
Are your Sites Truly Isolated?
Automatically Detecting Logic Bugs in Site

Isolation Implementations
Jan Drescher

TU Braunschweig
jan.drescher@tu-braunschweig.de

David Klein
TU Braunschweig

david.klein@tu-braunschweig.de

Martin Johns
TU Braunschweig

m.johns@tu-braunschweig.de

Site Isolation (SI) is a recent browser security architecture
that isolates web applications by site in separate, sandboxed
renderer processes to mitigate Spectre and renderer compro-
mises [2]. A site is defined as the tuple of scheme (e.g.,
https) and extended Top-Level Domain plus one subdomain
(short eTLD+1, e.g., example.com). The security of Site
Isolation relies on process isolation provided by the operat-
ing system. It also relies on the security of the privileged
browser process. The browser process communicates with all
renderer processes via inter-process communication (IPC) to
provide them with cross-site networking and communication
capabilities. These capabilities are restricted by the same-
origin policy and Cross-Origin Resource Sharing (CORS).
The browser process must correctly track the site context of
every renderer process and enforce these security policies.
Bugs in the site mapping or the policy enforcement lead to
Site Isolation bypass vulnerabilities that allow an attacker to
execute malicious JavaScript in the context of another site or
steal cookies.

Site Isolation was rolled out in 2018 in Chrome [2] and in
2021 in Firefox [3]. At the moment of writing, Safari devel-
opers started implementing Site Isolation. Most Site Isolation
bypass bugs discovered since then required the attacker to
have compromised the sandboxed renderer process to be ex-
ploitable. This produced a relatively high barrier. But assuming
that the sandbox is secure and sandbox escapes are impossible,
Site Isolation bypasses are the most lucrative attack vector to
utilize a renderer compromise. The vendors of Chrome and
Firefox rank Site Isolation bypass vulnerabilities in the second-
highest tier of their security bug bounty programs.

In contrast to memory corruptions that the Address San-
itizer [4] can detect, detecting semantic bugs such as Site
Isolation bypass bugs is hard because they do not produce
easily visible crashes [5]. To detect these vulnerabilities, we
need to infer which process is under the control of the attacker
(i.e., processes attacker-provided inputs) and if this process
is able to access cross-site data, leading to our first research
question:

RQ1 How can SI bypass vulnerabilities (i.e., cross-process
data leaks) be reliably detected?

Abstract—Site Isolation is one of the core security mechanisms
of a modern browser. By confining aspects such as the JavaScript
Just-in-Time compiler or the HTML rendering to a sandboxed
process, web browsers significantly reduce the i mpact o f memory
corruption errors. In addition, the mechanism protects against
microarchitectural attacks such as Spectre. When using Site
Isolation, the browser confines all processing related to a site to its
own sandboxed process. All communication with the privileged
browser process is done via exchanging IPC messages. This,
however, requires the browser process to keep track of which
renderer processbelongs to which site, as otherwise, an attacker
can abuse a memory corruption issue in the renderer to attack
other sites by sending malicious IPC messages. This, in turn,
would allow attackers to leak sensitive data, such as cookies, or
even achieve Universal Cross-Site Scripting.

This work presents the first automatic approach to detect
such vulnerabilities, called Site Isolation bypasses, in Firefox and
Chrome. For this, we propose a novel oracle to detect the semantic
bugs that cause Site Isolation bypass vulnerabilities by flagging
cross-site data leaks on the process level. In addition, we design
a fuzzer that simulates a compromised renderer process, trying
to use the browser process as a confused deputy by hooking
into the IPC communication. Our work uncovered four security
vulnerabilities in Chrome and Firefox: three less severe bugs leak
data cross-site while the fourth bug facilitates complete control
over the victim site.

I. INTRODUCTION

Web browsers are a lucrative target for attacks because they
have a large user base and process primarily untrustworthy
input by design. To reduce the impact of security bugs in han-
dling untrustworthy content, web browsers process it in a low-
privileged, sandboxed renderer process, with only the high-
privileged browser process having access to the host system.
The renderer performs many tasks that are prone to memory
bugs, such as HTML parsing and JIT compiling JavaScript
code. Kocher et al. [1] discovered the microarchitecture attack
Spectre, that allows the leak of all data in the same process.
This resulted in a radical restructuring of the browser’s security
model, culminating in Site Isolation.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240902
www.ndss-symposium.org

To this end, we propose and evaluate a leak sanitizer as an
oracle for Site Isolation bugs. Running the complete browser,
our sanitizer detects when a known secret value from the
victim site is leaked to the attacker process. We propose a
second oracle, the process sanitizer, to detect process-reuse
bugs that do not produce visible cross-process leaks but are
nevertheless vulnerable to Spectre attacks.

However, it is not sufficient to only detect successful SI
bypasses; the bug must be triggered first. The vulnerability
lies in the browser process’s reaction to IPC messages that
a normal renderer process would not send. A compromised
renderer can exhibit arbitrary behavior and send malicious IPC
messages on all available interfaces. This leads to our second
research question:

RQ2 How to model the arbitrary malicious behavior of the
compromised renderer?

To answer this question, we systematically analyze past SI
bypasses, discovering that most proofs-of-concept for SI by-
passes require only minor changes in the behavior of the
renderer process: The renderer compromise is most frequently
used to circumvent security checks in the renderer or spoof
origin-related parameters in IPC messages to privileged pro-
cesses. Based on this discovery, we propose a fuzzing approach
that intercepts and modifies IPC messages to simulate a
compromised renderer process, aiming to trigger Site Isolation
bypass bugs.

Our contributions are the following:
• We are the first to systematically analyze and classify the

39 known Site Isolation bypass vulnerabilities in Chrome
and Firefox. Leveraging insights from this analysis, we
identify the necessary preconditions to trigger these bugs.

• We implement a Web IDL-driven fuzzer1 that triggers
diverse and meaningful inter-process communication and
simulates a renderer compromise by intercepting and
manipulating the IPC messages emitted by the renderer.

• We propose novel oracles for Site Isolation bypasses,
that observe the data flows between processes and detect
cross-site data leaks and process-reuse.

• We run a month-long fuzzing campaign targeting Chrome
and Firefox, discovering four security bugs and reporting
them to the developers. The bugs differ in severity: Three
less severe bugs leak data cross-site. The fourth bug
facilitates complete control of the victim site. It was
assigned a CVE, and we were awarded an $8000 bug
bounty.

II. BACKGROUND

In this section, we introduce the Site Isolation architec-
ture and the technologies that SI builds upon. Afterward,
we analyze the common causes for Site Isolation bypass
vulnerabilities by analyzing previous SI bypass bugs from the
Chrome and Firefox browser.

1https://github.com/si-bypass-fuzzing

Browser

Renderer
Sandbox

Renderer
Sandbox

IPC

Fig. 1. Site Isolation architecture

A. Site Isolation

To mitigate memory bugs in the HTML parser or the
JavaScript engine, which facilitate remote code execution
(RCE), modern browsers process potentially malicious HTML
and scripts in a separate process inside a sandbox. This process
is called renderer process, content process, or renderer. We
will use the terms renderer process or renderer to refer to
this class of processes. The sandbox prevents the renderer
from accessing the host system, thus mitigating the impact
of RCE vulnerabilities in the renderer. Only the privileged
browser process or parent process has access to the host
system. We will use the term browser process for this process.
The browser process and the renderer communicate via inter-
process communication (IPC). The browser process interacts
with the user, fetches documents via the network stack, and
sends them to the renderer. The renderer parses the HTML
documents, applies the CSS, executes the JavaScript, and
sends the parsed frame back to the browser to be painted
and displayed. The sandbox and process isolation rely on
the operating system’s security mechanisms. For example, the
Chrome sandbox on Linux relies on user namespaces to restrict
the sandboxed process’s access to resources and Seccomp BPF
to restrict system calls. The operating system prevents memory
access into other processes and the sandboxed process from
accessing the host’s file system and other capabilities.

Site Isolation is a browser security architecture that enforces
isolation between web applications on the process level by
placing only the content belonging to the same site in the same
sandboxed renderer process [2]. A site is defined as a scheme
and a registrable top-level domain, also called an extended top-
level domain plus one domain part (eTLD+1). For example,
the site https://example.com would comprise all sub-
domains like https://*.example.com. The granularity
of a site is coarser than that of an origin because it ignores
both subdomains and ports. Some URLs, for example data:
URLs, are treated as opaque origins. They possess a unique
site and origin that never match another site or origin. For each
site, the browser process spawns a new renderer process to
process only the documents of this site, as shown in Figure 1.
In the following, we will cover the three vulnerabilities that
Site Isolation mitigates.
Spectre Spectre exploits speculative execution and architec-
tural side channels in modern CPUs to potentially leak a
process’s full memory space [1]. Agarwal et al. [6] showed that
Spectre attacks could be mounted just by executing JavaScript
in the browser to leak the renderer’s memory. Since Spectre
cannot leak data from other processes, Site Isolation mitigates

2

https://github.com/si-bypass-fuzzing

the vulnerability by ensuring that all potentially leaked data
belongs to the attacker’s site.
Renderer Compromise An attacker who has exploited a
memory bug to achieve remote code execution in the renderer
can leak the renderer’s whole process space, including all web
application data, such as cookies. Site Isolation also mitigates
this vulnerability by placing only the attacker’s site data in the
process that the attacker can compromise.
Universal Cross-Site Scripting Furthermore, Site Isolation
mitigates Universal Cross-Site Scripting vulnerabilities that
allow the execution of malicious JavaScript in the context of
other web applications in the victim’s browser. Site Isolation
achieves this by isolating sites on the process level and
providing a cleaner architecture with explicit domain bounds,
well-defined IPC interfaces, and centralized security checks
that prevent coding errors leading to UXSS bugs. Reis et al. [2]
determined that Site Isolation mitigated all previous UXSS
vulnerabilities in the Chrome browser.

B. Site Isolation Implementation

In this section, we cover the specific programming
paradigms that are required by Site Isolation and examine their
impact on the browser architecture.
Inter-Process Communication All renderer processes com-
municate with the browser process. In addition to providing
access to the network stack and file system, the browser
process also passes messages between the renderers to sup-
port cross-site communication. Both Chrome and Firefox use
Chrome’s Mojo library [7] for inter-process communication.
The implementation of the underlying IPC connection varies
depending on the operating system, but generally relies on
shared memory. Mojo multiplexes many channels over one
concrete IPC connection. This minimizes the overhead of cre-
ating additional channels and encourages an architecture that
splits the communication between the browser and renderer
processes into many topic-related interfaces. However, the
browser process must keep track of the corresponding site for
many IPC channels with different renderers.

The resulting architecture is more complicated than Fig-
ure 1 conveys. Figure 2, which shows Chrome’s Site Isolation
architecture, depicts the different IPC channels required solely
to control three frames in two different renderers. The Ren-
derProcessHost and RenderFrameHost components on the left
control the RenderProcess and RenderFrame components on
the right, with messages passed via the IPC channel. Both the
browser and renderer processes keep track of the frame tree.
The frames in the renderer handle the HTML documents.
Service Processes If the host system has enough memory,
modern browsers also move parts of the browser process
into less privileged processes. Chrome, for example, creates
separate processes for the Network Service, Storage Service,
and GPU processes. By defining a sandboxed policy tailored
to each process, the Chrome developers further mitigate the
impact of memory bugs in one of the services. These privi-
leged processes communicate directly with the renderers, thus
also increasing the complexity of IPC.

Browser Process

Browser

RenderProcessHost
http://a.com �

RenderProcessHost
http://b.com �

RenderFrameHost
http://a.com

RenderFrameHost
http://sub.a.com

RenderFrameHost
http://b.com

☼

☼

☼

Network ServiceGPU Process

Storage Service
Mojo IPC

Renderer Process Ô

RenderProcess

RenderFrame
a.com

RenderFrame
sub.a.com

Proxy
b.com

Renderer Process Ô

RenderProcess

Proxy
a.com

Proxy
sub.a.com

RenderFrame
b.com

Fig. 2. Chrome’s site isolated multi-process architecture

As a compromised renderer can send arbitrary IPC mes-
sages, the browser process must implement checks to handle
this. To enforce the same-origin policy and prevent a compro-
mised renderer from accessing confidential data from another
site, the browser process must check the renderer’s site during
every interaction. The browser process ensures that a renderer
can read any resource it passes to the renderer and be permitted
to send any request or message it sends on the renderer’s
behalf. To achieve this, the browser process must keep track
of each renderer’s site and all permissions that the user might
have granted to that particular site.
Process lock As soon as the renderer processes the first
content, the renderer must be assumed to be potentially
malicious. The first input to the HTML parser or JavaScript
engine might exploit a memory bug in the parser or the JS
engine’s JIT compiler and compromise the process. Thus,
the browser process assigns the site (�) to the renderer,
“locking” the renderer process to this site. This site cannot
change during the process’s lifetime. For example, consider
the RenderProcessHost in blue in Figure 2, which is locked to
a.com in the browser process. As this information is stored in
the browser process, it can be used for security checks without
the risk of tampering.

Oftentimes, there exist several values that can be used for
security checks. Chrome, for example, also saves the latest
document origin (☼) for every frame in the browser process.
Site-bound channels To reduce the overhead of passing
all IPC messages through the browser process, the browser
process can establish a direct IPC channel between two
parties, for example, a renderer and the network service. The
browser process lets the privileged party, in this case, the
network service, create the channel and passes one end of
the channel to the renderer. In doing so, the browser process
communicates the renderer’s site to the network service. The
network service saves the site and its end of the channel and
conducts all security checks based on this value. This allows
the network service to communicate directly with the renderer
while profiting from the process lock.
Killing compromised renderers The browser process kills
renderers if it receives malformed or invalid messages indicat-

3

ing a renderer compromise. It contains the compromise to the
renderer and reduces the susceptibility to undefined states in
the browser process that could lead to Site Isolation bypasses.
Related Security Mechanisms Site Isolation is comple-
mented by Cross-Origin Read Blocking, Cross-Origin Opener
Policy, and Cross-Origin Embedder Policy. Cross-Origin Read
Blocking (CORB) is a mechanism in the browser process that
prevents the leaking of SOP-exempt cross-origin resources to
the renderer. For historical reasons, resources requested by
 and <script> tags were exempt from the SOP.
Since resources of certain file types are invalid in these con-
texts, CORB blocks these resources. The Cross-Origin Opener
Policy (COOP) allows web servers to request origin-based
isolation for their documents. The Cross-Origin Embedder
Policy (COEP) allows servers to define which sites may embed
their resources. While our proposed sanitizer can detect the
leaks that follow CORB bugs, our research does not focus on
CORB, COOP, or COEP bugs; our fuzzer does not aim to
trigger them.
Site Isolation Deployment Status Site Isolation is active
since 2018 in Chrome [2] and 2021 in Firefox [3] respectively.
However, it is inactive on devices with less than 2GB of RAM
and Android WebViews. Safari does not isolate iframes of
different sites in different renderers at the time of writing. The
WebKit developers are working on integrating Site Isolation.
However, the implementation poses a significant engineering
effort [2].

C. Site Isolation Bypass

Site Isolation bypass vulnerabilities allow an attacker to
circumvent the Site Isolation and access the data of another
site. Site Isolation bypass bugs facilitate attacks on all other
web applications running in the victim’s browser by executing
malicious JavaScript in the context of the other website, i.e.,
achieving UXSS or stealing confidential data such as cookies.
Therefore, they are more dangerous than Cross-Site Scripting
attacks, which only facilitate attacks on a single vulnerable
website. While Site Isolation bypass vulnerabilities cannot be
exploited to compromise the victim’s host system or access
local files, potentially mounting attacks on all web applications
that the victim uses is a powerful capability.

Site Isolation bypasses are caused by semantic bugs in
the functions that the browser process uses to track and
determine the site of a renderer or in the security checks
based on this tracked value. In contrast to memory bugs (e.g.,
buffer overflows), the Address Sanitizer cannot detect semantic
bugs. Instead, they require an oracle that predicts the correct
program state to compare to the observed state. Furthermore,
these semantic bugs are hidden deep in the application logic,
and triggering them requires a semantically valid initial state
and a sequence of syntactically and semantically valid IPC
messages. Invalid messages detected by the browser process
lead to immediate renderer kills.
Attacker Model We assume that the attacker has already
achieved RCE in the sandboxed renderer. The attacker can
execute arbitrary code in the renderer process, read the whole

TABLE I
SI BYPASS VULNERABILITIES CLASSIFIED BY CAUSE

Class Description #Bugs Example

1 Missing Checks 28 CVE-2018-18345
2 Bypassed Checks 4 CVE-2020-6385
3 Origin Confusion 6 CVE-2022-1637

process memory, and send arbitrary IPC messages to other
processes. Since the attacker can execute arbitrary code in the
renderer, they can also circumvent all renderer-side security
checks.

We argue that this attacker model is a realistic assumption
since the DOM engine and JavaScript engine remain prone to
memory bugs [8]. Especially, the number of discovered JIT
bugs in the JS engine remains high [9]–[11].

III. VULNERABILITY ANALYSIS AND CLASSIFICATION

We analyze all bug reports of previous SI bypass vul-
nerabilities in the Chrome and Firefox browsers to iden-
tify common vulnerability causes and create a classification
of SI bypass vulnerabilities. We manually examine every
bug from the Chromium bug tracker with the tag Inter-
nals>Sandbox>SiteIsolation. For Firefox, we analyze the bugs
in the Site Isolation meta bug trackers [12]–[14]. In addition,
we examine every CVE entry in the NVD for one of the
browsers whose description contains the term Site Isolation.
For both browsers, we only consider bugs filed after Site
Isolation was rolled out to filter progress trackers created
during the implementation of SI. From 1,328 examined bug re-
ports, 39 described vulnerabilities that facilitated SI bypasses.
Table V in the appendix lists all of these previous SI bypass
vulnerabilities in Chrome and Firefox.
SI Bypass Classes The basic workflow for secure interactions
between the browser and the renderer process requires the
browser process to apply security checks to every request of
the renderer. To conduct these checks, the browser process
compares the origin or URL that the renderer claims to
represent or of any resource that the renderer requests against
a secure value (e.g., from the process lock). There are three
points of failure in this workflow: the security check might
be missing, the renderer might circumvent the check, or the
browser might confuse the secure value. Table I overviews the
three vulnerability classes.

We revisit all known SI bypass vulnerabilities and assign
them to one of the three classes. Furthermore, we aim to
identify the renderer behavior required to exploit them. The
browser developers accept proof-of-concept exploits for SI
bypass vulnerabilities that include manual patches of the
renderer code to simulate the behavior of the compromised
renderer. Thus, we can quickly identify the behavior that a
fuzzer must simulate to trigger SI bypasses.

A. Missing Checks

This is the most common class of SI bypass vulnerabilities.
If the browser process lacks security checks to verify that a

4

attacker.com

Ô

victim.com

blob
Ô

Browser

create blob URL

blob

blob:https://victim.com/c9c5f...

blob

navigate

1

2 3

4

Fig. 3. Schematic view of the CVE-2018-18345 SI bypass

renderer belongs to the claimed site, a compromised renderer
can spoof parameters in IPC messages. Vulnerabilities also
emerge if security checks are only conducted on the renderer
process’s side. Once the attacker compromises the renderer,
they can freely change the control flow to circumvent security
checks. Thus, only checks in the browser process can prevent
this vulnerability class. To exploit these bugs, the compro-
mised renderer must spoof origin-related parameters in IPC
messages. Other parameters were rarely used for exploits. In
addition, the compromised renderer must bypass all renderer-
side security checks. The remaining section provides an ex-
emplary case study of CVE-2018-18345 from this class.
Case Study: CVE-2018-18345 This vulnerability in Chrome
before version 71.0.3567.0 allowed compromised renderers to
register an HTML document with malicious JavaScript as a
blob URL of another site. Upon navigation to the blob URL,
the malicious script was executed in the context of the victim
site. The IPC blob registry interface that the browser process
provides to the renderer accepts a blob URL in the common
UUID form. However, the browser process did not verify that
the host of the provided blob URL matched the site of the
renderer process. Figure 3 details the whole attack flow. The
attacker creates the blob URL 1⃝ and registers it for the victim
site by spoofing the host in the URL 2⃝. The browser process
saves the blob URL in the context of the victim site 3⃝. It is
executed when the attacker navigates to it 4⃝.

B. Bypassed Checks

We found four bug reports for vulnerabilities that emerged
because security checks existed but were faulty and could
thus be circumvented by a compromised renderer. The causes
for this vulnerability class are diverse. A frequent cause for
such vulnerabilities is the renderer outliving the corresponding
control structures in the browser process and the browser
subsequently skipping security checks.
Case Study: CVE-2020-6385 Security checks were added to
the blob URL store in response to the previously discussed
SI bypass vulnerability with CVE-2018-18345. However, the
checks were not applied if the renderer process was shutting
down because the control structures in the browser process
holding the process lock might have been deleted.

A compromised renderer could spoof a frame detachment
IPC message to the browser process. This would trick the
browser process into believing that the last frame from the
renderer was removed and the renderer could be evicted. If
the compromised renderer ignored the SIGTERM signal sent
by the browser process, it would outlive the control structures

victim.com attacker.com blank
q

victim.com attacker.com blank

Browser

Renderer
Ô Ô

IPC IPC IPC

GetOriginalOpener() GetOpener()

Fig. 4. Schematic view of the CVE-2022-1637 bug

in the browser process. Thus, the compromised renderer could
send the same spoofed blob URL IPC message as in CVE-
2018-18345 because the provided URL would not be checked.

C. Origin confusion

If the site value that the browser process uses for security
checks is wrong, the browser process will accept spoofed ori-
gin values from compromised renderers. This origin confusion
is oftentimes triggered by complex cross-site navigation. To
exploit these vulnerabilities, a compromised renderer must first
trigger the origin confusion by combining various browser
navigation API routines and then spoofing origin parameters
in IPC messages. It follows an exemplary case study of CVE-
2022-1637 from this class.
Case Study: CVE-2022-1637 This vulnerability in Chrome
up to version 100 allowed a compromised renderer to spoof
the origin of the top-level frame and, for example, access the
cookies of a cross-site document framing the attacker’s site. A
new iframe or window created with a blank URL inherits the
origin of the opener to facilitate communication between the
two. The browser process contained a bug because the wrong
method was used to retrieve the origin of the newly created
frame. Figure 4 shows the frame trees in the renderers and
the browser process with the IPC channels between the frame
objects. The used method, GetOriginalOpener, returns
the origin of the top-level frame instead of the current frame.
On the renderer side, the frame’s origin was derived correctly,
and the frame object was placed in the renderer process of
the opener. Thus, if victim.com frames attacker.com,
attacker.com could open a new window to a data URL
with _blank target to trigger the origin confusion in the
browser process. The browser-side frame object would be
associated with the victim site. The renderer-side object would
be correctly associated with the attacker site. A compromised
renderer could then request the victim site cookies via the IPC
channel of the blank frame and spoof the origin parameter of
the request to match victim.com to steal the cookies of the
victim site.

IV. FUZZER DESIGN

Our analysis of the SI bypass proofs-of-concept revealed
them predominantly relying on three elements: complex cross-
site navigations to trigger origin confusion, circumventing
renderer-side security checks, and spoofing origin-related IPC
parameters. We propose a fuzzer architecture fulfilling all three
requirements to trigger SI bypass vulnerabilities.

5

Fuzzer Engine

Generator Browser
Instrumentation

SI Violation Sink

Web Servers

IPC fuzzer

$ https://www.example.com

?

Browser
Renderer

Renderer

IPC

IPC

1

2

3

4

5

Fig. 5. SI bypass fuzzer

We can trigger cross-site navigations by generating HTML
documents that invoke the browser’s navigation APIs. To
circumvent renderer-side checks and spoof the contents of
IPC messages, we patch the code of the renderer process.
We add methods to turn off renderer-side checks per renderer
process and to modify the origin parameters of the following
IPC message sent by the renderer. This approach is similar to
the fault-injection technique employed by Bars et al. [15]. We
thereby simulate the behavior of a compromised renderer.

In contrast to memory bugs that the Address Sanitizer can
detect, SI bypass bugs are semantic bugs, and we need an
oracle to detect them. The oracle must detect the execution
of attacker-provided scripts in the victim context and leaks of
critical data from the victim context to the attacker context.
We execute a full browser to process HTML documents from
different sites. In our setting, one of the sites is the attacker
site, which has access to the capabilities of the compromised
renderer, and the other site is the victim site whose data the
attacker wants to access. Since we know the correct site of
each document and which site the sensitive data belongs to,
we can detect Site Isolation violations by checking whether
we execute on a site that should be isolated or can access data
belonging to a different site.
Overview Figure 5 provides an overview of our fuzzer. First,
the generator creates a set for cross-referencing HTML docu-
ments with JavaScript content for each site. These documents
are then pushed to two servers with different IPs and, therefore,
different sites. In the third step, we navigate the instrumented
target browser to the sites and observe the behavior. As
the renderer processes the document and communicates with
the browser process, the IPC fuzzer module intercepts the
messages sent by the compromised renderer and randomly
modifies origin-related parameters. Last, our sanitizers detect
successful SI bypasses and report them to the fuzzer.

A. IPC Message Manipulation

We implement an IPC fuzzer component in the native code
of the renderer to intercept and manipulate outgoing IPC
messages. The IPC fuzzer targets site-related parameters in
outgoing messages and randomly mutates them to simulate
the behavior of a compromised renderer.

Both Chrome and Firefox define their different IPC inter-
faces via interface definition files. They employ a service-

oriented architecture: each interface contains a group of related
functions that either the renderer or browser process offers to
the other. IPC calls are similar to calling a function. They
accept several arguments and may have a return value.
Relevant Data Types We manually examined the IPC inter-
face definitions of the two browsers to identify the types of
parameters that a compromised renderer might spoof to bypass
Site Isolation. Chrome defines structured types to transmit
origin-related parameters. There are three atomic parameter
types: The url type represents a standard URL. It comprises a
scheme, user info, host, port, path, query, and fragment. The
origin type consists of scheme, host, and port. The schemeful
site type contains a scheme and an eTLD+1. In addition, there
is one composite type. The storage key contains an origin, a
schemeful site, and an ancestor chain bit. We examined all
IPC interfaces for navigation and storage activities to ensure
that these are the only types used to transmit site-related
information between processes. Therefore, we can reliably
detect all site-related parameters by type.

Our examination of the Firefox IPC interfaces revealed
that Firefox processes only exchange three different types of
site-related data: URL, origin, and domain. In addition, no
structured IPC parameter types exist for these parameters in
Firefox. Instead, the processes exchange URLs and origins
in string format. Thus, we cannot use types to determine if
a parameter contains site information. Instead, we use the
parameter identifier to determine if a string parameter is site-
related, searching for identifiers containing the words URL,
origin, domain, or spec. Like Chrome, Firefox often exchanges
URL and origin strings as part of more considerable struct
parameters.
Mutation Operations We identified two meaningful mutation
strategies for site-related IPC parameters based on the proofs-
of-concept of known vulnerabilities. The easiest mutation is to
take another URL and replace all components of the parameter
with components of the URL. The IPC message triggered by
the ‘history.replace()‘, for example, contains the URL of the
new history entry. The replacement mutation overwrites this
URL with another random URL, possibly with a different host
or scheme. This mutation can also be applied when the site
or origin is opaque (i.e., does not have a scheme and host).

The second mutation type is to replace just the host value
of the parameter. This mutation allows for easy exploitation
of SI bypass vulnerabilities from missing checks because the
remainder of the URL contains relevant data. An attacker
would replace his own host in the IPC message sent by the
renderer process with the host of the victim site. The exploit
for CVE-2018-18345 displayed in Figure 3 is an example of
this technique. The attacker sends an IPC message to create
a blob URL but replaces his host in the URL parameter with
the victim host to trick the browser process into moving the
malicious blob to the victim process.
Input Synchronization Our fuzzer produces two different
kinds of inputs: the HTML documents that make the base
behavior of the browser, and the mutations of the intercepted
IPC messages that simulate the compromised renderer. To

6

reproduce the bugs that our fuzzer discovers, the fuzzer must
reliably replay the exact IPC mutations at the right time
during document processing. Thus, we need to synchronize
the execution of the cross-site interactions triggered by the
document and the scheduling of IPC message mutations. We
achieve this by combining both inputs in one document: We
encode IPC message mutations in the HTML document as
invocations of a custom browser API.

The IPC interceptor collects message mutation instructions
in a FIFO queue. The custom browser API has functions for
each IPC parameter type (URL, origin, schemeful site, storage
key) and each mutation type (replace fully, replace host) that
take a replacement value and enqueue an instruction to apply
the respective mutation. Whenever the interceptor intercepts
an origin-related value, it checks the head of the queue for a
matching mutation instruction. The interceptor dequeues and
applies a matching instruction. Otherwise, it transmits the IPC
parameter unmodified.

The combination of enqueued message mutation instruc-
tions and regular JavaScript statements robustly encodes the
behavior of the IPC interceptor and produces reliable proof-
of-concept exploits on fuzzer crashes. We evaluate this input
format by re-implementing four proofs-of-concept from known
SI bypass vulnerabilities using our IPC fuzzer API instead of
manual renderer patches. For all four vulnerabilities, we could
implement minimal and robust proofs-of-concept.
Renderer Kills The browser process applies sanity checks
to the incoming IPC messages and their parameters. If the
browser process detects a malformed message or invalid
parameters, it infers that the renderer’s behavior deviates from
its implementation, indicating a compromise, and kills the
renderer process. This regularly produces an error in the
browser instrumentation, requiring a time-intensive restart of
the whole browser. Thus, the renderer kills severely impact the
efficiency of our fuzzer. We experimented with mutating other
parameters of IPC messages, but this led to a stark increase in
renderer kills without visible benefits for SI bypass detection.
We discuss techniques to reduce the impact of renderer kills
in Section VII.

B. Input Generator

The generator aims to generate HTML documents that lead
to diverse cross-site interactions. The generated documents
should be syntactically and semantically valid and cover the
whole browser API. Syntactical and semantic errors lead to
JavaScript exceptions that stop the execution of the statement,
rendering it useless. Thus, we require type information for the
browser API to produce valid invocations of its functions.

Manually written grammars for browser API fuzzing often
do not cover the whole API. Nevertheless, if the document
coverage of the browser API is incomplete, we might miss
vulnerabilities related to the missed APIs. Thus, we require a
complete grammar.
Web IDL The W3C standardizes the web browser’s JavaScript
interface in a definition language called Web IDL. Every prop-
erty of the browser API, its inheritance, member functions,

Algorithm 1 Random JS generation algorithm
Require: G : JS grammar

1: s← ∅ ▷ state of variables
2: n← 0
3: while n < 20 do
4: if RAND <

|s|·10
|G| then ▷ rand ∈ [0, 1]

5: obj ← WRANDCHOICE(s)
6: else
7: class← WRANDCHOICE(G)
8: obj ← INSTANTIATE(class,G, s)
9: ADD(s, obj)

10: members← MEMBERS(obj)
11: m← WRANDCHOICE(members)
12: p← GENPARAMS(m,G, s)
13: newobj ← INVOKE(obj,m, p)
14: ADD(s, newobj)
15: n← n+ 1

attributes, and visibility are defined in the definition files. In
contrast to the information available to JavaScript running in
the browser, the Web IDL files contain types for all method
signatures and attribute definitions. We can ensure type validity
for our generated documents by leveraging the information
from the Web IDL files.

Both Chrome and Firefox use the Web IDL files during
the pre-build step to automatically generate the JavaScript
bindings of the renderer. Both browsers have slightly different
Web IDL specifications because they are not entirely compliant
with the other HTML specifications. Parsing the corresponding
Web IDL files of the fuzzed browser, we create a grammar that
perfectly fits the specific browser to the particular version. We
supply a small handwritten grammar to supply the signatures
of the JavaScript built-in classes.

While the Web IDL specifications contain the possible
values for function string parameters that expect specific
keywords in the form of enum definitions, they do not include
this information for the keywords passed to the attributes of
HTML elements. These keywords are only loosely defined in
the HTML standard or the browser’s source code. However,
the MDN web docs list the keywords for every HTML attribute
in a structured format that we can parse to extract this
information. We also supply a manually written map from
HTML tag names to the respective DOM API class names.
JavaScript Generation Similar to other fuzzers creating
JavaScript code [10], [16], we generate code in static single-
assignment form (SSA). For each variable, we only assign a
value once, during its declaration. Thus, each variable is valid
in all statements after its declaration and keeps its initially
assigned type. Using the SSA form, we implement a context-
aware generator that tracks the current context of available
variables and their types to reuse them in complex statements.

We provide the pseudo-code of our generator in Algo-
rithm 1. In each iteration, the generator chooses a random
object from the current context or a random class from the
grammar and instantiates an object of this class. Next, the
generator chooses a random object member and generates
the JS code to call the member function or assign a value
to the attribute. The generator either uses fitting variables

7

from the context for the required parameters or instantiates
the required values or objects, preferably by using members
of existing objects. For objects that cannot be created by
calling a constructor, the generator checks if the object can be
obtained as a property of the browser API or if a fitting object
is returned by any function that can be invoked. We allow
the creation of helper objects to obtain the required objects
from a member function call up to a recursion level of two.
The parameter generation method also creates functions for
callback or event handler parameters.
Boost Object Reuse & Navigations We raise the probability
of reusing existing objects from the scope to increase coher-
ence between the generated statements and create complex
API interactions. We also increase the number of cross-
site navigations because they are the main precondition for
triggering origin confusion SI bypasses. To this end, we
employ a weighted random algorithm with a probability for the
preference set of 0.2, similar to Kim et al. [16]. We manually
selected all navigation-related interfaces from the browser API
to choose them with a higher probability during the initial
object selection step. Since most of these interfaces define and
inherit many members unrelated to navigation, we also select
a preference set of navigation-related members.

The generator produces random primitive values of match-
ing type whenever it encounters them in parameters. Optional,
nullable, or variadic parameters are populated or left empty at
random. For URL strings, it inserts either the URL of one
of the generated fuzzing input websites or a unique URL
belonging to one of the following categories: Data, blob, or
javascript: URLs. We limit the nesting documents to a
maximum depth of two to prevent infinite recursion.
Service Worker Service Workers have access to a set of
powerful capabilities. They can, for example, intercept all
outgoing HTTP requests. To fuzz this additional interface,
the generator also creates JavaScript files with the populated
callback functions of a service worker. Our Web IDL-driven
approach allows us to quickly generate code that utilizes
the API available to the Service Worker by filtering by
the visibility scope attribute of the browser properties. The
Service Workers are registered by a short code snippet that
the generator adds to each test case.
User Interaction Some exploits require user interaction (e.g.,
clicking a link) to succeed. We instrument the browser under
test with Playwright to automatically interact with the websites
and click on buttons and links. We utilize Playwright because
it prove to be more stable in the context of high process counts
and renderer kills.

C. Site Isolation Bypass Detection Oracles

We now describe the detection mechanisms of our new
SI bypass bug oracles. Since the browser executes renderer
processes for both websites, we can observe the data flows
triggered by the HTML documents and the IPC message
mutations. We want to detect three different forms of Site
Isolation bypasses: execution of attacker-provided JS in the
victim renderer (e.g., UXSS), leaks of critical victim site

data to an attacker-controlled renderer process, and cross-
site process-reuse. Cross-site process-reuse does not produce
cross-process data transmissions. But data residing in the
process is vulnerable to Spectre attacks.
Process sanitizer This sanitizer detects both UXSS and cross-
site process-reuse. We implement the process sanitizer as
a function that we add to the browser API. Our generator
knows the correct site of the document it is creating. It
inserts invocations of the process sanitizer function into all
documents and passes the correct site as a parameter. On its
first invocation, this process sanitizer function tags the site
received as a parameter to the process. On every following
execution, the process sanitizer compares the passed site to
the tagged site. Thus, it detects whenever a renderer is reused
between different sites, either because it is erroneously shared
or because of UXSS.
Leak flow sanitizer The leak sanitizer detects data from the
victim web application that leaks into the attacker’s renderer
process. The leak sanitizer is activated for the whole renderer
process by calling a JS function from any script. From this
point, the sanitizer examines all incoming IPC messages for a
known magic value. When generating the documents for the
victim website, the generator randomly produces this value
when generating strings. Thus, the victim page passes this
magic string to many different browser APIs. In addition,
we visit a seed page hosted by the victim web server after
every browser restart. The seed page contains scripts that
store the magic value in cookies, local storage, file systems,
and the IndexedDB of the victim web application. Whenever
the fuzzer triggers a SI bypass bug that leaks data of the
victim process, the leak sanitizer detects the leak and raises
a warning.

While the generator would randomly produce the proper
browser API invocations to exfiltrate data, we increase
the chance of detecting a successful exploit by calling a
predefined sanitizer JavaScript function at the start of every
function in the generated documents. This sanitizer function
aims to exploit a triggered SI bypass vulnerability and
exfiltrate data from the other site, thus producing a data flow
detected by the leak sanitizer. The function reads data from
cookies, local storage, file system, and the indexed DB of the
web application. Figure 9 (appendix) contains an example for
the output of the generator.

To detect CORS vulnerabilities, we detect if the reply to a
credentialed cross-site request is passed to the compromised
renderer process. We achieve this by providing two additional
HTTP endpoints that are fetched by the sanitizer function.
The first endpoint mimics a CORS-protected resource with
cookie-based authentication. It reflects all received cookies
in the HTML document of the reply, setting the Access-
Control-Allow-Origin header to only allow the victim’s origin.
Thus, if the compromised renderer can access the resource
even though it is not permitted, the leak sanitizer detects
the magic value of the cookie reflected in the reply. The
second endpoint simulates a non-credentialed CORB-protected

8

response. It does not require cookies to be set and returns
an HTML document containing the secret value. We set the
Content-Type to text/html to enable CORB. If the browser
does not block the reply, the leak sanitizer detects the magic
value in the document.

V. FUZZER IMPLEMENTATION

We implement the generator and browser instrumentation
in Python and the IPC fuzzer as a small submodule in the
C++ codebase of Chrome, Firefox, and WebKit (Safari). This
section details the specific implementation choices for each of
the components.

While we successfully implemented the IPC fuzzer for
WebKit, we could not instrument Safari combined with the
patched WebKit because Safari’s Webdriver does not support
it. We discuss this in Section VII. Consequently, this section
will focus on the implementation for Chrome and Firefox.

A. Browser Instrumentation

We use Playwright to instrument the two browsers and
automatically interact with the generated web pages. Play-
wright controls the Chrome browser via the Chrome DevTools
Protocol endpoint. Thus, we can exchange the Chrome browser
bundled with Playwright for our patched version. To instru-
ment Firefox with Playwright, some patches are required that
we manually apply to the code base, together with our IPC
fuzzer patches.

The browser vendors see compromised renderer processes
as a threat. Consequently, safeguards are in place that ter-
minate the renderer process if the browser process detects a
malicious IPC message. Thus, the browser regularly kills the
renderer process in our experiments, decreasing the stability of
the browser instrumentation. We must pay special attention to
handling these errors and cleaning up the remaining processes
to prevent the fuzzer from freezing up.
Configuration The default configuration of Playwright dis-
ables Site Isolation in both browsers, leading to meaningless
SI bypasses. We activate Site Isolation by overriding the
command line flags that Playwright passes to the browser or
by patching the configuration files. Furthermore, we activate
browser features like Chrome’s out-of-process network service
that is relevant in the context of Site Isolation but disabled by
Playwright by default.
Visit Strategy The browser executor starts the browser and
initially visits the seed pages of both sites to populate cookies
and storage. It then visits the victim and attacker pages to sim-
ulate the browsing behavior of a person lured to the attacker’s
page, e.g., via phishing. On both pages, the executor interacts
with every iframe and clicks every button and hyperlink to
trigger manual cross-site navigations.
Build Configuration We additionally compile the browsers
with Address Sanitizer instrumentation to detect memory bugs
in the browser process. In particular, we are interested in
crashes of the browser process that indicate sandbox escape
vulnerabilities, discovered as a byproduct of our fuzzing

Renderer Process

Browser Process

Renderer

Register(...)

C++

class
BlobRegistryProxy

SendMojoMessage()

Mojo

IPC

Mojo
Implements

C++

class
BlobRegistry

Register(...)

Browser

interface BlobRegistry{
Register (...)

}

mojo

generates Ô

Fig. 6. Mojo IPC bindings

campaign. Furthermore, we discovered that the debug asser-
tions that are generally used in browser fuzzing builds to
detect bugs [17], [18] are detrimental to our fuzzer: The
debug assertions in the renderer and the browser process
detect many symptoms of a compromised renderer process
early and terminate the renderer. Therefore, a browser with
debug assertions is artificially robust against SI bypasses and
produces significantly more renderer kills, reducing our fuzzer
throughput. Since debug assertions can be circumvented like
any renderer-side check, they provide no security in real-world
scenarios, even if someone uses a debug build for regular
browsing. Consequently, we turn off debug assertions.

B. Fuzzer Hooks

The IPC fuzzer we implement in Chrome and Firefox
consists of two components: the main class that stores instruc-
tions from the JS API in a queue and the fuzzer hooks that
intercept every site-related parameter in outgoing messages
and apply mutations from the queue. Both browsers rely on
the Mojo IPC library, developed as part of the Chromium
project, to multiplex many logical IPC channels over one real
IPC connection via shared memory. Because of the low cost
of additional IPC channels, both Chrome and Firefox define
many IPC interfaces through which the browser and renderer
processes communicate.

All IPC channels merge at the point where the serialized
messages are written to the same concrete connection, over
which the channels are multiplexed. However, we cannot
intercept and modify the messages at this point because the
message is a byte array that must be deserialized before type
information is available. Another option would be to manually
patch every function that sends IPC messages to the browser
process. Due to the number of functions involved, this involves
significant effort. Additionally, the frequency of changes to the
browser’s code base makes transferring our changes between
browser versions infeasible.
Fuzzer Hook Generation Instead of manual patches, we pro-
pose an automatic solution to insert the IPC fuzzer hooks that
exploits the browser’s build process. Both browsers define IPC
interfaces in the form of interface definition files. These files
are parsed during the pre-compilation step of the browser build
process, and C++ bindings are generated for both endpoints
that provide a layer of abstraction around the Mojo IPC library.

9

Figure 6 provides an example of this setup: The
BlobRegistry IPC interface of the Chrome browser. The
interface is defined in a Mojo IDL file. The Mojo parser
processes this file and creates C++ files with two classes: a
proxy class for the client that uses the interface and an abstract
class for the service that provides the interface. The proxy class
contains a method for every defined IPC message that wraps
the provided parameters in a message, serializes it, and sends
it via the linked Mojo library. On the other side, the process
that provides the interface must implement the abstract class,
overriding all virtual handler methods. In this process, the
Mojo library receives and deserializes the message and calls
the matching handling method. Return values of the handler
method are sent back via IPC and returned to the client as a
return value of the invoked method of the proxy class.

We modify Chrome’s bindings generator to automatically
inject a fuzzer hook into the generated classes for every site-
related parameter. These fuzzer hooks act as callbacks into the
IPC fuzzer class, which tries to apply an enqueued mutation
and overwrites the parameters. Firefox only uses the Mojo
library for the low-level IPC and employs a different IDL
and IDL parser. Therefore, we patch the Firefox IPC binding
generator in the same fashion.

We achieve coverage over all IPC messages on all interfaces
by patching the binding generators. All IPC parameters of the
relevant types are reliably intercepted. In addition, we can
update to newer browser versions simply by reapplying our
patches. Changes to both binding generators are infrequent;
thus, our patches apply without conflicts.

C. Additional Browser Patches

In addition to renderer patches in the automatically gener-
ated code of the IPC bindings, we manually apply patches to
implement our sanitizers.
Bypass Renderer-side Checks Similar to the security checks
in the browser process, security checks in the renderer assert
that the renderer can conduct an operation on behalf of
a specific origin and terminate the renderer in case of an
assertion failure. Once the attacker has compromised the
renderer, they can arbitrarily change the control flow of the
process. Thus, they can also circumvent all security checks
implemented in the renderer. If left unmodified, the renderer-
side checks prevent our fuzzer from triggering SI bypass bugs
because the renderer terminates itself. Thus, we manually
patch the renderer to add a compromised mode that overrides
all renderer-side security checks. We expose a browser API
invoked by our attacker site to set a boolean flag to activate
the mode, assuming the renderer can be compromised as soon
as it evaluates attacker-provided JavaScript code.
Leak Sanitizer We also implement the Leak Sanitizer as
a renderer patch. We patch the deserialization function that
processes incoming IPC messages. The sanitizer is activated
by calling a function exposed to the JavaScript API. From
this point on, it examines every incoming IPC message. It
searches for the known byte sequence of the magic string in
the binary blob of the serialized message. Thus, the sanitizer

does not depend on knowledge of the message format. Since
both Chrome and Firefox use Mojo for the lowest level of
IPC, we can apply the same patch to both browsers.

VI. EVALUATION

In this section, we present the results of our evaluation
and the month-long fuzzing campaign targeting Chrome and
Firefox. We evaluate our fuzzer in three steps: First, we
examine the semantic validity of the input documents created
by the generator. Second, we evaluate the capability of our
fuzzer to trigger and detect SI bypass bugs on old versions of
Chrome with three known vulnerabilities. Finally, we measure
the code coverage achieved by our fuzzer and compare it to
that achieved by the UXSS fuzzer Fuzzorigin [16]. We execute
all three evaluation steps on a system with Debian 12, an AMD
Epyc 7713 processor with 64 cores and 64 GB of memory.

A. Semantic Validity

The semantic validity of the generated JS code is impor-
tant because semantic errors terminate script execution early,
leading to ineffective fuzzer iterations. While the generator
can ensure syntactic validity during the lowering step to JS
code, semantic validity is more challenging. We can prevent
semantic errors from aborting the whole script by guarding
each statement with a try-catch block. In contrast to JIT-
fuzzing, where try-catch blocks break JIT optimizations and
thus cannot be used [10], try-catch blocks have no adverse side
effects for our fuzzer. However, all the following statements
that depend on a variable defined by the erroneous statement
will also fail.

We also leverage these try-catch-finally blocks to measure
the semantic validity of the generated statements. Each catch-
and finally- block emits a console log that indicates that a
block of the respective type was executed. The fuzzer collects
the console logs and counts the number of executed catch-
and finally- blocks. This enables us to compute the number of
executed statements that led to an exception.

Our fuzzer creates different inputs for Chrome and Firefox
because it uses the respective Web IDL definitions of the
browsers. Thus, we evaluated our fuzzer on both Chrome
and Firefox. We run our fuzzer for 24 hours each on both
browsers and measure the fraction of successfully executed
statements. In Chrome, 89.5% of executed statements pass
without exceptions. The number of exceptions in Firefox is
slightly higher, 85.3% of statements are semantically valid.
The noticeable difference in validity can be explained by the
generator utilizing the Web IDL definitions of the respective
browser to generate the inputs. The browser developers use
different extended attributes to express additional semantics of
the JavaScript APIs. Our fuzzer might lack support for some
extended attributes, thus mistakenly generating invocations of
unavailable interfaces.

B. Evaluation on known bugs

To evaluate our fuzzer’s capability to trigger and detect
SI bypass bugs, we run the fuzzer on old browser versions

10

TABLE II
KNOWN VULNERABILITIES IN CHROME USED FOR FUZZER EVALUATION

Vulnerability Chrome Version ClassVulnerable Evaluated

CVE-2022-1637 < 101.0.4951.64 99.0.4844.84 3
CVE-2019-5856 < 76.0.3809.87 67.0.3396.99 1
CVE-2018-18345 < 71.0.3578.80 67.0.3396.99 1

with known vulnerabilities and measure the time required to
trigger the bugs. Since our fuzzer requires browser patches, we
must adapt these patches and apply them to the old browser
versions. To minimize the engineering overhead, we try to
identify browser versions that can be used to reproduce several
known bugs simultaneously. Table II lists the bugs used for
evaluation and the vulnerable and evaluated browser versions.

We covered the bugs with CVE-2022-1637 and CVE-2018-
18345 in Section II-C as examples for their respective classes.
CVE-2019-5856 is another vulnerability of class 1 caused by
missing security checks in the browser process. In this case,
a malicious renderer could access filesystem: URLs of
any site because origin checks only existed in the renderer
process. We can reproduce the three bugs with two old Chrome
versions. The old browser versions are incompatible with
recent Linux versions; thus, we run them in Docker containers
with old versions of Ubuntu, i.e., Ubuntu 18.04 for Chrome
version 99 and Ubuntu 14.04 for Chrome 69, respectively.

Surprisingly, the IPC bindings generator changed very little,
and thus, our patches to the generator that create the fuzzer
hooks apply cleanly. However, the switch to Mojo IPC was
not completed in Chrome 69, leading us to add fuzzer hooks
for the remaining legacy interfaces manually. The renderer-
side checks also differ significantly between the versions, thus
requiring us to add patches that turn off the checks manually.

In addition to the browser patches, we modified the browser
instrumentation to handle the old browser versions. Chrome
99 required us to switch to Playwright 1.18.1. No version of
Playwright supports Chrome 69. Therefore, we use Puppeteer.
Anecdotally, the instrumentation for old browser versions
required more effort than backporting the browser patches.

We run the fuzzer for a maximum of 24 hours and measure
the time until our fuzzer successfully reproduces and detects
the known vulnerabilities from Table II. The first vulnerability
to be reproduced is CVE-2019-5856. The fuzzer triggers
the bug in less than a minute of runtime. We must turn
off the sanitizer for this bug to trigger CVE-2018-18345
because CVE-2019-5856 is triggered so often that it impedes
other executions. The fuzzer then triggers CVE-2018-18345
after approximately 14 minutes. The last vulnerability to be
reproduced is CVE-2022-1637 after 11.4 hours.
Oracle Evaluation To further evaluate the proposed oracles,
we randomly sample and reproduce five SI bypass vulnera-
bilities from the list of known vulnerabilities. We apply our
sanitizer and IPC mutation patches to the affected browser
version. We also apply the browser patches provided as proof-
of-concept in the bug report. If the vulnerability leaks data

TABLE III
ORACLE EVALUATION ON KNOWN POC’S

ID Class LeakSan ProcessSan

CVE-2018-16074 3 #
CVE-2019-5773 1 #
#40093844 2 #
CVE-2024-1671 3 #
CVE-2022-3044 1 # #

from a specific storage (e.g., the clipboard), we seed this
storage with the magic string. Next, we execute the PoC and
check if one of our oracles logs the SI bypass. We failed to
reproduce the proof-of-concept of CVE-2021-21175, so we
replaced this testcase with another random sample.

Table III contains the results of our evaluation. Of the five
random test cases, the process sanitizer detects one exploit,
and the leak sanitizer detects 3 exploits. Both sanitizers fail
to detect CVE-2022-3044. This bug allows any compromised
renderer to leak clipboard contents without user permission.
The proof-of-concept utilizes the MojoJS bindings to send
IPC messages by invoking JavaScript methods. Since these
bindings utilize different code paths, our leak sanitizer does
not observe the leaking message. We note that the sanitizer
detects clipboard leaks if the message is sent from the C++
IPC library. Including the three known bugs that were used to
evaluate the fuzzer, we observe a false negative rate of 12.5%.
Thus, we conclude that the oracles reliably detect different SI
bypass bugs.
False Positives The two oracles do not produce false positives
due to their design. They utilize the ground truth of the
generator (i.e., the site of the generated document) and transfer
it to the process level. Given that the victim document behaves
benignly, any observed cross-site data flow or process-reuse
constitutes a SI bypass. We did not observe false positives
during the evaluation or the fuzzing campaign.

C. Code Coverage

We examine code coverage to evaluate the effectiveness
of our generator and browser instrumentation in covering a
large amount of browser behavior. Due to the large code
base, regular source-based coverage produces a significant
performance penalty. Instead, we measure coverage based on
LLVM sanitizer coverage. We use LLVM trace-pc-guards that
write 1 to a bitmap for every covered edge. We place the
bitmap in shared memory to collect coverage from all different
processes. The total number of edges is high: 6.9 million edges
for Chrome and 3.0 million for Firefox.

We compare our fuzzer to Fuzzorigin [16], a fuzzer for
UXSS vulnerabilities. Fuzzorigin also creates HTML docu-
ments for two different hosts, albeit with different origins, not
different sites. Fuzzorigin utilizes Selenium to instrument the
browser under test. Since Fuzzorigin’s browser instrumentation
is incompatible with recent browsers, we use our browser
instrumentation to control the browser and only create the
input documents with Fuzzorigin.

11

0 5 10 15 20
Time (hours)

0

2

4

6

%
 E

dg
e

Co
ve

ra
ge

Chrome Coverage

0 5 10 15 20
Time (hours)

0

5

10

%
 E

dg
e

Co
ve

ra
ge

Firefox Coverage

our fuzzer (all)
fuzzorigin (all)
our fuzzer (browser)
fuzzorigin (browser)

Fig. 7. Edge Coverage over Chrome and Firefox (24 hours)

TABLE IV
SI BYPASS FUZZER FINDINGS

Browser Description Class Severity ID

� renderer can load arbitrary site 3 S2 CVE-2024-9392
? Window.name leaks 1 S4 #384781865
� visited URLs are leaked for styling 1 S3 #1938107
� CORB missing 1 S3 #1532642†

†: The discovered bug is an instance of a known issue, tracked under this ID

We run both fuzzers on Chrome and Firefox with the same
resources, that were described at the beginning of this section,
and a 24-hour runtime. Neither Fuzzorigin nor our fuzzer
utilizes a seed corpus. Figure 7 shows the collected edge
coverage in relation to the total number of edges in solid lines.
We note that the overall coverage is low. This is expected
since we consider large parts of the browser’s code base, for
example, the HTML parser, out of scope and therefore do not
create complex HTML markups.

Coverage measured over all processes might not be mean-
ingful because the vulnerabilities we search for are only in
privileged processes like the browser or network process.
Complex HTML markups, like the ones generated by Do-
mato [19], cover significant parts of the HTML parser in the
renderer but do not lead to many IPC interactions, much less
any meaningful behavior of the browser process. Thus, we also
measure coverage only over the privileged browser process in
a separate bitmap. We configure the browsers not to create
separate processes for networking and storage so that coverage
over these high-privilege services is included in our collection.
The dashed lines in Figure 7 show the coverage collected from
the privileged process alone. We note that coverage is still
computed with the total number of edges as the denominator
because there is no straightforward way to obtain the number
of edges of the browser process only.

D. Fuzzing campaign

We run a month-long fuzzing campaign to discover
new bugs in recent versions of Chrome and Firefox. We
run our fuzzer for two weeks each on patched builds of
Chromium 127.0.6497.0 (6ac2222a) and Mozilla Firefox
121.0 (c00a6f0c) on a system with an AMD EPYC 7702P
processor with 128 cores and 500 GB of memory. To fully uti-
lize the available resources, we parallelize our setup, running
50 instances of our fuzzer in Docker containers.

Findings We discovered four security bugs that we list in
Table IV. The impact of the bugs ranges from cross-site data
leaks to complete control of the victim’s website.
? Window.name leak The name property is not reset on

cross-site navigations, in non-compliance with the HTML
standard [20]. Thus, the browser leaks the name to the
next website. This bug was detected by the leak sanitizer.
It highlights the relevance of our generated victim page
actively seeding various storages by utilizing the magic
string in random ineractions with the browser API.

� leak of visited URLs The browser process broadcasts all
visited links to all renderer processes to facilitate CSS
visited: styling. Thus, a compromised renderer can
sniff all URLs that the victim opens in the browser. The
leak sanitizer detected this bug.

� missing CORB This was our fastest finding, also detected
by the leak sanitizer. Firefox does not implement Cross-
Origin Read Blocking, thus leaking the results of no-cors
cross-site requests to the renderer. Altough the results are
not returned to the JavaScript context, they are visible to
the compromised renderer. The Firefox developers are
working on a comprehensive implementation of CORB.

� history origin confusion A compromised renderer pro-
cess could force an origin confusion in the browser
process using the history API and trick the browser
process into loading cross-site content in the compro-
mised renderer. Both sanitizers detected this bug. This
vulnerability was assigned CVE-2024-9392 and rewarded
with an $8,000 bug bounty. We will detail it in the
following.

Case Study: Firefox History Confusion A
compromised renderer could spoof the URL set via the
history.replaceState method. While there were
checks that verified that the passed URL is of the same origin
as the current URL, they were implemented on the renderer
side. Our fuzzer-generated input circumvented the check by
replacing the passed URL in the IPC message sent to the
browser process. The message led to an origin confusion in the
browser process, which now stored the spoofed URL as the
last URL of this frame. A subsequent reload of the document
would trigger the browser process to load the document at
the spoofed URL into the compromised renderer process.
Thus, the compromised renderer could access the document
and cookies of the victim origin and execute JavaScript in the
context of the victim origin. Figure 8 shows the simplified
proof-of-concept exploit for the vulnerability discovered by
the fuzzer. It uses the IPCFuzzer API introduced by our
browser patches to detect leaks in incoming IPC messages and
replace the URL in the outgoing IPC message. This finding
confirms that the IPC message mutations in combination with
Web IDL driven browser API interactions effectively uncover
SI bypass bugs.

E. Quantifying Renderer Kills

We execute our fuzzer for 10 hours on Chrome and Firefox,
and count the iterations that result in the Playwright error,

12

https://bugzilla.mozilla.org/show_bug.cgi?id=1899154
https://issues.chromium.org/issues/384781865
https://bugzilla.mozilla.org/show_bug.cgi?id=1938107
https://bugzilla.mozilla.org/show_bug.cgi?id=1532642

IPCFuzzer.activate_leak_sanitizer();
IPCFuzzer.mutate_url("http://127.0.0.2:8080/victim.html");
window.history.replaceState("foo","", null);
window.location.reload();

Fig. 8. Proof-of-Concept for Firefox History Confusion

that is caused by the browser process killing a renderer that
it observes to act maliciously. For Chrome, 8.7% of iterations
ended in such a Playwright error, indicating a killed renderer.
For Firefox, the proportion of such Playwright errors increased
to 13.1%. Thereby, we observe that even our selected and
targeted IPC mutations trigger the security mechanism of the
browser process at a high frequency.

VII. DISCUSSION

We start by reexamining our research questions in light of
our experimental results.
RQ1 We evaluated two sanitizers for SI bypasses: The leak
sanitizer detects data leaked from the victim site to the attacker
process by observing the incoming IPC messages. The process
sanitizer detects cross-site process reuse or sharing by tagging
processes with the first content’s site. Both sanitizers infer the
correct site from the HTML document.

Our evaluation on known bugs and current versions of
browsers reveals that both sanitizers are effective in detecting
SI bypass bugs. The process sanitizer only catches very
specific bugs and is not applicable to the known vulnerabilities.
However, it did detect the history confusion bug in Firefox
from our case study. Fundamentally, the process sanitizer
covers a blind spot of the leak sanitizer: cross-site process
re-use without explicit leaks of secret data cannot be detected
by the leak sanitizer.

Our fuzzer successfully reproduces known vulnerabilities
and discovers new vulnerabilities in Chrome and Firefox.
In doing so, the sanitizers produce no false positives. The
attacker process should never receive the secret victim data
unless the victim site intentionally transmits the data via cross-
site communication APIs. Thereby, the sanitizers constitute an
elegant solution to the problem of detecting SI bypasses.
RQ2 We analyzed 39 bug reports to identify the common
preconditions to trigger SI bypass vulnerabilities. We identified
two main components: spoofing origin parameters of IPC
messages and bypassing renderer-side checks. We evaluated
a fuzzing approach simulating the compromised renderer by
modifying outgoing IPC messages with random mutations.

Our evaluation confirms that this approach is effective
in triggering SI bypass bugs. By automating the arbitrary
malicious behavior of the renderer process, we can evaluate the
behavior of the browser process under realistic attack condi-
tions. The discovered CVE-2024-9392, for example, could not
be triggered without both components of malicious behavior.

Including the commands for the IPC fuzzer in the HTML
documents produced highly reproducible proofs-of-concept.
The discovered bugs can easily be reproduced by manually
browsing the input documents with the patched browser.

An unexpected finding of our research was that debug
assertions are detrimental to our fuzzer. Debug assertions
completely prevented the reproduction of one of the three
known bugs and slowed down the reproduction of the other
two known bugs by a factor of three.

a) Limitations: The browser process kills renderer pro-
cesses upon receiving IPC messages that fail the security
checks to contain the compromise. These renderer kills limit
the performance of our fuzzer. The browser instrumentation
libraries throw an error upon loss of connection to the renderer,
requiring a costly restart of the whole browser.

We evaluated patching out the renderer-killing behavior of
the browser process to combat this performance penalty. How-
ever, we find that without renderer kills, our fuzzer regularly
discovers false positives (e.g., SI bypasses that cannot be
reproduced in a browser with renderer kills). The browser
process utilizes the kill function to clean up whenever it
detects an inconsistent state. All vulnerabilities following that
inconsistent state do not affect the regular browser, but occur in
our experiment because we removed the security mechanism.

The performance penalty inflicted by the renderer kills
limits our ability to try different manipulations of IPC mes-
sages. We tested different mutation strategies early, but the
frequency of renderer kills greatly exceeded the one described
in Section VI-E, thereby preventing any meaningful execution.
Thus, we focus on origin-related manipulations that are the
most frequent exploit path for Site Isolation bypasses. Our
fuzzer does not create random IPC messages from scratch,
a capability that would be required to exploit three prior
vulnerabilities that we marked out-of-scope in Table V.

The WebKit developers were in the process of implement-
ing Site Isolation at the time of writing. We validated that
support for WebKit can easily be added by applying similar
patches as the ones described in Section V on WebKit’s IPC
layer. However, while Safari supports running custom WebKit
artifacts, Safari’s Webdriver implementation does not support
this. This was confirmed by the WebKit developers. Thus, we
cannot instrument and fuzz Safari in a similar way to the other
browsers. While we can instrument and fuzz the open-source
GTK frontend for WebKit (WebKitGTK), this frontend differs
significantly from the closed-source Safari frontend. At the
time of writing, WebKitGTK did not support Site Isolation.

b) Reproducibility: Since our fuzzer relies on browser
source code patches to mutate IPC messages, reproducing our
experiments incurs the overhead of patching and compiling
the browser. We provide the full source code of the forked and
patched browsers on GitHub, accompanied by Docker contain-
ers and documentation to build the old browser revisions, to
increase reproducibility. While our patches apply cleanly even
on new browser versions, they might require expert knowledge
in the future, should the browser codebase change significantly.

c) Future Work: Coverage-guided fuzzing proved to be
incredibly useful in finding bugs [21]. However, the impact of
coverage guidance in browser fuzzing is the content of discus-
sion [22]. On the other hand, it could guide the manipulations
of IPC messages toward messages that pass security checks.

13

In addition to code coverage, JavaScript execution feedback
from exceptions and error messages could guide JavaScript
generation towards semantically valid statements.

We did not include extensions in the threat model. Exten-
sions have access to powerful APIs and may be granted access
to all sites opened in the browser. By generating malicious
extensions as part of the input, our fuzzer could discover
vulnerabilities that allow an extension to bypass access checks
or even access privileged origins like chrome://, leading to
sandbox escapes.

VIII. RELATED WORK

Adjacent to our work, Kim et al. [23] examined vulnerabil-
ities in browser extensions that lead to UXSS and SI bypass
and Gierlings et al. [24] exploited Site Isolation to facilitate
DoS attacks on the host system.
Semantic Browser Bugs Recently, semantic browser bugs re-
ceived special attention from the research community: Shou et
al. [25] implemented a fuzzer for Cross-Origin-Read-Blocking
(CORB) bugs and evaluated Chrome’s CORB implementation.
Most notably, Kim et al. [16] proposed the fuzzer Fuzzorigin
to discover Universal Cross-Site Scripting vulnerabilities in
browsers. Our approach is similar to theirs; we also process
several documents in the browser to implement an oracle on
top of the browser state. In contrast to Fuzzorigin, our fuzzer
can trigger SI bypass vulnerabilities because it simulates the
renderer compromise. Furthermore, our sanitizers detect data
leaks into the compromised renderer process that are not
visible to Fuzzorigin’s origin sanitizer.

Fuzzorigin relies on a manually created grammar for JS
code generation. This grammar covers only a limited set
of APIs, thus limiting the fuzzers coverage of cross-site
navigations and interactions. For example, the Window.name
property that is relevant for the discovered Chrome bug is
not supported by the generator. The same holds true for blob
URLs, which were relevant for several previous vulnerabilities.
Complemented by our new oracles and IPC message mutation,
Fuzzorigin’s generator could also have uncovered the other
three new vulnerabilities. To maximize coverage of cross-site
interactions, we implemented a more general approach that
utilizes Web IDL information to achieve complete coverage
of the browser’s JS API.

Other approaches include formal models to detect semantic
bugs during web platform test executions [26] or in the
web standard [27]. Wi et al. [28] used differential testing
to discover CSP bugs in browsers. They used the other
browser’s behavior as an implicit oracle. Rautenstrauch et
al. [29] proposed discovering cross-site leaks in browsers by
automatically checking for leaks across test executions.
Browser Fuzzing Most browser fuzzers targeted the DOM
engine [19], [22], [30]–[32] or JavaScript engine’s JIT com-
piler [9]–[11] to discover the security bugs leading to the
renderer compromise that we presuppose in our work. Re-
lated to our work, Zhou et al. [31] and Wang et al. [32]
also leveraged Web IDL interface specifications to generate
semantically valid JS. Recent publications specifically targeted

browser APIs for GPU-supported rendering [33], [34]. The
discovery of memory bugs in the privileged browser process
usually involves fuzzing the process’s IPC interfaces. Pan et
al. [35] fuzzed Chrome’s IPC interfaces via Mojo’s JavaScript
bindings. Yang et al. [36] fuzzed IPC services on macOS to
break out of the Safari sandbox. Schumilo et al. [37] proposed
snapshot fuzzing to overcome costly browser restarts.

IX. CONCLUSION

Our research sheds light on a so far unexplored type of
vulnerability that allows attackers to bypass the new Site
Isolation security mechanism of modern browsers. The key
problem of Site Isolation is that the browser must correctly
store the site of every renderer process and enforce security
checks on all IPC messages sent by the renderers. Based on
our analysis of all public reports of SI bypass bugs, we dis-
cern three different classes: vulnerabilities caused by missing
checks on IPC messages, those caused by invalid checks, and
those caused by the privileged browser confusing the site of a
renderer. Leveraging this classification and information from
the public bug reports, we identify the common preconditions
of an SI bypass exploit. In particular, SI bypass exploits require
an attacker to have compromised the renderer process to spoof
IPC messages and circumvent renderer-side security checks.
With these insights, we design and implement a fuzzer to
trigger Site Isolation bypass vulnerabilities by simulating the
malicious behavior of a compromised renderer. We evaluated
process-level and data-flow-based oracles that detect cross-site
data leaks and process-sharing, finding that they effectively
detect Site Isolation bypass vulnerabilities. We first demon-
strated the practicability of this approach by evaluating old
browsers with known SI bypass vulnerabilities. Our fuzzer
also has proven effective in uncovering new vulnerabilities, as
it discovered four security bugs in current versions of Chrome
and Firefox.

ACKNOWLEDGMENT

We gratefully acknowledge funding by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy – EXC 2092 CASA
– 390781972 as well as from the European Union’s Hori-
zon 2020 research and innovation programme under project
TESTABLE, grant agreement No 101019206. We thank Tobias
Jost for his technical support and his deep knowledge of C++
and CMake.

ETHICS CONSIDERATIONS

We only test browser executables locally and do not inter-
fere with genuine websites. Since the vulnerabilities discov-
ered during our fuzzing campaign might be used to attack
users, we confidentially disclose the vulnerabilities via the
available channels for security bugs. We support the developers
in fixing the bugs and keep our findings secret until the
developers make the bug reports public. In doing so, we adhere
to the rules and guidelines for reporting security bugs, which
the browser developers define.

14

The discovered bugs were reported no later than December
2024. The bug that received a CVE was fixed within 3 months
of the report. The three other bugs are considered less severe
and the bug reports or their duplicates were since made public
by the developers, although the bugs were not yet fixed. Since
the three bugs are public, their description in this publication
does not cause harm.

REFERENCES

[1] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution.” in IEEE Security &
Privacy, 2019, pp. 1–19.

[2] C. Reis, A. Moshchuk, and N. Oskov, “Site isolation: Process separation
for web sites within the browser.” in USENIX Security Symposium, 2019,
pp. 1661–1678.

[3] Mozilla, “Firefox 95.0 release notes,” Mozilla, 2021, visited 2024-
07-16. [Online]. Available: https://www.mozilla.org/en-US/firefox/95.0/
releasenotes/

[4] T. C. Team, “Addresssanitizer,” 2025, visited 2025-12-02. [Online].
Available: https://clang.llvm.org/docs/AddressSanitizer.html

[5] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,” in
IEEE Transactions on Software Engineering, vol. 47, 2021, pp. 2312–
2331.

[6] A. Agarwal, S. O’Connell, J. Kim, S. Yehezkel, D. Genkin, E. Ronen,
and Y. Yarom, “Spook.js: Attacking chrome strict site isolation via
speculative execution.” in IEEE Security & Privacy, 2022, pp. 699–715.

[7] Chromium, “Mojo,” Chromium, 2024, visited 2025-01-02.
[Online]. Available: https://chromium.googlesource.com/chromium/src/
+/main/mojo/

[8] J. Lim, Y. Jin, M. Alharthi, X. Zhang, J. Jung, R. Gupta, K. Li, D. Jang,
and T. Kim, “Sok: On the analysis of web browser security,” in arXiv
preprint, 2021.

[9] L. Bernhard, T. Scharnowski, M. Schloegel, T. Blazytko, and T. Holz,
“Jit-picking: Differential fuzzing of javascript engines.” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2022,
pp. 351–364.

[10] S. Groß, S. Koch, L. Bernhard, T. Holz, and M. Johns, “Fuzzilli: Fuzzing
for javascript jit compiler vulnerabilities.” in Network and Distributed
System Security (NDSS) Symposium, 2023.

[11] J. Wang, Z. Zhang, S. Liu, X. Du, and J. Chen, “Fuzzjit: Oracle-
enhanced fuzzing for javascript engine jit compiler.” in USENIX Security
Symposium, 2023, pp. 1865–1882.

[12] M. Bugtracker, “Create authoritative ’this origin to this content process’
infrastructure,” Mozilla Bugtracker, 2025, visited 2025-01-07. [Online].
Available: https://bugzilla.mozilla.org/show_bug.cgi?id=1491018

[13] ——, “Enforce content process restrictions in ipc,” Mozilla Bugtracker,
2025, visited 2025-01-07. [Online]. Available: https://bugzilla.mozilla.
org/show_bug.cgi?id=1484019

[14] ——, “Fission site sandboxing,” Mozilla Bugtracker, 2025, visited
2025-01-07. [Online]. Available: https://bugzilla.mozilla.org/show_bug.
cgi?id=1505832

[15] N. Bars, M. Schloegel, T. Scharnowski, N. Schiller, and T. Holz,
“Fuzztruction: Using fault injection-based fuzzing to leverage implicit
domain knowledge.” in USENIX Security Symposium, 2023, pp. 1847–
1864.

[16] S. Kim, Y. M. Kim, J. Hur, S. Song, G. Lee, and B. Lee, “Fuzzorigin:
Detecting uxss vulnerabilities in browsers through origin fuzzing.” in
USENIX Security Symposium, 2022, pp. 1008–1023.

[17] Chromium, “Check, dcheck and notreached,” 2025, visited 2025-01-21.
[Online]. Available: https://chromium.googlesource.com/chromium/src/
+/HEAD/styleguide/c++/checks.md

[18] F. S. Docs, “Firefox source docs: Fuzzing,” 2025, visited 2025-
01-21. [Online]. Available: https://firefox-source-docs.mozilla.org/tools/
fuzzing/index.html

[19] I. Fratric, “Domato,” Google Project Zero, 2024, visited 2025-01-02.
[Online]. Available: https://github.com/googleprojectzero/domato

[20] WHATWG, “Html living standard,” 2025, visited 2025-01-20. [Online].
Available: https://html.spec.whatwg.org/multipage/browsing-the-web.
html#resetBCName

[21] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++ : Combin-
ing incremental steps of fuzzing research,” in USENIX Workshop on
Offensive Technologies (WOOT), 2020.

[22] W. Xu, S. Park, and T. Kim, “Freedom: Engineering a state-of-the-art
dom fuzzer.” in ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), 2020, pp. 971–986.

[23] Y. M. Kim and B. Lee, “Extending a hand to attackers: Browser privilege
escalation attacks via extensions.” in USENIX Security Symposium,
2023, pp. 7055–7071.

[24] M. Gierlings, M. Brinkmann, and J. Schwenk, “Isolated and exhausted:
Attacking operating systems via site isolation in the browser.” in
USENIX Security Symposium, 2023, pp. 7037–7054.

[25] C. Shou, İ. B. Kadron, Q. Su, and T. Bultan, “Corbfuzz: Checking
browser security policies with fuzzing,” in 2021 36th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), 2021,
pp. 215–226.

[26] P. Bernardo, L. Veronese, V. D. Valle, S. Calzavara, M. Squarcina,
P. Adão, and M. Maffei, “Web platform threats: Automated detection of
web security issues with wpt.” in USENIX Security Symposium, 2024.

[27] L. Veronese, B. Farinier, P. Bernardo, M. Tempesta, M. Squarcina, and
M. Maffei, “Webspec: Towards machine-checked analysis of browser
security mechanisms.” in IEEE Security & Privacy, 2023, pp. 2761–
2779.

[28] S. Wi, T. T. Nguyen, J. Kim, B. Stock, and S. Son, “Diffcsp: Finding
browser bugs in content security policy enforcement through differential
testing.” in Network and Distributed System Security (NDSS) Sympo-
sium, 2023.

[29] J. Rautenstrauch, G. Pellegrino, and B. Stock, “The leaky web: Au-
tomated discovery of cross-site information leaks in browsers and the
web.” in IEEE Security & Privacy, 2023, pp. 2744–2760.

[30] C. Zhou, Q. Zhang, M. Wang, L. Guo, J. Liang, Z. Liu, M. Payer, and
Y. Jiang, “Minerva: browser api fuzzing with dynamic mod-ref analysis,”
in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2022, p. 1135–1147.

[31] C. Zhou, Q. Zhang, L. Guo, M. Wang, Y. Jiang, Q. Liao, Z. Wu, S. Li,
and B. Gu, “Towards better semantics exploration for browser fuzzing,”
in ACM SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA), 2023.

[32] J. Wang, P. Qian, X. Huang, X. Ying, Y. Chen, S. Ji, J. Chen, J. Xie, and
L. Liu, “Tacoma: Enhanced browser fuzzing with fine-grained semantic
alignment,” in ACM SIGSOFT International Symposium on Software
Testing and Analysis, 2024, p. 1174–1185.

[33] H. Peng, Z. Yao, A. A. Sani, D. Tian, and M. Payer, “Gleefuzz: Fuzzing
webgl through error message guided mutation.” in USENIX Security
Symposium, 2023, pp. 1883–1899.

[34] L. Bernhard, N. Schiller, M. Schloegel, N. Bars, and T. Holz,
“Darthshader: Fuzzing webgpu shader translators & compilers.” in ACM
SIGSAC Conference on Computer and Communications Security (CCS),
2024, pp. 690–704.

[35] G. Pan, T. Luo, Y. Tao, X. Lei, S. Chen, H. Liu, and C. Wu, “Amf:
Efficient browser interprocess communication fuzzing,” in 2023 20th
Annual International Conference on Privacy, Security and Trust (PST),
2023, pp. 1–6.

[36] K. Yang, H. Zhao, C. Zhang, J. Zhuge, and H. Duan, “Fuzzing ipc with
knowledge inference,” in 2019 38th Symposium on Reliable Distributed
Systems (SRDS), 2019, pp. 11–1109.

[37] S. Schumilo, C. Aschermann, A. Jemmett, A. Abbasi, and T. Holz,
“Nyx-net: network fuzzing with incremental snapshots,” in Proceedings
of the Seventeenth European Conference on Computer Systems, 2022,
p. 166–180.

15

https://www.mozilla.org/en-US/firefox/95.0/releasenotes/
https://www.mozilla.org/en-US/firefox/95.0/releasenotes/
https://clang.llvm.org/docs/AddressSanitizer.html
https://chromium.googlesource.com/chromium/src/+/main/mojo/
https://chromium.googlesource.com/chromium/src/+/main/mojo/
https://bugzilla.mozilla.org/show_bug.cgi?id=1491018
https://bugzilla.mozilla.org/show_bug.cgi?id=1484019
https://bugzilla.mozilla.org/show_bug.cgi?id=1484019
https://bugzilla.mozilla.org/show_bug.cgi?id=1505832
https://bugzilla.mozilla.org/show_bug.cgi?id=1505832
https://chromium.googlesource.com/chromium/src/+/HEAD/styleguide/c++/checks.md
https://chromium.googlesource.com/chromium/src/+/HEAD/styleguide/c++/checks.md
https://firefox-source-docs.mozilla.org/tools/fuzzing/index.html
https://firefox-source-docs.mozilla.org/tools/fuzzing/index.html
https://github.com/googleprojectzero/domato
https://html.spec.whatwg.org/multipage/browsing-the-web.html#resetBCName
https://html.spec.whatwg.org/multipage/browsing-the-web.html#resetBCName

APPENDIX A
KNOWN BUGS

TABLE V
SITE ISOLATION BYPASS VULNERABILITIES IN CHROME SINCE 2018 AND FIREFOX SINCE 2021

Browser ID Description Class In Scope

? CVE-2024-1671 Origin confusion in session history leaks URL of srcdoc iframe 3
� CVE-2024-0748 Compromised renderer can set arbitrary document URI 1
? CVE-2022-4913 Compromised renderer can access extension storage 1 H#
? CVE-2022-3661 Compromised renderer can message any extension content script 1 H#
? CVE-2022-3044 No access checks for clipboard interface 1
? CVE-2022-1637 Cross-origin iframe can spoof the hostname of top-frame by opening new window with javascript: URI and

target _blank
3

? CVE-2022-0305 Hidden bug report for Service Worker ? ?
? CVE-2022-0294 No checks in PushMessaging interface that verify if the referenced ServiceWorker belongs to the same origin as the

renderer
1

? CVE-2022-0292 Fenced frame can open file: URLs 1
? CVE-2022-0291 Hidden bug report for storage ? ?
� #827853 Compromise renderer can inject HTTP headers 1 #
� #1770227 Compromised renderer can forge notifications 1 #
? #40060671 Compromised renderer can spoof PortContext and claim to be WorkerContext of arbitrary extension 1 H#
? CVE-2021-38010 URLLoader leaked to ServiceWorker, compromised renderer can read the response of redirected cross-origin requests 1 #
? CVE-2021-30507 Compromised renderer can spoof X-Chrome-offline header to read arbitrary file 1 #
? CVE-2021-21222 TOCTOU bug in GeneratedCodeCache: compromised renderer can change value after the hash computation 2 #
? CVE-2021-21175 X-Frame-Options error of cross-origin iframe is leaked to parent 1
? #40054801 Compromised renderer that outlives state in the browser process can bypass security checks to spoof origin 2
� #1713203 Cookies leaked to all processes 1
? CVE-2020-6435 Compromised renderer can spoof sender id to extension 1 H#
? CVE-2020-6385 Origin checks in BlobURLStoreImpl::Register skipped if renderer process simulates detachment 2
? CVE-2020-6380 Compromised renderer can spoof origin, message any extension 1 H#
? CVE-2019-13763 Compromised renderer can spoof origin and leak data from PaymentManager 1
? CVE-2019-13738 Sandboxed iframe shares execution context with initial non-sandboxed about:blank frame 3
? CVE-2019-13727 Compromised renderer can create WebSocket to arbitrary URL and leak the response headers 1
? CVE-2019-13682 Spoofing origin in protocol handler registration leads to SI bypass 1
? CVE-2019-5865 CORS bypass: compromised renderer can set Host header during redirect 1 #
? CVE-2019-5862 Compromised renderer can spoof document_url_ and register arbitrary files from victims site in AppCache 1
? CVE-2019-5856 Missing browser-side checks, compromised renderer can access filesystem of other origins 1
? CVE-2019-5773 Compromised renderer can spoof origin when accessing IndexedDB 1
? #40093845 Compromised renderer can spoof origin and access code cache of other site 1
? #40093844 Invalid checks on ws: URLs, compromised renderer can leak cookies 2
? CVE-2018-18345 BlobURLRegistry::RegisterURL access check based on renderer provided host and public_url 1
? CVE-2018-16074 BlobURLs created from different opaque origins have opaque origin but are all handled in the same process 3
? CVE-2018-16073 Data URL in iframe is loaded in same process if embedding page is loaded from cache 3
? CVE-2018-6165 Refresh during navigation triggers origin confusion 3
? CVE-2018-6121 Compromised renderer can commit url of extension 1
? #40092826 Cookies leaked to cross-site renderer in presence of DevTools 1
? #40092525 Compromised renderer can spoof origin during filesystem url creation 1

All known Site Isolation bypass vulnerabilities in Chrome and Firefox, filtered from all bugs in the Chromium bug tracker with the tag Internals>Sandbox>SiteIsolation,
Firefox meta-bug-trackers [12]–[14], and NVD entries whose description included the term Site Isolation
 : bug is in scope of our work; H#: in scope but requires extensions as fuzzer input; #: out of scope; ?: unknown
1: Checks missing; 2: Checks bypassed; 3: Origin confusion

16

https://issues.chromium.org/issues/41487933
https://bugzilla.mozilla.org/show_bug.cgi?id=1783504
https://issues.chromium.org/issues/40055021
https://issues.chromium.org/issues/40060492
https://issues.chromium.org/issues/40051481
https://issues.chromium.org/issues/40059251
https://nvd.nist.gov/vuln/detail/CVE-2022-0305
https://issues.chromium.org/issues/40057994
https://issues.chromium.org/issues/40057925
https://nvd.nist.gov/vuln/detail/CVE-2022-0291
https://bugzilla.mozilla.org/show_bug.cgi?id=827853
https://bugzilla.mozilla.org/show_bug.cgi?id=1770227
https://issues.chromium.org/issues/40060671
https://issues.chromium.org/issues/40057750
https://issues.chromium.org/issues/40054839
https://issues.chromium.org/issues/40055380
https://issues.chromium.org/issues/40053800
https://issues.chromium.org/issues/40054801
https://bugzilla.mozilla.org/show_bug.cgi?id=1713203
https://issues.chromium.org/issues/40050931
https://issues.chromium.org/issues/40051020
https://issues.chromium.org/issues/40050932
https://issues.chromium.org/issues/40050340
https://issues.chromium.org/issues/40050506
https://issues.chromium.org/issues/40094352
https://issues.chromium.org/issues/40095326
https://issues.chromium.org/issues/40095365
https://issues.chromium.org/issues/40094393
https://issues.chromium.org/issues/40095069
https://issues.chromium.org/issues/40093574
https://issues.chromium.org/issues/40093845
https://issues.chromium.org/issues/40093844
https://issues.chromium.org/issues/40092507
https://issues.chromium.org/issues/40091928
https://issues.chromium.org/issues/40091919
https://issues.chromium.org/issues/40091514
https://issues.chromium.org/issues/40091207
https://issues.chromium.org/issues/40092826
https://issues.chromium.org/issues/40092525

APPENDIX B
GENERATED INPUT EXAMPLE

<html>
<head>

<script>
IPCFuzzer.deactivate_renderer_checks(); IPCFuzzer.activate_leak_sanitizer();

</script>
<script>

navigator.serviceWorker.register('/sw.js').then((reg) => {reg.update();}).catch((e) => {});
</script>
<script>

try {
function check_site_violation(src, exec, token){

let fetch_url = new URL(src);
let exec_url = new URL(exec);
if(fetch_url.hostname != exec_url.hostname){

console.log('[UXSS] [exec-' + token + '] ' + fetch_url.hostname + ' ' + exec_url.hostname);
return true;

}
if(IPCFuzzer.check_isolation(src)){

console.log('[UXSS] [process-' + token + '] ' + src);
return true;

}
try {console.log(document.cookie);} catch {}
try {cookieStore.get('sanitize').then(c => console.log(c)} catch {}
try {console.log(localStorage.getItem('sanitize'))} catch {}
// ... IndexedDB, OPFS, fetch
return false;

}
} catch {}
// ... similar sanitizer for iframes and window objects

</script>
</head>
<body>

<script>
async function foo() {

// try-catch-finally blocks around each statement omitted for clarity
check_site_violation('http://127.0.0.1:8080', location.origin, '1c26c410');

IPCFuzzer.mutate_url('http://127.0.0.1:8080/input-14094_page-1.html#549d489c');
var var0 = 'foo';
var var1 = {fatal: window.closed, };
var var2 = new TextDecoder(var0,var1);
var var3 = {stream: window.closed, };
var var4 = await var2.decode('',var3);
var var6 = 'no-referrer-when-downgrade';
var var7 = 'same-origin';
var var8 = 'include';
var var9 = 'force-cache';
var var10 = 'follow';
var var11 = 'auto';
var var12 = 'half';
var var13 = 'local';
var var15 = '1';
var var16 = 'token-redemption';
var var17 = 'refresh';
var var14 = {version: var15, operation: var16, refreshPolicy: var17, };
var var18 = {eventSourceEligible: window.closed, triggerEligible: window.closed, };
var var5 = {method: var0, headers: '', body: var0, referrer: var0, referrerPolicy: var6, mode: var7,
credentials: var8, cache: var9, redirect: var10, integrity: var0, keepalive: window.closed, priority: var11,
browsingTopics: window.closed, adAuctionHeaders: window.closed, sharedStorageWritable: window.closed,
duplex: var12, targetAddressSpace: var13, privateToken: var14, attributionReporting: var18, };
var var19 = new Request(var0,var5);
var var20 = await var19.formData();
IPCFuzzer.mutate_site_for_cookies_replace_host('http://127.0.0.2:8080/input-14094_page-2.html');
var var21 = document.createElement('param');
var var22 = document.createElement('object');
document.body.appendChild(var22);
var22.appendChild(var21);
// ...

}
foo();

</script>
</body>

</html>

Fig. 9. Example input produced by the generator

17

APPENDIX C
ARTIFACT APPENDIX

A. Description & Requirements

The repository contains the source code of the fuzzer de-
scribed in the paper. It is a browser IPC fuzzer to discover site
isolation bypass vulnerabilities. The fuzzer utilizes WebIDL
definitions to generate HTML/JS inputs utilizing the browser
JS API. The browser is instrumented with Playwright to
simulate user interactions. We patched Chrome and Firefox to
add our Site Isolation bypass bug oracles and the IPC fuzzer
component that mutates IPC messages sent by the renderer
process. The patched browsers are located in other repositories
of the same GitHub organization.

The artifact contains all the code to build and run the fuzzer,
reproducing the fuzzing campaign and the experiments (e.g.,
evaluating coverage and bug finding capabilities) of the paper.

1) How to access: The artifacts are located at https://
github.com/si-bypass-fuzzing. The fuzzer and the repositories
holding the patched browsers are located in this GitHub
organization and linked in the README. An immutable
version of the fuzzer repository is located at https://doi.org/
10.5281/zenodo.17750615. The patches directory contains
the browser patches in diff format.

2) Hardware dependencies: The following system require-
ments apply to building the patched browser versions required
to run the fuzzer:

• an x86-64 machine
• at least 16GB RAM
• 200 GB disk space
3) Software dependencies:
• Ubuntu 22.04
• Python3.12
• git
• Docker
• tmuxp
• to build the current Chrome without a Docker container,

the Chrome build dependencies must be installed
4) Benchmarks: None

18

https://github.com/si-bypass-fuzzing
https://github.com/si-bypass-fuzzing
https://doi.org/10.5281/zenodo.17750615
https://doi.org/10.5281/zenodo.17750615
https://chromium.googlesource.com/chromium/src/+/main/docs/linux/build_instructions.md#install-additional-build-dependencies

	Introduction
	Background
	Site Isolation
	Site Isolation Implementation
	Site Isolation Bypass

	Vulnerability Analysis and Classification
	Missing Checks
	Bypassed Checks
	Origin confusion

	Fuzzer Design
	IPC Message Manipulation
	Input Generator
	Site Isolation Bypass Detection Oracles

	Fuzzer Implementation
	Browser Instrumentation
	Fuzzer Hooks
	Additional Browser Patches

	Evaluation
	Semantic Validity
	Evaluation on known bugs
	Code Coverage
	Fuzzing campaign
	Quantifying Renderer Kills

	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Known Bugs
	Appendix B: Generated Input Example
	Appendix C: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

