
Formal Analysis of BLE Secure Connection
Pairing and Revelation of the PE Confusion Attack

Min Shi∗, Yongkang Xiao∗, Jing Chen∗�, Kun He∗, Ruiying Du∗, Meng Jia†
∗Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education,

School of Cyber Science and Engineering, Wuhan University.
�Corresponding author: Jing Chen, email: {itachi, xiaoyongkang, chenjing, hekun, duraying}@whu.edu.cn
†Department of Computing, The Hong Kong Polytechnic University. email: jiameng@comp.polyu.edu.hk

Abstract—The Secure Connection (SC) pairing is the latest
version of the security protocol designed to protect sensitive infor-
mation transmitted over Bluetooth Low Energy (BLE) channels.
A formal and rigorous analysis of this protocol is essential for
improving security assurances and identifying potential vulnera-
bilities. However, the complexity of the protocol flow, difficulties
in formalizing pairing method selection, and overly idealized user
assumptions present significant obstacles to such analysis. In this
paper, we address these challenges and present an accurate and
comprehensive formal analysis of the BLE-SC pairing protocol
using Tamarin. We extract state machines for each participant as
the blueprint for modeling the protocol, and we use an equational
theory to formalize the pairing method selection logic. Our
model incorporates subtle user behaviors and considers stronger
adversary capabilities, including the potential compromise of
private channels such as the temporary out-of-band channel. We
develop a verification strategy to automate protocol analysis and
implement a script to parallelize verification tasks across multiple
servers. We verify 84 pairing cases and identify the minimal
security assumptions required for the protocol. Moreover, our
results reveal a new Man-in-the-Middle (MitM) attack, which
we call the PE confusion attack. We provide tools and Proof-of-
Concept (PoC) exploits for simulating and understanding this
attack within a controlled environment. Finally, we propose
countermeasures to defend against this attack, improving the
security of the BLE-SC pairing protocol.

I. INTRODUCTION

Bluetooth Low Energy (BLE), introduced in 2010 [1], is a
wireless standard designed to connect devices with minimal
energy consumption. BLE-enabled devices are widely used
in the world, with annual shipments expected to reach 7.37
billion by 2027 [2].

The popularity of BLE has brought attention to private data,
such as keyboard strokes and health data in wearable devices,
transmitted over BLE links. To establish a secure connection,
two devices execute the BLE Secure Connection (BLE-SC)
pairing protocol, possibly with the assistance of a user or a
temporary Out-of-Band (OOB) channel such as Near-Field
Communication, to authenticate each other and establish a

HCI HCI

OOB

IO IO

Bluetooth

Initiator Responder

User
Host

Controller

Host

Controller

Fig. 1. Detailed BLE architecture with HCI channels.

shared Long-Term Key (LTK). The LTK is then used to derive
a Session Key (SK) to encrypt the Link Layer (LL) connection.

A thorough formal analysis of the BLE-SC pairing protocol
can help increase confidence in the security of BLE con-
nections. However, there are three challenges when formally
analyzing the BLE-SC pairing protocol.

The first challenge concerns modeling the complex inter-
action flow. To have better flexibility, interoperability, and
efficiency when implementing Bluetooth technology across
various devices, the Bluetooth specification [3] splits the BLE
stack into the host part and the controller part, and defines
an interactive interface, Host Controller Interface (HCI), to
connect them. The pairing protocol involves five agents and six
channels between them, as shown in Fig. 1. Existing works [4],
[5], [6] implicitly assume that the HCI channel within the
device is secure and model the device as a single entity to
simplify the model. Unfortunately, these simplified models fail
to faithfully capture the behaviors and interactions in pairing,
since the HCI channel can be controlled through technologies
such as Bumble [7].

The second challenge involves formalizing the selection
logic of the association model, also known as the pairing
method. The pairing protocol defines four association models
for device authentication. The specific association model used
in the pairing process depends on the capabilities and security
requirements of both devices. Although the specification ex-
plicitly specifies the selection logic in tabular form, translating
it into a formal representation remains challenging. Most
existing models [4], [5] overlook this selection logic. Shi et
al. [6] attempt to formalize it through individual rules for every

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240779
www.ndss-symposium.org

possible combination of capabilities and security requirements.
However, their approach contains 101 rules to model the state
machine of the Secure Manager (SM), which executes on the
host part. This results in a model that is too complex to be
effectively integrated into the architecture depicted in Fig. 1.

The last challenge relates to assumptions about user actions.
The pairing protocol may involve a user in the pairing process
by asking the user to compare or enter numbers. The security
in these cases relies on the assumptions that the user only
confirms on BLE devices when both devices display the same
numbers, and that the user faithfully enters the displayed
number on one device to the other. Additionally, the spec-
ification implicitly assumes that users always select random
numbers and never reuse them. However, Tschirschnitz et
al. [8] point out that users may deviate from the idealized
user assumption defined in the specification. Therefore, we
need more appropriate user assumptions to capture real-world
situations and accurately analyze the security of the protocol.

In this paper, we aim to overcome the aforementioned
challenges and perform an accurate and comprehensive formal
analysis of the BLE-SC pairing protocol using Tamarin [9].
First, we delve into the specification to extract the state
machines for each participant shown in Fig. 1. Our model
incorporates various channel types connecting these partici-
pants. Additionally, we consider a powerful adversary capable
of compromising the confidentiality and integrity of private
channels, such as HCI, Input/Output (IO), and OOB. Sec-
ond, considering interactions between devices and users, we
refine the four association models into six. We define two
function symbols to formalize the selection logic and specify
their properties using 23 equations. Third, we make more
subtle user assumptions, including the possibility that users
may select easily guessable numbers or reuse numbers they
randomly chose in previous sessions, while Shi et al. [6], Wu et
al. [4], and Jangid et al. [5] consider only the user assumptions
outlined in the specification and the user study [8].

The novel aspects of our model are that it offers a highly
fine-grained formalization capturing the detailed behavior of
all participants and users, while also considering a stronger
attacker model. By verifying this fine-grained model, we iden-
tify the minimal assumptions necessary to achieve the security
goals for each pairing case. For instance, when the OOB
channel between devices is unidirectional, security is ensured
only if the channel provides both confidentiality and integrity.
In contrast, with a bidirectional OOB channel, the protocol
remains secure even if an adversary compromises the confi-
dentiality of this channel. Furthermore, benefiting from our
customized equation theory, we can model the complex state
machine of the BLE-SC pairing protocol, rather than represent
each device as implementing only a specific association model
and combine different devices to analyze security properties
when different association models are used in the same pairing
session like Wu et al. [4] and Jangid et al. [5]. We would like
to highlight that our customized equation theory can serve as
an inspiration for other researchers. Specifically, this theory,
which formalizes association model selection logic, can be

extended to formalize additional protocol behaviors, such as
protocol version selection and more complex branching logic.

We conduct an automated analysis of the BLE-SC pairing
protocol using customized heuristics and an auxiliary formula.
We design verification algorithms that leverage previously
verified results to expedite the analysis process. In addition
to identifying previously known attacks, we discovered a new
Man-in-the-Middle (MitM) attack, called Passkey Entry (PE)
confusion attack. By investigating the User Interface (UI) of
Bluetooth devices, we found that the existing interface would
prompt users to enter bad numbers, increasing security risks.
Contributions. Our main contributions are as follows:
• We present the most detailed symbolic model of the BLE-

SC pairing protocol, modeling the host and controller com-
ponents of BLE devices as separate entities, in alignment
with the protocol specification. Furthermore, we formalize
the association model selection logic within our model.

• We make more subtle user assumptions than prior works.
We aim to clarify the relationship between user actions
and the security properties of the protocol. Our model
captures known attacks, such as the method confusion
attack, as well as a novel MitM attack, which we term
the PE confusion attack. To facilitate understanding and
simulation of this attack, we provide tools and proof-of-
concept (PoC) exploits within a controlled environment. We
propose countermeasures designed to enhance the security
of the BLE-SC pairing protocol against such attacks.

• We verify the pairing cases for devices with different
capabilities and security requirements. We make 84 models
for these pairing cases. For each pairing case, we find the
minimal security assumptions to ensure security.

II. BACKGROUND

A. Overview of BLE-SC Pairing Protocol

The BLE-SC pairing protocol involves two devices: the
initiator and the responder, each comprising a host and a con-
troller connected by the HCI channel, as illustrated in Fig. 1.
The HCI channel transmits three types of messages: Com-
mand, Event, and ACL (Asynchronous Connection-oriented
Logical transport). Command messages enable the host to send
commands to the controller. The controller responds to the host
with Event messages indicating the command’s completion
or requesting further messages. ACL messages carry pairing
protocol packets between the host and the controller.

Controllers communicate mutually over the BLE channel,
broadcasting messages or exchanging point-to-point packets.
In this process, ACL messages from the HCI channel are
transmitted to the peer controller via LL Data (LD) packets,
which are then forwarded to the host through the HCI channel
as ACL messages. Additionally, controllers can exchange LL
Control (LC) packets to initiate an encrypted link connection
or update connection parameters. Hosts use the IO channel to
communicate with the user, either by displaying messages on
the screen or accepting input from the keyboard. When both
devices support OOB communication, the host can communi-
cate directly through the OOB channel.

2

Initiator’s Host Initiator’s Controller Responder’s Controller Responder’s Host

Host Set the Controller to Scan Host Set the Controller to AdvertisingAdvertising
HCI LE Advertising Report

HCI LE Create Connection

HCI Command Status CONNECT IND
HCI LE Connection Complete HCI LE Connection Complete

ACL(Pairing Request) LD(Pairing Request) ACL(Pairing Request)

ACL(Pairing Response)LD(Pairing Response)ACL(Pairing Response)

ACL(Pairing Public Key) LD(Pairing Public Key) ACL(Pairing Public Key)

ACL(Pairing Public Key)LD(Pairing Public Key)ACL(Pairing Public Key)

NC, PE, OOB, JW

ACL(Pairing DHKey Check) LD(Pairing DHKey Check) ACL(Pairing DHKey Check)

ACL(Pairing DHKey Check)LD(Pairing DHKey Check)ACL(Pairing DHKey Check)

HCI LE Enable Encryption

HCI Command Status LC(LL ENC REQ)

LC(LL ENC RSP) HCI LE Long Term Key Request

HCI LE Long Term Key Request Reply

HCI Command CompleteLC(LL START ENC REQ)

LC(LL START ENC RSP)

LC(LL START ENC RSP)HCI Encryption Change HCI Encryption Change

ACL(Specific Keys)LD(Specific Keys)ACL(Specific Keys)

ACL(Specific Keys) LD(Specific Keys) ACL(Specific Keys)

①

②

③

④

⑤

⑥

⑦

⑧

Fig. 2. Message sequence chart of the BLE-SC pairing protocol.

Advertising, Scanning, and Link Establishment. As shown
in stages ①-② in Fig. 2, hosts send commands to their
controllers to enter the scanning and advertising states, respec-
tively. The initiator discovers the responder, which broadcasts
its Bluetooth address. Then, the host of the initiator commands
the controller to establish a BLE link with the peer device.
Once this link is established, both controllers send a connec-
tion complete event to their respective hosts with a connection
handle to identify the link.
Security Manager Protocol (SMP). The hosts of the two
devices execute the SMP to authenticate each other and
negotiate an LTK, which is then provided to the controller to
enable encryption of the BLE link. Once encrypted, the BLE
link allows the hosts to exchange keys for specific purposes,
such as the Connection Signature Resolving Key (CSRK) used
for authenticating unencrypted communication. We outline the
three phases of SMP in the following.

1) Pairing Feature Exchange (Stage ③). The hosts exchange
pairing request and response messages by transmitting
ACL messages over the HCI channel. These messages
contain fields to indicate the IO capabilities (IOI and
IOR), whether OOB data has been received, whether MitM
protection is required, and the maximum encryption key
size of the two devices. The first three fields are crucial
for selecting the association model in the next phase, while

the final field is used to negotiate the encryption key size.
2) LTK Generation (Stages ④-⑥). Devices (BTI and BTR)

negotiate an LTK during this phase, using three pseu-
dorandom functions f4, f5, and f6 (detailed in Ap-
pendix A). At the first stage (stage ④), two hosts ex-
change their Diffie-Hellman (DH) public keys, PkI and
PkR, to share a DH key DHKey. At the second
stage (stage ⑤), they execute one of the four associa-
tion models and exchange two random values NI , NR

as well as two numbers rI , rR. The third stage (stage
⑥) derives the MacKey and an intermediate LTK ′ by
MacKey||LTK ′ = f5(DHKey,NI , NR, BTI , BTR).
The two hosts exchange and verify the confirmations EI

and ER, which are calculated by

EI = f6(MacKey,NI , NR, rR, IOI , BTI , BTR),

ER = f6(MacKey,NR, NI , rI , IOR, BTR, BTI).

The LTK ′ is then resized to the negotiated encryption key
size to get the final LTK.

3) Transport Specific Key Distribution (Stage ⑧). The two
hosts exchange their specific keys over the encrypted BLE
link after receiving an encryption change event.

Encrypted Link Establishment. The host of the initiator
begins this phase (stage ⑦) by sending an enable-encryption
command, along with the LTK, to its controller. The con-

3

troller then generates a random Session Key Diversifier SKDI

for the initiator and transmits it to the responder’s controller
within an LL ENC REQ packet. In response, the responder’s
controller sends its session key diversifier, SKDR, in the
LL ENC RSP packet and requests the LTK from its host
via an LTK request event. Both controllers derive the session
key SK = KDF(SKDI ||SKDR, LTK). Using this session
key, the controllers encrypt the LL START ENC RSP packet
and exchange it over the BLE link. Finally, each controller
sends an encryption change event to its host, indicating that
the BLE link is now encrypted.

B. Association Models

In the pairing protocol, association models play a crucial
role in establishing a secure connection. At the stage ⑤,
devices select one of four association models — Passkey
Entry (PE), Numeric Comparison (NC), Out-of-Band (OOB),
and Just Work (JW) — based on the first three fields in the
pairing request and response messages. We provide a detailed
description of the PE association model along with concise
summaries of other association models. A full description of
all the association models and an excerpt of the selection logic
are available in Appendix B.

In the PE association model, illustrated in Fig. 3, two hosts
share a 6-digit number passkey with the assistance of the
user, using one of two methods. In the first method, one
host displays a randomly generated passkey, and the user
is prompted to enter this number on the other host. In the
second method, both hosts prompt the user to enter a self-
selected number. Once the user enters the passkey, the hosts
assign it to the numbers rI and rR. For each bit of the
passkey, both hosts independently generate random values
N i

I and N i
R, and calculate the pairing confirmations Ci

I =
f4(PkI , PkR, N

i
I , r

i
I) and Ci

R = f4(PkR, PkI , N
i
R, r

i
R).

After exchanging Ci
I and Ci

R, the initiator’s host sends the
N i

I to the responder’s host, enabling verification of Ci
I . If this

verification succeeds, the responder’s host then sends the N i
R

to the initiator’s host, which subsequently verifies Ci
R. This

process is repeated 20 times, covering each bit of the passkey.
Upon completing 20 rounds, the hosts finish the PE association
model by setting NI = N20

I and NR = N20
R .

In the NC association model, each host calculates a 6-digit
number and displays it, prompting the user to confirm if the
two numbers match by pressing a button on each device. The
OOB association model uses a temporary secure channel to
transmit the authentication data. For the JW association model,
the protocol flows are the same as the NC association model,
but always assume that the generated numbers match. It is
important to highlight that the JW association model does not
provide any authentication.

C. Tamarin Prover

We analyze the BLE-SC pairing protocol using Tamarin
Prover [10], [9], a powerful symbolic verification tool that is
widely used for the analysis of real-world security protocols
such as TLS 1.3 [11], [12], [13], 5G-AKA [14], [15], and

I-Host I-Controller R-Controller R-Host

rI = rR = passkey rI = rR = passkey

Random N i
I Random N i

R

Calculate Ci
I Calculate Ci

R

Ci
I Ci

I Ci
I

Ci
RCi

RCi
R

N i
I N i

I N i
I

Check Ci
I

N i
RN i

RN i
R

Check Ci
R

each i in range(20)

Fig. 3. Overview of the PE Association Model Flow.

EMV [16], [17]. Tamarin accepts as input a security protocol
model, which specifies the adversary’s behavior as well as
the actions performed by agents in various roles (such as the
initiator, the responder, and the user), along with the desired
properties of the protocol. It verifies whether the provided
model satisfies the desired properties by attempting to con-
struct a counterexample that violates the property. Below, we
provide a brief overview of Tamarin, and for further details,
we refer the reader to the Tamarin manual [18].
Messages as Terms. In Tamarin, messages are represented
as terms constructed from variables, constants, and func-
tion symbols. Cryptographic primitives are modeled us-
ing abstract function symbols, with their properties for-
malized by equations over terms. For example, the func-
tion symbols senc and sdec represent the symmetric en-
cryption and decryption functions, respectively. The equa-
tion sdec(senc(m,k),k)=m formalizes the property that
symmetric decryption with the same key reverses symmetric
encryption. Tamarin supports various built-in equational the-
ories for modeling common cryptographic primitives, such as
DH groups. Besides, Tamarin allows users to define functions
in the form funName/n, where funName is the function
name and n is the number of function parameters. Particularly,
when n = 0, the funName represents a constant.
Protocols and Adversary as Rules. Tamarin uses Multiset
Rewriting (MR) rules to model the protocol agents and the
adversary as a Labeled Transition System (LTS), whose state
is a multiset of facts. The initial state of this LTS is an empty
multiset, and rules define how the LTS transitions to new
states. Facts are atomic predicates applied to message terms,
encoding the states of agents and the adversary. An MR rule
is written as [L] −[A]→ [R]. When a rule is applied, it
consumes the left-side facts L in the current state and produces
right-side facts R. The application of a rule is recorded in the
trace by appending the action facts to the trace. Persistent facts
prefixed with a ‘!’ can be consumed multiple times.

4

Properties as first-order formulas. Tamarin defines security
properties as trace properties by using first-order logic formu-
las over action facts and timepoints (writing as ĩ, j̃. . .). For
example, to specify that a fresh value n is unique across all
rules labeled with the action fact Dist(n), we can use a first-
order formula that asserts the following: if an action with the
same fresh value appears twice, both instances must occur at
the same timepoint (i.e., ĩ = j̃). This property is expressed as:

∀ n ĩ j̃. Dist(n) @ĩ ∧ Dist(n) @j̃ ⇒ (̃i = j̃).

III. PROTOCOL MODELING

We outline the assumptions underlying our model and
present the core of our formal model, including the channels,
the association model selections, and the participants.

A. Assumptions

Adversary and Cryptography Assumptions. We consider
the Dolev-Yao adversary [19] who can read, intercept, re-
order, replay, and send any message in public channels. The
adversary’s actions are constrained solely by the limitations of
the cryptographic methods in use. We use standard symbolic
models of the cryptographic primitives. The properties of
the cryptographic primitives are explicitly specified by the
equations over function symbols and terms.

Furthermore, to accurately capture the property of the
function f4, defined by

f4(x1, x2, x3, x4)

=AESx3(AESx3(AESx3(x1)⊕ x2)⊕ x4⊕ KDF(x3)),

we introduce a function brkf4 to retrieve the fourth param-
eter when given the first three parameters and the output of
f4. The equation to specify the above property is

brkf4(C = f4(x1, x2, x3, x4), x1, x2, x3) = x4.

This equation captures the core property of the function
brkf4 while abstracting from specific implementation details.
It provides an abstraction for calculating x4 by

x4 = AES−1
x3 (C)⊕ AESx3(AESx3(x1)⊕ x2)⊕ KDF(x3).

User and Device Assumptions. We consider an honest user
aiming to pair two trustworthy BLE devices. We assume that
the user can compare numbers and input the displayed number.
Besides, the user can input a self-selected number into both
devices when prompted to do so. As for the passkey used in
the PE association model, the Bluetooth specification [3] states
that it should be randomly selected and not reused. We assume
that the devices comply with this specification. However, it is
difficult to ensure that all users randomly choose their numbers
and do not reuse them. In our model, we assume that the
user faithfully inputs the displayed number but may reuse a
randomly selected number or use a guessable number.
Channel Assumptions. The BLE channel between controllers
is considered public and is assumed to be fully controlled
by a Dolev-Yao adversary. In contrast, the OOB, IO, and
HCI channels are assumed to be private, providing both

confidentiality and integrity. To evaluate the necessity of these
assumptions, we model scenarios in which the adversary is
allowed to compromise confidentiality by reading information
from these channels, as well as integrity by injecting or
modifying messages over these channels.

B. Channels

To model private channels, we define a generalized channel
model that can be instantiated for various channel types.
Furthermore, we define two rules to enable the adversary to
break the confidentiality and integrity of these channels.
Generalized Channel Model. We define the following two
rules to model the generalized communication model.

S2DSrc2Chn :

[Out_S2D(chanType, Src,Dst,msg)]−[]→
[!ChanState(chanType, Src,Dst,msg)]

S2DChn2Dst :

[!ChanState(chanType, Src,Dst,msg)]−[]→
[In_S2D(chanType, Src,Dst,msg)]

The rule S2DSrc2Chn models the process of sending mes-
sages to the channel, while the rule S2DChn2Dst represents
the reception of messages from the channel. Messages are
transmitted from message sources to channels through the
first rule, and are delivered from the channel to the message
destination using the second rule. The facts Out_S2D and
In_S2D have four terms, representing the channel type, the
message source, the message destination, and the message.
Channel Types. As shown in Fig. 2, there are four channel
types in the BLE-SC pairing protocol: OOB, IO, HCI, and
BLE. To model the BLE channel as a public channel, we use
Tamarin’s built-in facts, Out and In, to model sending and
receiving of messages over the BLE channel. For the other
channels, we use Out_S2D and In_S2D, as defined in our
generalized channels model, to model sending and receiving
of messages over these channels. By assigning the variable
channelType to ‘OOB’, the generalized channel is instan-
tiated as an OOB channel. To achieve a more fine-grained
channel model, we further divide the channelType into
⟨mainType, subType⟩. For the IO channel, the mainType
is ‘IO’, and the subType specifies the specific IO method,
such as ‘Display’ and ’DisplayWithYN’ (display a number
with yes/no buttons). For the HCI channel, the mainType is
‘HCI’, and the subType further specifies the HCI types as
‘Command’, ‘Event’, and ‘ACL’.
Break Channels. To enable the adversary to compromise
private channels, we define the following two rules.

ChannelBrkC :

[!ChanState(chanType, Src,Dst,msg)]

−[BrkC(chanType, Src,Dst)]→
[Out(chanType, Src,Dst,msg)]

5

ChannelBrkI :

[In(⟨chanType, Src,Dst,msg⟩)]
−[BrkI(chanType, Src,Dst)]→
[In_S2D(chanType, Src,Dst,msg)]

The first rule ChannelBrkC sends messages from the private
channel to the public channel, enabling the adversary to
know the message and thereby compromising confidentiality.
The second rule ChannelBrkI models that messages from
the private channel can be relayed from the public channel,
allowing the adversary to inject the message into private
channels and compromise their integrity.

With the above two rules, the adversary can break the con-
fidentiality and integrity of all private channels. To precisely
extend the adversary’s capabilities, we label these rules with
action facts BrkC and BrkI, each including terms that specify
the channel type, message source, and message destination.
These action facts enable the definition of predicates used to
define security properties under different channel assumptions.
For example, the following two predicates represent that the
adversary can break the confidentiality and integrity of the
OOB channel, respectively.

BrkOOBC() ⇔ ∃ src dst ĩ. BrkC(‘OOB’, src, dst)@ĩ

BrkOOBI() ⇔ ∃ src dst ĩ. BrkI(‘OOB’, src, dst)@ĩ

C. Association Model Selection

Devices select an association model according to the pairing
request and response messages. The latest Bluetooth Core
Specification [3] (Vol 3, Part H, 2.3.5.1 Selecting key gen-
eration method, p1640) defines two tables (Table 2.7 and
Table 2.8, detailed in Appendix B) to describe the associa-
tion model selection logic. To model this association model
selection logic, we define two functions selectAM and
mapIOCaps2AM. Parameters of the function selectAM are
the OOB flags, the MitM flags, and the IO capabilities of
the two devices. For the IO capabilities, the Bluetooth Core
Specification [3] defines five types of IO capabilities:

• NoInputNoOutput: The device neither provides a means
for the user to indicate ‘yes’ or ‘no’, nor is it capable of
displaying a 6-digit decimal number.

• DisplayOnly: The device is capable of displaying a 6-
digit decimal number, but does not provide a means for
the user to indicate ‘yes’ or ‘no’.

• KeyboardOnly: The device allows the user to input a 6-
digit decimal number, but lacks the capability to display
such a number.

• DisplayYesNo: The device can display a 6-digit decimal
number and enables the user to indicate ‘yes’ or ‘no’, but
it does not allow input of numbers.

• KeyboardDisplay: The device can display a 6-digit dec-
imal number and enables user input, including both
numeric entries and confirmation via ‘yes’ or ‘no’.

The function mapIOCaps2AM takes the IO capabilities of the
two devices and maps them to the corresponding association

1 functions:
2 mapIOCaps2AM/2, selectAM/6,
3 // Constants: functions with 0 argument
4 // IO capabilities
5 DisplayOnly/0, DisplayYesNo/0, KeyboardOnly/0,

NoInputNoOutput/0, KeyboardDisplay/0,
6 // Association models
7 JW/0, NC/0, OOB/0, PEII/0, PEID/0, PEDI/0,
8 // Flag value
9 True/0, False/0

10 // selectAM(OOBFlagI, OOBFlagR, MITMflagI, MITMflagR
, IOCapI, IOCapR)

11 equations:
12 selectAM(True,x2,x3,x4,x5,x6) = OOB,
13 selectAM(x1,True,x3,x4,x5,x6) = OOB,
14 selectAM(False,False,False,False,x5,x6) = JW,
15 selectAM(False,False,True,x4,x5,x6)
16 = mapIOCaps2AM(x5,x6),
17 selectAM(False,False,x3,True,x5,x6)
18 = mapIOCaps2AM(x5,x6),
19 mapIOCaps2AM(DisplayOnly,DisplayOnly) = JW,
20 mapIOCaps2AM(DisplayOnly,DisplayYesNo) = JW,
21 mapIOCaps2AM(DisplayOnly,KeyboardOnly) = PEDI,
22 mapIOCaps2AM(DisplayOnly,KeyboardDisplay)= PEDI,
23 mapIOCaps2AM(DisplayYesNo,DisplayOnly) = JW,
24 mapIOCaps2AM(DisplayYesNo,DisplayYesNo) = NC,
25 mapIOCaps2AM(DisplayYesNo,KeyboardOnly) = PEDI,
26 mapIOCaps2AM(DisplayYesNo,KeyboardDisplay) = NC,
27 mapIOCaps2AM(KeyboardOnly,DisplayOnly) = PEID,
28 mapIOCaps2AM(KeyboardOnly,DisplayYesNo) = PEID,
29 mapIOCaps2AM(KeyboardOnly,KeyboardOnly) = PEII,
30 mapIOCaps2AM(KeyboardOnly,KeyboardDisplay)=PEID,
31 mapIOCaps2AM(KeyboardDisplay,DisplayOnly)= PEID,
32 mapIOCaps2AM(KeyboardDisplay,DisplayYesNo) = NC,
33 mapIOCaps2AM(KeyboardDisplay,KeyboardOnly)=PEDI,
34 mapIOCaps2AM(KeyboardDisplay,KeyboardDisplay)
35 =NC,
36 mapIOCaps2AM(NoInputNoOutput,x) = JW,
37 mapIOCaps2AM(x,NoInputNoOutput) = JW

Fig. 4. Model of association model selection.

model. Properties of these two functions are formalized with
23 equations shown in Fig. 4. Note that for the PE association
model, we subdivide it into three different cases:

• PEII: both devices prompt the user to input a number.
• PEID: the responder displays a number and the initiator

prompts the user to input a number.
• PEDI: the initiator displays a number and the responder

prompts the user to input a number.
This finer-grained division allows for a more precise modeling
of host behavior, as the host can determine the appropriate
action based on the selected association model.

The Tamarin prover allows users to define custom functions
and equations to extend its built-in equational theory. However,
user-defined equations must satisfy either the subterm conver-
gence property or the finite variant property [20]. Equations
that fall outside these theoretical classes may lead to non-
termination or produce erroneous results during verification.
Consequently, it is essential to ensure that all user-defined
equations conform to either subterm convergence or the finite
variant property. Although the equations we defined do not
meet the subterm convergence property which equires that the
right-hand side of an equation be either a strict subterm of

6

1 functions:
2 sc/0, legacy/0, verSelect/2,
3 // verSelect(verFieldI, verFieldR)
4 equations:
5 verSelect(sc,sc) = sc,
6 verSelect(legacy,x2) = legacy,
7 verSelect(x1,legacy) = legacy

Fig. 5. Model of pairing version selection.

its left-hand side or a constant term., we verified that they
possess the finite variant property using Cheval’s automated
tool FVPgen [21] and present the result in the supporting
material [22]. This ensures that the defined equations are
suitable for use in Tamarin, thereby enabling the formal
verification of the BLE-SC pairing protocol.

To our knowledge, our work is the first to faithfully model
the association model selection logic. Shi et al. [6] proposed
the first model that covers all the possible execution paths
based on the capabilities of the two devices. Unfortunately,
they do not explicitly model the association model selection
logic, but define a lot of rules and each rule is for a specific
device pair.
Remark. Our modeling method for association model selec-
tion logic is extensible and can be applied to other aspects
of protocol behavior, such as protocol version selection or
other branching logic. For example, Fig. 5 illustrates how
our method models the protocol version selected logic when
considering both the legacy and SC pairing protocol. This
approach can be extended to other protocols like EMV [17],
where it can model kernel selection, and TLS 1.3 [12],
where it can model handshake method selection. Furthermore,
scenarios like key size negotiation [23], [24] can also benefit
from this versatile modeling method.

D. Participants

Modeling the participants in the BLE-SC pairing protocol
is non-trivial due to the inherent complexity of the protocol.
Furthermore, the specification lacks explicit definitions for the
participants’ state machines. To address this, we extract the
state machines of these participants from the specification and
use them as the blueprint to help model the pairing protocol. To
reduce the complexity of the model, we followed the approach
of Jangid et al. [5] to abstract the PE association model into
two rounds, rather than modeling all 20 rounds in full detail.
This simplified approach captures the essential behavior of the
hosts while maintaining the model’s comprehensibility.
Hosts. Fig. 6 and Fig. 7 show the state machines of the ini-
tiator’s and the responder’s hosts, respectively. The initiator’s
host state machine comprises 21 states and 30 transitions,
while the responder’s host state machine contains 18 states and
27 transitions. Each transition corresponds to a specific rule
used to model the hosts. The labels above the arrows in the
state machine present the rule names. For example, in Fig. 6,
to model the transition from state i5, where the initiator’s host

i1 i2 i3 i4 i5 i6
createIHost

bindHostCtroller

initConnection iSendPairReq

iSendPairReqWithOOBFlag

iSendLocalPK

iRevPeerPK

i6

i7

i8

i9 i10 i11 i12

i14

i13

i15
i16

iP
EID

Ask
In

pu
t

iPEIIAskInput

iPESendCfmfst

iD
isp

Num

iPEDSendCfmfst

iPERevCfmSendRandfst

iPERevRandfstSendCfmsnd

iPERevCfmSendRandSnd

iPERevRandSnd

iJWRevCfmSendRand

iNCRevCfmSendRand

iJWRevRand

iNCRevRand iUserCfm

iOOBI2RSendRandiOOBR2ISendRandiOOBIRSendRand

iOOBRevRand

i16 i17 i18 i19 i20 i21
iSendCommitment

iRevCommitment

iStartEnc
iRevEncExchEvent

iExchKeys

Fig. 6. State machine of initiator’s host.

r1 r2 r3 r4 r5createRHost

bindHostCtroller

initConnection rSendPairRsp

rSendPairRspWithOOBFlag

rExchPK

r5

r6

r7

r8 r9 r10

r11 r12
r13

rP
EDIA

sk
In

pu
t

rPEIIAskInput

rD
isp

Num

rPEIExchCfmfst

rPEDExchCfmfst

rPEExchRandfst

rPEExchCfmSnd

rPEExchRandSnd

rJWSendCfm
rNCSendCfm

rJWExchRand

rNCExchRand rUserCfm

rOOBI2RExchRand
rOOBR2IExchRand
rOOBIRExchRand

r13 r14 r15 r16 r17 r18
rExchCommitment

rRspLTK
rRevEncExchEvent

rSendLocalKeys

rRevPeerKeys

Fig. 7. State machine of responder’s host.

has sent its public key, to state i6, where the initiator’s host
has exchanged the public key, we define the following rule.

iRevPeerPK :

[HostWaitPeerPK(i5,L,P , ..., Lsk, ...),

InS2D(..., Ppk, ...)]−[]→
[HostExchedPK(i6, ..., Lsk, Ppk, ..., AS)]

In this rule, Lsk and Ppk represent the local private key and
the peer’s public key from the initiator’s view. The vector L
contains the OOB flag, authentication requirement, and IO
capabilities of the initiator’s host. The vector P represents
the corresponding information for the peer host. The AS is
crucial for determining the branches that start from the state
i6. This value is computed by the function selectAM() using
the parameters in L and P . If AS = PEDI, the initiator’s host
executes the PE association model, where it displays a number,
then the initiator’s host transitions to the state i8. This behavior
is modeled by the rule iDispNum in Fig. 6.

Defining rules based on the state transitions illustrated in
Figures 6 and 7 allows us to comprehensively model the
behavior of the hosts. These state machines provide essential
guidance in the modeling process by visually clarifying host
behavior. Moreover, they enable a systematic approach to
handling complex branches, helping to reduce errors and
maintain accuracy throughout the model process.

7

c1 c2 c3

c4

c5

c6

c7

c8

createCtrller

bindCtrller2Host

PConnection

CtrllerSendPlaintext

CtrllerRevPlaintext

CReqEnc

PReqLTK

CRspSEncReq

PSendSEncReq

CRevSEncRsp

PExchSEncRsp

CtrSendCipher

CtrRevCipher

Fig. 8. State machine of controller.

Controllers The state machine of the controller is depicted in
Fig. 8. In state c3, the controller operates in a connection state,
relaying plaintext data, such as pairing requests and public
keys, between the LL and HCI. In state c8, the controller is
in the encryption state where it relays the ciphertext, such
as the encrypted specific keys and application data, between
the LL and HCI. The initiator’s controller transitions from the
connection state c3 to the encryption state c8 through states c4
and c6, while the responder’s controller follows a path through
states c5 and c7. After the link encryption begins, the controller
uses AES-CCM to encrypt the LL packets. The AES-CCM key
is derived by encrypting the SKD with the LTK, which is
modeled as SK = KDF(SKD,LTK), where the function
KDF denotes a key derivation function. We use the built-in
symmetric encryption theory to model the AES-CCM cipher.
Moreover, we restrict the controller from accepting plaintext
LL or LC packets after the link encryption has started.

IV. FORMALIZING PROPERTIES

In this section, we formalize the security properties of
the pairing protocol under different assumptions. The pairing
protocol is an authenticated key exchange protocol, and we
principally consider its authentication properties and secrecy
properties. Moreover, we also consider the association model
consistency property, which is not verified by other formal
works but is essential to the protocol’s security.

A. Association Model Consistency

The association model consistency property guarantees that
two devices execute the same association model during the
identical pairing session. The importance of this property
is inspired by the method confusion attack disclosed by
Tschirsinger et al. [8]. In this attack, an adversary induces one
device to execute the NC association model while the other
executes the PE association model.

We formalize the association model consistency property by
the following first-order logic formula.

∀ I R pidI pidR ASI ASR ĩ j̃ k̃.

DeviceConnect(I,R, pidI, pidR) @ĩ

∧ IFinishedAuth2(I, pidI,ASI) @j̃

∧ RFinishedAuth2(R, pidR,ASR) @k̃

⇒ ASI = ASR

∨ ¬[Assumptions]

TABLE I
META ASSUMPTIONS

UNR The user does not reuse the passkey.
UNG The user does not use a guessable passkey.
UNC The user does not confuse PE with NC.
IOS The adversary does not break the IO channel.
HICS The adversary does not break the HCI channel.
OOBS The adversary does not break the OOB channel.

This formula expresses that if devices I and R finished the
authentication phase 2 (state ⑥ in Fig. 2) in a pairing session
labelled by (pidI, pidR), then they execute the same associ-
ation model ASI and ASR. The final line of this formula
specifies its underlying assumption, which is constructed by
the meta assumptions defined in the TABLE I. We consider
the assumption IOS as the base assumption if devices have no
OOB capabilities and build stronger assumptions from it by
combining it with the UNR, UNG, and UNC assumptions. If
the devices have OOB capabilities, we consider the assumption
(IOS∧OOBS) as the base assumption. It is worth mentioning
that we allow the adversary to break the HCI channel when
verifying the association model consistency property. Finally,
we define 8 formulas to formalize the association model
consistency property under different assumptions.

B. Authentication

We formalize the authentication properties which guarantee
both hosts agree on the crucial messages, such as the IO
capabilities and LTK, as well as both controllers agree on
the same session key. We define the authentication properties
based on the Non-Injective (NI) agreement introduced by
Lowe [25]. The NI agreement property asserts that whenever
an agent A completes a protocol run with agent B, then B
must have previously been running the protocol with A, and
both agents agree on the message t. Importantly, the Bluetooth
specification [3] does not require authentication when the
device executes the JW association model. Therefore, the
pairing protocol should guarantee the agreement of the crucial
messages unless the JW association model is executed.
Authentication between Hosts. To formalize the authenti-
cation properties of the IO capabilities, the random values,
the DHKey, the MacKey, and the LTK between hosts,
we define the following first-order logic formula template and
instantiate it with defined strings.

∀ A B t host pid AS ĩ. Commit(A,B, ⟨‘ Class ’, t⟩) @ĩ

∧ Session(host, pid,AS) @ĩ

⇒ (∃ j̃. Running(B,A, ⟨‘ Class ’, t⟩) @j̃) ∨ (AS = JW)

∨ ¬[Assumptions]

For example, to formalize the authentication property of the IO
capabilities between hosts, we replace ‘Class’ with ‘IOCaps’.
The instantiated formula implies that, under the given assump-
tion, if the host A believes that the host B’s IO capability is t,
then the host B is indeed running the protocol with A using the
IO capability t, unless A executes the JW association model.

8

This formula defines mutual authentication between hosts, as
Tamarin considers scenarios where A is the initiator and B is
the responder, and vice versa. As for the given assumption,
we use the same base assumption as the association model
consistency property in the authentication between hosts, and
we also allow the HCI channel to be broken. We consider
different assumptions constructed from the base assumption
and the UNR, UNG, and UNC assumptions. To formalize the
authentication property under different assumptions, we define
8 formulas for each authentication property between hosts.
Ultimately, we verify 40 authentication formulas between
hosts for each pairing case.

The NI agreement property guarantees that the two hosts
agree on the same value t, but multiple sessions may use the
same value t. The IO capabilities of the devices are immobile,
and the DHKey can be identical between different sessions
because the public key of the device can be reused as defined
in the specification. The uniqueness of the MacKey and the
LTK is achieved by the fact that they are derived from the
random values that are fresh on each session.
Authentication between Controllers. We formalize the mu-
tual authentication property of the session key between con-
trollers by the following formula.

∀ Ladd A B t host role chn AS ĩ j̃.

CCommit(Ladd,A,B, ⟨‘SK’, t⟩) @ĩ

∧ HostInfo(host, role, chn) @ĩ

∧ SelectASHandle(host, role, chn,AS) @j̃ ∧ (j̃ < ĩ)

⇒ (∃ k̃. CRunning(Ladd,B,A, ⟨‘SK’, t⟩) @k̃)

∨ (AS = JW)

∨ ¬[Assumptions]

This formula indicates that, under the specified assumption,
if controller A believes that controller B’s session key for a
session identified by Ladd is t, then controller B is indeed
engaging in the protocol with A using the session key t in the
same session, unless the host of A has previously executed the
JW association model. When devices lack OOB capabilities,
we use the assumption (IOS∧HICS) as the base assumption.
For devices with OOB capabilities, the base assumption is
(IOS ∧ OOB ∧ HICS). We define 8 formulas to capture the
mutual authentication property of the session key between
controllers under different assumptions. It is worth noting that
we assume the adversary cannot compromise the HCI channel,
as the LTK is transferred over this channel. If the HCI channel
were compromised, it would trivially allow an adversary to
violate the authentication property of the session key between
controllers. This formula defines an authentication property
where both controllers agree on the same session key, but
do not guarantee uniqueness. The uniqueness is achieved by
the fact that the session key is derived from the session key
diversifier, which is fresh on each session.

C. Secrecy
The secrecy properties guarantee that, under the given

assumption, an adversary cannot know the LTK, the session

key, or the specific keys. In verifying these properties, we
consider the same assumptions used for the authentication
property of the session key between controllers.
Secrecy of LTK and Specific Keys. We formalize the secrecy
of LTK as the following formula.

∀ host pid LTK AS ĩ. SecLTK(host, pid, LTK) @ĩ

∧ Session(host, pid,AS) @ĩ

⇒ ¬(∃ j̃. K(LTK) @j̃) ∨ (AS = JW)

∨ ¬[Assumptions]

Intuitively, this formula expresses that, under the specified
assumption, the adversary cannot know (signifying by the
action fact K) the LTK of the session identified by (host, pid),
unless the host executes the JW association model.

The formula used to formalize the secrecy of specific keys
is similar to the one described above. We define an action fact
SecSPKs() within the rules that model the hosts exchange
the specific keys, such as rule iExchKeys in Fig. 6 and rule
RevPeerKeys in Fig. 7. In this context, we substitute the
action fact SecLTK() with SecSPKs() in the above formula.
Then we get the formula that states that, under the given
assumption, the adversary cannot know the specific keys of
the session identified by (host, pid), unless the host executes
the JW association model in this session.
Secrecy of SK. We formalize the secrecy property of the
session key using the following formula.

∀ host role chn SK ĩ. SecSK(host, role, chn, SK) @ĩ

⇒ ¬(∃ j̃. K(SK) @j̃)

∨ (∃ k̃. SelectASHandle(host, role, chn,JW) @k̃

∧ (k̃ < ĩ))

∨ ¬[Assumptions]

Intuitively, this formula indicates that, under the specified
assumption, the adversary cannot know the session key SK of
the controller unless the controller’s host executes the JW as-
sociation model in the session identified by (host, role, chn).

V. ANALYZING AND RESULTS

In this section, we first present the details of our formal
verification process, including the verified pairing cases and
the efforts made to facilitate the verification process. Next,
we summarize the verification results in Table II and provide
an explanation of these results.

A. Formal Verification

The verification process is time-consuming due to the large
number of pairing cases, numerous lemmas to verify, and
the overall complexity of our model. To address this, we
develop a script that distributes the verification task across
multiple servers, allowing for parallel processing and sig-
nificantly accelerating the verification timeline. We utilize 6
servers and deploy a total of 20 Docker containers to handle
our verification tasks in parallel. For violated formulas, we
implement a script to automatically extract the corresponding

9

attack trace under Tamarin’s interactive mode in a distributed
manner. Furthermore, we apply filtering rules to reduce the
number of pairing cases requiring analysis. Additionally, we
develop heuristics, introduce a helping lemma, and propose a
verification strategy to ensure the termination of the verifica-
tion process and reduce the verification time.

1) Pairing Cases: The pairing cases are derived by taking
the Cartesian product of the two devices’ IO capabilities, OOB
capabilities, authentication requirements, and maximum key
size. To streamline the analysis, we focus only on reasonable
cases. To reduce cases, we restrict consideration to devices
with a high maximum key size. We do not consider devices
that lack both OOB capability and IO capability but still
require authentication. We assume that the adversary cannot
establish an OOB channel with the devices, but the adversary
may interact with OOB data in already-established channels.
Under this assumption, certain cases become equivalent. For
example, the case where a device possessing both OOB
sending and receiving capabilities pairs with a device lacking
OOB capabilities is equivalent to the case where both devices
lack OOB capabilities. By applying these filters, we reduce the
number of pairing cases from 6,400 to 84, while preserving
comprehensive analytical coverage.

2) Heuristics and Helping Lemma: Tamarin provides two
modes to analyze models: automated mode and interactive
mode. Our goal is to automatically analyze the BLE-SC
pairing protocol. However, when verifying formulas in our
model, Tamarin fails to terminate under its built-in heuristics,
which are used to guide the verification process. To address
this problem, we utilize the interactive mode to gain insights
and develop a set of customized heuristics to prevent the veri-
fication process from entering infinite loops, thereby enabling
Tamarin to successfully analyze our model automatically.
While investigating the interactive mode, we observe that
Tamarin frequently attempts to construct a counterexample
to disprove a lemma by searching for a trace in which the
attacker can obtain a device’s DH private key. However, in
our model, the device’s DH private key is never revealed to
the attacker. To take advantage of this fact, we introduce a
helping formula, which is annotated with ‘reuse’ in Tamarin
and used as hypotheses in proof steps to facilitate the proofs
of subsequent lemmas. This lemma helps avoid unnecessary
proof attempts when proving other lemmas.

3) Verification Strategy: The verification algorithm for trace
properties in Tamarin is sound [10]. This soundness ensures
that if a formula A is implied by a formula B, then whenever
B is satisfied in a model M , formula A must also be satisfied
in M . By leveraging the algorithm’s soundness and the fact
that a formula formalizing a security property under a certain
assumption implies the same property under any stronger
assumption, we develop a verification strategy to optimize
the verification process for a security property across multiple
assumptions. In the verification process, we start by verifying
the formula that formalizes a security property under the base
assumption. If this formula is satisfied, then this security
property is satisfied under all stronger assumptions. Otherwise,

we verify the formula that formalizes this security property
under the strongest assumption. If this formula is violated, then
the security property is violated under all remaining unverified
weaker assumptions. Otherwise, we continue by verifying this
security property under the second weaker assumption, and
so on. This approach improves efficiency by systematically
reusing the previously verified results.

Despite our efforts, the verification process requires approx-
imately 5 days to complete, while the extraction of attack
traces takes about 6 hours. The verification results and the
attack traces are available in the supporting material [22].

B. Results

Table II summarizes the verification results. We first discuss
the verification results for pairing cases where both devices
lack OOB capabilities (No. 1-13). In pairing cases No. 1-5,
all security properties are satisfied under the base assumption.
In these cases, the devices can only execute the JW association
model. These verification results appear to contradict the fact
that the JW association model is vulnerable to MitM attacks.
However, they are consistent with the design expectations of
the BLE-SC pairing protocol. This indicates that our formulas
accurately reflect the security goals of this protocol.

In pairing cases No. 6-10, all security properties of these
pairing cases are violated under the base assumption. For
these cases, we identify the minimal security assumptions
necessary to ensure the desired properties. For example, when
one device is KeyboardOnly and the other is KeyboardDis-
play, the minimal security assumption required to ensure a
specific property is the conjunction of the base assumption
and UNR ∧ UNG ∧ UNC. During analysis of pairing cases
No. 6, 7, 9, and 10, we uncovered the method confusion
attack [8], whose corresponding counterexample violates all
properties under the assumption that the UNC assumption is
not considered. Furthermore, when verifying pairing cases No.
6-8, we identify a new variant confusion attack, termed the PE
confusion attack. The corresponding counterexamples violate
all properties under the assumption that either the UNR or
UNG assumptions are not considered. We discuss this attack
in Section VI, and provide more details about the relationship
between the attacks and the counterexamples in Appendix E.

For pairing cases No. 11-13, and for cases No. 14-16
where devices have OOB capabilities, the security properties,
except the authentication of LTK between hosts, are satisfied
under the base assumption. Notably, even under the strongest
assumption, the LTK authentication property is violated in
No. 6-16. The counter-example of this property describes the
LTK keysize confusion attack disclosed by Shi et al. [6]. For
properties that are satisfied in the base assumption, we relax
the base assumption to find the necessity of this assumption
and find subtle assumptions about the OOB channel. When
a bidirectional OOB channel is used, an authenticated OOB
channel is sufficient to ensure the security of this pairing case.
However, when the OOB channel is unidirectional, the OOB
channel provides both confidentiality and integrity to guarantee
the security of this pairing case.

10

TABLE II
ANALYSIS RESULTS OF BLE-SC PAIRING

No. Initiator Responder CAS AIO-R-DHK-MACK ASK SLTK-SK-SP ALTK

Base1 Base1 Base2 Base2 Base2

1 NN-NoMITM ⌝NN ! ! ! ! !

2 ⌝NN NN-NoMITM ! ! ! ! !

3 NN-NoMITM NN-NoMITM ! ! ! ! !

4 DO DO/DYN ! ! ! ! !

5 DYN DO ! ! ! ! !

6 KD KD/KO UNR ∧ UNG ∧ UNC UNR ∧ UNG ∧ UNC UNR ∧ UNG ∧ UNC UNR ∧ UNG ∧ UNC %

7 KO KD UNR ∧ UNG ∧ UNC UNR ∧ UNG ∧ UNC UNR ∧ UNG ∧ UNC UNR ∧ UNG ∧ UNC %

8 KO KO UNR ∧ UNG UNR ∧ UNG UNR ∧ UNG UNR ∧ UNG %

9 DYN KD/KO UNC UNC UNC UNC %

10 KD/KO DYN UNC UNC UNC UNC %

11 DO KD/KO ! ! ! ! %

12 DYN DYN ! ! ! ! %

13 KD/KO DO ! ! ! ! %

14 OOBRev OOBSend !(OOBS) !(OOBS) !(OOBS) !(OOBS) %

15 OOBSendRev OOBSendRev !(OOBA) !(OOBA) !(OOBA) !(OOBA) %

16 OOBSend OOBRev !(OOBS) !(OOBS) !(OOBS) !(OOBS) %

• CAS: Consistency of Association Models. AIO-R-DHK-MACK: Authentication of IO capabilities, Random Numbers, DH Key, and MAC Key. ALTK:
Authentication of LTK. ASK: Authentication of Session Key. SLTK-SK-SP: Secrecy of LTK, Session Key, and Specific Keys.

• Base1: Base assumption IOS Base2: Base assumption IOS ∧ HICS
• DYN: DisplayYesNo KD: KeyboardDisplay DO: DisplayOnly KO: KeyboardOnly ⌝NN: DYN/KD/DO/KO NN-NoMitM: NoInputNoOutput-

Not requre MitM protection OOBSend/OOBRev/(OOBSendRev): Devices can send/receive/(send and receive) message through the OOB channel.
• Devices considered in No. 1-13 do not have OOB capabilities.
• Bolded IO capabilities indicate consideration of both with and without MitM protection requirements.
• OOBS: OOB channel provides both confidentiality and integrity. OOBA: OOB channel provides only integrity.
• !: property verified in the base assumption %: property falsified even in the strongest assumption

VI. PE CONFUSION ATTACK

This section introduces the PE confusion attack, including
its two attack cases, and discusses its significance and impact.
Subsequently, we present our implementation of this attack in a
controlled environment. Finally, we propose countermeasures
to mitigate the effects of this attack.

A. Attack and Its Impact

In the PE confusion attack, as illustrated in Fig. 9, the
adversary manipulates the IO capabilities fields within the
pairing request and response messages to deceive the initia-
tor, responder, and user into performing different types of
PE association models. From the initiator’s perspective, the
PEID association model is being executed, while from the
responder’s perspective, the PEDI association model is in use.
Meanwhile, the user believes that the PEII association model
is being employed. In this attack, both devices await the user
to enter a passkey. The pairing process can be completed
once the user enters an identical passkey on both devices. For
the passkey, Bluetooth implementations that comply with the
specification generate passkey randomly and never reuse it.
We assume the devices follow best practices as outlined in the
Bluetooth specification. However, the user may unintentionally
deviate from the specification, leading to two potential attack
cases shown in Fig. 9.

In the first case, the user chooses a weak passkey, which
is easily guessable by an adversary, such as “123456” for
convenience. Even more concerning, we have found that the

UIs of certain devices may inadvertently encourage the user
to enter weak passkeys. We have tested smartphones equipped
with Android versions 10 to 13. The UIs of these devices
that execute the PE association model prompt the user to
enter a passkey are shown in Fig. 10. The misleading prompt
“Usually 0000 or 1234” might lead the user to enter “0000”
or “1234”. According to the Bluetooth specification, the 4-
digit value entered will be prefixed with zeros to form a 6-
digit passkey. Although UIs of other devices (Appendix C)
do not mislead users, they also fail to instruct users on how
to ensure a secure pairing. If the user enters the weak passkey
on both devices, an adversary who guesses the right passkey
can perform a MitM attack, depicted in Fig. 9.

In the second case, the user reuses the passkey during two
pairing processes that occur within a short time interval. When
the user inputs a randomly selected passkey, the adversary
observes both devices executing the PE association model
and interrupts the pairing process once the PE association
model is completed. With access to the transmitted packets, the
adversary can recover the passkey by exploiting the property
of the function f4 defined in Section III-A. Afterwards, when
the user restarts the pairing process, the adversary performs
the PE confusion attack as mentioned before to let both
devices wait for the user to input the passkey. Although
specification-conformant devices can implement the randomly
selected passkey and never reuse it from a previous pairing
process, the specification cannot guarantee that the user will
not reuse a previously selected passkey. Once the user inputs

11

IO=KeyboardDisplay, …IO=DisplayOnly, …
IO=KeyboardDisplay, …

𝑃𝑘!
𝑃𝑘"

123456123456

IO=DisplayOnly, …

𝑝𝑎𝑠𝑠𝑘𝑒𝑦 = 123456 𝑝𝑎𝑠𝑠𝑘𝑒𝑦 = 123456

𝑃𝑘𝒜
𝑃𝑘𝒜

𝑝𝑎𝑠𝑠𝑘𝑒𝑦 = 123456 (Weak passkey)

𝑃𝑘!
𝑃𝑘"

764511764511

𝐶"$

𝑟! = 𝑟" = 764511

𝑁!$

Random 𝑁!$

𝐶!$ = f4(𝑃𝐾! , 𝑃𝐾" , 𝑁!$, 𝑟!$)
𝐶!$

𝑟! = 𝑟" = 764511

Random 𝑁"$

𝐶"$ = f4(𝑃𝐾" , 𝑃𝐾! , 𝑁"$, 𝑟"$)

𝐶"$
𝐶!$

𝑁!$

𝑟!$ = brkf4(𝐶!$, 𝑃𝑘! , 𝑃𝐾" , 𝑁!$) Verify 𝐶!	$

Verify 𝐶"	$

IO=KeyboardDisplay, … IO=DisplayOnly, …

𝑁"$ 𝑁"$

𝑃𝑘!
𝑃𝑘"

𝑝𝑎𝑠𝑠𝑘𝑒𝑦 = 𝑟!&|| … ||𝑟!'((764511). Abort and restart a paring.

IO=KeyboardDisplay, …IO=DisplayOnly, …
𝑃𝑘! 𝑃𝑘𝒜

𝑃𝑘"𝑃𝑘𝒜

764511764511

𝑝𝑎𝑠𝑠𝑘𝑒𝑦 = 764511 𝑝𝑎𝑠𝑠𝑘𝑒𝑦 = 764511𝑝𝑎𝑠𝑠𝑘𝑒𝑦 = 764511

Initiator Adversary Responder

Case 1

each 𝑖 in range(20)

Case 2

𝑟! = 𝑟" = 𝑝𝑎𝑠𝑠𝑘𝑒𝑦 𝑟! = 𝑟" = 𝑝𝑎𝑠𝑠𝑘𝑒𝑦 𝑟! = 𝑟" = 𝑝𝑎𝑠𝑠𝑘𝑒𝑦

𝐶"$

𝑁!$

Random 𝑁!$
𝐶!$ = f4(𝑃𝐾! , 𝑃𝑘𝒜 , 𝑁!$, 𝑟!$)

𝐶!$

Random 𝑁"$
𝐶"$ = f4(𝑃𝐾" , 𝑃𝑘𝒜 , 𝑁"$, 𝑟"$)

𝐶ℛ$
𝐶ℐ$

𝑁𝒜$

Verify 𝐶ℐ$

Verify 𝐶ℛ$

𝑁𝒜$ 𝑁"$

Random 𝑁𝒜$

𝐶ℐ$ = f4(𝑃𝑘𝒜 , 𝑃𝐾" , 𝑁𝒜$, 𝑟!$)
𝐶ℛ$ = f4(𝑃𝐾! , 𝑃𝑘𝒜 , 𝑁𝒜$, 𝑟"$)

𝑀𝑎𝑐𝐾!||𝐿𝑇𝐾! =
f5 𝑃𝑘𝒜

+,! , 𝑁!'(, 𝑁𝒜'(, 𝐼, 𝑅 	
𝐸! = f6H𝑀𝑎𝑐𝐾! , 𝑁!'(, 𝑁𝒜'(,
𝑟" ,)KeyboardDisplay, 𝐼, 𝑅

𝐸!

𝑀𝑎𝑐𝐾"||𝐿𝑇𝐾" =
f5 𝑃𝑘𝒜

+," , 𝑁𝒜'(, 𝑁"'(, 𝐼, 𝑅
𝐸" = f6H𝑀𝑎𝑐𝐾" , 𝑁"'(, 𝑁𝒜'(,
)𝑟! ,KeyboardDisplay, 𝑅, 𝐼

𝐸ℐ

𝑀𝑎𝑐𝐾!||𝐿𝑇𝐾! =
f5(𝑃𝑘!

+,𝒜 , 𝑁!'(, 𝑁𝒜'(, 𝐼, 𝑅)
𝑀𝑎𝑐𝐾"||𝐿𝑇𝐾" =
f5(𝑃𝑘!

+,𝒜 , 𝑁𝒜'(, 𝑁"'(, 𝐼, 𝑅)
𝐸ℐ = f6H𝑀𝑎𝑐𝐾" , 𝑁𝒜'(, 𝑁"'(,

)𝑟" ,DisplayOnly, 𝐼, 𝑅 	
𝐸ℛ = f6H𝑀𝑎𝑐𝐾! , 𝑁!'(, 𝑁𝒜'(,

)𝑟! ,DisplayOnly, 𝑅, 𝐼 	

𝐸ℛ 𝐸" Verify	𝐸ℐ

Verify 𝐸ℛ

Enter a weak passkey

Enter a random passkey

Enter a reused passkey

each 𝑖 in range(20)

Protected by 𝐿𝑇𝐾! Protected by 𝐿𝑇𝐾"

Fig. 9. Attack flow of PE confusion attack under two cases. Colored symbols
indicate the value modified by the attacker.

Fig. 10. UIs of Android Phone when BLE-SC PE association model is used
and the devices ask the user to enter a passkey. Devices and Versions (LTR-
TTB): Pixel 4 (Android 10), Samsung Galaxy S10 (Android 11), IQOO Neo6
SE (Android 12), and Redmi K40 (Android 13).

the passkey from the previous pairing procedure, the adversary
can perform a MitM attack, as shown in Fig. 9.

The PE confusion attack challenges the commonly accepted
belief that weak or reused passkeys selected by users only
affect the ‘KeyboardOnly-KeyboardOnly’ pairing cases that
employ the PEII association model. Our analysis demon-
strates that this vulnerability actually impacts 12 pairing
cases—considering whether devices require MitM protec-
tion—as shown in Table III. Since the BLE-SC protocol has
remained largely unchanged since its introduction in Blue-
tooth specification v4.2 [26], our findings are applicable to
all versions from v4.2 through v6.0 [3]. While the attack’s
widespread impact is notable, successful exploitation of the PE
confusion attack relies on the assumptions that users will enter
weak or reused passkeys, potentially limiting its practicality in
real-world scenarios.

B. Implementation

To implement the PE confusion attack, the attacker must
be able to perform a MitM attack on BLE connections.
Tschirschnitz et al. [8] employed the BtleJack [27] to perform
the method confusion attack. While in this paper, we develop
our own BLE tool suite to perform the PE confusion attack in
a controlled environment. Our approach involves developing
custom controller firmware based on the Zephyr OS [28] and a
specialized MitM tool, both designed to manipulate the packet
directly within the controller.

By leveraging our BLE tool suite, we implement the PE con-
fusion attack between a Linux device running Ubuntu 24.04
LTS and a smartphone running Android 12. For the attack,
the Linux device, which runs the BlueZ stack on version
5.72, is equipped with an nRF52840 dongle, a Bluetooth 5.4

12

TABLE III
AFFECTED CASES BY PE CONFUSION ATTACK

IOCapR

IOCapI KeyboardOnly KeyboardDisplay

KeyboardOnly H#
KeyboardDisplay

 : Affected. H#: PEII. Bolded IO capabilities indicate consid-
eration of both with and without MitM protection requirements.

System-on-Chip. This Bluetooth dongle has been flashed with
our customized firmware. This setup enables the dongle to
interact seamlessly with our attack tool, effectively performing
the necessary BLE message interception and injection in the
dongle. We provide the firmware, attack tool, and attack scripts
implementing the attack described in Fig. 9 in the supporting
material [22]. For demonstration purposes, our attack scripts
complete only the pairing process and do not relay any
encrypted data packets after pairing.

C. Countermeasures

We provide the following advice to alleviate the effects of
the PE confusion attack.
1) The confirmation calculation should contain the IO capabil-

ities of both devices. We recommend replacing the nonce
in the f4 function with the hash of the concatenation of
the nonce, the pairing request, and response messages.

2) The Bluetooth specification should include a dedicated
section on the UI design of the PE and NC association
models, as this is a critical security matter. We recommend
that the prompt message in the UI when the device is
asking the user to enter a passkey should be: “Enter the
number displayed on the peer device and DO NOTHING
on that device. If no number is displayed on the peer, enter
a RANDOM number on both devices, and NEVER REUSE
that number.” The first part of this message is intended to
mitigate the method confusion attack, while the second part
aims to prevent the PE confusion attack.

3) The pairing protocol should not support the PE association
model in which both devices ask the user to enter a human-
choice number, as asking users to randomly select and not
reuse passkeys is unreliable. In situations where the IO
capabilities of both devices are limited to ‘KeyboardOnly’,
the JW association model should be used. This approach
allows the community to guide the user to either compare
numbers or input the numbers displayed on the peer device.

Disclosure. We notified the Bluetooth Special Interest
Group (SIG) about the attack we had identified in the Blue-
tooth specification on July 15, 2024. Initially, the Bluetooth
SIG believed that our attack was similar to the method confu-
sion attack disclosed by Tschirschnitz et al. [8]. In our follow-
up report on October 13, 2024, we clarified the distinctions
between these two attacks. Specifically, we pointed out that
they target different users who are confused between different
association models. The method confusion attack [8], or more

precisely, the NC-PE confusion attack, occurs when the user
confuses the NC association model with the PE association
model. In contrast, the PE confusion attack involves confusion
among three types of PE association models: the initiator
executes the PEID association model, the responder executes
the PEDI association model, while the user believes they are
engaging with the PEII association model. On February 7,
2025, the Bluetooth SIG responded to our disclosure and
confirmed that our findings do affect BLE pairing.

VII. RELATED WORK

Initial symbolic work [29], [30], [31] on the pairing protocol
focused on its security under a single association model.
Recently, Wu et al. [4] and Jangid et al. [5] provided for-
mal models considering multiple association models using
ProVerif [32] and Tamarin, respectively. Their models ab-
stract the devices’ capabilities but just combine different
association model flows. Therefore, their model cannot guide
which pairing cases are vulnerable. In contrast, Shi et al. [6]
provided a more comprehensive formal model of the BLE-
SC pairing protocol using Tamarin. However, they modeled
the association model selection logic by defining lots of rules,
and each rule is for a specific device pair. This makes their
model too complex to find the minimal security assumptions
to ensure the security of the pairing protocol.

In the model of [5], they assumed that the device may reuse
passkey and found the group guessing attack. We assume
that the devices use passkey as expected by the Bluetooth
specification, but the user may deviate from the specification.
They also discussed the leaking of the passkey and found the
ghost attack. This assumption is covered by our model, as our
model allows the adversary to break the confidentiality of the
IO channel between the user and the device.

Claverie et al. [33] utilized Tamarin to verify the key agree-
ment protocols of Bluetooth Classic (BC), BLE, and Bluetooth
Mesh (BM). They considered both the legacy pairing mode
and the secure connection pairing mode, revealing pairing
mode confusion attacks in both BC and BLE. In these attacks,
one device pairs under the secure connection mode while the
other pairs under the legacy mode. The pairing mode confusion
attack is outside the scope of our model since we only consider
the secure connection mode. In our PE confusion attack, both
devices are in the secure connection mode.

Cremers et al. [34] proposed methods for symbolically mod-
eling non-prime order groups. To achieve this, they introduced
a special group element, DH neutral, into Tamarin’s built-in
DH theory. In our model, devices verify the peer device’s
DH public key and reject any instance of the DH neutral
element. This approach ensures that the devices accept only
valid DH public keys. Basin et al. [35] formalized human
errors in security protocols using Tamarin. They presented two
approaches, skilled and rule-based, but only provided a human
model of the latter. In our work, we model the human user
based on our specific user assumptions.

In a different direction, Lindell [36], Troncoso et al. [37],
and Fischlin et al. [38] analyze the security of Bluetooth within

13

the computational model. These analyses employ manual prov-
able security techniques. In contrast, our analysis is conducted
fully automatically by the computer.

Numerous studies have investigated attacks targeting various
aspects of Bluetooth security, including the pairing proto-
col [39], [40], [41], the session key negotiation protocol in
BC [23], [42], and cross-transport key derivation [43]. For a
comprehensive overview of research in Bluetooth security, we
refer the reader to the survey by Wu et al. [44].

VIII. CONCLUSION

We perform an accurate and comprehensive formal analysis
of the BLE-SC pairing protocol using Tamarin. By automat-
ically verifying 84 pairing cases across distributed servers,
we identify the minimal security assumptions necessary to
secure each pairing case. Additionally, our analysis reveals
a MitM attack, referred to as the PE confusion attack, which
we implement in a controlled environment. Finally, we propose
specific countermeasures to mitigate the PE confusion attack.
For transparency and reproducibility, we provide the formal
model, verification script, controller firmware, MitM tool, and
attack code in the supporting materials, fostering collaboration
and advancement within the research community.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd
for their constructive comments. This work was partially
supported by the National Cryptologic Science Fund of
China under Grant No. 2025NCSF02027, Wuhan Scien-
tific and Technical Achievements Project under Grant No.
2024030803010172.

ETHICS CONSIDERATIONS

Upon discovering the attack in the Bluetooth specification,
we promptly notified the Bluetooth SIG on July 15, 2024. This
early notification reflects our duty to responsible disclosure,
ensuring that the relevant stakeholders are aware of the issue
and can take appropriate action to mitigate potential risks. By
engaging with the SIG and providing detailed explanations
of our attack and countermeasures, we aimed to contribute
positively to the security community. We believe that sharing
our findings responsibly not only helps in addressing the
vulnerability but also advances the overall understanding and
development of more secure systems. Through these actions,
we have upheld the ethical standards expected in research,
prioritizing both the integrity of our work and the safety of
users potentially affected by the vulnerability.

REFERENCES

[1] Bluetooth Specification Contributors, “Bluetooth Core Specification
4.0,” Jan. 2010.

[2] M. Powell, “2023 bluetooth market update,” [Online]. Available: https:
//www.bluetooth.com/2023-market-update/.

[3] Bluetooth Specification Contributors, “Bluetooth Core Specification
6.0,” Aug. 2024.

[4] J. Wu, R. Wu, D. Xu, D. J. Tian, and A. Bianchi, “Formal model-driven
discovery of bluetooth protocol design vulnerabilities,” in Proc. of S&P,
2022.

[5] M. K. Jangid, Y. Zhang, and Z. Lin, “Extrapolating formal analysis to
uncover attacks in bluetooth passkey entry pairing,” in Proc. of NDSS,
2023.

[6] M. Shi, J. Chen, K. He, H. Zhao, M. Jia, and R. Du, “Formal analysis and
patching of BLE-SC pairing,” in Proc. of USENIX Security Symposium,
2023.

[7] Google, “Bumble: Bluetooth stack for apps, emulation, test and experi-
mentation,” [Online]. Available: https://github.com/google/bumble.

[8] M. von Tschirschnitz, L. Peuckert, F. Franzen, and J. Grossklags,
“Method confusion attack on bluetooth pairing,” in Proc. of S&P, 2021.

[9] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin prover
for the symbolic analysis of security protocols,” in Proc. of Computer
Aided Verification, 2013.

[10] B. Schmidt, S. Meier, C. Cremers, and D. A. Basin, “Automated analysis
of diffie-hellman protocols and advanced security properties,” in Proc.
of CSF, 2012.

[11] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe, “Automated
analysis and verification of TLS 1.3: 0-rtt, resumption and delayed
authentication,” in Proc. of S&P, 2016.

[12] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe, “A
comprehensive symbolic analysis of TLS 1.3,” in Proc. of CCS, 2017.

[13] H. Lee, Z. Smith, J. Lim, G. Choi, S. Chun, T. Chung, and T. T. Kwon,
“matls: How to make TLS middlebox-aware?” in Proc. of NDSS, 2019.

[14] D. A. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and
V. Stettler, “A formal analysis of 5g authentication,” in Proc. of CCS,
2018.

[15] C. Cremers and M. Dehnel-Wild, “Component-based formal analysis of
5g-aka: Channel assumptions and session confusion,” in Proc. of NDSS,
2019.

[16] D. A. Basin, R. Sasse, and J. Toro-Pozo, “The EMV standard: Break,
fix, verify,” in Proc. of S&P, 2021.

[17] ——, “Card brand mixup attack: Bypassing the PIN in non-visa cards
by using them for visa transactions,” in Proc. of USENIX Security
Symposium, 2021.

[18] Tamarin Team, “Tamarin prover manual,” [Online]. Available: https:
//tamarin-prover.com/manual/index.html.

[19] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on information theory, vol. 29, no. 2, pp. 198–208, 1983.

[20] H. Comon-Lundh and S. Delaune, “The finite variant property: How to
get rid of some algebraic properties,” in Proc. of Term Rewriting and
Applications, 2005.

[21] V. Cheval and C. Fontaine, “Automatic verification of Finite Variant
Property beyond convergent equational theories,” in Proc. of CSF, 2025.

[22] M. Shi, Y. Xiao, J. Chen, K. He, R. Du, and M. Jia, “Formal analysis
of ble secure connection pairing and revelation of the pe confusion
attack,” Nov. 2025. [Online]. Available: https://doi.org/10.5281/zenodo
.17677477

[23] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “The KNOB is
broken: Exploiting low entropy in the encryption key negotiation of
bluetooth BR/EDR,” in Proc. of USENIX Security Symposium, 2019.

[24] ——, “Key negotiation downgrade attacks on bluetooth and bluetooth
low energy,” ACM Trans. Priv. Secur., vol. 23, no. 3, pp. 14:1–14:28,
2020.

[25] G. Lowe, “A hierarchy of authentication specifications,” in Proceedings
10th computer security foundations workshop, 1997.

[26] Bluetooth Specification Contributors, “Bluetooth Core Specification
4.2,” Dec. 2014.

[27] D. Cauquil, “You’d better secure your ble devices or we’ll kick your
butts,” DEF CON, vol. 26, 2018.

[28] Zephyr Community, “Zephyr project,” [Online]. Available: https://zeph
yrproject.org/.

[29] R. Chang and V. Shmatikov, “Formal analysis of authentication in
bluetooth device pairing,” FCS-ARSPA’07, vol. 45, 2007.

[30] D. Jia and R. Hsu, “Formal modeling and analysis of bluetooth 4.0
pairing protocol,” 2013.

[31] M. Sethi, A. Peltonen, and T. Aura, “Misbinding attacks on secure device
pairing and bootstrapping,” in Proc. of AsiaCCS, 2019.

[32] B. Blanchet, “Automatic proof of strong secrecy for security protocols,”
in Proc. of S&P, 2004.

[33] T. Claverie, G. Avoine, S. Delaune, and J. Lopes-Esteves, “Tamarin-
based analysis of bluetooth uncovers two practical pairing confusion
attacks,” in Proc. of ESORICS, 2023.

14

https://www.bluetooth.com/2023-market-update/
https://www.bluetooth.com/2023-market-update/
https://github.com/google/bumble
https://tamarin-prover.com/manual/index.html
https://tamarin-prover.com/manual/index.html
https://doi.org/10.5281/zenodo.17677477
https://doi.org/10.5281/zenodo.17677477
https://zephyrproject.org/
https://zephyrproject.org/

[34] C. Cremers and D. Jackson, “Prime, order please! revisiting small
subgroup and invalid curve attacks on protocols using diffie-hellman,”
in Proc. of CSF, 2019.

[35] D. Basin, S. Radomirovic, and L. Schmid, “Modeling human errors in
security protocols,” in Proc. of CSF, 2016.

[36] A. Y. Lindell, “Comparison-based key exchange and the security of the
numeric comparison mode in bluetooth v2.1,” in CT-RSA, vol. 5473,
2009, pp. 66–83.

[37] M. Troncoso and B. Hale, “The Bluetooth CYBORG: Analysis of the
Full Human-Machine Passkey Entry AKE Protocol,” in Proc. of NDSS,
2021.

[38] M. Fischlin and O. Sanina, “Cryptographic analysis of the bluetooth
secure connection protocol suite,” in Proc. of ASIACRYPT, 2021.

[39] A. Y. Lindell, “Attacks on the pairing protocol of bluetooth v2.1,” in
Black Hat USA, 2008.

[40] J. Barnickel, J. Wang, and U. Meyer, “Implementing an attack on blue-
tooth 2.1+ secure simple pairing in passkey entry mode,” in TrustCom,
2012.

[41] Y. Zhang, J. Weng, R. Dey, Y. Jin, Z. Lin, and X. Fu, “Breaking Secure
Pairing of Bluetooth Low Energy Using Downgrade Attacks.” in Proc.
of USENIX Security Symposium, 2020.

[42] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “BIAS: bluetooth
impersonation attacks,” in Proc. of S&P, 2020.

[43] D. Antonioli, N. O. Tippenhauer, K. Rasmussen, and M. Payer, “Blur-
tooth: Exploiting cross-transport key derivation in bluetooth classic and
bluetooth low energy,” in Proc. of AsiaCCS, 2022.

[44] J. Wu, R. Wu, D. Xu, D. J. Tian, and A. Bianchi, “Sok: The long journey
of exploiting and defending the legacy of king harald bluetooth,” in Proc.
of S&P, 2024.

APPENDIX A
CRYPTOGRAPHIC TOOLS

The cryptographic functions f4, f5, and f6 utilize
AES-CMAC as their foundational building block. The
AES-CMAC function is defined in RFC-4493 as a Cipher-based
Message Authentication Code (CMAC) that uses AES-128
as the block cipher. The confirmation calculation function f4
used in the association models is defined as

f4(PkA, PkB , NA, rA) = AES-CMACNA
(PkA||PkB ||rA).

The LTK and MacKey generation function f5 is defined as

f5(DHKey,NI , NR, BTI , BTR)

=AES-CMACT (0||0x62746C65||NI ||NR||BTI ||BTR||256)
||AES-CMACT (1||0x62746C65||NI ||NR||BTI ||BTR||256),

where T = AES-CMACSALT (DHKey) and SALT is a 128-
bit constant value. The check value generation function f6 is
defined as

f6(MacKey,NI , NR, rX , IOCapX , BTI , BTR)

=AES-CMACMacKey(NI ||NR||rX ||IOCapX ||BTI ||BTR).

The function g2 used to generate the displayed number in the
NC association model is defined as

g2(PkI , PkR, NI , NR) = AES-CMACNI
(PkI ||PkR||NR).

APPENDIX B
ASSOCIATION MODELS

We first present the selection logic of the association models
and then present the complete description of the association
models that are briefly introduced in Section II-B.
Selection Logic. The association model selection logic is
defined in the Bluetooth specification [3] (Vol 3, Part H,

I-Host I-Controller R-Controller R-Host

Random NI Random NR

rI = rR = 0 rI = rR = 0

Calculate CR

CRCRCR

NI NI NI

NRNRNR

Check CR

Calc. & Disp. VI Calc. & Disp. VR

Wait for
user confirm

Wait for
user confirm

JW

NC

Fig. 11. Overview of JW and NC association models flows.

2.3.5.1 Selecting key generation method, p1640). We extract
the selection logic from the specification and present it in
Table IV and Table V. The function symbols selectAM
and mapIOCaps2AM, along with the 23 equations in Fig. 4,
faithfully formalize this selection logic.

Just Work (JW). In the JW association model, as shown
in Fig. 11, the two hosts generate random values NI and
NR respectively and set the two numbers rI and rR to
zero. The responder’s host calculates the pairing confirm
CR = f4(PkR, PkI , NR, rR), and sends it to the peer. After
receiving CR, the initiator’s host sends the random number NI

to the responder’s host. The responder’s host then responds
with the random value NR. Then, the initiator’s host checks
CR after receiving NR from the responder’s host. The JW
association model is finished if the verification is successful.

Numeric Comparison (NC). In the NC association model, as
shown in Fig. 11, the two hosts execute the flows like the JW
association model. After this, both devices display numbers
VI and VR, calculated by VI = VR = g2(PkI , PkR, NI , NR),
with buttons to indicate whether the two numbers are identical.
The NC association model is finished if the user pushes ‘Yes’
on both devices.

Out-of-Band (OOB). In the OOB association model, as
shown in Fig. 12, the two hosts transfer OOB data through
an OOB channel before the pairing process. The OOB data
includes Bluetooth address I or R of the device, a random
number rI or rR, and a confirmation CI or CR calculated by
CI = f4(PkI , PkI , rI , 0) or CR = f4(PkR, PkR, rR, 0).
The OOB data can be unidirectional or bidirectional. If a host
has received the peer’s OOB data, it will set the OOB flag in
the pairing request or pairing response message to true. In the
stage ⑤, the two hosts verify CI or/and CR. After this, they
exchange random values NI and NR.

15

TABLE IV
RULES FOR USING OOB AND AUTHREQ FLAGS FOR BLE-SC PAIRING

Responder
Initiator OOB Set OOB Not Set

MITM Set MITM Not Set MITM Set MITM Not Set

OOB Set MITM Set OOB OOB OOB OOB

MITM Not Set OOB OOB OOB OOB

OOB Not Set MITM Set OOB OOB Use IOCaps Use IOCaps

MITM Not Set OOB OOB Use IOCaps JW

TABLE V
MAPPING OF IO CAPABILITIES TO KEY GENERATION METHOD

Responder
Initiator DisplayOnly DisplayYesNo KeyboardOnly NoInputNoOutput KeyboardDisplay

DisplayOnly JW JW PEID JW PEID

DisplayYesNo JW NC PEID JW NC

KeyboardOnly PEDI PEDI PEII JW PEDI

NoInputNoOutput JW JW JW JW JW

KeyboardDisplay PEDI NC PEID JW NC

I-Host I-Controller R-Controller R-Host

Random r1 Random r2

rI = r1, rR = 0 rR = r2, rI = 0

Calculate CI Calculate CR

OOBDataI ={I , rI , CI}
OOBDataR ={R, rR, CR}

OOB Channel

If receive OOBDataR,
reset rR and check CR.

If OOBR = 0, set rI = 0

If receive OOBDataI ,
reset rI and check CI .

If OOBI = 0, set rR = 0

Random NI Random NR
NI NI NI

NRNRNR

Before Pairing Request

Fig. 12. Overview of the OOB association model flow.

APPENDIX C
UIS OF VARIOUS OPERATING SYSTEMS

The UIs of Android have been discussed in Section VI.
In this section, we show our exploration results of the UIs
of widely used Operating Systems (OS) when executing the
BLE-SC pairing protocol.
Windows and macOS. Fig. 13 presents the UIs of Windows
11 (above) and macOS 14.5 (below) when devices running the
PE association model prompt the user to enter a passkey. While
Windows does not mislead users into entering a guessable
passkey, it also lacks guidance on where to find the passkey.
In contrast, macOS explicitly instructs the user to enter the
passkey displayed on the remote device.

Fig. 13. UIs of Windows and macOS.

Linux Distributions. We investigate two Bluetooth clients
in the Linux distributions: BlueZ and Blueman. BlueZ is
a command-line client, and Blueman is a graphical user
interface client. The UIs of these clients when running the
PE association model to prompt the user to enter a passkey
are shown in Fig. 14, where the above is the UI of BlueZ 5.72,
and the below is the UI of Blueman 2.4.

Although the UIs of Windows, macOS, and Linux do
not mislead users into entering easily guessable passkeys,
they also fail to instruct users on what to do to ensure a
secure pairing. If a user enters the number displayed on the
remote device operating under the NC association model,
and subsequently pushes the ‘Yes’ button on that device, an
adversary can perform the method confusion attack disclosed
by Tschirschnitz et al. [8].

IOS. The UI of IOS 14.8 (iPhone XR) is shown in Fig. 15.
If the user follows the prompt message on the UI of IOS, the
method confusion attack can be protected.

16

Fig. 14. UIs of Linux

Fig. 15. UIs of IOS

APPENDIX D
NC-PE CONFUSION ATTACK VS. PE CONFUSION ATTACK.

The main similarity between NC-PE confusion attacks [8]
and PE confusion attacks is that, in both cases, the adversary
manipulates the IO capabilities fields in the pairing request and
response messages to cause the devices to execute different
association models. The differences are outlined as follows:

• In the NC-PE confusion attack, the adversary tricks one
device into executing the NC association model, which
displays a 6-digit number with a confirmation button, while
the other device executes the PE association model, which
prompts the user to enter the number displayed on the
peer device. The success of this attack relies on the user
mistakenly believing that both devices are executing the PE
association model: entering the displayed number into the
device that prompts for it and confirming the action on the
device that displays the number.

• In the PE confusion attack, the adversary tricks the initiator
into executing the PEID association model, which prompts
the user to enter a passkey, while the responder executes
the PEDI association model, which also prompts the user
to enter a passkey. From the user’s perspective, both de-
vices appear to be executing the PEII association model,
prompting the user to enter a passkey. The success of this
attack relies on the user entering a weak passkey or reusing
a passkey from a previous pairing session.

APPENDIX E
ATTACKS AND COUNTEREXAMPLES

In this section, we provide details on the relationship be-
tween PE confusion attacks and the corresponding counterex-
ample traces generated by Tamarin. Due to the complexity of
our model, the complete traces are too large to be presented in
this paper. Therefore, we have cropped each trace to highlight
the core steps that capture the key aspects of the relationship
between the attacks and their corresponding counterexamples.
The cropped traces are shown in Fig. 16 and Fig. 17, with the
locations of certain entities adjusted for better readability. We
use red boxes to highlight the critical terms to facilitate the
understanding. Furthermore, we provide the full traces in our
supplementary material [22].

The counterexample trace for the secrecy of the LTK
in the ‘KeyboardDisplay-KeyboardDisplay’ cases, under the
assumption that users may enter weak passkeys, reflects the
steps of the first case of the PE confusion attack described in
Section VI. The cropped trace shown in Fig. 16 illustrates the
following key steps: ① The attacker has tricked the initiator
into executing the PEID association model by modifying the
peer’s IO capability to ‘DisplayOnly’ in the pairing response
message, while ② the attacker has tricked the responder into
executing the PEDI association model by modifying the peer’s
IO capability to ‘DisplayOnly’ in the pairing request message.
③ Both devices prompt the user to enter a passkey and ④
transition to the ‘WaitInput’ state. ⑤ The user who is pairing
these two devices encounters the situation where both devices
prompt for a passkey, and ⑥ enters a publicly known passkey
on both devices.

Accordingly, the counterexample trace for secrecy of the
LTK in the ‘KeyboardDisplay-KeyboardDisplay’ cases, under
the assumption that users may reuse passkeys, demonstrates
the steps of the second case of the PE confusion attack
described in Section VI. The cropped trace shown in Fig. 17
illustrates how the attacker successfully obtains the inputted
passkey: In this figure, ① the attacker obtains the commitment
to the left part of the passkey and the random value from the
public channel, then derives the left part of the passkey using
the function brkf4 explained in Section III-A. Similarly,
② the attacker derives the right part of the passkey. ③ The
attacker merges the left and the right parts to obtain the
passkey. Notably, in actions ① and ②, the input of both
devices’ public key, which are obtained during the public key
exchange stage, is omitted.

17

HostStateExchedPK('ExchedPK',
<$HostID, 'Initiator', $pidI, KeyboardDisplay, True, '16', $DevID, $LocalBTAddress,
$PeerBTAddress, $ChannelHandle, False, DisplayOnly, PeerAuthReq, PeerMaxEncKeySize,
False, ~LocalDHsk, 'g', PEID>

)

#vr.6 : initiatorPEIDAskInput[SRC_OUT_FACT_DEVICE_IO(<'IO', 'AskForInput'>, $HostID,
$User, <$pidI, 'InputField'>

),
LableProcess($pidI)]

OutS2D(<'IO',
 'AskForInput'>,
 $HostID, $User,
 <$pidI, 'InputField'
 >
)

HostStateWaitInput('WaitInput',
<$HostID, 'Initiator', $pidI, KeyboardDisplay, True, '16', $DevID,
$LocalBTAddress, $PeerBTAddress, $ChannelHandle, False,
DisplayOnly, PeerAuthReq, PeerMaxEncKeySize, False, ~LocalDHsk,
'g', PEID>

)

OutS2D(<'IO', 'AskForInput'>, $HostID, $User, <$pidI, 'InputField'>)

#vr.22 : chnsrc2DstSrc2Chn[Neq($HostID, $User)]

!ChannelState(<'IO', 'AskForInput'>, $HostID, $User, <$pidI, 'InputField'>)

!UserStatePermanent($User,
$HostID,
$PeerHost

)

InS2D(<'IO',
 'AskForInput'>,
 $HostID, $User,
 <$pidI, 'InputField'>
)

InS2D(<'IO',
 'AskForInput'>,
 $PeerHost, $User,
 <$pidR, 'InputField'>
)

UserInteractToken($User,
$HostID,
$PeerHost,
$pidI,
$pidR

)

#vr.19 : UserDualHInputConstantPE[Neq($HostID, $PeerHost),
UserInteract($HostID, $PeerHost, $pidI, $pidR),
UserInputPublicConstantPasskey(),
SRC_OUT_FACT_USER_INPUT_PASSKEY(<'IO', 'Input'>, $User, $HostID, <$pidI, $passkey>),
SRC_OUT_FACT_USER_INPUT_PASSKEY(<'IO', 'Input'>, $User, $PeerHost, <$pidR, $passkey>

),
SRC_IN_FACT_USER_SEE_IO(<'IO', 'AskForInput'>, $HostID, $User, <$pidI, 'InputField'>

),
SRC_IN_FACT_USER_SEE_IO(<'IO', 'AskForInput'>, $PeerHost, $User, <$pidR, 'InputField'>

)]

OutS2D(<'IO', 'Input'>, $User, $HostID,
 <$pidI, $passkey>
)

OutS2D(<'IO', 'Input'>, $User, $PeerHost,
 <$pidR, $passkey>
)

!ChannelState(<'IO', 'AskForInput'>, $HostID, $User, <$pidI, 'InputField'>)

#vr.21 : chnsrc2DstChn2Dst[Neq($HostID, $User),
Channel2Dst(<'IO', 'AskForInput'>, $HostID, $User, <$pidI, 'InputField'>)]

InS2D(<'IO', 'AskForInput'>, $HostID, $User, <$pidI, 'InputField'>)

!ChannelState(<'IO', 'AskForInput'>, $PeerHost, $User, <$pidR, 'InputField'>)

#vr.23 : chnsrc2DstChn2Dst[Neq($PeerHost, $User),
Channel2Dst(<'IO', 'AskForInput'>, $PeerHost, $User, <$pidR, 'InputField'>)]

InS2D(<'IO', 'AskForInput'>, $PeerHost, $User, <$pidR, 'InputField'>)

OutS2D(<'IO', 'AskForInput'>, $PeerHost, $User, <$pidR, 'InputField'>)

#vr.24 : chnsrc2DstSrc2Chn[Neq($PeerHost, $User)]

!ChannelState(<'IO', 'AskForInput'>, $PeerHost, $User, <$pidR, 'InputField'>)

HostStateExchedPK('ExchedPK',
<$PeerHost, 'Responder', $pidR, KeyboardDisplay, True, '16', $PDevID, $PeerBTAddress,

$LocalBTAddress, $ChannelHandleP, False, DisplayOnly, PeerAuthReq.1,
PeerMaxEncKeySize.1, False, ~ResDHsk, PeerDHpk, PEDI>

)

#vr.25 : responderPEDIAskInput[SRC_OUT_FACT_DEVICE_IO(<'IO', 'AskForInput'>,
$PeerHost, $User, <$pidR, 'InputField'>

),
LableProcess($pidR)]

OutS2D(<'IO',
 'AskForInput'>,
 $PeerHost, $User,
 <$pidR, 'InputField'
 >
)

HostStateWaitInput('WaitInput',
<$PeerHost, 'Responder', $pidR, KeyboardDisplay, True, '16',
$PDevID, $PeerBTAddress, $LocalBTAddress, $ChannelHandleP, False,
DisplayOnly, PeerAuthReq.1, PeerMaxEncKeySize.1, False, ~ResDHsk,
PeerDHpk, PEDI>

)

① ②

③ ③

④ ⑤ ⑤

⑥ ⑥

Fig. 16. Cropped and adjusted trace of the counterexample for secrecy of the LTK for ‘KeyboardDisplay-KeyboardDisplay’ cases under the assumption that
users may enter weak passkeys. The symbol ‘$’ in Tamarin models publicly known terms.

#vr.84 : d_1_merge

#vk.11 : coerce[!KU(rand2Num(~passkey))]

#vk.12 : coerce[!KU(~LocalRandom.3)]

#vr.83 : d_0_brkf4

!ControllerStateConnection('Connection',
<$DevID, $HostID,
$LocalBTAddress,
$ChannelHandle.1,
'Centeral', $pid,
$AccessAddress.1>

)

InS2D(<'HCI', 'ACL', 'Host2Controller'>,
 $HostID, $DevID,
 <$ChannelHandle.1, 'PairingConfirm',
 f4('g'^~InitDHsk, 'g'^~ResDHsk, ~LocalRandom.3,

right(rand2Num(~passkey)))
 >
)

#vr.76 : loopCtrllerSendplaintext[ControllerSendPlaintext(<'Centeral', $pid>),
LableProcess($pid)]

Out(<$AccessAddress.1, 'Data', 'PairingConfirm',
 f4('g'^~InitDHsk, 'g'^~ResDHsk, ~LocalRandom.3, right(rand2Num(~passkey)))>
)

!ControllerStateConnection('Connection',
<$DevID, $HostID, $LocalBTAddress,
$ChannelHandle.1, 'Centeral', $pid,
$AccessAddress.1>

)

InS2D(<'HCI', 'ACL', 'Host2Controller'
 >,
 $HostID, $DevID,
 <$ChannelHandle.1, 'PairingRandom',
 ~LocalRandom.3>
)

#vr.85 : loopCtrllerSendplaintext[ControllerSendPlaintext(<'Centeral', $pid>),
LableProcess($pid)]

Out(<$AccessAddress.1, 'Data', 'PairingRandom', ~LocalRandom.3>)

!ChannelState(<'HCI', 'ACL', 'Host2Controller'>, $HostID, $DevID,
<$ChannelHandle.1, 'PairingRandom', ~LocalRandom.3>

)

#vr.88 : chnsrc2DstChn2Dst[Neq($HostID, $DevID),
Channel2Dst(<'HCI', 'ACL', 'Host2Controller'>, $HostID, $DevID,

<$ChannelHandle.1, 'PairingRandom', ~LocalRandom.3>
)]

InS2D(<'HCI', 'ACL', 'Host2Controller'>, $HostID, $DevID,
 <$ChannelHandle.1, 'PairingRandom', ~LocalRandom.3>
)

#vk.9 : coerce[!KU(left(rand2Num(~passkey)))]

#vk.10 : coerce[!KU(~LocalRandom.2)]

#vr.51 : d_0_brkf4

f4('g'^
~

InitD
H

sk, 'g'^
~

R
esD

H
sk, ~

LocalR
andom

.2, left(rand2N
um

(~
passkey)))

!ControllerStateConnection('Connection',
<$DevID, $HostID, $LocalBTAddress,
$ChannelHandle.1, 'Centeral', $pid,
$AccessAddress.1>

)

InS2D(<'HCI', 'ACL', 'Host2Controller'
 >,
 $HostID, $DevID,
 <$ChannelHandle.1, 'PairingRandom',
 ~LocalRandom.2>
)

#vr.66 : loopCtrllerSendplaintext[ControllerSendPlaintext(<'Centeral', $pid>),
LableProcess($pid)]

Out(<$AccessAddress.1, 'Data', 'PairingRandom', ~LocalRandom.2>)

#vr.67 : d_0_snd

#vr.68 : d_0_snd

①

②

③

Fig. 17. Cropped and adjusted trace of the counterexample for secrecy of the LTK for ‘KeyboardDisplay-KeyboardDisplay’ cases under the assumption that
users may reuse passkeys. Ellipse boxes represent the actions taken by the attacker or the public channel.

18

APPENDIX F
ARTIFACT APPENDIX

A. Description & Requirements

This artifact provides the formal models and verification
framework used to analyze the security of BLE Secure Con-
nections pairing protocols. It includes the Tamarin Prover
models, verification scripts, and corresponding verification
results necessary to reproduce the security analysis presented
in the paper.

1) How to Access: The artifact is publicly available at: http
s://github.com/itachiMin/BLE-Model-Results-Poc. For long-
term archival access, the artifact is also published on Zenodo
and can be obtained via DOI: https://doi.org/10.5281/zenodo
.17677477.

2) Hardware Dependencies:
• Architecture: AMD64
• CPU: 8 cores
• Memory: 16 GB
• Storage: 128 GB of available disk space
3) Software Dependencies:
• Operating System: Ubuntu 24.04 LTS
• Required Packages and Tools:

– docker.io
– openssh-server
– make
– m4
– python3 (with virtual environment support)
– curl
– git

4) Benchmarks: None.

B. Artifact Installation & Configuration

This section describes the installation and configuration
steps required to prepare the environment for evaluating the
artifact.

1) Step 1: Install Dependencies.: Update the system and
install all required packages:

$ sudo apt update
$ sudo apt install -y curl git m4 make \

openssh-server docker.io python3-venv

Add the current user to Docker group (re-login required):

$ sudo usermod -aG docker $USER

Note: Ensure that both Docker and SSH services are running
properly. The user must have permission to execute Docker
commands without using sudo.

2) Step 2: Clone the Repository.: Clone the repository and
switch to the artifact-eval branch:

$ git clone --branch artifact-eval \
--single-branch --depth 1 \
https://github.com/itachiMin/BLE-Model

-Results-PoC.git
$ cd BLE-Model-Results-PoC/

Note: All subsequent commands are executed from the
BLE-Model-Results-PoC/ directory.

3) Step 3: Set Up Python Environment.: Create and activate
a Python virtual environment:

$ python3 -m venv .myvenv
$ source .myvenv/bin/activate
$ pip3 install -r requirements.txt

4) Step 4: Download Docker Image and Required Files.:
Download the pre-built Tamarin Prover Docker image:

$ curl -L -o ./ExpRun/files/tamarin-conta
iner_1.8.0.tar "https://github.com/itachi
Min/BLE-Model-Results-PoC/releases/downlo
ad/v1.0.0/tamarin-container_1.8.0.tar"

After downloading, the ExpRun/files directory should
contain the following files:

./ExpRun/files/
|-- hardware.py
|-- run_tamarin.sh
|-- tamarin-container_1.8.0.tar
‘-- verify.py

a) Step 5: Configure Server Settings.: Edit ExpRun/
servers.json to configure the artifact for local execution
only:

[{
"host": "127.0.0.1",
"port": 22,
"username": "your_username",
"password": "your_password",
"workdir": "/tmp/ble_exp_ae",
"workers": 1,
"weight": 1

}]

Note: Replace your_username and your_password
with your actual system credentials.

C. Experiment Workflow

The experimental workflow involves formal model verifica-
tion using the Tamarin Prover. The artifact provides:

• Automatic model generation scripts for BLE Secure Con-
nections pairing protocols

• Distributed verification framework for parallel model
checking

• Results collection and analysis tools for violated security
properties

The AE version uses a reduced subset of pairing scenarios
to demonstrate the key formal model generation and verifi-
cation experimental process, while maintaining computational
feasibility.

D. Major Claims

• (C1): The formal models correctly capture the security
properties of BLE Secure Connections pairing protocols.

19

https://github.com/itachiMin/BLE-Model-Results-Poc
https://github.com/itachiMin/BLE-Model-Results-Poc
https://doi.org/10.5281/zenodo.17677477
https://doi.org/10.5281/zenodo.17677477

This is proven by experiment (E1) whose results demon-
strate the verification of security lemmas and identifica-
tion of violations.

• (C2): The artifact identifies critical security vulnerabilities
in specific BLE pairing configurations. This is proven by
experiment (E1) through the generation of attack graphs
for violated lemmas.

E. Evaluation
To ensure that all experiments could be completed within

the available time and computational resources, we scaled
down the verification workload by selecting 16 representative
cases with shorter verification times. Since the generation and
verification processes of the formal models are identical for all
cases, we believe this reduced experiment set is sufficient to
demonstrate the correctness and effectiveness of our proposed
formal model generation and verification framework.

1) Experiment (E1): Model Verification [30 human-
minutes + 10 compute-hours]: This experiment generates
formal models according to different capabilities of the devices
and verifies them using the Tamarin Prover to check whether
the specified security properties hold.

[Preparation]
1) Ensure that all installation steps described in Section F-B

have been completed.
2) Verify that the Docker and SSH services are running and

that the user has sufficient permissions.
3) Activate the Python virtual environment using the com-

mand: source .myvenv/bin/activate
[Execution] Run the reduced verification subset with the

following command: make subset This command automat-
ically launches the verification of 16 representative models
from the full model set. The process performs distributed
verification based on the current local machine configuration.

[Results] After approximately 10 hours of computation:
1) The verification results are stored in the ./ExpRun/

results/ directory.
2) Each verified model has its own subdirectory containing

the verification outcomes for all corresponding lemmas.
3) To check specific results, navigate to the relevant direc-

tory and utilize Tamarin Prover’s interactive interface for
detailed proof analysis results. For instance, for the case
I[NoInNoOut_NoOOB_NoAuthReq_KeyHigh]_
R[NoInNoOut_NoOOB_NoAuthReq_KeyHigh],
execute:
$ cd ./ExpRun/results/BLE-SC_I[NoInput
NoOutput_NoOOB_NoAuthReq_KeyHigh]_R[No
InputNoOutput_NoOOB_NoAuthReq_KeyHigh]
$ docker run --rm -it \

-p 3001:3001 -v $(pwd):/root \
ghcr.io/luojiazhishu/tamarin-docke

r/cli:latest \
tamarin-prover interactive --inter

face=0.0.0.0 --derivcheck-timeout=0 .

4) Access http://localhost:3001 via a web browser to review
the verification details.

5) Note that the Tamarin Prover web interface displays a
maximum of 5 files. For comprehensive lemma analysis,
either isolate each lemma in individual directories and
inspect them sequentially, or employ the crawler.py
script to capture images of all violated lemmas (auto-
mated in the full verification):
cd ./ExpRun
python3 crawler.py

6) Complete verification results and lemma violated graphs
are accessible through the project repository at https://gi
thub.com/itachiMin/BLE-Model-Results-PoC/tree/artifa
ct-eval?tab=readme-ov-file#verification-results.

The expected outcomes are successful proof derivations
for verified properties and automatic graphs for violated
ones, reproducing our paper’s key findings and confirming
the framework’s validity and its ability to expose security
vulnerabilities in BLE-SC pairing protocols.

F. Customization

To customize the verification process, modify the
ExpSubset/subset_cases.json file to define different
combinations of cases for verification. Each case comprises
two devices: an initiator and a responder. Each device is
characterized by four capabilities:

d =
(
IOcap(d), OOB(d), AuthReq(d), KeySize(d)

)
,

where

IOcap ∈ I, with I = {NoInputNoOutput,
DisplayOnly, KeyboardOnly,
DisplayYesNo, KeyboardDisplay}

OOB ∈ O, with O = {OOBSendRev, OOBSend,
OOBRev, NoOOB},

AuthReq ∈ A, with A = {AuthReq, NoAuthReq},
KeySize ∈ K, with K = {KeyHigh, KeyLow}.

Thus, each device capability tuple satisfies:

d ∈ I ×O ×A×K.

Below is an example configuration that verifies only the
case where both the initiator and responder have the capa-
bilities ”NoInputNoOutput”, ”NoOOB”, ”NoAuthReq”, and
”KeyHigh”:

[{
"init": [

"NoInputNoOutput", "NoOOB",
"NoAuthReq", "KeyHigh"

],
"resp": [

"NoInputNoOutput", "NoOOB",
"NoAuthReq", "KeyHigh"

]
}]

20

http://localhost:3001
https://github.com/itachiMin/BLE-Model-Results-PoC/tree/artifact-eval?tab=readme-ov-file#verification-results
https://github.com/itachiMin/BLE-Model-Results-PoC/tree/artifact-eval?tab=readme-ov-file#verification-results
https://github.com/itachiMin/BLE-Model-Results-PoC/tree/artifact-eval?tab=readme-ov-file#verification-results

	Introduction
	Background
	Overview of BLE-SC Pairing Protocol
	Association Models
	Tamarin Prover

	Protocol Modeling
	Assumptions
	Channels
	Association Model Selection
	Participants

	Formalizing Properties
	Association Model Consistency
	Authentication
	Secrecy

	Analyzing and Results
	Formal Verification
	Pairing Cases
	Heuristics and Helping Lemma
	Verification Strategy

	Results

	PE Confusion Attack
	Attack and Its Impact
	Implementation
	Countermeasures

	Related Work
	Conclusion
	References
	Appendix A: Cryptographic Tools
	Appendix B: Association Models
	Appendix C: UIs of Various Operating Systems
	Appendix D: NC-PE Confusion Attack vs. PE Confusion Attack.
	Appendix E: Attacks and Counterexamples
	Appendix F: Artifact Appendix
	Description & Requirements
	How to Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Artifact Installation & Configuration
	Step 1: Install Dependencies.
	Step 2: Clone the Repository.
	Step 3: Set Up Python Environment.
	Step 4: Download Docker Image and Required Files.

	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)

	Customization

