Artifact
Evaluated

ANDss

Available

Functional

ropbot: Reimaging
Code Reuse Attack Synthesis

Kyle Zeng', Moritz Schloegel*, Christopher Salls®
Adam Doupé’, Ruoyu Wang', Yan Shoshitaishvilif, Tiffany Bao'

tArizona State University, *CISPA Helmholtz Center for Information Security, $UC Santa Barbara
t{zengyhkyle, doupe, fishw, yans, thao)@asu.edu, ‘schloegel@cispa.de, Ssalls@ucsb.edu

Reproduced

Abstract—Code reuse attacks are one of the most crucial cor-
nerstones of modern memory corruption-based attacks. However,
the task of stitching gadgets together remains a time-consuming
and manual process. Plenty of research has been published over
the past decade that aims at automating this problem, but very
little has been adopted in practice. Solutions are often impractical
in terms of performance or supported architectures, or they fail
to generate a valid chain. A systematic analysis reveals they all
use a generate-and-test approach, where they first enumerate all
gadgets and then use symbolic execution or SMT solvers to reason
about which gadgets to combine into a chain. Unfortunately, this
approach scales exponentially to the number of available gadgets,
thus limiting scalability on larger binaries.

In this work, we revisit this fundamental strategy and propose
a new grouping of gadgets, which we call ROPBlock, that exhibit
one crucial difference to gadgets: ROPBlocks are guaranteed to
be chainable. We combine this notion of ROPBlock with a graph
search algorithm and propose a gadget chaining approach that
significantly improves performance compared to prior work. We
successfully reduce the time complexity of setting registers to
attacker-specified values from O(2") to O(n). This yields a 2-3
orders of magnitude speed-up in practice during chain genera-
tion. At the same time, ROPBlocks allow us to model complex
gadgets—such as those involving ret2csu or with conditional
branches—that most other approaches fail to consider by design.
And as ROPBlocks are architecture-agnostic, our approach can
be applied to diverse architectures.

Our prototype, ropbot, generates complex, real-world chains
invoking dup-dup-execve within 2.5s on average for all 37
binaries in our evaluation. All but one other approach fails to
generate any chain for this scenario. For mmap chains, a difficult
scenario that requires setting six register values, ropbot finds
chains for 5x more targets than the second-best technique. To
show its versatility, we evaluate ropbot on x64, MIPS, ARM, and
AArch64. We added RISC-V support in less than two hours by
adding twelve lines of code. Finally, we demonstrate that ropbot
outperforms all existing tools on their respective datasets.

I. INTRODUCTION

Code Reuse (CR) attacks, such as Return-Oriented Program-
ming (ROP) [1] or Jump-Oriented Programming (JOP) [2], are
exploitation techniques that can turn a control-flow hijacking

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240845
www.ndss-symposium.org

primitive into arbitrary code execution. Despite the presence
of advanced protections, such as Address Space Layout Ran-
domization (ASLR), Position-Independent Executable (PIE),
Control-Flow Integrity (CFI), and others, CR attacks remain
highly relevant and are becoming increasingly more powerful
with fewer requirements on the target programs. For example,
researchers have demonstrated ways to perform code reuse
attacks without the need for ret instructions [2]-[4], and
attackers can inject executable code into the target process
and utilize on-the-fly gadgets [5].

However, synthesizing CR attacks is not only for malicious
exploitation: it is a vital approach in the defender’s arsenal to
confirm exploitability, which is critical in prioritizing fixing
severe bugs. At the time of writing, 52 out of 70 exploits
accepted by Google’s KernelCTF Vulnerability Rewards Pro-
gram [6] use CR attacks to perform privilege escalation in the
Linux kernel to demonstrate the exploitability of the reported
vulnerabilities. Despite widespread use by both malicious and
benign actors, constructing a CR payload (called a chain)
is non-trivial, manual, and notoriously time-consuming. This
unnecessarily delays the process of exploitability verification
and requires domain experts. Hence, research has proposed
to automate the task of generating CR chains. Attempts to
solve this problem started with Q [7] and have seen much
follow-up research, resulting in JIT-ROP [5], LIMBO [8],
SGC [9], RiscyROP [10], Crackers [11], Arcanist [12] and
more. Surprisingly, no approach has achieved widespread
adoption in practice, and the problem of CR payload synthesis
remains.

When carefully studying the underlying techniques of these
tools, we find that all existing works rely on a generate-
and-test (GAT) [13] scheme: given a target goal (e.g., set
registers rax and rbx to attacker-specified values), they first
generate a list of gadgets that can potentially achieve the
goal and then use a heavyweight approach, e.g., symbolic
execution or SMT solvers, to verify whether the list of gadgets
can be chained and achieve the desired goal. This algorithm
results in a time complexity of O(2"), where n is the number
of gadgets. Thus, it does not scale well with large binaries
that have a large number of gadgets. As a balance between
capability and speed, most existing works [9]-[12] decide to
solve a sub-problem instead: they aim to find a chain that uses
gadgets up to a maximum number (V). We call this approach

bounded generate-and-test (BGAT). This algorithm has a time
complexity of O(n'Y), which leads to the dilemma of choosing
N. If N is too large, the algorithm will face state explosion;
if N is too small, the tool cannot find useful chains. Despite
known issues, the GAT scheme is still being used because
techniques must (1) ensure all selected gadgets are chainable
and (2) ensure that their effects do not conflict with each other
but satisfy the attacker’s goal.

With this observation in mind, we revisit the CR chain
generation problem from a different perspective: what if we
could group gadgets together in a way that guarantees chain-
ability? Such a grouping bypasses chainability issues, and we
can focus on finding groups that can satisfy the attack goal.

In this work, we present such a novel abstraction of gadgets
that we call ROPBlock: a grouping of gadgets that guarantees
chainability between ROPBlocks. This layer of abstraction
reduces the classic CR chain generation task, namely register
setting, into an O(n) graph search problem. In practice, it
proves to be 2-3 orders of magnitude faster than the GAT
approach widely used by all existing works [8]-[12], as
demonstrated in our large-scale evaluation. In addition to
performance improvements, working on the intermediate layer
of ROPBIocks allows us to model complex gadget types, such
as gadgets with conditional branches, ret2csu [14] gadgets, or
GOT gadgets [15]. This significantly enhances the capabilities
and real-world relevance of our technique. The concept of
ROPBIlock is architecture-agnostic (as is our algorithm to
search for chains), which allows our approach to be applied
to many architectures.

Based on our ROPBlock abstraction, we implemented a
research prototype named ropbot that can generate CR chains
in an architecture-agnostic manner. It is the first approach to
support x86, x64, MIPS, ARM, AArch64, and RISC-V for
both little-endian and big-endian. Our evaluation shows that
even on x64, an architecture that has been extensively tested in
the past, ropbot outperforms the state-of-the-art significantly
for every CR chain generation task on the datasets proposed by
prior work. For the task of generating execve chains, ropbot
achieves a success rate of 89.7%, compared to 33.1% of the
second-best technique, exrop. When trying to invoke mmap,
which requires setting six arguments, ropbot finds CR chains
for 5x targets compared to the second-best technique.

Beyond these evaluations, ropbot is ready for real-world
use and can generate complex CR chains. For example, it
can generate chains that invoke three function calls (dup-
dup-execve) in 3.7s on average. ropbot has already been
adopted in the real-world and is used by Google [16], [17],
multiple vulnerability research companies, and serves as the
foundation of some research prototypes [18], [19].

Contributions. We make the following key contributions:

o« We revisit the challenges of synthesizing code reuse
chains in an architecture-agnostic fashion to study the
issue of efficiently synthesizing CR chains.

« Based on this analysis, we propose a new approach to

understanding code reuse gadgets: an abstraction layer
called ROPBIlock that significantly reduces the complex-
ity of CR chain generation.

« Building on all datasets used in prior work, we release
a comprehensive dataset and evaluation framework that
can assist the evaluation for future CR techniques.

« We implement our ROPBlock approach into a tool called
ropbot, which, according to our evaluation, is able to
effectively synthesize CR chains faster than prior work,
on more/larger targets than prior work, and across more
architectures than prior work.

To foster future research, we open source the artifact of
ropbot at https://github.com/sefcom/ropbot.

II. CHALLENGES

This paper aims to solve the problem of automatically
synthesizing a code reuse chain: Given a vulnerable binary
program with a control flow hijacking primitive and a target
payload computation, our goal is to automatically generate
a CR payload that carries out the payload computation in
the vulnerable binary. Despite being around for more than a
decade, there are many open challenges towards automatically
synthesizing CR chains. We separate three different categories:
diverse gadget type support, cross-architecture gadget chain-
ing, and state exploration.

1) Diverse Gadget Types Support: Traditionally, CR attacks
were limited to ROP, where a gadget is a series of instructions
that ends in ret. As CR techniques evolved, more gadget
types have been discovered. Examples include the gadgets
used in the return-to-csu attack [14] and GOT gadgets [15].
These gadgets end with call [mem] or Jjmp [mem]
and exist extensively in programs; for example, the gad-
get mov rdx,rl3; mov rsi,rld4; mov edi,rl5d;
call [rl2+rbxx8] is inserted into all dynamically linked
ELF executables by compilers. Combined with another gadget
that sets the registers, it can be used to invoke a pointer in
memory with attacker-controlled arguments. Despite giving an
attacker extensive control, the required chaining of gadgets is
too complex and most automated gadget chaining techniques
currently ignore such gadgets ending in call [mem] en-
tirely [10], [20] or impose additional constraints [9], [11], [12],
such as needing an information leak.

One intuitive solution to automatically leverage such gad-
get types would be to dynamically generate them on-the-
fly, i.e., to write the needed gadgets into memory first, and
then invoke them. Although a presumably minor change, the
generate-and-test (GAT) algorithm underlying all state-of-the-
art works [8]-[12], [20] cannot handle it. Fundamentally, this
is because the first step is to generate a list of available gadgets,
which they need to ensure are unconditionally chainable.
For example, for pop rax; ret | pop rbx; ret, no
matter the values of rax and rbx, these two gadgets are
chainable. But first writing data to memory and then invoking
it as a gadget later creates a conditionally chainable situa-
tion. In other words, the list of gadgets may be chainable

https://github.com/sefcom/ropbot

block_A:
pop rax
Jjmp block_B

block_B:
ret

Listing 1: Gadget consisting of more than one basic block.

depending on other values in the chain. For example, con-
sider the following list of the gadgets: pop rax; ret|
pop rbx; ret| mov [rax], rbx; ret]| pop rcx;
ret| pop rdi; call [rcx].They are only chainable if
rax == rcx, and rcx is a gadget that cleans up the return
address pushed to stack by the call instruction. Without the
additional constraints, neither symbolic execution nor SMT
solvers can verify the feasibility of this chain, thus rejecting
it. As a result, existing works cannot model ret2csu and GOT
gadgets without additional primitives.

2) Gadget Identification across Architecture: Many existing
CR chaining tools [9], [21], [22] search for gadgets using
the Galileo Algorithm [1]: They first identify “anchor in-
structions”, such as ret or jmp on x86, and then search
backwards to find potential gadgets. However, there are a few
shortcomings associated with this approach:

o Overlooking gadgets: The intuition behind using such
“anchor instructions” is that gadgets usually end with
such instructions. However, not all potential gadgets
necessarily do. For example, although most gadgets
in ARM end with bx and pop pc, there is a sig-
nificant number of instruction sequences that contain
1dr pc, [spl, #<X>. While ignored by existing
works [21], [22], they should be considered as gadgets.

o Requiring domain knowledge and manual effort:

It is potentially possible to exhaustively collect all instruc-
tions that may serve as the end of a gadget. However, this
approach requires domain knowledge and manual effort
to support each architecture. Also, “anchor instructions”
may differ across different compilers or calling conven-
tions.

o Overlooking multi-block gadgets: Consider the example
in Listing 1, where block A ends in a direct jump to block
B, which ends in a ret. The reverse search algorithm will
only mark block B as a gadget. In reality, any execution
starting from block A will also end with ret, extending
the pool of available gadgets. The underlying issue here is
the reverse search starting from an “anchor instruction”.

How to find all potential gadgets with minimal or no domain
knowledge becomes even more challenging when attempting
to find gadgets for more than one architecture. Currently, most
tools support limited architectures.

3) Payload Chaining across Architectures: Payload chain-
ing is an essential functionality to achieve arbitrary exploita-
tion goals. For example, we may want to chain two payloads,
where the first writes “/bin/sh” into memory and the second
then invokes execve with “/bin/sh”. Ideally, we have an
architecture-agnostic solution to do so. However, previous
work either does not support payload chaining [9]-[12] or

supports only x86/x64 [20]. Here, chains can be just concate-
nated as strings due to its architectural design: for example,

to combine two chains, pop rax; ret | 0x41414141
and pop rbx; ret | 0x42424242, we can just con-
catenate them into pop rax; ret | 0x41414141
| pop rbx; ret | 0x42424242. This is no longer a

trivial task when considering other architectures, such as ARM
and AArch64. Consider the following ARM-based chain:

1dr r0, [sp,#4]; 1dr 1r, [sp]l, #4; add sp, #8;
bx 1lr | 0x0 | 0x41414141. This chain loads rO
from [sp+4], lr from [sp], and then increases sp

by 12. If we want to chain it with pop.w {rl, 1r};
bx 1lr | 0x42424242 to set both rO and rl, the fi-
nal chain needs to be like this: gadgetl | gadget2
| 0x41414141 | 0| 0x42424242, which is completely
different from the linear layout that we usually see on x86/x64.
Besides the difference in instruction sets, calling convention
is another issue making payload chaining hard on non-x86
architectures. On AArch64, functions end with jmp =30 (still
rewritten as ret). In other words, invoking a function and
continuing execution now involves two steps: set x30 to a
gadget we want to execute after the function call and then
invoke the function.

In summary, different architectures and calling conventions
make generic, cross-architecture payload chaining challenging.

III. DESIGN

We design ropbot to overcome these challenges. Our de-
sign’s central component is a new abstraction layer, ROP-
Blocks, which essentially is a special grouping of gadgets,
such that any ROPBlock is guaranteed to be chainable. We
then build a CR chain on top of ROPBlocks, deviating
from the common wisdom that “chains consist of gadgets”.
In the following, we first discuss our threat model, define
ROPBIlocks, and then discuss how to find them in binaries
and use graph-based search algorithms to generate CR chains.

A. Threat Model

We assume a threat model aligned to real attacks, where
attackers control only the payload placed on the stack. This is
the same threat model as exrop [20] uses. We specifically do
not follow prior work here that assumes an attacker addition-
ally knows the location of the payload [9], [12] or can even
set arbitrary memory values [11] before executing the chain.
These assumptions may not hold for real-world attacks and
require additional primitives. Besides this difference, ropbot
shares the same assumption as other tools: attackers know the
address of executable code (by bypassing ASLR or disabling
PIE) and backward-edge CFI (e.g., PAC, CET) is absent.

B. The Concept of ROPBlocks

ROPBIlocks are our way of grouping gadgets, with their key
property being guaranteed chainability. We design them based
on an observation we made across CR chains, a concept we
call stack patch.

rax next_pc

~ __—

pop rax; ret

Fig. 1: Stack patch of a x64 gadget.

Stack Patch. Studying CR attacks, we observe that they
consist of “frames”, akin to function stack frames. To avoid
ambiguity, we call them stack patches in the context of CR
chains. More precisely, we define a stack patch as the data
on the stack, bounded by the stack pointer before and after
executing the gadget. The change of the stack pointer before
and after gadget execution is referred to as stack change. In
Figure 1, the gadget pop rax; ret is associated with a
stack patch of 16 bytes (and the stack change is 16). During
execution, it will pop the first 8 bytes into rax and then pop
the second 8 bytes into PC, which enables gadget chaining.
Interestingly, a gadget does not guarantee a positive stack
change (e.g., xor rax, rax; call rbx), which implies
there are gadgets without a stack patch. As an attacker controls
solely the stack patch, these gadgets introduce additional
constraints for chaining. To avoid the associated complexity,
we propose a new concept, ROPBlocks.
ROPBIlock. We say a gadget (or a sequence of gadgets) is
a ROPBlock if and only if it

« has a positive stack change (thus having a stack patch),
« takes the PC from the stack patch, and
« does not conditionally branch.

By definition, a ROPBlock loads the PC from the stack patch,
a region controlled by the attacker, thus, it is guaranteed to
be chainable with any other ROPBlock. With this in mind,
it is clear that some gadgets are ROPBlocks by definition
(called self-contained gadgets), while others are not. For
example, pop rax; ret is a ROPBlock while pop rbx;
jmp rax is not (it takes the PC from rax). cmp rax, 1;
jnz <label>; pop rbx; ret is not a ROPBlock either
due to the conditional branch.

Crucially, however, gadgets that are not self-contained,
i.e., that are no ROPBlocks on their own, can be turned
into ROPBlocks by combining them with other ROPBlocks.
For example, the gadget cmp rax, 1; jnz <label>;
pop rbx; ret is not a ROPBlock. But if combined with a
pop rax; ret | 1 chain, it will no longer conditionally
branch (but instead always take the same branch, as rax is
set to 1), thus becoming a ROPBlock.

We emphasize that part of a ROPBlock’s properties is an
implicit requirement in many past works. For example, SGC,
exrop, and Crackers filter out gadgets containing conditional
branches. RiscyROP and exrop do not utilize gadgets ending
with call [mem] or jmp [mem] because the PC does not
come from the stack.

C. Workflow

With the concept of ROPBlocks in mind, we focus on
ropbot’s workflow that consists of three steps:

1) Collect ROPBlocks by finding gadgets and identifying
self-contained gadgets as the initial set of ROPBlocks.

2) Generate more ROPBlocks by turning non-self-contained
gadgets into ROPBlocks by combining them with existing
ROPBIlocks.

3) Use a graph search-based algorithm to find a list of
ROPBIlocks that can achieve the attacker goal and turn
it into a chain. This requires ROPBlocks to be chainable.

D. ROPBlock Collection

In the first step, ropbot finds gadgets in the target binary and
identifies gadgets that are already ROPBlocks (self-contained
gadgets).

1) Gadget Identification: To find gadgets in the target
binary, we propose an algorithm that differs from the Galileo
algorithm used by all prior work. We want to identify gadgets
without heuristics or manually crafted “anchor instructions”.

In this work, a gadget is a sequence of instructions that
exists in the target binary, executes in order, and can potentially
set the next PC to a fully attacker-controlled value. The relaxed
notion of potentially setting the PC allows for including
conditional branches. We implement our gadget identification
using symbolic execution: given an executable address, ropbot
symbolically executes a fully symbolized state (symbolized
register, stack, and memory) starting from that address and
checks whether the code moves any symbolic value into the
PC. If so, it marks the starting address with that execution
history as a gadget (one starting address may lead to different
execution histories).

This new gadget identification algorithm has multiple ad-
vantages:

o It is architecture-agnostic and does not
architecture-specific domain knowledge.

o It allows us to find all instruction sequences that can be
potentially used to an attacker’s advantage to execute pay-
load logic while maintaining the control flow, including
ret2csu gadgets and GOT gadgets.

o It can find gadgets spanning multiple basic blocks,
whereas the Galileo Algorithm is limited to one block.
This leads to more usable gadgets.

require

When given a binary, ropbot exhaustively analyzes all
executable addresses to find all potential gadgets using the
aforementioned gadget identification algorithm. This algorithm
is slow due to the speed of symbolic execution. To mitigate the
impact, we design a caching mechanism. Essentially, we only
analyze position-independent gadgets once and cache them.
To determine whether a gadget is position-independent, we
move the bytes into another address and see whether constants
in the gadget change. For example, pop rax; ret will
be considered a position-independent gadget because nothing
changes if we move the bytes to another address. However,

lea rax, [rip+0x100]; jmp rax will be considered

a position-dependent gadget, because [rip+0x100] will
be resolved into another constant when the gadget is placed
at a different address. Thus, 1lea rax, [rip+0x100];
jmp rax will not be cached, allowing us to reach different
code regions.

2) Gadget Effect Analysis: For each found gadget, we
create a fully symbolized state (symbolized registers, stack,
and memory) and execute the gadget. By tracking the symbolic
execution history, we can track the memory accesses and con-
ditional branch information about the gadgets. By comparing
the symbolic states before and after executing the gadget, we
can also obtain the gadget’s effects on registers.

Specifically, the stack change is calculated by subtracting
the stack pointers, which is important for building stack
patches later. We also track the register popping, mov-
ing, and changing behaviors. Importantly, we also track
it when registers are set to concrete values, such as in
xor rdx, rdx; ret, where rdx is set to 0. This is
important to generate chains for tasks that want to set rdx
to 0, such as execve ("/bin/sh", NULL, NULL).

Notice that all these “popping”, “moving”,
or ‘“changing” actions are gadget effects, not
instructions, and thus architecture-agnostic. Although
push rax; pop rbx; ret involves only push
and pop, it will be considered a register move
from rax to rbx. Also, “register pop” here means
that the register values come from the stack (e.g.,
mov rax, [rsp+8]; add rsp, 0x10; ret), SO

gadgets do not need to have a literal “pop” instruction.
3) Gadget Categorization: Based on the control flow tran-
sition types, we categorize gadgets into three types:
pop_pc. The next PC value comes from the stack, e.g., ret
orldr 1r, [spl,#4;add sp, #8;bx 1r.Notice that all
self-contained gadgets are pop_pc gadgets by definition
(taking the PC from the stack patch).
jmp_reg. The next PC value comes from another register,
e.g., jmp rax.
jmp_mem. The next PC value comes from a specific
memory location (e.g., call [rax+8xr12] inret2csu). By
definition, ret2csu and GOT gadgets are all jmp_mem gadgets.
Note that we categorize gadgets by effects, not instructions.
Even though a gadget such as pop rax; jmp rax ends
with a jump to registers, it is considered as pop_pc, because
at the end of the execution, the PC comes from the stack.
Finally, we identify self-contained gadgets (pop_pc gadgets
with no conditional branches) as the initial list of ROPBlocks.

E. ROPBlock Generation: Iterative Graph Optimization

In this step, we aim to generate more usable ROPBlocks
by turning non-self-contained gadgets into ROPBlocks. This is
achieved by utilizing a Register Moving Graph and the Gadget
Normalization procedure.

At this point, we already have some usable ROPBlocks (the
self-contained gadgets). This allows us to bootstrap and create
a minimally functional chain builder and perform simple tasks,

Fig. 2: Register Moving Graph.

pop rax; pop rbx; ret

<buffer1> memory
<ptr> writer
mov gword ptr [rbx], rax; ret
Y
pop r9; pop rbp; call qword ptr [rbp+0x48] .
main
<value> adaet
<buffer2> gadg
Y
op rcx; ret stack
Pop Tex; shifter

Fig. 3: How ropbot normalizes a jmp_mem gadget.

such as setting registers or writing to memory using the same
algorithm described in Section III-F.

1) Register Moving Graph: We then build a directed graph
modelling the register moving effect. As shown in Figure 2,
we consider each register a node in the graph. We add an
edge (Reg A, Reg B) if and only if there are ROPBlocks
that move register A to register B. By using this graph,
we can decide whether there exists a chain that can move
any register to another. For example, in Figure 2, the chain
builder can tell there is a chain push rax; pop rbx; ret
| mov rl2, rbx; ret that moves rax into r12. Note
that edges are associated with ROPBlocks, so they can be
easily chained together into a new ROPBlock (§III-F1).

2) Gadget Normalization: Then, we check whether any
non-self-contained gadget provides unique capabilities (i.e.,
sets a register that all existing ROPBlocks cannot set, or it
performs a unique register move); if yes, we “normalize” them
into ROPBlock for later use. Here, the goal is to group the
non-self-contained gadget with other ROPBlocks into a new
ROPBIlock while maintaining its unique capability.

The gadget normalization procedure is as follows:

o If a gadget is a jmp_reg or jmp_mem gadget, prepend
it with a ROPBlock that can set the target register or
write to the memory (e.g., prepend pop rax; ret to
pop rbx; jmp rax to gain the capability of setting
rbx).

o If a gadget has a non-positive stack change or takes
PC outside its stack patch, chain it with a stack shift-

ing ROPBIlock (e.g., chain pop rax; call rax with
add rsp, 8; ret).
« If a gadget contains conditional branches, prepend it with

a ROPBIlock that sets the correct constraints.

The result of the procedure described above is a list of gad-
gets and corresponding constraints (e.g., where to write when
normalizing jmp_mem gadgets). We turn the list of gadgets
into a ROPBlock using symbolic execution. Specifically, we
first create a fully symbolized state and symbolically execute
the first gadget. When the execution finishes, the state will be
at an “unconstrained” state because the PC comes from user-
controlled data. Note that the gadget normalization process
ensures that all the PC values can only come from the stack
(if not, it will be prepended with a ROPBlock to set the regis-
ter/memory, etc). Then, we can constrain the state PC to be the
next gadget’s address, which is essentially setting the correct
stack data to the address. During symbolic execution, we apply
the chain constraints so that the execution will only follow the
chainable state. For example, when angr observes a write to a
symbolic address, we concretize the variable using values from
the provided constraints. By finishing symbolically executing
the list of gadgets, we obtain a ROPBlock together with its
stack patch. After this process, we also perform the effect
analysis on the generated ROPBlock, just as for the gadget
effect. As a result, if there are any conflicting constraints in the
ROPBIlock, they will be captured during symbolic execution
and reflected in the ROPBlock effect result.

The symbolic execution step essentially embeds the con-
straints into each ROPBlock so that it can be chained inde-
pendently of other ROPBlocks, which ensures that ROPBlocks
are unconditionally chainable. For example, we can normal-
ize cmp rax, 1l; Jjne <label>; pop rbx; ret into
pop rax; ret | 1 | cmp rax, 1l;jne <label>;
pop rbx; ret, which explicitly satisfies the constraint of
rax == 1, so that the whole ROPBlock can execute cor-
rectly and deterministically without the help of other gadgets.

In Figure 3, we show how ropbot normalizes a pop r9;
pop rbp; call [rbp+0x48] gadget to gain the unique
capability of setting r9 while maintaining the control-flow.
We first prepend the main gadget with a memory writing
chain and write the address of the stack shifter there. Then,
we symbolically step through the main gadget, which sets
r9 to <value>, sets rbp to buffer2, and then invokes
[rbp+0x48]. Here, ropbot will notice the symbolic read
of the PC and redirect it to the previous symbolic write,
adding the constraint bufferl==buffer2+0x48. Finally,
the chain will execute the stack shifter, clean up the return
address pushed onto the stack, and move fresh unconstrained
stack data into the PC, thus maintaining the control-flow.
After the normalization process, the whole sequence becomes
a ROPBlock that has the ability to set r9.

By using the gadget normalization procedure, we turn gad-
gets that are hard to work with but provide unique capabilities
into ROPBlocks so that they are usable by our chain builder.
However, not all gadgets can be normalized if they require

gadget setting capabilities that our chain builder does not
currently possess.

3) Graph Optimization: Then, we utilize the Register Mov-
ing Graph to gain capabilities in terms of setting new registers.
We use the graph to check whether there is any path from a
register that we can set (e.g., Reg A) to a register we cannot
set (e.g., Reg B). If such a path exists, we can combine the
ROPBIlock that sets Reg A and the ROPBlock that move Reg
A to Reg B, and thus we obtain a new ROPBlock that can set
Reg B.

As such, new edges in the Register Moving Graph may
lead to new register setting capability; new register setting ca-
pability may enable the normalization of gadgets that provide
unique capabilities. So, we perform the optimization iteratively
until we can no longer normalize any gadget that provides
unique capabilities.

F. Chain Generation: Graph Search

Finally, we need to craft a chain that fulfills the attacker’s
goals. We split the chain building task into sub-tasks: Reg-
ister Setting, Register Moving, Function Invocation (Syscall
Invocation), Memory Writing, and Stack Shifting.

Among them, Memory Writing and Stack Shifting are
simple. Memory Writing involves choosing a ROPBlock that
performs a memory write at a symbolic location. By correctly
setting the registers using Register Setting capability, we can
ensure that when chained with the register setting chain,
the ROPBlock can perform a controlled write at the desired
address. Stack Shifting is simply shifting the stack pointer
without clobbering the existing state by choosing a ROPBlock
that has a wanted stack change value. This module is needed
for normalizing gadgets for stack cleaning as demonstrated in
Figure 3.

Register Moving can be performed by using the Register
Moving Graph built during graph optimization.

1) Payload Chaining: ropbot’s Chain Builder only works
with ROPBlocks. By definition, a ROPBlock has positive stack
changes, thus it has a stack patch. The abstraction of the
stack patch makes payload chaining naturally an easy task.
As shown in Figure 4, it consists of two steps: 1. Concatenate
the stack patches of two blocks, and 2. fix up the next_pc
value in the stack patch to chain the two ROPBlocks. This
abstraction makes it easy to generate CR chains that are not
linear. One notable property of this payload chaining process
is that the chaining result is also a ROPBlock, making it easy
for further manipulation.

In this model, Return-Oriented-Programming on x86 be-
comes a special case where all gadgets/ROPBlocks have
next_pc values in the last position of their stack patches
(because ret moves the last value in the stack patch to PC).

2) Register Setting: Setting registers is the core challenge
of CR chain generation. In our work, we consider three ways
of setting registers:

o Register pop. This is the most common way of setting
registers, e.g., pop rax; ret. In our framework, we

0 4 8 12 0 4 8
next_pc r0 _ r1 next_pc
Idr rO, [sp, #41; Idr Ir, [sp], #4; add sp, #8; bx Ir pop.w {r1, Ir}; bx Ir
(gadget2)

patch concatenation

(gadget1) @

0 4 8 12 16 20
next_pc1 r0 _ r1 next_pc2
gadget1 gadget2
@ fixup
0 4 8 12 16 20
next_pc1 r0 _ r1 next_pc2

gadget1 gadget2
@finalize

0 4 8 12 16 20 24

gadget1 gadget2 r0 r1

next_pc

Fig. 4: The process of chaining two ROPBlocks.

pop rbx; ret m pop rcx; ret

001

mov rax, qword ptr [rsp];
add rsp, 8; pop rbx; ret

v
> M

pop rcx; ret

pop rax; ret
Fig. 5: Register Setting Graph for setting {rax,rbx,rcx}.

consider all memory loads from the stack as “register
pop”, including mov rbx, [rsp+0x10].

« Register moves. It is common that not all registers can be
set through register popping due to the lack of gadgets or
constraints on inputs (e.g., bad bytes). In those cases, we
can set the value in one register using register pop and
then move it to the target register. Gadgets with unique
register moving capabilities will be turned into register
pop ROPBIlocks during graph optimization.

o Concrete values. In cases where a value cannot be
set through register popping at all, we may resort to
using existing concrete values in gadgets (e.g., use
Xor rax, rax; rettoset(Owhenpop rax; ret
does not exist).

The core idea of our solution is to build a directed graph
to represent the program state transition and find a path that
can set all the requested registers. During Iterative Graph
Optimization (§11I-E), we gain the ability to set each individual

register (in the form of register pops); we now need to find
the shortest chain for a given set of registers with no conflict.

With all the ROPBlocks, we build a directed graph where
each node represents the state of register control. Specifically,
when a user wants to set rax, rbx, rcx, each node is
a 3-boolean tuple that represents whether each register is al-
ready in our control. For example, (True, False, True)
(written as 101), in the order of rax, rbx, rcx, is one of
the nodes that means rax and rcx are under our control
(can be popped), while rbx is not. Each edge means there
is at least one ROPBlock that transitions from one state to
another. Register pop ROPBlocks can clearly lead to state
transitions, thus are added as edges in the graph. Besides them,
we also check ROPBlocks with concrete value effects. For
example, if the request is to set rdx to 0, this step will add
xor rdx, rdx; ret as an edge because this ROPBlock
can lead to the correct register control. As a result, our
algorithm can utilize all three ways of setting registers (register
move gadgets will be turned into register pop ROPBlocks
during graph optimization) in a uniform way.

During the graph-building process, we model all ROPBlocks
precisely. Besides their register pop effects and concrete val-
ues, we also check whether they clobber any wanted regis-
ters. For example, the pop rcx; xchg rax, rsi; ret
ROPBIlock sets rcx but clobbers rax. So it will add an edge
100-001 (in the order of rax, rbx, rcx) to the graph (besides
other edges such as 000-001).

Now, the task of finding a chain that sets all the registers
becomes finding a path from the Node representing no register
control to the Node representing full register control. In the
above example, it means finding a path from Node 000 to
Node 111, which is visualized in Figure 5.

This graph takes O(n) to build, where n is the number of
ROPBIlocks, because we need to go through all ROPBlocks
and add corresponding edges if needed. And it takes O(2%)
to solve, where k is the number of registers to set: Let V' be
the number of nodes in the graph, then V = 2F. To solve
the shortest path problem in the graph takes O(V?), which is
O(22F). Since k is small and constant in practice, O(2%) is
negligible. As a result, the problem of register setting takes
O(n) to solve using this graph search.

3) Function/Syscall Invocation: The goal of CR chains is to
invoke functions or system calls such as mprotect (inject
shellcode) or execve (execute “/bin/sh”). But this task is
non-trivial across architectures due to the variety of calling
conventions out there.

Here, we design a calling-convention-agnostic algorithm
to handle function and syscall invocation by introducing an
Invocation pseudo-gadget, a gadget that invokes a function or
syscall. Essentially, the Invocation gadget is a pseudo-gadget
that has different gadget effects under different architectures
and calling convention configurations.

For function invocation, the Invocation gadget is a pseudo-
gadget that points to the target function’s address. Notice
that, depending on the architecture and calling convention,
an Invocation gadget may or may not be self-contained. For

example, on x64, a function Invocation gadget is as simple
as the address of the function itself with a stack change of
8, and it is self-contained (functions end with ret, which is
equivalent to pop pc). But on AArch64, it is no longer self-
contained because its stack change is zero and functions end
with ret, which is equivalent to jmp x30. This means that
the function Invocation pseudo-gadget is a “ymp_reg” gadget.
For syscalls, the Invocation gadget is just a normal gadget
that invokes syscalls (e.g., syscall; ret). Note that we
identify system call invocation by checking the basic block’s
jump kind (syscalls are marked as I jk_Sys in Valgrind [23]’s
vex library, which is used internally by angr). So we do not
rely on architecture-specific instruction identification.

With the Invocation gadget, we leverage the calling conven-
tion analysis in angr to map function arguments passed by
users to registers and stack data. We can pass stack arguments
as we control the stack and we utilize the previously described
Register Setting capability to set register arguments. Then,
we append the Invocation gadget. Finally, we normalize the
gadgets to make the whole chain a ROPBlock. For example, on
AArch64, a function Invocation gadget is a jmp_reg gadget,
so we normalize it by setting x30 before setting arguments and
invoking the function. We do this for all calling conventions
that return to a register. On x86, function Invocation needs to
clean up the arguments on the stack, which can be done by
setting the next_pc to a stack-shifting gadget. We infer the
need for it by checking the number of stack arguments.

Note that the effects of Invocation gadgets are inferred from
angr’s calling convention analysis (angr can analyze func-
tion and syscall calling conventions based on the architecture
and operating systems), no manual effort is needed to craft the
Invocation gadget on a per-architecture basis.

G. Scalability

Although ropbot uses symbolic execution in its design, we
limit its use to simple tasks (i.e., gadget effect analysis and
turning lists of gadgets into ROPBlock). We do not utilize
it for exploration, thus avoiding the notorious state explosion
problem. This is evidenced by the fact that ropbot works for
the Linux kernel, Chromium, and Firefox (Table V), three of
the largest binaries.

H. Implementation

We implemented our prototype ropbot in 7,478 lines of
Python code, using angr as the symbolic executor and
networkx as the graph library. The overall development
lasted for around 10 years, but concepts presented in this
paper, including ROPBlock, gadget identification algorithm,
and the graph search algorithm were implemented within three
months. Overall, ropbot is architecture-agnostic: To demon-
strate its extensibility, we added support for RISC-V: The
whole development process only took us two hours, involved
changing 12 lines in ropbot, 88 lines in angr, and 152 lines in
archinfo, one of angr’s dependencies. The changes were
mostly to fix the wrong RISC-V specification used by angr

and archinfo. The 12 lines of changes to ropbot are trivial
changes, only for declaring RISC-V support.

IV. EVALUATION

In the following, we evaluate ropbot to determine its ef-
ficiency and effectiveness in generating CR gadget chains.
We first discuss our experimental setup, then conduct an
experiment on x64, other architectures, and study two cases,
highlighting how ropbot performs on the Linux kernel and
across security-critical, widely used applications. Following
our comparative evaluation, we conduct ablation studies to
understand the performance improvement and new gadgets
that only ropbot can use.

A. Experimental Setup

We compare ropbot against all existing open-source CR
chain generation tools. We now briefly introduce these tools,
with details and notable differences listed in Table I.

1) State-of-the-art Tools: We identify five open-source
works relevant to our evaluation.

SGC [9] encodes all potential gadgets and their combinations
as SMT formula that is then passed to an SMT solver. As
many gadgets incur high solving overhead, SGC samples some
gadgets in each round (generate) and checks if a valid chain
can be formed for this subset (test).

Exrop [20] uses ROPGadget [21] to find gadgets statically
and then uses Triton [24] to analyze the registers each gadget
can set. It then enumerates all potential gadget lists that can
satisfy a register setting request and uses Triton to verify the
feasibility of the chain.

RiscyROP [10] uses an algorithm similar to exrop’s with an
improved enumeration algorithm so that valid chains are more
likely to appear early in the enumeration.

Crackers [11] uses an SMT-based algorithm in an SGC-like
fashion. Instead of directly encoding all native instructions in
gadgets as SMT formula, it lifts native instructions to Ghidra’s
P-Code first and encodes P-Code. This extra lifting process
provides the potential of working for different architectures.
Arcanist [12] was published concurrently to Crackers and
essentially proposes the same algorithm and architecture.
Though, it lifts native instructions to Binary Ninja Interme-
diate Language (BNIL) instead of Ghidra’s P-Code and then
encodes BNIL to SMT formulas.

When studying them (see Table I), we find that all ex-
cept RiscyROP focus on x64, SGC and Arcanist additionally
support x86, and Arcanist supports ARM as well. RiscyROP
works only for AArch64 and RISC-V. All except Crackers
and Arcanist allow to output the payload as bytes. Support for
more complex gadgets, such as ret2csu ones, ones containing
conditional branches, or ones spanning multiple blocks, is
generally bad with exception of RiscyROP. Similarly, only
exrop allows chaining multiple payloads, which is a conve-
nience in practice. Interestingly, half of the approaches (SGC,
Crackers, and Arcanist) sample from all potential gadgets
before constructing a chain, increasing performance at cost
of accuracy.

TABLE I: Capabilities and characteristics of open-source CR chaining tools. (B)GAT refers to the (bounded) generate-and-test
algorithm. Attacker needs to: control Stack content (S), know stack location (L), control arbitrary memory values (Mem).

SGC [9] exrop [20] RiscyROP [10] Crackers [11] Arcanist [12] ropbot

Architectures x86/x64 x64 AArch64/RISC-V x64* x86/x64/ARM Multi

Algorithm BGAT GAT BGAT BGAT BGAT Graph
Byte Generation v v /1 X X v
Conditional Branch X X v X v v
Multi-Block Gadget X X v X X v
Return-to-csu xt X X X8 xt v
Payload Chaining X v X X X v
Uses Full Gadget Space X v v X X v
Attacker Requirements S,L S S S, L, Mem S S

* Crackers may support multiple architectures but was only evaluated on x64.

1 RiscyROP can output payload in bytes only after we modified it.

1 SGC and Arcanist can utilize ret2csu gadgets if the address of the payload on stack is known.

§ Crackers can utilize ret2csu gadgets only if all memory is addressable and controlled by attackers.

2) Attacker Capabilities: In line with our threat model, our
evaluation assumes attackers do not control the initial program
state except for the stack, where the attacker can place a gadget
chain of arbitrary length. We use the same assumptions across
all tools, with one exception: SGC and Arcanist additionally
require knowing the location of the payload, which we provide.
This gives SGC and Arcanist an unfair advantage, as other
tools do not require or use this information.

3) Chain Verification: Generating a gadget alone is no
guarantee that it fulfills attacker guarantees, as outlined in
prior work [8], [9]. These chains can lead to crashes by
accessing memory at an unconstrained address or lead to
non-deterministic results when using gadgets with conditional
jumps but failing to satisfy the jump constraints. To ensure
correctness, we developed a symbolic verification framework
on top of angr that simulates a control-flow hijacking sce-
nario and loads the bytes produced by each tool into the
symbolic state and starts execution. It considers a chain correct
only if the execution is deterministic, all memory accesses
are constrained to mapped regions, and the chain achieves
the expected outcome (e.g., execute an execve syscall). As
Crackers and Arcanist cannot generate CR chains in byte
form, we are unable to verify their generated chains; we
conservatively use the number of generated chains instead.

4) Harware Setup & Parameters: All experiments were
performed on a machine with 2 Intel (R) Xeon (R) CPU
E5-2670 v2 @ 2.50GHz CPUs (20 cores, 40 threads,
frequency scaling enabled) and 256GB RAM@ 1600MHz,
with swap disabled All tools support concurrent computation
and were configured to fully utilize the 40 cores. Following
Crackers [11], we set a timeout of 30 minutes for each target.
Time is measured by inserting Python time.time () calls
before and after each target task.

B. x64 Evaluation

We first evaluate the tools on x64, as it is the most widely
tested architecture. We first present our dataset and tasks,
before then discussing results shown in Table II.

Dataset. Our dataset consists of 1016 random ALLSTAR [25]
binaries used in Crackers and 6 binaries used in SGC. Note

that the ALLSTAR dataset comprises real-world binaries from
Debian. In total, we obtain a large and diverse set of 1022
binaries.

Task 1: facefeed. The first task is to invoke a function with
three arguments: Oxfacefeed (Oxdeadbeef, 0x40, 0x7b),
modeling Crackers’ evaluation. We use this task as a baseline
to test each CR chain generation tool’s functionality and
perform it for all 1022 binaries.

Task 2: mmap. We target mmap with six arguments:
mmap (0x41414000, 0x1000, PROT_READ | PROT_WRITE |
PROT_EXEC, MAP_ANON | MAP_PRIVATE | MAP_FIXED, -1,
0), following SGC’s evaluation. We use this task to stress
each tool’s ability to generate chains that set multiple registers.
This chain is relevant in practice because one can use this
function call to inject shellcode (combined with a memory
write) and obtain arbitrary code execution. We perform this
task on binaries containing mmap in the PLT, which is the
case for only 64 of our binaries.

Task 3: execve. The third task is to invoke the
execve ("/bin/sh", NULL, NULL) system call, following
SGC’s evaluation. This checks each tool’s ability to invoke
system calls and write memory (binaries usually do not contain
the “/bin/sh” string). We perform this task on all binaries with
at least one “syscall” instruction, which results in 272 binaries.

Task 4: Full chain. Then, the last task is invoking a
full chain: dup2 (3, 0)+dup2 (3, 1)+execve ("/bin/sh",
NULL, NULL). This CR chain is commonly used in exploiting
servers, known as the socket reuse payload [26]. We use it to
test the tools’ ability to generate realistic CR chains, and we
run it on binaries containing both the dup2 function call and
“syscall” instructions, resulting in 37 binaries.

1) Results: For this dataset and these four scenarios, we
study how many chains can be generated, how many of
them can be verified (success), and how many are invalid
(false positives) or the tool hit the 30-minute timeout before
generation. We also track the time per stage (gadget finding,
for ropbot graph optimization, and chain-time) as well as the
time it took the tool to process all binaries in the dataset (fotal
time). As shown in Table II, ropbot not only outperforms all

TABLE II: Chain generation capability for x64 binaries, detailing Successful, verified chains out of Generated ones (invalid
chains are False Positives and Timeouts are cases where no chain was produced in 30 minutes), average time taken per stage
(finding gadgets, optionally optimizing the graph, and generating a chain), and Total Time needed to process full dataset.

Avg Time per Stage

Tool Success Generated False Positives Timeout Total Time
Gadget Finding Optimization = Chaining
facefeed (total: 1022 binaries)
ropbot 635 635 0% 0% 11.5s 6.9s 0.4s 5.3h
exrop 357 358 0.3% 4.1% 9.8s - 72.8s 23.4h
SGC 616 633 3.8% 14.8% 225.3s - 312.6s 130.9h
Crackers - 353%* - 3.9% 24.4s - 237.7s 72.4h
Arcanist - 416 - 20.2% 180.8s - 457.2s 167.4h
mmap (total: 64 binaries)
ropbot 21 21 0% 0% 25.3s 11.4s 1.2s 0.7h
exrop 4 4 0% 10.9% 56.7s - 199.9s 4.5h
SGC 0 0 - 28.1% 932.1s - 240.3s 17.5h
Crackers - 0 - 62.5% 179.8s - 1215.4s 22.1h
Arcanist - 0 - 79.7% 903.0s - 1453.8s 28.1h
execveT (total: 272 binaries)
ropbot 244 244 0% 0% 28.4s 11.9s 2.5s 3.2h
exrop 90 117 23.1% 13.6% 33.6s - 240.5s 20.9h
SGC 27 27 1.6% 80.9% 763.1s - 1527.8s 123.0h
Crackers - 0 - 21.0% 83.6s - 695.9s 55.2h
fullchain (total: 37 binaries)
ropbot 37 37 0% 0% 81.8s 12.9s 3.7s 1.0h
exrop 21 22 4.5% 5.4% 152.3s - 92.7s 2.5h

* Crackers performs worse than in the original paper due to our stricter threat model: Attackers do not control arbitrary memory and registers initially.

1 Arcanist does not support writing memory, thus we exclude it from the execve evaluation that requires writing *“/bin/sh” to memory.

tools in terms of the success rate in all tasks, but it is faster as
well. Still, exrop and Crackers are fast in finding gadgets. This
is because they use static analysis to identify potential gadgets
first, following the Galileo Algorithm (exrop uses ROPgadget
internally) and use either symbolic execution or SMT solvers
to analyze the gadgets. As mentioned in Section II-2, this
approach misses gadgets (e.g., gadgets spanning multiple basic
blocks) by design, which significantly affects their ability to
set registers as shown in the facefeed task. In our Ablation
Study (§V), we observe that gadgets spanning multiple basic
blocks are necessary for generating the facefeed chain for
51 binaries. ropbot is fast in gadget finding because of the
position-dependent gadget caching mechanism (§11I-D1).

In terms of chain generation, SGC performs exceptionally
well in the facefeed task. This is because of two reasons.
First, SGC generates multiple chains at once by design, while
all other tools stop at the first chain. We consider one test
a “Success” if any of the chains generated by SGC for the
binary passes verification (and calculate false positives over
all chains). Second, SGC has the unfair advantage of knowing
where the payload is on stack so that it can utilize gadgets like
call [rbx] by concretizing rbx to the payload address and
place Oxfacefeed in the payload. In fact, we find that 94.1% of
SGC’s chains relied on knowing the address of the payload.
ropbot can utilize these gadgets as well, but it needs to write
to the location first due to not knowing the payload address.

Studying false positives, we find SGC incorrectly con-
cretizes pointers (setting the upper bytes to O0xff, thus ren-

10

TABLE III: Comparison to RiscyROP on AArch64 and RISC-
V. FPs = False Positives, Gen. = Generated, Opt. = ropbot’s
optimization stage, Chain. = gadget chaining time.

Tool Success Gen. FPs Timeout Avg Per-Stage Time's T(')tal
Finding Opt. Chain. Time
AArché64 (total: 172 binaries)
ropbot 53 53 0% 29% 237.4s 89.9s 0.5s 13.9h
RiscyROP 9 17 47.1% 28.5% 833.1s 176.6s 43.4h
RISC-V (total: 1000 binaries)
ropbot 362 362 0% 3.8% 192.7s 1333 0.5s 77.1h
RiscyROP 77 112 31.3% 46.6% 933.3s 485.8s 316.2h

dering it invalid). exrop sometimes incorrectly models gadgets:
Internally, it uses ROPgadget to find gadget candidates, which
sometimes list a sequence of instructions that end with a
constant jump (e.g., pop rax; jmp <label>, which may
not be a gadget for this tool’s definition, depending on where
it jumps to). But exrop treats the constant jump the same
as a ret, failing to model the destination basic block, thus
leading to crashes. As we cannot verify chains from Crackers
or Arcanist, we are unable to check false positives.

C. Non-x64 Evaluation

In this section, we evaluate ropbot’s capability on non-x64
architectures. Although Arcanist supports ARM, it is only con-
figured for a few specific CVE targets, not ready for a generic
evaluation on ARM. RiscyROP is the only other tool that
supports non-x64 architectures, namely AArch64 and RISC-V.

TABLE Iv: Evaluation result of the
Oxfacefeed (0Oxdeadbeef, 0x40, 0x7b) chain. We filter
out PAC-enabled AArch64 binaries, leading to a smaller
number compared to other architectures.

Arch Success Total Rate FP Timeout A.Vg .Per-Stage Tlm.es T(.)tal

Finding Opt. Chain. Time
x64 635 1,022 62.1% 0% 0.0% 11.5s 69s 0.4s 5.3h
MIPS 285 1,000 28.5% 0% 0.1% 11.2s 24.3s 0.8s 10.1h
AArch64 58 172 33.7% 0% 1.2% 24.3s 59.6s 0.6s 3.9nh
ARM 660 1,000 66.0% 0% 0.0% 6.0s 8.1s 0.6s 4.1h
RISC-V 358 1,000 35.8% 0% 1.1% 34.7s 60.5s 0.5s 24.1h

To fairly compare ropbot against RiscyROP, we perform the
evaluation with the CR chain generation task hardcoded in
RiscyROP, which is to invoke Oxdeadbeef (0x40404040,
0x41414141, 0x42424242) on both architectures. Here,
we enabled ropbot’s conditional-branch gadget support, which
is off by default due to the fact that it significantly slows down
gadget finding and chain building with no significant capability
improvement (Table VIII in the Appendix).

Dataset. We are not aware of any large dataset of AArch64 or
RISC-V binaries, so we sampled 1, 000 binaries from Ubuntu
24.04 for both architectures. However, we found that many
of the AArch64 binaries had pointer authentication (PAC)
enabled, leading to very few usable gadgets and, thus, low
success rates for ropbot and RiscyROP; We filter out PAC-
protected binaries, leaving us with 172 AArch64 binaries and
1,000 RISC-V binaries.

1) Results: As shown in Table III, ropbot achieves 5x the
success of RiscyROP under the same configuration. At the
same time, RiscyROP shows a high false positive rate due to
improper use of gadgets with conditional branches. RiscyROP
works by identifying a potential chain, then symbolically
executing it. It focuses on finding states that satisfy the
expected outcome but does not reject non-deterministic chains.

D. Multi-Arch Support

Besides our comparison to other tools, we also evaluated the
facefeed task across all supported architectures to investi-
gate the impact of architecture designs on CR chain generation.
The result can be found in Table IV and shows that ropbot
can generate CR chains across architectures. However, its
performance is significantly better on x64 and ARM. Studying
gadget diversity, we observed that x64 binaries have 711 self-
contained gadgets on average, and more than 90% of the
binaries include gadgets that can pop rdi and rsi, and 32.8%
can pop rdx—necessary prerequisites to set the arguments.
Other architectures feature only around 200 self-contained
gadgets on average, and 2%-20% of binaries include gadgets
that can pop the target registers. This explains why ropbot
performs worse on MIPS/AArch64/RISC-V, but it fails to ex-
plain why it does well on ARM. We inspected the chain ropbot
generated for ARM and immediately noticed a pattern of using
two gadgets: pop {r3,r4,r5,r6,r7,r8,r9,pc} and
mov r0,r7;mov rl,r8;mov r2,r9;blx r3. These

11

Listing 2: A commit_creds (prepare_kernel_cred(
NULL)) chain generated by ropbot.

1 p=Dh""

2 p += p64 (OxFfEEfFffE822a76al) # x
3

4 p += pb4(OxfEffEfff££8114d660)
5 p += pb4(Oxffffffff8196eeceb)
6

7 p += p64 (OxFfEEEFEEEB2504104)
8§ p += p64 (OxEfffff 6001

9 p += p6d (OxEfEfEffE82211ea2)
10

11

12 p += p64 (Oxfffffff£8240191a)
13

14 p += p6d (OxEffEEfFEFE83600150)
15 p += p6d4 (Oxffffffff8lacabd2)
16

17 p += p6d (Oxfffff£££8114d3a0) #

two gadgets alone are enough to generate the facefeed
chain used in our evaluation, and they are pervasive in the
target binaries. It is noteworthy that these are the equivalent
of the ret2csu gadgets on ARM. Due to architectural features,
they are compiled into jmp_reg gadgets, which makes them
even more powerful for code reuse attacks.

E. Case Study — Linux Kernel

We now study ropbot’s capability of building a
chain on large binaries by trying to generate the
commit_creds (prepare_kernel_cred (NULL))
chain for the Linux kernel. While it is commonly seen
in Linux kernel exploitation, it is not an easy task due
to the lack of a mov rdi, rax; ret gadget. Security
researchers have resorted to finding sophisticated chaining
methods to accomplish the same effect, such as using
push rax; Jjmp [rsi] | pop rdi;| ret [27] and
pop rdi; ret | or rdi, rax; ret [28]. These
chains are time-consuming to craft manually due to the
need to explore all possible ways of moving rdi to rax.
In our experiment, ropbot can craft a similar chain in
one second (with cached gadget analysis results, which
takes 7 minutes to build), shown in Listing 2. ropbot’s
chain writes a lea rsp, [rsp+8]; ret gadget into a
buffer and then invokes it using push rax; pop rdi;
call [rbp+0x48] to achieve mov rdi, rax while
maintaining the control flow. This is similar to what human
researchers did in CVE-2023-3390 [27]. Another sample
container escape payload can be found in Appendix-A.

Due to the Retpoline protection [29] adopted in the Linux
kernel, all functions end with Jmp indirect_thunk,
which in turn executes ret. In Listing 2, this
is jmp Oxffffffff822a7e60; ret, where
Oxffffff£f£f822a7e60 is the indirect_thunk.
As a result, many existing gadget finders [21], [22] will
misclassify these gadgets as gadgets ending with jmp, while
in reality, they are equivalent to ending with ret. This
demonstrates the importance of gadget effect analysis used in
ropbot instead of instruction-based analysis and the need to
analyze gadgets spanning multiple basic blocks.

TABLE V: Time needed to generate the facefeed chain
(30min timeout; fail if the engine terminated unsuccessfully).

Binary Size ropbot exrop SGC Crackers Arcanist
TFTPD 80K 7.5s 1.8s fail fail 254.8s
Webkit_jsc 347K 32.4s 9.7s timeout 238.8s 560.5s
OpenSSL 736K 29.4s fail 1422.8s timeout 439.1s
OpenSSH 900K 26.4s 38.5s timeout 308.8s 586.5s
Dnsmasq 1.6M 12.6s 28.0s fail 193.6s 648.6s
Apache2 2.8M 48.1s 69.0s timeout 833.8s 1255.6s
Nginx 5.2M 26.7s 52.0s timeout 1335.0s 865.1s
Linux kernel 64M 192.0s fail fail timeout timeout
Firefox 159M 1252.0s timeout timeout timeout timeout
Chromium 166M 1626.0s timeout timeout timeout timeout

TABLE VI: Evaluation on ropbot with different configurations.
Base is ropbot with only single-block self-contained gadgets
and does not perform graph optimization.

Config Task Success Total Rate
Base execve 193 272 T71.0%
Base+Graph_Opt execve 215 272 79.0%
exrop execve 90 272 33.1%
Crackers execve 0 272 0%
SGC execve 27 272 9.9%
Base facefeed 319 1022 31.2%
Base+Graph_Opt facefeed 391 1022 38.3%
Crackers facefeed 353 1022 34.5%
exrop facefeed 358 1022 35.0%
Full-got_gadgets facefeed 574 1022 56.2%
Full-ret2csu_gadgets facefeed 570 1022 55.8%
Full-multi_bb_gadgets facefeed 570 1022 55.8%
Full-jmp_mem_gadgets facefeed 457 1022 44.7%
Full facefeed 635 1022 62.1%
Full facefeed 55 172 32.0%
Full+cond_br_gadgets facefeed 56 172 32.6%

F. Case Study — Security-Critical Dataset

We also evaluated all tools’ capability on a selected subset
of particularly exposed, security-critical binaries. Their nature
makes them particularly interesting for attackers in practice.
As shown in Table V, ropbot significantly outperforms all
state-of-the-art works and is the only tool that can generate
valid chains for all target binaries. In particular, it is the
only tool to generate chains for Chromium and Firefox.
Additionally, it is the fastest for all except the two smallest
binaries, where exrop is faster. All other tools consistently
timeout on large binaries, which supports our analysis that
BGAT does not scale well with larger binaries.

V. ABLATION STUDY

We now investigate ropbot’s performance further through
ablation studies, by turning off features. Base is an ablation
of ropbot that only uses single-block self-contained gadgets
and does not perform graph optimization (which we add to a

subsequent ablations). The result can be found in Table VI,
more details in Table VII in the appendix.

A. Graph Search vs Bounded Generate-and-Test

As the top part of Table VI shows, even Base can outper-
form other tools, despite these tools using jmp_reg gadgets
that are not self-contained. Investigating this, we find that
execve chains are usually long and require performing a
memory write, setting four registers, and invoking the syscall
gadget, which stresses the limit of bounded generate-and-test
(BGAT). BGAT-based tools are at the risk of encountering
state explosion when sampling longer lists of gadgets, leading
to more timeouts. For the simpler facefeed chains, we
observe fewer timeouts. At the same time, some tools limit
chain length by design, also leading to lower success rates. For
example, SGC allows at most 16 controlled words on stack,
while 53.5% execve chains generated by ropbot are longer
than 16 words.

As for the impact of our graph optimization, it boosts the
success rate by 8% even when working with only single-
block self-contained gadgets. This is because graph optimiza-
tion allows ropbot to find a complicated chain that provides
unique effects and use it as one ROPBlock. For example,
ropbot can chain pop rax;ret | mov rbx,rax;ret |
mov rdx, rbx;ret to set rdx.

B. New Gadget Categories

We also design a series of experiments to measure the
impact of each newly supported gadget category on the
evaluation results. Each experiment is performed by removing
a specific gadget category and checking whether ropbot can
still generate a CR chain. As shown in the bottom half of
Table VI, each gadget type contributes uniquely to ropbot’s
success rate. Note that GOT gadgets contribute 5.9% and
ret2csu gadgets contribute 6.3% to the success rate. But when
they are combined, jmp_mem gadgets contribute 17.4% to the
success rate. This suggests that there are 5.2% cases where CR
chains can be generated with either GOT gadgets or ret2csu
gadgets.

To evaluate the impact of gadgets with conditional branches,
we design an additional evaluation on the 172 AArch64
binaries with a 30-minute chain generation timeout, with
and without conditional branches. We did not perform the
evaluation on the x64 binaries due to the fact that they have
abundant self-contained gadgets, and ropbot prefers not to
use gadgets with conditional branches because normalizing
them takes up a considerable amount of payload space, which
defeats the purpose of the evaluation. Our results show that
utilizing gadgets with conditional branches hurts the overall
performance (see Table VII in the appendix). This is because
handling gadgets with conditional branches is slow compared
to other gadgets due to state forking, leading to more timeouts,
as evidenced by the elevated timeout rate (from 1.2% to 4.1%)
and gadget finding time (from 32.3s to 237.6s). We also man-
ually checked the one failed case and confirmed that it failed
because of timeouts. By giving ropbot an infinite timeout, it

12

can generate five more (9% improvement) CR chains with
the help of gadgets with conditional jumps. Overall speaking,
although gadgets with conditional branches contribute unique
capabilities to the chain generation engine, the performance
hit outweighs their contribution.

VI. DISCUSSION

In this section, we discuss real-world application, future
work, and limitations of ropbot.
Real-world Application. We used ropbot successfully to
generate privilege escalation payloads for 20 CVEs for the
Linux kernel [18], which no other tool supports. To show its
versatility on architectures not supported by other tools, we
also used ropbot to generate RCE payloads for 37 ARM/MIPS
firmware samples vulnerable to four CVEs, rehosted via
Greenhouse [30]. Sample outputs can be found in Appendix-B.
More Gadget Types. Although ropbot supports many gad-
get types, including GOT gadgets, more exist: For example,
some failed chains in our evaluation can be made possible by
using gadgets that can load registers from a symbolic address
(e.g., mov rax, [rbx]; ret). These gadgets would re-
quire to prepend them with a chain that writes the wanted
value to memory and sets rbx to the correct address.
Limitations. Although ROPBlock brings many
advantages, may lead to overlooking optimization
opportunities offered by directly using gadgets and
thus generating longer chains. For example, to use
cmp rax,l; Jjne <label>; pop rbx; ret, rax
needs to be set to 1. Setting it once can allow to use the
gadget repeatedly, but turning it into a ROPBlock will prepend
it with a chain that always sets rax, causing overhead.
Modern Defenses. Modern defenses raise the bar of au-
tomated code reuse payload generation but do not stop it.
Position Independent Executable (PIE) [31] and Address
Space Layout Randomization (ASLR) make an additional
information leak primitive a necessity. Stack canaries [32]
make hijacking control-flow using a stack-based vulnerability
more difficult, but can be bypassed with an additional informa-
tion leak primitive. Pointer Authentication Codes (PAC) and
Control-Flow Integrity (CFI) [33] make obtaining PC-control
much harder, but do not prevent code reuse attacks once the
attacker controls the PC. This verification of pointers also
reduces the amount of usable gadgets, which makes payload
generation harder. Shadow stacks [34], [35] can stop ROP but
not other types, such as JOP [2]; This would require modi-
fication of ropbot or other automated tools though. However,
if both a shadow stack and CFI are deployed, control-flow
hijacking will become impossible, rendering code reuse attacks
and, thus, ropbot obsolete.

it

VII. RELATED WORK

We propose a new technique to rethink code reuse attacks.
Orthogonal research has focused on data-only attacks and
automated end-to-end exploit generation.

13

a) Data-Only Attacks: Beyond code reuse, another class
of attacks has recently gained popularity [36]-[39]: data-
only attacks, or data-oriented programming. Other than code
injection or code reuse attacks, where the attacker’s first goal
is to hijack the control flow, data-only attacks modify solely
data without touching control flow-relevant information, such
as return addresses. This way, they bypass any security policy
monitoring the control flow, which is only indirectly affected
through the modified data. Following an initial study [36],
Hu et al. [40] proposed data-oriented programming and proved
it to be Turing-complete for x86 programs in 2016. Subsequent
work has proposed to automate the task of finding and stitching
data-oriented gadgets [37], [38], with BOPC [38] being the
first publicly available tool. Lately, Ling et al. [39] use pro-
gramming language synthesis to craft data-only exploits more
efficiently and effectively. Despite promising to overcome
mitigations such as CFI or shadow stacks, DOP is more limited
than code reuse in terms of the capabilities it provides an
attacker with. It has yet to see widespread adoption in practice,
and the current state of the art requires simplifying targets
manually before attacks can be synthesized [39]. ropbot is
orthogonal to DOP and considers only the generation of gadget
chains under the traditional code reuse attack model.

b) Automatic Exploit Generation (AEG): Following a
long history in memory corruption research [41], AEG [42]
and Mayhem [43] pioneered the field of AEG, showing the
possibility of generating end-to-end exploits automatically.
During the study of AEG, researchers noticed the difficulty in
automatically exploiting heap-based vulnerabilities due to the
need of complex heap layout manipulation. Shrike [44] solved
the problem by first identifying the heap operations associated
with code fragments in interpreters (i.e., allocation and release)
and then use a random search algorithm to find code that can
lead to desired heap layout. Gollum [45] improved on Shrike
by additionaly identifying useful exploitation primitives such
as function calls and use a genetic algorithm to derive the
code fragments needed to achieve desired heap layout and
obtain PC-control. However, Shrike and Gollum only work
on interpreters because of their primitive analysis algorithm.
Maze [46] and Gagua [47] generalized Shrike and Gollum’s
idea to event-loop-based application and analyze primitives
in each event-loop iteration so that they work beyond just
interpreters. Revery [48] approached the heap exploit genera-
tion problem differently, it used heap operation as a feedback
metric and let a fuzzer to explore different heap layouts effi-
ciently. Fuze [49] adopted a similar fuzzer-based exploration
strategy in automatically generating exploits for the Linux
kernel and used symbolic execution to explore crashing states
and achieve control-flow hijacking. Koobe [50] modeled out-
of-bound access vulnerabilities, explored primitives provided
by the initial crash input, and successfuly showed that out-
of-bound access vulnerabilities can be automatically tamed to
provide PC-control. These works stop at gaining PC-control
or generating a hardcoded and build-specific payload. They do
not aim to generate code-reuse payload for different build and
architectures, thus are orthogonal to ropbot.

VIII. CONCLUSION

In this work, we propose a new architecture-agnostic ab-
straction called ROPBlock and a graph-based CR chain gener-
ation model to tackle the code reuse attack synthesis problem.

We show that ROPBlock provides guaranteed chainabil-
ity among gadgets, which leads to improved efficiency and
effectiveness in CR chain synthesis. We perform extensive
evaluation on our research prototype, ropbot, against all ex-
isting works, and ropbot achieves unparalleled results: ropbot
outperforms all existing tools significantly on all CR chain
generation tasks. We also performed an ablation study to
investigate where the improvement comes from. We believe
our work is a solid step towards solving the code reuse attack
synthesis problem in general.

IX. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
insightful feedback.

This material was supported by 2023 Google PhD Fellow-
ship program, NSF 2232915, NSF 2146568, NSF 2247954,
NSF 2442984, the Advanced Research Projects Agency for
Health (ARPA-H) under contract number SP4701-23-C-0074,
the Defense Advanced Research Projects Agency (DARPA)
and Naval Information Warfare Center Pacific (NIWC Pacific)
under contract number N66001-22-C-4026, the Air Force
Office of Scientific Research under award number FA9550-24-
1-0227, Department of Navy under award number N00014-23-
1-2563, Department of Interior under Grant No. D22AP00145-
00, and generous support from the US Department of Defense.

X. ETHICAL CONSIDERATIONS

Throughout this work, we have not uncovered new vulner-
abilities. We have not interfered with external systems, and in
particular, all generated CR payloads have been tested on our
own systems, ensuring that no users have been harmed.

As our work automates the generation of exploits, thus
raising potential concerns regarding its release. While we
acknowledge that ropbot can be used by malicious actors, CR
chain generation is by no means limited to nefarious purposes.
Quite the contrary, it is actively used for exploit verification
by companies to prioritize severe bugs. In fact, our tool is
currently in use at multiple companies including Google for
this very purpose. We stress that ropbot itself is neutral and
provides means to an end. But as malicious actors already
possess the capability to craft exploits, ropbot’s release does
not provide them with fundamentally new capabilities. Study-
ing prior work in this domain, we find their tools have been
publicly released, which enabled reproducibility of research
and public understanding of attackers’ capabilities. Thus, we
believe the benefits of releasing our research outweigh its
potential risks.

14

[1]

[2]

[5]

[6]
[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]
[15]
[16]

(17]

[18]

[19]

[20]
[21]
[22]

[23]

[24]

REFERENCES

H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86),” in ACM Conference on
Computer and Communications Security (CCS), 2007.

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-Oriented
Programming: A New Class of Code-Reuse Attack,” in ACM Symposium
on Information, Computer and Communications Security (ASIACCS),
2011.

S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, “Return-Oriented Programming without Returns,” in ACM
Conference on Computer and Communications Security (CCS), 2010.
A. Sadeghi, S. Niksefat, and M. Rostamipour, “Pure-Call Oriented
Programming (PCOP): Chaining the Gadgets using call Instructions,”
Journal of Computer Virology and Hacking Techniques, vol. 14, pp.
139-156, 2018.

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-
R. Sadeghi, “Just-In-Time Code Reuse: On the Effectiveness of Fine-
grained Address Space Layout Randomization,” in IEEE Symposium on
Security and Privacy (S&P), 2013.

Google, “KernelCTF,” 2023. [Online]. Available: https:/google.github.
io/security-research/kernelctf/rules.html

E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit Hardening
Made Easy,” in USENIX Security Symposium, 2011.

E. J. Schwartz, C. F. Cohen, J. S. Gennari, and S. M. Schwartz,
“A Generic Technique for Automatically Finding Defense-aware Code
Reuse Attacks,” in ACM Conference on Computer and Communications
Security (CCS), 2020.

M. Schloegel, T. Blazytko, J. Basler, F. Hemmer, and T. Holz, “Towards
Automating Code-Reuse Attacks Using Synthesized Gadget Chains,” in
European Symposium on Research in Computer Security (ESORICS),
2021.

T. Cloosters, D. Paalen, J. Wang, O. Draissi, P. Jauernig, E. Stapf,
L. Davi, and A.-R. Sadeghi, “RiscyROP: Automated Return-Oriented
Programming Attacks on RISC-V and ARMO64,” in Symposium on
Recent Advances in Intrusion Detection (RAID), 2022.

M. DenHoed and T. Melham, “Synthesis of Code-Reuse Attacks from
p-code Programs,” in USENIX Security Symposium, 2025.

N. Bailluet, E. Fleury, I. Puaut, and E. Rohou, “Nothing is Unreachable:
Automated Synthesis of Robust Code-Reuse Gadget Chains for Arbitrary
Exploitation Primitives,” in USENIX Security Symposium, 2025.

J. Fandinno and L. Lillo, “Solving Epistemic Logic Programs using
Generate-and-Test with Propagation,” in AAAI Conference on Artificial
Intelligence, 2025.

H. Marco-Gisbert and I. Ripoll, “Return-to-csu: A New Method to
Bypass 64-bit Linux ASLR,” in Black Hat Asia, 2018.

debugmen, “libC GOT chaining,” 2024. [Online]. Available: https:
//debugmen.dev/pwn/2024/01/15/jump-planner.html

Google, “XDK,” 2025. [Online]. Available: https://xdk.dev/about/
introduction.html
_— “XDK-rop-generator,” 2025. [Online]. Available:

https://github.com/google/kernel-research/blob/main/rop_generator/
angrop_rop_generator.py

K. Zeng, Z. Lin, K. Lu, X. Xing, R. Wang, A. Doupé, Y. Shoshitaishvili,
and T. Bao, “Retspill: Igniting User-Controlled Data to Burn Away
Linux Kernel Protections,” in ACM Conference on Computer and
Communications Security (CCS), 2023.

J. Miller, M. Ghandat, K. Zeng, H. Chen, A. H. Benchikh, T. Bao,
R. Wang, A. Doupé, and Y. Shoshitaishvili, “System Register Hijacking:
Compromising Kernel Integrity By Turning System Registers Against
the System,” in USENIX Security Symposium, 2025.

d4emOn, “exrop,” 2020. [Online]. Available: https://github.com/d4emOn/
exrop

J. Salwan, “ROPgadget,” 2011. [Online]. Available: https://github.com/
JonathanSalwan/ROPgadget

S. Schirra, “Ropper,” 2015. [Online]. Available: https://github.com/
sashs/Ropper

N. Nethercote and J. Seward, “Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation,” ACM Sigplan Notices, vol. 42, no. 6,
pp. 89-100, 2007.

Jonathan Salwan, “Triton,” 2015. [Online]. Available: https://github.
com/JonathanSalwan/Triton

https://google.github.io/security-research/kernelctf/rules.html
https://google.github.io/security-research/kernelctf/rules.html
https://debugmen.dev/pwn/2024/01/15/jump-planner.html
https://debugmen.dev/pwn/2024/01/15/jump-planner.html
https://xdk.dev/about/introduction.html
https://xdk.dev/about/introduction.html
https://github.com/google/kernel-research/blob/main/rop_generator/angrop_rop_generator.py
https://github.com/google/kernel-research/blob/main/rop_generator/angrop_rop_generator.py
https://github.com/d4em0n/exrop
https://github.com/d4em0n/exrop
https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget
https://github.com/sashs/Ropper
https://github.com/sashs/Ropper
https://github.com/JonathanSalwan/Triton
https://github.com/JonathanSalwan/Triton

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

J. Staff, “Assembled Labeled Library for Static Analysis Research
(ALLSTAR) Dataset,” Dec 2019. [Online]. Available: http://allstar.
jhuapl.edu/

WangYihang, “Socket Reuse Shellcode,” 2014. [Online]. Available:
https://www.exploit-db.com/exploits/34060

Google, “CVE-2023-3390,” 2023. [Online]. Available: https:
//github.com/google/security-research/blob/master/pocs/linux/kernelctf/
CVE-2023-3390_lts_cos_mitigation/exploit/lts-6.1.31/exploit.c

——, “CVE-2023-4004,” 2023. [Online]. Available: https:
//github.com/google/security-research/blob/master/pocs/linux/kernelctf/
CVE-2023-4004_lts_cos_mitigation/exploit/mitigation-6.1/exploit.c

P. Turner, “Retpoline: A Software Construct for Preventing Branch-
target-injection,” 2018. [Online]. Available: https://support.google.com/
faqs/answer/7625886

H. J. Tay, K. Zeng, J. M. Vadayath, A. S. Raj, A. Dutcher, T. Reddy,
W. Gibbs, Z. L. Basque, F. Dong, Z. Smith et al., “Greenhouse: Single-
Service Rehosting of Linux-Based Firmware Binaries in User-Space
Emulation,” in USENIX Security Symposium, 2023.

R. Hat, “Position Independent Executable,” 2012. [Online]. Available:
https://www.redhat.com/en/blog/position-independent-executables-pie
P. Wagle, C. Cowan et al., “Stackguard: Simple Stack Smash Protection
for GCC,” in GCC Developers Summit, 2003.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow
Integrity: Principles, Implementations, and Applications,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 13, no. 1,
pp. 1-40, 2009.

N. Burow, X. Zhang, and M. Payer, “SoK: Shining Light on Shadow
Stacks,” in IEEE Symposium on Security and Privacy (S&P), 2019.

T. H. Dang, P. Maniatis, and D. Wagner, “The Performance Cost of
Shadow Stacks and Stack Canaries,” in ACM Symposium on Information,
Computer and Communications Security (ASIACCS), 2015.

H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
Generation of Data-Oriented Exploits,” in USENIX Security Symposium,
2015.

J. Pewny, P. Koppe, and T. Holz, “STEROIDS for DOPed Applications:
A Compiler for Automated Data-Oriented Programming,” in [EEE
European Symposium on Security and Privacy (EuroS&P), 2019.

K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block-Oriented
Programming: Automating Data-only Attacks,” in ACM Conference on
Computer and Communications Security (CCS), 2018.

Y. Ling, G. Rajiv, K. Gopinathan, and I. Sergey, “Sound and Efficient
Generation of Data-Oriented Exploits via Programming Language Syn-
thesis,” in USENIX Security Symposium, 2025.

H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-Oriented Programming: On the Expressiveness of Non-control
Data Attacks,” in IEEE Symposium on Security and Privacy (S&P),
2016.

L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in
Memory,” in IEEE Symposium on Security and Privacy (S&P), 2013.
T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and
D. Brumley, “Automatic Exploit Generation,” Communications of the
ACM, vol. 57, no. 2, pp. 74-84, 2014.

S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
Mayhem on Binary Code,” in IEEE Symposium on Security and Privacy
(S&P), 2012.

S. Heelan, T. Melham, and D. Kroening, “Automatic Heap Layout
Manipulation for Exploitation,” in USENIX Security Symposium, 2018.
——, “Gollum: Modular and Greybox Exploit Generation for Heap
Overflows in Interpreters,” in ACM Conference on Computer and
Communications Security (CCS), 2019.

Y. Wang, C. Zhang, Z. Zhao, B. Zhang, X. Gong, and W. Zou, “MAZE:
Towards Automated Heap Feng Shui,” in USENIX Security Symposium,
2021.

R. Li, B. Zhang, J. Chen, W. Lin, C. Feng, and C. Tang, “Towards
Automatic and Precise Heap Layout Manipulation for General-Purpose
Programs,” in Symposium on Network and Distributed System Security
(NDSS), 2023.

Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X. Gong, B. Liu, K. Chen,
and W. Zou, “Revery: From Proof-of-Concept to Exploitable,” in ACM
Conference on Computer and Communications Security (CCS), 2018.
W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “FUZE: Towards
Facilitating Exploit Generation for Kernel Use-After-Free Vulnerabili-
ties,” in USENIX Security Symposium, 2018.

15

[50] W. Chen, X. Zou, G. Li, and Z. Qian, “KOOBE: Towards Facilitating
Exploit Generation of Kernel Out-Of-Bounds Write Vulnerabilities,” in
USENIX Security Symposium, 2020.

[S1] K. Zeng, “CVE-2022-1786,” 2022. [Online]. Available: https://blog.
kylebot.net/2022/10/16/CVE-2022- 1786/

http://allstar.jhuapl.edu/
http://allstar.jhuapl.edu/
https://www.exploit-db.com/exploits/34060
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-3390_lts_cos_mitigation/exploit/lts-6.1.31/exploit.c
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-3390_lts_cos_mitigation/exploit/lts-6.1.31/exploit.c
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-3390_lts_cos_mitigation/exploit/lts-6.1.31/exploit.c
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-4004_lts_cos_mitigation/exploit/mitigation-6.1/exploit.c
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-4004_lts_cos_mitigation/exploit/mitigation-6.1/exploit.c
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-4004_lts_cos_mitigation/exploit/mitigation-6.1/exploit.c
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://www.redhat.com/en/blog/position-independent-executables-pie
https://blog.kylebot.net/2022/10/16/CVE-2022-1786/
https://blog.kylebot.net/2022/10/16/CVE-2022-1786/

APPENDIX A
MORE PAYLOADS

A. CVE-2022-1786 Payload Generation

We visualize ropbot’s capabilities using a case study of
CVE-2022-1786. This is an invalid-free vulnerability in the
Linux kernel. Crucially, it was originally exploited using a
code reuse attack [51]. We tried ropbot on this vulnerability,
and it successfully generated a container escape payload in
1.4 seconds (with cached gadget analysis, which takes 6min
to build). The payload is shown as follow:

I p=nDb""

2 p += p64 (OxFEFFFFFF811c

3 p += pbd(OxEffEEffEB826¢ #

4 p += p64 (OxFEFFFFFFB10caB20) #

5 p += p64 (OxFEfFEFFF811cdl95) # p
6 p +t= p64(0x1)

7 p t+= p64(0xf£f£ff fi‘l(c0350

8 p += p64 (Oxffff C

9 p += p64(uxtrtttt £810bd36f

10 p += pb4 (OxffFFFFFFB108dc40) # p
1l p += p64 (OxfFFFFFFFB26000e

12 p += p6d (OxEfffffff810c8fd6

13

14

15 p += p64 (OxfFFfffff f°2oawy8)

16 p += p6d (OxEfEfEffff f?lofﬁbbz)

17

18 p += pb6d (OxffEff£££811cd2b8) #

19 p += pb4 (OxfEEfE£££8265€080)

20 p += p64 (OxffEfEf££810c86c0

21 p += p64(OxEfEFEEEE810960 >
2 p += p64 (OxFEFFFFFF811cdl95) # poy
23 p += p64 (OxffffEf~ff)

24 p += p6d (O0xfff£f££££8112d760) # msleep

Listing 3: A container escape chain generated by ropbot.

This chain invokes commit_creds to escalate priv-
ilege first and then use find_task_by_vpid and
switch_task_namespace to escape from the namespace
container. Finally, it uses the telefork technique [51] to re-
turn back to userspace. This shows that ropbot can generate
code reuse attack payloads in real-world exploit development
scenarios.

B. CVE-2018-18706 Payload Generation

CVE-2018-18706 is a stack overflow vulnerability found
in Tenda routers. Listing 4 shows a system (" /bin/sh")
chain generated by ropbot for an ARM router target.

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

This paper describes a code reuse payload generation engine
and the appendix provides detailed information on how to
reproduce the results mentioned in the paper. The artifact
consists of the source code and the the artifact has been
uploaded to Zenodo.

1) How to access: The artifact can be downloaded from
Zenodo at https://zenodo.org/records/17811054. It contains
both the source code and the binary dataset.

p = b"n

R I NV RS R

's T 'O 'O 'C 'O 'O '0 'O

)
'O 'C 'O 'C 'O

I}
g
'C ' '0 ' 'C T

Listing 4: A system("/bin/sh")
ropbot.

chain generated by

2) Hardware dependencies: There is no special hardware
dependencies to run the artifact. However, to reproduce the
exact results described in the paper, it requires a machine with
40 cores and 256GB RAM.

3) Software dependencies: docker is required to run the
evaluation.

B. Artifact Installation & Configuration

Running the build.sh script will build the ropbot
docker container, which takes less than 5 minutes to run.
Then you need to download the dataset and unpack it, which
will generate a dataset folder. We will use <dataset>
to represent the path of the dataset folder throughout this
appendix.

After
can do

the docker image is successfully built, you
./run <dataset> ropbot x64 test
to test the installation. If the installation is
successful, it should print a ROP chain that does
Oxfacefeed (0Oxdeadbeef, 0x40, 0x7b) and
show the corresponding registers in the final symbolic state.

C. Experiment Workflow

At a high-level, you can use the run command to run all
the experiments mentioned in the paper. The list of possible
experiments is listed in task_list.txt.

D. Major Claims

e (Cl): ropbot outperforms state-of-the-art systems for
the code reuse payload generation capability. This is
proven by experiment El1 and E2, whose results are
reported in TABLE II in the table.

e (C2): ropbot can generate code reuse payload for
multiple architectures: x64, MIPS, AArch64, ARM, and
RISC-V. This is proven by experiment E3, whose results
are reported in Table IV in the table.

16

TABLE VII: Finer-grained ablation breakdown. Graph search and chain generation is fast. Graph optimization is slower on
AArch64 because of the lack of gadgets, which leads to more iterations to optimize the graph.

Config Task Gadget Finding Time Opt-Time Graph Search Time Chain-Time Success Total
Base execve 27.8s - 0.004s 1.1s 193 272
Base+Graph_Opt execve 27.8s 2.2s 0.006s 1.3s 215 272
exrop execve 33.6s - - 240.5s 90 272
Crackers execve 83.6s - - 695.9s 0 272
SGC execve 763.1s - - 1527.8s 27 272
Base facefeed 11.0s - 0.002s 0.1s 319 1022
Base+Graph_Opt facefeed 11.5s 1.7s 0.003s 0.2s 391 1022
Crackers facefeed 24.4s - - 237.7s 353 1022
exrop facefeed 9.8s - - 72.8s 358 1022
Full-got_gadgets facefeed 11.3s 3.4s 0.007s 0.3s 574 1022
Full-ret2csu_gadgets facefeed 11.5s 6.5s 0.013s 0.3s 570 1022
Full-multi_bb_gadgets facefeed 11.5s 3.3s 0.009s 0.3s 570 1022
Full-jmp_mem_gadgets facefeed 11.5s 2.2s 0.005s 0.2s 457 1022
Full facefeed 11.5s 6.9s 0.003s 0.4s 635 1022
AArch64_Full facefeed 32.3s 58.5s 0.021s 0.5s 56 172
AArch64_Full+cond_br_gadgets facefeed 237.6s 101.4s 0.020s 0.6s 55 172
TABLE VIII: Gadget normalization with graph optimization results/pretty print.py <dst_path> will

can slightly reduce the length of generated chains. The use of
gadgets with conditional branches increases run time signifi-
cantly.

Chain

Config Task Runtime
Len(byte)

Base facefeed 81.0 11.6s
Base+Graph_Opt facefeed 78.9 13.3s
Base+Graph_Opt+cond_br_gadgets facefeed 79.0 36.5s
Base execve 134.0 29.0s
Base+Graph_Opt execve 128.6 30.5s
Base+Graph_Opt+cond_br_gadgets execve 129.5 117.4s

E. Evaluation

1) Experiment (E1): [3 human-minutes + 6 compute-hours]
This experiment aims to evaluate ropbot’s capability in gen-
eraing the Oxfacefeed (Oxdeadbeef, 0x40, 0x7b)
chain for the x64_dataset binaries (1022 binaries). The
performance varies according to the compute power of the
running machine. On a machine with 40 cores and 256GB
RAM, it should succeed for 635 + 3 binaries.

[How to] To run the experiment, you can do
./run <dataset> ropbot x64 facefeed. It
will launch a docker container in the background and you
can use docker logs <container_id> to check
its progress. When the experiment finishes, it will print
Experiment finished in the log.

[Results] Once the docker containers prints
Experiment finished in the log, you can
extract the results from the container by docker cp
<container_id>:/experiment/output.jsonl
<dst_path>. Running python

17

print out the summarized results, which match what we report
in the paper.

2) Experiment (E2): [3 human-minutes + 3.5 compute-
hours] This experiment aims to evaluate ropbot’s capability
in generaing the execve ("/bin/sh", 0, 0) chain for
the syscall_dataset binaries (272 x64 binaries with
syscall instructions). The performance varies according to
the compute power of the running machine. On a machine
with 40 cores and 256GB RAM, it should succeed for 244 +2

binaries.

To run the experiment, you can do
./run <dataset> ropbot x64 execve. The
workflow and result intepretation is the same as E1.

3) Experiment (E3): [10 human-minutes +
8 compute-hours] This experiment aims to
evaluate ropbot’s capability in generating the
Oxfacefeed (Oxdeadbeef, 0x40, 0x7b) chain

for different architectures. Since our original experiment
takes more than 24 hours, we propose a scaled-down version
of the experiment: only evaluate it on AArch64 and ARM
besides x64 (evaluated in E1). We believe this scaled-down
experiment is enough to show that ropbot works on
different architectures.

To run the experiment, you can
./run <dataset> ropbot <arch> facefeed,
where <arch> is either aarch64 or arm. The workflow
and result intepretation is the same as El.

do

F. Customization

We welcome artifact evaluators to evaluate the results of
other tools and other architectures as well. All available
commands are listed in task_list.txt.

	Introduction
	Challenges
	Diverse Gadget Types Support
	Gadget Identification across Architecture
	Payload Chaining across Architectures

	Design
	Threat Model
	The Concept of ROPBlocks
	Workflow
	ROPBlock Collection
	Gadget Identification
	Gadget Effect Analysis
	Gadget Categorization

	ROPBlock Generation: Iterative Graph Optimization
	Register Moving Graph
	Gadget Normalization
	Graph Optimization

	Chain Generation: Graph Search
	Payload Chaining
	Register Setting
	Function/Syscall Invocation

	Scalability
	Implementation

	Evaluation
	Experimental Setup
	State-of-the-art Tools
	Attacker Capabilities
	Chain Verification
	Harware Setup & Parameters

	x64 Evaluation
	Results

	Non-x64 Evaluation
	Results

	Multi-Arch Support
	Case Study – Linux Kernel
	Case Study – Security-Critical Dataset

	Ablation Study
	Graph Search vs Bounded Generate-and-Test
	New Gadget Categories

	Discussion
	Related Work
	Conclusion
	Acknowledgement
	Ethical Considerations
	References
	Appendix A: More Payloads
	CVE-2022-1786 Payload Generation
	CVE-2018-18706 Payload Generation

	Appendix B: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)

	Customization

