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Abstract—Kubernetes Operators, automated tools designed to
manage application lifecycles within Kubernetes clusters, extend
the functionalities of Kubernetes, and reduce the operational
burden on human engineers. While Operators significantly sim-
plify DevOps workflows, they introduce new security risks. In
particular, Kubernetes enforces namespace isolation to separate
workloads and limit user access, ensuring that users can only
interact with resources within their authorized namespaces.
However, Kubernetes Operators often demand elevated privileges
and may interact with resources across multiple namespaces. This
introduces a new class of vulnerabilities, the Cross-Namespace
Reference Vulnerability. The root cause lies in the mismatch be-
tween the declared scope of resources and the implemented scope
of the Operator’s logic, resulting in Kubernetes being unable to
properly isolate the namespace. Leveraging such vulnerability,
an adversary with limited access to a single authorized names-
pace may exploit the Operator to perform operations affecting
other unauthorized namespaces, causing Privilege Escalation and
further impacts.

To the best of our knowledge, this paper is the first to sys-
tematically investigate Kubernetes Operator attacks. We present
Cross-Namespace Reference Vulnerability with two strategies,
demonstrating how an attacker can bypass namespace isolation.
Through large-scale measurements, we found that over 14% of
Operators in the wild are potentially vulnerable. Our findings
have been reported to the relevant developers, resulting in 8
confirmations and 7 CVEs by the time of submission, affecting
vendors including the inventor of Kubernetes - Google and the
inventor of Operator - Red Hat, highlighting the critical need for
enhanced security practices in Kubernetes Operators. To mitigate
it, we open-source the static analysis suite and propose concrete
mitigation to benefit the ecosystem.

I. INTRODUCTION

Kubernetes has emerged as the dominant platform for con-
tainer orchestration, playing a central role in the deployment,
scaling, and management of containerized applications in
modern cloud-native environments [[1, |2, 3, 4]. As a highly
extensible and open-source system, Kubernetes facilitates the
automation of complex operations such as container deploy-
ment, scheduling, and management across clusters. Its flexi-
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bility and wide adoption have made it the cornerstone of many
enterprise-level infrastructure solutions, offering efficient ways
to handle diverse and dynamic workloads in a scalable manner.

Kubernetes organizes resources into namespaces [3], which
allow users to divide a single cluster into multiple virtual
clusters. Each namespace serves as a logical boundary, iso-
lating resources like pods, services, and secrets from other
namespaces within the same cluster. This isolation is essential
for managing different applications or services within the same
Kubernetes environment, enabling users to work independently
without interfering with each other. Namespaces also provide a
way to scope access to resources, ensuring that certain actions
can be confined to specific namespaces and reducing the risk
of accidental or malicious interference between services.

To achieve namespace isolation, a crucial security mech-
anism is Role-Based Access Control (RBAC) [6]. RBAC
defines roles and permissions for users, service accounts, and
other entities within the cluster, helping to control which
actions are allowed within the system. For example, a staff
member of a team may only be allowed to manipulate re-
sources within the namespace assigned to their team, while the
cluster administrator would be assigned all permissions across
namespaces. By configuring RBAC policies, administrators
can limit access to resources within specific namespaces,
ensuring that users or services can only interact with the
resources they are authorized to access. This granularity of
access control reinforces the isolation between namespaces
and helps to prevent unauthorized access to sensitive resources.

While Kubernetes provides robust tools and security mech-
anisms to manage and secure applications, the native platform
has limitations in automating the lifecycle of complex applica-
tions. Kubernetes requires significant manual intervention for
tasks like scaling, upgrades, and configuration management,
which can be time-consuming and error-prone [7]]. Kubernetes
Operators [8] were introduced to address these limitations.
Operators are programs that extend Kubernetes’ capabilities
by automating the management of applications. They encap-
sulate the operational knowledge required to manage complex
Kubernetes applications, automating critical tasks such as
deployment, scaling, and lifecycle management. Users can
then easily request Operators to conduct complex operational
tasks in contrast to manually manipulating raw Kubernetes



resources. By automating these processes, Operators reduce
the operational burden on DevOps teams and enable more
consistent and reliable application management.

However, Kubernetes Operators require significant privi-
leges to carry out their tasks. Due to the broad range of
operations they need to perform, these Operators are usually
granted substantial permissions across namespaces. While
these permissions are necessary for the proper functioning
of the Operator, they also introduce a significant security
risk. Due to improper security practices in Operator imple-
mentation, adversaries may forge malicious requests toward
Operators, exploit vulnerabilities to escalate their own permis-
sions, break namespace isolation, and perform unauthorized
operations within the cluster.

Although extensive research has been conducted on Ku-
bernetes security, Operator-specific attacks remain largely
unexplored. Previous studies have focused on misconfigura-
tion in Kubernetes, especially excessive RBAC permissions,
highlighting the risks of overly permissive access controls
[9, 10} 11} [12]. Practitioners thus suggested limiting RBAC
permissions for Kubernetes Operators [13 14, [15]. While
these works have led to improvements in reducing permissions,
they have neither addressed the inherent risks that remain
even when permissions are minimized, nor presented attacks
specific to Operators. Specifically, necessary permissions re-
quired by Operator business logics, which cannot be further
minimized, may still be exploited due to improper security
design within the Operator logic. Furthermore, existing attacks
assume attackers have compromised containers (e.g., get a
shell) in prior, leaving critical gaps in how to compromise
application containers.

Other research has focused on bugs in Kubernetes Operators
[L6, 17, 18], yet these studies primarily concentrated on the
functional bugs of Operators rather than their security vulnera-
bilities. Furthermore, existing security tools [[19, 20} 21} 122} 23]
24| do not adequately address the security concerns specific
to Operators, leaving a significant gap in the ecosystem.

Thus, in this paper, we present the first systematic research
on Kubernetes Operator attacks, unveiling cross-namespace
reference vulnerabilities. The root cause of cross-namespace
reference vulnerability lies in the mismatch between the de-
clared scope of a resource and the effective scope of the
Operator’s logic. A resource may be declared as namespace-
scoped, allowing users with limited access to a single names-
pace to deploy it, while the Operator’s logic may perform
actions that affect other namespaces, breaking the intended
isolation. We present a novel practical threat model without
assuming that attackers have already compromised containers,
allowing exploits to be made from scratch. We propose two
distinct tactics for exploiting Kubernetes Operators to elevate
an attacker’s privileges, both of which exploit the scope
mismatch in Operator implementation and break the isolation
between Kubernetes namespaces.

To measure the new kind of vulnerabilities, we designed and
implemented a static analysis suite that can identify scope mis-
match in Operators. We conducted large-scale measurements

of 2,268 Kubernetes Operators in the wild, revealing that
over 14% of the Operators are potentially vulnerable to these
attacks. We responsibly disclosed our findings to their develop-
ers, and, by the time of submission, 8 vulnerabilities had been
confirmed and 7 CVEs were assigned or under assignment
in response to our reports, affecting vendors including the
inventor of Kubernetes - Google and the inventor of Operator
- Red Hat, highlighting the critical need for enhanced security
practices in Kubernetes Operators.

All in all, our contributions can be summarized as follows:

o New Attack. We present the first systematic research on
Kubernetes Operator attacks. We unveil the new type of
vulnerability specific to Operators, Cross-Namespace Ref-
erence Vulnerability, detailing two distinct tactics and their
root cause, both of which can be leveraged to escalate
privileges.

o Large-scale Measurement. We design and implement tools
for the measurement of real-world Cross-Namespace Refer-
ence Vulnerabilities. We conduct large-scale measurements
of Kubernetes Operators in the wild, demonstrating that over
14% of Operators are susceptible to these vulnerabilities.

« Real-World Impact. We responsibly disclosed our findings
to the developers, and, by the time of submission, 8 vul-
nerabilities were confirmed and 7 CVEs were assigned in
response to our reports, affecting leading vendors including
Google and Red Hat.

o Benefic Ecosystem. We open-source our analyzer, which
covers detailed modeling of major Kubernetes libraries,
enabling analysis of not only Operators but also other Ku-
bernetes applications. To facilitate remediation, we propose
concrete mitigations, open-source mitigation samples, and a
patch generator for practitioners. Artifacts can be found at
https://doi.org/10.17605/0OSEIO/PWVC4.

II. BACKGROUND

A. Kubernetes Namespace and RBAC

Kubernetes is a powerful container orchestration platform
that automates the deployment, scaling, and management of
containerized applications. It is designed to manage large-scale
complex applications, where multiple teams or applications
may share a single cluster. To help organize and isolate
resources within the cluster, Kubernetes provides a mechanism
called Namespaces [5]. A namespaceﬂ is a logical partition or
a virtual cluster within a physical cluster. Each namespace acts
as a boundary, ensuring that resources in one namespace do
not conflict with those in another.

Namespaces are particularly useful in multi-tenant environ-
ments, where different teams or applications share the same
Kubernetes cluster [25]. By isolating resources in separate
namespaces, Kubernetes prevents one team from accessing
or interfering with another team’s resources. This isolation is
vital for security and resource management, ensuring that users
and applications can only access the resources assigned to

'We use ns as short for namespace for the remaining parts.
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their namespace, preventing unauthorized access or potential

conflicts between resources.

Kubernetes employs multiple security mechanisms to help
ensure that the cluster remains secure and that resources are
properly isolated. One of the most important mechanisms for
securing access to resources within a namespace is RBAC
(Role-Based Access Control) [6]. RBAC allows administrators
to define roles with specific permissions and bind those roles to
users or service accounts, ensuring that only authorized entities
can perform certain actions. Cluster administrators can grant
both ns-specific permissions and cluster-level permissions.
Specifically:

e Role and RoleBinding: Define and grant resource permis-
sions within a specific namespace to a user, group, or service
account.

e ClusterRole and ClusterRoleBinding: Define and grant re-
source permissions across all namespaces to a user, group,
or service account.

B. Kubernetes Resource

At its core, Kubernetes organizes the cluster’s state using
resources, which are data objects encapsulating configuration
and runtime information. Kubernetes manages many types of
resources within a cluster, which are fundamental components
that define the desired state of applications and services. Com-
mon built-in resource types include pods [26]] and deployments
[27]. A pod is the smallest deployable unit in Kubernetes and
typically represents one or more containers that share the same
network and storage resources. A deployment is a higher-
level abstraction that manages the lifecycle of pods, specifying
the desired number of pod replicas. In addition to built-in
resources, Kubernetes allows users to define Custom Resources
(CRs) [28], extending Kubernetes to manage domain-specific
requirements beyond its default capabilities. Each type of Cus-
tom Resource is described by a Custom Resource Definition
(CRD) [28]], which specifies the resource’s schema.

In Kubernetes, each type of resource, whether a built-
in resource or a Custom Resource, is bound with an ex-
plicit scope, indicating its accessibility and impact within
the cluster. Resources can be either Namespace-scoped or
Cluster-scoped. In Kubernetes, the scope of built-in resources
is embedded within the Kubernetes implementation, whereas
the scope of Custom Resources is explicitly defined in their
associated Custom Resource Definitions. NS-scoped resources
must reside within a specific namespace, meaning they are
logically isolated and can be accessed or manipulated by
users with only NS-specific Roles. Conversely, Cluster-scoped
resources exist at the cluster level and are not confined to
any single namespace. These Cluster-scoped resources may
affect or interact with all namespaces across the cluster. Due
to their broad impact, accessing or manipulating cluster-scoped
resources requires users to possess a cluster-wide ClusterRole,
reflecting elevated privileges.

Importantly, resources themselves merely represent desired
configurations or states. To realize these desired states, each
type of resource is managed by an associated controller,

1 apiVersion: example.com/vi
2 kind: DatabaseInstance

3 metadata:

4 name: my-database

5 spec:

6 replicas: 3

7 storageSize: "10Gi"

Fig. 1. Custom Resource Example

a program responsible for monitoring resources and taking
actions to align the actual state with the desired state described
by resources. For example, the deployment controller monitors
deployment resources and ensures that the desired number
of pod replicas are running. If a pod fails or is deleted, the
deployment controller automatically creates a new pod to meet
the desired state. For built-in resources, Kubernetes provides
native controllers. For Custom Resources, users should de-
velop custom controllers.

C. Kubernetes Operator

Kubernetes Operator is a method of automating and manag-
ing the lifecycle of complex applications on top of Kubernetes
by extending the platform’s native capabilities. Originally
introduced by CoreOS (now part of Red Hat), it emerged from
a recognition that while Kubernetes excels at automatically
orchestrating workloads, many organizations need a more
powerful automation pattern to handle full lifecycle manage-
ment, such as database management, application upgrades, or
failure recovery, that requires specific operational knowledge.
Operator is thus introduced to extend Kubernetes by em-
bedding human operational expertise into software, enabling
automated management of complex, stateful applications.

An Operator consists of one or more Custom Resource
Definitions (CRDs) and their corresponding Custom Resource
Controllers. CRD defines the schema of a custom resource
type that will be processed by the Operator. Controllers work
with CRDs by continually monitoring custom resources and
taking actions to fulfill operational tasks requested by users.

To use an Operator, users manipulate custom resources
that represent the operational task, along with the related
parameters they want to conduct. The Operator controller reads
these custom resources, takes actions listed in the custom
resource, and ensures that the operational task behaves as
expected. Considering an Operator for database management
tasks, users may create a custom resource listed in
including arguments like the number of database replicas and
storage settings. The Operator controller then reads the custom
resource, automatically provisions, scales, and maintains the
database according to these specifications.

Since Operators typically manage multiple kinds of re-
sources across namespaces, they often run with elevated RBAC
privileges, allowing them to create, modify, and delete re-
sources on behalf of users. This makes them powerful but also



introduces security risks. If an Operator does not adopt proper
security measures, attackers may exploit the vulnerabilities
of the Operator to gain unauthorized access or manipulate
resources beyond their intended scope.

III. THREAT MODEL

Our threat model aligns with real-world Kubernetes deploy-
ments where multiple tenants, teams, or applications share
the same cluster while being isolated within their respective
namespaces [25]. The adversary aims to break Kubernetes
namespace isolation and achieve cross-ns privilege escalation
by exploiting security weaknesses in Operator implementa-
tions. Their objectives are performing operations in unautho-
rized namespaces (i.e., namespaces that they have no Roles)
and thus escalating privileges.

We assume the Kubernetes cluster deploys vulnerable Oper-
ators, and the adversary has legitimate access to a Kubernetes
cluster but can only access their authorized namespaces. Thus,
they cannot access or manipulate cluster-scoped resources and
can only interact with Operators by manipulating ns-scoped
resources in their authorized namespace. They seek to lever-
age vulnerable Kubernetes Operators to execute unauthorized
operations in other namespaces. The adversary may be:

« A malicious tenant in a multi-tenant cluster who is only
authorized to access their assigned namespace.

o A compromised application running in a namespace with
ns-level permissions mounted.

« An attacker who steals credentials of Kubernetes accounts
with ns-level permissions.

Our threat model is practical. For example, many real-world
cloud services are operated on multi-tenant Kubernetes. One
of them, Red Hat Developer Sandbox [29], is provided by
assigning a namespace on multi-tenant Kubernetes to a user,
where Operators are deployed. This implies that attackers may
subscribe Kubernetes-based service to conduct our attacks.

It is notable that our threat model is significantly different
from previous works [9} [10, [11, [12]. Specifically, existing
works assume that the adversaries have compromised vulner-
able application containers in prior, which is a strong assump-
tion in the real world, leaving critical gaps in how to com-
promise application containers. In contrast, within our threat
model, adversaries don’t have to gain control of Operators in
prior, since these Operators may be deployed in adversary-
unauthorized namespaces. In extreme cases, Operators can
even be deployed outside the Kubernetes cluster [30]. So the
threat model of previous works is relatively infeasible, but
our threat model is more feasible and aligned with real-world
scenarios.

In this paper, the terms Namespace and Cross-Namespace
refer specifically to Kubernetes Namespaces, which are used to
isolate resources within a Kubernetes cluster. They are distinct
from similarly named concepts in other systems, such as Linux
Namespaces, which isolate system resources at the OS kernel
level. They isolate resources at different layers and have no
direct linkage despite sharing the same term.

The vulnerability we presented acts as a strategy for at-
tackers to access or manipulate unauthorized resources. The
final concrete impact depends on the accessed unauthorized
resources and differs between cases.

IV. CROSS-NAMESPACE ATTACKS
A. Attack Overview

In Kubernetes clusters, namespaces act as virtual bound-
aries, restricting user access and isolating resources. Ku-
bernetes Operators manage applications and resources and
perform essential operational tasks. While these Operators
simplify application management, their inherent privileges and
operational flexibility create potential security vulnerabilities
that can be exploited for cross-namespace reference attacks.

The high-level attack flow is as follows: an attacker, who has

legitimate but restricted access to one namespace, manipulates
a maliciously crafted ns-scoped resource instance within their
authorized namespace. The Operator, continuously watching
for ns-scoped resource events, detects this malicious resource
instance and processes it with privileged operations that impact
namespaces beyond the attacker’s authorized scope, effectively
breaking the intended namespace isolation enforced by Kuber-
netes.
Root Cause. The core enabling cross-ns reference attacks
stems from a mismatch between the declared scope of a
resource and the actual scope of its process logic. Specifically,
the vulnerability arises when the scope of a resource is defined
as Namespaced, indicating that each instance should strictly
reside within its assigned namespace. Thus, an adversary only
with Role in a single namespace is allowed by RBAC to
manipulate such a resource in their own namespace. However,
despite this ns-scoped definition, the Operator may actually
perform operations across namespaces, inadvertently allowing
manipulation of resources in namespaces beyond the intended
scope. As a result, an adversary without Role in other names-
paces may invoke the Operator to escalate their permissions
and access unauthorized namespaces.

The root leading to such implementation lies in the improper
trade-off at the design level between security and convenience.
Kubernetes grants significant flexibility for controllers. Built-
in controllers in Kubernetes prioritize security to eliminate
attack surfaces. For instance, a Pod can only reference Secrets
within the same namespace to avoid cross-ns. However, many
developers [31} 13233} 134, 135]] want cross-ns to avoid manually
duplicating Secrets in each namespace. Since Operators are
proposed to reduce human intervention, the community may
prioritize convenience, overlooking the underlying Kuber-
netes’s security model and enabling cross-ns reference.
Cross-Namespace Features. There are two primary scenarios
that enable cross-namespace reference actions. First, when
processing ns-scoped resources in one namespace, an Operator
may access or manipulate other ns-scoped resources in a
different namespace (§IV-B). Second, when processing ns-
scoped resources, an Operator might access or manipulate
cluster-scoped resources, leading to impacts on the whole
cluster across all namespaces (§IV-C). Both scenarios allow
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Fig. 2. Attack Flow

adversaries to trick the Operator into performing unintended,
privileged operations beyond the adversary’s RBAC scope.

B. Insecure Namespace-Scoped Resource Reference

Insecure NS-Scoped Resource Reference vulnerability

arises when an Operator processing ns-scoped resources, the
fields of which are then used by the Operator to reference
resources in other namespaces. This vulnerability fundamen-
tally undermines Kubernetes namespace isolation by enabling
attackers to indirectly access resources from namespaces they
are otherwise restricted from accessing.
Attack Flow. As illustrated in [Figure 2| consider two names-
paces: an attacker namespace and a victim namespace contain-
ing sensitive resources. The Roles and RoleBindings claim that
the attacker can only access resources in their namespace and
cannot access those in the victim’s namespace.

To bypass the restriction of RBAC and access resources in
unauthorized namespaces, the attacker first crafts and deploys
a malicious resource instance within their namespace. This
resource includes fields leveraged by the Operator to reference
resources located in the victim namespace. From the perspec-
tive of Kubernetes, the deployment of the malicious resource
should be allowed because it only knows that the attacker has
created a resource under their authorized namespace, but does
not know if the resource leads to privilege escalation.

The Operator then processes the created malicious resource.
The Operator extracts the fields in the malicious resource,
operates the victim resource located in the victim namespace,
and inadvertently leaks or tampers with sensitive information.
Thus, the attacker effectively escalates their privileges, bypass-
ing Kubernetes’ namespace isolation, gaining unauthorized
access to resources that should have remained secure.
Example. A common real-world scenario occurs when an
Operator manages applications consuming credentials (e.g.,
API Secret Key) stored in Kubernetes Secrets. As per Ku-
bernetes official security practice [36], Secrets should only
be referenced strictly within the same namespace to maintain
proper isolation.

1 apiVersion: example.com/v1l

2 kind: Example

3 metadata:

4 name: malicious

5 # Deploy resource in attacker's namespace
6 namespace: attacker

7 spec:

8 secretRef:

9 name: sensitive-secret

10 # Reference secret in victim's namespace
11 namespace: victim

1 func (r *Example) Reconcile(...) (...) {

2 // secretRef is attacker-controlled

3 secretRef := example.Spec.SecretRef

4

5 secret := &corevl.Secret{}

6 namespacedName| := types.NamespacedName{
7 Name: secretRef.Name,

8 // Cross-namespace Reference

9 Namespace: secretRef.Namespace

10 }

11

12 // Retrieve the secret

13 err := r.Get(ctx, namespacedName|, secret)
14

15 // Further operation using secret

16 2

Fig. 3. Insecure Namespace-Scoped Resource Reference Sample

However, the vulnerable Operator implements cross-
namespace references by setting up a secretRef.namespace
field in its custom resource definition. Given this insecure
implementation, an attacker restricted to a namespace could
craft the malicious custom resource as illustrated in the upper
YAML file of He deploys a resource with meta-
data.namespace setting to attacker, which means the resource
is deployed in the attacker namespace. This deployment is
allowed since the RBAC authorized the attacker to work
in his own namespace. In the specification of the resource,
the attacker defines the value of secretRef at Lines 8-11,
referencing a Secret named sensitive-secret in his unauthorized
namespace victim.



The Operator notices the malicious resource deployed by the

attacker, reads the secretRef field at Line 3 of the Reconcile
function illustrated in The name and namespace
of the referenced victim Secret are then loaded into the
namespacedName object, which is used to query and retrieve
the specified Secret into the secret object at Line 13. The
remaining parts of the Operator will consume the content of
the Secret to perform further operations.
Impact. Insecure NS-Scoped Resource Reference vulnera-
bilities fundamentally enable attackers to escalate privileges
by allowing them to reference and manipulate resources in
namespaces beyond their legitimate access. Further impact
of this vulnerability heavily depends on how the Operator
processes and utilizes the referenced resources, as well as the
nature of the referenced resources themselves. For instance,
if the referenced resource is a Kubernetes Secret containing
sensitive credentials like API Tokens, an attacker may obtain
unauthorized access to applications, databases, or cloud in-
frastructure. If the Operator not only reads but also modifies
referenced resources, attackers might disrupt service avail-
ability, modify application configurations, or inject malicious
workloads. Thus, the severity and scope of the impact are
highly context-dependent, ranging from sensitive information
leakage to complete cluster compromise, based on the type
and usage of the improperly referenced resource.

C. Insecure Cluster-Scoped Resource Reference

Insecure Cluster-Scoped Resource Reference occurs when a

Kubernetes Operator processes a ns-scoped resource and inter-
acts with cluster-scoped resources. Unlike ns-scoped resources
that remain isolated within specific namespaces, cluster-scoped
resources affect the entire Kubernetes cluster. If an Opera-
tor allows users to influence these cluster-scoped resources
through ns-scoped resources, it creates a pathway for attackers
to escalate privileges and potentially compromise the entire
cluster.
Attack Flow. As illustrated in consider a namespace
controlled by an attacker named attacker, and all the other
victim namespaces. The Roles and RoleBindings in the cluster
define that the attacker can only access resources in their
namespace and cannot access any victim’s namespace.

The basic attack workflow for this vulnerability starts with
an attacker creating a malicious resource in their authorized
namespace, whose fields are leveraged by the Operator to
reference a cluster-scoped resource. Kubernetes RBAC accepts
the deployment of the malicious resource because it only
knows that the attacker has created a resource under their
authorized namespace, but does not know if the resource leads
to privilege escalation. The Operator, running with elevated
cluster-level privileges, processes this malicious input and sub-
sequently performs operations on the referenced cluster-scoped
resource. As cluster-scoped resources inherently affect the
entire Kubernetes environment, these unauthorized accesses
and manipulations enable attackers to escalate privileges be-
yond their initial namespace boundaries and gain control or
influence over all the other namespaces.

apiVersion: example.com/v1l
kind: App
metadata:

name: malicious
# Namespace-scoped Resource
namespace: attacker
spec:

# ...

0w 0 0o b WN -

func (r *App) Reconcile(...) (...) {
crb) := &rbacvil.ClusterRoleBinding{
Subjects: [Jrbacvi.Subject{{
Kind: "ServiceAccount",
Name : app.name,
// Attacker-controlled input
Namespace: app.Namespace

33
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// Create CRB to attacker's namespace
r.Create(ctx, [crb))
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Fig. 4. Insecure Cluster-Scoped Resource Reference Sample

Example. ClusterRole and ClusterRoleBinding are two
cluster-scoped built-in resources in Kubernetes. It can grant
cluster-wide permissions to a ServiceAccount, a built-in
namespace-scoped resource that provides an identity for ap-
plications to access the Kubernetes API. Some Kubernetes
applications require mounting a ServiceAccount with cluster-
wide permissions to access the Kubernetes API and operate
correctly. Thus, when deploying such an application in a
specified namespace, their Operators will create a ServiceAc-
count in that namespace, mount it on the application, and
create a ClusterRoleBinding to grant cluster-wide permission
to that ServiceAccount. An insecure implementation occurs
when an Operator accepts ns-scoped resources and creates
a ClusterRoleBinding to a ServiceAccount in the requesting
namespace. An attacker restricted to a namespace could thus
craft the malicious resource illustrated in the YAML file of
He deploys a resource with metadata.namespace
setting to attacker, which means the resource is deployed in
the attacker namespace.

The Operator monitors App custom resources. It finds
the malicious resource deployed by the attacker, creates a
ServiceAccount in the attacker’s namespace, and then creates
a ClusterRoleBinding towards that ServiceAccount to grant it
cluster-wide permissions. Since the ServiceAccount is created
in the attacker’s namespace, the attacker can impersonate
the ServiceAccount to escalate his privilege, gaining cluster-
wide permissions granted by ClusterRoleBinding. In short,
such a vulnerability can be leveraged to directly elevate the
permissions of attackers.

Impact. Insecure Cluster-Scoped Resource References allow
attackers to escalate privileges and affect resources across all
namespaces in a cluster. The specific severity and effect of
this vulnerability depend on which cluster-scoped resources
the Operator interacts with. For instance, if an Operator



insecurely creates a ClusterRole or ClusterRoleBinding as
dictated by ns-scoped resources, an attacker can gain cluster-
level permissions. The detailed permissions assigned depend
on the implementation of Operators.

V. CROSS-NAMESPACE IN THE WILD

To assess the prevalence of the vulnerabilities described
in Section we conducted a large-scale measurement of
real-world Kubernetes Operators and disclosed our findings to
affected vendors.

A. Measurement Methodology

1) Overview: To understand how widespread the vulnera-
bilities are in real-world Kubernetes Operators, we perform a
systematic measurement illustrated in [Figure 5] which consists
of the following steps:

1) Operator Collection: A large set of publicly available
Kubernetes Operator repositories is collected from GitHub.

2) Resource Type Identification: Resource types (either Ku-
bernetes built-in resources or custom resources) used by
each Operator are extracted, and their declared scopes
(either ns-scoped or cluster-scoped) are identified based
on the code.

3) Vulnerability Detection: The analysis identifies whether
Operators process ns-scoped resources but conduct inse-
cure cross-ns reference behavior, as depicted in Section
and Section [V-C

4) Summary: Identified vulnerabilities are further aggregated
based on the types of referenced resources and operation
verbs to evaluate the impacts in the real world.

Among all Kubernetes development frameworks recom-
mended by the Kubernetes official [8]], Golang frameworks
(i.e. Kubebuilder [37] and Operator SDK [38]]) own the highest
GitHub Stars and dominates with around 2.4k Operators,
followed by Python (331 Operators), Shell (167 Operators),
Java (134 Operators), Rust (96 Operators), and .NET (29
Operators). Given the overwhelming amount of Golang-based
Operators, the collection specifically targets Operators im-
plemented in Golang. We adopted CodeQL [39] v2.17.4 to
analyze Operators. The entire CodeQL query suite uses around
1,500 lines of QL rules, covering detailed modeling of major
Kubernetes Go libraries, enabling analysis of Kubernetes ap-
plications beyond Operators.

TABLE I
COMMON OPERATOR-RELATED LIBRARIES

Library

k8s.io/api [40]
k8s.io/apimachinery [41]
client-go [42]

client-gen [43]
controller-runtime [44]]

Description

K8s Built-In Resource Specifications
K8s Metadata Specifications

K8s Official Client

K8s Official Client Generator
Controller Client

To enhance the measurement process, 5 commonly used
libraries listed in were modeled to accurately resolve

and track Kubernetes interactions within collected Opera-
tor implementations. They contain specifications of native
Kubernetes resources, namespace-related data structures, and
functions for Operators to manipulate resources. The detail is
elaborated later.

2) Operator Collection: The dataset of Kubernetes Opera-
tors analyzed was collected by crawling GitHub repositories.
To achieve this, GitHub Search API [45] was utilized with
the query string “Kubernetes Operator language: go”. The
collection process strictly adhered to GitHub’s API usage
policies to responsibly retrieve relevant Operator repositories.

After collecting Operators from GitHub, we set up CodeQL
databases for each Operator. 13 Operators that cannot be
compiled to generate the CodeQL database due to errors, like
syntax and dependency errors, are eliminated, and the final set
contains 2,268 Operators.

3) Resource Type Identification: The first critical step in
detecting vulnerabilities is Resource Type Identification, as
the attack requires the attacker to initiate operations using
a ns-scoped resource they are authorized to create in their
namespace. The analysis separately handles Kubernetes Built-
in Resources and Operator-defined Custom Resources.

Custom Resource Identification. For Custom Resources de-
fined by the Operators, their data structures can be explicitly
extracted from the source code. In Kubernetes, each resource
structure must contain a field of type TypeMeta (defined by the
Apimachinery library [41]]), which acts as the unique identifier
of a resource type. Thus, the analyzer extracts all struct types
in Operators and filters those with TypeMeta fields. This
outputs all custom resource types in Operators.

To further identify the scope of each resource type (ns or
cluster), common Kubernetes frameworks like Kubebuilder
[37] and Operator SDK [38], as well as Kubernetes’ of-
ficial client code generator [43], require developers to ex-
plicitly decorate cluster-scoped resource structs using special
marker annotations “+genclient:nonNamespaced” or “+kube-
builder:resource:scope:Cluster”. By detecting these markers
in the Custom Resource struct definitions, the analyzer reliably
identifies Custom Resource types in operators and their scopes.

Kubernetes Built-in Resources. Unlike Custom Resources,
the built-in Kubernetes resource specifications are imported
from the external k8s.io/api [40] library to Operators, thus their
source code and scope markers are not directly accessible for
CodeQL. Therefore, the analyzer adopts an alternative method.
Specifically, Operators would ultimately depend on the client-
go library [42]. Each type of built-in Kubernetes resource is
uniquely associated with a typed client provided by the client-
go library [42]. Each typed client is constructed by methods
in its corresponding Getter interfaces under the k8s.io/client-
go/kubernetes/typed package. For example, considering the
built-in resource type Pod, there is a uniquely associated Pod
client. The Pod client is constructed by the only method in the
PodGetter interface. By extracting the return types of methods
in all Getter interfaces, the analyzer identifies all built-in types
and their clients.
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Fig. 5. Measurement Workflow

To determine the scope of built-in resources, the analysis
leverages the only method in the Getfer interface of each typed
client. Specifically, ns-scoped resource clients in client-go
require a namespace parameter in their constructor to specify
the target namespace. In contrast, constructors for cluster-
scoped resource clients do not require such a namespace
argument. By counting and verifying constructor parameters,
the analysis distinguishes ns-scoped from cluster-scoped built-
in resources.

4) Vulnerability Detection: This step determines whether

an attacker-controlled input can influence sensitive operations
that cross namespace boundaries or impact the whole cluster.
To achieve this, the analysis uses interprocedural taint tracking,
tracing the propagation of data originating from the ns-scoped
resource objects to insecure reference sites in the controller
logic.
Insecure Namespace-Scoped Resource Reference. The goal
of this detection is to determine whether attacker-controlled
values can be used to specify the namespace of another
resource by the Operator. This is essential because if the
attacker can influence which namespace a referenced resource
belongs to, they can trick the Operator into accessing or
modifying resources beyond their authorized scope.

TABLE I
RESOURCE NAMESPACE SETTERS

Field Library

ObjectMeta.Namespace
NamespacedName.Namespace

k8s.io/apimachinery
k8s.io/apimachinery

ObjectMetaApplyConfiguration.Namespace  client-go

Function Library
ApplyConfiguration. WithNamespace() client-go
*.SetNamespace() k8s.io/apimachinery
Constructor of Typed Client client-go
Constructor of Typed Client client-gen

Thus, the analysis tracks data flow from ns-scoped resource
objects to namespace setters (listed in Table [II)) that are lever-

aged to specify the namespace of a resource. By systematic
code reviews of common Operator libraries, we identify 3
struct fields that can store namespace values in 2 libraries and
identify 4 types of functions in 3 libraries that can be used to
set the namespace field of a resource object or set up a typed
client towards a specific namespace.

It is worth noting that the 3 fields (listed in Table [lI) of
ns-scoped resource objects are excluded from the taint source,
as these fields denote the namespace where this resource is
deployed. Since the attackers are only authorized to access
their namespace, the namespace fields of attacker-controlled
resources are always the attacker-authorized namespace. If
these fields sink in the referenced resources’ namespace fields,
it means the referenced resources are also in the attacker-
authorized namespace. Thus, no cross-ns operation is con-
ducted.

Taking the above key points into consideration, if the tainted

data flows into any of these namespace setters, the Operator
is flagged as potentially vulnerable to insecure namespace-
scoped resource references.
Insecure Cluster-Scoped Resource Reference. This analysis
aims to detect whether attacker-controlled input can influence
cluster-scoped resources. Since cluster-scoped resources affect
the entire Kubernetes cluster, any modification to them based
on ns-scoped input represents a significant privilege escalation
risk. Thus, the analysis tracks data flow from the identified
ns-scoped resource objects into any cluster-scoped resource
objects. If tainted input is used to construct cluster-scoped
resource objects, the Operator is flagged as vulnerable to
insecure cluster-scoped resource references.

5) Summary: To understand what an adversary can do to
which kind of resource, the measurement further identifies
insecurely referenced resource types and operations towards
these resources.

Affected Resource Type Identification. This step discovers
which resource can be referenced by an adversary. This
identification is trivial for insecure cluster-scoped resource
references, as their sink site in the vulnerability detection
phase is set to cluster-scoped resource objects. Thus, the



affected cluster-scoped resource types can be directly extracted
from sink objects.

For insecure ns-scoped resource references, the affected

resource type identification depends on the type of sink site
in the previous step. If the previous data flow sinks at the
three fields, WithNamespace(), or SetNamespace() methods,
then the analyzer further tracks interprocedural data flow from
the previous sinks to any ns-scoped resource objects to identify
affected resource objects and types. If the previous data flow
sinks at the constructor of a typed client, then the resource
type is the one associated with that typed client.
Verb Identification. To understand what an adversary can do
to the insecurely referenced resources, the analyzer identifies
the Kubernetes API Verbs (e.g., Get, Create, Update, Delete,
etc.) related to insecurely referenced resources. If an insecurely
referenced resource is found to be related to a Verb, like
Create, then the adversary can exploit the vulnerable Operator
to create the insecurely referenced resource in the Kubernetes
cluster, which they should not.

Verb identification is achieved by identifying client method
invocations that accept insecure references. For controller-
runtime library, it processes all resource types by a unified
typeless client in the sigs.k8s.io/controller-runtime/pkg/client
package. For client-go and client-gen libraries, they process
each type of resource with a specific typed client. Each
Kubernetes API Verb corresponds to the client method with
the same name. The analyzer thus performs interprocedural
taint tracking from the reference site to these client methods
to identify the related verbs.

B. Measurement Result

We conducted measurements on 2,268 Operators crawled
from GitHub to assess the real-world impacts of insecure
cross-ns references. The measurement suite was run on a
Windows 11 machine with an Intel i7-10700K CPU (3.80GHz)
and 32GB RAM. The suite cost 40026 seconds, with 17.6
seconds per Operator on average. In this part, we answered
the following research questions:

« RQ1: How many operators are potentially vulnerable to
insecure cross-namespace reference?

o RQ2: What resources can be cross-namespace referenced
by attackers?

e RQ3: What can attackers do towards cross-namespace
referenced resources?

o RQ4: How can insecure cross-namespace references im-
pact the real world?

1) RQI: How Many Operators Are Potentially Vulnerable
To Cross-Namespace Reference?: To assess the prevalence
of insecure cross-ns reference vulnerabilities, we analyzed a
dataset of 2,268 real-world Kubernetes Operators collected
from GitHub. Each Operator was examined to determine
whether attacker-controlled ns-scoped resources can influence
operations across namespace boundaries. The results illus-
trated that 318 Operators were potentially vulnerable, affecting
282 Operator providers. Specifically:

Total
2,268 (100%)

Both
53 (2.3%)

Cluster-Ref
175 (7.7%)

Namespace-Ref
196 (8.6%)

Fig. 6. Percentage of Affected Operators

e 196 Operators (8.6%) include insecure ns-scoped resource
references that can specify or influence operations on other
namespaces.

e 175 Operators (7.7%) contain insecure cluster-scoped re-
source references, where attacker-controlled ns-scoped re-
sources can affect cluster-scoped resources.

e 53 Operators (2.3%) allow both types of references, posing
risks of privilege escalation at both the namespace and
cluster level.

These findings illustrate that a non-negligible portion (over
14%) includes logic that may lead to privilege escalation,
highlighting a widespread but largely overlooked security
concern in the Kubernetes ecosystem.

TABLE III
OPERATOR TYPE SUMMARY

Validated? # of Flagged # of Validated
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Table illustrates the type distribution of flagged Oper-
ators. These Operators cover a wide range of usage types
in the real world, where Cluster Management, Database, and
Networking are most prevalent.

We further assessed the accuracy of our measurement. Due
to the lack of existing datasets or detection tools for this new



class of vulnerabilities, it is infeasible to validate all Operators
at scale manually. Thus, we primarily focused on false posi-
tives, evaluating if flagged Operators were truly vulnerable. We
randomly reviewed 55 flagged Operators without any specific
tailored criteria, covering major types of Operators as listed in
Table Although this sampling may not cover all potential
Operator variations or directly conclude the perfect represen-
tative, it provides a practical basis to estimate the accuracy of
our detection by covering the major types (or most prevalent
types) of Operators, as we shown in Table Among the 55
cases, only 5 were false positives. This result indicates that the
vast majority of cases flagged are indeed vulnerable, which
supports the reliability of our measurement concerning the
prevalence of vulnerability. While false negatives are difficult
to quantify due to the lack of ground truth, our analysis
focused on a range of commonly observed cross-namespace
patterns, which may not capture all potential variations but
still reflect realistic threats and led to confirmed vulnerabilities.
Overall, the measurement provides strong evidence that Cross-
NS Reference Vulnerabilities are non-negligible in the real-
world ecosystem.

TABLE IV
MAJOR INSECURELY REFERENCED RESOURCE TYPE

Scope Resource Type Ref By #Op.
Secret 102
ConfigMap 29
Deployment 29
Namespace Service 22
StatefulSet 12
Namespace 62
ClusterRoleBinding 40
Cluster ClusterRole 26
Node 25
PersistentVolume 15

2) RQ2: What Resources Can Be Cross-Namespace Ref-
erenced By Attackers? : To understand the attack surface
exposed by insecure cross-ns references, we investigate the
types of resources that Operators allow attackers to reference
across namespaces. For each resource type, we count the
number of Operators that insecurely reference it and analyze
which types are most frequently involved.

Among ns-scoped resources, the most commonly insecurely
referenced types (listed in Table are Secret (referenced by
102 Operators), ConfigMap (29 Operators), and Deployment
(29 Operators). In Kubernetes, Secrets store highly sensitive
data such as API keys, credentials, and TLS -certificates.
ConfigMaps often contain important application configurations
that control applications’ behavior, like API endpoints and
performance arguments. Deployments define and manage the
application workloads by controlling replica sets and pods.

For cluster-scoped resources, the most common insecurely
referenced types are Namespace (62 Operators), Cluster-
RoleBinding (40 Operators), and ClusterRole (26 Operators).
In Kubernetes, Namespace is the resource that defines a
namespace in a Kubernetes cluster. ClusterRoles and Cluster-
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RoleBindings define and grant cluster-level permissions that
apply to the whole cluster.

(a) Namespace-Scoped Reference (b) Cluster-Scoped Reference

87 (29.2%)
182 (39.5%)

279 (60.5%)
211 (70.8%)

Kubernetes Built-In Resource Custom Resource

Fig. 7. Reference of Built-In and Custom Resources

We also distinguish between insecure references to built-
in Kubernetes resources and custom resources. To this end,
we aggregated the type-#Operator result above based on built-
in resource type or custom resource type. For insecure ns-
scoped references, 279 cases involved built-in resources and
182 involved custom resources. For insecure cluster-scoped
references, 211 targeted built-in resources and 87 involved cus-
tom resources. These results indicate that insecure references
can affect both built-in resources and custom resources. And
the insecure references are more commonly associated with
Kubernetes built-in resources.

Get 1 188
€ 141
c 74
reate 88
Update - 61
pdate 57
Delete - 3>
elete 37
23 -
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22 Cluster-Scoped Ref
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# of Operators

Fig. 8. Verbs Used By # Operators Towards Insecurely Referenced Resources

3) RQ3: What Can Attackers Do Towards Cross-
Namespace Referenced Resources?: To understand the poten-
tial impact of insecure cross-ns references, we analyze the
operations (Kubernetes API Verbs) that Operators perform
on the referenced resources. For each identified insecurely
referenced resource, we extract its related verbs. We then
count how many Operators apply each verb to each insecurely
referenced resource type. The result is illustrated in



For insecurely referenced ns-scoped resources, the top three
most common verbs are Get (used by 188 Operators), Create
(74 Operators), and Update (61 Operators), with Get being
the most prevalent. In Kubernetes, Ger retrieves the current
state of a resource, Create instantiates a new resource, and
Update modifies an existing resource. The predominance of
the Get operation indicates that a large number of vulnerable
Operators retrieve data from resources in other namespaces
based on attacker-controlled inputs, exposing unauthorized
data to attackers.

For insecurely referenced cluster-scoped resources, the top
three verbs are Ger (used by 141 Operators), Create (88
Operators), and Update (57 Operators), with Get accounting
for the largest proportion. This suggests that in many cases,
Operators may use attacker-influenced data to get cluster-wide
resources, which may expose sensitive cluster-level informa-
tion to attackers.

Secret
Get
ConfigMap
Deployment I
Namespace Create
CRBinding*I Update
ClusterRole I Delete

*ClusterRoleBinding

Fig. 9. Verbs of Major Insecurely Referenced Resources

TABLE V
MAJOR INSECURELY USED VERB-RESOURCE PAIRS

Scope Verb - Ref.Resource Type Used By #Op.
Get - Secret 97
Get - ConfigMap 25
Namespace Get - Deployment 25
Create - Secret 21
Update - Secret 19
Get - Namespace 51
Create - ClusterRoleBinding 33
Cluster Create - Namespace 29
Create - ClusterRole 23
Get - Node 20

To understand the practical implications, we investigate the
verb-resource pairs (i.e., combinations of verbs and insecurely
referenced resource types) to determine which verbs Operators
typically perform on specific insecurely referenced resource

types. The result is illustrated in Table [V] and
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For insecurely referenced ns-scoped resource types, the
most prevalent pairs are Get-Secret (used by 97 Operators),
Get-ConfigMap (25 Operators), and Get-Deployment (25 Op-
erators). These indicate that a substantial number of Operators
can be exploited to read data from Secrets, configuration
files, or application deployments in attackers’ unauthorized
namespaces, causing information exposure.

For insecurely referenced cluster-scoped resource types,
the most prevalent pairs are Get-Namespace (used by 51
Operators), Create-ClusterRoleBinding (33 Operators), and
Create-Namespace (29 Operators). These patterns suggest that
Operators may be exploited to reveal other namespaces in
the cluster, assign cluster-wide permissions, or provision new
namespaces, leading to privilege elevation.

Together, these findings highlight that insecure cross-ns
references are not only present but often tied to high-impact
operations on sensitive or privileged Kubernetes resources.

C. RQ4: Case Study

To validate the practical significance of the identified vul-
nerabilities, we conducted in-depth inspections of vulnerable
Operators. Combined with static analysis and manual exploits,
the detailed impacts of their vulnerabilities are identified. We
responsibly disclosed our findings to their vendors. By the time
of submission, 8 vulnerabilities have been confirmed by the
affected vendors as listed in Table where all vulnerable
resources are custom resources, as Operators are typically
triggered by their custom resources and then reference other
resources. 7 CVEs have either been assigned or are currently
under processing, reflecting community acknowledgment and
real-world relevance of these issues. Notably, even Operators
maintained by Google, the inventor of Kubernetes, and Red
Hat, the inventor of Operators, were confirmed to be vul-
nerable to insecure cross-ns references, highlighting that the
problem is systemic and not limited to less mature projects.

We introduced 2 vulnerabilities to illustrate how these
insecure references impact the real world.

1) Grafana/tempo-operetor Insecure ClusterRole Assign-
ment: Grafana [46], a member of CNCEF, is a widely adopted
open-source analytics and visualization platform, renowned for
transforming complex data into interactive dashboards. Among
their products, Grafana Tempo [47] stands as a distributed
tracing backend for the Grafana Observability Stack, gaining
over 4,000 stars on GitHub. The tempo-operator [48]], devel-
oped by both Grafana and Red Hat, is the official solution
for deploying and managing Grafana Tempo on Kubernetes
clusters. It defines a ns-scoped Custom Resource, TempoStack,
for users to deploy Tempo.

Specifically, when enabling JaegerQuery and MonitorTab
functions in a TempoStack resource, tempo-operator would
create a ClusterRoleBinding, granting cluster-level permis-
sions to a ServiceAccount in the namespace specified by the
attacker-controlled TempoStack.Namespace field. An attacker
can thus deploy a TempoStack in his namespace, where the
JaegerQuery and MonitorTab functions were enabled and
TempoMonolithic.Namespace field was set to the name of his



TABLE VI

VENDOR-CONFIRMED VULNERABILITIES

Operator Vendor Status Vulnerable Resource Referenced Resource  Verb
elcarro-oracle-operator ~ Google Confirmed Instance Backup Get
gateway-operator Kong CVE Assigning AlGateway Secret Get
baremetal-operator Metal3-io CVE-2025-29781  BMCEventSubscription ~ Secret Get
observability-operator Red Hat CVE-2025-2843 MonitorStack ClusterRoleBinding Create/Update/Delete
gateway-operator Kong CVE Assigning ControlPlane ClusterRoleBinding Create
tempo-operator Grafana & Red Hat ~ CVE-2025-2842 TempoStack ClusterRoleBinding Create/Delete
tempo-operator Grafana & Red Hat CVE-2025-2786 TempoMonolithic ClusterRoleBinding Create/Delete

ais-k8s NVIDIA CVE-2025-23260  AlStore ClusterRoleBinding Create/Update/Delete

authorized namespace. The Operator will then grant cluster-
level permissions to a ServiceAccount in his namespace. The
attacker can then impersonate the ServiceAccount to gain
access to resources in the whole cluster.

In terms of impacts, the operator would grant the cluster-
monitoring-view ClusterRole, an OpenShift-specific role en-
abling access to Prometheus and Thanos APIs, thus allowing
the attacker to observe metrics and monitor cluster-wide
resource states. We validated the bug and reported it to the
vendors. They responded that “We confirmed the vulnerability
and will start the process to assign a CVE shortly. ”. CVE-
2025-2842 was then assigned to us.

2) GoogleCloudPlatform/elcarro-oracle-operator Insecure
Cross-Namespace Database Backup Reference: Google, the
creator of Kubernetes and a member of CNCEF, significantly
influenced the evolution of cloud-native computing. Google
develops multiple Operators to help users deploy common
applications on Google Kubernetes Engine (GKE). Among
them, elcarro-oracle-operator [49] is the one for deploying and
managing lifecycles of Oracle databases on GKE, providing
functions including database backup and restore.

The elcarro-oracle operator was found vulnerable to In-
secure NS-Scoped Resource Reference when processing the
custom resource Instance. Instance, a ns-scoped resource, was
used to specify the parameters for an Oracle database instance.
It defined a field Instance.Spec.Restore.BackupRef for users
to restore the database instance from a specified database
backup in the cluster. However, the field allowed users to
reference a backup in other namespaces. An attacker who
was only authorized in his namespace can thus restore any
database backups from unauthorized namespaces into his own
namespace, causing information leakage.

Moreover, the backup storage of elcarro-oracle-operator was
based on Google Cloud Storage (GCS). The Operator thus
required the GKE cluster to have read, write, and delete
permissions to the GCS buckets and paths where backups were
stored. However, when a user requested a database restore
with the Instance, the database restore tools would run in
the user’s namespace and produce logs including the GCS
buckets and paths where the target backup was stored. An
attacker can then acquire the real GCS path of victim backups.
Since the GKE cluster had both write and delete permissions
to the backup GCS path, the attacker in the GKE cluster
was naturally authorized to modify and delete victim database
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backups, causing data tampering and loss of data.

We validated the bug and responsibly reported this issue
to Google. They have confirmed this vulnerability with the
rationale “Vulnerabilities where the only precondition is the
attacker having a role in, or belonging to, a Google Cloud
organization, project, or resource, with no interaction between
attacker and victim”.

VI. MITIGATION & DISCUSSION

During our inspection of vulnerable Operators, we realized
that Operators aim to simplify user operations as much as
possible, thus may embed cross-ns reference functionality to
spare users the repetitive, manual task of duplicating resources
like Secrets across namespaces—a practice necessitated by
Kubernetes’ namespace isolation. However, this convenience
can inadvertently introduce vulnerabilities if not properly
implemented, as attackers may exploit such helpful behavior
to perform unauthorized cross-ns actions and privilege escala-
tions. Thus, we suggest the following mitigations to eliminate
the cross-ns reference vulnerability.

Carefully Using Multi-Tenant Kubernetes. Practitioners are
discouraged from sharing Kubernetes across untrusted users,
ensuring all tenants in multi-tenant Kubernetes do no evil.
Developers should eliminate vulnerabilities of applications
running on multi-tenant clusters, which may be exploited to
gain initial Kubernetes access and affect other tenants.
Scope Alignment. Developers are advised to ensure that
the declared scope of resources accurately reflects the scope
of their operational effect. If a resource is defined as ns-
scoped but its process logic performs actions across multiple
namespaces at the cluster level, it creates a dangerous mis-
match between the resource’s access control boundary and its
actual impact. In such cases, the resource should be explicitly
declared as cluster-scoped, ensuring that only privileged users
can create or manipulate it.

Mitigate with Kubernetes Admission Control. In cases
where cross-ns is necessary or modifying Operators is painful,
we designed a mitigation approach based on Validating
Admission Webhook [50] to reject harmful requests before
proceeding to the original Operators. The mitigation works
independently, demands no modification to existing Operators,
and can be easily adapted to any project.

Essentially, Validating Admission Webhook is a mechanism
to extend the native Kubernetes access control. When a user
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Fig. 10. Mitigate with Validating Admission Webhook

manipulates a resource, besides RBAC, Kubernetes will also
invoke Webhooks to decide whether to allow or reject the
request. In addition, Kubernetes provides the SubjectAccess-
Review [51] API, which can be used to check whether a
user has specific RBAC permissions on a given resource.
We leverage these mechanisms to further check whether the
user has permissions for referenced resources and inform
Kubernetes to reject requests if the user is unauthorized. This
fills the gap of the native Kubernetes RBAC, which is not
aware of whether a resource has cross-ns references.

gives the workflow of our proposed mitigation.
The basic flow of a Validating Admission Webhook is that
the Kubernetes API Server intercepts a user request, sends an
AdmissionReview object containing the raw resource and user
identity to the Webhook, and waits for an AdmissionResponse
object from the Webhook indicating whether the request
should be accepted or rejected. Upon receiving an Admission-
Review from the Kubernetes API Server, the Webhook reads
the object and evaluates whether the user has cross-namespace
permissions by issuing a SubjectAccessReview query to the
API Server. If the result indicates that the user lacks permis-
sions, the Webhook responds with an AdmissionResponse with
the allowed field set to false, causing the API Server to reject
the request before it reaches the Operator.

We implemented a Validating Admission Webhook with
Kubebuilder [37]. illustrates a simplified version of
our Webhook to mitigate the cross-ns secret reference vulnera-
bility of the Kong gateway-operator. The Line 3-4 extracts the
raw resource and raw request. The Line 6 gets the namespace
of the referenced secret from the raw resource. The Line 7-16
crafts a SubjectAccessReview query, which checks whether the
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1 func (v *Validator) ValidateCreate(ctx, obj) {
2 // Raw Resource and Requests
3 aigateway, ok := obj.(*gateway.AlGateway)
4 req, err := admission.RequestFromContext(ctx)
5 // Craft SubjectAccessReview
6 secretNs := aigateway.Spec.CPC.Namespace
7 review := SubjectAccessReview{
8 Spec: SubjectAccessReviewSpec{
9 User: req.UserInfo.user.Username,
10 ResourceAttributes: &ResourceAttributes{
11 Resource: '"secrets",
12 Verb: "get",
13 Namespace: *secretNs,
14 3},
15 3,
16 }
17 // Check User Permission and Respond
18 err = v.client.Create(ctx, &review)
19 if !review.Status.Allowed {
20 return nil, fmt.Errorf("no permission")
21 }
22}
Fig. 11. Simplified Admission WebHook Example For Mitigating gateway-

operator Vulnerability

requesting user has permission to Get Secrets in the referenced
namespace. The Webhook issues the query at Line 18, checks
the result at Line 19, and rejects the unauthorized user at Line
20. With the scaffolding generated by Kubebuilder, tens of
lines of code are required to implement a basic mitigation. And
developers or cluster administrators can further implement
other finer-grained validations in complex scenarios if needed.

TABLE VII
VALIDATING ADMISSION WEBHOOK MITIGATION EVALUATION

Operator Mitigated  Before (ms) After (ms)
elcarro-oracle-operator @ 95.7 99.3 (+3.6)
gateway-operator o 94.5 97.0 (+2.5)
baremetal-operator (V) 91.6 94.5 (+2.9)
observability-operator (V] 96.5 101.2 (+4.7)
tempo-operator o 106.3 113.7 (+7.4)
ais-k8s (V] 101.7 105.2 (+3.5)

Average 97.7 101.8 (+4.1)

We evaluate its effectiveness and overhead on the vulnerable
Operators listed in Table The evaluation is conducted
on a Kubernetes cluster with 1 control plane node and 3
worker nodes. Each node is equipped with 8 cores of Intel
E5-2680 v4 CPU (2.40GHz) and 32GB RAM. To evaluate
the effectiveness, we created two ServiceAccounts in the
cluster: one with cluster-level permissions and another limited
to a single namespace. Before deploying the mitigation, both
ServiceAccounts were able to invoke all listed vulnerable
Operators to perform cross-ns references. After deploying the
mitigation, only the ServiceAccount with legitimate cross-
ns permissions could invoke the affected Operators, while



the ServiceAccount with single-ns permissions was denied in
all cases. This demonstrates that the mitigation successfully
enforces namespace boundaries and prevents unauthorized
privilege escalation.

To evaluate the overhead, since the Webhook only works
at admission time and operates independently before the
Operator logic, we measured the time between the point at
which a new resource request was initiated and the point
the Kubernetes API Server accepted the resource. For each
test case, we repeated it 10 times and calculated the average
overhead. Experimental results show an average increase of
4.1 ms after applying the mitigation. Given that the added
overhead is a one-time overhead for a single resource request
and Operator logic typically takes seconds to minutes, this
added delay is negligible in practice.

To facilitate the mitigation, we open-sourced our Webhook
for reference and a lightweight automatic Webhook generator,
enabling quick adoption for practitioners.

Difference with Related Kubernetes Attacks. The cross-ns
attack is fundamentally different from existing attacks [9} [12}
11] regarding threat models, root causes, and defenses.

For threat models, as illustrated in Section the precondi-
tion of launching existing attacks is to assume attackers have
compromised containers (e.g., get a shell) before conducting
overprivilege attacks, leaving critical gaps in how to compro-
mise containers. In contrast, we presented a practical threat
model without such strong assumptions, detailing two practical
strategies to exploit Operators from scratch.

For root causes, existing attacks stem from granting ap-
plications unused permissions. Once attackers compromise
applications (e.g., gain shells), they can conduct existing
attacks by using over-granted privileges in follow-up actions.
Thus, they [9, 12} [11} 2 |14} [15] suggest the Principle of Least
Privilege (PoLP). Since only removing unused permissions,
PoLP will not affect their functionality and is an ideal defense.

In contrast, our attack arises even when Operators follow

PoLP. Supposing an Operator reading user input to get Secrets
in a specified namespace (rather than assuming gain shells),
it typically implies the Operator needs secret information for
its operation, thus requiring certain privileges to function cor-
rectly. Removing such privileges would break the Operator’s
functionality, even for legitimate intra-ns references. In other
words, our vulnerability stems from insecure use of legitimate
privilege, which existing defenses cannot address. An ideal
defense should preserve necessary privileges while mitigating
vulnerabilities; therefore, we propose new mitigations.
More Cross-Tenant Attacks. Similar cross-tenant attacks
can also happen in various cloud scenarios beyond Kuber-
netes. Security researchers have discovered multiple services
provided by Microsoft Azure [52, 153, 154 155, 156], AWS
[S57, 58], Google Cloud Platform [59} 160], and Oracle [61]
were vulnerable to cross-tenant attacks, allowing attackers to
manipulate unauthorized resources of other tenants. Our work
further extends the landscape to Kubernetes and emphasizes
cross-tenant risks in modern cloud architectures.
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VII. RELATED WORK

Kubernetes Operators and Controllers. Existing research
on Kubernetes operators and controllers focuses on functional
bugs instead of attacks. Acto [18] proposes an automatic end-
to-end testing technique for validating the operational correct-
ness of Kubernetes Operators. Acto continuously generates
desired state declarations and verifies whether the Operator
correctly reconciles the system to those states. Sieve [17]]
presents an automatic reliability testing framework for cluster-
management controllers. By injecting faults, Sieve uncovers
deep semantic bugs by observing how controllers behave
under fault conditions they are expected to tolerate. Anvil
[62] presents the formal verification framework for Kuber-
netes controllers via TLA-style temporal reasoning, validating
whether controllers eventually bring the cluster to the desired
state and maintain it. Kivi [63]] verifies Kubernetes controllers
and their configurations by modeling controller behaviors
and checking for violations of user-defined intent properties
using model checking. It detects issues like imbalance and
lifecycle bugs, focusing on functional correctness. Xu et al.
[16] systematically summarize historical functional bugs of
Operator. Red Hat [13], Synk [[14]], and KubeOps [15] suggest
several good practices for Kubernetes Operators. However,
their core guidance, limiting RBAC scope, is a general Kuber-
netes practice, not specific to Operator, and does not mitigate
our proposed attack.

To the best of our knowledge, our work is the first compre-

hensive study on Kubernetes Operator attacks.
Kubernetes Security. In terms of attack and exploitation
techniques, MITRE [64] and Microsoft [65] summarize tactics
to compromise containers and container orchestration systems
like Kubernetes. Pecka et al. [66] investigate privilege escala-
tion scenarios for DevOps pipelines on Kubernetes. He et al.
[67] present cross-container attacks on Kubernetes with eBPF.
Page Spray attack [68] can lead to container escaping, which
can be mitigated by memory safety hardening and repair [69}
70]. Abbas et al. [71]] design Cross-Linux-Namespace defenses
to detect container escape attacks. Spahn et al. [72] set up
honeypots on Kubernetes and analyze the attacks towards
containers and container orchestration systems. Shringarputale
et al. [73]] present a co-residency attack towards container or-
chestration systems. Zeng et al. [74] comprehensively analyze
30 vulnerabilities in Kubernetes stacks. Avrahami and Hai
[12} [75] identify the threat of trampoline pods which can be
leveraged to gain escalated privileges. However, these works
have not revealed or addressed the security issues brought
about by Kubernetes operators.

Kubernetes offers extensive configuration options for man-
aging applications, including access controls and specifying
security contexts. Any misconfigurations can lead to severe
security vulnerabilities. Thus, another theme of Kubernetes
security research is eliminating misconfiguration. Shamim et
al. [76, [77, [78]] systematically reveal the risks of miscon-
figuration regarding best practice. Rahman et al. [79] de-
sign static analysis tools and conduct a large-scale empirical



study on Kubernetes manifests, revealing the landscape of
misconfiguration. Ul Haque et al. [80] leverage knowledge
graphs to detect and mitigate Kubernetes misconfiguration.
Recent work Yang et al. [9] identify the security risk of
excessive Kubernetes RBAC permissions, which may lead
to whole cluster takeover. EPScan [10] follows up on the
research and designs systems to automatically minimize RBAC
permissions. The industry also presents numerous tools for
Kubernetes security, including Trivy [19]], Kubescape [20],
KubeSec [21]], KubeArmor [22]], Open Policy Agent [23],
and Kyverno [24], providing functions like misconfiguration
detection and runtime policy enforcement.

While the existing works try to address misconfiguration
and achieve the Principle of Least Privilege (PoLP) for appli-
cations, the vulnerability we present is not simply misconfig-
urations or violations of PoLP. They arise from inherent flaws
in how Operators process user-controlled resources. These
vulnerabilities exist even when the permissions of Operators
are minimal, highlighting a deeper design-level security gap
in the Operator model itself.

VIII. CONCLUSION

In this paper, we presented the first in-depth research
on Kubernetes Operator attacks, unveiling a long-neglected
Cross-Namespace Reference Vulnerability with two strategies,
demonstrating how an attacker can bypass namespace isola-
tion. We designed and implemented a static analysis suite to
conduct large-scale measurements, illustrating that over 14%
of Operators in the wild are potentially vulnerable. Our find-
ings have been reported to the relevant developers, resulting
in 8 confirmations and 7 CVEs by the time of submission,
highlighting the critical need for enhanced security practices
in Kubernetes Operators. We proposed concrete mitigation
solutions and open-sourced our code to benefit the ecosystem.

ETHICS CONSIDERATIONS

We conducted our research with strict adherence to ethical
guidelines. To collect Operator projects, we followed GitHub’s
rate limits and usage policies. We validated vulnerabilities
on our own Kubernetes clusters, ensuring that no third-party
users or environments were affected. We responsibly disclosed
vulnerabilities to all affected vendors. Thus, each affected
project has at least 90 days to fix before publication. All
vulnerability disclosures complied with the security policies of
the respective vendors. All vulnerabilities in Table includ-
ing Google and Red Hat, were validated and then reported to
the vendors according to their vulnerability policies. To facili-
tate mitigation, we suggested available approaches, released
mitigation samples and a lightweight mitigation generator,
enabling quick adoption for practitioners. We will ensure
all vulnerabilities discussed in the case studies are fixed or
authorized to mention by the time of the final publication.
We are actively coordinating with vendors and will publish
full datasets at the proper time (expected conference date)
to ensure developers have enough time to fix and minimize
impacts.
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IX. ARTIFACT APPENDIX
A. Description & Requirements

1) How to access: The artifact can be accessed via the
permanent URL at https://doi.org/10.17605/OSE.IO/PWVC4.

2) Hardware dependencies: Common Computers. Tested
with a virtual machine equipped with 4 CPU Cores, 8§ GB
RAM, and 100 GB Disk.

3) Software dependencies: We package the whole environ-
ment into an OVF file for easy deployment. Users with virtual
machine software, like VirtualBox and VMware, can directly
start the virtual machine.

To deploy from scratch, the following requirements should
be met:

e CodeQL v2.17.4: To run the static analyzer suite.

« Python 3 with tqdm and sarif-tools: To run the scripts.

e Go v1.24+, kubectl v1.11.3+, Docker v17.03+, and a
Kubernetes v1.11.3+ cluster: To run mitigation samples.

4) Benchmarks: Datasets: CodeQL Databases of Kuber-
netes Operators, SARIF results generated by CodeQL.

B. Artifact Installation & Configuration

We suggest using our packaged virtual machine; then, only
the virtual machine software is required. All artifacts are
located at /home/user/ArtifactEvaluation . The
username and password are both user .

Otherwise, install all dependencies listed above.

C. Major Claims

¢ (C1): 196 Operators include insecure namespace-scoped
resource references. 175 Operators contain insecure
cluster-scoped resource references. 53 Operators allow
both types of references. This is proven by El, whose
result is presented in

(C2): Among namespace-scoped resources, the most
commonly insecurely referenced types are Secret (refer-
enced by 102 Operators), ConfigMap (29 Operators), and
Deployment (29 Operators). For cluster-scoped resources,
the most common insecurely referenced types are Names-
pace (62 Operators), ClusterRoleBinding (40 Operators),
and ClusterRole (26 Operators). This is proven by El,
whose result is presented in

(C3): For insecure namespace-scoped references, 279
cases involved built-in resources and 182 involved cus-
tom resources. For insecure cluster-scoped references,
211 targeted built-in resources and 87 involved custom
resources. This is proven by E1, whose result is presented
in

(C4): For insecurely referenced namespace-scoped re-
sources, the top three most common verbs are Get (used
by 188 Operators), Create (74 Operators), and Update
(61 Operators). For insecurely referenced cluster-scoped
resources, the top three verbs are Get (used by 141
Operators), Create (88 Operators), and Update (57 Op-
erators). This is proven by El, whose result is presented

in [Figure §
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e (C5): For insecurely referenced namespace-scoped re-
source types, the most prevalent pairs are Ger-Secret
(used by 97 Operators), Get-ConfigMap (25 Operators),
and Get-Deployment (25 Operators). For insecurely ref-
erenced cluster-scoped resource types, the most preva-
lent pairs are Get-Namespace (used by 51 Operators),
Create-ClusterRoleBinding (33 Operators), and Create-
Namespace (29 Operators). This is proven by E1, whose
result is presented in

(C6): The webhook-based mitigation can successfully
deny insecure cross-namespace operations, with only
milliseconds of overhead. This is proven by E3, whose

result is presented in [lable VII|

D. Evaluation

Our paper conducted a large-scale measurement against
real-world Kubernetes Operators. Due to the significant size of
the raw data and the significant time required for full analysis,
it may be challenging to conduct a full experiment for artifact
evaluation. Thus, we designed scaled-down experiments for
reviewers to reproduce.

To ensure that all reviewers can reproduce our measurement
result, we provide the SARIF files of all Operators for repro-
duction. These SARIF files are intermediate results generated
by running our CodeQL queries on measured Kubernetes Op-
erators, which include information, like vulnerability locations,
data flow, etc. These SARIF files can be efficiently analyzed
using the scripts provided in the artifact to reproduce the
measurement results presented in Section

Given that our measurement focuses more on vulnerable
Operators, we provide CodeQL databases of all vulnerable
Operators, which can be analyzed in a reasonable time for ar-
tifact evaluation. Reviewers can validate whether our CodeQL
analysis suite is functional and generates the same results as
we provide.

1) Experiment (EI): [10 Minutes Analysis]: Reproduce
Measurement Results to Validate C1-C5.

[Preparation and Execution] Enter the Experiments
folder of the artifact, and execute bash ./run.sh .

[Results] The full results will be printed on the console,
reproducing results presented in [Figure 6} [Table 1V] [Figure 7]

Figure 8] and [Table V]
2) Experiment (E2): [4 Hours Analysis]: Validate Static

Analyzer Functionality and Reproduce SARIF Results
[Preparation and Execution] Enter the Analyzer folder

bash

of the artifact. Execute
vulnerable Operators.

After analysis, execute python ./diff.py to vali-
date that the freshly generated SARIF results are the same as
those we provided in E1.

[Results] The final diff.py script will print the number
of freshly generated SARIFs that are different from our
provided SARIFs in El. Ideally, the number should be zero.

3) Experiment (E3): [30 Minute]: Validate Mitigation Ef-
fectiveness and Measure Overhead

./run.sh to analyze all


https://doi.org/10.17605/OSF.IO/PWVC4

[Preparation and Execution] Enter the folder of the web-
hook, Mitigation/webhook-examples . Validate that
attacks can be conducted and measure baseline overhead
in a Kubernetes cluster without our mitigation by execut-
ing python ./run_vulnerable.py . Then, execute

python ./run_mitigated.py to validate that attacks
are blocked and measure the overhead in a Kubernetes cluster
deployed with our mitigation.

[Results] It is expected that attacks can be successfully
conducted in the vulnerable cluster. And the prompt, such as

xxxxxx Created , will be printed, implying that mali-
cious resources can be deployed to the cluster.

It is expected that attacks are denied in the mitigated cluster;
the prompt like webhook denied the request will
be printed, implying that malicious resources are blocked by
our webhook-based mitigation.

Both scripts will print the average overhead for each Op-
erator and the overall average overhead. It is expected that
the average overhead of the mitigated cluster is around 5~15
milliseconds (may vary depending on hardware performance)
over the baseline average overhead of the vulnerable cluster.

This experiment proves C6. The corresponding result in the

paper is located at [Table VII
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