Fast Pointer Nullification for Use-After-Free
Prevention

Yubo Du Youtao Zhang Jun Yang
University of Pittsburgh University of Pittsburgh University of Pittsburgh
yubo.du@pitt.edu youtao @pitt.edu juy9@pitt.edu

Abstract—Low-level programming languages like C and C++
offer dynamic memory management capabilities but are vulner-
able to Use-After-Free (UAF) vulnerabilities due to improper
deallocation handling. These vulnerabilities, arising from access-
ing memory through dangling pointers, pose significant risks.
While various defense mechanisms have been proposed, existing
solutions often face challenges such as high performance over-
head, excessive memory usage, or inadequate security guarantees,
limiting their practicality. Pointer Nullification (PN) has gained
attention as a promising UAF mitigation technique by tracking
pointers and nullifying them upon buffer deallocation. However,
existing PN techniques incur inefficiencies due to precisely asso-
ciating each pointer with its target buffer, leading to expensive
metadata lookups. Moreover, they overlook spatial locality in
pointer storage, resulting in a larger number of registrations than
necessary. This paper introduces Fast Pointer Nullification (FPN),
a new PN-based defense that organizes metadata at the region
level to eliminate costly search operations and uses block-based
registration to efficiently capture pointer locality. Experiments on
SPEC CPU benchmarks and real-world applications demonstrate
that FPN provides strong security guarantees while significantly
reducing performance and memory overhead compared to prior
PN techniques.

I. INTRODUCTION

Low-level programming languages like C/C++ provide the
flexibility of dynamic memory allocation and deallocation at
runtime. However, improper use of this feature can introduce
Use-After-Free (UAF) vulnerabilities, which have become a
critical issue in software security [1]. UAF vulnerabilities
occur when the program accesses memory through dangling
pointers (pointers referencing a previously deallocated buffer).
Such vulnerabilities can lead to unpredictable program be-
havior, including crashes, or can be exploited for arbitrary
code execution, privilege escalation, denial of service, or
information leakage [2]. The prevalence of UAF vulnerabilities
continues to rise, as demonstrated by the growing number of
reported cases in the Common Vulnerabilities and Exposures
(CVEs) database These vulnerabilities affect a broad range of

Thttps://cve.mitre.org/

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240753
www.ndss-symposium.org

18 bytes [16 bytes I 32 bytes BN 64 bytes HEE 128 bytes
100

50

0
o e ot g ray
pef\‘oe ° o0 0«“;%

Percentage (%)

»\Qgr(\)c‘om\é ‘/:Lg\bfe ‘.\deV \ee\a P\\‘ G

Fig. 1: Percentage of adjacent pointer storage locations regis-
tered to the same buffer on SPEC CPU 2017 under different
adjacency thresholds (8—128 bytes).

widely used applications, with their impact becoming increas-
ingly severe. For instance, in 2024, 84 UAF vulnerabilities
were found in Google Chrome, 58 of which were classified as
high-severity vulnerabilities capable of enabling arbitrary code
execution or privilege escalationE] This marks a significant
increase compared to 2019, when only 39 UAF vulnerabilities
were reported in Google Chrome, highlighting the growing
need for robust and efficient UAF mitigation or defense
strategies.

Defending against UAF vulnerabilities is inherently chal-
lenging. Dangling pointers can exist anywhere in a program
and propagate across functions or modules, making detection
and mitigation particularly difficult. Various defense mech-
anisms have been proposed, each with trade-offs in per-
formance, memory consumption, security, and compatibility.
Static analysis methods [3]-[7] trace the execution flows
to identify dangling references at compile time. Runtime
sanitizers [8]—[20] validate pointers before memory access at
runtime. Secure allocators randomize buffer addresses [21]—
[23] to reduce the probability of UAF. One-Time Allocators
(OTAs) prevent the reuse of freed buffer addresses [24]—[28]],
limiting each virtual address to be used only once. Garbage
collection (GC) [29[]-[32] ensures buffers are not deallocated
until no pointers reference them, preventing address reuse.

Among these solutions, Pointer Nullification (PN) meth-
ods [25[], [33]-[37] stand out as a promising approach that
effectively prevents UAF vulnerabilities while achieving a
favorable balance between security, performance, and compati-
bility, making them well-suited for real-world deployment. PN

Zhttps://cloud.google.com/security-command-center/docs/finding-severity-
classifications

methods prevent UAF vulnerabilities by nullifying dangling
pointers through precise tracking of the relationship between
pointers and their associated heap buffers. When the program
stores a pointer, PN methods instrument the code to determine
which buffer the pointer references and register the pointer’s
storage location in the buffer’s metadata. During deallocation,
PN methods traverse all registered storage locations associ-
ated with the freed buffer and invalidate (nullify) the stored
pointers. Further memory accesses through dangling pointers
will stop the program, effectively detecting or preventing UAF
vulnerabilities.

However, tracking the exact points-to relationship between
pointers and buffers in prior PN methods is inefficient, often
incurring either high performance overhead or substantial
memory usage. First, determining the target buffer for a
given pointer and locating the corresponding metadata entry
typically involves either traversing all active buffer boundaries
(i.e., start and end addresses) [25] or executing computa-
tionally intensive arithmetic operations [37]. A performance
breakdown of CAMP reveals that computing the address of
the buffer’s metadata entry alone contributes 62.50% perfor-
mance overhead. This observation motivates the design of a
constant-time metadata lookup mechanism that also minimizes
computational complexity.

Second, PN methods register pointer storage locations inde-
pendently, without leveraging the strong spatial locality often
exhibited among these locations. Our empirical study on the
top 10 SPEC CPU 2017 benchmarks—ranked by the num-
ber of heap pointer storage operations—reveals that pointers
referencing the same buffer are frequently stored at adjacent
memory addresses. As shown in Fig. [I] we define pointer
storage locations as adjacent if the distance between them
falls below a threshold ranging from 8 to 128 bytes. During
each registration, we check whether a newly registered pointer
storage location has a previously registered neighbor for the
same buffer within the threshold. Results show that 30.96%
of newly registered locations are adjacent to a previously
registered one at the 8-byte threshold, increasing to 75.31%
at 128 bytes (see Section [V-A)). Despite this high locality,
existing PN methods treat each storage location individually,
missing opportunities to reduce memory overhead through
locality-aware registration schemes. This leads to substantial
memory inefficiency, especially in programs with frequent
pointer storage operations. For example, CAMP imposes more
than 20x memory overhead on perlbench and fails to
complete omnetpp on a desktop with 32GB RAM due to
memory exhaustion. These findings underscore the need for a
more efficient PN design that better exploits spatial locality,
while preserving strong security guarantees.

To address these inefficiencies, we propose Fast Pointer
Nullification (FPN), which improves prior PN methods from
two key perspectives. First, FPN enables constant-time and
lightweight metadata address computation by organizing meta-
data at the granularity of 2V -byte-aligned memory regions,
rather than per buffer. When the program stores a heap pointer,
FPN computes the address of the corresponding region’s

metadata using a single bit-shift and addition operation. This
eliminates the need for costly tree traversals or computation-
ally intensive computations to identify the target buffer, sig-
nificantly reducing the performance overhead of registration.
Second, FPN exploits spatial locality in pointer storage loca-
tions by registering 2 -byte-aligned memory blocks instead
of individual storage locations. In the remainder of this paper,
we use the term region to refer to the address range targeted
by a pointer and block to refer to the memory chunk that
stores that pointer. FPN calculates the starting address of the
block containing the pointer and looks up the region metadata
to identify and eliminate duplicate registrations. By leverag-
ing the clustering of pointer storage locations, this block-
based design substantially reduces the number of registrations
and associated memory overhead. Although pSweeper [36]
also bypasses precise points-to tracking, it does not optimize
registration numbers and therefore fails to achieve the same
memory efficiency as FPN.

We then evaluate FPN’s performance and memory overhead
using the SPEC CPU 2017 and SPEC CPU 2006 benchmark
suites. On SPEC CPU 2017, FPN incurs a geometric mean
performance overhead of 17.78% and memory overhead of
8.34%; on SPEC CPU 2006, the average performance and
memory overhead are 15.55% and 9.18%, respectively. Both
are significantly lower than baseline PN methods. To validate
FPN’s applicability to real-world software, we instrument
Chrome and Nginx, confirming that FPN is compatible with
large-scale, multi-threaded browsers and server applications
while maintaining low overhead. We further analyze FPN’s
internal behavior to illustrate how its block-based registration
approach reduces the number of pointer storage location regis-
trations, contributing to lower memory usage. We also present
a performance breakdown across FPN’s core components.
Finally, we conduct a parameter sensitivity study to understand
how different design configurations affect FPN’s performance
and memory efficiency.

Our contributions can be summarized as follows E}

o We analyze the inefficiencies of existing PN methods
and identify that tracking the exact points-to relationship
between pointers and heap buffers introduces significant
performance and memory overhead.

o We propose FPN, which instead tracks relationships be-
tween blocks and regions. Through lightweight address-
ing and locality-aware registration, FPN significantly
reduces performance overhead and memory consumption.

« We implement FPN and evaluate it across standard bench-
marks and real-world applications. FPN achieves lower
performance overhead and substantially lower memory
overhead than prior PN methods, while preserving strong
security guarantees and full compatibility with multi-
threaded applications.

3FPN is avaliable at https:/github.com/duyubo/Fast-Pointer-Nullification-
NDSS-2026

1
1
1
Stack 1
&Ptr1 |
i Ptr1 '
1
1
1 STniamesenill]
| GanEEEEEETTTT T e,
Heap . :
V[(Buffert info:
+ Start address
Buffer1 < C End address

Pointer list

\[&Ptr1 |, I &Ptr2]

(b) Metadata

Global & Static

char *Ptr1 = malloc (32);

o S

i
1
1
1
1

P2 Sl | 4 global char *Ptr2 = Ptr1 + 16;
1
: free(Ptr1);
1
1
1

(a) Memory : (c) Program

Fig. 2: The overview of PN.

II. BACKGROUND
A. Use-After-Free (UAF)

UAF vulnerabilities occur when a program accesses mem-
ory through dangling pointers, which are pointers referenc-
ing already deallocated buffers. In C/C++, a program can
dynamically allocate memory at runtime using the malloc
function, which reserves space on the heap and returns a
pointer to the start of the allocated buffer. The buffer can then
be accessed through this pointer or any pointers derived from
it. The lifetime of these pointers varies depending on where
they are stored; for example, pointers stored in global memory
may remain valid for the entire duration of the program.
However, once the program frees the buffer, these pointers
are no longer valid to be used, even though their storage
locations may continue to be accessible. After deallocation,
the memory previously occupied by the buffer may either
become inaccessible or be reassigned to another buffer for
a different purpose. Accessing memory through accessible
dangling pointers can therefore lead to system crashes, data
corruption, or even the execution of malicious code. This
mismatch between pointer lifetime and buffer lifetime is
the fundamental cause of UAF vulnerabilities. Unfortunately,
C/C++ lacks built-in mechanisms to prevent the misuse of
dangling pointers, making UAF vulnerabilities both common
and dangerous.

B. Pointer Nullification (PN)

The key idea of PN is to track the associated pointers
for each buffer and nullify them when the program frees

the buffer. This approach ensures that any memory access
using a dangling pointer will reference an invalid address,
thereby stopping the program and preventing further issues.
PN consists of three parts: (1) setting up metadata when the
program allocates a new buffer; (2) searching the associated
buffer for a pointer and registering this pointer’s storage
location for the associated buffer, when the program stores
a heap pointer (a pointer points to heap); (3) nullifying all
associated pointers of the buffer when the program frees it.

Fig. [2| provides an overview of how PN works. In part (1),
PN maintains metadata for each heap buffer, stored either as
nodes in a red-black tree [25]] or entries in a hash table [33]]—
[35]], [37]. This metadata includes the buffer’s boundaries (i.e.,
start and end addresses) and a dynamically maintained pointer
list that records the storage locations of all pointers referencing
the buffer. In part (2), when the program stores a pointer,
PN identifies the buffer it references by checking which
buffer’s boundaries cover the pointer value. Once identified,
PN appends the pointer’s storage location to this buffer’s
pointer list. In part (3), upon deallocation, PN retrieves the
metadata of the freed buffer, iterates through the pointer list,
and nullifies the pointers that still refer to this buffer by
modifying them to invalid values (e.g., changing the unused
upper 16 bits from 0x0000 to Oxff£ff). After completing
this nullification step, PN deletes the metadata entry associated
with the buffer. Fig. [2[c) presents a concrete example. Lines
instrumented by PN methods are highlighted in green. At line
1, the program allocates a buffer labeled as Bufferl. The
malloc function returns the pointer Pt r1, which is saved on
the stack at sPtr1. Then PN sets up metadata for Bufferl
at line 2, recording its starting and end addresses. At line
3, PN registers the location &Ptrl to Bufferl’s pointer
list. At line 4, the program adds offset 16 to Ptr1 and saves
this derived pointer to &Pt r2, which is on global memory. In
response to line 4, at line 5, PN registers &Pt r2 to the pointer
list of Bufferl. At line 6, the program frees Bufferl.
Then, at line 7, PN goes through the pointer list and nullifies
the pointers saved at &Ptrl and &Ptr2 to invalid values. In
the end, PN deletes the metadata for Bufferl at line 8.

III. THREAT MODEL

FPN aims to prevent UAF vulnerabilities by eliminating
memory access through dangling pointers, which can reside in
the stack, heap, or global/static memory. It follows the same
threat model as previous PN methods [25], [33], [34], [37].
FPN operates in user space and assumes access to C/C++
source code for instrumentation at compile time. FPN does not
track pointers residing in CPU registers due to their transient
nature and limited exposure surface. The model assumes that
the program contains only UAF vulnerabilities, with other
classes of memory safety bugs (e.g., buffer overflows, type
confusion) mitigated through orthogonal mechanisms such
as [38]]. The adversary is assumed capable of manipulating pro-
gram inputs and controlling allocation/deallocation patterns to
induce UAF vulnerabilities. Their goal may include arbitrary
code execution or privilege escalation via exploitation of UAF

conditions. We assume a trusted compiler toolchain and run-
time environment, and that the adversary cannot access FPN’s
internal metadata, which can be achieved by mechanisms
such as address space layout randomization (ASLR) [39]
(used in our implementation) or hardware-based isolation (e.g.,
ERIM [40]).

IV. FAST POINTER NULLIFICATION (FPN)
A. Motivation

Tracking the precise points-to relationship between pointers
and buffers introduces significant inefficiencies. Previous PN
methods either require time-consuming search operations or do
not exploit the spatial locality of pointer storage locations. As
a result, they suffer from either high performance overhead or
excessive memory usage. First, identifying the target buffer for
a pointer and locating its corresponding pointer list typically
requires searching across all active buffer metadata, resulting
in high performance overhead. For example, DangNULL [25]]
uses a red-black tree to organize metadata, incurring log-
arithmic lookup time proportional to the number of active
buffers. Because these lookups are performed frequently, they
contribute significantly to runtime overhead. CAMP [37] ad-
dresses this issue by leveraging a segregated list allocatoﬂ
which enables constant-time metadata lookups. However, each
lookup still involves computationally expensive arithmetic
operations. As shown in Fig. [}(a), when storing a pointer,
CAMP first identifies the page to which this pointer points
(®). It then conducts a table lookup to retrieve metadata
for the corresponding span, which represents a contiguous
region allocated for buffers of the same size (®). Later, it
calculates the buffer ID using addition and division operations
(®). Finally, it uses this ID to access the associated pointer
list’s address through a table lookup (®). Although this
design avoids tree-based lookups, it still incurs measurable
performance overhead. Our performance breakdown of CAMP
shows that getting the pointer list address alone accounts for
62.50% performance overhead. This observation motivates the
need to find a method that enables constant-time lookups while
only involving lightweight operations.

Second, previous PN approaches register pointer storage
locations without leveraging spatial locality, resulting in high
memory overhead. We observe that the pointers to the same
buffer are usually stored at adjacent locations. Our quantitative
analysis on SPEC CPU 2017 further confirms this observation,
as shown in Fig. [I] We define two pointer storage locations
as adjacent if their address difference is within a given
threshold, varying from 8 to 128 bytes. Before registering a
new location, we check whether an adjacent one has already
been registered for the same buffer under this definition. At an
8-byte threshold, 30.96% of new registrations are adjacent to
existing ones. This rate increases to 43.21%, 59.09%, 69.82%,
and 75.31% for thresholds of 16, 32, 64, and 128 bytes,
respectively. Despite this clear locality, all previous PN meth-
ods register pointer storage locations independently, without

“https://google.github.io/tcmalloc/

[T T T T T s = —-— 1
Store ptr, store_location !'store ptr, store_location

@] Ptr>>12 @} Ptr>> N

Buffer_id ——
(a) Previous (CAMP)

Region_info[region_id]
(b) FPN

1 1
| : -
1 | 1
1 | 1
1 1
1 Page_id : Region_id — 1
: Span info table Buffer info table 1 Region info table :

1
: Span start1 Pointer list1 1 Block list1 :
1 Buffer size1 Pointer list2 : Buffer list1 1
1 Buffer info1 - 3 | !
1 c — Pointer list3 @ | Block list2 1
1 pan sta Pointer list4 1 | Buffer list2 !
1 Buffer size2 | 1
1 | Buffer info2 _ Bk Lt 1.
1 Buffer_info[buffer_id]|, ® 1
1 1
1 : 1
1 1

! 1

Fig. 3: Comparison of search operations between CAMP and
FPN.

considering this property. Techniques like static analysis [33],
shadow memory [25], [33], [35]], and caching [37] attempt
to reduce redundancy but only eliminate exactly the same
addresses, not nearby addresses. On the benchmarks with
frequent buffer allocations and heap pointer storage operations,
such as omnet pp, prior methods incur more than 10x memory
overhead or even crash systems with 32 GB RAM. An
alternative approach by Liu et al. [36] also avoids tracking
exact pointer-to-buffer relationships by associating pointers
with all heap buffers collectively. While this design offloads
nullification to a separate thread to reduce runtime overhead,
it does not reduce the number of registrations. This method
still incurs high memory overhead—112.50% on average on
SPEC CPU 2006, as reported in their paper. This observation
motivates us to explore a method that can fully take advantage
of the locality in pointer storage locations.

B. Preliminary

The motivation behind FPN is to address two key ineffi-
ciencies in prior PN approaches during pointer registration:
high performance overhead caused by time-consuming lookup
operations, and high memory overhead caused by individ-
ually registered pointer storage locations. FPN introduces a
constant-time addressing mechanism composed of only one
bitwise operation and one table lookup, eliminating the need
for complex arithmetic or tree traversal. Concurrently, FPN
exploits spatial locality among pointer storage locations by
grouping adjacent locations into blocks to reduce memory
overhead. FPN’s core idea is to track the points-to relationship
from 2M -byte-aligned blocks (each of size 2 bytes) to 2V-
byte-aligned regions (each of size 2%V bytes), as illustrated in
Fig. 4l FPN maintains metadata per region using a shadow
memory, rather than maintaining metadata per buffer or ad-
dress. Each region is aligned to a 2/V-byte starting address, and
its corresponding metadata entry is stored at a fixed offset in
the shadow memory. When the program stores a heap pointer,
FPN relies solely on one bit shift and one table lookup to
get the address of the corresponding pointer list, keeping the

(a) Points-to Relationship (c) FPN

Buffer3 info

I 1
! Heap MemOI’yF ! Buffer! metadata Buffer2 metadata Buffer3 metadata Buffer4 metadata :
| 1
! ! | Pointer list1 | | Pointer list2 | | Pointer list3 | | Pointer list4 | |
! Ptr1 ! 1
! Buffer1 ! L2 Y y 1
! pt2 | Blockt | (8Pt | [sp2 | = (st]
: Region1 < 2MB : !
: 2'B Buffer2 Pr3 | [&Pz) [&pt3 | [apts | !
! < ' (Buffertinfo] (Bufferzinfo | [Buffer3info | (Buffer4info | i
1 > 1
! X P2 1 | Biockz ! :
!] Z(LCB ! (b) Previous | 1
- Buffer3 — Pu5 | L R D Dt :
X ' Region1 metadata Region2 metadata :
| Region2 < Ptré i | Blocklist1 Buffer list1 | Block list2 Buffer list2 | !
: 2VB / > : v 1
| Buffer4 i [Bockt | [Buffertinfo] [Blockz | [Buffer3info | :
1 1 |
1 1 |
; . (Bme]) (smzm) :
| | !
1 1 |

Fig. 4: Diagram of FPN and comparisons of pointer registrations between previous PN methods and FPN. To illustrate the
points-to relationships more clearly, (a) presents two conceptual views of memory (overlapping with each other): a zoomed-in
view highlighting the heap region that heap pointers reference, and a full-memory view showing where these pointers may be

stored.

performance overhead low. FPN then registers the base address
of the block that contains the pointer, rather than a precise
pointer location. Because pointer storage locations exhibit
spatial locality—where nearby locations tend to reference the
same region—FPN checks whether the block has already
been registered before performing a new registration. This
design enables a single block to represent multiple adjacent
pointer locations, thereby significantly reducing the memory
overhead. Although scanning entire blocks during nullification
may introduce additional performance overhead, deallocations
occur infrequently in most applications, making the overall
performance impact negligible.

C. FPN Design Details

FPN also consists of three core components, similar to
other PN methods (introduced in Section [[I-B). To address
potential false positives introduced by block-based registration,
FPN incorporates a status bit mechanism to precisely track
locations storing heap pointers. The roles of each component
are detailed below.

1) Setting Up the Metadata: Upon buffer allocation, FPN
initializes metadata entries for all regions overlapped by the
buffer. FPN maintains metadata for each region using a
shadow memory table starting from region_info. Each
entry stores two pointers: one to a buffer list containing
metadata (start and end addresses) for overlapping buffers,
and one to a block list for registered block addresses. When
the program allocates a buffer, FPN first calculates the re-
gion range covered by the buffer based on its start and
end addresses: start_region_id start_address

>> N, end_region_id end_address >> N. FPN
then checks whether the metadata entry for each region
in this range (region_info[start_region_id] to
region_info[end_region_id]) has already been ini-
tialized. If so, FPN appends the buffer information to the
region’s buffer list. Otherwise, FPN initializes both lists and
stores their pointers in the corresponding metadata entry before
appending the buffer information.

This region-based metadata design has two key properties:
multiple buffers within the same region share a single metadata
entry, and each region overlapped by one buffer records
metadata for that buffer. As illustrated in Fig. 4] the program
allocates four buffers sequentially: Bufferl, to Buffer4.
Since Bufferl is the first buffer allocated into Regionl,
FPN initializes both the buffer list and block list, then appends
Bufferl’s information to Regionl’s buffer list. When
allocating Buf fer2, FPN detects that Regionl’s metadata
is already initialized and appends Buffer2’s metadata to
the same buffer list. When allocating Buf fer3, which spans
both Regionl and Region2, FPN creates metadata only
for Region2 and updates both regions’ buffer lists with
Buffer3’s information. When allocating Buffer4, FPN
only updates Region2’ buffer list with Buffer4’s infor-
mation.

2) Registering the Block Address: When the program
stores a heap pointer (store ptr, store_location),
FPN registers the starting address of the block con-
taining that pointer to the corresponding block list. As
shown in Fig. b), first, FPN determines the region
that the pointer references using a bit-shift operation:

_______ <
[IR] If FPN !
i It Setting up metadata i
i | Buffer allocation !
1 1
| - - : | Registering block '
: Storing a pointer : ! Metadata ||
1 11 Nullifying dangling pointers 1
i | Buffer deallocation [:
1 Iy 1

__

Fig. 5: Workflow of FPN.

region_id = ptr >> N (®). Then it gets the address
of the corresponding block list: block_list_addr =
region_info[region_id] (®). Compared with the
search operations in CAMP in Fig. [3(a), which requires four
steps in total, including multiple table lookups and division
operations, FPN only needs one bit shift operation and one
table lookup. Next, FPN calculates the starting address of
the block where the pointer is stored: block_address
= store_location & ~(M — 1). FPN then appends
this block address to the end of the region’s block list. To
reduce redundant registrations, FPN checks whether the new
block address is already among the most recent C registered
blocks. If it is found, FPN skips the registration. Here, C is
a configurable constant, meaning the number of check steps,
which can be decided at compile time.

As illustrated in Fig. f[a) and (c), the program stores point-
ers Ptrl to Ptr6 sequentially. The order of store operations
is labeled (1) through (7). Among these, the program stores
Ptr2 twice to the same location: first pointing to Bufferl,
then updated to point to Buffer?2.

(1) Ptrl: Points to Regionl and resides in Block1l. FPN
registers Blockl to Regionl’s block list.

(2) First store of Ptr2: Also in Block1l and references
Regionl. FPN detects a duplicate and skips registration.

(3) Second store of Ptr2: Although the pointer’s target
changes, it still resides in Blockl. FPN again skips
registration.

(4) Ptr3: Same block and region as previous pointers. No
registration needed.

(5) Ptr4: Stored in Block?2, points to Regionl. FPN
registers Block2 to Regionl’s block list.

(6) Ptr5: Points to Region2 and also resides in Block?2.
FPN registers Block?2 to Region2’s block list.

(7) Ptr6: Same block and region as previous pointers. No
registration needed.

This example illustrates how FPN leverages spatial locality

to minimize the number of registrations. For example, FPN

captures pointers such as Ptrl to Ptr3, which reside within

Blockl, pointing to different buffers in Regionl, by regis-

tering only one block address, labeled as (1-4) in Fig. @fc). In

contrast, as shown in Fig. b), prior PN methods register each

pointer individually, resulting in four separate registrations,
labeled as (1) to (4). Similarly, for pointers Ptr5 and Ptr6,
FPN handles them together through B1ock?2, labeled as (6-7)
in Fig. ffc). However, prior PN methods incur two separate
registrations, labeled as (6) and (7) in Fig. f[b). In total, FPN
incurs four fewer registrations.

3) Nullifying the Pointers: Upon buffer deallocation, FPN
nullifies any pointers referencing the freed buffer. FPN first
computes the region number and locates the corresponding
metadata entry using the buffer’s address, following the same
approach as in Section [V-C2] It then traverses the buffer
information list to identify the entry whose starting address
matches the buffer being freed. Using these boundaries, FPN
scans each region that overlaps with the freed buffer. It scans
each registered block for the region and treats each pointer-
sized word as a candidate for nullification. If a value falls
within the memory range of the freed buffer, FPN nullifies
it, as described in Section If the buffer is the only one
associated with the region, FPN removes a scanned block from
the block list after completing the nullification. If multiple
buffers share the region, FPN checks whether the block may
contain pointers to other live buffers. If so, it keeps the block
in the list. Although scanning entire blocks is more expensive
than targeting individual addresses, deallocations are infre-
quent, keeping the overall performance overhead negligible

(Section [VI-E2).

4) Ensuring Compatibility via Status Bit: FPN faces two
compatibility challenges related to pointer nullification during
buffer deallocation. The first issue arises when FPN scans a
block located on a freed buffer. In such cases, the operating
system may have already reclaimed the corresponding page
and marked it as inaccessible. Attempting to access such a
block causes the program to crash unexpectedly. The second
issue involves false positives: nullifying non-heap data that
happens to match a freed buffer’s address range. During
scanning, FPN conservatively treats every pointer-sized value
as a potential heap pointer. If a non-pointer value happens
to fall within the address range of the recently freed buffer,
FPN may mistakenly overwrite it with an invalid value.
Although this nullification does not cause immediate failure,
subsequent use of the corrupted data can lead to unpredictable
program behavior. FPN addresses both issues by introducing a
second shadow memory, status_table, which tracks the
allocation and pointer status of each pointer-sized word. FPN
assigns one status bit per eight-byte word. FPN computes
the corresponding status bit for a memory address via a bit
shifting and table lookup: status_table[address >>
3]. When the program stores a heap pointer to a location, FPN
sets the associated bit to one; when non-heap-pointer data is
stored, FPN clears the bit to zero. Upon buffer deallocation,
FPN clears the status bits for all addresses covered by the
freed buffer. During scanning, FPN only examines locations
with status bits set to one, thereby avoiding unnecessary or
unsafe checks.

(a) (b) (c) (d)

Block1 Block1 Block1 Block1

Block2 Block2 NULL Block4

Block2 > Block2 Block2 Block2

Block1 Block1 Block1 Block1

To Block3 Block3 Block3 Block3
Block3 Block3 Block3

Top: Top: Top

[M Modifying [Regiont [] Region2
Fig. 6: Maintenance of lists in FPN.

V. IMPLEMENTATION

A. Implementation Pipeline

We implement FPN on top of LLVM 18.1.0, adding approx-
imately 2K lines of C++ code. The overall workflow is illus-
trated in Fig. [5] LLVM first compiles the C/C++ source code
into intermediate representation (IR), and FPN instruments the
program at the IR level as follows: During buffer allocation
(e.g., malloc (), new()), FPN initializes metadata entries
for all regions the buffer overlaps (Section [[V-CI). Dur-
ing pointer storage (e.g., store 132% %a_ptr, 132%=x
$ptr_to_a_ptr, align 8), FPN calculates the block
address of the pointer’s storage location and registers it in
the corresponding region’s metadata (Section [V-CZ). Upon
buffer deallocation (e.g., free ()), FPN scans the registered
blocks and nullifies all pointers referencing the freed buffer
(Section [IV-C3). FPN is agnostic to the underlying allocator
and compatible with all standard heap allocators.

B. Maintenance of Lists

FPN manages buffer information lists and block lists using
doubly linked lists to support efficient bidirectional traversal
and dynamic insertion or deletion. Since both list types follow
the same structure, Fig. [uses block lists as an example. FPN
reserves a contiguous memory region with the mmap () system
call and stores list elements from low to high addresses. To
efficiently manage these elements, FPN maintains a pointer
called Top, which marks the highest used address in the
reserved region where the content of the next inserted element
will be stored. When inserting a new element, FPN places
it at the current Top and increments Top afterward. Each
element’s position in memory depends on insertion order, not
the specific list it belongs to. Consequently, elements from
different lists may be adjacent in memory, while those from
the same list may be separated. Fig.[6[a) shows the initial state,
where FPN has already registered Blockl to Block3 for
Regionl, and Blockl and Block2 for Region2. Later,
as shown in Fig. [6[b), FPN registers Block3 for Region2
at the current Top, then updates Top. This new element
is adjacent to Block3 of Regionl, rather than Block?2
of Region2. When deregistering a block, FPN clears the
block address stored in the corresponding element but does not
remove the element from the list. Instead, it updates the list
links and moves the invalidated element to the end of its list,

as shown in Fig. [6[c). When registering a new block, FPN first
checks for available invalidated elements. If one exists, FPN
reuses it to store the new block address. Only when no reusable
element is found does FPN insert a new element at the Top
address and increment Top. This reuse strategy minimizes
the need to increase Top or update list connections, which
is beneficial because registrations occur more frequently than
deregistrations. As shown in Fig. [6{d), when FPN registers
Block4 for Region2, it reuses the invalidated element
previously stored in Block2 instead of inserting a new
element at Top. To further avoid the performance overhead
of increasing Top and adding a new element to a list, FPN
does not request a single element when the associated list is
full. Instead, FPN requests E elements at a time, setting up
the connections of these elements all at once. Here, E is also
a constant number that can be decided at compile time.

CWE Type Total Passed Rate
Double Free (DF) oo 520 320 00%
Use After Free (UAF) C]};d(zid ggi ;gj 188307
Invalid Free (IF) (ool 288 288 0%

TABLE I: Security evaluation of FPN on Juliet Test Set.

C. Thread Locks

To support real-world multithreaded applications, FPN in-
troduces a lightweight locking mechanism that ensures thread-
safe metadata maintenance. FPN categorizes locks into two
types: global-level locks and region-level locks. FPN uses
global-level locks to protect shared metadata structures that are
accessed or modified across all regions. Specifically, it assigns
a dedicated global-level lock to guard the highest used address
in the memory reserved for block list elements and another
for the highest used address in the memory reserved for
buffer list elements. These addresses are frequently updated as
new elements are inserted, making synchronization necessary
to prevent race conditions. FPN also assigns a global-level
lock to the table that maintains status bits. When a thread
attempts to access or update any of these data structures, it
must acquire the corresponding global-level locks to ensure
exclusive access. This guarantees consistency while minimiz-
ing the lock scope to avoid unnecessary contention. FPN
also assigns fine-grained region-level locks. FPN assigns one
lock per region, which guards all metadata associated with
that region—including the region’s buffer list and block list.
When a thread needs to modify or read the metadata of a
specific region, it must first acquire that region’s lock to ensure
exclusive access. This design ensures that only one thread can
update or read metadata within a region at a time, preventing
race conditions, while still allowing other threads to operate
on different regions in parallel. This lock structure balances
safety and scalability, enabling FPN to remain efficient in
multi-threaded environments without introducing bottlenecks
during frequent metadata updates.

(a) 7 fail [DangSan [FreeSentry [CAMP (temporal-only) [FPN (ours)
1
8 10 X 3
c]
©]
E 10% 1
£]
]]
o 1071x
b & 4 5
IS P —
101)(. ~N m ~
>] B
5]
£ 10% A
[0} E
= 1
107 1x L
e(\c‘(\ o 5 o (\e’@Q Cb((\“ *16“ e(\(\e‘ .\e(\(é aé\c“ 2 @ af V‘\(/y&\
Qé\“ o o *@\a“ o o \ &°

Fig. 7: Evaluation of normalized performance and memory of FPN and previous PN methods on SPEC CPU 2017, under

optimization level -O2. Baseline is 1x.

A fail [DangSan

(a)

[FreeSentry

S CAMP (temporal-only) 3 FPN (ours)

107X 3

10°x 5

Performance

107 1x

19.9¢

(b)

1233
15.689
14.03
46.55

10'x 3

10%x 5

Memory

107 1x]

BN
(\be’(\ o
e

Fig. 8: Evaluation of normalized performance and memory of FPN and previous PN methods on SPEC CPU 2006, under

optimization level -O2. Baseline is 1x.

CVE Freesentry Dangsan CAMP FPN (ours)
CVE-2015-3205 x v v v
CVE-2015-2787 v v v v
CVE-2015-6835 x x v v
CVE-2016-5773 v x v v

Issue-3515 v crash ['4 v
CVE-2020-6838 v crash ['4 ['4
CVE-2021-44964 v v v v
CVE-2020-21688 v v v v
CVE-2021-33468 v v v v
CVE-2020-24978 v v v v
Issue-1325664 % % v v
CVE-2022-43286 v v v v
CVE-2019-16165 v v v v
CVE-2021-4187 v v v v

TABLE II: Security evaluation of FPN and related work on
real-world applications with UAF bugs. ¢/ means successfully
preventing UAF vulnerabilities. 8 means failure in preventing
UAF vulnerabilities.

D. Detection of Invalid Free

In addition to detecting use-after-free (UAF) vulnerabili-
ties, FPN also identifies Double Free (DF) and Invalid Free
(IF) errors during buffer deallocation. When a program calls
free (), FPN scans the regions that overlap with the given
address and traverses the registered blocks to locate the
corresponding buffer boundary information (as described in
Section [[V-C3). If FPN fails to find any matching buffer
information, it reports a DF error, indicating the buffer was
already deallocated. If FPN finds the buffer information but
sees that the freed address differs from the buffer’s starting
address, it reports an IF error.

VI. EVALUATION

A. Methodology

We conduct all experiments on a 16-core 12th Gen Intel(R)
Core(TM) i9-12900K CPU with 32GB RAM, operating on
Ubuntu 24.04.3 LTS. We compile the programs with optimiza-
tion level —02. Our evaluation consists of four main parts. In

Benchmark Metric FFmalloc = DangZero FreeGuard MarkUS BUDAIlloc SwiftSweeper xTag RSan FPN (ours)
Performance 1.04x 1.26x 1.02x 1.24x 1.11x 1.05x 1.04x 1.61x 1.17x
SPEC CPU 2017 Memory T.74x T24x 310x T36x T25x T34x 339x 230x L.08x
Performance 1.04x 1.30x 1.05x 1.19x 1.14x 1.07x 1.13x 1.46x 1.16x
SPEC CPU 2006 Memory 1.60x 1.22x 2.10x 1.27x 1.33x 1.22x 242x 3.18x 1.09x

TABLE III: Comparison of geometric mean normalized performance and memory between FPN and non-PN UAF mitigation
methods on SPEC CPU 2017 and SPEC CPU 2006. The detailed results are included in Fig. E] and Fig. @]

Section [VI-B| we first assess FPN’s effectiveness in detect-
ing and preventing UAF bugs using a standard vulnerability
benchmark and a collection of real-world vulnerabilities. In
Section we measure FPN’s performance and memory
overhead on two widely used SPEC CPU benchmark suites.
In Section we evaluate FPN’s compatibility with large-
scale, multithreaded web applications. In Section [VI-E| we
present a hit-rate distribution analysis under varying check
step values and a breakdown of FPN’s core components to
explain its performance and memory efficiency compared to
other PN methods. Finally, in Section we conduct a
parameter sensitivity analysis to study the effects of varying
region sizes, block sizes, and the number of check steps on
FPN’s overhead. For all the experiments, we leave the libraries
for which source code is not avaliable uninstrumented. For
example, on SPEC CPU 2017 and SPEC CPU 2006, we leave
the glibc libraries uninstrumented. And we apply the same
criteria to other PN-based methods.

We compare FPN against the following PN-based tech-
niques: DangSan [34]], a shadow-memory-based PN approach
optimized for scalability; FreeSentry [33]], an early PN method
based on fine-grained shadow memory; and CAMP [37], the
latest PN-based system that employs a segregated list alloca-
tor to accelerate metadata lookup. FreeSentry and DangSan
rely on LLVM versions earlier than 4.0, which are incom-
patible with Ubuntu 24.04.3 LTS. To ensure compatibility,
we update their LLVM passes on LLVM 18.1.0. We also
compare FPN with representative non-PN UAF mitigation
techniques, including: OTA-based allocators—FFmalloc [41]]
and BUDAIlloc [27]; GC-based approaches—MarkUS [29]],
DangZero [26]], and SwiftSweeper [31]; the secure allocator
FreeGuard [22]]; and UAF sanitizers xTag [42] and RSan [43]].
For the evaluation of performance and memory overhead, we
normalize each method to its corresponding baseline; more
details are included in TABLE [Vl

B. Security Evaluation

1) Juliet Test Set: To evaluate the effectiveness of FPN
in preventing UAF bugs, we test FPN on Juliet Test Seﬂ
a comprehensive collection of C/C++ test cases. We select
three subsets: UAF (CWE-416), Double Free (DF) (CWE-
415), and Invalid Free (IF) (CWE-761), as summarized in
Table [Good test cases are programs without any UAF,
DF, or IF errors. They are used to confirm that programs
instrumented with FPN do not mistakenly crash the program
when no UAF-related vulnerabilities occur. The bad tests use

Shttps://samate.nist.gov/SARD/test-suites/112

proof-of-concept (POC) to trigger the corresponding UAF-
related vulnerabilities, enabling us to verify whether FPN can
effectively stop the program when a UAF-related vulnerability
happens. Since FPN prevents UAF by stopping the program
when a dangling pointer is referenced. To ensure that the
program stops specifically due to accessing a dangling pointer
and not for other reasons, we utilize a gdb script to debug the
accessed address at the point of the program crash, following
the methodology outlined in [37]. The script checks if the ac-
cessed address has upper bits set to 0x8000. If this condition
is met, we conclude that FPN successfully prevents the UAF.
FPN successfully passes all bad and good test cases, achieving
zero false negatives and false positives, demonstrating both its
precision and reliability.

2) Real-world CVEs: To further assess FPN’s effectiveness
against real-world UAF vulnerabilities, we evaluate it using
the same test set as CAMP [37]. As shown in Table
the evaluation includes 14 vulnerabilities from 11 widely
used applications—spanning language interpreters, libraries,
browsers, web servers, and UNIX utilities. FreeSentry fails
to detect three vulnerabilities. DangSan misses five, with
unexpected crashes on two of them. In contrast, both FPN and
CAMP successfully compile, execute, and prevent all tested
UAF vulnerabilities. FPN matches CAMP’s security guaran-
tees and outperforms FreeSentry and DangSan in coverage,
demonstrating its robustness as a PN method. Compared with
non-PN UAF mitigation methods summarized in Table
FPN provides stronger UAF protection coverage. For example,
FreeGuard, a performance-oriented secure allocator, relies on
probabilistic defenses and therefore offers limited protection
against targeted UAF exploits, whereas FPN deterministically
prevents UAF dereferences through pointer nullification. RSan
primarily targets spatial memory safety violations and provides
limited coverage for temporal errors; in contrast, FPN achieves
a substantially higher UAF prevention rate by explicitly elim-
inating dangling pointers.

C. Performance and Memory Consumption Evaluation

In this section, we evaluate and compare FPN with previous
PN methods on the SPEC CPU 2017 and SPEC CPU 2006
benchmark suites. We measure performance using built-in
timers provided by the benchmarks themselves. We measure
memory consumption using a shell script to track the Resident
Set Size (RSS) occupied by the program during execution,
recording the maximum value as the memory consumption for
the program. Each measurement is repeated 10 times, with the
average value taken as the final result. We setup N with the
value of 18, M with the value of 30, and C with the value

I FFmalloc I SwiftSweeper [DangSan
@@ FreeGuard [xTag I CAMP
(a) EEE Markus I RSan = FPN (ours)
o Y 4x
gc
= & 3x i
© é I
g S 2x [l N m
ot
z ¢ 1x-
1 2 3 4 5 6
(b)
o 10%x
N g‘ 103x
© £ 10%x
g L 1
5= 10°x
Z 10%
To 1.2
2
£]
5 6 0.6 -
=2 0.4 -

8 16
Thread number

Fig. 9: Performance, memory, and CPU utilization comparison
between FPN and other UAF mitigation methods on Nginx
under different thread numbers. Baseline is 1x.

3. The measurement of FPN incurs less than 1.00% standard
error of performance and less than 3.00% of memory. The
details of each measurement’s standard error are included in
TABLE [VIII

SPEC CPU 2017 As shown in Fig. [/| FPN incurs geo-
metric mean performance overhead of 17.78% and a mem-
ory overhead of 8.34% across all SPEC CPU 2017 bench-
marks, with maximum overheads of 98.40% (performance)
and 47.61% (memory). DangSan has 35.87% mean perfor-
mance and 29.25% memory overhead but fails to execute
several benchmarks with intensive buffer operations, including
perlbench, gcc, and omnetpp. On the benchmarks where
DangSan completes execution, FPN shows lower overhead—
5.87% for performance and 3.17% for memory. FreeSentry
reports 31.76% performance and 159.78% memory geometric
mean overhead. CAMP shows the highest overhead among the
evaluated methods, with a geometric mean overhead of 56.37%
for performance and 173.44% for memory. CAMP fails to
complete omnetpp due to memory exhaustion. Across the
benchmarks where CAMP completes execution, FPN reports
only 13.46% performance and 5.97% memory overhead.

SPEC CPU 2006 On SPEC CPU 2006, as shown in
Fig. 8] FPN incurs a geometric mean performance overhead of
15.56% and memory overhead of 9.18%, with peak overheads
of 169.71% (performance) and 43.4% (memory). DangSan re-
ports the geometric mean overhead of 22.56% for performance
and 73.47% for memory, and fails on perlbench, gcc, and
libguantum. On the benchmarks where DangSan runs suc-
cessfully, FPN achieves significantly lower overhead—12.22%
for performance and 6.06% for memory on average. FreeSen-
try introduces 24.21% performance and 137.34% memory

10

[CAMP (temporal-only) [FPN (ours)

Q3

Bo

2 © ox

§ E

E O 1x 1

29

o gwcg((\c?:\(\cg«\c‘)«\cg‘(\ g((‘ g\(Q %d‘g\ (\\Q O\S\cg(“c%@fg\ B ;‘\ (GPS
o

Fig. 10: Normalized performance comparison between CAMP
and FPN on Chrome. Baseline is 1x.

overhead, both higher than FPN’s. CAMP imposes 40.15%
performance and 100.58% memory overhead and crashes
on omnetpp. On the benchmarks where CAMP completes
execution, FPN maintains lower average overhead—9.93% for
performance and 7.48% for memory.

Compared to FreeSentry, DangSan, and CAMP—all of
which employ fine-grained shadow memory—FPN organizes
metadata at the region level. This design increases the likeli-
hood that a newly registered block address matches an existing
entry, reducing the number of redundant registrations and
thus lowering memory overhead. Moreover, FPN typically
finds an existing registered block within three check steps
(see Section [VI-EI)), ensuring that deduplication introduces
minimal performance overhead. As a result, FPN achieves
both lower memory and performance overhead than prior PN
methods.

We additionally compare FPN with representative non-PN
UAF mitigation techniques (Table [IT). FPN attains the lowest
memory overhead among all evaluated systems, demonstrating
the efficiency of its metadata design. In terms of performance,
FPN outperforms DangZero, MarkUS, and RSan. xTag reports
low overhead on SPEC CPU 2017; however, this is largely
because it fails to run on several long-running benchmarks
(e.g., perlbench), which artificially lowers its average. On
SPEC CPU 2006—where xTag successfully completes most
workloads—its performance overhead is comparable to that
of FPN. FreeGuard achieves lower performance overhead
but offers weaker security guarantees, as discussed in Sec-
tion [VI-B2} FFmalloc also exhibits relatively low performance
overhead; however, it introduces substantial memory overhead
and is susceptible to exhausting the virtual address space in
long-running applications, limiting its practical deployment.
Compared with BUDAlloc and SwiftSweeper, FPN incurs
slightly higher performance overhead but delivers significantly
lower memory overhead.

D. Real-world Multi-threaded Applications

Nginx We evaluate FPN’s performance, memory overhead,
and CPU utilization on Nginx v1.22.1 using the wrk v4.2.0
benchmarking tool. Nginx is tested under varying workloads
with thread counts 2, 4, 8, 16, 32, 64 and 1000 concurrent
connections. Each experiment is repeated 10 times, with a 10-
second pause between runs to reduce measurement noise. All

Check Steps

1 e 2 /3 3 1 >3

Xz T
nab

. leela

d imagick 1
eepsjeng 1
b?egwde?’ 1

X264
xalancbmk]
omnetpp
lbm

povray
namd
mcf

gcc
perlbench —
AVG

20 40 60

Hit Rate (%)

80 100

Fig. 11: Percentage of deduplicated blocks at different check
steps on SPEC CPU 2017.

results are normalized to their respective baselines. As shown
in Fig. 0] FPN consistently achieves lower performance and
memory overhead than DangSan and CAMP across all config-
urations. Compared with non-PN UAF mitigations, FPN also
incurs substantially lower memory overhead. Regarding CPU
utilization, FPN incurs lower CPU utilization compared with
its baseline due to the serialization introduced by metadata
locks. However, it still achieves higher utilization compared
with DangSan and CAMP. These results demonstrate that
FPN’s hybrid locking mechanism—combining coarse-grained
global locks with fine-grained region locks—supports correct
and efficient execution in large-scale, multithreaded appli-
cations. This design minimizes lock contention and avoids
severe serialization bottlenecks during pointer registration and
nullification, enabling FPN to maintain consistently lower
performance and memory overhead compared with CAMP and
DangSan.

Chrome We further evaluate FPN and CAMP on Chrome
by measuring the performance overhead of loading the 15 most
frequently visited Websitesﬁ We repeat each measurement 10
times and calculate the performance overhead with the default
timer in the Linux system. As shown in Fig. [I0] FPN incurs
an average overhead of 18.32%, while CAMP incurs 36.97%.
FPN’s highest overhead is 65.24% on youtube.com, whereas
CAMP reaches 198.23% on tiktok.com.

E. FPN Internal Behavior Analysis

1) Deduplication Percentage Analysis: Figure[T1|shows the
distribution of deduplicated blocks at different check steps on
the SPEC CPU 2017 benchmarks. Here, we do not set up the
check steps (C) to a specific value. Instead, when the program
stores a pointer, we make FPN traverse the corresponding
block list until it either finds a matching block or reaches
the list’s end. We record the number of steps required to find
a match and group them into four categories: found at step 1,
step 2, step 3, and step >3. On average, 62.58% of blocks are

Shttps://www.similarweb.com/top-websites/

11

Xz ‘ ‘
nab i i
leela Setup Metadata
imagick B setup metadata
deepsjeng Register Pointers
blender O locate metdata
ende I label status bit
X264 B deduplicate
xalancbhmk M register blocks
oM N et T
lbm 4 NuIIif)r/1 Eoifr;ters
E] B search buffer size
povraé/ 4 Il delete buffer lists
nam [clear status bits
mcf f/=——= @ scan blocks
gcc eeesessssssn) delete block lists
perlbench -] ‘
AVG T:_ i
F T T
0 20 40 60 80 100 120

Perf Overhead (%)

Fig. 12: Performance breakdown analysis of FPN on SPEC
CPU 2017.

identified at the first step; 17.51% of blocks are identified at
the second step, 3.51% of blocks are identified at the third step,
and 9.32% at the other steps. In benchmarks such as povray,
1lbm, x264, and nab, over 90% of deduplicated blocks are
found in the first step, demonstrating strong spatial locality in
pointer storage and validating FPN’s block-based registration
strategy. A few benchmarks, such as deepsjeng, show a
higher proportion of matches in the >3 category. However,
these benchmarks still report less than 5.00% performance
overhead, indicating that even longer block list traversals do
not significantly impact runtime. Overall, these results confirm
that most deduplication lookups require only a small number
of traversal steps. This supports our design choice that block-
based deduplication introduces minimal performance overhead
even under diverse and dynamic memory access patterns. In
Section [VI-F2] we further evaluate the impact of the check
step threshold C' on FPN’s performance and memory usage.

2) Performance Breakdown: To understand where FPN
incurs runtime overhead, we analyze its costs across three
components using SPEC CPU 2017 benchmarks: (1) metadata
setup during buffer allocation, (2) block registration when a
pointer is stored, and (3) pointer nullification during buffer
deallocation. The breakdown results are shown in Fig. 12
Across all benchmarks, block registration is the dominant
source of overhead, accounting for 12.44% performance over-
head. This cost stems from four main operations: computing
the pointer list address, setting the corresponding status bit,
deduplicating to avoid redundant block registrations, and up-
dating the doubly linked block list. Among these, computing
the pointer list address is the most expensive, contributing
9.18% on average, while the remaining operations together
account for 3.26%. In contrast, our breakdown of CAMP
shows that computing the pointer list address alone con-
tributes over 60.0% performance overhead. This highlights
the efficiency of FPN’s region-based metadata management in
reducing address computation overhead. Pointer nullification
contributes 3.85% overhead on average, with some variation

—s—perlbench ——namd ——xalancomk —=—deepsjeng ——nab
gcc —— povray X264 imagick ——XZ
——mcf Ibm —— blender leela
(a) (b) (c)
- — ¢ 10 1.0 ??
= N
s | [/ AZesIN : 7
52 - £ =\ = o5
=2 : § ;
— T T T 0.0 L I B
12 16 20 24 28 32 12 16 20 24 28 32 12 16 20 24 28 32
N=M N=M N=M
(d) (e) (f)
[: 1.0 = 1.0 -*
+ 1.0 T H 4 1
5 == & | A
a ~| = i (0]
~ 4 ©
13 0.8 ~—t| £ 057 &
S |5 | 0.5
= |z |
T 0.0 t=r————
12 16 20 24 28 32 12 16 20 24 28 32 12 16 20 24 28 32
M (N = 20) M (N = 20) M (N = 20)
(9) (h) (i)
o f P 1.0 =
9 10! il § o j%:
iy | = = /
£ /) | € & 053
o] HEE
=4 = 2
100 ey ——

12 16 20 24 28 32
N (M = 20)

12 16 20 24 28 32
N (M = 20)

12 16 20 24 28 32
N (M = 20)

Fig. 13: Explorations on how the block and region sizes affect
FPN’s performance and memory consumption: (a)-(c) /N and
M vary together from 12 to 32; (d)-(f) NV is fixed and M
varies from 12 to 32; (g)-(i) M is fixed and N varies from 12
to 32.

across benchmarks. In workloads such as omnetpp and
gcc, which involve frequent deallocations, this component
incurs a higher performance cost due to increased buffer list
traversal and updates. Metadata setup introduces the lowest
overhead—just 1.89% on average. This is attributed to FPN’s
region-level metadata organization, which avoids per-buffer
initialization. When buffers fall within an existing region, the
new buffer’s information is appended to a list with minimal
cost.

F. Explorations on FPN

1) Exploration on Region Sizes and Block Sizes: To eval-
uate how region size (NN) and block size (M) affect FPN’s
performance, memory consumption, and deduplication rate,
we conduct a series of experiments using the SPEC CPU
2017 benchmark suite. In Fig. [[3{a—c), we vary both N and
M together (i.e., N = M) from 12 to 32 in steps of 4.
In Fig. [[3(d-f), we fix N = 20 and vary M from 12 to
32. In Fig. [3[g-i), we fix M = 20 and vary N over the
same range. For each setting, performance and memory are
normalized to a baseline: (N = M = 12) for Fig. ﬂ_?(a—c),
(N =20, M = 12) for Fig. [[3(d—f), and (N = 12, M = 20)
for Fig. [[3[g—i). As shown in Fig. [[3[a), increasing both N
and M initially reduces normalized performance, reaching its
minimum when N = M = 20. Beyond that, larger values

12

—s—perlbench ——namd ——xalancomk —=—deepsjeng ——nab
gcc —— povray X264 imagick ——XZ
——mcf Ibm —— blender leela
11 (a) 12 (b) (c)
't 10 1.0 7=
o] (9]
o 1.0 | = i)
g . \// x xu‘_ ‘ g 05 &u
z - 2 \ BERE
0.9 T — T 0.1 B s B
1234567 1234567
C C

Fig. 14: Explorations on how the checked block number C'
affects FPN’s performance and memory consumption on SPEC
CPU 2017

introduce more overhead due to increased scanning and lookup
costs during deallocation. At smaller N and M, FPN registers
more blocks, which raises overhead due to frequent insertions.
In contrast, larger values improve deduplication by grouping
more pointers, but they also enlarge block and region sizes,
requiring more bytes to be scanned at free time. Fig. [I3(b)
shows that the normalized memory decreases consistently as
N and M grow, due to the reduced number of registered
blocks and metadata entries. Fig. [I3|c) reports deduplication
hit rates, which improve up to M = 20 but degrade after-
ward—indicating diminishing spatial locality benefits at larger
block sizes. In Fig. ﬂzkd—f), where N = 20 and M varies,
increasing M enhances deduplication and reduces both per-
formance and memory (Fig. [T3{d—e)). This trend is confirmed
by Fig. [[3(f), which shows rising deduplication rates as M
increases. Conversely, in Fig. [[3[g-i), where M = 20 and
N varies, normalized performance increases significantly with
larger N (Fig. [I3g)), mainly due to longer buffer scanning
ranges. Meanwhile, Fig. [I3(h) shows normalized memory
decreases with larger IV, since more buffers share the same
metadata entry. Fig. [I3[i) shows a slight improvement in
deduplication rate with growing N. Overall, these results
suggest that balancing M and N is essential to optimizing
FPN. A configuration with larger blocks (e.g., M = 32) and
moderate region sizes (e.g., IV 20) strikes an effective
tradeoff between performance and memory efficiency.

2) Exploration on the Number of Checked Registered
Blocks: To evaluate the impact of the deduplication step
limit C on FPN’s performance and memory efficiency, we
conduct experiments using the SPEC CPU 2017 benchmark
suite. Recall that C' determines the maximum number of
previously registered blocks FPN checks when attempting
to deduplicate a new registration. Performance and memory
are normalized to the baseline configuration with C' = 1.
As shown in Fig. [T4(a), increasing C' results in a modest
increase in normalized performance, due to the additional
comparisons required during block list traversal. Fig. [T4(b)
shows a substantial drop in normalized memory when C
increases from 1 to 2, as more redundant registrations are
eliminated. Beyond C' = 2, the memory savings level off.

Fig. [[4[c) further confirms that deduplication rates improve
as C increases. These results suggest that a small C' value
(e.g., C = 2) strikes an effective balance—achieving most of
the memory savings with minimal impact on performance.

VII. DISCUSSION

A. Supporting Third Party/Uninstrumented Libraries

When source code is available, third-party libraries are
instrumented using the same FPN compilation pipeline. For
precompiled libraries, we recompile them from source or sub-
stitute FPN-instrumented versions when possible. If a library
cannot be instrumented (e.g., closed-source binaries or inline
assembly), FPN remains compatible: uninstrumented modules
continue operating correctly, although pointer operations oc-
curring entirely inside such modules cannot be tracked.

B. Integration with Other Mitigation Systems

FPN is designed to be compatible with existing memory
safety mechanisms. Its modular design and compile-time
instrumentation make it compatible with a wide range of
defenses that target different classes of vulnerabilities.

C. Unaligned Pointers

C/C++ programs may store pointers inside packed struc-
tures, resulting in unaligned (non—8-byte) pointer locations. To
support this scenario, FPN can extend its status table from 1 bit
per 8 bytes to 1 bit per byte. With this extension, FPN incurs
a 19.17% geometric-mean performance overhead and 12.91%
memory overhead—still lower than prior PN-based techniques
(details are included in TABLE[IV). In our evaluation of SPEC
CPU benchmarks and real-world CVEs, we do not observe
unaligned pointer storage; all pointers are stored with 8-byte
boundaries.

D. Implications of a Large Block Size

As block size increases, FPN scans larger memory ranges
during buffer deallocation. In the extreme case, an oversized
block makes FPN resemble a garbage collector, which con-
siders broad memory regions during pointer identification.
However, unlike GCs, FPN uses status bits to restrict scanning
only to locations known to store pointers. Thus, even with
large blocks, FPN avoids full-region scans and maintains
significantly lower deallocation overhead than GC-based ap-
proaches.

VIII. RELATED WORK

A. UAF Sanitizers

UAF sanitizers [8]-[[13]], [17], [44], [45] are tools or tech-
niques designed to detect and mitigate UAF vulnerabilities at
runtime. They aim to ensure memory safety by validating the
pointer before each memory access and preventing dangling
references.

13

1) Fat and Non-Fat Pointers: Fat and Non-Fat Pointers [8]]—
[17], [17]—{20], [43]], [45] modify traditional pointer structures
to include additional metadata, such as the lifetime info of
a pointer. When the program frees a buffer, the lifetime
info of this buffer is set to be invalid, preventing access to
the memory through the associated pointers. However, these
methods require compiler modifications to pointer dereference
operations, increase pointer size, and introduce high memory
and performance overhead.

2) Lock-and-Key Checks: Lock-and-Key techniques [[14]—
[20], [43], [46] assign a unique key to each allocated buffer
and embed a corresponding lock in all associated pointers.
Upon deallocation, the buffer’s key is invalidated, and every
pointer dereference triggers a lock—key consistency check;
any mismatch is treated as a UAF violation. While highly
accurate, these schemes incur substantial performance and
memory overhead due to frequent key updates and metadata
maintenance.

3) Hardware-based Sanitizers: Hardware-assisted UAF de-
fenses [47]-[53] accelerate validity checks through dedicated
hardware units. Buffer-bound checks [54], [55]] and hardware
implementations of Lock-and-Key schemes [56], [57] further
reduce software overhead. Pointer-tagging approaches [45],
[58]], [59]] encode metadata in upper pointer bits, while crypto-
graphic methods [|60] use hardware engines to protect buffer
lifetimes. Although these designs achieve very low runtime
overhead, they face significant deployment barriers due to
specialized hardware requirements.

B. Secure Allocators

Unlike traditional memory allocators that prioritize perfor-
mance, secure allocators aim to mitigate UAF vulnerabilities
by modifying allocation and deallocation behavior. Some ap-
proaches [[14]], [21]-[23]], [61] randomize allocation to reduce
the likelihood of a malicious buffer reusing the same address
as a deallocated victim buffer. However, this only limits, rather
than eliminates, an attacker’s control over memory layout.
Other methods [38]], [[62]] delay virtual address reuse, but UAF
exploits remain possible once buffers are eventually released.
More restrictive techniques, One-Time-Allocator (OTA) [24]-
[27] prevent freed buffers from ever reusing virtual addresses,
blocking UAF exploits via address reuse. However, long-
running programs risk exhausting virtual address space.

C. Garbage Collectors (GCs)

GC systems [29]], [32], [63]], [64] mitigate UAF by period-
ically scanning memory to identify live pointers and reclaim
buffers no longer referenced. This automated reclamation
prevents dangling-pointer dereferences but introduces notable
costs: periodic scanning and bookkeeping incur runtime over-
head, delayed reclamation reduces reuse efficiency, and back-
ground GC threads can interfere with multi-threaded execution
due to CPU contention and synchronization.

D. Reference Counters

Reference counters [32], [65], [66] track the number of ac-
tive references to a memory object and reclaim the object when

» Z
= o0
g > & E g 5 e E}
2, | 5| 2| E c | 2| Bl g | ElE| R 2| s g
= 13} — o} ©
Ratio Normalized g Y g g 2 2 g g < = S E 3 g 2 O
Per 1-byt Performance 1.92x 1.56x 1.21x 0.96x 1.27x 0.99x 2.03x 1.20x 0.84x 1.45x 1.03x 1.01x 0.98x 1.01x 1.02x 1.19x
er S-oyte Memory 134x | 1.17x | L14x | 1.05x | 1.01x | 1.01x | 1.58x | 1.29x | 1.04x | 1.17x | 1.00x | 1.I18x | 0.99x | I.16x | 097x | L.I3x
Per 8-byte Performance 1.83x 1.62x 1.16x 1.00x 1.23x 0.97x 1.98x 1.17x 0.81x 1.41x 1.01x 1.01x 1.00x 1.01x 1.03x 1.18x
Y Memory 1.22x 1.27x 1.02x 1.01x 1.00x 1.00x 1.48x 1.17x 1.02x 1.06x 1.00x 1.03x 1.00x 1.05x 1.03x 1.08x

TABLE IV: FPN’s normalized performance and memory under different status bit ratios on SPEC CPU 2017. Baseline is 1x.

the count reaches zero. While effective in preventing premature
deallocation, these methods introduce runtime overhead due to
frequent counter updates and thread synchronization.

E. Static Analysis Approaches

Static analysis approaches [3]-[7], [67] detect UAF vulner-
abilities at compile time by analyzing source code or binaries
without executing the program. They impose no runtime
overhead and are useful early in development. However, real-
world software—featuring dynamic memory usage, indirect
calls, and multithreading—often exceeds the precision and
scalability of static analysis, leading to false positives and false
negatives. Consequently, static analysis is typically combined
with dynamic or runtime techniques for comprehensive UAF
protection.

IX. CONCLUSION

FPN improves pointer nullification by introducing region-
based metadata and block-based registration, reducing both
metadata lookup cost and registration volume. Our evaluation
shows that FPN significantly lowers performance and memory
overhead compared with prior PN methods while preserving
strong temporal memory safety. FPN is compatible with large-
scale, multithreaded software, demonstrating its practicality.
Overall, FPN makes pointer nullification more scalable and
efficient without compromising security.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable feedback and suggestions. This work is
supported by NSF grants #2334628 and #2154973.

REFERENCES

[11 W. Xu, J. Li, J. Shu, W. Yang, T. Xie, Y. Zhang, and D. Gu, “From

collision to exploitation: Unleashing use-after-free vulnerabilities in

linux kernel,” in Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security, 2015, pp. 414-425.

M. Miller, “A snapshot of vulnerability root cause trends for micrsoft

remote code execution (rce) cves, 2006 through 2017, 2018.

M. C. Olesen, R. R. Hansen, J. L. Lawall, and N. Palix, “Coccinelle:

tool support for automated cert ¢ secure coding standard certification,”

Science of Computer Programming, vol. 91, pp. 141-160, 2014.

P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and

B. Yakobowski, “Frama-c: A software analysis perspective,” in In-

ternational conference on software engineering and formal methods.

Springer, 2012, pp. 233-247.

[5] J. Feist, L. Mounier, and M.-L. Potet, “Statically detecting use after free
on binary code,” Journal of Computer Virology and Hacking Techniques,
vol. 10, no. 3, pp. 211-217, 2014.

[2]
[3]

[4]

14

[6] H. Yan, Y. Sui, S. Chen, and J. Xue, “Spatio-temporal context reduction:
A pointer-analysis-based static approach for detecting use-after-free
vulnerabilities,” in Proceedings of the 40th International Conference on
Software Engineering, 2018, pp. 327-337.

——, “Machine-learning-guided typestate analysis for static use-after-
free detection,” in Proceedings of the 33rd Annual Computer Security
Applications Conference, 2017, pp. 42-54.

T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: a safe dialect of ¢.” in USENIX Annual Technical
Conference, General Track, 2002, pp. 275-288.

G. C. Necula, S. McPeak, and W. Weimer, “Ccured: Type-safe
retrofitting of legacy code,” in Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, 2002, pp.
128-139.

J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer, “Ccured
in the real world,” ACM SIGPLAN Notices, vol. 38, no. 5, pp. 232-244,
2003.

G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“Ccured: Type-safe retrofitting of legacy software,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 27, no. 3, pp.
477-526, 2005.

G. J. Duck and R. H. Yap, “Effectivesan: type and memory error
detection using dynamically typed c/c++,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2018, pp. 181-195.

J. Zhou, J. Criswell, and M. Hicks, “Fat pointers for temporal memory
safety of c,” Proceedings of the ACM on Programming Languages,
vol. 7, no. OOPSLAL, pp. 316-347, 2023.

S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Cets:
compiler enforced temporal safety for c,” in Proceedings of the 2010
international symposium on Memory management, 2010, pp. 31-40.
N. Burow, D. McKee, S. A. Carr, and M. Payer, “Cup: Comprehensive
user-space protection for c/c++,” in Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, 2018, pp. 381—
392.

H. Cho, J. Park, A. Oest, T. Bao, R. Wang, Y. Shoshitaishvili, A. Doupé,
and G.-J. Ahn, “Vik: practical mitigation of temporal memory safety
violations through object id inspection,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2022, pp. 271-284.

Y. Du, Y. Guo, Y. Zhang, and J. Yang, “Rtt-uaf: Reuse time tracking for
use-after-free detection,” in Proceedings of the 38th ACM International
Conference on Supercomputing, 2024, pp. 376-387.

B. Gui, W. Song, and J. Huang, “Uafsan: an object-identifier-based
dynamic approach for detecting use-after-free vulnerabilities,” in Pro-
ceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2021, pp. 309-321.

R. M. Farkhani, M. Ahmadi, and L. Lu, “PTAuth: Temporal memory
safety via robust points-to authentication,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 1037-1054.

M. Momeu, S. Schniickel, K. Angnis, M. Polychronakis, and V. P.
Kemerlis, “Safeslab: Mitigating use-after-free vulnerabilities via mem-
ory protection keys,” in Proceedings of the 2024 on ACM SIGSAC
Conference on Computer and Communications Security, 2024, pp.
1345-1359.

E. D. Berger and B. G. Zorn, “Diehard: Probabilistic memory safety for
unsafe languages,” Acm sigplan notices, vol. 41, no. 6, pp. 158-168,
2006.

S. Silvestro, H. Liu, C. Crosser, Z. Lin, and T. Liu, “Freeguard: A
faster secure heap allocator,” in Proceedings of the 2017 ACM SIGSAC

[7]

[8]

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

Conference on Computer and Communications Security, 2017, pp.
2389-2403.

S. Silvestro, H. Liu, T. Liu, Z. Lin, and T. Liu, “Guarder: A tunable se-
cure allocator,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 117-133.

T. H. Dang, P. Maniatis, and D. Wagner, “Oscar: A practical Page-
Permissions-Based scheme for thwarting dangling pointers,” in 26th
USENIX security symposium (USENIX security 17), 2017, pp. 815-832.
B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee,
“Preventing use-after-free with dangling pointers nullification.” in NDSS,
2015.

F. Gorter, K. Koning, H. Bos, and C. Giuffrida, “Dangzero: Efficient

use-after-free detection via direct page table access,” in Proceedings of

the 2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 1307-1322.

J. Ahn, J. Lee, K. Lee, W. Gwak, M. Hwang, and Y. Kwon, “BUDAlloc:
Defeating Use-After-Free bugs by decoupling virtual address manage-
ment from kernel,” in 33rd USENIX Security Symposium (USENIX
Security 24), 2024, pp. 181-197.

C. Yagemann, S. P. Chung, B. Saltaformaggio, and W. Lee, “PUMM:
Preventing Use-After-Free using execution unit partitioning,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 823—
840.

S. Ainsworth and T. M. Jones, “Markus: Drop-in use-after-free preven-
tion for low-level languages,” in 2020 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2020, pp. 578-591.

M. Erdés, S. Ainsworth, and T. M. Jones, “Minesweeper: a “clean
sweep” for drop-in use-after-free prevention,” in Proceedings of the 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2022, pp. 212-225.

J. Ahn, K. Lee, C. Park, H. Moon, and Y. Kwon, “Swiftsweeper:
Defeating use-after-free bugs using memory sweeper without stop-the-
world,” in 2025 IEEE Symposium on Security and Privacy (SP). 1EEE,
2025, pp. 793-809.

J. Shin, D. Kwon, J. Seo, Y. Cho, and Y. Paek, “Crcount: Pointer
invalidation with reference counting to mitigate use-after-free in legacy
c/c++.” in NDSS, 2019.

Y. Younan, “Freesentry: protecting against use-after-free vulnerabilities
due to dangling pointers.” in NDSS, 2015.

E. Van Der Kouwe, V. Nigade, and C. Giuffrida, “Dangsan: Scalable use-
after-free detection,” in Proceedings of the Twelfth European Conference
on Computer Systems, 2017, pp. 405-419.

Z. Shen and B. Dolan-Gavitt, “Heapexpo: Pinpointing promoted pointers
to prevent use-after-free vulnerabilities,” in Proceedings of the 36th
Annual Computer Security Applications Conference, 2020, pp. 454—465.
D. Liu, M. Zhang, and H. Wang, “A robust and efficient defense
against use-after-free exploits via concurrent pointer sweeping,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 1635-1648.

Z. Lin, Z. Yu, Z. Guo, S. Campanoni, P. Dinda, and X. Xing, “CAMP:
Compiler and allocator-based heap memory protection,” in 33rd USENIX
Security Symposium (USENIX Security 24), 2024, pp. 4015-4032.

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in 2012 USENIX annual
technical conference (USENIX ATC 12), 2012, pp. 309-318.

B. Spengler, “Pax: The guaranteed end of arbitrary code execution,”
G-Con2: Mexico City, Mexico, 2003.

A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “ERIM: Secure, efficient in-process isolation
with protection keys (MPK),” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 1221-1238.

B. Wickman, H. Hu, I. Yun, D. Jang, J. Lim, S. Kashyap, and T. Kim,
“Preventing Use-After-Free attacks with fast forward allocation,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 2453—
2470.

L. Bernhard, M. Rodler, T. Holz, and L. Davit, “xtag: Mitigating use-
after-free vulnerabilities via software-based pointer tagging on intel x86-
64, in 2022 IEEE 7th European Symposium on Security and Privacy
(EuroS&P). IEEE, 2022, pp. 502-519.

F. Gorter and C. Giuffrida, “Rangesanitizer: Detecting memory errors
with efficient range checks,” in USENIX Security, 2025.

E. Q. Vintila, P. Zieris, and J. Horsch, “Evaluating the effectiveness of
memory safety sanitizers,” in 2025 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2025, pp. 774-792.

15

[45]

[46]

[47]

[48]

[49]

(501

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Y. Li, W. Tan, Z. Lv, S. Yang, M. Payer, Y. Liu, and C. Zhang,
“Pacmem: Enforcing spatial and temporal memory safety via arm pointer
authentication,” in Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, 2022, pp. 1901-1915.

Z. Yu, G. Yang, and X. Xing, “ShadowBound: Efficient heap memory
protection through advanced metadata management and customized
compiler optimization,” in 33rd USENIX Security Symposium (USENIX
Security 24), 2024, pp. 7177-7193.

M. T. I. Ziad, M. A. Arroyo, E. Manzhosov, and S. Sethumadhavan,
“Zerg: Zero-overhead resilient operation under pointer integrity attacks,”
in 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2021, pp. 999-1012.

H. Xia, J. Woodruff, S. Ainsworth, N. W. Filardo, M. Roe, A. Richard-
son, P. Rugg, P. G. Neumann, S. W. Moore, R. N. Watson et al.,
“Cherivoke: Characterising pointer revocation using cheri capabilities for
temporal memory safety,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 545-557.

R. Sharifi and A. Venkat, “Chex86: Context-sensitive enforcement of
memory safety via microcode-enabled capabilities,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 762-775.

Z. Liu, Y. Rong, C. Li, W. Tan, Y. Li, X. Han, S. Yang, and C. Zhang,
“Cctag: Configurable and combinable tagged architecture.” in NDSS,
2025.

N. W. Filardo, B. F. Gutstein, J. Woodruff, S. Ainsworth, L. Paul-
Trifu, B. Davis, H. Xia, E. T. Napierala, A. Richardson, J. Baldwin
et al., “Cornucopia: Temporal safety for cheri heaps,” in 2020 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2020, pp. 608-625.
N. W. Filardo, B. F. Gutstein, J. Woodruff, J. Clarke, P. Rugg, B. Davis,
M. Johnston, R. Norton, D. Chisnall, S. W. Moore et al., “Cornucopia
reloaded: Load barriers for cheri heap temporal safety,” in Proceedings
of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, 2024, pp.
251-268.

B. Gutstein, “Memory safety with cheri capabilities: security analysis,
language interpreters, and heap temporal safety,” University of Cam-
bridge, Computer Laboratory, Tech. Rep., 2022.

T. Zhang, D. Lee, and C. Jung, “Bogo: Buy spatial memory safety,
get temporal memory safety (almost) free,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 631-644.
Y. Kim, J. Lee, and H. Kim, “Hardware-based always-on heap memory
safety,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1EEE, 2020, pp. 1153-1166.

S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Watchdog: Hardware
for safe and secure manual memory management and full memory
safety,” ACM SIGARCH Computer Architecture News, vol. 40, no. 3,
pp. 189-200, 2012.

——, “Watchdoglite: Hardware-accelerated compiler-based pointer
checking,” in Proceedings of Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization, 2014, pp. 175-184.

K. Sinha and S. Sethumadhavan, “Practical memory safety with rest,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2018, pp. 600-611.

M. T. I. Ziad, M. A. Arroyo, E. Manzhosov, R. Piersma, and S. Sethu-
madhavan, “No-fat: Architectural support for low overhead memory
safety checks,” in 2021 ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA). 1EEE, 2021, pp. 916-929.
M. LeMay, J. Rakshit, S. Deutsch, D. M. Durham, S. Ghosh, A. Nori,
J. Gaur, A. Weiler, S. Sultana, K. Grewal et al., “Cryptographic capa-
bility computing,” in MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, 2021, pp. 253-267.

K. Huang, M. Payer, Z. Qian, J. Sampson, G. Tan, and T. Jaeger, “Top
of the heap: Efficient memory error protection of safe heap objects,” in
Proceedings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, 2024, pp. 1330-1344.

C. Park and H. Moon, “Efficient use-after-free prevention with op-
portunistic page-level sweeping,” in Proceedings of the 2024 Annual
Network and Distributed System Security Symposium (NDSS), 2024.
H.-J. Boehm, “Space efficient conservative garbage collection,” ACM
SIGPLAN Notices, vol. 28, no. 6, pp. 197-206, 1993.

——, “Bounding space usage of conservative garbage collectors,” Acm
Sigplan Notices, vol. 37, no. 1, pp. 93-100, 2002.

[65] D. Anderson, G. E. Blelloch, and Y. Wei, “Concurrent deferred reference
counting with constant-time overhead,” in Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, 2021, pp. 526-541.

L. He, H. Hu, P. Su, Y. Cai, and Z. Liang, “FreeWill: Automatically
diagnosing use-after-free bugs via reference miscounting detection on
binaries,” in 31st USENIX Security Symposium (USENIX Security 22),
2022, pp. 2497-2512.

H. Zhang, J. Kim, C. Yuan, Z. Qian, and T. Kim, “Statically discover
cross-entry use-after-free vulnerabilities in the linux kernel,” in Network
and Distributed System Security (NDSS) Symposium, 2025.

[66]

[67]

APPENDIX
A. Baseline of Each UAF Mitigation Methods

Method Baseline
FPN Clang 18.1.0
DangSan Clang 18.1.0 with tcmalloc
FreeSentry Clang 18.1.0
CAMP Clang 12.0.1 with tcmalloc
FFmalloc Clang 18.1.0
DangZero gcc9
FreeGuard Clang 18.1.0
MarkUS Clang 18.1.0
BUDAIloc gcc 13.3.0
SwiftSweeper gcc 13.3.0
xTag Clang 10.0.1 with mimalloc
RSan Clang 16.0.6 with tcmalloc

TABLE V: Baseline of each UAF mitigation method

CVE

CVE-2015-3205
CVE-2015-2787
CVE-2015-6835
CVE-2016-5773
Issue-3515
CVE-2020-6838
CVE-2021-44964
CVE-2020-21688
CVE-2021-33468
CVE-2020-24978
Issue-1325664
CVE-2022-43286
CVE-2019-16165
CVE-2021-4187

TABLE VI: Security evaluation of FPN and related work on
real-world applications with UAF bugs. ¢/ means successfully

detecting or preventing UAF vulnerabilities. 8 means failure
in detecting or preventing UAF vulnerabilities.

QUSRS KK % % % % % || MarkUS
ANANE {BNANANA NANANA NANANANIR: S NINT
[UISKIKI]RI] R KRR]]]| SwiftSweepe

SISISIRIR] K] RR]][] K| FFmalloe
ANANE SE A NANANANANANA NANA N NIRELE/Zo
UISIKSIR %] R %)]]|]]| Freeguard
ANANANE SANE SE SANANANANA VA NANIPY LT
% K % % S S| % % % %< %S| RSan

A\
A\
A\

16

SPEC CPU 2017

SPEC CPU 2006

Methods Standard errors (%) Max Min Max Min
FFmalloc Performance 0.33 0.00 0.49 0.00
Memory 2.15 0.00 1.78 0.00

FFmalloc baseline Performance 1.89 0.00 0.45 0.00
Memory 1.94 0.00 1.13 0.00

DangZero Performance 1.64 0.10 3.51 0.82
Memory 0.75 0.00 0.59 0.00

DangZero baseline Performance 2.71 0.02 1.25 0.11
Memory 0.98 0.00 0.55 0.00

FreeGuard Performance 0.96 0.00 0.44 0.00
Memory 2.16 0.00 1.22 0.00

FreeGuard baseline Performance 1.89 0.00 0.45 0.00
Memory 1.94 0.00 1.13 0.00

Performance 2.33 0.00 2.35 0.00

MarkUS Memory 093 | 000 | 194 | 001

. Performance 0.33 0.00 0.45 0.00

MarkUS baseline Memory 194 | 000 | 113 | 000
Performance 2.52 0.03 1.66 0.13

BUDAlloc Memory 049 | 000 | 182 | 000

. Performance 0.51 0.02 1.99 0.78

BUDAlloc baseline Memory 071 | 000 | 060 | 000
SwiftSweeper Performance 1.06 0.05 1.16 0.05
Memory 0.13 0.00 0.64 0.00

SwiftSweeper bascline Performance 2.35 0.02 1.49 0.05
Memory 0.63 0.00 0.69 0.00

xTag Performance 1.26 0.00 0.76 0.00
Memory 1.39 0.00 1.33 0.00

XTag bascline Performance 0.79 0.09 0.74 0.00
Memory 1.17 0.00 1.01 0.00

RSan Performance 0.37 0.00 1.31 0.00
Memory 2.25 0.00 3.64 0.00

RSan baseline Performance 1.81 0.00 1.98 0.13
Memory 0.91 0.02 0.98 0.00

FreeSentry Performance 2.37 0.00 1.79 0.00
Memory 2.37 0.00 3.62 0.02

FreeSentry bascline Performance 1.89 0.00 0.45 0.00
Memory 1.94 0.00 1.13 0.00

DangSan Performance 0.46 0.00 0.58 0.00
Memory 0.49 0.00 1.02 0.00

DangSan bascline Performance 1.17 0.00 0.45 0.00
Memory 1.94 0.00 1.04 0.00

Performance 1.56 0.00 0.26 0.00

CAMP Memory 300 | 000 | 121 | 000

. Performance 1.27 0.24 0.85 0.00

CAMP bascline Memory 034 | 000 | 119 | 000
FPN Performance 0.94 0.00 1.07 0.00
Memory 0.69 0.00 2.63 0.08

. Performance 0.33 0.00 0.45 0.00

FPN baseline Memory 194 | 000 | 113 | 000

TABLE VII: Maximum and minimum standard errors of
each UAF mitigation method and corresponding baseline on
SPEC CPU 2017 and SPEC CPU 2006. Each method and
corresponding baseline are run 10 times to calculate standard
errors.

74 fail @@ DangZero I MarkUS I SwiftSweeper [RSan
I FFmalloc I FreeGuard [BUDAlloc @ xTag [FPN (Ours)

(a)

10%x

N
|

10%x

Performance

1071x £ 2
(b)

26,7
12,55

10%x

B
ol

10%x

Memory

E
E

101x

blender
leela
nab

>
©
.
>
o
o

o
o
S
9]
c
1S
5

perlbench
xalancbmk
deepsjeng
GEOMEAN

Fig. 15: Evaluation of normalized performance and memory of FPN and previous non-PN methods on SPEC CPU 2017, under
optimization level -O2. Baseline is 1x.

74 fail @@ DangZero I MarkUS I SwiftSweeper [RSan
I FFmalloc I FreeGuard [BUDAlloc @ xTag [FPN (Ours)

(a)

10%x

10%x

Performance

1071x

12.19

(b)

12,14
1175
14.57
16.09
19,43

10%x

10%x

Memory

107 1x

bzip2

gcc

mcf

milc
namd
gobmk
soplex
povray
hmmer
sjeng
h264ref
omnetpp
astar
sphinx3
xalancbmk
GEOMEAN

e
(%}
c
[}

Q

-
[}
o

libquantum

Fig. 16: Evaluation of normalized performance and memory of FPN and previous non-PN methods on SPEC CPU 2006, under
optimization level -O2. Baseline is 1x.

17

	Introduction
	Background
	Use-After-Free (UAF)
	Pointer Nullification (PN)

	Threat Model
	Fast Pointer Nullification (FPN)
	Motivation
	Preliminary
	FPN Design Details
	Setting Up the Metadata
	Registering the Block Address
	Nullifying the Pointers
	Ensuring Compatibility via Status Bit

	Implementation
	Implementation Pipeline
	Maintenance of Lists
	Thread Locks
	Detection of Invalid Free

	Evaluation
	Methodology
	Security Evaluation
	Juliet Test Set
	Real-world CVEs

	Performance and Memory Consumption Evaluation
	Real-world Multi-threaded Applications
	FPN Internal Behavior Analysis
	Deduplication Percentage Analysis
	Performance Breakdown

	Explorations on FPN
	Exploration on Region Sizes and Block Sizes
	Exploration on the Number of Checked Registered Blocks

	Discussion
	Supporting Third Party/Uninstrumented Libraries
	Integration with Other Mitigation Systems
	Unaligned Pointers
	Implications of a Large Block Size

	Related Work
	UAF Sanitizers
	Fat and Non-Fat Pointers
	Lock-and-Key Checks
	Hardware-based Sanitizers

	Secure Allocators
	Garbage Collectors (GCs)
	Reference Counters
	Static Analysis Approaches

	Conclusion
	References
	Appendix
	Baseline of Each UAF Mitigation Methods

