Artifact
Evaluated

ANDss

Available

Cease at the Ultimate Goodness: Towards Efficient Website Fingerprinting
Defense via Iterative Mutual Information Minimization

Functional

Rong Wang', Zhen Ling'* , Guangchi Liuf, Shaofeng Lif, Junzhou Luof* and Xinwen Fu®
fSoutheast University, Email: {junowang, zhenling, gc-liu, shaofengli, jluo} @seu.edu.cn
iFuyao University of Science and Technology
§University of Massachusetts Lowell, Email: xinwen_fu@uml.edu

Abstract—In response to growing online privacy threats, the
Tor network offers essential protection against surveillance by
routing traffic through a decentralized, encrypted infrastruc-
ture. However, Website Fingerprinting Attacks (WFA) present a
formidable challenge to Tor’s anonymity. This paper introduces
FRUGAL, a traffic obfuscation method that leverages the mutual
information (MI) reduction between website traffic and labels as
an optimization goal, advancing a novel perspective for Website
Fingerprinting Defense (WFD). By strategically injecting dummy
packets at positions within website traffic that contribute most to
cumulative MI reduction, FRUGAL achieves notable performance
compared to state-of-the-art (SOTA) defense mechanisms. It ef-
fectively reduces attack success rates (ASR) across diverse attack
models while maintaining minimal bandwidth overhead (BWOQO)
and mitigating the impact of adversarial training. Extensive
experiments validate the efficacy of FRUGAL across a compre-
hensive set of scenarios, including closed-world, open-world, and
real-world simulation settings. For example, in the closed-world
setting, FRUGAL reduces the ASR of the DF model to 2.68%
with a 30% BWO, substantially outperforming previous SOTA
defenses, such as Palette (11.54% with 87% BWOQO). When the
BWO of FRUGAL is increased to a comparable level of 80%, the
ASR further drops below 1%, demonstrating significant resilience
by remaining low at 9.42% even after adversarial training,
compared to 20.27% for Palette. This work not only introduces a
fresh perspective on WFD research but also establishes FRUGAL
as a robust and universal defense framework against WFA.

I. INTRODUCTION

Tor is designed to protect the anonymity of user com-
munications by routing their website traffic through globally
distributed Tor nodes [10], [40], achieving decentralized and
encrypted communication. This setup helps conceal users’
online activities, making it challenging for others to track or
monitor users’ internet behavior. However, it is still vulnerable
to local eavesdroppers through Website Fingerprinting Attacks
(WFA) [37], [2], [, [33]]. By analyzing patterns in the size
and direction of traffic packet traces—known as ‘website fin-
gerprints’—attackers can infer which specific website the user
is visiting. With recent advances in deep learning, these attacks
have posed a serious challenge to Tor’s privacy protections.

To address this challenge, Website Fingerprinting Defense
(WFD) techniques have been developed to counter WFA by
disrupting an attacker’s ability to identify websites through

* Corresponding author: Prof. Zhen Ling of Southeast University, China.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240786
www.ndss-symposium.org

traffic obfuscation methods. Existing website fingerprinting
defenses can be broadly classified into two categories. The first
category comprises feature-morphing-based defenses [31]],
[14], [25], [24], which aim to alter a website’s traffic profile
to resemble a target website, thereby causing the classifier
to misclassify the former as the latter. The second category
includes feature-suppression-based defenses [36], [3], [4],
[20], [13], which work by homogenizing the traffic features
of all websites, rendering the classifier unable to differentiate
between them. While both categories have made progress,
challenges remain that limit their effectiveness and robustness
in dynamic adversarial environments.

(C1) Attack Model Agnostic: Feature-morphing-based de-
fense methods typically operate under the assumption that the
target attack model remains static and accessible, allowing
defensive strategies to adjust based on the attack model’s
outputs. However, this reliance poses significant limitations
when the attack model is either inaccessible or evolves con-
tinuously as adversaries adapt to countermeasures. Moreover,
these defense methods often exhibit poor generalization across
different attack models, further restricting their effectiveness
in dynamic and diverse adversarial settings.

(C2) Efficiency of Bandwidth Overhead: While feature-
suppression-based methods offer universal protection by re-
ducing the Attack Success Rate (ASR) of various attack mod-
els through homogenizing website features, they inevitably
lead to excessive and uncontrollable Bandwidth Overhead
(BWO). A defense mechanism capable of maximizing ASR
reduction while adhering to predefined bandwidth limits re-
mains an unrealized goal. Such a solution is especially critical
in environments with varying bandwidth constraints, where
efficiency and adaptability are paramount.

(C3) Adversarial Training Resilience: Prior work [22]]
shows that despite reduced attack accuracy, defended traffic of-
ten retains high Mutual Information (MI) with original labels,
aiding website identification by attackers. This phenomenon,
known as information leakage [22|], highlights why many
defenses struggle to remain effective against adversarially
trained attack models. Adversarial training retrains attack
models on defended traffic, exploiting residual patterns that
defenses cannot fully hide, thus weakening WFD effectiveness
in post-adversarial settings.

To address the aforementioned challenges, we propose FRU-
GAL, a defense framework that shifts the focus from deceiving

specific attack models to fundamentally eliminating a web-
site’s traffic fingerprint. Our approach centers on minimizing
the MI between website traffic features and their corresponding
labels, using MI reduction as the core optimization objective.
From an information-theoretic perspective, reducing the MI
between traffic features and labels is, by definition, equivalent
to increasing the information entropy (uncertainty) of the
labels conditioned on the traffic features. As a result, by
maximizing MI reduction, our approach directly increases the
label uncertainty with respect to the traffic features, thereby
maximizing the attacker’s potential classification error. We
model this process as a Markov Decision Process (MDP)
and employ reinforcement learning (RL) to solve it. In WFD
research, MI is frequently used to quantify the amount of
information shared between website traffic and its original la-
bels, making it a key metric for evaluating the effectiveness of
WEFD strategies. Most existing approaches focus on reducing
the ASR as the primary objective, with MI treated only as a
performance indicator. In contrast, FRUGAL is novel in directly
optimizing for MI reduction, setting our approach apart from
prior work.

FRUGAL addresses C1 by generating modified website
traffic that minimizes MI with its original label, thereby
hindering attack models from accurately inferring labels. For a
given website traffic trace, FRUGAL leverages a reinforcement
learning algorithm to determine an efficient policy for injecting
dummy packets at key positions, maximizing MI reduction and
achieving effective traffic obfuscation. Crucially, FRUGAL’s
emphasis on minimizing MI without relying on knowledge of
specific attack models ensures robust and adaptable protection
against evolving threats.

To tackle C2, FRUGAL performs dummy packet injection
iteratively. In each iteration, a small set of dummy packets is
injected to maximize cumulative MI reduction. By configuring
the iteration count as a hyperparameter, FRUGAL enables fine-
grained control over bandwidth overhead, ensuring efficiency
across diverse network conditions.

Finally, to overcome C3, FRUGAL dynamically adjusts its
dummy packet injection positions conditioned on the resulting
traffic patterns from previous steps. This adaptive strategy
ensures that the actor trained in FRUGAL consistently targets
the most informative residual patterns within the traffic trace,
effectively diminishing the ASR even for adversarially trained
attack models.

We implemented FRUGAL and conducted extensive exper-
iments using public WF datasets [37]. Our evaluation spans
closed-world, open-world, one-page settings, and real-world
simulations, including scenarios with adversarially trained
attack models. We benchmark FRUGAL against state-of-the-art
(SOTA) defenses, evaluating both its defensive effectiveness
and bandwidth overhead (BWO). The results demonstrate that
FRUGAL consistently outperforms existing SOTA methods
by achieving stronger defense performance with significantly
lower BWO, while also maintaining robustness against ad-
versarial training. For instance, in the closed-world setting,
FRUGAL reduces the ASR of DF [37] to 2.68% and RF [35]]

outgoing cells Iincoming cells dummy cells

Frugal (Ours)
Controllable Bandwidth

Universal Effectiveness AdversanialTraining

Resilience
Overhead ASR [\T'/A\Tf]
Adjustable$ W/\/ﬁ
L

M S | \J Tt

\ MI Reduction

Other Defenses’ Limitations

&/

Too Much Overhead

torphil
phing % Original traffic iy
Attack model specific —_—]
[IE LB L]
Universal but not efficient
Foature] LETR I RILE <y
Defended traffic) N

qug;sion

Attacki/ i
Model, i1 i i _> !
. 7

Google f';)‘\,‘»ﬁ:l"‘

amazon You(ITD)

Tor @ Internet

WF Attacker Attacker

Fig. 1. Threat Model of FRUGAL

to 12.7% with just 30% BWO, substantially outperforming
previous SOTA defenses, such as Palette[36], which yields
11.54% and 46.43% ASR for DF and RF, respectively, with
87.17% BWO. When the BWO of FRUGAL is increased to
a comparable level of 80%, the ASR drops further (below
2% for DF and 8.12% for RF), and remains robustly low
after adversarial training (9.42% for DF and 18.2% for RF),
compared to 20.27% and 46.43% for Palette under the same
conditions. In a more realistic real-world simulation, the
effectiveness of FRUGAL is further confirmed, where its online
implementation (FRUGAL-online) reduces the ASR of DF and
RF to just 4.69% and 14.1%, respectively, with 30% BWO.

In summary, with the introduction of FRUGAL, we aim to
address the following research questions: RQ1: What does
efficiently defended traffic that achieves (1) attack model
agnosticism, (2) bandwidth overhead efficiency, and (3) re-
silience against adversarial training look like? RQ2: How does
FRUGAL ensure that these characteristics are effectively met?
Our contributions are outlined as follows.

o Novel WFD Research Perspective: To our knowledge,
FRUGAL is the first WFD framework to leverage the
MI reduction between website traffic and corresponding
labels as an optimization target, providing a new direction
for advancing WFD research.

o Precise Bandwidth Overhead Control: FRUGAL is
the first to introduce a method ensuring efficient WFD
under precise bandwidth overhead limits, enabling flexi-
ble deployment across scenarios with diverse bandwidth
constraints.

o Mitigation of Adversarial Training: We theoretically
demonstrate and implement an effective mechanism to
counter adversarial training, significantly enhancing the
robustness of FRUGAL.

o State-of-the-Art Performance: Extensive experimental
results demonstrate that traffic defended by FRUGAL ef-
fectively counters website fingerprinting attacks, achiev-
ing state-of-the-art performance and establishing a new
benchmark for WFD research.

II. BACKGROUND

In this section, we provide the necessary background on
website fingerprinting, deep reinforcement learning, and mu-
tual information.

A. Website Fingerprinting

To achieve online anonymity, the Tor network [10] randomly
selects three volunteer nodes, designated as the guard node,
middle node, and exit node, to establish a circuit. In a circuit,
each node can only view the preceding and following nodes.
Through this circuit, user web traffic is encapsulated into fixed-
size encrypted packets known as Tor cells, which are then
transmitted across the network.

The rise of Website Fingerprinting attacks [37], [2], [L],
[33] has posed a significant challenge to the Tor network’s
anonymity. Website fingerprinting is a traffic analysis tech-
nique that monitors data flow between users and their guard
node. In WFA, Tor traffic is parsed as a sequence of +1° or
-1’ values [43], where +1’ represents upstream cells from the
user to the server, and -1’ represents downstream cells from
the server to the user. Based on this sequence, the attacker
extracts distinct features such as the number of Tor cells,
direction, timing and cumulative features, which form unique
traffic fingerprints for different websites. These fingerprints
can be utilized to identify specific websites.

Most current defenses [36l], [18], [34] attempt to thwart
WF attacks by inserting dummy packets and/or delaying data
packets. The injection of numerous dummy packets results in
considerable BWO, which in turn increases network load and
potentially leads to congestion. On the other hand, delaying
data packets effectively hides website packet timing informa-
tion but prolongs page load times, harming the user experience.
Striking a balance between overhead and performance remains
an urgent challenge.

B. Deep Reinforcement Learning

In RL, the agent iteratively interacts with the environment
to generate the 5-tuple (s,a,7, Spewt, Sterminal)- Here, s is
the current state in the entire state set S, a is the chosen
action in the action set A, r is the reward received after
taking action a from the environment, and $,..: is the next
state after the action is executed, Siermingl represents the
terminal state indicating the termination of the iteration. The
goal of agents is to maximize long-term cumulative rewards
by learning an efficient policy. This is achieved by updating its
Q-function, which represents the expected cumulative reward
(also known as Q-value) for taking action a in state s. The Q-
function guides the agent toward maximizing its cumulative
reward. In recent cutting-edge deep reinforcement learning
(DRL), e.g., Deep Q Network (DQN) [27], Double Deep Q

Network (DDQN) [39], and Soft Actor-Critic (SAC) [13],
neural networks are used as policy networks to approximate
the agent’s strategy. These approaches are highly efficient for
decision-making in complex environments.

C. Mutual Information

Mutual information (MI) between two random variables x
and y, denoted as I(z;y), quantifies the amount of informa-
tion shared between them, effectively measuring how much
knowledge one variable reveals about the other. Specifically,
I(z;y) can be expressed as:

I(z;y) = Dxv(p(z,y)lp(z)p(y))
=H(y) - H(y|).

In Equation (1), I(z;y) is defined as the Kullback-Leibler
(KL) divergence between the joint distribution p(x,y) and
the product of their marginal distributions p(x)p(y). However,
directly computing KL-divergence is infeasible, as it requires
closed-form expressions for p(z,y), p(z), and p(y). Alterna-
tively, as shown in Equation , I(z;y) can be reformulated
as the change in the entropy of y when x is introduced, i.e.,
H(y) — H(y |). In this way, I(z;y) can be solved as H(y)
and H(y | z) can be estimated using variational techniques.

Furthermore, when considering the effect of a third variable
z, the concept extends to Conditional Mutual Information
(CMI), which is defined as:

(D

I(z;y | 2) = Dxr (p(z,y | 2)|lp(z | 2)p(y | 2))

—H(y|2) - Hy| z.2). @

Here, I(z;y | z) measures the mutual dependence between z
and y, conditioned on z. Notably, in this paper, Equation (2)
is further extended (details are presented in Appendix B) as

Hy|lzUx;)=H(yl|z)—I(xUx;y|x), 3)

where x denotes the website-traffic features and x; denotes
a dummy packet injected at the i-th position. Equation (3]
indicates that the information entropy (uncertainty) of y con-
ditioned on « , ie., H(y | x), can be further increased
by injecting x; into x, where the increase is quantified
by I(x;Ux;y|x). Therefore, by strategically disrupting
the patterns in the traffic features a through injecting an
x; that minimizes I(x; Ux; y |«), the resulting entropy
H(y | & Ux;) (uncertainty of the label y given x U x;) is
maximized, thereby making it more difficult for a classifier to
accurately predict y from x U x;.

III. WEBSITE FINGERPRINTING DEFENSE
A. Basic Idea

The core idea of FRUGAL is to minimize the MI between
website traffic and its labels. By injecting dummy packets into
the original traffic to maximize MI reduction between the mod-
ified traffic and its corresponding labels, FRUGAL establishes
a universal and robust defense mechanism that is independent
of any specific attack model (C1). FRUGAL performs dummy
packet injection iteratively based on a learned injection policy.

The injection policy, which determines the effective positions
for packet insertion, is learned using the SAC algorithm. By
pre-defining the number of iterations, FRUGAL ensures precise
control over BWO (C2). Finally, FRUGAL counters attacks
based on adversarial training by eliminating specific positions
critical for distinguishing between different traffic patterns. As
a result, FRUGAL demonstrates robustness against adversarial
training (C3).

Technical Challenges: I. The first challenge lies in the
computational complexity of employing MI as an optimization
target. Existing MI estimation methods [22], [35], which
primarily rely on hand-crafted features, demand significant
domain expertise and high computational costs. Consequently,
they are unsuitable for direct use as optimization objectives. IL.
The high dimensionality of network traffic traces introduces
a significant challenge commonly referred to as the “curse
of dimensionality”. More specifically, searching for the most
effective positions to inject dummy packets through brute
force in the entire action space is infeasible. In addition,
such complexity substantially impedes the ability of rein-
forcement learning algorithms to learn an effective injection
policy. III. The injection of dummy packets, while designed
to obfuscate traffic patterns and reduce MI, inevitably causes
a distribution shift from the original website traffic. This mod-
ification continuously perturbs the MI between the remaining
traffic features and the corresponding labels, thus progressively
degrading the accuracy of the neural network—based MI esti-
mator, which is trained under the original traffic distribution.

Solution: I. To construct an efficient MI estimator for the
optimization process conducted via reinforcement learning (as
outlined in the first technical challenge), FRUGAL employs
the Contrastive Log-ratio Upper Bound (CLUB) estimator [J5],
which uses a neural network to approximate the upper bound
of MI. CLUB serves as the core component of FRUGAL’s
reward function, guiding the learning of the efficient dummy
packet injection policy (Equation (T4)). II. To mitigate the
curse of dimensionality (the second technical challenge), a
Convolutional Neural Network (CNN)-based encoder is em-
ployed to learn compact representations of the packet position
information in the high-dimensional traffic data, facilitating
coarse-grained position selection for dummy packet injec-
tion. ITII. To address the distribution drift challenge of MI
introduced by dummy packet injection (the third challenge),
FRUGAL adopts Conditional Mutual Information (CMI) [7] as
the core optimization objective to determine efficient injection
positions. Specifically, positions are selected based on their
potential to maximize CMI reduction, where CMI represents
the MI between the traffic and its labels, conditioned on the
traffic modified in previous iterations. The theoretical analysis
(in Section [B) demonstrates that, with a dynamically updated
CMI estimator, a greedy position selection strategy ultimately
achieves the global maximum MI reduction across the entire
injection process.

Reward Function
1 M
reward = e1:) log fy (1) — logfy(/lxo)
Jj=1
Update
MI Estimator each I iteration
: ——
(Environment) ————
—> ey
Reward Next —
o Sigtei Modified Traffic Buffer
Environment
Stat
7 modified traffic
] reward
(i m i (MI Reduction)
«—
Action a;

(a) Interaction between Age-
nt and Environment.

(b) Process of Reward Function Updating.
Fig. 2. Overview of FRUGAL

B. Threat Model

In this study, we adopt the standard assumption that an
adversary is positioned between a user and their guard node,
as shown in Figure [I] We assume that the adversary engages
in passive monitoring, collecting and analyzing the traffic
between the user and their guard node to construct a dataset for
model training. The term ‘passive’ indicates that the adversary
cannot alter the user’s traffic. Moreover, it is assumed that
the user accesses only one website at a time, ensuring that
the traffic captured by the adversary represents a complete
session for a single website. The adversary then uses this
dataset to train a deep learning model for a WFA, with the
goal of identifying the websites visited by the user.

Website fingerprinting scenarios are typically classified into
two categories: closed-world and open-world. In the closed-
world scenario [6], it is assumed that users access only
a limited set of websites, which are known as monitored
sites. The adversary trains a model on the traffic from these
monitored sites to identify which one the user is visiting. In
the open-world scenario, users may visit both monitored sites
and any number of unmonitored sites. The adversary collects
traffic from a limited subset of unmonitored sites and combines
it with the monitored dataset to train a model. This model is
then used to determine whether the user is visiting a monitored
site and, if so, which specific one.

C. Training Framework

Leveraging the SAC-based RL technique [135], the training
framework of FRUGAL comprises an agent and an environ-
ment, where the agent learns through iterative interaction with
the environment.

Agent: The agent, named FRUGAL, contains a traffic en-
coder to transform traffic traces into compact state repre-
sentations, and a policy network, which is responsible for
identifying efficient positions in website traffic and injecting
dummy packets to achieve MI reduction. FRUGAL takes a
website traffic trace as input, performs an action by determin-
ing the efficient injection positions, and modifies the traffic
accordingly before passing it to the environment.

Environment: The environment represents the external sys-
tem with which the agent interacts and learns. It is imple-
mented as an MI estimator, which functions as the reward
mechanism. The estimator receives the modified traffic from
the agent, evaluates the MI reduction, and provides a reward
signal to the agent. It also monitors the packet injection
process and terminates the interaction for a given traffic
instance upon reaching the maximum iteration limit.

Interaction: During the ¢-th interaction between FRUGAL
and the environment, FRUGAL receives an input traffic x;
and generates a state s;, a compact representation of the
traffic. Using the policy network, FRUGAL selects an action a,
based on s;, identifying efficient positions for dummy packet
injection and executing the injection to produce the modified
traffic ;41. x4y is the input of the agent for the next iteration.
Concurrently, the environment evaluates x;y; using the MI
estimator and computes the reward 7, which is fed back to
FRUGAL. FRUGAL utilizes the reward to guide the refinement
of the policy network using the SAC algorithm. More details
are depicted in Figure 2(a)]

D. Online Defense

Although the agent (FRUGAL), trained via the framework
described in Section [[II-C] can identify the globally effective
dummy packet injection positions for a given website’s traffic,
it cannot be directly deployed in an online defense setting
because it requires access to the complete traffic trace in
advance, which is unavailable during a live browsing session.
To enable practical online deployment, we derive an online
defense solution from FRUGAL, described in Section
and referred to as FRUGAL-online. Given a partially observed
packet sequence and the corresponding website label, FRU-
GAL-online determines, in real time, whether to inject dummy
packets and how many to insert immediately following the
observed sequence.

IV. DESIGN DETAILS OF FRUGAL

In this section, we first detail the design of FRUGAL
and its training framework, which is composed of two main
components: the agent and the environment. We then introduce
the design of FRUGAL-online as the online defense solution.

A. Agent

The agent, referred to as FRUGAL, is designed to iteratively
inject dummy packets at effective positions to maximize MI
reduction. As shown in Figure [3] the agent comprises two core
components: (1) a Traffic Encoder and (2) a Policy Network.
The Traffic Encoder is pre-trained using a supervised learning
approach, while the Policy Network is trained using the RL
algorithm, i.e., SAC. This section provides a detailed explana-
tion of the architectures and respective training processes for
both components.

1) Traffic Encoder: Given a website traffic trace as input,
the agent (FRUGAL) identifies the effective positions to inject
dummy packets based on a compact representation, rather
than directly processing the original traffic. This compact

Traffic Encoder
(Pre-trained)

Policy Network
y' € R™ (Trained by SAC Algr.)
*

gen
Traffic x € R4 4

. "
Conv Layer L u

—| 2-Layers MLP

Kernal Size K

—
suride k| Flatten™— =73

State Vector

Fig. 3. The Architecture of Agent. Our agent comprises two core compo-
nents: a Traffic Encoder and a Policy Network.

representation, generated by an encoder pre-trained on the
input traffic, mitigates the “curse of dimensionality” by greatly
shrinking the search space while preserving the information
needed to determine injection positions.

As shown in the Figure [3] this traffic encoder, which is
implemented as a single-layer convolutional neural network
(CNN) following a softmax layer, can be expressed as

s =CNN(x),

9" =Softmax(MLP(s)), @

where z € R?, s € R?, / € R™. As shown in Figure [3| the
encoder applies a set of learnable filters that slide across z.
By setting the convolution kernel size and stride to K, each
element at the ¢-th index of s corresponds to a continuous
segment of K elements in x, spanning indices z;_1yx to
Z;x—1. Notably, the dimension of s, i.e., J, can hence be
expressed as

)

where d is the dimension of traffic x.

By setting the dimension of the output normalized logits
9/ to match the number of classes m, the encoder can be
trained in a supervised manner using the cross-entropy loss [8]]
between the prediction ' and its corresponding ground-truth
label y. Once trained, the encoder processes trace = to generate
state s, which is 1/K of the length of the original traffic x.
The state representation s serves as input to the policy network
responsible for determining the effective injection positions of
dummy packets.

2) Policy Network: The policy network, also known as
the actor network in the SAC algorithm, is designed to
iteratively identify packet positions with the highest potential
for information leakage. It then injects dummy packets into
these positions to minimize the MI of the modified traffic.
As shown in the bottom of Figure [3| the policy network 7y
consists of a 2-layer MLP followed by a softmax layer, which
can be expressed as

q: =Softmax(MLP5(s)), (6)

where ¢, s; € R4, MLP5 denotes a 2-layer MLP. Equation @
indicates that the policy network takes the state (denoted as s;)
generated by the traffic encoder as input and produces a logits
vector (denoted as ¢;), also known as the Q-value vector in the

Encoder

outgoing cells
well — trained

| incoming cells ®put into

dummy cells Encode @get state/next_state gtate
(traffic x, label y) state
minn ® iterate next stare¢ @pass into
if not done Actor
wWF Experience Reply
< state, action, next state,
Dataset reward & done reward, done >
@ feedback —
reward & done. modified traffic
@select
T i ¥
®check done action action

MI Estimator &get reward ®inject dummy

ket
Environment| Agent| =

Fig. 4. Training Process of FRUGAL. The grey arrows illustrate a full
iteration of experience collection, while the red arrows denote procedures
associated with the Experience Replay Buffer.

3 14 178 314 323

action
imjection position index

context of RL. Each value in ¢; represents the probability of
selecting a corresponding position in the input traffic. FRUGAL
takes an action (denoted as a;) by injecting dummy packets
into the positions corresponding to the top-n values in g;. The
number of dummy packets injected at each selected position
is sampled from a Poisson distribution. This approach inten-
tionally preserves policy stochasticity, a common technique
in reinforcement learning aimed at enhancing robustness and
improving generalization [30], [32]. The detailed process of
the action selection is outlined in Algorithm [I] The modified
traffic x4y1, containing these injected packets, becomes the
agent’s output. This trace, x4, is used to compute the next
state (denoted as s, 1) in the subsequent iteration. Simultane-
ously, the modified traffic is evaluated within the environment,
producing a reward (denoted ;) that guides the training of
the agent. At the end of each step, the episode is checked
for termination (done, denoted as d;) based on whether the
bandwidth overhead—defined as the ratio of injected packets
to the original traffic size—has reached a predefined threshold.
This configurable BWO threshold enables FRUGAL to adapt to
various deployment scenarios, accommodating diverse BWO
constraints effectively.

Unlike the traffic encoder, the policy network mg within the
agent is trained using the SAC algorithm, an RL approach.
In this setup, the policy network 7y functions as the Actor
module, where its parameters ¢ are updated by interacting
with a Critics module, as illustrated in Figure [5] Specifically,
a detailed training process is described in Algorithm [2] As
shown in Algorithm [2] it begins by initializing an experi-
ence replay buffer to store experience tuples in the form
(st,a, St41,7¢,dp) collected across all iterations. Training
starts when the number of experience tuples in the replay
buffer surpasses a predefined threshold. Once training be-
gins, a batch of experience tuples B is sampled from the
replay buffer at the end of each iteration. For each tuple
(st,a¢, St41,7¢,di) € B, the policy network g (Actor) pro-
cesses s; to produce a logits vector g;. Collectively, these logits
form a set of Q-value vectors, denoted as (), corresponding

v i g (St)

! seseeni Actor |
: == | —>1 _(pollcy) | update
) ‘ !
:] | T (5t+1)l Loss L(0)
i < state, action, next state, i - : Function
! __reward,done > ; i Critics |

Experience Reply St %t St+1! r

P Ply rodone,

Fig. 5. Data Flow during Training. The red arrow represents the last step
of the training process is to update the parameters of Actor.

to the batch B.The batch B and its associated Q-value set ()
are passed to the Critics module, which computes a Critics-
based Q-value vector (). A loss function L (0) is then applied
to measure the discrepancy between () and Q The gradient
of this loss function with respect to 6 is used to update the
parameters of the policy network my. Further details about the
SAC algorithm can be found in Appendix [A]

Algorithm 1 Actor Network Function

1: Inmitial: Actor network 7y;

2: Input: Website traces (z;);
3 Well-trained state encoder F(.);
4 Number of injected positions n
5: Output: Modified traffic z;41;
6
7
8

Action ay

8¢ = Fe(xy) //Get state

9: probs = my(s¢)
10: a; = RandomSample(probs, n) //Sample n positions
11: Iy = get_traffic_length(x;)

12: LOOP:

13: IF all indices in a; are less than [; THEN BREAK
14: ELSE

15: Set probs[index] = -infinity

16: Rechoose a; with updated probs

17: END IF

18: injection_counts = POISSON_SAMPLE(probs[a.])
19: x441 = get_modified_traffic(x;,a;)
20: return wyyq, a;

B. Environment

1) Reward Function: In the FRUGAL training framework,
the environment functions as an MI estimator, which we
implement as the CLUB [5] estimator, denoted Icryp(x,y).
This estimator takes a website traffic trace = and its associated
label y as input to compute an upper bound on the MI between
them. The full derivation of CLUB is detailed in Appendix

Building upon CLUB, the reward function that drives the
learning of the injection policy in FRUGAL is defined in
Equation (7). In this equation, x; indicates the traffic evaluated
at the ¢-th iteration, e represents a weight coefficient, and M
denotes the number of monitored websites in the dataset. The

Algorithm 2 Training Process of FRUGAL
1: Initial: Initialize the critic networks Q., and Q.,, and
the actor network 7y using random network parameters
w1, wo, and 6;
2: Initialize Replay Buffer B;
3: Copy parameters w; <= w; and wq
initialize the target critic networks @ - Q
4: Input: Website traffic and labels x € }(y €
5 Well-trained state encoder Fe(.);
6: Environment env, Batch size N;
7
8
9

— wo tO

Terminal timesteps 7', Target update interval I;
: Output: modified traces xr

10: t <0

11: LOOP:

12: IF ¢t > T THEN BREAK END IF

13: st = F(x) // Get current state

14: a; = g (s¢) // Sample action from policy
15: xy+1 = get_modified_traffic(x¢, ay)

16 ry = env.get_reward(x¢11)

17: done; = env.is_terminal (x;1)

18: St41 = Fe(xi41) /1 Get next state

19: Store (s¢, ag,rt, St41,dones) in B

20: IF buffer size is larger than N THEN
21: Sample a minibatch from B

22: Update critic networks Q. , Quw,

23: Update actor network g

24: Update entropy coefficient «

25: IF t mod I == 0 THEN

26: Update target weights w™ < w
27: END IF

28: END IF

29: t+—t+1

30: END LOOP

31: RETURN zp

function f4 is a neural network classifier pre-trained directly
on raw website traffic and its corresponding labels.

M
108 fi (y | ber 32 D108 fi (3 | 1) (35 % 9)

j=1

(N
Conceptually, Equation (7) consists of two components. The
first component, — log f,(y |), minimizes the log-likelihood
that the traffic z; aligns with its original label y, effectively
obfuscating the label. The second component increases the
likelihood that z; is associated with labels from other moni-
tored websites, introducing ambiguity.

This reward function offers two key advantages. First,
by leveraging the neural network fy, it bypasses the need
for hand-crafted feature engineering and domain expertise,
making it both computationally efficient and easy to update.
Second, it employs the CLUB estimator’s MI upper bound
as a tractable objective, allowing us to directly optimize for
MI minimization in a way that is fully aligned with our

R(zy)=

framework’s goals.

2) Dynamic Feature Elimination: As illustrated in Equa-
tion (7)), fy is pre-trained on the original website traffic, under
the assumption that the traffic distribution, p(z;), remains
static. However, this assumption is progressively violated
as dummy packets are injected, inducing a significant dis-
tribution shift. As a consequence, the pre-trained MI esti-
mator, Ioryp(z,y), becomes increasingly inaccurate. This
“estimator drift” undermines the injection policy’s ability to
effectively target the most informative residual patterns as
the injection process continues. Ultimately, this vulnerability
allows an attacker to exploit these residual patterns via adver-
sarial training, thereby compromising the overall effectiveness
of FRUGAL.

To counter the adversarial training issue, we integrate Dy-
namic Feature Elimination (DFE) into the training process of
FRUGAL, drawing inspiration from advancements in Dynamic
Feature Selection (DFS) [7]. DFE is implemented by period-
ically updating the classifier fy, as defined in Equation (7),
every [iterations, where I is a hyperparameter controlling
the update frequency. As depicted in Figure during
each update cycle, the modified traffic samples and their
corresponding label from the most recent [iterations, i.e.,
{(zs,y) | © € [t — I,t]}, are collected to fine-tune fy.
Specifically, we calculate the cross-entropy loss between these
modified traces and their label y to update the classifier’s
parameters ¢. This process effectively transforms the envi-
ronment from a static MI estimator into a CMI estimator.
This allows the environment to accurately estimate the MI of
the current traffic, conditioned on all modifications (dummy
packet injections) made in previous iterations.

Through interaction with the CMI estimator, the policy
network within FRUGAL is guided to iteratively identify and
inject packets into positions that maximize CMI reduction
during each iteration. A detailed derivation of how the CMI
estimator facilitates this process is provided in Appendix
Additionally, by greedily injecting dummy packets at positions
estimated to yield the greatest CMI reduction (as guided by
Equation (7)), the process is guaranteed to maximize the
cumulative MI reduction over the entire injection process (see
proof in Theorem [I] of Appendix [B). This method lets FRU-
GAL dynamically adapt its policy, identifying and eliminating
residual patterns as more dummy packets are injected.

C. Online Defense

FRUGAL learns an efficient offline policy but cannot be
directly deployed in the real world, as it requires the complete
traffic trace in advance. To enable practical online defense,
we distill this policy into a set of pre-computed, website-
specific injection patterns, which we call FRUGAL-online.
These patterns are indexed by website labels, facilitating rapid,
on-the-fly lookup and deployment. An overview of FRUGAL-
online’s workflow is shown in Figure [6]

To develop FRUGAL-online, we first use FRUGAL to gen-
erate defended traffic by applying it to the original traces
of each monitored website offline. For each original traffic

instance x, we construct a corresponding injection pattern
x € R (@D where d denotes the maximum traffic length
among all traces.The vector x records the number of injected
packets at each position in x. Specifically, x[i] indicates the
number of dummy packets inserted between the i-th and
(i + 1)-th packets; x[0] records the number injected before
the first packet; and x[|x|] records the number injected after
the last packet. For all ¢ such that |z| < i < d, we set x[i] = 0.
Since FRUGAL injects only “+1” packets at each position, each
entry in x is a scalar value. A detailed justification of this
injection strategy is provided in Section [V-AJ]

To build a lookup profile for each website, we aggregate
all injection patterns into a matrix X € RM*(@+1) where
M is the number of monitored websites. The k-th row of X
corresponds to website k£ and stores the cumulative injection
counts across all its defended traces, which can be expressed
as X[k,:] = > cc, X, where Cj is the set of all defended
traces x belonging to website k. As shown in the heatmaps
of X in Figure [12] (with a detailed analysis in Appendix [DJ),
the injection positions generated by FRUGAL for each website
are highly sparse and concentrated. This observation motivates
the design of FRUGAL-online, which leverages X to generate
injection positions in an online manner.

Specifically, at runtime, given a website label k as a query,
FRUGAL-online generates an injection pattern by sampling
from a Dirichlet—-Multinomial distribution:

Dy ~ DiI‘(Ck),

8
X ~ Multi(pg, mx). ®

Here, the Dirichlet parameter ¢, = X|k,:] is the pre-
computed pattern vector for website k, retrieved from X. The
multinomial parameter p;, € R1*(4+1) governs the sampling
probability for each position. The sample size mj; = [BWO -
n—lk > i = 1™ |xig|| is the total packet budget, derived from
the predefined BWO and the average trace length for website
k. The resulting x € R4+ gpecifies the number of
dummy packets to inject at each position for the current trace.
This Dirichlet—-Multinomial sampling introduces stochasticity,
creating diversity across different visits to the same website
and thereby improving robustness.

With FRUGAL-online’s lightweight implementation, X can
be generated in real time by querying with the website label
k prior to packet transmission, allowing online defense.

V. EVALUATION

We present a comprehensive evaluation of FRUGAL, de-
tailing the experimental setup and baselines. We assess per-
formance across Closed-World, Open-World, and One-Page
scenarios, including resilience to Adversarial Training. Finally,
we validate practical viability through real-world simulation,
sensitivity analysis, and a temporal generalization study.

A. Experimental Setup

1) Dataset: The experiments in this paper are based on
the publicly available DF dataset collected by Sirinam et
al. [37)]. This dataset is specifically designed for evaluating

[Injection Position Generation]

Injection Pattern Matrix X @ Parameterization
i i il

defended traffic Aggregation

""" Dir — Multi
Distribution

@ Query

original traffic

IWebsF!ek _ === 5
I-tii
§ = L T

[Online Defense]

outgoing cells

WF

Dartaset I incoming cells

dummy cells

Fig. 6. Overview of FRUGAL-online. We use “website k£~ as an example
to illustrate how FRUGAL-online works, where the blue arrows labeled (1)
Query, (2) Parameterization, and (3) Position Generation indicate the runtime

workflow. TABLE I
DATASET IN THE FRUGAL EXPERIMENTS

Websites Traces
Train set Monitf)red 95 20
Unmonitored 20 1
1. Monitored 95 100
Validation set 7 0 tored | 10000 T
Testing set Monitpred 95 100
Unmonitored 10000 1

WEFD solutions in both closed-world and open-world sce-
narios. Its traffic traces were collected under realistic, dy-
namic conditions, inherently capturing real-world dynamics. It
comprises traffic from monitored and unmonitored websites.
The monitored websites consist of traffic from the top 95
Alexa websites, each represented by 1,000 sample traces. The
unmonitored websites consist of traffic from 40,000 other
websites, with each represented by a single trace. In the closed-
world scenario, the adversary’s access is restricted to user
traffic from the monitored websites. In contrast, the open-
world scenario allows the adversary to access traffic from both
monitored and unmonitored websites.

To expedite the training process, we pre-select a high-
confidence training set called the Goodsample set from the
monitored set. Specifically, for each website, we select 20
traffic traces that are correctly classified by a pre-trained attack
model with a confidence score of at least 90%. It is noteworthy
that, while the training set is carefully selected to accelerate
training, the test set used in our experiments is comprehensive
and uncurated, confirming FRUGAL'’s generalization ability.
To further address potential concerns regarding overfitting
or bias introduced by this setup, we conducted a sensitivity
analysis with respect to the training set, as discussed in
Section V-Gl

Throughout our experiments, we trained FRUGAL using the
training set and evaluated its defensive effectiveness on the
testing set. The number of traces is shown in Table [I}

2) Metrics: The metrics used in this paper to evaluate
the effectiveness and efficiency of WFD solutions are Attack
Success Rate (ASR) and Bandwidth Overhead (BWO), respec-
tively. Specifically, ASR is defined in CW as

TABLE 11
PARAMETER SETTINGS IN THE FRUGAL EXPERIMENTS

Parameter Default value
Discount Factor v 0.9
Sample Batch N 32

Regularization Coefficient o 0.01
Weight Coefficient e 0.01

TABLE III
CLASSIFIERS RESULTS ON THE DATASET IN CLOSED-WORLD AND
OPEN-WORLD SCENARIOS

ASR
DF Var-CNN NetCLR TF AWF RF
CW | 98.27% 97.47% 97.73% 97.81% 95.41% 98.8%
OW | 97.80% 97.23% 97.23% 97.21% 93.82% 98.1%
N,
ASR = = 9
Nt €))

where N, is the number of correctly classified traces, and
N,y is the total number of traffic traces evaluated by the attack
model. In OW, ASR is defined as
TP
- TP+ FP’
where TP is the number of correctly classified traces in the
monitored set, and FP is the number of wrongly classified
traces in the unmonitored set. A lower ASR indicates a more
effective WFD solution.
On the other hand, BWO is defined as:

ASR (10)

l ef *lori
BWO = Lot

lori (11)
where l4ef is the length of the defended traffic, and [,,; is the
length of the original traffic. A lower BWO signifies fewer
dummy packets injected in addition to the original traffic,
highlighting greater efficiency.

Notably, the time overhead introduced by FRUGAL is neg-
ligible. This is because it injects dummy packets only into the
client’s outgoing traffic without delaying existing packets, and
it does not alter the incoming web response. This approach
differs from other defenses evaluated in [44], which add
packets to traffic in both directions and consequently incur
greater delays.

3) Implementation: FRUGAL is implemented using the Py-
Torch 2.0 frameworkﬂ Specifically, the traffic encoder, which
processes traffic input « and outputs a state vector s to the
policy network, is implemented as a one-layer CNN, where
the kernel and stride sizes K are set to 5. The components of
the actor network and critics module are both implemented as a
two-layer MLP. The number of packet positions per injection
is set to 5, with only ‘+1” used for dummy packets. Please
refer to Appendix [E| for a comprehensive discussion of the
hyperparameter configuration.

In FRUGAL, an arbitrary neural network is employed to
construct the MI estimator. Since the classifier in the MI

IThe code is available at https://github.com/Junowww/FRUGAL-ndss.

estimator is designed to efficiently classify traffic labels, this
study adopts the architecture of the DF model. The classifier
in MI estimator is initially trained using traffic from the DF
dataset and is continuously updated with modified traffic, as
detailed in Section It is important to emphasize that
while the classifier shares the same architecture as one of the
attack models used during testing, it remains entirely distinct
from the attack model, as their parameters are completely
independent. Thus, the assumption that the defender has no
access to the attack model remains valid in FRUGAL.

All neural networks involved in FRUGAL were trained on
Nvidia RTX A6000 GPU. The remaining hyperparameters
used in our experiments are determined empirically and are
detailed in Table |[I The complete implementation code will
be made available shortly.

4) Baseline & Benchmark: The effectiveness of FRUGAL
is evaluated against five SOTA attack models, including DF
[37], Var-CNN [2]], NetCLR [1], TF [38], AWF [33] and
RF[35]]. Initially, we assess the ASR of these models on
the original traffic from the DF dataset, and the results are
presented in Table which serve as the baseline. FRUGAL
is applied to the traffic from the DF dataset, and the ASR
of each attack model is re-evaluated on the defended traffic.
To provide a comprehensive performance comparison, we
also benchmark FRUGAL against five SOTA WFD methods
from two different categories, evaluating their effectiveness
in reducing the ASR across different attack models on the
DF dataset. The selected defense methods include WTF-PAD
[20], Surakav [14], Regulator [17], FRONT [13]], Palette [36],
Tamaraw[4] and RUDOLF [18]. And for all defense strategies,
we opt for their top-performing setup.

B. Closed-World Performance

In this section, we evaluate the efficacy of FRUGAL in
the standard closed-world scenario. This evaluation involves
testing against six benchmark WFA models and comparing
the performance with random injection and seven other WFD
methods. The results are presented in Table [[V] and Figure

Table [[V] highlights FRUGAL’s high efficiency. At a 20%
BWO, FRUGAL reduces the ASR of the DF model to just
6.87%. When FRUGAL’s BWO is increased to 30%, its ASR
against DF drops further to 2.68%, substantially outperforming
competing defenses that impose much higher BWOs. This
strong performance-to-cost ratio holds true for the other WFA
models shown in the table, with FRUGAL consistently achiev-
ing a superior ASR for its BWO level. The only exception is
Tamaraw, which achieves a lower ASR of 1.05%. However,
Tamaraw’s commendable performance comes at the cost of an
impractically high BWO, rendering it unsuitable for deploy-
ment in performance-critical anonymous networks.

To comprehensively analyze its effectiveness, we evaluate
FRUGAL under BWO constraints ranging from 10% to 100%
in 10% intervals, a scope that encompasses the overheads
of most prior WFD methods. The results are illustrated in
Figure [/} which plots the ASR against BWO for all eval-
uated defenses. In this visualization, superior performance

TABLE IV
PERFORMANCE IN THE CLOSED-WORLD SCENARIO

ASR

Defenses BWO DF Var-CNN NetCLR TF AWF RF
Random Injection 20% 93.98% 91.98% 90.6% 943% 92.76% 96.58

30% 76.59% 80.17% 76.59% 79.34% 75.19% 953
WTE-PAD 60.7% 80.92% 78.14% 86.92% 88.65% 59.96% 96.58%
Tamaraw! 121% 1.05% 0.98% 1.01% 1.12% 1.05% 2.09%
FRONT 79.6% 73.62% 60.25% 73.62% 76.46% 60.44% 93.34%
Surakav 81% 64% 54.6% 56.69% 60.95% 67.65% 79.94%
Palette 87.17% 11.54% 10.99% 11.2% 12.91% 11.54% 46.43%
RegulaTor 68.3% 20.41% 40.52% 3231% 35.52% 45.6% 53.11%

RUDOLF 27.46% 18.59% - - 2371% - 28%
FRUGAL 20% 6.87% $.03% 12.73% 1037% 10.12% 16.6%
30% 2.68% 2.61% 6.68% 5.67% 5.73% 12.7%

- While Tamaraw achieves commendable performance on benchmark datasets, its excessive bandwidth overhead renders it impractical for
deployment in anonymous network environments where performance and user experience are critical.

100 FRONT
|]
X -
< 80 [WTF-PAD | *
ﬂ Random Policy
[
s— k
:': 60 urakav
(7]
(7]
L) ° Palette
o 40 RegulaTor
L
o
14
n 20
< FRUGAL
Tamaraw|
0 > - -
0 20 40 60 80 100 120
Bandwidth Overhead(%)
DF-FRUGAL —e— AWF-FRUGAL TF
--#- Var-CNN-FRUGAL RF-FRUGAL NetCLR
TF-FRUGAL DF ® AWF
NetCLR-FRUGAL ® Var-CNN RF

Fig. 7. Performance of FRUGAL in the Closed-World Scenario. The area
within the red rectangle shows a performance comparison of different defense
methods. Our method, FRUGAL, represented by the plotted lines, consistently
occupies the bottom-left corner, which signifies the notable trade-off between
security and overhead.

is indicated by data points closer to the bottom-left corner,
representing a low ASR achieved with minimal BWO. The
trend is clear: across the entire spectrum of BWO constraints,
FRUGAL establishes a new SOTA, consistently achieving a
lower ASR than competing WFD methods at any given level
of overhead.

C. Open-World Performance

In this section, we extend our evaluation to a more realistic
open-world scenario. The baselines, metrics, and other evalu-
ation configurations are held consistent with those used in the
closed-world scenario for comparability.

We begin by evaluating FRUGAL under BWO constraints
ranging from 10% to 100%, with the results presented in
Figure [8] All WFD methods experience a slight degradation
in defensive performance across all WFA models, reflecting
the heightened challenge of defending against attacks in the
open-world setting. As shown in Table at a 20% BWO

100 = ‘ FRONT
<) v ¢ ¢
o~ ¥
N
80 * H
) 8 | wrF-paD i
Q 3
— Random Policy
5'5 60 Le Le|
(2]
o ¢
O 40 ", RegulaTor Palette
N :
o
¥ 20 \
[2) RLLT SOETE 4.... FRUGAL
< 9. I SRS s el Tamaraw
0 Ideal =8 g =, :
0 20 40 60 80 100 120
Bandwidth Overhead(%)
—a— DF-FRUGAL —&— DF-FRUGAL-online m DF
-=- \Var-CNN-FRUGAL -=#- Var-CNN-FRUGAL-online ® Var-CNN
—0— TF-FRUGAL —&— TF-FRUGAL-online TF
=%+ NetCLR-FRUGAL =%+ NetCLR-FRUGAL-online * NetCLR
—o— AWF-FRUGAL —o— AWF-FRUGAL-online ® AWF
=4+ RF-FRUGAL ==¢+ RF-FRUGAL-online ¢ RF

Fig. 8. Performance of FRUGAL in the Open-World Scenario.

level, FRUGAL lowers the ASR of DF to 6.2%, Var-CNN to
6.55%, NetCLR to 7.8%, TF to 5.7%, AWF to 4.5% and RF to
13.43%. When we increase the BWO to 30%, the ASRs drop
further; for example, the ASR for DF decreases to 4.09% and
for RF it drops to 10.85%. For a comprehensive comparison, in
Table [V] we also present the performance of FRUGAL-online,
evaluated on the same dataset but in a real-world simulation
setting. A detailed discussion of FRUGAL-online is provided
in Section [V-H

The plot in Figure [§] visualizes the trade-off between ASR
and BWO. Specifically, FRUGAL’s performance curve consis-
tently outperforms competing defenses, remaining closer to the
bottom-left “Ideal” corner. While Tamaraw achieves a lower
ASR, its associated BWO is impractically high. The plot thus
makes it clear that FRUGAL provides the best performance
trade-off against all tested attack models.

D. One-Page Setting Performance

To further evaluate the robustness of FRUGAL, we conduct
a more challenging setup known as the one-page setting[41]].
Our evaluation focuses on the closed-world scenario because
attackers’ performance is generally stronger in the closed-

10

TABLE V
PERFORMANCE IN THE OPEN-WORLD SCENARIO

ASR

Defenses BWO DF Var-CNN NelCLR TF AWF RF
Random Injection 20% 90.12% 88.6% 91.43% 81.3% 89.3% 94.8%
30% 74.04% 78.25% 70.63% 73.75% 79.4% 90.3%
WTF-PAD 60.7% 80.92% 78.14% 86.92% 88.65% 59.96% 95.12%
Tamaraw 121% 1.02% 0.9% 1.0% 1.12% 0.95% 2.07%
FRONT 99% 57.23% 50.25% 54.62% 56.46% 57.44% 91.2%
RegulaTor 71.32% 30.41% 36.52% 33.5% 32.12% 41.6% 52.61%
Palette 90.2% 15.81% 9.89% 14.31% 13.41% 15.32% 35.42%
FRUGAL 20% 6.2% 6.55% 7.8% 5.7% 4.5% 13.43%
30% 4.09 % 4.7% 3% 2.17% 2.58 % 10.85%
FRUGAL-online 20% 8.4% 11.3% 10.1% 9.3% 8.8% 18.2%
30% 4.69 % 4.8% 5.33% 2.86% 4.6 % 14.1%

TABLE VI E. Adversarial Training Performance

EVALUATION OF FRUGAL IN THE ONE-PAGE SETTING COMPARED TO
OTHER DEFENSE METHODS

Defenses
FRUGAL Palette RUDOLF RegulaTor
BWO 19.63% 109.17% 27.46% 48.3%
Average ASR 6.54% 36.85% 67.3% 55.71%
TABLE VII

ADVERSARIAL TRAINING PERFORMANCE OF FRUGAL

Attack Bandwidth Overhead Control (%)
Models 20 30 60 80
DF 56.85% 43.93% 18.68% 9.42%
Var-CNN 47.66% 25.48% 15.22% 8.56%
cw TF 61.21% 28.56% 15.6% 7.93%
NetCLR 61.87% 40.23% 16.4% 9.41%
AWF 35.35% 30.77% 6.73% 4.52%
RF 60.35% 49% 29.3% 18.2%
DF 53.5% 40.02% 16.13% 8.2%
Var-CNN 45.1% 29.65% 17.22% 4.56%
oW TF 43.2% 35.14% 11.6% 33%
NetCLR 48.7% 38.23% 11.6% 6.54%
AWF 33.3% 27.92% 5.8% 4.2%
RF 60.2% 47% 27.3% 17.14%

world than in the open-world scenario [4], [37], which makes
it a tougher challenge for our defense.

In the one-page setting, the attacker is only trying to find
out if a user visited one single, specific website. We apply
the whole DF dataset in this experiment. In each test, we
pick one website to be the monitored site, and the other 94
websites become the unmonitored set. We repeat this 95 times
so that every website gets a turn to be the monitored one. The
DF model is employed as the attack model to evaluate our
performance within this setting, utilizing the ASR of the DF
model as the benchmark. We execute the experiment with a
20% BWO, and the results are in Table The average ASR
was 6.54%, with an average bandwidth overhead of 19.63%.
This result is much better than other defenses like Palette
(36.85% ASR with 109.17% BWO), RUDOLF (67.3% ASR
with 27.46% BWO), and RegulaTor (55.71% ASR with 48.3%
BWO).

In this section, we evaluate FRUGAL’s resilience to adversar-
ial training, which is the most challenging evaluation toward
the efficacy and robustness of a WFD method. Adversarial
training involves the process where an attacker retrains the
WFA model with the protected traffic, such that the WFA
model is able to recapture the indicative patterns in the
protected traffic, hence mitigating the defense effectiveness of
the WFD method.

We perform adversarial training experiments utilizing de-
fended traffic under both CW and OW scenarios and employ
the ASR of attack models utilized in our experiments. Our ex-
periments assess defensive performance across various BWO
ranging from 10% to 80% with intervals of 10%, where the
results are delineated in Table [VIII

When compared with other defenses in Figure [0 both
FRUGAL and FRUGAL-online can achieve SOTA adversarial
training performance under similar BWO. For RUDOLF, we
select the performance corresponding to the BWO reported in
the CW scenario. In comparison to Palette [36], which reduces
the ASR of DF to 20.27% with 80% BWO, our FRUGAL is
able to reduce the ASR of DF to less than half of Palette,
i.e., 9.42% under 80% BWO. On the other hand, with 60%
BWO, FRUGAL is able to achieve a similar ASR reduction as
the result achieved by Palette under 80% BWO. Recall that
FRUGAL aims at minimizing the MI between the traffic and its
associated label, as a result, the traffic protected by FRUGAL
presents more resilience to adversarial training.

F. Online Defense in Real-World Simulation

To validate the practical effectiveness of FRUGAL, we
evaluate FRUGAL-online in a real-world simulation and assess
the performance of various attack models after adversarial
training on our validation set.

We first examine FRUGAL-online’s performance, with re-
sults shown in Figure The figure reports the ASR of
various models against our defense with BWO values of
20% and 30%. Although FRUGAL-online experiences a minor
performance drop compared to FRUGAL on the same OW
dataset, which is caused by the information loss introduced
by the distillation from FRUGAL, it still achieves competitive
results and significantly outperforms the other benchmarks.

11

140

BN RUDOLF-27% I Palette-87% B FRUGAL-online-20%
Random-20% BN FRUGAL-20% FRUGAL-online-30%
120 s WTF-PAD-61% W FRUGAL-30% FRUGAL-online-80%
FRONT-80% FRUGAL-80%
100
<
X 80
N
x 61
1.2
‘é, 60 563% Tss '4
491
40 354
20 8
03 o .5
0

DF Var-CNN TF NetCLR AWF RF

Fig. 9. Adversarial Training Performance. In the figure legend, we adopt
the format ‘defense-bwo’ as labels for each defense strategy.

20

2 FRUGAL-BWO-20% FRUGAL-online-BWO-20% 182

[E88 FRUGAL-BWO-30% FRUGAL-online-BWO-30% ?

o
15 134 g
< BN
S AN
< FEN
[1'd 10 9.3 KX / \
7 4 /\
2 . 7 N
SENE . B CON
IR N
0 N BN BRVN B 07N
DF Var-CNN TF NetCLR AWF RF

Fig. 10. Performance in the Real-World Simulation.

As shown in Figure |§|, when BWO is 20%, FRUGAL-online
reduces the ASR of DF to 8.4%, Var-CNN to 11.3%, NetCLR
to 10.1%, TF to 9.3%, AWF to 8.8%, and RF to 18.2%. When
the BWO is increased to 30%, the ASR reduction approaches
that of FRUGAL; for example, DF’s ASR drops to 4.69% and
RF’s to 14.1%.

To assess the adversarial robustness of FRUGAL in a real-
world simulation, we collected traffic defended by FRUGAL-
online and used it to retrain the attack models, following the
procedure described in Section [V-E| The results show that
increasing the BWO substantially reduces the success rates
of all retrained attack models. For instance, DF’s accuracy
decreases from 59.45% to 10.3% at 80% BWO. As illustrated
in Figure 0] FRUGAL-online continues to outperform other
benchmarks and remains close in performance to FRUGAL.
This trend underscores the practical effectiveness and re-
silience of FRUGAL-online.

G. Sensitivity Analysis of Training Set

In our experiments, we used a high-confidence Goodsample
subset (20 samples per site, with > 90% confidence) to
accelerate training. However, this choice may raise concerns
about potential overfitting or bias, which could limit the
model’s generalization performance.

To validate our choice and assess FRUGAL-online’s ro-
bustness with respect to the training set (TS), we conducted

12

TABLE VIII
ADVERSARIAL PERFORMANCE OF REAL-WORLD SIMULATION

BWO

20% 30% 60% 80%

DF 59.45% 49.55% 22.71% 10.3%

Var-CNN 54.56% 45.34% 19.3% 9.5%
TF 58.32% 40.84% 15.6% 10.99%
NetCLR 60.39% 48.41% 26.8% 14.23%
AWF 49.14% 39.11% 25.7% 8.52%
RF 73.1% 58.3% 35.2% 20.62%

TABLE IX

SENSITIVITY RESULTS OF TRAINING SET SCALE.

ASR
£ 3
8% TC* BF VaCNN NeCIR _TF _AWF _RF
GS 142h | 28% 26% 54% 13% 58% 107%
FD 4588h | 28% 24% 55% 12% 57% 105%

* Training Set (TS), Time Consumption (TC), Goodsample(GS), Full
Dataset(FD).

a sensitivity analysis. We compared FRUGAL-online trained
under two settings: (1) Baseline (Goodsample) using the
Goodsample subset, and (2) Full Dataset using the entire
training set. Both models were evaluated on the complete test
dataset under the CW scenario with a 30% BWO limit, aiming
to match the ASR of different attack models. Training Time
Consumption (TC) for both models were recorded. Table
illustrates the trade-off: FRUGAL-online trained on the Full
Dataset showed negligible improvement over the Goodsample
baseline, indicating that Goodsample captures the essential
features for training. This minimal performance gain is vastly
outweighed by the substantial 32-fold increase in training time
required by the Full Dataset.

This sensitivity analysis strongly supports our methodologi-
cal choice of using the Goodsample subset, demonstrating that
it achieves an excellent balance between training efficiency and
model effectiveness.

H. Temporal Generalization Evaluation

To assess FRUGAL-online’s generalizability against “con-
cept drift”, i.e., the natural evolution of website traffic patterns
over time, we performed a temporal evaluation. For this ex-
periment, we collected a new, time-shifted dataset comprising
two distinct sets: Base Dataset: Collected in February 2025,
this set contains 1,000 traffic traces for each of 90 monitored
websites. Drift Dataset: Collected in October 2025, this set
contains 150 new traffic traces for the same 90 websites,
representing an 8-month temporal gap. We split both the Base
Dataset and Drift Dataset into training and testing sets.

We evaluate ASR in three scenarios: Base-Base (train/test
on Base), Base-Drift (train on Base, test on Drift), and Drift-
Drift (train/test on Drift). As shown in Table [X] classifiers are
highly accurate on temporally-aligned data (e.g., DF: 98.6%
in Base-Base, 95.2% in Drift-Drift). However, in the Base-
Drift scenario, which measures generalization across the 8-
month gap, performance plummets: DF’s drops from 98.2%
to 66.9%. This confirms that static classifiers fail to adapt to
concept drift and generalize poorly over time.

TABLE X
CLASSIFIERS RESULTS ON BASE DATASET AND DRIFT DATASET

ASR
DF Var-CNN NetCLR TF AWF RF
Base-Base | 98.2% 97.4% 97.1% 97.6% 93.1% 98.6%
Base-Drift | 66.9% 63.6% 672% 65.7% 53.5% 76.4%
Drift-Drift | 952% 91.4% 92.5% 93.5% 81.7% 95.6%

771 Base-Base
Bmm Base-Drift
BN Drift-Drift

= = N
o o] o

Attack Success Rate(%)

v

/)
DF Var-CNN NetCLR TF AWF

RF

Fig. 11. Sensitivity of Temproal Drift.

We trained a single static FRUGAL-online policy on the
Base GoodSample (30% BWO) and evaluated it on Base and
Drift sets. As shown in Figure [TT] the defense effectively sup-
presses Base-trained models (e.g., DF ASR 7.8%), improving
to 4.2% on the Drift set. Against Drift-trained models, ASR
increases marginally to 12.3% but remains low. Furthermore,
our efficient 1.4-hour training time enables practical regular
retraining, demonstrating robustness to “concept drift”.

VI. RELATED WORK
A. The Evolution of Website Fingerprinting Attacks

Initial explorations into WFA have established its viability
through the application of traditional machine learning models,
which depended on handcrafted statistical features. Pioneers
like [29], [28]], [42], [[L6] established foundational methods
using SVMs, Random Forests and k-NN respectively. While
effective, these early approaches frequently demanded substan-
tial manual effort and extensive domain-specific knowledge for
the purpose of feature engineering.

The field entered a new era with the advent of deep learning.
The pivotal work, DF by Sirinam et al. [37], marked a
paradigm shift. By employing a Convolutional Neural Net-
work, DF could directly process raw traffic data, eliminating
the need for manual feature extraction and achieving an
unprecedented ASR of over 98% in closed-world settings. This
breakthrough spurred a wave of increasingly sophisticated DL-
based attacks, each leveraging more advanced neural network
architectures, from the ResNet in Var-CNN [2] and various
deep neural networks in AWF [33] to the recent applications of
Triplet Network [38] and contrastive learning in NetCLR [[L].
Concurrently, a new focus on robust traffic representation
emerged, exemplified by RF [35], which was explicitly de-
signed to be resilient against defensive measures, further es-
calating the attacker’s capabilities. Today, these powerful and
efficient DL-based models represent a formidable threat to user

13

privacy in anonymous communication systems, necessitating
the development of equally advanced defenses [26].

B. The Development of Website Fingerprinting Defenses

In response to the growing threat of WFAs, a parallel field of
WEFD has emerged, largely following two distinct categories.

The first, feature suppression[12], [3], [4], [20], [45],
[36], represents the most intuitive approach, which seeks
to homogenize traffic traces to obscure identifying features.
Foundational methods like Tamaraw [4] established this by
padding traffic to a constant rate, but at the cost of prohibitive
bandwidth and latency overhead. This fundamental trade-off
persists even in contemporary, sophisticated suppression tech-
niques like Palette [36], limiting their practical applicability.

The second and more recent methods, feature morphing[31]],
[34], [25], [14], [L8], [24], [21], aim for a more targeted and
efficient defense by actively altering traffic features to mislead
and confuse WFA models. These defenses [31], [34]], [21]
often generate noise tailored to specific traffic characteristics.
The most advanced in this category leverage adaptive learning.
For instance, RUDOLF [18] uses Reinforcement Learning to
receive feedback from specific classifiers for deterministic
policy. The critical limitation of these advanced methods
is model-dependency. Training on known attackers leads to
poor generalization, leaving them vulnerable to unforeseen or
adversarially retrained attacks.

Our work addresses the urgent need for a defense that effec-
tively counters diverse, adaptive attacks, is efficient with low
overhead, and remains robust in the evolving WFA landscape.

VII. DISCUSSION

Outgoing-packets-only Perturbation: We adopt an
outgoing-packet-only injection strategy for three reasons.
(1) Information-theoretic analyses (e.g., [22]) show the
low-volume client stream is disproportionately feature-rich.
(2) Our experiments prove this approach can effectively
defeat state-of-the-art attacks that use bidirectional traffic. (3)
This client-side design adds negligible latency and requires
no response modifications.

Real-world Integration: FRUGAL-online can be integrated
as a Pluggable Transport (PT), aligning with our threat model
by obfuscating the client-to-entry-node path. This approach
uses two components: (1) a client-side proxy first obtains
the ground-truth website label from the URL [36], samples
a pre-computed defense pattern using that label, and then
injects the dummy cells; (2) a server-side proxy on the entry
node that removes these cells before forwarding the original
traffic. This PT-based design is practical, as it requires no core
Tor modifications and encapsulates the defense as an optional
transport to protect against website fingerprinting.

Stronger Adversary: While focused on local adversaries,
FRUGAL extends to stronger threats like colluding nodes
by integrating with Tor’s circuit-level padding. An adversary
controlling multiple relays could pose a significant risk by
observing traffic at different points along a circuit. However,
FRUGAL’s defense can extend beyond first-hop adversaries

by integrating with Tor’s circuit-level padding mechanisms to
counteract stronger attacks. By utilizing dummy packets as
DROP relay cells, FRUGAL can effectively obfuscate traffic,
hindering potential WF attacks from malicious relays. Al-
though a compromised exit node can access unencrypted data,
it cannot trace the user’s origin because of the design of Tor.

Multi-tab Scenario: Our evaluation, consistent with the
prevalent assumption in WF studies, considers a single-tab
browsing scenario. While this setting enables reproducible
comparisons, we acknowledge that real-world browsing be-
havior is more complex and often involves multi-tab activity
[L9], [9]. FRUGAL is well-positioned to address this challenge.
The FRUGAL framework can be expanded by distinguishing
per-tab or per-domain traffic flows and applying the padding
policy to each stream, making it compatible with protecting
concurrent browsing sessions.

VIII. CONCLUSION

This paper addresses the critical challenge of designing
an effective defense against WFA. The core problem is to
generate defended traffic that is simultaneously attack-model-
agnostic, bandwidth-efficient, and resilient to adversarially-
trained models—three properties that existing defenses often
struggle to balance.

To tackle this challenge, we introduce FRUGAL, a novel
defense framework. To the best of our knowledge, FRUGAL
is the first work to leverage the reduction of MI between
website traffic and its identity label as the primary optimization
objective. This allows FRUGAL to fundamentally minimize
the information leakage that attackers can exploit, rather than
merely overfitting to a known set of attack models. Extensive
evaluations conducted in closed-world, open-world, and the
more challenging one-page scenario demonstrate the effec-
tiveness of the defended traffic generated by FRUGAL over
SOTA defenses. It consistently achieves a significant reduction
in the ASR of various attack models, including those that
have undergone adversarial training, while incurring minimal
overhead. The evaluation also includes a real-world simulation
of FRUGAL-online to validate its robustness, as well as a
sensitivity analysis on the size of our training dataset. FRUGAL
not only establishes a new benchmark for WFD research but
also paves the way for future exploration of effective, efficient,
and robust defenses against evolving WFA threats.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
comments and suggestions. This work is supported in part
by the National Natural Science Foundation of China (NSFC)
under Grant Nos. 62232004, 92467205, and 62502086, the
Natural Science Foundation of Jiangsu Province under Grant
No. BK20251295, the Start-up Research Fund of South-
east University under Grant No. RF1028624178, the Jiangsu
Provincial Key Laboratory of Network and Information Se-
curity under Grant No. BM2003201, the Key Laboratory of
Computer Network and Information Integration of Ministry of

14

Education of China under Grant No. 93K-9, and the Collab-
orative Innovation Center of Novel Software Technology and
Industrialization. We also acknowledge the support of the Big
Data Computing Center of Southeast University. Any opinions,
findings, conclusions, and recommendations in this paper are
those of the authors and do not necessarily reflect the views
of the funding agencies.

REFERENCES

[1] Alireza Bahramali, Ardavan Bozorgi, and Amir Houmansadr. Realistic
website fingerprinting by augmenting network traces. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications
Security(CCS), 2023.

Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. Var-cnn:
A data-efficient website fingerprinting attack based on deep learning.
Proceedings on Privacy Enhancing Technologies (PETS), 2018.

Xiang Cai, Rishab Nithyanand, and Rob Johnson. Cs-buflo: A con-
gestion sensitive website fingerprinting defense. In Proceedings of the
Workshop on Privacy in the Electronic Society (WPES), 2014.

Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian
Goldberg. A systematic approach to developing and evaluating website
fingerprinting defenses. In Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2014.

Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and
Lawrence Carin. Club: A contrastive log-ratio upper bound of mutual
information. In International conference on machine learning (ICML),
2020.

S. E. Coull, M. P. Collins, C. V. Wright, F. Monrose, and M. K. Reiter.
On web browsing privacy in anonymized netflows. In Proceedings of
the USENIX Security Symposium (USENIX Security), 2007.

Ian Connick Covert, Wei Qiu, Mingyu Lu, Na Yoon Kim, Nathan J
White, and Su-In Lee. Learning to maximize mutual information for
dynamic feature selection. In International Conference on Machine
Learning(ICML). PMLR, 2023.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y
Rubinstein. A tutorial on the cross-entropy method. Annals of operations
research, 2005.

Xinhao Deng, Qilei Yin, Zhuotao Liu, Xiyuan Zhao, Qi Li, Mingwei
Xu, Ke Xu, and Jianping Wu. Robust multi-tab website fingerprinting
attacks in the wild. In 2023 IEEE symposium on security and privacy
(S&P), 2023.

Roger Dingledine, Nick Mathewson, Paul F Syverson, et al. Tor: The
second-generation onion router. In Proceedings of the USENIX Security
Symposium (USENIX Security), 2004.

Gabriel Dulac-Arnold, Ludovic Denoyer, Philippe Preux, and Patrick
Gallinari. Datum-wise classification: a sequential approach to sparsity.
In Machine Learning and Knowledge Discovery in Databases: European
Conference, (ECML) PKDD 2011, Athens, Greece, September 5-9, 2011.
Proceedings, Part I 11, 2011.

Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimp-
ton. Peek-a-Boo, I still see you: Why efficient traffic analysis counter-
measures fail. In Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2012.

Jiajun Gong and Tao Wang. Zero-delay lightweight defenses against
website fingerprinting. In Proceedings of the USENIX Security Sympo-
sium (USENIX Security), 2020.

Jiajun Gong, Wuqgi Zhang, Charles Zhang, and Tao Wang. Surakav:
generating realistic traces for a strong website fingerprinting defense. In
Proceedings of the IEEE Symposium on Security and Privacy (S&P),
2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. In International conference on machine learn-
ing(ICML), 2018.

Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable
website fingerprinting technique. In Proceedings of the USENIX Security
Symposium (USENIX Security), 2016.

James K Holland and Nicholas Hopper. Regulator: A straightforward
website fingerprinting defense. Proceedings on Privacy Enhancing
Technologies (PETS), 2020.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Meiyi Jiang, Baojiang Cui, Junsong Fu, Tao Wang, Lu Yao, and Bharat K
Bhargava. Rudolf: An efficient and adaptive defense approach against
website fingerprinting attacks based on soft actor-critic algorithm. IEEE
Transactions on Information Forensics and Security(TIFS), 2024.
Zhaoxin Jin, Tianbo Lu, Shuang Luo, and Jiaze Shang. Transformer-
based model for multi-tab website fingerprinting attack. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2023.

Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew
Wright. Toward an Efficient Website Fingerprinting Defense. In
Proceedings of the European Symposium on Research in Computer
Security (ESORICS), 2016.

Ding Li, Yuefei Zhu, Minghao Chen, and Jue Wang. Minipatch:
Undermining dnn-based website fingerprinting with adversarial patches.
IEEE Transactions on Information Forensics and Security(TIFS), 2022.
Shuai Li, Huajun Guo, and Nicholas Hopper. Measuring information
leakage in website fingerprinting attacks and defenses. In Proceedings of
the ACM SIGSAC conference on computer and communications security
(CCS), 2018.

Yang Li and Junier Oliva. Active feature acquisition with generative
surrogate models. In International conference on machine learning
(ICML), 2021.

Zhen Ling, Gui Xiao, Lan Luo, Rong Wang, Xiangyu Xu, and Guangchi
Liu. Wfguard: an effective fuzzing-testing-based traffic morphing
defense against website fingerprinting. In Proceedings of the IEEE
International Conference on Computer Communications (INFOCOM),
2024.

Zhen Ling, Gui Xiao, Wenjia Wu, Xiaodan Gu, Ming Yang, and Xinwen
Fu. Towards an efficient defense against deep learning based website
fingerprinting. In Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM), 2022.

Nate Mathews, James K Holland, Se Eun Oh, Mohammad Saidur
Rahman, Nicholas Hopper, and Matthew Wright. Sok: A critical
evaluation of efficient website fingerprinting defenses. In 2023 IEEE
Symposium on Security and Privacy (S&P), 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 2015.

Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, An-
dreas Zinnen, Martin Henze, and Klaus Wehrle. Website fingerprinting
at internet scale. In Proceedings of the Network Distributed System
Security Symposium (NDSS), 2016.

Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.
Website fingerprinting in onion routing based anonymization networks.
In Proceedings of the annual ACM workshop on Privacy in the Elec-
tronic Society (WPES), 2011.

Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and
Girish Chowdhary. Robust deep reinforcement learning with adversarial
attacks. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems(ICAAMS), 2018.
Mohammad Saidur Rahman, Mohsen Imani, Nate Mathews, and
Matthew Wright. Mockingbird: Defending Against Deep-LearningBased
Website Fingerprinting Attacks With Adversarial Traces. IEEE Trans-
actions on Information Forensics and Security (TIFS), 2020.

Aravind Rajeswaran, Sarvjeet Ghotra, Balaraman Ravindran, and Sergey
Levine. Epopt: Learning robust neural network policies using model
ensembles. International Conference on Learning Representations
(ICLR), 2017.

Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem,
and Wouter Joosen. Automated Website Fingerprinting through Deep
Learning. In Proceedings of the Network Distributed System Security
Symposium (NDSS), 2018.

A M Sadeghzadeh, B Tajali, and R Jalili. Awa: Adversarial website
adaptation. IEEE Transactions on Information Forensics and Security
(TIFS), 2021.

Meng Shen, Kexin Ji, Zhenbo Gao, Qi Li, Liehuang Zhu, and Ke Xu.
Subverting website fingerprinting defenses with robust traffic represen-
tation. In Proceedings of the USENIX Security Symposium (USENIX
Security), 2023.

Meng Shen, Kexin Ji, Jinhe Wu, Qi Li, Xiangdong Kong, Ke Xu,
and Liehuang Zhu. Real-time website fingerprinting defense via traffic
cluster anonymization. In Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2024.

Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. Deep
fingerprinting: Undermining website fingerprinting defenses with deep
learning. In Proceedings of the ACM SIGSAC conference on computer
and communications security (CCS), 2018.

Payap Sirinam, Nate Mathews, Mohammad Saidur Rahman, and
Matthew Wright. Triplet fingerprinting: More practical and portable
website fingerprinting with n-shot learning. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security(CCS), 2019.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double g-learning. In Proceedings of the AAAI conference
on artificial intelligence (AAAI), 2016.

Chunmian Wang, Junzhou Luo, Zhen Ling, Lan Luo, and Xinwen Fu.
A comprehensive and long-term evaluation of tor v3 onion services. In
IEEE INFOCOM 2023-1EEE Conference on Computer Communications
(INFOCOM), 2023.

Tao Wang. The one-page setting: A higher standard for evaluating
website fingerprinting defenses. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security(CCS),
2021.

Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Gold-
berg. Effective attacks and provable defenses for website fingerprinting.
In Proceedings of the USENIX Security Symposium (USENIX Security),
2014.

Tao Wang and Ian Goldberg. Improved Website Fingerprinting on Tor. In
Proceedings of the ACM Workshop on Privacy in the Electronic Society
(WPES), 2013.

Ethan Witwer, James K Holland, and Nicholas Hopper. Padding-only
defenses add delay in tor. In Proceedings of the 21st Workshop on
Privacy in the Electronic Society (WPES), 2022.

Charles V Wright, Scott E Coull, and Fabian Monrose. Traffic morphing:
An efficient defense against statistical traffic analysis. In Proceedings
of the Network Distributed System Security Symposium (NDSS), 2009.

[38]

(391

[40]
[41]
[42]

[43]
[44]

[45]

APPENDIX A
SOFT ACTOR-CRITIC ALGORITHM

The Soft Actor-Critic (SAC) algorithm [15] in DRL im-
proves learning stability and efficiency by maximizing policy
entropy, encouraging the agent to explore a broader range of
actions instead of focusing solely on those with immediate
high rewards. This strategy enables the algorithm to develop an
efficient policy network that effectively balances exploration
with the objective of maximizing cumulative rewards. The
SAC algorithm employs a policy network 7y, also called actor
network, alongside two critic networks, denoted by Q,, and
Q.. which evaluate the quality of actions by estimating the
expected cumulative reward (i.e., the OQ-value) for a given
state-action pair. Each critic network has a corresponding tar-
get critic network, Qw; and wa , which are used to stabilize
training by providing more reliable target values. To mitigate
the issue of overestimation of Q-values observed in other
RL algorithms, SAC uses the minimum of the two Q-values
produced by the critic networks during each computation of
the Q-value. The Q function facilitates the aggregation of
expected rewards, as defined in Equation (]ED:

Qu (8t,a¢) = 7 (5¢,a1) +VEs,,, [V (5t41)], (12)

where r (s¢,a;) denotes the immediate reward received for
taking action a; in state s;, 7y is the discount factor, and
V.- (st41) is the value function for the subsequent state s; 1.
The value function can be formulated as Equation (T3):

V- (s¢) = Ea,~mg [Qu (8¢,a¢) — alogme (ar | s¢)]

13
 Bapory [Qu (strar) + oM (o (- | 50))],)

where H represents the entropy at state s;, and « is a regu-
larization coefficient that controls the importance of entropy.
Hence, the aim of the SAC algorithm is articulated as the
development of an efficient policy network 7, which seeks
to both optimize the expected cumulative rewards and enhance
the entropy of the policy, thereby promoting exploration. The
objective can be formulated as:

7 = argmax E, Z [r (se,ae) + aH (mo (- | s¢))]
L’} 7

(14)

In SAC, entropy regularization enhances the exploratory be-

havior of policy. The larger the o, the stronger the exploration,

which can accelerate the learning of the policy and reduce the

likelihood of the policy getting trapped in local optima. In
SAC, « is updated automatically:

L) = Eqyomg(|s,) [—logmg (a¢ | 5¢) — aHol, (15)

where H, is the target entropy. When the policy entropy is
lower than the target entropy, L(«) causes the value of « to
increase. The target entropy is usually set to the negative of
the action space size.
APPENDIX B
DYNAMIC FEATURE ELIMINATION

In this section, we provide a detailed introduction to the
dynamic feature elimination (DFE) method.

Let = denote the input traffic and y represent the corre-
sponding label. The input x consists of d distinct features,
expressed as * = (x1,...,&q), where 0 < i < d indicates
a feature index. Bold symbols x,y refer to random variables,
while x, y represent their specific values. The data distribution
is given by p(x,y). Union operation x U x; denotes the
injection operation where a dummy packet is injected at index
i of .

Inspired by dynamic feature selection methods [23], [L1],
this work proposes Dynamic Feature Elimination (DFE), a
technique that iteratively removes the feature with the greatest
contribution to the mutual information (MI) between @ and
its label y. The method is considered dynamic because these
features shift as dummy packets are injected into a during
each iteration.

To account for these evolving dynamics, conditional mutual
information (CMI) is used in place of MI. Specifically, the
CMI between the operation « U «; and y, conditioned on the
traffic from the current iteration (denoted as), is expressed
using KL divergence [7] as:

[(xUz;y |)
= Dt (@ Uiy | @) Ip (@ Ui | 2)p(y | @)
=H(y|xz)—H(y|xzUx;).

(16)

Equation (I6) indicates that an efficient policy network for
FRUGAL can be expressed as 7* = argmin, I (x Ux;;y | @).
7* ensures that by injecting dummy packets at the index ¢ con-
ditioned upon x at each iteration, the increase of information
entropy, i.e., H (y | x Ux;) — H (y |), can be maximized.

Directly incorporating the term I(xUx;;y |) into the
end-to-end learning process of FRUGAL is not feasible, as
it cannot be optimized directly in an end-to-end fashion. To
overcome this limitation, and inspired by [7], we propose a
variational approach for learning 7*, which is formulated as:

L($,0) = Ep(a,y) [Einmo(@) [~lor (foly | s U), y)]] .

a7
In this formulation, —¢¢ g is negative cross-entropy loss. g
and f; are neural networks with trainable parameters ¢ and
¢, respectively. Specifically, 7wy serves as the policy network
within FRUGAL, while f, functions as the classifier in the
mutual information (MI) estimator, as detailed in Section|[V-B
The notation x U x; denotes the dummy packet is injected at
index i. Equation demonstrates that minimizing £(¢, 0)
can be achieved by alternately performing two operations:
(1) updating ms and (2) maintaining fs as the Bayesian
classifier for the label y. As described in Section [[V-A2]
operation (1) is carried out by training my using the SAC
algorithm within a reinforcement learning framework, while
operation (2) involves updating fs every Typdate iterations
through the Dynamic Feature Elimination (DFE) mechanism.
Consequently, the policy network 7 is equipped to effectively
execute the highly efficient injection operation for the given
traffic . The validity of Equation can be demonstrated
through Theorem [I] Before introducing Theorem [T} we firstly
present proposition

Proposition 1. For a discrete label y, and when employing
the cross-entropy loss function |, we can derive [*(x;Ux) =

p(yle: U z).

Proof. 1t is assumed that the classifier forecasts an output
represented by ¢, and the label set of monitored websites is
indicated by).

[(2 Uz)=argminE ;0. [€(7,)]
Yy

=argmin » p(y=j |z Ux)logi;

v ey
:argmian(y:j | z; Ux)-
Yoo ey
Yj .
log{ ———"——=p(y=jlz; Uz)}
ply=jlz; Uz) ' . (18)
: . Yj
=arg min p(y=j|x; Ux)log —————
0 Z =]) ply=jlz: Ux)
JjeY
= p(y=j |z Ux)logply=jlz; Ux)
JEY
=argminDgr, (p(y | z; Uz) [|§)+H (y | z; Uz)
]
=p(y |z Ux)
O

Theorem 1. For a discrete label vy, and when employing the
cross-entropy loss function I, the global optimum of Equation
(I7) comprises a Bayesian classifier fi(y | x; U) and

a policy network mj(x). These two components collectively
determine the position i* = argmin,; I (x Ux;;y |).

Proof. Using Equation (I8), we can define the high-
performance classifier as f*(2’) = p(y|z’), and the optimal
global optimum can be defined as minimizing the expected
loss of input & with the given high-performance classifier:

Ey 2z [=lor (f* (ziUT),y)]

=Eyze [~lor (p(y | v UT),y)]

=Euijo [Eyleius [—lee (p (y | 2 U), 9)]].
=Ky, [H (y | 2 Uz)]

=H(y|z) —1(z; Uzylz)

19)

Given that H (y |) represents a constant independent of
x; U x, upon identifying the target position ¢ and producing
a modified flow z; U x that minimizes the expected loss, we
obtain:

argminky oo [0 (f* (; U), y)] = argmax] (z; U z;y|z).

(20

Considering a defined set of target positions, executing the

packet injection operation at these specific positions yields the
traffic z;~ U x characterized by the minimal expected CMI:

Emi*uﬂx [H (y ‘ Ll?i*,LU)] < Ezq\z [H (y | z; U x,l‘)}
(21)
L]

The corresponding injection positions are identified by
determining the positions that exhibit the highest MI with y.
This is because:

Ioe Uy o) = H(y [2) = oo [H (y | 2i- Uz, 2)],

(22)

H (y | z) remains constant throughout the analysis. Conse-

quently, utilizing the results from the high-performance classi-

fier, the policy network is capable of identifying positions that

most significantly contribute to the CMI during each iteration

of FRUGAL.

APPENDIX C
CONTRASTIVE LOG-RATIO UPPER BOUND

CLUB estimator is used to estimate the upper bound of MI.
For the website traffic x, the label y can be obtained from the
distribution p(y|x), then the MI upper bound can be defined
as:

Ierus(z, y):Ep(z.,y) [logp(y ‘ x)}_Ep(z)]Ep(y) [1ng(y | 55)}

(23)

When we use our classifier f4(y|x) to derive p(y|z), and
M represents the number of monitored websites:

M M
1
LicLus= w2 E E [log fo (yi |) —log fo (y; | @)]
=1 j=1,j#i

1 M 1 M
=57 20 |8 ol 2=y D ooty |9
i= Jj=1,j#i

(24)

Vi # i*.

17

In the application of CLUB to achieve minimum MI, which
entails minimizing the correlation between website traffic x
and its corresponding label y, our RL framework necessitates
the reduction of MI for each traffic sample throughout the
iterative procedure. To this end, we compute the MI between
the website traffic = and its label y;, treating this as a
positive sample. Conversely, the MI between the traffic and
the remaining set of monitoring labels y;(j # 4) is considered
as the negative sample. The objective Equation @23) is to
minimize the discrepancy between the positive and negative
examples in order to attain minimal MI:

M

1
Loss =log fo (vi |) = 37 D logfu(y;|2). (25)
J=1,j#i
APPENDIX D

INJECTION POSITIONS ANALYSIS

presents heatmaps of packet injection positions
for BWO limits of 10%, 20%, and 80%. In these visualiza-

tions, the x-axis represents the packet index within a traffic
sequence, while the y-axis corresponds to distinct website
labels. The intensity of the color at any point indicates the
frequency of dummy packet injections.

A primary observation is that FRUGAL consistently “front-
loads” dummy packets, concentrating them at the very begin-
ning of the traffic sequence (approx. the first 700 packets).
This strategy, which holds true across all sites and BWO
limits, aligns with findings from [13] that the most uniquely
identifying patterns reside in the traffic’s “head.”

Beyond this initial burst, subsequent injections are highly
sparse and selective. The heatmaps reveal these positions
are not unique but are often shared among many different
websites. As BWO increases, the initial curtain becomes
denser, and more of these shared, sparse positions are added.

FRUGAL not only neutralizes the most indicative features
at the start of the communication but also carefully chooses
later injection points to create ambiguity, forcing the traffic
of different websites to conform to a common mold. This
approach cleverly avoids introducing new, unique patterns that
could inadvertently provide an adaptive attacker with fresh

signals to fingerprint a website.
APPENDIX E

HYPERPARAMETERS TUNING

To determine if FRUGAL’s performance is dependent on
the architecture of the MI estimator, we conduct an evaluation
using various attack models (e.g., DF, Var-CNN, NetCLR,
TF, AWF, and RF) as the MI estimator. The experiments
are performed under bandwidth overhead constraints of 20%
and 30%. As shown in Table the results demonstrate
that FRUGAL maintains high performance irrespective of the
estimator’s architecture, a finding that holds for both closed-
and open-world evaluations.

We investigate the impact of the kernel size and stride,
denoted as K, on the system’s performance by evaluating K
values of 2, 5, 10 and 25. As presented in Table a value of
K =5 yields the best results. This value is selected because

TABLE XI
PERFORMANCE OF DIFFERENT STRUCTURES OF MI ESTIMATOR

Structures Bandwidth Attack Success Rate
Overhead DF Var-CNN NetCLR TF AWF RF

DF-based 20% 6.87% 8.03% 12.73% 10.37% 10.12% 16.6%
30% 2.61% 2.63% 6.39% 5.67% 5.67% 12.7%

Var-CNN-based 20% 28.76% 12.31% 25.82% 28.29% 21.34% 21.8%
30% 21.53% 5.16% 18.6% 20.55% 12.32% 11.39%
NetCLR-based 20% 8.03% 3.92% 15.34% 14.8% 10.8% 18.66%
W 30% 5.57% 2.16% 9.84% 10.2% 6.36% 12.04%
TF-based 20% 11.41% 10.98% 14.44% 15.34% 10.34% 15.85%
30% 5.35% 4.05% 10% 10.08% 5.52% 13.41%
AWF-based 20% 13.99% 16.68% 18.17% 18.78% 18.78% 22.17%
30% 7.32% 6.84% 10.29% 11.77% 8.54% 18.6%

RE-based 20% 10.52% 10.84% 14.84% 14.42% 8.83% 19.7%
) 30% 5.24% 3.93% 6.62% 6.10% 3.43% 17.12%
DF-based 20% 7.2% 6.55% 7.8% 5.7% 4.5% 13.43%
30% 4.09% 4.7% 3% 2.17% 2.58% 10.85%
Var-CNN-based 20% 12.67% 10.14% 7.97% 7.97% 3.93% 20.86%
30% 5.59% 4.3% 3.16% 2.86% 2.75% 5.82%

NetCLR-based 20% 12.51% 8.2% 6.82% 5.73% 4.69% 9.55%
oW 30% 6.99% 4.89% 3.82% 2.51% 2.16% 9.44%
TF-based 20% 17.3% 9.14% 8.75% 9.53% 4.92% 11.67%

30% 7.05% 3.68% 4.09% 2.52% 2.25% 4.5%

AWF-based 20% 15.09% 11.26% 8.52% 7.96% 4.24% 8.18%
30% 7.66% 3.67% 3.68% 2.84% 2.58% 3.68%
RE-based 20% 9.8% 10.2% 11.3% 11.02% 6.2% 10.67%

) 30% 4.24% 3.1% 5.79% 5.3% 3.03% 7.12%

b TABLE XII
DIFFERENT SELECTION OF K

Original Label
° I ENNER R
i e e L P L
S —

6 N & o ®

s &8 & 8

Attack K
| Models 2 5 10 25
\ H i DF 19.78% 2.68% 8.23% 22.4%
* O ertindex e Var-CNN 15.6% 2.61% 7.98% 30.17%
. TF 18.7% 5.67% 8.67% 28.32%
(@) BWO of 20% CW | NetCLR | 10.04% 668% 1432% 26.7%
=) ‘ ‘ 15 AWF 13.56% 5.73% 9.78% 28.6%
st b Is0 RF 204% 127% 168% 45.1%
Zaspi ; ! | DF 15.9% 4.09% 6.7% 19.42%
EJ i e PO A | ; o Var-CNN | 157% 4.7% 7.1% 26.6%
3 e | i ; OW TF 163% 217% 1.84% 252%
Gosft { ‘ ! ; ' 4 2 NetCLR 11.2% 3% 14.24% 24.8%
o it S d i . AWF 11.4% 2.58% 8.9% 26.71%
° WO ertindex e RF 20.2% 4.85% 18.2% 43.28%
(b) BWO of 30%
TABLE XIII
O s b ‘ 100 DIFFERENT SELECTION OF n
o | ! -
§ : ‘ E | { ‘ 60 Attack n
S :‘| Ao ; o Models I 2 5 10
&0l | | » DF 23.36% 22.43% 2.68% 3.3%
i fRl f i Var-CNN 13.23% 10.34% 2.61% 3.5%
0 w0 e asw oo . wo o o esbo 0 cW TF 28.4% 20.84% 5.67% 5.99%
NetCLR 24.39% 18.41% 6.68% 8%
(c) BWO of 80% AWF 13.04% 13.11% 572% 6.62%
RF 13.04% 13.11% 572% 6.62%
Fig. 12. Injection Positions under BWO of 20%, 30%, 80%.Under the DFE 25.9% 20.73% 4.09% 5.93%
various website and BWO limitations, the initial segment of FRUGAL’s traffic Var-CNN 17.1% 9.9% 4.7% 3.13%
accumulates a significant quantity of dummy packets. TF 27.28% 18.62% 2.17% 5.12%
ow NetCLR 21.9% 17.67% 3% 7.8%
it transforms the traffic sequence into a feature representation AWF 143% 1428% 2.58% 62%
of appropriate dimensionality. This transformation helps miti- RF 19.2% 161% 485% 72%

gate the curse of dimensionality while enabling more precise

dummy packet injection, thereby facilitating effective control 5 and 10. These tests were conducted under a fixed 30%

over the final bandwidth overhead. BWO constraint and with K fixed at 5. The empirical results,
To determine the number of injection positions, we perform summarized in Table [XIII} clearly identify n = 5 as the value

an experiment varying the parameter n over values of 1, 2, that maximizes defensive efficacy under these conditions.

18

APPENDIX F
ARTIFACT APPENDIX

This appendix is intended as a self-contained document
presenting a roadmap for setting up and evaluating our artifact,
FRUGAL.

A. Description & Requirements

This section lists all information necessary to recreate the
experimental setup.

1) How to access: This artifact is publicly available
and has been archived on Zenodo with the persistent
identifier DOI: 10.5281/zenodo.17677723. The source code
and latest updates are also accessible via GitHub at
https://github.com/Junowww/FRUGAL-ndss.

2) Hardware dependencies:

e GPU: The training and evaluation presented in the paper
were conducted on an Nvidia RTX A6000 GPU. A
CUDA-enabled GPU is required to replicate the primary
results (as specified by ——device cuda:0).

e CPU: The artifact can also be executed in a CPU-
only mode (by specifying ——device cpu), though this
will result in significantly slower training and evaluation
times.

« RAM / Disk: A minimum of 32GB of RAM and 50GB
of available disk space is recommended for storing the
dataset and trained models.

3) Software dependencies:

o OS: Ubuntu 20.04 (or a compatible Linux distribution).

o Framework: PyTorch 2.0.

o Python: Python 3.9+

o Dependencies: All requisite Python dependencies are
enumerated in the mut info.yaml environment file.
This environment can be recreated using Conda.

4) Benchmarks:

o Dataset: This artifact requires the publicly available DF
dataset collected by Sirinam et al..

o Data Format: The artifact expects this dataset to be
pre-processed and organized according to the structure
specified in the Instruction.pdf. The dataset/
directory must contain the following files:

- train_data.pkl

— train_labels.pkl
- test_data.pkl

- test_labels.pkl

B. Artifact Installation & Configuration
The following steps outline the installation and configura-
tion process required to prepare the evaluation environment.
1) Clone the Repository:

git clone git@github.com:Junowww/
FRUGAL-ndss.git
cd FRUGAL-ndss

2) Create Conda Environment: Use the provided
mut_info.yaml file to create and activate the

Conda environment. Alternatively, we provide a pre-built
Docker image hosted on the Alibaba Cloud Registry;
please refer to the README for usage instructions.

conda env create —-f mut_info.yaml
conda activate mut_info

3) Prepare Data: Download and pre-process the DF
dataset into the format described in section Place
the resulting .pk1 files into the dataset/ directory.
The Goodsample dataset has been prearranged for uti-
lization in training and test set has also been prepared
for testing phases.

4) Configure Paths: Edit the utility.py file. En-
sure the paths within the LoadGoodSampleCW and
LoadDataNoDefCW functions correctly point to the
.pkl files prepared in Step 3.

C. Experiment Workflow

The experimental workflow is divided into two primary

stages:

1) Training: The dgn_train_sac.py script is used to
train the FRUGAL policy network (Actor). This script
loads a pre-trained attack model, which serves as the MI
estimator, and the "Goodsample” training data. It trains
the agent according to the specified bandwidth overhead
(BWO) parameter. The trained Actor model is then saved
to the saved_trained_models/sac_models di-
rectory.

2) Evaluation: The cw_df_test_sac.py script is used
to evaluate the trained FRUGAL model. This script loads
the test dataset, the saved Actor model from Stage 1,
applies the defense to the test traffic, and then measures
the Attack Success Rate (ASR) against the SOTA attack
models (DF, Var-CNN, TF, AWF, NetCLR) evaluated in
the paper.

D. Major Claims

The major claims for this artifact focus on its functionality.
We claim that the artifact provides a functional, end-to-end
workflow for training and evaluating the FRUGAL defense.

e (C1): The artifact provides functional scripts to train
a FRUGAL defense policy (Actor network) using the
provided dataset and hyperparameters.

— Evidence: Executing the dgn_train_sac.py
script will successfully load the data, run the training
loop, and generate a trained policy model (e.g., a
.pth file) as output.
e (C2): The artifact provides functional scripts to eval-
uate a trained FRUGAL policy against a suite of
Website Fingerprinting Attack (WFA) models.

— Evidence: Executing the cw_df_test_sac.py
script will successfully load a trained policy, apply
the defense to test traffic, and produce quantitative
metrics (ASR and BWO) as output.

¢ (C3): The artifact’s training and evaluation workflow
supports configurable BWO levels.

— Evidence: By providing different values for the
——bwo_para argument (e.g., 0.3 vs. 0.2) to the
scripts, the evaluator can observe that the workflow
runs successfully under different configurations and
produces different BWO metrics in the final output,
demonstrating the control mechanism is functional.

E. Evaluation

This section provides the operational steps and experiments
which must be performed to evaluate if the artifact is func-
tional and validates the claims presented in Section D.

Experiment (E1):Verify Defensive Functionality at 30 %
BWO

o [Estimated Time: 6+ hours(Nvidia A6000)]

o [Description] This experiment trains a FRUGAL model
and runs an evaluation to demonstrate its core function-
ality: applying defense to traffic, controlling bandwidth
overhead, and measuring the resulting ASR.

« [Preparation] Execute the training script
dan_train_sac.py to train the model for 30%
BWO.We assume —--bwo_para 0.3 corresponds to
30% BWO.

python dgn_train_sac.py \
-—device cuda:0 \
——subdir frugal_cw_30bwo \
——attack_model DF \
——bwo_para 0.3 \
—--nb_classes 95
Expected Output: The training process will print reward
statistics. Upon completion, the trained model will be
saved to . /saved_trained_models/.

o [Execution] Execute the evaluation script
cw_df_test_sac.py, loading the model trained in
the previous step (-—subdir frugal_cw_30bwo)
and using the corresponding BWO parameter.

python cw_df_test_sac.py \
—-—device cuda:0 \
——subdir frugal_cw_30bwo \
——attack_model DF \
——bwo_para 0.3 \
--nb_classes 95

¢ [Results]

o Expected Output: The script will print the final ASR for
all evaluated attack models (DF, Var-CNN, TF, AWF,
NetCLR) and the average BWO.

e Functional Validation: To confirm functionality, the eval-
uator should verify that:

1) The script completes successfully without errors.

2) It generates numerical ASR and BWO values for
the different attack models.

3) The resulting ASR values are significantly lower
than the undefended baseline, and the BWO is
reasonably close to the target parameter (0.3). This
confirms the artifact successfully trained a policy
and applied a functional defense.

Experiment (E2): Verify BWO Controllability at 20%

BWO

20

[Estimated Time: 6+ hours (Nvidia A6000)]
[Description] This experiment demonstrates the BWO
controllability aspect of claim (C3) by training and eval-
uating a model with a different BWO parameter (20%).
[Preparation] Execute the training script, adjusting the
—-—-bwo_para to 0.2.
python dgn_train_sac.py \

—-—device cuda:0 \

——subdir frugal_cw_20bwo \

-—attack_model DF \

--bwo_para 0.2 \

-—-nb_classes 95
[Execution] Execute the evaluation script, loading the
20% BWO model and using the corresponding parameter.

python cw_df_test_sac.py \
——device cuda:0 \
——subdir frugal_cw_20bwo \
-—attack_model DF \
--bwo_para 0.2 \
—-—-nb_classes 95

[Results]

o Expected Output: The script will print ASR and BWO

values.

o Functional Validation: The evaluator should verify that:

1) The script completes successfully.

2) It generates numerical ASR and BWO values.

3) The reported BWO value is reasonably close to the
target parameter (0.2). This confirms the function-
ality of the BWO control mechanism.

	Introduction
	Background
	Website Fingerprinting
	Deep Reinforcement Learning
	Mutual Information

	Website Fingerprinting Defense
	Basic Idea
	Threat Model
	Training Framework
	Online Defense

	Design Details of Frugal
	Agent
	Traffic Encoder
	Policy Network

	Environment
	Reward Function
	Dynamic Feature Elimination

	Online Defense

	Evaluation
	Experimental Setup
	Dataset
	Metrics
	Implementation
	Baseline & Benchmark

	Closed-World Performance
	Open-World Performance
	One-Page Setting Performance
	Adversarial Training Performance
	Online Defense in Real-World Simulation
	Sensitivity Analysis of Training Set
	Temporal Generalization Evaluation

	Related Work
	The Evolution of Website Fingerprinting Attacks
	The Development of Website Fingerprinting Defenses

	Discussion
	Conclusion
	References
	Appendix A: Soft Actor-Critic Algorithm
	Appendix B: Dynamic Feature Elimination
	Appendix C: Contrastive Log-ratio Upper Bound
	Appendix D: Injection Positions Analysis
	Appendix E: Hyperparameters Tuning
	Appendix F: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation

