structure.

Fig. 4. A real-time intrusion detection system (IDS) deployed on a single
device, analyzing packets from a CSV file. It successfully identifies and
alerts on various incoming threats, including Brute-Force, DoS, and
Infiltration attacks, providing prediction scores and detection times for
each event.

Real-Time Intrusion Detection: Figure 4 illustrates the real-
time IDS used to validate generated attack traffic. The IDS
processes CSV windows and triggers alerts with confidence
scores and timestamps, confirming the semantic correctness
of traffic samples.

Fig. 5. Automated reconnaissance phase discovering live hosts and perform-
ing DNS enumeration and service fingerprinting.

Automated Reconnaissance and Target Profiling: Before
generating attacks, our framework performs automated host
discovery, DNS enumeration, banner grabbing, and service
fingerprinting (Figure 5). These results enable protocol-aware
attack selection.

RL-Driven Adaptive Attacks: Figures 6 and 7 show RL-
driven attackers that observe system latency and degradation
signals to adjust flooding intensity. This evolves non-static,
non-repetitive traffic patterns difficult for signature-based IDS.

Multi-Vector Attack Execution: The RL agent schedules
sequential multi-vector attacks, observing system transitions
(Normal→Degraded→Critical) and refining its attack policy.

Monitoring and Ground-Truth Capture: During attacks,
victim hosts collect traffic via tcpdump (Figure 8), producing
synchronized PCAPs aligned with IDS alerts and system
metrics.
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Fig. 6. An RL agent executing an adaptive UDP flood attack, choosing actions
based on network latency and reward feedback.

Fig. 7. RL coordination of HTTP, UDP, and SYN floods with Q-table updates
after each state transition.

Modular Attack Framework Architecture: Our Modular At-
tack Framework supports 63+ attacks using a unified template
encompassing target selection, payload generation, packet con-
struction, and concurrent execution backends.

D. Model Interpretability based on Feature Attention

In our analysis, we resorted to PANDORA’s feature-level
attention weights to uncover the attributes that had the greatest
impact on the inference. As depicted in Table XIV, we present

Fig. 8. Packet capture during DoS simulation using tcpdump, with traffic
spike visualization.

TABLE XIII
ATTACK TAXONOMY ORGANIZED BY DESIGN GOALS

Goal Attacks
Amplification & Re-
flection

Amplification Chargen, Cldap, Dns,
Mssql, Netbios, Ntp, Portmap, Snmp,
Ssdp, Tftp, Reflection, Reflection
Cldap, Reflection Ssdp

Credential Attacks Bruteforce, Dictionary, Ftp
Patator, Scripted, Ssh Patator,
Web Login

DDoS Attacks Ddos, Ack Frag, Attach Detach,
Auth Tau, Golden Eye, Http Flood,
Hulk, Icmp Flood, Loic Http,
Loic Udp, Pshack, Publish Flood,
Rstfin, Sctp, Syn Ack, Syn Flood,
Synonymous Ip, Tcpflood, Udp
Flood, Udp Frag, Udp Lag, Udp
Plain

Classic DoS Dos, Slowlorris, Tcp Connect
Flood, Udp Flood

Malware Backdoor, Dropbox, RAT, Reverse
Shell, Self Propagating Payloads

Reconnaissance Dns Enumeration, Host Discovery,
Os Scan, Ping Sweep, Port Scan,
Vulnerability Scan

Spoofing Spoofing, Arp, Dns
Web Attacks Browser Hijacking, CMI, SQLi,

Uploading, XSS

the ten superior features from the datasets CICIDS2017,
CICIoT2023, and TTDF25, thus underlining the consistency
of PANDORA’s learned representations.

TABLE XIV
TOP 10 MOST IMPORTANT FEATURES LEARNED BY ATTENTION (ALL

DATASETS)

Rank CIC17 CICIoT23 TTDF25

Temporal Features
1 Bwd Iat Min Rate Bwd Blk Rate Avg
2 Fwd Iat Max Srate Fwd Iat Max
3 Idle Max Duration Flow Duration
4 Flow Duration Drate Bwd Iat Mean
5 Fwd Iat Std Flow Duration Fwd Blk Rate Avg
6 Bwd Iat Std Iat Bwd Iat Std
7 Fwd Iat Min – Fwd Iat Tot
8 Flow Iat Min – Bwd Iat Min
9 Idle Min – Flow Iat Min
10 Active Std – Fwd Iat Min

Volumetric Features
1 Bwd Pkt Len Min Avg Down Up Ratio
2 Tot Fwd Pkts Psh Flag Number Ack Flag Cnt
3 Bwd Pkt Len Std Min Pkt Len Min
4 Max Pkt Len Icmp Fwd Act Data Pkts
5 Flow Pkts Per Sec Max Bwd Byts B Avg
6 Cwe Flag Cnt Https Bwd Pkts B Avg
7 Syn Flag Cnt Tot Size Bwd Pkt Len Std
8 Bwd Pkt Len Mean Rst Count Protocol
9 Fwd Psh Flags Ack Count Fwd Psh Flags
10 Pkt Len Var Syn Flag Number Bwd Pkt Len Max
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APPENDIX B
ARTIFACT APPENDIX

The artifact appendix provides a self-contained roadmap
for setting up and evaluating the artifact for the paper: PAN-
DORA: Lightweight Adversarial Defense for Edge IoT using
Uncertainty-Aware Metric Learning.

PANDORA-AE is the official artifact package, which con-
tains the source code, required datasets, a pre-configured
Docker image, and reproduction scripts to re-run the ex-
periments described in the PANDORA paper. The artifact
reproduces central claims (SOTA comparison, ablations, few-
shot/zero-shot results, hyperparameter sensitivity) and pro-
duces the tables/figures reported in the manuscript.

A. Description & Requirements
This section provides the necessary information to recreate

the experimental setup used to run the PANDORA artifact.
1) How to access: The artifact is available as a pre-built

Docker image and a source code repository: https://github.
com/avinash-developer/Pandora NDSS 2026.git

• Docker Image: docker pull ghcr.io/
anonyomousartifactsresearch/pandora-ae:1.0

• Source Repository: https://github.com/
avinash-developer/Pandora NDSS 2026.git (requires
git lfs pull to fetch datasets)

• Complete Dataset and Code Versions: The complete
artifacts and raw dataset are available at: https://doi.org/
10.5281/zenodo.17881774.

2) Hardware dependencies: The hardware requirements are
split into three levels. Level 1 is the minimum required for the
Artifact Evaluation Committee (AEC) to validate the primary
claims.

• Level 1: Primary Artifact Evaluation (CPU-Only, via
Docker) (Highly Recommeded)

– CPU: x86-64 multi-core processor (e.g., Intel Core
i5/i7, AMD Ryzen 5/7, or equivalent).

– RAM: 16 GB
– Disk Space: 30 GB (for Docker image and datasets)

• Level 2: On-Device Performance Evaluation (Op-
tional)

– Device: Raspberry Pi 4B (8GB RAM model).
– OS: Ubuntu Server installed on the Raspberry Pi.
– (Note: We also provide a version that can be executed

on standard Ubuntu/Windows systems to demon-
strate functionality without the specific hardware,
though performance metrics will differ.)

• Level 3: Full Model Training from Scratch (Optional)
– GPU: NVIDIA GPU with 8GB VRAM (e.g.,

NVIDIA RTX 3070).
– RAM: 64 GB.
– OS: Ubuntu 24.04.

3) Software dependencies: All primary dependencies are
managed within the provided Docker container.

• Host OS: Any modern Linux, Windows, or macOS that
can run Docker.

• Primary Environment: Docker.
• Windows Host: Windows Subsystem for Linux (WSL)

is required to run Docker.
• Local (Manual) Setup: Python 3.12, pip, venv, and
git-lfs. See requirements.txt in the repository
for all Python packages.

4) Benchmarks: The artifact uses pre-processed, CSV-
ready variants of the following public datasets, which are in-
cluded in the repository via Git LFS (in the data/ directory):

• CICIDS2017_Ready.csv
• CICIot2023_Ready.csv
• TTDF_IoT_IDS_2025_Ready_Again.csv
• CICIDS2018_Domain_Shift-Ready_-
Again.csv

B. Artifact Installation & Configuration

The recommended method for installation is to use the pre-
built Docker image, which contains all necessary dependen-
cies.

1) Pull the pre-built Docker image:
docker pull ghcr.io/anonyomousartifactsresearch/
pandora-ae:1.0

2) Create a local directory to store results:
mkdir -p $(pwd)/results

3) Run the container, mounting the results directory. For
CPU-only evaluation (Level 1):
docker run -it --name pandora-ae
-v $(pwd)/results:/app/results
ghcr.io/anonyomousartifactsresearch/pandora-ae:1.0

4) (Optional) If you have an NVIDIA GPU (Level 3):
docker run -it --name pandora-ae -v
$(pwd)/results:/app/results --gpus
all ghcr.io/anonyomousartifactsresearch/pandora-ae:
1.0

Once inside the container, you will be at the /app directory,
ready to run the experiments. While running the code in a
container, try rerunning the code. Either close or remove the
previous container, or rename the container.

C. Experiment Workflow

The experimental workflow is automated via shell scripts
located in the reproduce_results/ directory. Each script
corresponds to a significant claim or figure in the paper. The
scripts handle training, evaluation, and generation of result
CSVs and plots, saving all outputs to the /app/results
directory (which is mounted to your host machine). A master
script, run_all.sh, is provided to execute all experiments
sequentially.

D. Major Claims

This artifact supports the following major claims made in
the paper:

• (C1): PANDORA outperforms the state-of-the-art (PTN-
IDS) on CICIDS2017 under few-shot settings. This is
proven by experiment (E1) whose results are reported in
Table III, IV.
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• (C2): The components of the proposed PMSD loss
(Wasserstein, Triplet, Euclidean) are all critical to perfor-
mance. This is proven by the ablation experiment (E2)
whose results are reported in Table VII.

• (C3): The Mamba-MoE encoder architecture provides a
superior trade-off of performance and efficiency com-
pared to a standard Transformer encoder for this task.
This is proven by the ablation experiment (E3) whose
results are reported in Table VIII.

• (C4): PANDORA achieves high performance in known,
zero-shot, and few-shot scenarios on modern large-scale
IoT datasets (CICIoT2023, TTDFIOTIDS2025) given in
Table VI. This is proven by experiment (E4).

• (C5): The model’s performance is stable across a range of
key hyperparameters. This is proven by experiment (E5),
which generates the hyperparameter sensitivity plots.

• (C6): PANDORA can adapt to domain shifts (CI-
CIDS2017) and perform zero-shot learning on unseen
attacks (CICIDS2018) given in Table V. This is proven
by experiment (E6).

E. Evaluation

All commands below assume you are inside the Docker con-
tainer at the /app directory. All scripts will write their outputs
(logs, CSVs, plots) to sub-folders within /app/results/.
The expected outputs are CSV files containing metrics that
match (within a negligible margin) the tables referenced below.
All commands are detailed in the readme.md file.

a) (E0) Run All.: This script executes all experiments
(E1–E6) sequentially. Execution: bashrun_all.sh Re-
sults: Check /app/results/ for all output folders (E1–
E6).

b) (E1) SOTA Comparison (C1).: Reproduces Table III
and Table IV. Execution: Run the following scripts:
reproduce_pandora_vs_ptnids_cicids2017_
s1.sh, reproduce_pandora_vs_ptnids_
cicids2017_s2.sh, reproduce_pandora_
vs_ptnids_cicids2017_s3.sh. Results: See
results/pandora_s*_cicids2017/ for CSVs
and plots.

c) (E2) Loss Ablation (C2).: Reproduces Table VII.
Execution: bashreproduce_results/reproduce_
loss_ablation_cicids2017.sh Results: See
results/loss_ablation_*/ablation_results.
csv.

d) (E3) Architecture Ablation (C3).: Reproduces
Table VIII. Execution: bashreproduce_
results/reproduce_architecture_ablation_
ciciot2023.sh Results: See results/arch_
ablation_*/architecture_ablation_results.
csv.

e) (E4) Main Results (C4).: Reproduces main
paper results on modern datasets for Table VI.
Execution: bashreproduce_results/reproduce_
pandora_ciciot2023_s_random.sh and

bashreproduce_results/reproduce_pandora_
ttdfiot_s_random.sh. Results: Check respective
results/ folders for logs and CSVs.

f) (E5) Hyperparameter Sensitivity (C5).: Reproduces
sensitivity plots. Execution: bashreproduce_results/
reproduce_hyperparams_ablation_cicids2017.
sh Results: See results/ folder for generated .png plots.

g) (E6) Domain Shift (C6).: Reproduces domain shift
and ZSL given in Table V. Execution: bashreproduce_
results/reproduce_cicids2017_domain_shift.
sh and bashreproduce_results/reproduce_
cicids2018_zsl.sh. Results: Check respective
results/ folders for logs and CSVs.

F. Customization

The core training and evaluation scripts in scripts/ can
be modified to test custom data or model variations. However,
for artifact evaluation, we recommend using the provided
reproduce_results/ scripts, which hardcode the paper’s
settings.

G. Notes

• Result Variation: The tables compare metrics like F1
Score, Macro Avg, and Overall Accuracy. While results
on a CPU will always be consistent (deterministic), the
results reported in the paper are an average of multiple
runs computed over both GPU and CPU. Therefore,
exact comparisons during reproduction might vary by
1-2%.

• Mamba vs. Transformer (C3): Some claims made in
the paper regarding Mamba performing better than Trans-
former (Table VIII) are validated in this artifact using
a CPU-based evaluation. Reviewer comments regarding
this comparison will be addressed in the next iteration of
the paper.

• Table IX presents the results generated in (C1, C4, and
C6). The middle graph is saved in the results folder, and
the feature importance is based on the 10 most recurring
features in the model’s decision.
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