
Idioms: A Simple and Effective Framework for
Turbo-Charging Local Neural Decompilation with

Well-Defined Types
Luke Dramko

Carnegie Mellon University
School of Computer Science

lukedram@cs.cmu.edu

Claire Le Goues
Carnegie Mellon University
School of Computer Science

clegoues@cs.cmu.edu

Edward J. Schwartz
Carnegie Mellon University

Software Engineering Institute
eschwartz@cert.org

Abstract—Decompilers help reverse engineers analyze software
at a higher level of abstraction than assembly code. Unfor-
tunately, because compilation is lossy, traditional decompilers,
which are deterministic, produce code that lacks many char-
acteristics that make source code readable in the first place,
such as variable and type names. Neural decompilers offer
the exciting possibility of statistically filling in these details.
Unfortunately, existing work in neural decompilation suffers
from substantial limitations that preclude its use on real code,
such as the inability to provide definitions for user-defined
composite types. In this work, we introduce IDIOMS, a simple,
generalizable, and effective neural decompilation approach that
can finetune any LLM into a neural decompiler capable of
generating the appropriate user-defined type definitions alongside
the decompiled code, and a new dataset, REALTYPE, that includes
substantially more complicated and realistic types than existing
neural decompilation benchmarks. We show that our approach
yields state-of-the-art results in neural decompilation. On the
most challenging existing benchmark—EXEBENCH—our model
achieves 54.4% accuracy vs. 46.3% for LLM4Decompile and
37.5% for Nova; on REALTYPE, our model performs at least
95% better.

I. INTRODUCTION

Decompilation—the reconstruction of a source code repre-
sentation from an executable program—is critical for a variety
of security tasks, including malware analysis, vulnerability
research, and fixing legacy software when the original source
code is unavailable [1], [2]. Unfortunately, because the com-
pilation process loses many programmer-oriented abstractions,
such as variable names, types, and comments, the code pro-
duced by traditional deterministic compilers is often difficult
to read and understand.

To address these problems, researchers have been applying
machine learning, which offers the possibility to guess or
predict such missing abstractions statistically based on the
surrounding context that is not removed during compilation.

Some work restricts itself to recover specific abstractions, such
as variable names [3], [4], [5], [6], function names [7], [8],
[9], variable types [10], [11], [12], or several abstractions at
once [13], [14], [15]. While promising, there are numerous
issues with decompiled code [16] and maintaining a model
for each one is burdensome and inflexible.

More recently, researchers are leveraging large language
models (LLMs) to predict the original source code in its
entirety, rather than specific abstractions, which we call neural
decompilation [17], [18], [19]. Neural decompilation is appeal-
ing because, in theory, it can statistically recover any type of
abstraction that is missing or distorted, including the specific
abstractions above. Neural decompilers have the potential to
vastly outperform traditional, deterministic decompilers.

For example, Figure 1a shows a function that finds the
index of an element in a hash table which uses robin-hood
hashing for collision management. Figure 1b shows the same
function, but after having been compiled and decompiled with
the industry-standard Hex-Rays decompiler. The decompiled
code is challenging to interpret because it lacks meaningful
names, and it also misrepresents the pointer to the hash
table as an __int64. Figure 1c shows the prediction of
LLM4Decompile [19], a state-of-the-art neural decompiler.
Although LLM4Decompile did not recover meaningful names,
it did predict that the function’s first argument had a structure
type, and converted the raw pointer arithmetic into more
readable field accesses.

As the example shows, current neural decompilers are
promising, but their output is far from ideal. A security
practitioner glancing at the original code (Figure 1a) can
immediately tell that the function is hashing-related because of
names like hash_find_index and struct hash. The neurally-
decompiled code (Figure 1c) contains no such clues. More
problematically, reverse engineers often work across multi-
ple levels of abstraction [20] such as assembly code and
decompiled code. This requires knowledge of the memory
layout of the data structures in the decompiled code. Although
struct FUN_0009ff84 is clearly a structure, its memory map
is undefined because existing neural decompilers are not
trained to produce type definitions which prevents reverse

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240795
www.ndss-symposium.org

1 struct hash {
2 int hash_size;
3 int item_cnt;
4 struct gap_array *data;
5 int (*hash_make_key)(void *item);
6 int (*cmp_item)(void *item1, void *item2);
7 }
8 struct gap_array {
9 int len;

10 void **array;
11 }
12

13 int hash_find_index(struct hash *h, void *item) {
14 void *cnx;
15 int index = hash_make_key(h, item);
16 int cnt = 0;
17 cnx = gap_get(h->data, index);
18 while (cnx != NULL) {
19 if (cnt++ > h->hash_size) return -1;
20 if (!h->cmp_item(cnx, item)) break;
21 index = hash_next_index(h, index);
22 cnx = gap_get(h->data, index);
23 }
24 if (cnx == NULL) return -1;
25 return index;
26 }

(a) A function which finds the index of an element in a hash table
where collisions are handled with robin-hood hashing.

1 __int64 __fastcall func4(__int64 a1, __int64 a2) {
2 int v2; // eax
3 __int64 result; // rax
4 int v4; // [rsp+10h] [rbp-10h]
5 unsigned int v5; // [rsp+14h] [rbp-Ch]
6 __int64 i; // [rsp+18h] [rbp-8h]
7 v5 = func2(a1, a2);
8 v4 = 0;
9 for (i = func1(*(_QWORD *)(a1 + 8), v5); i;

10 i = func1(*(_QWORD *)(a1 + 8), v5)) {
11 v2 = v4++;
12 if (v2 > *(_DWORD *)a1) return 0xFFFFFFFFLL;
13 if (!(*(unsigned int(__fastcall **)(__int64, __int64

))(a1 + 24))(i, a2))
14 break;
15 v5 = func3((_DWORD *)a1, v5);
16 }
17 if (i)
18 result = v5;
19 else
20 result = 0xFFFFFFFFLL;
21 return result;
22 }

(b) The function from Figure 1a, post-decompilation by Hex-Rays. It
is missing meaningful and informative name and type information.

1 int FUN_00100155(struct FUN_0009ff84 *VAR_0,void *VAR_1)
{

2 int VAR_2;
3 int VAR_3;
4 void *VAR_4;
5 VAR_2 = FUN_0009ff86(VAR_0, VAR_1);
6 VAR_3 = 0;
7 VAR_4 = FUN_0009ff88(VAR_0->VAR_5, VAR_2);
8 while (VAR_4) {
9 if (VAR_0->VAR_6 < VAR_3) { return -1; }

10 if (!VAR_0->VAR_7(VAR_4, VAR_1)) { break; }
11 VAR_2 = FUN_0009ff89(VAR_0, VAR_2);
12 VAR_4 = FUN_0009ff88(VAR_0->VAR_5, VAR_2);
13 VAR_3++;
14 }
15 if (VAR_4) { return VAR_2; }
16 return -1;
17 }

(c) Figure 1a, decompiled by LLM4Decompile-Ref [19]. The se-
quence of operations closely matches the original, but the semantics
are underspecified and thus unverifiable without a definition of
struct FUN_0009ff84.

1 struct hash_t {
2 int size;
3 int count;
4 struct hash_table_t *table;
5 int (*hash)(void *key);
6 int (*cmp)(void *key1, void *key2);
7 };
8 struct hash_table_t {
9 int size;

10 void **items;
11 };
12 int hash_find(struct hash_t *hash, void *key) {
13 int index = hash_index(hash, key);
14 int i = 0;
15 void *item = hash_get(hash->table, index);
16 while (item != ((void *)0)) {
17 if (i++ > hash->size) { return -1; }
18 if (hash->cmp(item, key) == 0) { break; }
19 index = hash_next(hash, index);
20 item = hash_get(hash->table, index);
21 }
22 return (item == ((void *)0)) ? -1 : index;
23 }

(d) IDIOMS output for Figure 1a, including the necessary type
definitions missing from Figure 1c.

Fig. 1: A function with two user-defined types and different decompilations of it.

engineers from working at a lower abstraction level. Type
definitions are also required to compile the code, and for
most types of static analysis, such as those that find and patch
vulnerabilities, or deploy certain types of software defenses.
As we discuss in Section II-B (Table I), such user-defined
types (UDTs) (e.g., structs) are widespread in real code. This
problem has been masked in existing work because current
benchmarks for neural decompilation feature very few UDTs.

In this work, we propose a suitable new dataset, REALTYPE,
and a novel method that harnesses it for training neural
decompilers that explicitly reconstructs UDT definitions along-
side reconstructed code. Figure 1d shows the output of our
approach, which we call IDIOMS, since it recovers idiomatic

code. IDIOMS predicts a complete type definition for the output
structure, struct hash_t, as well as the names of its fields.
The resulting code is well-defined and thus amenable to the
types of reasoning common in reverse engineering.

IDIOMS is motivated by two main insights:

Insight 1: Code and type definitions should be predicted
jointly. As we showed in Figure 1, decompiled code and
type definitions are fundamentally interdependent: meaningful
variable names and field accesses depend on the underlying
type definitions, while accurate type reconstruction requires
knowing how those types are used throughout the code. This
interdependence argues strongly for joint prediction rather
than sequential approaches. Existing neural decompilers that

2

predict code without type definitions produce underspecified
outputs—the semantics of struct field accesses cannot be de-
termined without knowing the memory layout of those structs.
They do not tell a reverse engineer what memory offsets will
be accessed. Conversely, predicting types in isolation from
their usage context discards valuable information about how
fields are accessed and manipulated.
Insight 2: Scattered evidence for UDT type recovery ne-
cessitates consideration of broad context. Predicting a UDT
definition is fundamentally difficult due to we call the scat-
tered evidence problem: typically, any given function accesses
only a subset of a UDT’s fields [21]. Full UDT structure
and semantics cannot be determined from partial usage pat-
terns, challenging type inference for a single function in
isolation. This challenge mirrors the fundamental problem
faced by traditional type inference algorithms when analyzing
executables—they must aggregate evidence across multiple
functions to reconstruct complete type definitions, which is
precisely why most algorithms are interprocedural [21].

To address this, we provide broader context in the form of
neighboring functions—those close to the target function in
the call graph. A function’s callees and callers process related
input, output, and internal values, often revealing additional
clues about UDT structure and usage patterns. This inter-
procedural evidence enables more accurate type inference by
aggregating partial information scattered across the program’s
call graph, allowing the model to reconstruct complete UDT
definitions that would be impossible to infer from any single
function alone.

We propose a new training strategy and family of IDIOMS
neural decompilation models that (a) jointly predict code
and type definitions, enabling consistent type application,
and (b) leverage neighboring functions in the call graph
to provide the necessary context for UDT reconstruction.
Like LLM4Decompile-Ref [19] and earlier work on specific
renaming tasks [3], [13], our models take as input the output of
deterministic decompilers applied to binaries. This approach
leverages decades of progress in deterministic decompilation,
reducing the difficulty of the model’s task. Unlike existing
neural decompilers [22], [19], [17], IDIOMS models explicitly
predict definitions of all UDTs used by a function alongside
its definition.

The IDIOMS approach is designed to be lightweight, flexible,
and easily generalizable to arbitrary LLMs. (We apply it
to five different LLMs in Section IV.) It is text-based and
makes no architecture-specific assumptions. This means that
as newer, more powerful LLMs are released, they can be easily
adapted via IDIOMS to perform joint neural decompilation with
type definition prediction. While the dataset preparation and
evaluation software introduced in this work is sophisticated,
IDIOMS itself is easy to use, requiring small amounts of python
code and widely available, and actively maintained python
packages, unlike many existing tools.

We demonstrate experimentally that IDIOMS substantially
outperforms existing work: IDIOMS scores 17–36% better than
LLM4Decompile [19] and 37–78% better than Nova [17] on

EXEBENCH [23], the most challenging existing benchmark,
and 95–205% better on the realistic REALTYPE with its
realistic UDTs. These performance improvements hold as well
over prior work focused strictly on type recovery. We perform
controlled experiments to demonstrate that decompiling func-
tions with UDTs is substantially more challenging than those
without, and that including neighboring context contributes
substantially to IDIOMS performance (improving structural
accuracy by up to 63%). Finally, we go beyond introduc-
ing a new modeling approach, making numerous impactful
methodological improvements along the pipeline, from dataset
preparation to evaluation.

In summary, we contribute:

• A new dataset, REALTYPE, containing 154,301 training
functions and 2,862 evaluation functions with realistic
user-defined types (UDTs) and their complete definitions
extracted from preprocessed source code.

• A novel approach that enables neural decompilers to
jointly predict both function code and complete user-
defined type definitions simultaneously.

• IDIOMS, a state-of-the-art family of neural decompilation
models, which outperform LLM4Decompile and Nova
by 95-205%, and existing standalone type recovery tech-
niques by at least 73%, on realistic code.

• Experimental evidence demonstrating that (a) UDTs sub-
stantially increase the difficulty of neural decompilation,
(b) neighboring function context significantly improves
UDT prediction accuracy by up to 63%, and (c) these
findings generalize across model architectures and sizes.

• A fine-grained evaluation that measures performance on
different aspects of neural decompilation, including both
correctness and code improvements.

For reproducibility, we release the code used to build
datasets and train and evaluate models; REALTYPE; and all
IDIOMS and other models we train in our experiments.1

II. APPROACH

Figure 2 overviews our approach. Decompilation aims to
produce source or source-like representations of compiled
code to help reverse engineers more easily understand or
manipulate it. Neural decompilation generally entails training
machine learning models to predict original source code for a
target binary function of interest (left-hand-side of Figure 2).

Section II-A details the modeling approach. IDIOMS models
take the output of a deterministic decompiler and predicts the
original source code of the target function and a list of user-
defined types in that function. IDIOMS operates on decompiler
output rather than on the compiled binary directly because do-
ing so naturally leverages significant advances in deterministic
decompilation. Tan et al. [19] compare neural decompilation
from assembly and from deterministic decompiler output and
find that the latter produces correct output more often.

1Code can be found at https://github.com/squaresLab/idioms; models and
datasets can be found at https://doi.org/10.5281/zenodo.15683630.

3

https://github.com/squaresLab/idioms
https://doi.org/10.5281/zenodo.15683630

2

Decompiled code Original code + types Decompiled code

Predicted code + types

Original code + types

Compare
& score

RealtypeTraining set
Test set

Evaluation1 Training
Language Model

Fig. 2: Our high-level approach. We finetune causal language models on our dataset, REALTYPE, into IDIOMS models, then
evaluate them.

Decompiled Code

Original Code

UDT Definition

Function Name Specifier

Decompiled/Original Separator

A

B C

E

D

Call Graph Legend

A

Function-Context Collation

B C D

Neighbors-Context Collation

E

Fig. 3: Model training sequence organization for IDIOMS models. Neighboring context entails listing decompiled functions
starting the target (A, here) in breadth-first call graph order. We compare neighboring- to function-context in our experiments.

Section II-B describes the dataset, REALTYPE. The IDIOMS
approach requires suitable example input and output data.
Existing datasets are inadequate for this task for two reasons:
(1) a lack of variables with UDTs and their definitions, and (2)
they are function level, and thus we cannot build call graphs.
We therefore build a suitable new dataset, REALTYPE.

Once trained, models can predict the original code and UDT
definitions for a given decompiled function (right-hand-side
of Figure 2). In practice, this entails applying a deterministic
decompiler first (standard, in reverse engineering) and then
applying an IDIOMS model to the result. For evaluation, we
take advantage of the ground truth available in our data (the
original code, pre-compilation). However, care must be taken
to evaluate on data not included in the training dataset.

A. Modeling

Model architecture and finetuning. Language models are
state-of-the-art neural networks that encode information in
learned (trained) parameters. To partially overcome the chal-
lenges of developing sufficient training data for a particular
task, a model can be pretrained on data for a related task, and
then finetuned on a smaller quantity of data relevant to the
target task. We follow this paradigm for neural decompilation
by finetuning causal language models pretrained on code.

Figure 3 illustrates the organization of the token sequence
our model expects. Causal language models process sequences
of tokens, which are small, discrete units of text that serve
as the basic input representation on which language models
operate. In this kind of supervised context, the task is to learn
to predict an output (original code + UDT definitions) from

an input sequence (decompiled code). For training, the input
and output are concatenated into a single sequence, delimited
with a separator token. For evaluation, or use in practice, the
model is prompted with the input and separator token alone
to generate the output (the rest of the sequence).

Jointly predicting code and type definitions. The “output”
side of the (training) context contains the function definition
and associated user defined types from the original source code
(everything to the right of • in Figure 3). Code and type
definitions are in the same sequence. Causal language models
use the entire preceding sequence to predict the next token.
Thus, field names, and how they are used in the predicted code,
are all available to the model as it generates type definitions.
That is, code and type definitions are generated jointly.

Additional context. The evidence for UDT type recovery
is scattered across multiple functions [16]. IDIOMS models
use neighboring function context (left of • in Figure 3). It
is arranged so the target decompiled code is first; callees
and callers of the target function are placed subsequently.
Their callees and callers are then added (if not previously
included), etc. This can include all functions in the call
graph, space allowing. This breadth-first order is deliberate.
A model should relate information it learns from neighboring
context to inform type prediction in the target function. This
requires an unbroken trace from the source to the target
function. Practically, as well, providing call graph context in
BFS order allows an arbitrary cutoff on the sequence’s right
side to respect model context limits, while maintaining trace
integrity. The neighboring context is followed by a special

4

name-indicator token, and the target function’s name in the
decompiled code.

Figure 3 also shows sequences with function-level context,
used by existing prior work on neural decompilation [17], [19],
[22], [24], [25], [26], [27]. Function-level context consists of
the target decompiled function. We demonstrate the value of
neighboring context (Section IV-D) by comparing with models
built using only the decompiled function as context. For a full
sample prompt, see the appendix.

An advantage of the IDIOMS process is that it interfaces
with generative neural models at a purely textual level, re-
quiring no architecture-specific details, unlike some existing
work (e.g. Nova [17]). It can therefore be applied to newer,
more powerful pre-trained models as they are released. The
flexibility and generalizability of IDIOMS means that it can
get better with time; the modeling approach is about suitably
capturing and asking for the necessary information from the
generative models’ input/output sequence.

B. Dataset

Our model architecture and overall goals require a train-
ing dataset that (1) contains code that uses representa-
tive UDTs, (2) supports the construction of interproce-
dural call graphs from the compiled binaries. Existing
neural decompilation datasets like EXEBENCH [23] and
HUMANEVAL-DECOMPILE [19], used to evaluate state-of-the-
art LLM4Decompile [19] and Nova [17], provide only single-
function context, and have fewer and simpler UDTs than real-
world code. We therefore construct a novel dataset, REAL-
TYPE, with 154,301 training functions and 2,862 evaluation
functions. Table I compares REALTYPE with existing datasets.
Mining functions with UDTs. We cloned and com-
piled majority-C-language repositories from GitHub using
GHCC [28]. GHCC executes standard configuration and build
scripts, extracts any resulting ELF-format binary files, and
archives repositories under 100MB. Among the ELF files are
object (.o) files. Including object files increases the amount of
data available because not all projects build completely. How-
ever, for projects that do build completely, the same function is
present at least twice (in the object file and overall binary). We
filter object files for which its corresponding functions appear
in another binary in the same repository. For convenience, we
reused preprocessing scripts from the DIRTY [13] replication
package to decompile binaries using Hex-Rays. We filter out
PLT stubs, then canonicalize functions’ names to funcX, where
X is an integer, a standard scheme [14], [17], [19].

For each archive, we record original code, and parse its
gcc- preprocessed version to record typedef aliases and UDT
definitions (together, our output data). We store all types in a
python object model representing the C type system (built atop
DIRTY’s [13] type system), allowing fine-grained analysis.
The result reflects the expressive power of C’s type system,
including arbitrary nesting and typed function pointers.

To simplify evaluation and reduce ambiguity, we canoni-
calize all type descriptors. We traverse each function’s AST
and record information from variable declarations, typecasts,

TABLE I: Complexity in Evaluation Datasets

HEDecomp* exebench REALTYPE

Lines of code 15.2 13.9 14.2
Variables with a UDT (%) 0 0.5 26.4
Functions with a UDT (%) 0 1.9 53.4
Recursive UDT field count N/A 2.2 17.6
Type-tree complexity 1.4 1.5 16.2
UDT Type-tree complexity N/A 4.2 57.3

UDTs are user-defined types (struct, union). REALTYPE is
our dataset. HUMANEVAL-DECOMPILE [19] (HEDECOMP*) is
based on programming challenge problems. EXEBENCH [23]
is mined from GitHub, but contains many fewer UDTs.
Type complexity is the number of nodes in the type’s tree
representation (primitive types are leaf nodes). UDT Type-
tree complexity includes only UDTs; Type-tree complexity,
all types.

and return types. We de-alias by following previously created
typedef alias chains, and standardize type names to canonical
C forms. For example, platform-specific aliases like int32_t

and __int32_t are both replaced with the standard type
int. 2 This standardization simplifies evaluation and reduces
ambiguity in mapping between a type’s memory representation
and its syntax as learned by the neural decompiler. We store
each canonicalized function with types for all its variables.

We then matched preprocessed with decompiled functions,
organized by binary. This reflects realistic decompilation use
cases: a reverse engineer often analyzes one or more binaries
at once, without access to original source. We compute and
store interprocedural call graphs within each binary.
Deduplication. Data leakage is a key risk in machine learning,
because models tend to “memorize” examples in the training
dataset. Training and evaluation sets must therefore be disjoint.
The risk of data leakage via pretraining is relatively low
for neural decompilation (Section V). However, finetuning
does risk leakage because duplicates on GitHub are extremely
common [29]. Exact-match deduplication is insufficient: many
project copies represent different past versions or otherwise
contain small modifications. We deduplicate the dataset to
enable disjoint training/testing in two complementary ways:

• Minhashing [30] clusters similar text files, and is a popu-
lar, robust choice to deduplicate code datasets [31], [32].
We treat all C files in a repository as a “document” and
clusters of repositories as duplicates. We select repository
from each cluster which produced the most data.

• By-project splitting: we ensure that all data from a given
repository is assigned entirely to only one of the train/val-
idation/test splits. This prevents models from memorizing
project-specific details or conventions (including UDTs)
from some functions in a project and applying them to

2Because the C standard specifies minimum but not maximum type sizes,
int is technically ambiguous—motivating alternative names in the first place.
We performed all experiments on a x86 64 linux platform with gcc, so
this was not an issue. We chose C keywords for simplicity, but any alternative
consistent convention describing, e.g., type sizes explicitly, would be fine.

5

different functions in the same project. This has been
demonstrated as empirically important in prior evalua-
tions of ML-based decompilation [14].

III. EXPERIMENTAL DESIGN

Our experiments address six research questions:
RQ1: How does IDIOMS perform relative to the best existing

neural decompilation techniques?
RQ2: How does IDIOMS fare when exposed to optimiza-

tions? Optimizations are common, and thus we evaluate
whether IDIOMS’ advantages apply to optimized code.

RQ3: To what extent do UDTs affect neural decompilation?
Existing work is evaluated on benchmarks that contain limited
UDTs, despite their prevalence in real-world code.

RQ4: How does performance change with model and
dataset size? We examine scaling’s impact on performance.

RQ5: How does adding neighboring context affect the
quality of neural decompilers? Evidence needed to understand
UDTs may be spread throughout a program.

RQ6: How does IDIOMS recover types compared with
existing type recovery techniques? IDIOMS is implicitly in part
a type recovery technique; we compare to prior work.
Baselines. We primarily compare against two state-of-
the-art neural decompilation models: Nova [17] and
LLM4Decompile [19]. Nova takes assembly as input (rather
than decompiled C), featuring a custom attention designed
for assembly. LLM4Decompile has two versions: one for
assembly input and one for Ghidra-decompiled code (a Hex-
Rays alternative). We use the latter, higher-performing version.
The prior works’ replication packages include model code,
weights and minimal example snippets. We therefore wrote
new evaluation scripts, totaling 726 lines of code, including
reconstructing Nova’s complex assembly preprocessing.

We do not compare against either SLaDe [22] or De-
cLLM [33], both notable recent approaches for neural decom-
pilation. By design, both use the tests associated with each
target binary or function during prediction. This is unrealistic
for reverse engineering, where source code and test cases
are typically unavailable. Even with source, EXEBENCH [23]
authors could only generate tests for 15.4% of the dataset.

A. Datasets and Processing

We use two datasets in our experiments: REALTYPE (our
new dataset) and EXEBENCH. EXEBENCH is the most chal-
lenging existing benchmark in prior work. It features code
extracted from GitHub, with definitions for external symbols
for some functions. Most of the definitions are synthetic,
automatically generated by the authors, and do not feature the
full UDT definitions. Many have a single field named dummy,
marking placeholder values. A subset (approximately 15.4%)
of the functions are associated with automatically-generated
unit tests that can be used as a proxy for decompilation
correctness. The test and validation sets are selected out of
those 15.4% (hence the bias illustrated in Table I). We evaluate
EXEBENCH experiments only on the “real” subpartition of

EXEBENCH’s test set, avoiding the above-noted problems. The
“synth” subpartition is also easier, inflating performance [22].

We decompile both test sets again using Ghidra, to evaluate
LLM4Decompile (which expects Ghidra output as input);
evaluating it on Hex-Rays data would represent a covariate
shift that would unfairly hurt LLM4Decompile.

Test set processing. We exclude EXEBENCH examples where
the provided oracle solution and dependencies don’t compile
or don’t pass all tests (that is, those that are internally
inconsistent)—about 16% of the test_real partition. We
exclude a further 16% of the EXEBENCH test_real set on
which DIRTY [13]’s decompilation scripts fail (producing no
input for the model). Following LLM4Decompile [19], we do
not evaluate on examples for which the decompiled function
exceeds the model’s context window (about 3% of each test
set). When comparing expanded context to the function-only
context (Section IV-D), we evaluate both on the same subset
of the test set.

Model predictions on REALTYPE sometimes include de-
generate text [34]3 in the form of repeating type definitions,
after predicting sensible function definitions and UDTs. We
hypothesize this happens simply because the task of predicting
complex UDT definitions is extremely difficult. Because of the
scattered evidence problem, sometimes the decompiled context
is not sufficient to fully predict the full UDT definitions, so
the model may learn to generate arbitrary type definitions after
anything it can figure out. Empirically, we saw that degenerate
text always appears after non-degenerate predictions and are
never referenced in the function text. Thus, in our evaluation,
we automatically ignore any type definitions unused by the
predicted code, which we assume are degenerate.

B. Metrics

A good neural decompiler (1) preserves execution seman-
tics, and (2) produces names, types and code that are more
readable and idiomatic (in a style mimicking a human devel-
oper’s). The former goal means that a good neural decompiler
should be no worse than a deterministic one, and the latter
means it must add value. We use a suite of metrics to measure
a neural decompiler’s efficacy on both fronts, comparing
to the original source code as the gold standard. In some
respects, an ideal decompiler is one that perfectly “undoes”
the compilation, reconstructing the original source.

Our metrics suite is significantly more comprehensive than
those used in prior work [17], [19], [22]. The original Nova
and LLM4Decompile works approximate semantic preser-
vation via unit tests, a coarse measure [35]; they do not
evaluate other code improvements that motivate neural de-
compilation. SLaDe [22] uses normalized string-edit distance
to coarsely estimate code improvement. Some work measures
re-compilability [33], a necessary but insufficient condition for
unit test accuracy (code that compiles may be incorrect).

3A common but poorly-understood phenomenon, even in large models.

6

1 int env_loc(char *s){
2 int h = 0;
3 while (*s++)
4 h = h * 31 + *s;
5 return h % 131;
6 }

(a) Original code

1 int hash(char *key) {
2 int h = 0;
3 while (*key++)
4 h = h * 31 + *key;
5 return h % 131;
6 }

(b) IDIOMS’ prediction

1 unsigned func0(const char *str) {
2 unsigned hash = 0;
3 while (*str)
4 hash = hash * 31 + *str++;
5 return hash % 131;
6 }

(c) Nova’s prediction

Fig. 4: A polynomial rolling hash function, decompiled by
IDIOMS and Nova [17]. The original and IDIOMS’ prediction
have isomorphic dependency graphs; Nova’s differs. The orig-
inal code starts hashing the string’s second character; Nova’s
prediction starts with the first. This is reflected in the function’s
dataflow dependencies.

1) Semantic preservation: Because program equivalence is
undecidable, we seek a practical approximation of semantic
preservation. We use complementary proxies:

(1) Unit tests. EXEBENCH includes unit tests for examples
in the test set, which we leverage to evaluate the semantic
fidelity of decompiled code. Tests are complete but unsound;
this means that if they fail, we can be sure the decompiled code
is incorrect, but if they pass, we cannot be sure the decompiled
code is correct. This makes them a useful (if optimistic) proxy
for correctness. (Metric name: passes exebench tests)

(2) Static, dependency-based equivalence. REALTYPE does
not include tests. Instead, we also use a static, dependency-
based equivalence check to compare decompiled code to the
original source [36]. This approach effectively asks “Do two
pieces of code perform the same operations in the same
order?” It compares function dependency graphs, with nodes
representing operations (assignments, function calls, etc.) and
data sources (constants, parameters, global variables), and
edges representing the control-flow and data-flow dependen-
cies between them. UDT fields are represented as constants.
If two dependency graphs are isomorphic, their corresponding
functions have the same structure, performing the same opera-
tions in the same (partial) order, even if variable names differ.

Figure 4 illustrates this with a particularly subtle example
where a neural decompiler produces plausible-looking but in-
correct output. The original code begins hashing from the sec-
ond character in the string, while Nova’s prediction starts from
the first character. This seemingly minor difference creates
distinct dataflow dependencies that dependency-equivalence
can detect. Beyond such subtle errors, dependency-equivalence
can capture other types of incorrect predictions, including
omissions, additions, and reordered expressions. However, the
approach has limitations: it may fail to recognize semantically-

equivalent syntactic forms, such as x * 2 versus x << 14.
Dependency graph isomorphism provides a sound approx-

imation of program equivalence [37], with two caveats: (1)
side effects, a rare source of unsoundness in practice [36];
and (2) type correctness. To mitigate the second issue, we
therefore also measure the fraction of a neural decompiler’s
predictions for which all variable types are equivalent to those
in the ground truth in addition to being dependency-equivalent
to the ground truth. Note that this type requirement is very con-
servative; vanilla dependency-equivalence captures whether
the operations in a decompiled function are at minimum
correct, and in the correct order. (Metric names: dependency-
equivalence, strict dependency-equivalentce (typechecks).)

Dependency-equivalence relies on UDT definitions to align
field accesses, and thus can be overly harsh on prior work,
like LLM4Decompile and Nova, that do not produce full
type definitions. However, these neural decompilers still often
usefully predict variables to have struct types, and rewrite
pointer arithmetic into struct field-access operations (as in
Figure 1c). However, the names of the fields often differ,
making it difficult to determine which fields correspond to
each other. Thus, we introduce a more permissive version
of dependency-equivalence under a principle of consistency:
there must be a bijective mapping between the names of the
fields that occur in dependency-graph nodes that map together.
For instance the fragment pt->x + pt->y is consistent with
pt->a + pt->b because there exists a bijective mapping be-
tween the field names: x ↔ a, y ↔ b. However, no such
mapping exists between pt->x + pt->y and pt->a + pt->a.
We do the same for function names.5 (Metric name: relaxed
dependency-equivalent (consistency))

2) Code improvements: It is also important to quantify
how the neural decompiler has improved the code by adding
abstractions like accurate variable names and types.
Variable Names and Types. A challenge in evaluating vari-
able name accuracy is determining which variables in the
prediction correspond to those in the original source. The
prediction may break up expressions into smaller subexpres-
sions, with results stored in intermediate variables, or vice
versa. This means that, except for function parameters, it
can be ambiguous how to programmatically map between
variables in the original and the decompiled versions of a
function to compare their names and types. To address this
challenge, we identify the operations that map to one an-
other in the previously-computed isomorphic maps computed
for dependency-equivalence. With this mapping, we compare
variables’ names and types: variables that store the results
of executing the mapped instructions map together. (Metric
names: variable name accuracy, variable type accuracy)
UDT accuracy. One of the key challenges with decompiling
real C code is reconstructing user-defined types. One novelty

4While this represents a common optimization, neural decompilers are
trained to predict the original source code, so they typically learn to undo
such optimizations rather than preserve them.

5There is no need for consistent (local) variable names since these manifest
in dataflow dependencies.

7

of the IDIOMS approach is that it predicts UDTs alongside
the code, and thus we measure accuracy on UDTs separately.
UDTs are often named, as are their fields; perfectly predicting
both is challenging. That said, knowing and predicting a
type’s structure—the type of its fields, and their order—is still
helpful to a reverse engineer, even if the names are imperfectly
predicted. We therefore decompose UDT prediction accuracy,
reporting the fraction of UDTs for which the structural layout
matches (ignoring type and field names). When computing our
metric “strict dependency-equivalentce (typechecks)”, we use
structural equivalence in determining type equivalence. (Met-
ric names: UDT variable nominal accuracy, UDT variable
structural accuracy)

In summary, unit test accuracy is an upper bound on seman-
tic preservation; strict dependency-equivalence approximates
a lower bound. Variable name accuracy and the three type
accuracy measures quantify code improvements. Dependency-
equivalence also approximates code improvement, as it cap-
tures structural similarity to the original.

C. Setup

Overall performance. The first research question compares
IDIOMS overall performance (trained on the REALTYPE train-
ing set) to Nova [17] and LLM4Decompile [19] on both
EXEBENCH and REALTYPE. We use the IDIOMS models
trained by fine-tuning the 7-billion parameter version of
CodeGemma [38] with a QLoRA [39] adapter, and compare
to the 6.7b-sized versions of the related work.
Compiler optimizations. To evaluate performance across
optimization levels (RQ2), we compare an IDIOMS model
against similarly-sized versions of Nova and LLM4Decompile
on REALTYPE code compiled at gcc levels O0–O3. We disable
inlining to maintain evaluation rigor on REALTYPE’s realistic
code.6 By merging multiple source functions, inlining creates
a one-to-many mapping between binary and original/gold stan-
dard source functions. Boundaries between inlined functions
become ambiguous after optimization, yielding no clear or
unique ground truth. Inlining also alters structure such that
the dependency graph isomorphism and variable correspon-
dence metrics would break down, even for otherwise excellent
predictions. Importantly, however, inlining poses evaluation
challenges rather than decompilation challenges. Decompiling
a function with inlined callees is simply decompiling a larger
function, and REALTYPE includes various function sizes. If
anything, we expect inlining may sometimes benefit UDT
recovery by consolidating otherwise scattered context, but we
can’t be sure: it’s possible that Idioms could perform worse
on inlined code (since we can’t evaluate on it).

Dataset creation did not always succeed at all optimization
levels. For fair comparison, we include only functions that
successfully decompiled at all levels (O0-O3). This reduces the
test set by 21% for HexRays, but 76% for Ghidra. Because the
resulting dataset is problematically small, for the Ghidra-based

6Prior work also evaluates on optimizations [22], [19], [17] but on simpler
datasets with isolated functions, sidestepping inlining challenges.

LLM4Decompile evaluation, we use the subset of Hex-Rays-
decompilable functions that also decompiled in Ghidra. Thus,
the Ghidra test sets for the compiler optimization results have
somewhat different compositions. However, as these are still
large test sets sampled from the same distribution, the impact
on the aggregate results should be negligible.

Model size. To evaluate the degree to which our innovations
are applicable to a variety of model types and sizes, we
finetune IDIOMS models from five pretrained models:

• CodeQwen2.5 [40], 0.5 billion parameter version
• LLM4Decompile [19], 1.3 billion parameter version
• CodeGemma [38], 2 billion parameter version
• CodeGemma [38], 7 billion parameter version
• CodeLlama [41], 7 billion parameter version.

We use the common convention in machine learning to attach
-Xb to the name of each model, where X is the number of
parameters in that model, in billions.

We perform traditional finetuning on the smallest model,
CodeQwen2.5-0.5b. Finetuning becomes computationally pro-
hibitive for models above 1 billion parameters in size; we
therefore leverage recent results using adapters and quanti-
zation (QLoRA [39] adapters), allowing for a high-fidelity,
computationally tractable approximation of full finetuning. We
provide additional training details in the Appendix.

Ablation. Overall IDIOMS performance is evaluated by train-
ing models on REALTYPE with all features. However, both
the nature and size of training datasets can impact model
performance. We evaluate the effect of both, as well as
the effect of our design choices, by training and evaluating
alternative models that allow for controlled comparisons:

• exebench: This experimental setting trains and evaluates
a neural decompilation model on EXEBENCH, the most
complex benchmark in prior work. Because EXEBENCH
does not support interprocedural callgraphs, this version
of IDIOMS still jointly predicts names and UDT defini-
tions, but does so without neighboring context.

• parity-exebench: EXEBENCH’s training set (2,383,839
functions) is substantially larger than REALTYPE (154,301
functions). To control for training set size in model per-
formance, we subsampled EXEBENCH to create a smaller
training set that matched REALTYPE in size for training.

• functions-realtype: To assess the effect of function con-
text, we train a version of IDIOMS with only function
context (i.e., without neighboring context) on the REAL-
TYPE dataset. Comparing these results to the full IDIOMS
results controls for the effect of the neighboring context
design decision. Additionally, recall that models trained
on EXEBENCH by necessity only provide function con-
text. Thus, this setting varies from parity-exebench by
dataset composition only. We compare these two settings
to reveal the effect of training on EXEBENCH versus the
more-realistic REALTYPE.

We perform these ablations across all five fine-tuned models.

8

(a) Relaxed dependency-equivalence (consistency)

REALTYPE
exebench O0 O1 O2 O3

IDIOMS 34.1 32.3 28.0 26.2 25.5
LLM4Decompile 27.9 10.6 6.2 6.3 5.9
Nova 24.8 16.6 9.4 8.0 7.5

(b) Dependency-equivalence

REALTYPE
exebench O0 O1 O2 O3

IDIOMS 33.7 21.6 19.1 18.0 18.0
LLM4Decompile 27.4 7.3 3.6 4.6 5.1
Nova 23.9 6.7 5.6 5.0 4.7

(c) Strict dependency-equivalence (typechecks)

exebench O0 O1 O2 O3

IDIOMS 23.9 9.8 8.6 7.2 7.0
LLM4Decompile 17.6 3.3 2.6 3.5 3.7
Nova 13.4 0.9 2.5 2.7 2.5

(d) passes EXEBENCH tests

exebench

IDIOMS 54.4
LLM4Decompile 46.3
Nova 37.5

(e) Variable name accuracy

exebench O0 O1 O2 O3

IDIOMS 20.6 19.8 18.7 17.9 17.8
LLM4Decompile 14.7 3.4 3.2 3.9 3.5
Nova 12.9 4.5 3.2 3.5 3.5

(f) Variable type accuracy

exebench O0 O1 O2 O3

IDIOMS 58.2 38.3 34.0 33.3 32.6
LLM4Decompile 45.5 13.4 11.4 11.7 10.7
Nova 41.8 13.0 9.9 11.5 12.1

(g) UDT variable nominal accuracy

exebench O0 O1 O2 O3

IDIOMS 20.7 6.4 5.6 6.0 5.7
LLM4Decompile 0.0 0.0 0.0 0.0 0.0
Nova 0.0 0.0 0.0 0.0 0.0

(h) UDT variable structural accuracy

exebench O0 O1 O2 O3

IDIOMS 34.5 15.0 14.7 13.4 12.3
LLM4Decompile 0.0 0.0 0.0 0.0 0.0
Nova 0.0 0.0 0.0 0.0 0.0

TABLE II: Performance of IDIOMS, Nova [17] and LLM4Decompile [19]) on EXEBENCH [23] and a subset of REALTYPE that
decompiled at all optimization levels. All values are percentages; higher is better. Nova and LLM4Decompile score 0 on UDT
metrics because they do not predict UDTs. (UDT metric are computed on the set of UDT variables in the original code.)

IV. RESULTS

Table II shows results for RQ1, comparing IDIOMS per-
formance to prior work on neural decompilation, and RQ2,
evaluating the impact of compiler optimization levels. We
discuss both questions in Section IV-A.

Results to support the remaining RQs are show in Table III,
which is organized by model and by training configuration.
The table is structured such that each column differs by one
key experimental setting from adjacent settings, allowing for
controlled comparisons. The exebench and parity-exebench
columns differ by training set size (the first is larger);
parity-exebench and functions-realtype differ by dataset type
(EXEBENCH vs. REALTYPE) and thus the complexity and
number of UDTs in both training and evaluation; functions-
realtype and IDIOMS differ by the context provided to the
model (decompiled function only vs. decompiled function and
neighboring functions).

Section IV-B discusses the impact that realistic UDTs have
on the complexity on the neural decompilation; Section IV-C
addresses model size and scaling, Section IV-D evaluates the
use of neighboring function context in IDIOMS design, and
Section IV-E compares IDIOMS with existing type recovery
work.

Note that, in general, there is high variance in UDT metrics
for the EXEBENCH-based experiments because there very few
UDTs in the test_real subset of EXEBENCH.

A. Decompilation performance (RQ1 and RQ2)

Table II shows performance of IDIOMS, LLM4Decompile,
and Nova on EXEBENCH and REALTYPE, including perfor-
mance at different compiler optimization levels.
Overall performance. IDIOMS substantially outperforms ex-
isting work. On EXEBENCH, IDIOMS scores 17-36% higher
than LLM4Decompile and 38-78% better than Nova on all
correctness metrics, while scoring similarly highly on code
improvements. This improvement is despite the fact that the
EXEBENCH experiments do not leverage IDIOMS’ key differen-
tiators. One possible reason is that Nova and LLM4Decompile
both bear the hallmarks of being trained on code where the
function names are left in the decompiled code (via debug
information). In particular, both tend to copy the generic func-
tion name (e.g. FUN_00100155 or canonicalized into func0)
from the input to the output unchanged—a pattern learned
when the input (decompiled code or assembly) and output
(original code) have the same name in training. Indeed, sample
training data linked to from the LLM4Decompile repository
has function names in the decompiled code. Function names
confer a large amount of information about the function to
neural models [42], rendering the overall task substantially
easier. Except where dynamic linking is required, function
names in binaries are uncommon in practice, so we evaluate
on code with the names removed. Other confounding factors
include model architecture and input type—anecdotally, we
find Hex-Rays’ output to be better than Ghidra’s, for instance.

However, the performance gaps are much larger on RE-

9

ALTYPE, where the innovations that differentiate IDIOMS are
most relevant. Notably, Nova and LLM4Decompile score 0 on
the UDT-related metrics (Tables IIh and IIg) because they do
not predict any user-defined type definitions. But UDTs and
the code that interacts with them are intrinsically linked. ID-
IOMS scores 95-205% higher than Nova and LLM4Decompile
on correctness metrics—even the most permissive that does
not require UDT definitions (Table IIa). In turn, variable name
and type metric scores are low partially because there are many
variables in the original code that don’t correspond to anything
in the nonequivalent predicted code.
Impact of compiler optimizations. Table II also delineates
results by gcc optimization level; these reults entail training
and testing on REALTYPE. In line with related work [17],
[19], [22] on easier datasets, IDIOMS’ performance degrades
somewhat as optimization levels increase. There is a large
drop at O1, and smaller drops with more optimizations. Still,
IDIOMS performs much better at O3 than related work does
at O0: 25.5% on relaxed dependency equivalence vs. 16.6%.

Takeaway: IDIOMS greatly outperforms state-of-the-art neural
decompilers, especially on realistic code with UDTs. Perfor-
mance drops sharply at O1, but higher levels of optimization
have little additional effect.

B. RQ3: The Challenge of Real-World UDTs

Table III shows the results of our ablation study, where we
causally show the impact of dataset size, dataset composition,
and model context. The second and third columns (parity-
exebench and functions-realtype) show models that are the
same in terms of context provided and training dataset size.
However, they differ in dataset complexity, as the functions-
realtype configuration trains on REALTYPE, which has far
more, and more complex, UDTs than EXEBENCH (Table I).

This change causes a substantial decrease in performance on
all metrics except variable name accuracy. For dependency-
equivalence (row 2 on each of Tables IIIa-IIIe), the drop is
38-42%, relative to performance on EXEBENCH. The drop is
even steeper when type correctness is factored in (row 3):
from 55%-68%. These data highlight the challenge that UDTs
provide for real code. Operations on UDTs usually decompose
into complex series of assembly or primitive source level
instructions, especially when combined (e.g. foo->bar->baz).
Reconstructing these higher-level abstractions is more difficult
than recovering math operations or operations on arrays, as are
common in EXEBENCH and HUMANEVAL-DECOMPILE. The
absence of UDTs in existing benchmarks masks the value of
joint code-UDT prediction. REALTYPE helps close the gap.

Takeaway: Code with UDTs is substantially more challenging
to neurally decompile than code without; strict dependency-
equivalence drops by 55%-68% with more realistic data.

C. RQ4: Model Performance and Trends

In general, in machine learning, model performance scales
with dataset size and parameter counts, but performance gains
are usually logarithmic in training set size; doubling either

does not lead to a doubling in scores. We see this as well
across all of our models in the results in Table III. For
instance, CodeQwen2.5-0.5b, our smallest model, produces
dependency-equivalent code 30.7% on EXEBENCH. Mean-
while, CodeGemma-7b scores 33.7%, an increase of about
10%, despite being 14 times larger. We also see this in terms
of scaling the dataset. Columns 1 and 2 illustrate this. Column
1 represents a size increase of over 15 times but the gains in
the same metric are only 6-11%.

The full idioms approach, in the IDIOMS column, follows
a similar trend, albeit on a more difficult dataset (Sec-
tion IV-B). CodeQwen2.5’s dependency-equivalence score is
15.6%, though this drops to 7.2% when type correctness is
factored in. Meanwhile, the two 7b models, CodeGemma-
7b and CodeLlama-7b score 18.3, 8.3 and 18.4, 8.0, respec-
tively. However, the gains in UDT variable structural accuracy
increase more rapidly with model size than other metrics
(see Section IV-D). The best IDIOMS model, CodeGemma-
7b, recovers structurally accurate UDTs 15.1% of the time.
To be counted as correct, a prediction must have identical
fields, recursively (including field names for nominal struct
accuracy). The UDTs in REALTYPE are very challenging: the
mean recursive number of fields in its UDTs is 17.6 (Table I).

Takeaway: Larger models and training sets increase perfor-
mance modestly across all models, including IDIOMS. The
best IDIOMS models achieve dependency-equivalence scores
of over 18% and UDT structural accuracy over 15% on real
code and types.

D. RQ5: The Role of Neighboring Context

The last two columns of Table III show configurations that
control for the utility of the neighboring function content:
functions-realtype are models trained and tested on REAL-
TYPE with only the decompiled function code as context,
while IDIOMS is the full IDIOMS design including neighboring
functions. Additional context in the form of neighboring
functions improves performance for many metrics, especially
for larger models. Interestingly, adding context does not have
a significant impact on correctness, when measured with
dependency-equivalence. This is not surprising, because the
details necessary to predict code operations are all present in
the function of interest (except for field names).

On the other hand, UDT accuracy increases, roughly, with
model size, especially in terms of structural accuracy where
names are ignored. As model sizes increases from 0.5b in
Table IIIa to 7b in Table IIId, gains in UDT structural
accuracy increase from 7% to 11% to 55% to 64%. CodeLlama
(Table IIIe), while also a 7b model, scores only a 41% increase
in UDT structural accuracy—there is clearly some variance
stemming from the base pretrained model.

Small models also suffer more tradeoffs from attempt-
ing to handle the larger context. CodeGemma-7b and
CodeLlama-7b each only suffer a drop in one metric (re-
spectively, -3.5% relaxed dependency-equivalence and -13.8%
in strict dependency-equivalence), while the smallest model,
CodeQwen-0.5b, suffers decreases in 4 of 7 metrics.

10

(a) CodeQwen2.5-0.5b

exebench parity-exebench functions-realtype IDIOMS
C

or
re

ct
ne

ss Relaxed dependency-equivalence (consistency) 30.8 26.0 24.2 22.3
Dependency-equivalence 30.6 26.0 16.2 15.6
Strict dependency-equivalence (typechecks) 20.4 17.0 7.1 7.2
Passes EXEBENCH tests 44.4 32.1 – –

Im
pr

ov
em

en
t Variable name accuracy 18.8 15.2 13.8 13.6

Variable type accuracy 54.4 45.6 32.9 30.4
UDT variable nominal accuracy 11.1 6.9 3.2 3.7
UDT variable structural accuracy 37.0 10.3 6.0 6.4

(b) LLM4Decompile-1.3b-v2

exebench parity-exebench functions-realtype IDIOMS

C
or

re
ct

ne
ss Relaxed dependency-equivalence (consistency) 32.1 29.3 26.9 26.8

Dependency-equivalence 31.9 29.1 18.0 17.3
Strict dependency-equivalence (typechecks) 23.3 19.8 8.4 8.3
Passes EXEBENCH tests 49.1 41.3 – –

Im
pr

ov
em

en
t Variable name accuracy 19.2 17.2 16.1 16.9

Variable type accuracy 54.9 49.6 36.1 35.3
UDT variable nominal accuracy 13.8 12.0 3.8 4.6
UDT variable structural accuracy 41.4 28.0 10.0 11.1

(c) CodeGemma-2b

exebench parity-exebench functions-realtype IDIOMS

C
or

re
ct

ne
ss Relaxed dependency-equivalence (consistency) 31.1 29.2 26.5 26.1

Dependency-equivalence 30.9 29.0 17.0 18.1
Strict dependency-equivalence (typechecks) 21.5 21.1 8.5 8.6
Passes EXEBENCH tests 48.3 41.3 – –

Im
pr

ov
em

en
t Variable name accuracy 19.5 16.9 15.7 17.6

Variable type accuracy 55.6 50.6 36.1 35.4
UDT variable nominal accuracy 24.1 24.1 3.8 4.9
UDT variable structural accuracy 55.2 41.4 7.4 11.5

(d) CodeGemma-7b

exebench parity-exebench functions-realtype IDIOMS

C
or

re
ct

ne
ss Relaxed dependency-equivalence (consistency) 34.1 31.7 28.5 27.5

Dependency-equivalence 33.7 31.3 18.1 18.3
Strict dependency-equivalence (typechecks) 23.9 22.1 7.1 8.3
Passes EXEBENCH tests 54.4 47.4 – –

Im
pr

ov
em

en
t Variable name accuracy 20.6 18.2 16.3 19.1

Variable type accuracy 58.2 53.2 36.4 37.9
UDT variable nominal accuracy 20.7 17.2 4.0 5.7
UDT variable structural accuracy 34.5 44.8 9.2 15.1

(e) CodeLlama-7b

exebench parity-exebench functions-realtype IDIOMS

C
or

re
ct

ne
ss Relaxed dependency-equivalence (consistency) 33.0 29.5 26.6 27.2

Dependency-equivalence 32.7 29.1 17.8 18.4
Strict dependency-equivalence (typechecks) 22.2 20.0 9.1 8.0
Passes EXEBENCH tests 48.4 42.0 – –

Im
pr

ov
em

en
t Variable name accuracy 19.3 18.0 17.2 19.3

Variable type accuracy 55.8 53.9 36.5 37.7
UDT variable nominal accuracy 20.7 25.9 4.1 5.5
UDT variable structural accuracy 41.4 48.1 10.0 14.1

TABLE III: Ablation study. All values are percentages; higher is better. Adjacent columns differ in one experimental condition.

11

1 struct hash_table {
2 int size;
3 struct hash_entry **ht;
4 int (*cmp)(void *, void *);
5 int (*hash)(void *);
6 };
7 struct hash_entry {
8 void *key;
9 void *value;

10 struct hash_entry *next;
11 };
12 int hash_table_find(struct hash_table *ht,void *key){
13 struct hash_entry *he;
14 int hash_val = hash_table_hash(ht, key);
15 int i = 0;
16 for (he = hash_table_get(ht->ht, hash_val); he;
17 he = hash_table_get(ht->ht, hash_val)) {
18 if (i++ > ht->size) return -1;
19 if (!ht->cmp(he, key)) break;
20 hash_val = hash_table_next(ht, hash_val);
21 }
22 if (he) return hash_val;
23 return -1;
24 }

Fig. 5: IDIOMS-functions’ prediction on Figure 1b. The lack
of context causes a subtle but substantial mistake. The version
produced with neighboring context (Figure 1d) is correct.

To see the difference that neighboring context can make,
compare Figure 5, made without additional context, and Fig-
ure 1d, made with it. The function definition in Figure 5
looks almost correct relative to the original source, when
allowances are made for differing but consistent function
names. However, the types are slightly wrong: in addition to
missing a current-capacity field, the struct definitions suggest
that the table is backed by an array of linked lists—suggesting
a separate-chaining collision avoidance strategy, not the robin-
hood hashing actually used in the original code. The identifier
names are in turn less reflective of the actual functionality
presented in the code. IDIOMS-functions interprets the return
value as a hash value, not an index into the hash table—likely
because indexing into a linked list is uncommon. Crucially,
the evidence available in the decompiled code (Figure 1b) is
consistent with both IDIOMS-functions’ and IDIOMS-neighbors
predictions, but only IDIOMS-functions’ prediction is incorrect
relative to the original source and misleading. Details from the
additional context help improve the prediction.

Takeaway: Neighboring context improves UDT accuracy with
little to no downside, especially for larger models.

E. RQ6: Comparison With Type Recovery Tools

Reconstructing variable types is a fundamental component
of decompilation. We compare IDIOMS with four existing stan-
dalone type recovery techniques: Retypd [43], BinSub [44],
TRex [45], and TypeForge [46]. We evaluate on the binaries
from coreutils—a common evaluation benchmark in type
recovery work—and REALTYPE, at both O0 and O3. We limit
our evaluation to function parameters, ignoring local variables,
because (a) the Retypd7 implementation we used and BinSub

7The original implementation is unavailable, so we used a publicly available
implementation built into the angr toolchain [47].

(a) Type Accuracy

coreutils realtype
O0 O3 O0 O3

Idioms 56.0 55.5 48.7 46.7
BinSub 13.1 1.8 10.1 6.2
Retypd 14.2 1.7 10.8 7.3
TRex 27.2 23.5 28.2 25.6

(b) UDT Structural Accuracy

coreutils realtype
O0 O3 O0 O3

Idioms 7.4 4.5 13.3 10.9
BinSub 0.6 0.0 0.1 0.0
Retypd 0.3 0.0 0.2 0.2
TRex 0.0 0.0 1.7 1.4
TypeForge* 3.9 1.2 – –

TABLE IV: IDIOMS compared to type recovery tools. For fair
comparison, only function parameters are considered (unlike
Tables II and III). *TypeForge only predicts UDTs and failed
on REALTYPE, so we report results only on coreutils on UDT
accuracy.

only emit only function signatures, and (b) it is challenging
to compute ground truth for local variables in neural de-
compilation, even in correctly-predicted code (Sections III-B1
and V). Limiting predictions to function parameters presents
little threat to validity; we compared the scores of TRex and
TypeForge on all variables vs. parameter variables, and they
are only on average 3.4% and 0.6% different (in absolute
terms) for all types and UDTs, respectively.

Table IV shows the results of our comparison. IDIOMS
greatly outperforms existing type recovery techniques, both
in general and on UDTs specifically. Most type recovery
techniques infer constraints from the binary and then solve
those constraints to produce type predictions for each variable.
The difficulty is that type reconstruction is usually under-
constrained, which makes it challenging for deterministic
approaches to decide what the emitted type should be. This is
a significant limitation, as the scores of BinSub, Retypd, and
TRex show: they are correct under 30% of the time: 10.1%,
10.8%, and 28.2%, on REALTYPE-O0 and 6.2%, 7.3%, and
25.6% accurate on REALTYPE-O3, compared with IDIOMS’
48.7% and 46.7%—at minimum 73% better, in relative terms.
(BinSub and Retypd’s especially poor scores on coreutils-O3
are because they often failed to produce output on this dataset.)
Further, these three are only intraprocedural8, analyzing one
function at a time, meaning they, like prior neural decompi-
lation techniques, fall afoul of the scattered evidence problem
when trying to predict real-world UDTs: they correctly recover
UDT types less than 2% of the time. IDIOMS is much more
effective, scoring up to 13.3% on the same data.

TypeForge, like IDIOMS, is interprocedural, and accord-
ingly outperforms the intraprocedural tools on UDTs. Like
TypeForge, IDIOMS takes advantage of constraint-solving-

8angr’s [47] implementation of Retypd is intraprocedural.

12

based approaches by leveraging the output of a deterministic
decompiler as input. TypeForge and IDIOMS also both use
machine learning to address the underconstrained nature of
type recovery. Where the techniques differ is in how they apply
machine learning to handle this uncertainty: TypeForge allows
models to choose between candidates in a double-elimination
mechanism, whereas IDIOMS allows the model to generate
type definitions as it sees fit in conjunction with the code.

Notably, all of TypeForge’s UDT prediction accuracy comes
from variables whose types are labeled as decompiler-inferred.
Some decompilers, including Ghidra, can recognize standard
library functions, look up the types of their parameters and
return value, and propagate that information throughout the
binary. We disabled Hex-Rays’ equivalent feature when we
were generating REALTYPE. Despite this advantage granted
to TypeForge, IDIOMS still outperforms TypeForge on UDTs:
7.4% vs 3.9% and at O0 and 4.5% vs 1.2% at O3.
Takeaway: IDIOMS performs effective type recovery, scoring
at least 73% better than prior work.

V. DISCUSSION

Evaluation Strictness, or “Why are the scores so low?”
In general, the scores in our evaluations are somewhat low
for all techniques. For example, even the relaxed dependency-
equivalence scores, which are less strict, are below 30% on the
full REALTYPE dataset. This is a result of our decision to use
strict evaluation metrics. Much of evaluating neural decom-
pilation is about determining whether the decompiled code is
semantically equivalent to its original, and how. Naturally, this
is undecidable in the general case. We address this problem by
using evaluation metrics that are strict and conservative (except
unit tests), leaning towards soundness. Actual semantic equiv-
alence likely exceeds what the metrics suggest. Dependency-
based equivalence allows evaluation without compilation or
test execution—which are difficult to do in this context—and
helps evaluate variable names and types.

The name and type prediction metrics are particularly
difficult to score well on. Only variable names or types that
exactly match the ground truth are considered correct. As a
prerequisite, the evaluation must determine which variable
in the predicted code corresponds to which variable in the
original code. To be conservative, if the function’s semantics
are incorrectly predicted, we assume we cannot find the
corresponding ground truth variable, and thus the impacted
names and types are considered incorrect by default. This is
exacerbated by the fact that the sound but (necessarily) incom-
plete dependency-based equivalence technique can’t always
match variables even in equivalent functions. This is generally
not a problem in traditional type inference and type recovery
techniques, because they deal with compiled programs, and
use registers, addresses and offsets for alignment. Meanwhile,
it is difficult to compile neurally-decompiled code [48]. Even
when it can be compiled, the memory layout may not match
the original binary, such as when the same variables are
declared in a different order (potentially impacting register
placement) in otherwise functionally-equivalent code. This is

why type accuracy scores are higher in Table IV than Tables II
or III. In Table IV, the comparison is restricted to function
parameters, for which the ground truth is trivially easy to find
by stack offset.

Even when variables can be matched, the score is conserva-
tive. Many acceptable name variations exist (e.g., length vs.
len vs. size), which strict name accuracy will not recognize.
Relaxing metrics to allow common aliases could yield more
optimistic results, though it’s difficult to do this reliably.
Some work uses lexical similarity metrics like character-error
rate [3], [5], but this is problematic: ‘minimum’ and ‘maxi-
mum’ are lexically similar but have opposite meanings, while
‘len’ and ‘size’ are lexically different but interchangeable.
VarCLR [49] encodes the semantics of variable names in an
embedding space and measures the cosine similarity between
embeddings, but this produces a unitless number which cannot
be interpreted as a score (e.g. as a percentage).

Meanwhile, type accuracy scores (30-40% for IDIOMS)
primarily reflect the difficulty in associating variables in pre-
dicted source code with those in ground-truth, the inherent
ambiguities of having multiple type sizes that fit into a register
(e.g., int vs long), and the prevalence of UDTs (26.4% of
REALTYPE variables). Indeed, the latter fact explains most of
the type accuracy performance differences observed between
REALTYPE and EXEBENCH. REALTYPE’s UDTs contain 17.6
fields (recursively) on average; this means that on average,
17.6 fields need to be predicted correctly for a type to be
counted as correct. This is, of course, extremely challenging.
Many type recovery techniques include metrics that accom-
modate for partial correctness, sometimes very generously. We
discuss these further in the appendix.

That said, when evaluating all models in the same way, on
the same data, IDIOMS greatly outperforms existing work.
Limitations and Threats. A key threat to validity with most
work involving large language models is data leakage through
pretraining. Most LLMs include code from GitHub, from
which we also draw REALTYPE. Despite this, we think the
risk of data leakage is small. Relatively little decompiled code
is found on GitHub or on the Internet in general, never mind
the crucial decompiled-to-original mapping needed for neural
decompilation; pretrained models are likely unfamiliar with it.

Our dataset is constructed of open source projects on
GitHub that compile. It is possible that some decompilation
targets, especially malware, may have systematic differences.
Malware in particular is often obfuscated, or transformed in
a way that makes it more difficult to understand. We view
deobfuscation as an orthogonal problem. There are a variety
of deobfuscation techniques [50], [51], [52], [53], [54], [55]
that can de-obfuscate code before neurally decompiling it.
However, in cases where these fail or a novel obfuscation is
encountered it may be necessary to input the obfuscated code
to the neural decompiler directly. We leave this to future work.

VI. RELATED WORK

Neural Decompilation. Early neural decompilation evolved
from RNNs [24] through various architectures [25], [26], to

13

transformers [27]. The dominance of the transformer architec-
ture [56] has driven more recent work to leverage its potential:
SLaDe [22] outperforms prior work, but requires test cases
for inference, which is unrealistic in most reverse engineering
scenarios. LLM4Decompile [19] introduce a family of large
causal transformer models with sizes in the billions of pa-
rameters, accepting either assembly or Ghidra output as input.
Nova [17], which operates directly on assembly, uses hierar-
chical attention to adapt to and handle typically long sequences
of assembly instructions. General-purpose LLMs like Chat-
GPT perform poorly at decompilation [22], [19], [17], likely
because their training data contains little decompiled code.

Type Recovery. Type inference and type recovery [57], [58],
[59], [45], [13], [60], [11], [12], [15], [43], [46], [44] have
been studied extensively in computer security for over two
decades. Generally, type recovery entails inferring and then
solving constraints on the types of each variable. However,
in practice, most types are underconstrained: there is not
enough information to definitively determine a specific type. A
modern trend is to probabilistically determine what the final
type should be given the surrounding code [11], [60], [12],
[13]. Increasingly, this has involved using LLMs [15], [46].
IDIOMS can be understood as a continuation of this trend—
IDIOMS leverages the type recovery routines of the underlying
decompiler, then uses an LLM to decide the final types.

VII. CONCLUSION

In this work, we introduce the IDIOMS family of neural
decompilers. Unlike prior work, we recast neural decompila-
tion as joint code and type definition recovery, and are the
first to leverage interprocedural context. We build a dataset,
REALTYPE, which contains 157,163 total functions and the
definitions of their user-defined types. We train IDIOMS models
on REALTYPE, and demonstrate state-of-the-art performance
across a variety of metrics relative to other leading neural
decompilers. We causally show that REALTYPE, with its com-
plex UDTs, is a more difficult dataset than EXEBENCH, the
most challenging existing dataset. We show that neighboring
context helps address the scattered evidence problem and thus
improves performance on UDTs. We’ve illustrated the diffi-
culty and importance of joint code-type definition recovery,
and have made an important step in addressing it.

ACKNOWLEDGMENT

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8702-15-
D-0002 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center. This material is based upon work sup-
ported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE2140739. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86 decompila-
tion using semantics-preserving structural analysis and iterative control-
flow structuring,” in Proceedings of the USENIX Security Symposium,
2013.

[2] M. V. Emmerik, “Static single assignment for decompilation,” Ph.D.
dissertation, The University of Queensland, 2007.

[3] J. Lacomis, P. Yin, E. Schwartz, M. Allamanis, C. Le Goues, G. Neubig,
and B. Vasilescu, “Dire: A neural approach to decompiled identifier nam-
ing,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 628–639.

[4] V. Nitin, A. Saieva, B. Ray, and G. Kaiser, “Direct: A transformer-based
model for decompiled variable name recovery,” NLP4Prog 2021, p. 48,
2021.

[5] K. K. Pal, A. P. Bajaj, P. Banerjee, A. Dutcher, M. Nakamura, Z. L.
Basque, H. Gupta, S. A. Sawant, U. Anantheswaran, Y. Shoshitaishvili
et al., “” len or index or count, anything but v1”: Predicting variable
names in decompilation output with transfer learning,” in 2024 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society,
2024, pp. 152–152.

[6] X. Xu, Z. Zhang, Z. Su, Z. Huang, S. Feng, Y. Ye, N. Jiang, D. Xie,
S. Cheng, L. Tan et al., “Unleashing the power of generative model in
recovering variable names from stripped binary,” 2025.

[7] Y. David, U. Alon, and E. Yahav, “Neural reverse engineering of stripped
binaries using augmented control flow graphs,” Proceedings of the ACM
on Programming Languages, vol. 4, no. OOPSLA, pp. 1–28, 2020.

[8] X. Jin, K. Pei, J. Y. Won, and Z. Lin, “Symlm: Predicting function
names in stripped binaries via context-sensitive execution-aware code
embeddings,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 1631–1645.

[9] H. Kim, J. Bak, K. Cho, and H. Koo, “A transformer-based function
symbol name inference model from an assembly language for binary
reversing,” in Proceedings of the 2023 ACM Asia Conference on
Computer and Communications Security, 2023, pp. 951–965.

[10] D. Lehmann and M. Pradel, “Finding the dwarf: recovering precise
types from webassembly binaries,” in Proceedings of the 43rd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, 2022, pp. 410–425.

[11] Z. Zhang, Y. Ye, W. You, G. Tao, W.-c. Lee, Y. Kwon, Y. Aafer,
and X. Zhang, “Osprey: Recovery of variable and data structure via
probabilistic analysis for stripped binary,” in 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 2021, pp. 813–832.

[12] C. Zhu, Z. Li, A. Xue, A. P. Bajaj, W. Gibbs, Y. Liu, R. Alur, T. Bao,
H. Dai, A. Doupé et al., “TYGR: Type inference on stripped binaries
using graph neural networks,” in 33rd USENIX Security Symposium
(USENIX Security 24), 2024, pp. 4283–4300.

[13] Q. Chen, J. Lacomis, E. J. Schwartz, C. Le Goues, G. Neubig, and
B. Vasilescu, “Augmenting decompiler output with learned variable
names and types,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 4327–4343.

[14] J. Xiong, G. Chen, K. Chen, H. Gao, S. Cheng, and W. Zhang, “Hext5:
Unified pre-training for stripped binary code information inference,” in
2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2023, pp. 774–786.

[15] D. Xie, Z. Zhang, N. Jiang, X. Xu, L. Tan, and X. Zhang, “Resym: Har-
nessing llms to recover variable and data structure symbols from stripped
binaries,” in Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, 2024, pp. 4554–4568.

[16] L. Dramko, J. Lacomis, E. J. Schwartz, B. Vasilescu, and C. Le Goues,
“A taxonomy of c decompiler fidelity issues,” in 33th USENIX Security
Symposium (USENIX Security 24), 2024.

[17] N. Jiang, C. Wang, K. Liu, X. Xu, L. Tan, X. Zhang, and P. Babkin,
“Nova: Generative language models for assembly code with hierarchical
attention and contrastive learning,” in The Thirteenth International
Conference on Learning Representations, 2025.

[18] P. Hu, R. Liang, and K. Chen, “Degpt: Optimizing decompiler output
with llm,” 2024.

[19] H. Tan, Q. Luo, J. Li, and Y. Zhang, “LLM4Decompile: Decompiling
binary code with large language models,” in Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing,
Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, Eds. Miami, Florida, USA:
Association for Computational Linguistics, Nov. 2024, pp. 3473–3487.
[Online]. Available: https://aclanthology.org/2024.emnlp-main.203/

14

https://aclanthology.org/2024.emnlp-main.203/

[20] D. Votipka, S. Rabin, K. Micinski, J. S. Foster, and M. L. Mazurek,
“An observational investigation of reverse engineers’ processes,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 1875–
1892.

[21] J. Caballero and Z. Lin, “Type inference on executables,” ACM
Comput. Surv., vol. 48, no. 4, May 2016. [Online]. Available:
https://doi.org/10.1145/2896499

[22] J. Armengol-Estapé, J. Woodruff, C. Cummins, and M. F. O’Boyle,
“Slade: A portable small language model decompiler for optimized
assembly,” in 2024 IEEE/ACM International Symposium on Code Gen-
eration and Optimization (CGO), 2024, pp. 67–80.

[23] J. Armengol-Estapé, J. Woodruff, A. Brauckmann, J. W. d. S.
Magalhães, and M. F. P. O’Boyle, “Exebench: an ml-scale dataset of
executable c functions,” in Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming, ser. MAPS 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
50–59. [Online]. Available: https://doi.org/10.1145/3520312.3534867

[24] D. S. Katz, J. Ruchti, and E. Schulte, “Using recurrent neural networks
for decompilation,” in IEEE International Conference on Software
Analysis, Evolution and Reengineering, 4 2018, pp. 346–356.

[25] C. Fu, H. Chen, H. Liu, X. Chen, Y. Tian, F. Koushanfar, and J. Zhao,
“Coda: An end-to-end neural program decompiler,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[26] Y. Cao, R. Liang, K. Chen, and P. Hu, “Boosting neural networks
to decompile optimized binaries,” in Proceedings of the 38th Annual
Computer Security Applications Conference, 2022, pp. 508–518.

[27] I. Hosseini and B. Dolan-Gavitt, “Beyond the c: Retargetable decompi-
lation using neural machine translation,” 2022.

[28] Z. Hu. (2021) Ghcc. [Online]. Available: https://github.com/huzecong/
ghcc

[29] D. Spinellis, Z. Kotti, and A. Mockus, “A dataset for github repository
deduplication,” in Proceedings of the 17th international conference on
mining software repositories, 2020, pp. 523–527.

[30] A. Z. Broder, “On the resemblance and containment of documents,” in
Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.
No. 97TB100171). IEEE, 1997, pp. 21–29.

[31] D. Kocetkov, R. Li, L. Ben Allal, J. Li, C. Mou, C. Muñoz Ferrandis,
Y. Jernite, M. Mitchell, S. Hughes, T. Wolf, D. Bahdanau, L. von Werra,
and H. de Vries, “The stack: 3 tb of permissively licensed source code,”
Preprint, 2022.

[32] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster,
J. Phang, H. He, A. Thite, N. Nabeshima et al., “The pile: An
800gb dataset of diverse text for language modeling,” arXiv preprint
arXiv:2101.00027, 2020.

[33] W. K. Wong, D. Wu, H. Wang, Z. Li, Z. Liu, S. Wang, Q. Tang, S. Nie,
and S. Wu, “Decllm: Llm-augmented recompilable decompilation for
enabling programmatic use of decompiled code,” vol. 2, no. ISSTA,
2025.

[34] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case
of neural text degeneration,” in International Conference on Learning
Representations, 2020.

[35] E. K. Smith, E. Barr, C. Le Goues, and Y. Brun, “Is the cure worse than
the disease? Overfitting in automated program repair,” in Proceedings
of the 10th Joint Meeting of the European Software Engineering Con-
ference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2015, pp. 532–543.

[36] L. Dramko, C. Le Goues, and E. J. Schwartz, “Fast, fine-grained
equivalence checking for neural decompilers,” ACM Trans. Softw.
Eng. Methodol., Oct. 2025. [Online]. Available: https://doi.org/10.1145/
3772368

[37] W. Yang, S. Horwitz, and T. Reps, “Detecting program components with
equivalent behaviors,” University of Wisconsin-Madison Department of
Computer Sciences, Tech. Rep., 1989.

[38] C. Team, H. Zhao, J. Hui, J. Howland, N. Nguyen, S. Zuo, A. Hu,
C. A. Choquette-Choo, J. Shen, J. Kelley et al., “Codegemma: Open
code models based on gemma,” arXiv preprint arXiv:2406.11409, 2024.

[39] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora:
Efficient finetuning of quantized llms,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[40] B. Hui, J. Yang, Z. Cui, J. Yang, D. Liu, L. Zhang, T. Liu, J. Zhang,
B. Yu, K. Lu et al., “Qwen2. 5-coder technical report,” arXiv preprint
arXiv:2409.12186, 2024.

[41] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, R. Sauvestre, T. Remez et al., “Code llama: Open foundation
models for code,” arXiv preprint arXiv:2308.12950, 2023.

[42] X. Jin, J. Larson, W. Yang, and Z. Lin, “Binary code summarization:
Benchmarking chatgpt/gpt-4 and other large language models,” arXiv
preprint arXiv:2312.09601, 2023.

[43] M. Noonan, A. Loginov, and D. Cok, “Polymorphic type inference for
machine code,” SIGPLAN Not., vol. 51, no. 6, p. 27–41, Jun. 2016.
[Online]. Available: https://doi.org/10.1145/2980983.2908119

[44] I. Smith, “Binsub: The simple essence of polymorphic type inference
for machine code,” in Static Analysis, R. Giacobazzi and A. Gorla, Eds.
Cham: Springer Nature Switzerland, 2025, pp. 425–450.

[45] J. Bosamiya, M. Woo, and B. Parno, “{TRex}: Practical type reconstruc-
tion for binary code,” in 34th USENIX Security Symposium (USENIX
Security 25), 2025, pp. 6897–6915.

[46] Y. Wang, R. Liang, Y. Li, P. Hu, K. Chen, and B. Zhang, “Typeforge:
Synthesizing and selecting best-fit composite data types for stripped
binaries,” in 2025 IEEE Symposium on Security and Privacy (SP), 2025,
pp. 1–18.

[47] F. Wang and Y. Shoshitaishvili, “Angr - the next generation of binary
analysis,” in 2017 IEEE Cybersecurity Development (SecDev), 2017, pp.
8–9.

[48] M. Zou, A. Khan, R. Wu, H. Gao, A. Bianchi, and D. J. Tian, “D-Helix:
A generic decompiler testing framework using symbolic differentiation,”
in 33rd USENIX Security Symposium (USENIX Security 24), 2024, pp.
397–414.

[49] Q. Chen, J. Lacomis, E. J. Schwartz, G. Neubig, B. Vasilescu, and
C. Le Goues, “Varclr: Variable semantic representation pre-training
via contrastive learning,” in Proceedings of the 44th International
Conference on Software Engineering, 2022, pp. 2327–2339.

[50] W. Dong, J. Lin, R. Chang, and R. Wang, “Cadecff: Compiler-agnostic
deobfuscator of control flow flattening,” in Proceedings of the 13th Asia-
Pacific Symposium on Internetware, 2022, pp. 282–291.

[51] K. Coogan, G. Lu, and S. Debray, “Deobfuscation of virtualization-
obfuscated software: a semantics-based approach,” in Proceedings of
the 18th ACM conference on Computer and communications security,
2011, pp. 275–284.

[52] R. David, L. Coniglio, M. Ceccato et al., “Qsynth-a program synthesis
based approach for binary code deobfuscation,” in BAR 2020 Workshop,
2020.

[53] M. Liang, Z. Li, Q. Zeng, and Z. Fang, “Deobfuscation of virtualization-
obfuscated code through symbolic execution and compilation optimiza-
tion,” in Information and Communications Security: 19th International
Conference, ICICS 2017, Beijing, China, December 6-8, 2017, Proceed-
ings 19. Springer, 2018, pp. 313–324.

[54] R. Tofighi-Shirazi, M. Christofi, P. Elbaz-Vincent, and T.-H. Le, “Dose:
Deobfuscation based on semantic equivalence,” in Proceedings of the
8th Software Security, Protection, and Reverse Engineering Workshop,
2018, pp. 1–12.

[55] G. You, G. Kim, S. Han, M. Park, and S.-J. Cho, “Deoptfuscator:
Defeating advanced control-flow obfuscation using android runtime
(art),” IEEE Access, vol. 10, pp. 61 426–61 440, 2022.

[56] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you
need,” in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[57] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse engineer-
ing of types in binary programs,” 2011.

[58] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator
for reverse engineering data structures.” in Network and Distributed
System Security Symposium (NDSS), 2011.

[59] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in Proceedings of the 11th Annual
Information Security Symposium, 2010.

[60] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev, “Debin:
Predicting debug information in stripped binaries,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1667–1680.

[61] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” in International Conference on Learning Representa-
tions, 2017.

15

https://doi.org/10.1145/2896499
https://doi.org/10.1145/3520312.3534867
https://github.com/huzecong/ghcc
https://github.com/huzecong/ghcc
https://doi.org/10.1145/3772368
https://doi.org/10.1145/3772368
https://doi.org/10.1145/2980983.2908119
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

APPENDIX: TRAINING DETAILS

We used the following conventions for training models
in our experiments. When training on the full compilable
partition of the EXEBENCH dataset (for comparison with RE-
ALTYPE), we trained CodeQwen for 8 epochs, the 1-2 billion
parameter models for two epochs, and the largest models for
1 epoch. We find that the larger models need less finetuning
before they converge; they are inherently more capable. Si-
multaneously, larger models are more expensive to finetune.
Uniquely among the models we use, LLM4Decompile has
been pretrained on decompiled code, though it was trained on
code decompiled with Ghidra rather than Hex-Rays. We train
all models with a cosine learning rate scheduler [61] starting
from a learning rate of 5× 10−5. We use a batch size of 64.

For our function-context models, we configure the context
window—the maximum amount of tokens the model will
process at once—to be up to 2048 tokens, 1024 of which
is reserved for the original code tokens and UDT definitions.
We configure the context window size for IDIOMS models with
neighboring context to be up to 4096 tokens, 3072 of which is
the decompiled function and neighboring context and 1024 of
which is reserved for the original code and UDTs. We used a
standard train/validate/test approach in our initial experiments
to ensure that overfitting did not occur.

APPENDIX: OTHER TYPE RECOVERY METRICS

In our evaluation, we use type accuracy, and variants of it
restricted to UDTs, to measure the effectiveness of IDIOMS’
and other techniques’ type recovery capabilities. If the type
matches the type in the original code then it is correct; other-
wise, it is incorrect. (We perform the type name normalization
described in Section II-B so that each unique size/bitpat-
tern/signedness combination has a unique name.) For UDT
structural accuracy, we ignore identifier names for type tags
and fields and pay attention only to the types and orders of
the fields. However, many type recovery papers do not use
type accuracy. Instead, there are a variety of different metrics
that assess partial correctness which widely vary between
papers. For instance, of the four type recovery techniques
we compare with—Retypd [43], BinSub [44], TRex [45],
and TypeForge [46]—only two share a metric (Retypd and
BinSub), which is based on the internal type lattice that those
techniques use, and even then BinSub uses a modified version.
Choice of metric is especially impactful for UDTs, which are
particularly difficult to recover correctly but are particularly
important.

To better contextualize IDIOMS’ effectiveness in predicting
UDTs, we evaluate IDIOMS and the other type recovery
techniques on TypeForge’s [46] Composite Data Structure
Identification and Layout Recovery evaluation metrics for
UDTs.

Composite Data Structure Identification measures how well
a technique determines that a given variable is a composite
data structure: a UDT, an array, or a pointer to a composite

data structure. It is expressed in terms of precision and recall,
where

TP = is composite(p) ∧ is composite(g) (1)
FP = is composite(p) ∧ ¬is composite(g) (2)
FN = ¬is composite(p) ∧ is composite(g) (3)

and where p is a predicted type, g is a ground truth type, TP is
a true positive, FP a false positive, and FN a false negative.
Notably this metric does not consider the composition of the
composite types, just whether or not they are identified as
composite data structures.

Layout Recovery is defined only for structs, which make
up the vast majority of UDTs in practice. In layout recovery,
the structs are each represented as sets of 2-tuples, where the
first element of the tuple is the offset of the field, and the
second is the size of its type. If p represents such a set for the
predicted struct, and g represents such a set for the ground
truth struct, then the metrics’ precision and recall are given
by:

Precision =

∑
|p ∩ g|∑
|p|

(4)

Recall =
∑
|p ∩ g|∑
|g|

(5)

Notably, the identity of the type (e.g. float vs int) does not
matter, only the size of the type. Importantly, all pointers have
the same size on any given platform, regardless of the target
type to which they point.

The results are shown in Table V. Table Va shows scores
on composite data structure identification. IDIOMS generally
has the highest precision, recall, and F1 scores, though it
trails BinSub and Retypd slightly in precision at O0. BinSub
and Retypd, however, are very conservative—BinSub correctly
identifies at most 25% of composite types, and Retypd identi-
fies less than 50%. Thus, they achieve much lower F1 scores.
(BinSub and Retypd fail to produce output on a majority
of functions in coreutils-O3, which is the reason for their
especially low recall scores on that dataset.)

Table Vb shows scores on the layout recovery metric.
IDIOMS’ precision is relatively low because of the way in
which IDIOMS can be wrong. In particular, sometimes incor-
rect struct definitions feature degenerate repeating patterns of
the same fields over and over (see Section III-A), which can
greatly inflate the metric’s denominator, leading to a lower
score. While we filter out extra degenerate struct definitions
(which by nature are not used in the code), struct definition
predictions—those that are actually used in the code as the
type of a variable—can have extra degenerate repeating pat-
terns of fields. In other words, when IDIOMS is wrong, it can
be very wrong. On the whole, however, it is generally the best
at identifying fields’ types, and so receives the highest F1 score
except on coreutils-O0, where it is edged out by TypeForge
(42.9 vs 39.1). Both interprocedural techniques, IDIOMS and
TypeForge, greatly outperform the intraprocedural techniques,
which struggle with the scattered evidence problem. TRex,

16

(a) TypeForge-style Composite Data Structure Identification

coreutils-O0 coreutils-O3 realtype-O0 realtype-O3
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Idioms 63.2 83.9 72.1 60.8 75.0 67.1 88.6 83.6 86.0 88.5 78.0 82.9
BinSub 66.7 20.5 31.4 22.2 0.8 1.5 89.7 23.1 36.7 80.9 23.1 36.0
Retypd 77.0 45.7 57.3 57.1 3.2 6.0 86.9 38.9 53.7 82.2 28.7 42.5
TRex 56.3 44.1 49.5 31.9 42.1 36.3 81.4 42.5 55.8 71.2 50.4 59.0
TypeForge 47.9 42.2 44.9 39.4 34.1 36.6 – – – – – –

(b) TypeForge-style Struct Layout Recovery (On All Predictions)

coreutils-O0 coreutils-O3 realtype-O0 realtype-O3
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Idioms 41.3 37.1 39.1 42.5 30.4 35.4 42.7 26.1 32.4 41.9 23.3 30.0
BinSub 72.9 2.2 4.2 50.0 0.1 0.1 72.0 3.9 7.4 62.9 3.3 6.3
Retypd 65.6 6.8 12.4 80.0 0.2 0.5 79.7 8.3 15.1 76.3 5.8 10.7
TRex 69.6 3.3 6.4 47.1 2.0 3.8 72.0 4.5 8.4 61.3 3.3 6.3
TypeForge 78.8 29.5 42.9 60.7 18.7 28.6 – – – – – –

(c) TypeForge-style Struct Layout Recovery (On Only Predictions that are Structs)

coreutils-O0 coreutils-O3 realtype-O0 realtype-O3
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Idioms 41.3 45.2 43.1 42.5 43.4 42.9 42.7 37.4 39.9 41.9 37.7 39.7
BinSub 72.9 13.9 23.3 50.0 50.0 50.0 72.0 35.0 47.1 62.9 29.6 40.3
Retypd 65.6 23.4 34.5 80.0 8.9 16.0 79.7 46.5 58.8 76.3 43.2 55.2
TRex 69.6 32.5 44.3 47.1 32.4 38.4 72.0 59.7 65.3 61.3 48.1 53.9
TypeForge 78.8 61.3 68.9 60.7 44.2 51.2 – – – – – –

TABLE V: IDIOMS and the type recovery techniques from Section IV-E, evaluated on TypeForge’s metrics.

BinSub, and Retypd never score more than 10% on recall,
meaning they correctly identify the offsets and sizes of very
few fields across all struct variables.

Table Vc is effectively a combination of Tables Va and
Vb. This table shows layout recovery for only the variables
which are predicted structs: this version of the metric asks,
“given that a predicted variable is a struct, how likely is that
struct definition to match the ground truth (in terms of type
sizes at each offset)?” Even the intraprocedural techniques,
BinSub, Retypd, and TRex, do very well here because they
are extremely conservative in predicting variables structs, as
the low recall values in Tables Vb indicate. (Scores are higher
in Table Va because composite data structure identification
includes arrays.) By only predicting structs in the scenarios
where it is easiest to identify and predict them, they can score
well when the dataset is filtered this way. TypeForge, which is
also more conservative than IDIOMS in producing predictions
for UDTs (it identifies composite data structures at about half
the rate as IDIOMS, as shown in the recall columns of Table Va
and has lower recall scores in Table Vb) also benefits.

17

APPENDIX: SAMPLE PROMPT

The following is a sample IDIOMS prompt corresponding to
the example in Figure 1d.
__int64 __fastcall func4(__int64 a1, __int64 a2)
{
int v2; // eax
__int64 result; // rax
int v4; // [rsp+10h] [rbp-10h]
unsigned int v5; // [rsp+14h] [rbp-Ch]
__int64 i; // [rsp+18h] [rbp-8h]

v5 = func2(a1, a2);
v4 = 0;
for (i = func1(*(_QWORD *)(a1 + 8), v5); i; i = func1(*(_QWORD *)(a1 + 8), v5))
{
v2 = v4++;
if (v2 > *(_DWORD *)a1)
return 0xFFFFFFFFLL;
if (!(*(unsigned int (__fastcall **)(__int64, __int64))(a1 + 24))(i, a2))
break;
v5 = func3((_DWORD *)a1, v5);
}
if (i)
result = v5;
else
result = 0xFFFFFFFFLL;
return result;
}

__int64 __fastcall func2(__int64 a1, __int64 a2)
{
return (unsigned int)((*(int (__fastcall **)(__int64))(a1 + 16))

(a2) % *(_DWORD *)a1);
}

__int64 __fastcall func1(__int64 a1, int a2)
{
__int64 result; // rax

if (a2 < *(_DWORD *)a1)
result = *(_QWORD *)(*(_QWORD *)(a1 + 8) + 8LL * a2);
else
result = 0LL;
return result;
}

__int64 __fastcall func3(_DWORD *a1, int a2)
{
return (unsigned int)((a2 + 1) % *a1);
}

__int64 __fastcall func5(__int64 a1, __int64 a2)
{
__int64 result; // rax
int v3; // [rsp+1Ch] [rbp-4h]

v3 = func4(a1, a2);
if (v3 == -1)
result = 0LL;
else
result = func1(*(_QWORD *)(a1 + 8), v3);
return result;
}

__int64 __fastcall func8(__int64 a1, __int64 a2)
{
int i; // eax
__int64 v4; // [rsp+10h] [rbp-20h]
int v5; // [rsp+1Ch] [rbp-14h]
__int64 v6; // [rsp+20h] [rbp-10h]
int v7; // [rsp+2Ch] [rbp-4h]

v6 = *(_QWORD *)(a1 + 8);
v7 = func4(a1, a2);
if (v7 == -1)
return 0xFFFFFFFFLL;
for (i = func3((_DWORD *)a1, v7); ; i = func3((_DWORD *)a1, v7))
{
v5 = i;
v4 = func1(*(_QWORD *)(a1 + 8), i);
if (!v4 || !(unsigned int)func6(v5, (_DWORD *)a1, v4))
break;
func0(v6, v7, v4);
v7 = func3((_DWORD *)a1, v7);
}
--*(_DWORD *)(a1 + 4);
func0(v6, v7, 0LL);
return 0LL;
}

__int64 __fastcall func6(int a1, _DWORD *a2, __int64 a3)
{
__int64 result; // rax
int v4; // [rsp+2Ch] [rbp-4h]

v4 = func2((__int64)a2, a3);
if (v4 > a1)
result = (unsigned int)(a1 - v4 + *a2);
else
result = (unsigned int)(a1 - v4);
return result;
}

__int64 __fastcall func7(__int64 a1, __int64 a2)
{
int v3; // ebx
__int64 v4; // [rsp+0h] [rbp-40h]

__int64 v5; // [rsp+10h] [rbp-30h]
__int64 i; // [rsp+20h] [rbp-20h]
int v7; // [rsp+2Ch] [rbp-14h]

v4 = a2;
v7 = func2(a1, a2);
v5 = *(_QWORD *)(a1 + 8);
if (*(_DWORD *)(a1 + 4) == *(_DWORD *)a1)
return 0xFFFFFFFFLL;
for (i = func1(v5, v7); i; i = func1(v5, v7))
{
v3 = func6(v7, (_DWORD *)a1, i);
if (v3 < (int)func6(v7, (_DWORD *)a1, v4))
{
func0(*(_QWORD *)(a1 + 8), v7, v4);
v4 = i;
}
v7 = func3((_DWORD *)a1, v7);
}
func0(v5, v7, v4);
++*(_DWORD *)(a1 + 4);
return 0LL;
}

__int64 __fastcall func0(__int64 a1, int a2, __int64 a3)
{
while (a2 >= *(_DWORD *)a1)
{
if ((unsigned int)gap_extend(a1) == -1)
return 0xFFFFFFFFLL;
}

*(_QWORD *)(8LL * a2 + *(_QWORD *)(a1 + 8)) = a3;
return 0LL;
}##func4@@

18

	Introduction
	Approach
	Modeling
	Dataset

	Experimental Design
	Datasets and Processing
	Metrics
	Semantic preservation
	Code improvements

	Setup

	Results
	Decompilation performance (RQ1 and RQ2)
	RQ3: The Challenge of Real-World UDTs
	RQ4: Model Performance and Trends
	RQ5: The Role of Neighboring Context
	RQ6: Comparison With Type Recovery Tools

	Discussion
	Related work
	Conclusion
	References

