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Abstract—Video recognition systems are increasingly being de-
ployed in daily life, such as content recommendation and security
monitoring. To enhance video recognition development, many
institutions have released high-quality public datasets with open-
source licenses for training advanced models. At the same time,
these datasets are also susceptible to misuse and infringement.
Dataset copyright auditing is an effective solution to identify such
unauthorized use. However, existing dataset copyright solutions
primarily focus on the image domain; the complex nature of
video data leaves dataset copyright auditing in the video domain
unexplored. Specifically, video data introduces an additional
temporal dimension, which poses significant challenges to the
effectiveness and stealthiness of existing methods.

In this paper, we propose VICTOR, the first dataset copyright
auditing approach for video recognition systems. We develop a
general and stealthy sample modification strategy that enhances
the output discrepancy of the target model. By modifying only
a small proportion of samples (e.g., 1%), VICTOR amplifies the
impact of published modified samples on the prediction behavior
of the target models. Then, the difference in the model’s behavior
for published modified and unpublished original samples can
serve as a key basis for dataset auditing. Extensive experiments
on multiple models and datasets highlight the superiority of Vic-
TOR. Finally, we show that VICTOR is robust in the presence of
several perturbation mechanisms to the training videos or the
target models.

I. INTRODUCTION

Video recognition systems [I] have become increasingly
vital in real-world applications, including content recommen-
dation on streaming platforms [2], activity recognition in
surveillance systems [3], autonomous driving [4] and health-
care monitoring [5], etc. To facilitate the research of video
recognition, many high-quality datasets are published by the
related research institutions such as DeepMind [6], The Allen
Institute for AI [7], and Stanford University [8]. However, it
should be noted that the video datasets are published with
strict open-source licenses to protect the intellectual prop-
erty of the data owner. Unauthorized commercial deployment
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would not only easily violate these terms, but also raise
serious legal and ethical issues. According to an investigation
by Proof News [9], many companies used YouTube video
datasets for Al training without permission, which conflicts
with YouTube’s terms of service. Therefore, it is crucial to
audit the dataset copyright in video recognition systems.

Currently, existing dataset auditing research primarily fo-
cuses on image [10-12] and audio [13, 14] domains, while
few works have yet explored the dataset auditing for video
recognition systems. Existing dataset auditing research can be
divided into passive auditing and proactive auditing [15, 16].
Passive auditing, primarily built on membership inference [17],
infers whether the data of a user is utilized to train the target
model [18, 19]. However, this method requires a large number
of queries to the model, which is costly. On the other hand, it
usually leads to a high false alarm rate, which is impractical.
In contrast, proactive auditing injects certain marks such
as radioactive data and backdoor into some samples before
the dataset is released for subsequent verification [10, 20].
However, most prior studies either require altering data labels,
which can degrade the model’s performance on normal tasks,
or rely on the knowledge of target model, which is often
impractical in real-world scenarios. In addition, compared
to image data, the additional spatiotemporal dimension of
video data and the diversity of various video models pose
significant challenges, making most existing methods difficult
to implement or ineffective in practice.
Our Proposal. In this work, we present VICTOR (Video
recognition Auditor), a practical approach for auditing the
dataset copyright by modifying a small portion of the samples
in the published dataset. The core idea of VICTOR is to amplify
the impact of published modified samples on the prediction
behavior of the target model. By evaluating the difference in
the outputs of the suspect model for the modified samples and
the original samples, VICTOR determines whether the dataset
has been misused. If the difference in the output prediction
of the original sample and the modified sample is small, it
indicates a high likelihood that the suspect model was trained
using the published dataset. The design of VICTOR mainly
faces the following challenges:

Challenge 1: How to avoid introducing side effects on
model training? One prevalent strategy for influencing model
behavior is to embed backdoors into the trained model. How-



ever, such operations can easily cause backdoored samples
to produce incorrect predictions, introducing unexpected or
exploitable vulnerabilities. Accordingly, VICTOR chooses to
retain the original true label of each modified sample through-
out the modification process to prevent potential side effects.

Challenge 2: How to amplify the impact of modified samples
with low modification costs? On the one hand, the dataset
owners usually have limited information about the target
model. On the other hand, video data is often subject to
operations such as interception and cropping before being
processed by the target model. These characteristics signif-
icantly hinder the applicability of traditional image dataset
auditing techniques to video-based systems. To ensure that
the amplification effect remains robust across diverse target
models and video preprocessing methods, VICTOR introduces
procedural noise [21] into all frames of selected samples.
This subtle perturbation effectively enhances the behavioral
difference between the released and original samples on the
target model, without compromising the visual semantics.

Challenge 3: How to achieve high-precision auditing with
low false positive rates? On the one hand, it is challenging
to design a reliable mechanism for detecting dataset misuse.
On the other hand, if both samples produce low confidence
scores for the correct label, their outputs may appear similar,
thus obscuring the basis for auditing and increasing the risk
of misjudgment. To enable reliable detection of dataset usage,
VICTOR employs a subset of published original samples and
their corresponding unpublished modifications to estimate a
decision threshold. The auditing is carried out via hypothesis
testing on the sequence of output differences between un-
published original and published modified samples. Moreover,
VICTOR introduces post-processing steps to address scenarios
in which both types of sample produce low output probabili-
ties, thereby reducing misleading in the auditing decision.

Evaluation. We conduct experiments on multiple representa-
tive video recognition models and three classic open-sourced
video datasets to illustrate the effectiveness of VICTOR. The
experimental results indicate that VICTOR can effectively audit
the dataset usage across various settings. For instance, by
modifying only 1% of the samples, VICTOR can achieve
up to 100% auditing accuracy across multiple datasets and
suspect models. We further analyze the effectiveness of various
components and explore the impact of different parameter
settings.

Robustness. In practice, the target model might be equipped
with various obfuscation techniques to hinder the dataset
auditing. Therefore, we conduct the experiments to validate
the robustness of our proposed VICTOR. In our work, three
representative interference strategies (i.e., input preprocessing,
training intervention, post-adjustment) in a general machine
learning model pipeline are considered. We observe that the
performance of VICTOR only slightly drops, which shows the
robustness of VICTOR.

Contributions. In summary, the main contributions of the
paper are three-fold:

o To our knowledge, VICTOR is the first dataset copyright
auditing approach for video recognition systems.

« We propose a label-invariant perturbation mechanism and
a behavior difference-based verification strategy to enable
effective auditing. In particular, VICTOR injects procedural
noise into a small fraction (e.g., 1%) of the dataset without
altering the label. This modification amplifies the influence
of altered samples on the target model while effectively
keeping visual content and model utility. Combined with
careful designs such as threshold estimation and hypothesis
testing, VICTOR establishes a reliable foundation for video
dataset auditing.

« We conduct comprehensive experiments on multiple models
and datasets to illustrate the effectiveness and robustness
of VICTOR. VICTOR is open-sourced at https://github.com/
sec-priv/VICTOR.

II. RELATED WORK

The dataset copyright auditing methods can be divided into
passive auditing and proactive auditing methods, depending on
whether the original dataset is modified.

Passive Auditing. The solutions in passive auditing are usu-
ally implemented based on the idea of membership inference
attack [17, 22-24]. The fundamental principle of member-
ship inference is to identify distinct characteristics between
data that has been used in training and data that has not.
The existing passive auditing methods can be classified into
decision boundary-based and behavior characteristics-based
methods [15]. For the decision boundary-based methods [25—
29], the core intuition is that samples near the decision
boundary in the training dataset are critical for classifica-
tion. Therefore, by extracting boundary information from the
model, the dataset owner can infer whether a particular dataset
was used in its training. For the behavior characteristics-based
methods [19, 22, 30-34], the dataset owner utilizes the model’s
outputs and hidden representations as the key basis to finish
the auditing. In particular, the model’s behavior include the
loss value [35], the log-likelihood value [36, 37], and the
disparity between the outputs of the target and the shadow
models (i.e., models trained on datasets that are similar to the
training dataset of the target model) [38—40]. However, these
passive auditing approaches usually face significant challenges
such as high false positive rates and the need for intensive
queries to target models. In light of the low accuracy and
poor robustness of passive auditing solutions, we focus on the
proactive auditing strategy to safeguard the dataset copyright
in this work.

Proactive Auditing. A typical solution in proactive auditing
is radioactive data-based auditing [10, 12, 41, 42]. This type of
method injects an optimized radioactive mark into the vanilla
training images. In practice, the radioactive marks need to be
propagated to the image space. If the marked data are used in
the training, the classification model is updated with both the
features and the radioactive mark. In the copyright validation,
the auditor detects the distribution deviation induced by the
radioactive marks. However, the distribution shift may be
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slight by a single marked sample. Thus, the dataset owner
needs to inject a large number of marked images into the
original dataset to provide statistical evidence that the model is
trained on marked images. In addition, recent studies indicate
that the performance of radioactive data-based methods is
limited [16, 43].

Another classic method of proactive auditing is backdoor-
based auditing. In this setting, the dataset owner embeds
backdoors (or called triggers) to the original dataset. If a model
is training using this modified dataset, the model will perform
normally for benign samples. When specific backdoors are
present, the model’s predictions will change dramatically.
Depending on whether the true labels of the samples are
altered during the backdoor injection, the backdoor-based
method can be classified into dirty-label backdoor [11, 44-48]
and clean-label backdoor methods [20, 49, 50]. The dirty-label
backdoor methods have better effectiveness, and the clean-
label backdoor methods achieve better stealthiness. However,
both the two type of methods are prone to introduce harmful
influence and potential security risks [51]. The attacker can
exploit the backdoor to interfere with the model performance
on other normal samples [13].

Recently, Huang et al. [16] proposed a data auditing
framework and applied it to image classifiers and foundation
models. The proposed framework leverages the existing black-
box membership inference method, together with a sequential
hypothesis testing to implement dataset auditing. However, this
approach requires a substantial proportion of data marking in
the published version. Chen et al. [43] employ a data marking
component to mark the target data and adopt a membership
inference-based verification process for auditing. However,
this approach requires substantial modifications to the original
images, which significantly degrades image quality. Moreover,
the dynamic nature of video data makes the auditing perfor-
mance of the above methods insignificant.

III. PRELIMINARIES
A. Video Recognition

Video recognition systems are designed to analyze and
interpret the spatio-temporal content of videos, with the goal
of assigning semantically meaningful labels to entire clips or
localized temporal segments [52]. This system has already
been widely applied for various fields, such as action recog-
nition, gesture analysis, healthcare monitoring, and content
categorization [53].

Before being fed into the models, raw video inputs typi-
cally undergo several pre-processing steps [54]. These include
frame extraction, spatial resizing, temporal sampling (e.g.,
uniform, random, or dense sampling), and modality transfor-
mation (e.g., computing optical flow or extracting RGB and
depth channels). These pre-processing operations are essential
for reducing computational overhead, maintaining temporal
consistency, and enhancing the extraction of spatio-temporal
features [55].

Over the past decade, researchers have proposed various
model architectures for video recognition, which can be cat-

egorized into three types: 2D CNN + RNN, 3D-CNN, and
Transformer-based models. The 2D CNN + RNN methods
utilize 2D CNN for frame feature extraction and RNN for
capturing temporal dependencies between them [56-59]. To
learn stronger spatial-temporal representations, 3D CNN-based
methods were proposed [60—64]. These methods utilize 3D
kernels to jointly leverage the spatio-temporal context within
a video clip. Inspired by the success in natural language pro-
cessing, transformer-based models are proposed [65—67]. This
type of method adopts self-attention to gauge the relevance of
various frames.

B. Threat Model

Application Scenario. This paper aims to address a critical
gap in video dataset copyright protection: detecting unau-
thorized commercial use of open-source licensed datasets.
Figure 1 illustrates a typical application scenario where the
data owners publish the dataset to the public. In order to
protect the dataset copyright, the dataset owner modifies some
samples (videos) in the original dataset. The modified samples
and other original samples constitute the dataset D and are
released to the public. A malicious dataset user (attacker) can
download the open-sourced video datasets and then train their
models for unauthorized purposes. To confirm whether the
trained models use the dataset D;, the auditor queries these
models to obtain the auditing results.
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Fig. 1: An example of the application scenario.

Attacker’s Capabilities. We assume that the attacker can
download the published video dataset and train any video
recognition model with the dataset. The attacker may adopt
various evasion strategies (such as input preprocessing, train-
ing intervention, and post-adjustment) to bypass the auditing
mechanisms.

Auditor’s Capabilities. The auditor has complete knowledge
of the protected dataset and can modify some samples of
the dataset prior to release. In addition to its own dataset,
we consider that the auditor is unaware of the dataset infor-
mation from other dataset owners. To mimic the real-world
application, we consider that the auditor has black-box access
to the suspect model. Note that this is the most general and
challenging scenario for the auditor.



IV. VICTOR
A. Can Image Auditing Methods Apply to Video?

Before introducing our approach, one might wonder why
image auditing techniques cannot be applied directly to video.
The challenges faced when applying the image auditing meth-
ods to video are as follows:

Flexible Video Lengths. The complexity of video data
(including additional temporal dimension) is higher than image
data. In particular, video data comprises sequences of frames
with uncertain lengths, which are typically preprocessed
through operations such as frame sampling and cropping be-
fore being input into neural networks. Under these conditions,
the difference in the amount of information between the raw
data and the model input data is significant, making the
traditional image auditing methods difficult to implement or
ineffective.

Complex Video Models. Due to the increased architectural
complexity of video recognition models and their reliance
on aggregated information from multiple frames, image au-
diting techniques designed to perturb the output distribution
are generally ineffective especially when the target model
architecture and data pre-processing steps are unknown. The
greater robustness of video recognition models significantly
increases the difficulty of influencing the model output.
Harmful Backdoor Influence. Current image auditing ap-
proaches based on backdoor injection typically introduce
harmful triggers into the training data. These triggers may not
only compromise the model’s performance but also introduce
exploitable vulnerabilities that attackers can leverage.

B. Motivation

Given that the dataset owner has the ability to modify the
data prior to release, our core idea is to amplify the behavioral
differences of these modified samples across different target
models (i.e., models that have used the dataset and those
that have not). During the copyright verification phase, these
amplified differences can then be evaluated to determine
whether the dataset has been used for training.

For the design goal of dataset auditing, we aim to achieve
the following objectives: 1) Modify only a small fraction of the
dataset at a low cost to reduce the discrepancies between the
published and original datasets; 2) Ensure that the proposed
method can reliably identify whether the released dataset was
misused by leveraging the behavioral differences in the sus-
pect model across various data pre-processing procedures and
model architectures; 3) Avoid introducing harmful backdoor
influence that could degrade the performance of the target
model; 4) Maintain robustness against various adaptive attacks.

C. Overview

As depicted in Figure 2, the workflow of VICTOR mainly
consists of three phases: Sample modification, sample se-
lection, and copyright verification. If the suspect model is
trained on the target dataset, the auditor should output a
positive auditing result; otherwise, a negative auditing result.

TABLE I: Summary of mathematical notations.

Notation Description

Original dataset

Modified dataset

Published dataset
Unpublished dataset
Perturbation budget
Parameter set for Perlin noise
Evaluation model

Suspect model

Posterior probability
Reference set

Modification set

Remaining set

Ratio of candidate set

Ratio of modification set
Ratio of reference set

Upper limit of the difference threshold
Boundary of low probability
Boundary coefficient
Significant level
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We also summarize the frequently used mathematical notations
in Table L.

Phase 1: Sample Modification. In this phase, an evaluation
model is first trained based on the original video dataset.
In addition, we can generate the modified version for each
sample (video) in the original dataset. Then, the prediction
outputs of original and modified versions can be calculated
by the evaluation model. These predictions can be served as
the selection basis in the following phase. The details of Phase
1 are in Section V-A.

Phase 2: Sample Selection. Based on the output results from
Phase 1, we hope to find the samples that are most likely to
achieve amplification effect as the final published samples.
Here, we choose to calculate the difference in the predictions
of the evaluation model on the original and modified datasets.
The samples with larger differences form the candidate set,
while those samples with smaller differences construct the
remaining set. Next, we select a subset of candidate samples
as the modification set and another subset as the reference set.
Further, the other samples in the candidate set that were not
selected are also included in the remaining set. We then release
the public dataset, which includes the modified samples of the
modification set, and the original samples of the reference
and remaining sets. The details of Phase 2 can be found
in Section V-B.

Phase 3: Copyright Verification. During this phase, VICTOR
determines whether the dataset has been misused by leveraging
the samples from the modification and reference sets. The key
insight is to assess whether there exists a statistically signifi-
cant difference in the suspect model’s performance between
the published and unpublished samples from the reference
and modification sets. The details of Phase 3 are referred
to Section V-C.
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Fig. 2: VICTOR overview. VICTOR is composed of three phases: Sample modification, sample selection, and copyright
verification. In the sample modification phase, an evaluation model is trained based on the original dataset. In addition, the
modified version of original dataset is generated in this phase. In the sample selection phase, VICTOR quantifies the difference
between each modified sample and its original counterpart by analyzing the evaluation model’s outputs. This difference serves
as a key criterion for selection. Samples with larger differences form the candidate set, while those with smaller differences
are placed in the remaining set. VICTOR then randomly selects a subset of candidate samples as the modification set and
another subset as the reference set. VICTOR proceeds to publish the modified samples from the modification set, along with
the original samples from the reference and remaining sets. In the copyright verification phase, VICTOR assesses whether the

dataset has been misused by analyzing the suspect model’s pr

V. DESIGN DETAILS

A. Sample Modification

During the sample modification phase, VICTOR aims to
obtain an evaluation model and a modified dataset based on
the original dataset. Algorithm 1 illustrates the basic process
of this phase.

First, VICTOR trains an evaluation model M based on the
original dataset O. Then, the posterior probability prediction
of each sample in O can be computed according to the model
M. The evaluation model M can serve as a basis for guiding
sample selection. Intuitively, a larger prediction discrepancy
between the original and modified samples on M indicates a
higher potential for amplification, making such samples more
suitable for effective auditing.

In addition, VICTOR tries to generate a modified version
for each sample in the original dataset O. Our objective is to
generate modified samples that remain visually similar to the
original videos while keeping the label unchanged and induc-
ing noticeable differences in the output of the target model,
under constrained modification costs. However, achieving this
goal on video data presents several challenges. First, although
a video consists of many frames, only a subset is typically used
for model prediction, and both the number and indices of these
selected frames are often unknown. Second, video recognition
models aggregate temporal information across multiple frames
during inference, making them inherently more robust than

edictions on the reference and modification sets.

Fig. 3: The example of Perlin noise.

image models. Furthermore, the architectures of target models
are highly diverse, exacerbated by the difficulty of designing
universally effective modifications. These factors significantly
limit the applicability of traditional image domain solutions in
the video domain.

To address the above challenges, we draw inspiration
from two-dimensional procedural noise [68], especially Perlin
noise [69], which has been shown to effectively reduce predic-
tion confidence in various image classification models [21, 43].
Due to the great versatility and low implementation cost of
procedural noise, we choose to inject it into the original video.
In particular, procedural noise refers to algorithmically gen-
erated patterns that simulate the randomness and irregularity
found in natural phenomena. Figure 3 illustrates the examples
of procedural noise.

In this work, we extend the classical two-dimensional Perlin
noise construction to the spatio-temporal domain to generate



Algorithm 1: Sample Modification

Algorithm 2: Sample Selection

Input: Original dataset O, perturbation budget ¢, the
parameter set for three-dimensional Perlin
n0ise dper = { Az, Ays At; Gsine, 2}
Output: The evaluation model M, the modified
dataset (), the posterior probability vectors
PA! and Pé”
1 // Model training
2 Train an evaluation model M based on the original
dataset O
3 Calculate the posterior probability Pg[ of the samples
in the original dataset O by evaluation model M
4 // Noise injection
5 for each sample o in O do

6 Generate the normalized three-dimensional Perlin
noise with the parameter set dpe,

7 Scale the noise based on the perturbation budget

8 Add the noise to the original sample and normalize

it to [0,255] to obtain the modified sample o,
then add o' to Q

9 Calculate the posterior probability Py of the
modified sample and update it to P(fgw

dynamic, temporally-coherent perturbations suitable for video
data. In addition to the spatial wavelengths A;, \,, and the
number of octaves (2, we further introduce a temporal fre-
quency control parameter \; to regulate variation across the
temporal axis.

Let (x,y,t) be a query point in normalized coordinates,
and let (i, j, k) be the corresponding corner lattice points, i.e.,
i = |z|,j = |y],k = [t]. Each lattice corner is assigned a
pseudo-random unit gradient vector:

where N(0,I3) denotes a 3-dimensional normal distribution
with zero mean and identity covariance matrix, i.e., g;;i 1S
sampled independently from a standard multivariate Gaussian.
The relative offset from the lattice corner is:

u=xr—1t v=y—j, w=t—k.

We compute the dot product between the gradient vector
and the relative offset vector at each of the 8 corners of the
unit cube, followed by trilinear interpolation using Perlin’s

fade function:

f(s) = 65° — 155* 4 10s°. (1)

Let P,(x,y,t) denote the interpolated Perlin noise value.
We then apply a fractal summation over €2 octaves:
Q

1 (2n—lg only only
Sper(xay7t) = Z 27Pn ( A ’ A ’ At > . (2)
T Yy

n=1
To enhance the perturbation diversity and control high-
frequency content, we apply a sinusoidal transformation:

Gper(x, Y, t) = sin (277 * Gsine - Sper(xv Y, t)) . 3)

Input: Original dataset O, the modified dataset (), the
posterior probability vectors P5" and P}, the
ratio of candidate set r., the ratio of reference
set r,., the ratio of modification set r,,

Output: The published dataset D, the unpublished

dataset U, the reference set R, the
modification set M, the remaining set E

/I Difference calculation

Am + PM — Y

Sort the values in Am

Select samples with values in the first r. proportion in

Am as the candidate set C, and the remaining

(1 —r.)-|O| samples as the remaining set E

5 // Random sampling

6 Randomly select r,. - |O| samples from the candidate
set C as the reference set R, and select 7, - |O]
samples as the modification set M, where R and M
do not overlap
7 Add other (r. — ry, — 7,) - |O| samples in the
candidate set C that do not belong to R and M to the
remaining set E

8 // Dataset division

9 The published dataset D consists of modified samples
of the modification set, as well as original samples of
the remaining set and the reference set

10 The unpublished dataset U consists of original samples

of the modification set, as well as modified samples
of the remaining set and the reference set

s W N =

Here, ¢gn. is a tunable sine frequency parameter that
controls the intensity and granularity of the generated texture.
Therefore, the full parameter set for three-dimensional Perlin
n0ise i8 Oper = { Az, Ay, Aty Psine, 2}

The final noise field is normalized to the range [0, 1]. Then,
we utilize the budget ¢ as the {,,-norm constraint on the
perturbation. Furthermore, we inject the scaled noise into all
frames of the original video and obtain the modified sample,
with the constraint of [0, 255]. On this basis, we can obtain the
posterior predictions of the modified samples. In addition, we
clarify that 3D Perlin noise can be replaced with other types
of noise in practical deployment (e.g., Gabor noise), which
demonstrates the generalizability and stealthiness of VICTOR.

Through the above steps, in the first phase, we can obtain
an evaluation model M by training and generate a modified
dataset (), which can be used for subsequent selection.

B. Sample Selection

Based on the modified samples obtained in the first phase,
the published modified samples can be selected in this phase.
Algorithm 2 provides the process of the sample selection.

First, we compute the prediction difference Am between the
original and modified datasets using the outputs of the evalua-
tion model M. The values in Am are then sorted, and samples



with larger differences are preferred for subsequent auditing.
This strategy is based on the intuition that a larger prediction
gap indicates a more significant behavioral difference between
a model trained on the dataset and one that is not, providing
a reliable basis for dataset auditing. Here, we choose to select
samples with values in the first . proportion in Am as the
candidate set C, the remaining samples are divided into the
remaining set E.

Next, we randomly select r,.-|O| samples from the candidate
set C as the reference set R, and select another r,,,-|O| samples
as the modification set M. The reference and modification sets
will be utilized for the auditing in the third phase. Then, the
other (r. — rp, — 1) - |O| samples in the candidate set C are
assigned to the remaining set E.

According to the original dataset O and modified dataset (),
along with the modification, reference, and remaining sets, we
construct two distinct datasets. The first is the public dataset
D, which is released and contains the modified samples from
the modification set, as well as the original samples from
the reference set and the remaining set. The second is the
private dataset U, which is kept unpublished and includes
the original versions of the modification set, along with the
original samples from the reference and remaining sets.

C. Copyright Verification

In this phase, we need to audit whether the published dataset
was misused. Considering the complexity and diversity of
target models and data processing pipelines, we assess dataset
usage by evaluating the performance differences between the
reference set and the modification set on the target model. The
detailed process is shown in Algorithm 3.

First, for each sample pair (o,0’) consist of the original
sample o and modified sample o in the reference set R, we
can obtain their predictions on the suspect model S, i.e., P?
and POS, . Then, the prediction difference As, between o and o’
can be calculated. After traversing and querying the samples
in R, we can get a sequence of difference values, i.e., Asg.
The purpose of these steps is to obtain a threshold h.

The core design intuition is that if the suspect model S
was not trained on the published dataset D, its behavior on
the reference set and the modification set should be similar.
Here, we define model behavior as the prediction difference
between the original dataset O and the modified dataset Q.
Conversely, if the suspect model was trained on D, we expect
a noticeable behavioral discrepancy between the reference and
modification sets. Specifically, the prediction differences for
the modification set are desired to be significantly smaller
than those for the reference set. This is because the published
dataset D includes the modified samples from the modification
set and the original samples from the reference set.

To make this distinction operational, we compute the mean
prediction difference h across all sample pairs in the reference
set and adopt it as the decision threshold. However, we observe
that the prediction differences within the reference set may
exhibit particularly high values, leading to an overly large
threshold. Consequently, a higher risk of false positives is

Algorithm 3: Copyright Verification
Input: The published dataset D, the unpublished
dataset U, the modification set M, the
reference set R, the suspect model .S, the upper
limit of the difference threshold H, the
boundary of low probability B, the boundary
coefficient [3, significant level «
Output: Auditing result
1 Initialized Asg = {}, Aspr = {}
2 // Model query
3 for each sample pair (o, 0’) in the reference set do
4 Calculate the output probability of o and o’ on the
model S, i.e., Py and PS5
5 Add As, = P¥ — P35 to Asg
6 // Threshold estimation
7 h + mean(Asg)
8
9

// Range constraint
h < clip(h,—H, H)
10 // Model query
11 for each sample pair (g’, g) in modification set do
12 Calculate the output probability of g’ and g on the
model S, i.e., ngi and P;
13 | As,=P; —P3

14 /I Post processing
15 | if P) < B and P; < B then
16 | Asy = (1+p)h

17 Add Asg, to Asyy
18 Hypothesis testing based on difference sequence As s
and threshold h with significant level «

prone to occur. To address this, we impose an upper limit H on
the difference threshold to improve the reliability of auditing
and mitigate misclassification. Regarding the value of upper
limit H, we provide a detailed analysis in Appendix A.

After computing the threshold h using the reference set,
we query the suspect model with the sample pairs (e.g., ¢
and ¢) from the modified set and obtain their corresponding
prediction differences, denoted as As,. We then apply a post-
processing step to refine As,. Specifically, if the predicted
probabilities for both the original and modified samples are
very low (i.e., below the predefined threshold B = 1/n.,
where 7. is the number of output categories), we adjust As, to
(14-8)h, where 3 is a small positive constant (e.g., 0.01). Here,
[ is utilized to guide the direction of subsequent hypothesis
testing and avoid zero-difference exclusion.

The rationale behind this adjustment is: When both pre-
dicted probabilities are negligible, the suspect model S is
likely not to utilize the dataset D. However, due to the low
absolute values, the resulting difference As, may also be
small, even smaller than the threshold h. This can mislead the
auditor to determine that the dataset D was used. By adjusting
As, slightly above the average difference in the reference set,
we can effectively mitigate the risk of such false positives and
improve the robustness of auditing.



Finally, we employ hypothesis testing to verify whether
the suspect model S exhibits dataset misuse. The goal of
the hypothesis test is to verify whether the difference in
the probability of sample pairs in the candidate set Asjy,
is significantly lower than a specific threshold h (calculated
from the difference in the probability of sample pairs in
the reference set, Line 9 in Algorithm 3). If the probability
difference is indeed significantly lower than the threshold
(i.e., Aspr < h), it means that the suspect model is likely
trained using the protected dataset (i.e., the dataset is misused).
Conversely, if the probability difference is not significantly
lower than the threshold, it determines that the dataset is not
misused. Specifically, we adopt the Wilcoxon Signed-Rank
Test [70], a non-parametric statistical method designed for
paired samples, to implement the hypothesis testing. Unlike
parametric tests, the Wilcoxon Signed-Rank Test does not rely
on the assumption of normality, making it well-suited for sce-
narios with small sample sizes or unknown data distributions.
Moreover, this method effectively leverages both the sign and
rank information of the sample differences, offering higher
statistical efficiency and better interpretability. This makes
it particularly appropriate for detecting subtle yet consistent
behavioral deviations in the model. The null hypothesis Hj
and alternative hypothesis H; are as follows:

Hy: Aspp > h,
Hy ASM < h,

(no significant misuse detected)

(evidence of dataset misuse).

The testing procedure is described below:

1) For each paired observation, compute the signed differ-
ence relative to the reference threshold:

di=As\)—h, i=1,2...n,

where Asg&) denotes the i-th observed difference.

2) Exclude all instances where d; = 0 (i.e., no difference).

3) For the remaining non-zero differences, compute the
absolute values |d;| and assign ranks R; based on these
absolute values (average ranks in case of ties).

4) Assign a sign to each rank based on the sign of d;, and
compute the sum of negative ranks:

W = Z R;.

i:d; <0
The statistic W represents the total rank magnitude
supporting H; (i.e., cases where As%[) < h).
5) Use the statistic W to compute a one-sided p-value. If
p < a (e.g., a = 0.01), reject the null hypothesis Hy and
conclude that the dataset D was misused.

D. Putting Things Together

The aforementioned three phases form the overall process
of VICTOR. Algorithm 4 describes the overall workflow
of VICTOR. In the first phase, we can train an evaluation model
M and generate a modified dataset () based on the original
dataset O, perturbation budget € and noise parameters Jpc.
Then, in the second phase, we can select the suitable samples

Algorithm 4: VICTOR
Input: Original dataset O, perturbation budget ¢, the
parameter set for three-dimensional Perlin
noise dper = {Az; Ay, Aty Gsine, 2}, the ratio of
candidate set 7., the ratio of modification set
Tm, the ratio of reference set r,., the suspect
model S, the upper limit of the difference
threshold H, the boundary of low probability
B, boundary coefficient 3, significant level «
Output: Audit result
1 // Phase 1: Sample modification
2 M,Q,Pé”,PéVI + Algorithm 1(O, €, dper)
3 // Phase 2: Sample selection
4 D,U,R,M,E < Algorithm 2(0, Q, P, r)
5 // Phase 3: Copyright verification
6 Audit result < Algorithm 3(D,U,R,M, H, B, 3, @)

that are likely to achieve the amplification effect according
to the posterior probability of samples in O and @) on the
evaluation model M. The selected modified samples and other
original samples are released as the public dataset D. In the
copyright verification phase, we calculate the suspect model’s
behavior difference on the reference set and the modification
set, and apply hypothesis testing to verify whether the pub-
lished dataset was used.

Note that VICTOR can be extended to Top-K or Label-only
scenarios. Specifically, different weights are assigned to K
publication categories with different rankings to approximate
the probability (e.g., the weight is the inverse of the ranking).
Then, our current scheme can be directly applied for auditing.

VI. EVALUATION

In this section, we first describe the experimental setup
in Section VI-A, and evaluate the overall auditing performance
in Section VI-B. Then, we perform ablation experiments to ex-
plore the influence of various components of VICTOR in Sec-
tion VI-C. Moreover, we explore the auditing performance
of various methods under Top-K and Label-only settings
in Section VI-D. Next, we verify the impact of the parameter
setting of VICTOR in Section VI-E. Furthermore, we explore
the robustness of VICTOR in Section VI-F. Due to space
constraints, we defer the auditing results on the SSv2 dataset
to Appendix D. We further include more evaluation results
(e.g., the robustness evaluation under common perturbations,
auditing performance against adaptive attackers, efficiency
analysis) in Appendix of [71].

A. Experimental Setup

Datasets. We evaluate the performance of different methods
on three standard benchmark datasets used: HMDB-51 [72],
UCF-101 [73], and SSv2 [74]. The first dataset contains 51
categories and a total of nearly 7,000 videos, and the second
dataset consists of more than 13, 000 videos in 101 categories.
The last dataset contains more than 160,000 videos, which
consists of 174 categories.



These datasets all belong to action recognition, which is

a representative task and widely considered in existing video
recognition research. The action recognition requires modeling
both spatial and temporal information in videos, which allows
us to effectively evaluate the performance of the proposed
method. The core idea of VICTOR is to determine auditing
decisions based on behavioral differences of the suspect model
in different samples. This method design has the potential for
generalization since the model’s behavioral differences can be
characterized in other tasks.
Suspect Models. We verify the effectiveness of our method on
four typical models, i.e., I3D [64], SlowFast [61], TSM [56],
and TimeSformer [66]. These models are also widely adopted
in existing video studies [48, 75].

The I3D and TSM models utilize ResNet-50 pre-trained
on the ImageNet dataset to initialize their backbones, and
the TimeSformer model adopts the pretrained ViT model
to initialize the backbone. The SlowFast model employs a
randomly initialized ResNet-50 backbone without pre-training.
In this work, we utilize open-sourced MMAction2 [76] to
implement the above video recognition models.

Baselines. To our knowledge, there are no other dataset
auditing designed for video recognition. Here, we apply the
SOTA auditing methods (i.e., ML-DA [16] and MT [43]) for
image data to the video domain as the baselines. A detailed
description and discussion can be found in Appendix B.
Metrics. We adopt the following metrics to evaluate the
auditing performance: Aacc, true positive rate (TPR), F1 score
and false positive rate (FPR). Aacc represents the difference
between the test accuracy of the model trained using the
modified dataset and the test accuracy of the model using
the original dataset. TPR measures the proportion of correctly
identified positive samples (i.e., trained on the target dataset)
among all actual positives. F1 score balances precision and
recall, providing a single harmonic mean that is particularly
informative under class imbalance. FPR quantifies the pro-
portion of negative samples (i.e., trained on other datasets)
incorrectly classified as positive. For FPR, lower is better. For
the other three metrics, higher is better.

Experimental Settings. For VICTOR, we set the perturbation
budget ¢ = 10 (i.e., {,,-norm constraint), the ratio of modi-
fication samples r,,, = 1%, the upper limit of the difference
threshold H = (.05, and the significant level a = 0.01. We
utilize the I3D model as the evaluation model by default. For
the parameter set of Perlin noise, we set A\, = A\, = 32,
At = 6.4, ¢dgine = 1, and Q = 2. The experiments are
conducted with a server with 64-core EPYC AMD CPU and
four NVIDIA A6000 GPUs.

Setup. We divide the dataset into two subsets: One designated
as the protected dataset (i.e., positive), and the other as the
unprotected dataset (i.e., negative). For the protected subset,
we generate ten different published versions (i.e., D1, ..., D1g)
and train ten corresponding suspect models (i.e., Sp1, ..., Sp10)
for verification. For the unprotected subset, we first create
ten different datasets through random sampling and train ten
models (i.e., Su1, ..., Sn10)-

TABLE II: SSIM comparison on various datasets.

Dataset | ML-DA | MT | VICTOR
HMDB-51 0.806 0.681 0.813
UCF-101 0.785 0.680 0.798

During the verification phase, each published dataset D;
(t € {1,...,10}) is used to audit its corresponding suspect
model Sy,;, as well as the ten models trained on unprotected
data S,,; through S,,10. In total, across D; to D1g, we obtain
10 positive samples and 100 negative samples for evaluation.

B. Overall Auditing Performance

In the section, we explore the overall auditing performance
of VICTOR and the baseline. First, we provide an illustration
of generated videos of various methods, as shown in Figure 4.
We further provide the average SSIM comparison of different
methods on various datasets, as illustrated in Table II. We
observe that the changes introduced by VICTOR are relatively
smooth across video frames, whereas ML-DA exhibits more
abrupt transitions between frames due to the independent na-
ture of its perturbations. MT suffers from the highest distortion
because it mixes the original image with other images. The
results in Table II are consistent with our analysis above. The
SSIM of VICTOR is the highest, followed by ML-DA, while
MT is significantly lower than both.

Table III provides the overall auditing performance on the
four evaluation metrics of various methods. We make the fol-
lowing observations. First, VICTOR consistently outperforms
the baselines across all evaluation metrics, demonstrating its
effectiveness. This is attributed to its ability to amplify the
influence of modified samples on the target model, thereby
enabling more accurate detection of dataset misuse. Second,
the value of Aacc on the HMDB-51 dataset is lower than that
on UCF-101. This is likely due to the smaller scale of HMDB-
51, where the impact of modified samples is more pronounced.
Third, for ML-DA, the TPR is zero in multiple scenarios, and
F1 scores cannot even be computed because both precision
and recall are zero. On the one hand, ML-DA relies on
comparing the predictions of published and unpublished data.
This is less effective in the video domain, where models
make decisions based on the joint information from multiple
frames. On the other hand, ML-DA requires a relatively high
proportion of modified samples to be effective. When only
a small number of samples are modified, ML-DA struggles
to produce meaningful results. Moreover, for MT, the TPR
reaches 1 on HMDB-51, but the corresponding FPR remains
high. This is because MT determines the decision threshold
based on the loss distribution of non-member data on the
suspect model. However, the loss of member data on a model
that has not actually been trained on the target dataset can still
fall below this threshold, leading to frequent misclassification.
The issue is further exacerbated when the suspect model is
trained from scratch (i.e., SlowFast), as its output tends to
be more random. Furthermore, the accuracy of MT drops
significantly due to its heavy distortion of the original data. In
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Fig. 4: An illustration of generated videos of different methods.

TABLE III: Overall auditing performance on the evaluation metrics.

Model 13D SlowFast TSM
Dataset
atase Metrie Method | \\y DA [16] MT [43] VicTOR | ML-DA [16] MT [43] VICTOR | ML-DA [16] MT [43] VICTOR
Aacc -0.063 -0.065 -0.020 -0.072 -0.052 -0.042 -0.043 -0.044 -0.032
HMDB.51 TPR 0.400 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000
Fl Score 0.308 0.500 1.000 N/A 0.294 1.000 N/A 0.357 1.000
FPR 0.120 0.200 0.000 0.000 0.480 0.000 0.100 0.360 0.000
Aacc -0.024 -0.038 -0.021 -0.014 -0.036 -0.012 -0.015 -0.038 -0.011
UCF-101 TPR 0.000 0.700 1.000 0.000 0.800 1.000 0.000 0.800 1.000
Fl1 Score N/A 0.609 1.000 N/A 0.229 1.000 N/A 0.889 1.000
FPR 0.040 0.060 0.000 0.210 0.520 0.000 0.000 0.000 0.000
addition, suspect models trained on larger datasets (i.e., UCF- 10 g T“‘° Positive Rate o7 10 False Positive Rate
101 1y exhibi lizati hich red S RS B
) generally exhibit stronger generalization, which reduces 205 XY KX (X4 0s
o 15 %%
the loss gap between member and non-member samples and o S IS e
leads to a decline in TPR. In contrast, VICTOR achieve 100% im ::zj :z:: E:g o
. . . £ Ve <] 8
accuracy on multiple datasets and models, which emphasizes §02 :::1 :::: :::1 "
. . < KX (X <
the practicality of VICTOR. K 9 5
0.0 [3 sm TS 00 —pp— s e
Suspect Model Suspect Model

C. Ablation Study

In this section, we conduct ablation studies to evaluate the
influence of different components. Specifically, we examine
the effectiveness of the evaluation model, threshold clipping,
and post processing on the overall auditing performance.
Effectiveness of Evaluation Model. Recalling Section V-A
and Section V-B, we adopt an evaluation model to verify
the effectiveness of modified samples, which can help the
selection of samples. In this section, our aim is to explore
the necessity of the evaluation model. Figure 5 illustrates the
TPR and FPR results with and without the evaluation model.
Here, “Without Evaluation Model” means that the modified
and reference samples are randomly selected.

We observe that the verification accuracy is slightly lower
when the evaluation model is removed, compared to the case
where it is applied. Specifically, the TPR decreases when the
suspect model is 13D, and the FPR becomes greater than zero
when the suspect model is SlowFast. This is because, without
guidance from the evaluation model, the selected modified
and reference samples may have less consistent effects on the

B Without Evaluation Model 554 With Evaluation Model

Fig. 5: The effectiveness of evaluation model on the two
metrics of the UCF-101 dataset.

target model, leading to a slight decline in auditing perfor-
mance. The above results indicate that the evaluation model is
helpful to enhance auditing effectiveness. At the same time, we
would like to clarify that VICTOR can still achieve competitive
auditing performance without the evaluation model, rather than
failing completely.

Effectiveness of Threshold Clipping. Recalling Section V-C,
we introduce a threshold clipping mechanism to mitigate
potential false positives. Here, we examine the auditing per-
formance with and without this mechanism. Figure 6 presents
the TPR and FPR on the UCF-101 dataset under both settings.
The results show that while the TPR remains consistent
between the two methods, the FPR is substantially higher when
threshold clipping is disabled. This demonstrates that threshold
clipping effectively reduces the false positive rate of VICTOR.
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Fig. 7: The effectiveness of post processing on the two metrics
of the HMDB-51 dataset.

Moreover, we observe that the impact of threshold clipping
is more pronounced for the I3D and TSM models. This is
primarily because these models are fine-tuned from pretrained
networks, which endows them with stronger generalization
capabilities. In this case, their output differences between
modified and original samples are smaller than SlowFast.
Effectiveness of Post Processing. During the copyright
verification phase, we apply post-processing to the output
probability differences. In this section, we investigate the
necessity of this post-processing step. Figure 7 presents the au-
diting results on the HMDB-51 dataset with and without post-
processing. Without post-processing, various models exhibit
false positives. This is mainly because some suspect models
have relatively weak predictive capabilities, leading to low out-
put probabilities for both the unused original samples and their
modified counterparts. Consequently, the output differences
are also small, which increases the likelihood of misjudgment.
In contrast, after applying post-processing, the FPR drops to
zero. These results emphasize the key role of post-processing
in improving the auditing accuracy of VICTOR.

D. Top-K and Label-only Settings

In this section, we consider two more challenging scenarios
(i.e., Top-K and Label-only) to validate the effectiveness of
VICTOR. In the Top-K (K = 5) setting, only the labels of
the top K highest-probability samples are provided. In the
Label-only setting, only the label corresponding to the highest-
probability sample is output.

Figure 8 and Figure 9 illustrate the auditing performance
on the HMDB-51 and UCF-101 datasets. For the Top-K sce-
nario, VICTOR still exhibits great auditing performance across
multiple suspect models and datasets (i.e., TPR = 1 and FPR
= 0). This highlights the versatility and significant advantages
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of VICTOR in dataset auditing scenarios. For the Label-only
scenario, the TPR of VICTOR in partial cases shows a slight
decrease. The reason is that the obtained information under
this scenario is limited, posing a huge challenge to accurate
auditing. Nevertheless, VICTOR still demonstrates competitive
auditing performance and low FPRs.
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E. Parameter Variation

In this section, our aim is to analyze the impact of various
parameter settings in VICTOR on the final auditing perfor-
mance. In particular, we examine the effects of the perturbation
budget and the modification ratio in the section. The analysis
of the evaluation model and the threshold setting is deferred
to Appendix C due to space limitations.

Impact of Perturbation Budget. Figure 10 illustrates the
performance of VICTOR on four evaluation metrics on the
UCF101 dataset as the perturbation budget ¢ increases from 2
to 10. We observe that as the budget increases from 2 to 6, the
TPR and F1 score consistently improve, the FPR decreases sig-
nificantly, and Aacc drops slightly. When the budget reaches
6, the auditing accuracy across all three models is already very
high. Notably, even with a perturbation budget as low as 2,
VICTOR still achieves a TPR exceeding 0.6 and an FPR below
0.2. These results demonstrate that VICTOR possesses strong
auditing capabilities and can deliver impressive performance
even under a limited perturbation budget.

Impact of Modification Ratio. Figure 11 illustrates the
impact of different modification ratios on auditing performance
using the UCF101 dataset. It can be observed that when the
modification ratio is as low as 0.5%, VICTOR achieves an
FPR of 0 across all three suspect models, along with a TPR
of 100% on the I3D and SlowFast models. The TPR on the
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TSM model in this case is 0.6, possibly because TSM is fine-
tuned from a pre-trained model with relatively few fine-tuning
iterations, making the influence of a low modification ratio less
pronounced. Overall, VICTOR can achieve promising auditing
performance even at a small modification ratio, showcasing
its effectiveness. When the modification ratio increases to 1%
or 2%, VICTOR achieves perfect auditing accuracy on all
three suspect models (i.e., TPR = 1 and FPR = 0), while
maintaining limited impact on normal task performance. These
results confirm that VICTOR can achieve high-precision dataset
auditing with low modification cost.

FE. Robustness

In this section, we investigate the robustness of VICTOR
when the pipeline of target models is perturbed to evade
auditing. Here, we consider three types of classic mechanisms:
input preprocessing, training intervention, post-adjustment.
Input preprocessing. We explore two various approaches
to handle the input: input perturbation and input detection.
Regarding the input perturbation, this method tries to inject
noise into each frame of all samples. Here, the added noise is
sampled from a Gaussian distribution with standard deviation
o = 10. For input detection, this approach tries to identify
abnormal samples and remove them from the training. The
details of input detection can be found in Appendix C of [71].

Table IV provides the auditing results after introducing the
input perturbation. We summarize the following key obser-
vations: First, adding input noise has a more pronounced
negative impact on the performance of the target model
in the normal task. Second, despite the presence of input
perturbation, VICTOR still successfully identifies all suspect
models on the UCF-101 dataset. On the other hand, the
TPR for the SlowFast and TSM models on the HMDB-51
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TABLE IV: Auditing performance under input perturbation.

Dataset ~ Model | 1oy | StowFast | TSM
Metric

Aacc -0.053 -0.068 -0.052

HMDB-51 TPR 1.000 0.900 0.900

F1 Score 1.000 0.947 0.947

FPR 0.000 0.000 0.000

Aacc -0.060 -0.045 -0.028

UCF-101 TPR 1.000 1.000 1.000

F1 Score 1.000 1.000 1.000

FPR 0.000 0.000 0.000

TABLE V: Auditing performance under early stopping.

Dataset — Model |13 | SlowFast | TSM
Metric

Aacc -0.162 -0.361 -0.185

HMDB-51 TPR 0.500 0.300 0.400

F1 Score 0.667 0.462 0.571

FPR 0.000 0.000 0.000

Aacc -0.160 -0.388 -0.073

UCF-101 TPR 1.000 0.600 1.000

F1 Score 1.000 0.750 1.000

FPR 0.000 0.000 0.000

dataset shows a slight decline. This may be attributed to the
smaller scale of the HMDB-51 dataset, where input noise can
have a stronger influence on the optimization of the target
model’s parameters. Third, VICTOR consistently achieves an
FPR of 0 across all settings. This highlights the robustness
and reliability of VICTOR in dataset auditing. In practical
scenarios, falsely accusing a model of dataset misuse can lead
to severe consequences, including reputational harm, financial
costs, and strain of judicial resources, particularly in high-
stakes intellectual property disputes.



TABLE VI: Auditing performance under post-adjustment.

Type Fine-tuning Model pruning Output noise
Dataset N, Model | '13p  SlowFast TSM | I3D  SlowFast TSM | I3D  SlowFast TSM
Aacc -0.032 -0.018 -0.047 | -0.370 -0.396 -0.424 | -0.181 -0.287 -0.222
HMDB-51 TPR 0.800 1.000 0.900 0.500 0.100 0.600 1.000 0.800 0.900
F1 Score 0.889 1.000 0.947 0.667 0.182 0.750 1.000 0.889 0.947
FPR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Aacc -0.041 -0.002 -0.011 | -0.593 -0.582 -0.616 | -0.156 -0.185 -0.126
UCF-101 TPR 1.000 0.900 1.000 1.000 0.900 1.000 1.000 1.000 1.000
F1 Score 1.000 0.947 1.000 1.000 0.947 1.000 1.000 1.000 1.000
FPR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Training Intervention. In this countermeasure, a malicious
attacker can train the video recognition model for a small
number of epochs to prevent the model from overfitting the
training samples (i.e., early stopping). Here, we choose to train
the models only for 10 epochs.

Table V presents the auditing performance on the two

datasets when early stopping is applied. We make the follow-
ing observations: First, the normal performance of all three
target models declines significantly under early stopping, with
the SlowFast model experiencing the most severe drop. This is
primarily because SlowFast is trained from scratch without the
benefit of pretrained weights, and thus requires more training
epochs to learn and update the model parameters. In this
case, VICTOR demonstrates better auditing performance on the
I3D and TSM models compared to the SlowFast model. For
example, on the UCF-101 dataset, VICTOR achieves a TPR of
1.0 for both I3D and TSM, while the TPR for SlowFast drops
to 0.6. In addition, we find that VICTOR shows more effective
auditing on the UCF-101 dataset than on the HMDBS51 dataset.
This is likely due to the larger scale of UCF-101, which
allows the target model to learn more knowledge within the
same number of training rounds, thereby enabling VICTOR to
more accurately detect dataset misuse. Actually, when early
stopping is applied, the accuracy for the video models like
SlowFast on the HMDB-51 dataset is very low (i.e., around
20%). This indicates that the model has not fully captured
the characteristics of the dataset, making the auditing effect
less than ideal. At the same time, it should also be noted that
the inherent value of this type of model is limited. Finally,
VICTOR maintains an FPR of 0 across all datasets and models,
demonstrating its reliability and practicality.
Post Adjustment. Table VI provides the auditing performance
under various post-adjustment methods. First, we investigate
the impact of model fine-tuning as a potential evasion strategy.
Specifically, we assume that a malicious attacker possesses
a dataset with a distribution similar to the published dataset
(approximately 10% of the original dataset’s scale) and uses
it to fine-tune the suspect model.

The three columns corresponding to “Fine-tuning” report
the performance of VICTOR across four evaluation metrics on
the fine-tuned models. First, we observe that the performance
of the SlowFast model on normal tasks improves after fine-
tuning. This is mainly because the SlowFast model is trained
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from scratch, and exposure to a dataset with a similar dis-
tribution can further enhance its learning. Second, the TPR
of VICTOR shows a slight decline on some scenarios. This
is attributed to the fine-tuning process, which diminishes the
influence of the original published dataset on the target model,
thereby reducing the detectability of dataset misuse. Finally,
VICTOR consistently achieves an FPR of 0 across all settings.
Overall, the above results and analysis suggest that VICTOR
keeps promising performance against model fine-tuning.

Next, we explore the influence of another evasion strategy
(i.e., model pruning). The middle three columns (correspond-
ing to “Model pruning”) in Table VI present the auditing
performance of VICTOR on the HMDBS51 and UCF-101
datasets when the pruning ratio is set to 40%. We observe that
the pruned models exhibit a substantial performance drop on
the normal task. Under this condition, the TPR of VICTOR de-
creases significantly on the HMDB-51 dataset, while it remains
high on the UCF-101 dataset. This discrepancy is primarily
due to the smaller scale of the HMDB-51 dataset, which limits
the performance of the trained model. After pruning, the test
accuracy on HMDB-51 becomes extremely low, posing con-
siderable challenges to the audit process. In contrast, although
model performance on UCF-101 also declines after pruning,
it remains superior to that of the pruned models on HMDB-
51, enabling VICTOR to maintain high auditing effectiveness.
Moreover, VICTOR still achieves zero false positives across all
three models on the two datasets. In summary, while model
pruning can reduce detection effectiveness to some extent, this
operation also severely impairs the model’s performance on
normal tasks, limiting its practicality.

Finally, we investigated the impact of introducing noise
into the model’s output. Specifically, we injected zero-mean
Gaussian noise with a standard deviation of 0.1 into the model
outputs to simulate this disturbance. The last three columns
(i.e., “Output noise”) in Table VI present the auditing results
of VICTOR under this setting. On the one hand, the injected
noise significantly degrades the model’s performance on the
original normal task. On the other hand, VICTOR maintains
100% auditing accuracy on the UCF-101 dataset, while its
TPR exhibits a slight decline on the HMDB-51 dataset. This
difference can be attributed to the varying scales of these two
datasets, which lead to differences in the performance of the
corresponding target models. These results demonstrate that



VICTOR remains robust even in the presence of output noise,
further validating its effectiveness in practical audit scenarios.

VII. DISCUSSION

VICTOR is the first auditing mechanism designed for video
data that verifies whether a deployed video recognition model
was trained on the specific dataset. At the same time, VICTOR
still has several limitations that warrant further investigation.
First, black-box query access may be unavailable for fully
offline-deployed systems. Further, sophisticated adversaries
aware of our auditing mechanism could develop adaptive
evasion strategies. Therefore, evaluating robustness against
more sophisticated adaptive evasion strategies and reducing
computational overhead for scalable deployment will be valu-
able future work.

VIII. CONCLUSION

In this paper, we propose VICTOR, a method for verifying
whether a target video dataset is used to train a suspect
recognition model. The core idea is to amplify the influence
of published modified samples on the prediction behavior
of the target model. By injecting carefully designed noise
and selecting specific samples, combined with key hypothesis
testing, VICTOR can achieve 100% auditing accuracy across
two datasets and three target models while keeping the modi-
fications nearly imperceptible. Extensive ablation experiments
validate the effectiveness of various components. Furthermore,
we also explore the impact of different parameter settings.
Finally, we evaluate the robustness of proposed VICTOR,
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APPENDIX
A. Threshold Analysis

Theorem 1 (Threshold range under TPR and FPR Con-
straints). Let h denote the average probability difference be-
tween two models over n samples. Assume that under the null
hypothesis (i.e., same training dataset), h ~ N(ug,o2/n);
and under the alternative hypothesis (i.e., different training
datasets), h ~ N(ui,0?/n), with po < . For given
significance levels a (FPR) and b (FNR), any threshold T
satisfying
T € [po + Z1fbﬂ,/l1 + Zaﬂ}

vn vn

ensuring that TPR = P(h < 7|Hp) > 1 —b and FPR =
P(h <7|Hy)<a.

Proof. The TPR and FPR can be expressed as follows:

TPR(1) = P(h < 7|Hp) = @(;O;\/“%),
T — W1

FPR(r)=P(h < 7|H) =@ :

(7) = P(h < 7l = o~ 00)
where ®(-) is the cumulative distribution function of the
standard normal distribution. According to the constraints of
TPR>1—-band FPR < a, we can obtain

T~ Ho > 21,
= <1—
oo/\/n ’
F—
o < Za,

o1/vn

which directly yield the bounds as follows:

go
Tmin = Mo + Zl—bﬁﬂ-max =1+ Za\/ﬁ
O]

Determination of the upper threshold. In practice, due to
the diversity of video models and datasets, it is difficult to
obtain accurate values of the above parameters. According to
existing research [01, 64, 77], the accuracy of training with the
same dataset fluctuates by about 1%-2%, while the migration
between different training datasets can cause the accuracy de-
viation to exceed 5% or even 10%. Therefore, here we assume
that po = 0.02,09 = 0.01, 41 = 0.08,01; = 0.02,n = 100,
let a b 0.05, we can calculate T, =~ 0.022 and
Tmaz =~ 0.077. To achieve a suitable trade-off between TPR
and FPR, we choose the upper threshold limit H as the
midpoint between the minimum and maximum values, i.e.,
H = (Tmin + Tmaz)/2 = 0.05.

B. Discussion of Other Methods

In this work, we apply the SOTA auditing methods (i.e.,
ML-DA [16] and MT [43]) for image data to the video domain
as the baselines. For these methods, we process each frame in
the video separately and then merge them together.

The idea of ML-DA is to generate two images as far apart as
possible for the same sample and then randomly select one to
publish, and finally use the suspect model’s output on the two
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generated images for auditing. On the one hand, this method
requires a large modification ratio in the published version.
On the other hand, video models are more robust in terms of
recognition accuracy, making this method less effective.

For MT, a data marking technique based on image blending
and noise injection is designed to mark target data. Then, a
membership inference-based inference process is utilized to
achieve the verification by observing the loss values. Though
MT only requires to mark a small fraction of data, it obviously
degrades the marked image quality, which reduces the stealthi-
ness. In addition, due to the complexity of the video model and
the diversity of video data, the outputs of member samples and
some non-member samples are prone to present similar outputs
(such as both high or low), which can interfere with the audit
results. Moreover, for MT, calculating the threshold based
on the non-member loss distribution cannot consistently yield
promising results across different video models and datasets.
Furthermore, video data consists of a sequence of frames, and
injecting different noise into consecutive frames independently
can easily disrupt the coherence of the video.

Many gradient optimization-based auditing methods [10,
20] designed for image data are difficult to directly apply to
video. This is because raw videos typically undergo frame
sampling and cropping, which disrupt the input continuity.
As a result, generating effective perturbations for the entire
video based on limited input information becomes highly chal-
lenging. In addition, many backdoor-based methods require
modifying the true labels of the original data, which is often
impractical in real-world scenarios. Such approaches are prone
to introducing harmful side effects and potential security risks.

C. Parameter Variation

1) Impact of Perturbation Budget: Figure 12 illustrates
the impact of various perturbation budgets for three suspect
models on the HMDB-51 dataset. We find that even with a
perturbation budget of only 2, VICTOR could still achieve a
TPR of 1 on the I3D and SlowFast models while maintaining
a low FPR. This is because the HMDBS51 dataset is relatively
small in scale, and the target model’s performance is generally
lower than on the UCF-101 dataset. In such a setting, VICTOR
is more likely to succeed in amplifying the effect of the modi-
fied samples. The TSM model exhibits a lower TPR compared
to the other two models. We speculate that this is due to
fewer training epochs, making the impact of a low perturbation
budget less noticeable. As the value of ¢ increases, the auditing
performance of VICTOR continues to improve. When ¢ reaches
4, VICTOR achieves 100% auditing accuracy on both the 13D
and SlowFast models, further demonstrating its effectiveness.
Additionally, the modified samples lead to the most significant
performance drop on the SlowFast model, likely because it is
trained from scratch without a pre-trained backbone, resulting
in higher instability during training.

2) Impact of Modification Ratio: Figure 13 presents the
auditing performance under different modification ratios on
the HMDB-51 dataset. We observe that when the modification
ratio is 0.5%, the TPR of the three models does not reach 1,
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remaining around 0.6-0.8. This is primarily because HMDB-
51 is relatively small in size, and a 0.5% modification ratio
corresponds to only about ten samples. Under such conditions,
achieving high-precision auditing is challenging, as numerous
factors influence model training, and the amplification effect
of only a few modified samples tends to be unstable. Neverthe-
less, VICTOR still achieves a TPR above 0.5 and an FPR below
0.05 across all three suspect models, demonstrating its strong
auditing capability. As the modification ratio increases to 1%
and 2%, VICTOR can achieve a 100% detection accuracy (i.e.,
TPR = 1 and FPR = 0), further highlighting its effectiveness.

3) Impact of Various Evaluation Models: Figure 14
presents the results for four metrics on the UCF101 dataset
using different evaluation models. We observe that when 13D
and TSM are used as evaluation models, both the TPR and
FPR achieve optimal performance. In contrast, when SlowFast
is applied, the auditing accuracy slightly declines. This is
likely because SlowFast is trained from scratch without pre-
trained weights, resulting in weaker generalization ability.
Consequently, the selected samples are less effective compared
to those identified by the other two models. These findings
suggest that stronger evaluation models lead to more appro-
priate sample selection, thereby enhancing the final auditing.

Figure 15 presents the auditing results of different evalu-
ation models for various suspect models on the HMDB-51
dataset. First, we observe that all evaluation models achieve
100% detection accuracy across different suspect models,
fully demonstrating the superiority and robustness of VICTOR.
Second, we find that when the suspect model is SlowFast, the
performance on normal tasks degrades most significantly. This
is mainly because, unlike the other two models, SlowFast is
trained from scratch without leveraging a pre-trained model,
making its training more unstable.
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Fig. 13: The impact of modification ratio for three various suspect models on the four metrics of the HMDB-51 dataset.

4) Impact of Threshold Setting: As discussed in Sec-
tion V-C, we apply a threshold clipping mechanism during
hypothesis testing. In this section, we examine how different
settings of the threshold upper bound H affect the audit results.
Since VICTOR performs well under various thresholds when
the perturbation budget € is 10, here we focus on a more
challenging scenario and present the changes in TPR and FPR
for three suspect models on the UCF-101 dataset when the
perturbation budget ¢ is set to 4.

As shown in Figure 16, when H is set to a very small
value (e.g., 0), it imposes a strict condition where the output
probability of the original sample must be significantly lower
than that of the modified sample for a dataset misuse to be
detected. In this case, the FPR of all three suspect models is
0, but the TPR drops to 0.6. Conversely, when H is set to a
larger value (e.g., 0.2), the TPR increases, but the FPR also
rises significantly. These results indicate that setting H too low
or too high leads to suboptimal auditing outcomes, i.e., either
a reduced detection rate (low TPR) or increased false alarms
(high FPR). Therefore, selecting an appropriate value for H
is critical to balancing TPR and FPR. We find that H = 0.05
provides a good trade-off between these two aspects, which
is consistent with our analysis in Appendix A. Therefore, we
adopt this value as the threshold upper bound.

Figure 17 presents the TPR and FPR results under different
threshold upper bounds on the HMDB-51 dataset. Consistent
with the trends observed on the UCF-101 dataset, we found
that when the threshold upper bound H is set to a very
small value (e.g., 0), the FPR remains very low, but the
TPR drops significantly. As the threshold increases, the TPR
improves notably, but at the cost of a higher FPR. To strike a
good balance between TPR and FPR across different datasets
and suspect models, we consistently set H = 0.05 in the
experiments.
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Fig. 16: The impact of different threshold uppers for three
various suspect models on the two metrics of the UCF-101
dataset when the noise perturbation budget € = 4.
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Fig. 17: The impact of different threshold uppers for three
various suspect models on the two metrics of the HMDB-51
dataset when the noise perturbation budget € = 4.

D. Results on Larger Dataset and Backbones

In this section, we explore the effectiveness of VICTOR on a
larger dataset (i.e., SSv2) and the transformer-based backbone
(i.e., TimeSformer).

18

14: The impact of different evaluation models for three suspect models on four metrics of the UCF-101

F1 Score Aacc

1.000 0.952 1.000

-0.021

1.000 0.857 1.000

1.000 1.000 1.000

13D SlowFast TSM

Evaluation Model

13D SlowFast

Evaluation Model

TSM

dataset.

F1 Score Aacc

1.000 1.000 1.000 -0.023

1.000 1.000 1.000

1.000 1.000 1.000 -0.038 -0.036

13D SlowFast TSM

Evaluation Model

13D

SlowFast
Evaluation Model

TSM

15: The impact of different evaluation models for three suspect models on four metrics of the HMDB-51 dataset.

TABLE VII: Auditing performance for the TimeSformer
model on the SSv2 dataset.

Metric |
Result |

TPR
1.000

FPR F1
0.000 1.000

Aacc
—0.003

TABLE VIII: Auditing performance for the TimeSformer
model on the SSv2 dataset under Top-K and Label-only
settings.

Setting | TPR FPR
Top-K 1.000 0.000
Label-only 1.000 0.001

Table VII provides the overall auditing performance of
VICTOR. It can be seen that VICTOR still achieves perfect
auditing results on the large datasets, which highlights the ver-
satility of VICTOR. Furthermore, we also explore the auditing
performance under Top-K (K = 5) and Label-only settings.
As shown in Table VIII, VICTOR still exhibits great auditing
accuracy. VICTOR achieves 100% auditing accuracy with the
Top-K setting, while a slight decrease in auditing performance
occurs with the Label-only setting. This indicates that VICTOR
remains robust to stricter constraints.



