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Fig. 1: High-Level Attack Overview. The adversary sends a
fake WiFi packet that the user involuntarily acknowledges. The
adversary applies signal processing to reveal what was typed.
The benefit of TwiST is extended range and NLOS scenarios.

As a result, these devices are increasingly gaining access to
sensitive data, such as passwords and PIN codes, and are being
used to control security-critical applications, raising significant
privacy and security concerns.

Similar to prevailing computing models, XR devices are
vulnerable to a wide range of software, network, mobile, and
sensor-based attacks. In fact, an extensive array of attacks
has already been launched against various aspects of XR
devices [10], [11], [12], [13], [14], [15], [16]. This emerg-
ing category of attacks is highly domain-specific, exploiting
unique characteristics of XR devices, such as the seamless
integration of sensors and computational capabilities, as well
as their use of diverse sensor modalities.

Among the various attack schemes, external physical at-
tacks are becoming increasingly prevalent. The key concept
behind this class of attacks is the extraction of sensitive
information from the device—such as passwords—primarily
through keystroke inference (keylogging) using physical side
channels. These attacks often involve leveraging physical
signals, such as using a microphone to eavesdrop on the
clicking sounds generated by the victim’s hand controller
during keystrokes [17]. Another example includes analyzing
the victim’s hand movement via a (spy) camera [18]. A key
characteristic of these external attacks is that they do not
require the attacker to infiltrate the XR device or install any
application on it. The attack is entirely independent of the
device, making it a non-invasive, highly stealthy, and powerful
approach to extracting sensitive information.

Despite their success, the common limitation on prior
external XR attacks [18], [17], [14], [13], [19], [20], [21],
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effectiveness across a wide range of environments. Our attack 
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I. INTRODUCTION

Virtual and Augmented Reality, collectively known as
Mixed/Extended Reality (XR), are transformative technologies
that immerse users in customizable, interactive, and simulated
environments. These advancements have revolutionized nu-
merous sectors, making XR devices increasingly prevalent in
many personal and public spaces [3], [4], [5], [6], [7], [8], [9].
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[22], [16], [23], [24], [25] is that they operate in short
distances (less than 10 meters) and often require line of sight
(LOS) for measuring the physical signal. This limitation in
range is especially seen in prior CSI-based XR attacks, which
fail at larger distances due to their attack setup. Furthermore,
these attacks have limited generalizability across environments
due to their choice of algorithm, which ultimately requires
attackers to physically modify and collect training data in a
victim’s environment before an attack.

Why do previous CSI-based setups fail at further dis-
tances? To be accurately sensed using CSI in an environment
with mobility, users must be in close proximity to a transmitter
(TX) or receiver (RX) used in sensing. Prior methods, such
as VRSpy [19] use an attacker-owned TX and RX pair, and
as a result, they must place attacker equipment next to a
user to have a high signal-to-noise ratio (SNR) and accurate
predictions. This requirement for proximity is due to the Near
Field Domination Effect [26], explained later in Section II.
To overcome this limitation, we use only an attacker-owned
RX, facilitated by forcing the victim XR headset to play an
active role as the TX in sensing its user. Given that the user
wears the headset, this ensures that a TX is always very close
to a user, guaranteeing high SNR even at long range. Our ap-
proach enables significantly more robustness to motion in the
environment. Further comparisons and theoretical background
are elucidated in Section II.

To force a user headset to act as a TX, we exploit an
existing vulnerability in all WiFi chipsets, called Polite WiFi
vulnerability [27], to extract a large corpus of CSI data (180-
220 packets per second) from the WiFi signals of a user’s
headset. This vulnerability allows an attacker to send a fake,
unencrypted packet to a specific victim device where, in
response, the victim’s device involuntarily and automatically
transmits an acknowledgment (“ACK”) packet. The victim
device that the attacker sends a packet to will be the only
device to send a response back, and will respond even if it is
connected to a password-protected network that the attacker
is not on. As a result, the attacker can continuously send
fake packets and receive CSI information through received
“ACK” packets. This eliminates limitations in prior work
on exploiting WiFi signals for keylogging. This makes the
headset’s WiFi device an ideal transmitter for the WiFi sensing
attack since it is naturally very close to the body of the victim.
Furthermore, our approach does not need the victim device
to be on the same network as the attacker nor requires the
devices to be connected to a fake and/or attacker-controlled
access point [28], [29], [21].

Why do prior CSI XR sensing methods fail to generalize
environments? Prior CSI-based sensing XR attacks rely only
on CSI data and machine learning models trained on real
typing data to make predictions. However, because signal
propagation characteristics vary significantly across different
environments, models are typically trained and evaluated
within the same setting. This requires collecting new training
data for each deployment, making such attacks difficult to

Fig. 2: Typing Passwords in VR. When logging into Bank
of America, a virtual touch keyboard that is approximately
40cm wide is presented to the VR User. This keyboard can be
interacted with by physically reaching out and touching it.

perform and unscalable.
To overcome this limitation, we propose a novel signal
processing scheme called Transition Web in Spring Tension
(TwiST). TwiST operates on the fly and can infer movements
across users and environments by relying on properties of
movement within a constrained region, providing a one-size-
fits-all approach to wireless sensing. Notably, it achieves this
using only a single receiver equipped with a single antenna.

An overview of our attack is shown in Figure 6. Our
attack is simple and can be performed using inexpensive
hardware and limited computational resources. We evaluate
it under different conditions and scenarios, including line-
of-sight, cross-building (up to 30 meters), and through-the-
wall. Our attack achieves 78.6% top-25 accuracy across a
building on passwords up to 15 characters. This paper makes
the following contributions:

• We propose the first XR Keylogging attack, which works
in long-range and Non-Line-of-Sight (NLOS) scenarios.

• We show how an attacker can turn the headset into a
transmitter for a WiFi-based keylogging attack by forcing
the headset to continuously transmit WiFi packets without
having any access to the headset or its network.

• We introduce a novel unsupervised wireless-based sens-
ing method capable of capturing the motion of users
across environments with no training data.

• We perform extensive evaluation in several LOS and
NLOS scenarios. We will open-source our implementa-
tion and experimental data.

II. BACKGROUND

A. Virtual Reality Keyboards

Virtual reality headsets are used across various domains,
many of which increasingly require frequent text input, as
shown in Figure 2. These tasks include web browsing, signing
into accounts, entering passwords or PINs, sending messages,
and making purchases. In current XR systems, text entry is
supported through several interaction styles. Most platforms
provide virtual keyboards that users operate either with hand
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tracking or with controllers via raycast selection [30], [2],
[31]. Emerging devices such as the Apple Vision Pro [31]
also support gaze-based input. Our work focuses on the widely
deployed hand tracking input method.

Headset-based hand tracking for typing is seamless on
the Meta Quest 2, which achieves an average positional
error of only 1.1 cm [32]. The keys on virtual keyboards
are significantly larger than on physical keyboards, typically
around 3cm wide, to accommodate user motion and tracking
error. By tracking the user’s head, these keyboards remain
fixed in position during typing, simplifying alignment and
use. VR headsets are data-intensive and rely on Wi-Fi as
their primary method of transmitting and receiving data. The
virtual keyboard in VR is approximately 40cm wide and
contains around 39–42 keys, each about 3cm in width. As
technology improves, adoption of XR devices continues to
grow, especially in public settings. While this paper focuses on
the Meta Quest 2, the vulnerabilities described apply broadly
to XR wearable devices that use floating virtual keyboards.

B. WiFi-Protocol

WiFi is a widely used wireless communication protocol
that enables devices to exchange data over a network using
the IEEE 802.11 standard. Each device in a WiFi network
is uniquely identified by its Media Access Control (MAC)
address, a 48-bit identifier. The MAC address ensures that
devices can distinguish themselves on the network, enabling
data to be directed to the correct recipient. MAC addresses
are not encrypted as they are essential for packet routing and
identifying devices in a network. Encrypting MAC addresses
would prevent packets from being properly forwarded, so
they must remain exposed. This allows attackers to sniff and
identify devices even in networks they are not connected to.

WiFi communication relies on a structured packet format
that includes a header, payload, and trailer. The header con-
tains metadata, including the sender’s and receiver’s MAC ad-
dresses, which allow the recipient device to recognize packets
meant for it and enable intermediate devices, such as access
points, to forward the packet to the appropriate destination.

The payload is the main body of the packet and contains
the actual data being transmitted. In secure WiFi protocols
like WPA2 or WPA3, the payload is encrypted to ensure
confidentiality. The header of packets is not encrypted, leaving
the details of the header visible to those outside of the network.

The trailer includes the Frame Check Sequence (FCS), a 32-
bit value used for error detection. The FCS is computed using
a Cyclic Redundancy Check (CRC) algorithm and allows the
receiver to verify the integrity of the packet. This structured
format ensures proper routing, reliable delivery, and robust
error detection within a wireless network.

WiFi communication includes mechanisms such as ac-
knowledgments (ACKs) to ensure reliable data transmission.
When a device sends a packet, the receiving device sends an
acknowledgment back only if the packet is received without
errors, as verified by the FCS. If the sender does not receive
an ACK within a brief window, it assumes the packet was not
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Fig. 3: In CSI sensing, different motions have different effects
on CSI. Pressing ”q” corresponds to a different CSI vs. Carrier
response compared to pressing ”p”.

successfully received and retransmits it. This acknowledgment
system provides immediate feedback and helps mitigate the
effects of interference and packet loss, both of which are
common in wireless environments.

While critical for ensuring reliable communication, this
acknowledgment mechanism has highly limited security. Ac-
knowledgments will be sent for any received packet where
a device is the intended receiver and the FCS passes. This
allows for other devices, even those outside an open or even
a password-protected network, to spoof packets to a target
device, prompting ACKs from any device. Prior work has
demonstrated that this behavior (known as Polite WiFi) exists
in all WiFi chipsets[27]. This behavior exists as acknowledg-
ments must be sent immediately after the FCS passes, as it
significantly improves the throughput of a network because
performing an FCS check is significantly faster than validating
the integrity of a packet’s encrypted payload.

C. Wireless-Sensing

In WiFi communication, packets are transmitted wirelessly
between devices acting as transmitters and receivers. The
transmitted signals, denoted by xsent, are complex numbers
characterized by an amplitude A and a phase ψ (xsent = Aejψ).
These amplitude and phase components are carefully modu-
lated to encode data.

WiFi uses a technique called Orthogonal Frequency-
Division Multiplexing (OFDM), where data is transmitted
across different frequencies called subcarriers. As signals
propagate through the environment, they undergo distortions
caused by factors such as path loss, fading, and multipath
reflections. In OFDM systems, these distortions are collec-
tively represented by the channel h, where xreceived(t) =
xsent(t)∗h(τ, t)+ϵ(t), for propagation delay τ and noise ϵ(t).
Considering that the noise is negligible, the channel in the
frequency domain can be presented as H(f) = Xreceived(f)

Xsent(f)
.

Channel State Information (CSI) represents the channel
response for each subcarrier, providing a detailed view of
how the wireless channel affects transmitted signals. It is typ-
ically represented as H(k, n) = |H(k, n)|ejϕ(k,n). |H(k, n)|
denotes the amplitude response, and ϕ(k, n) denotes the phase
response of the channel at subcarrier k and time index n.

CSI serves as a descriptor of the wireless environment
across the subcarriers, capturing the way signals interact
with objects and materials in their path. By analyzing the
amplitude and phase changes across subcarriers, CSI can
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Fig. 4: Signal of interest’s SNR versus user’s position between
a TX and RX spaced 30m. SNR is the ratio of the power of
channel variations caused by the user to variations caused by
other environmental mobilities. High SNR occurs when a user
is in close proximity to a TX or RX.

reveal spatial and temporal variations in the environment. This
makes CSI highly suitable for sensing tasks, such as motion
detection, activity recognition, and localization [33], [34], [35].

In CSI based sensing, the Near-Field Domination Effect
(NFDE) [26], relates variations in the channel caused by an
object to its velocity (vS), its distance to the Tx (dTx), its
distance to the user (dRx) and the path loss (α):∣∣∣∣∂H(k, n)

∂n

∣∣∣∣2 ∝ v2S(dTxdRx)−α
NFDE shows that objects that move faster or are closer

to a TX or RX have a greater impact on the variations in
the channel. Thus, as a user gets closer to a TX or RX,
their contribution to channel variations increases significantly,
making it easier to sense even small motions. This property
applies to all mobility within an environment, where moving
objects unrelated to a victim work to obscure the victim’s
motion.

It is for this reason that accurate sensing necessitates users
to remain close to a TX or RX. Figure 4 shows the SNR of a
user’s hand motions given their placement between a TX-RX
pair spaced 30m apart. SNR is calculated by taking the power
of channel variations due to hand movements compared to
variations caused by environmental mobilities. By ensuring
a user is always close to a TX, the channel variations of
small hand movements remain more significant relative to
environmental noise even at long range.

III. RELATED WORK

We compare some of the state-of-the-art work in software-
based and external extended reality attacks. We compare each
attack, along with our own work, in Table III.

A. Software-Based Extended Reality Attacks

Some works use app software to analyze user data, such as
head orientation, to extract keystrokes [15], [13], [10], [12].
These attacks may be conducted via malware, a background
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Fig. 5: SNR of the signal of interest versus distance of victim
from attacker equipment for both TwiST and Prior CSI Work.
Effective attacks require SNR of at least 5-10 dB. TwiST
enables much higher SNR (and longer range) since it utilizes
a user’s XR headset as a TX, which is very close to the user,
whereas prior CSI-based works utilize an attacker-owned TX
and RX which are spaced far from the victim.

app, a malicious website [11], or game [36], enabling remote
attacks. The key idea is that permissions are not required to
access XR sensor data [14]. However, these approaches have
several limitations. First, they require access to the device or
the user to download malware or be connected to a specific
multiplayer application. Second, they rely on the absence
of permission controls for sensor data. TwiST improves on
these attacks by requiring no user action or physical access to
the device and by leveraging properties inherent to wireless
protocols.

VRSpy is a prior CSI-Based Tx-Rx Keystroke Inference
Method for VR devices [19]. While VRSpy achieves high
accuracy in its evaluation, it fails to generalize environments
and does not work at long range. VRSpy does not involve
user equipment in its sensing paradigm, instead performing
all evaluations with a user typing within a 4-foot gap between
an attacker-owned TX and RX pair. Requiring physical access
to an environment to strategically position a Tx/Rx where a
victim will later use XR significantly constrains the feasibility
of real-world attacks; Such an approach requires extensive
planning and coordination to determine where a victim will
situate themselves to covertly transform that region into a
controlled wireless sensing environment. Figure 5 shows a
comparison of SNR for user motions given the distance from
a user to the nearest attacker-owned equipment. The SNR of
hand motions in TwiST remains much more robust to distance
and environmental noise than VRSpy due to our involvement
of user equipment in wireless sensing.
Furthermore, VRSpy does not create environment-invariant
features for typing in VR, meaning that training data must
be collected for every new environment VRSpy is evaluated
in. This again requires an attacker to access a victim’s envi-
ronment to collect a corpus of typing data to later launch an
attack. In contrast, our method does not require any training
data and runs on the fly by generating generalizable features
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from CSI data.

B. External Keystroke Attacks

Prior work demonstrates that keystroke inference is broadly
feasible across many sensing modalities and non-XR devices.
Acoustic side-channel attacks recover individual keys and
even full sentences typed on physical keyboards by analyzing
keystroke sound signatures [37], [38]. Wireless sensing has
also been used: CSI-based attacks infer keystrokes on me-
chanical keyboards [20], and similar RF features have been
leveraged to recover smartphone passwords through CSI or
Beamforming Feedback Information [21], [28]. Additional
work shows that wireless keyboards leak information through
packet-timing and RSS-based fluctuations [39]. Despite their
diversity, these methods share important constraints. They
target physical or mobile keyboards rather than VR or XR
input systems, typically require user or environment-specific
calibration, and generally operate only at short distances. This
limits their practicality in immersive settings where input is
often unconstrained. In contrast, TwiST requires no training
data, generalizes across users and environments, and functions
over substantially longer ranges.

C. Attacks on XR Devices

There are various hardware-based attacks beyond analyzing
the network. For example, some attacks leverage sensors
(camera, accelerometer, etc.) to reveal information [14], [13],
[18]. More recent XR-focused work has explored alternative
sensing channels, such as infrared (IR) arrays [40], but these
methods require dedicated IR hardware, careful physical place-
ment, and maintain effectiveness only within short line-of-
sight ranges (roughly 2–4 m). Their reliance on specialized
equipment and close proximity make it difficult to deploy in
realistic adversarial settings, especially compared to passive
CSI approaches.
Cameras are a powerful tool because they allow an adversary
to estimate pose and perform hand tracking, which can be
used to infer typing. Camera-based approaches have several
limitations. First, line of sight is required between the attacker
and the victim. Second, performance degrades in harsh envi-
ronments (for example, low light). TwiST improves on camera-
based approaches by enabling attacks even through walls. We
also measure network activity, which is orthogonal to lighting
conditions. Sound-based attacks are another option [17]; typ-
ing clicks can reveal key presses, but these attacks still fail
across rooms or buildings, unlike TwiST.

IV. THREAT MODEL

The goal of our attack is to reveal what an XR user is finger-
typing on a virtual keyboard by analyzing CSI data extracted
through wireless sensing. The adversary uses commercial off-
the-shelf hardware to measure WiFi signals. Via a signal
processing pipeline, the adversary can then extract sensitive
key press information.

In the attack, the victim is using an XR headset and is in-
teracting with the headset by pressing virtual keys. The victim

may need to enter sensitive information, such as passwords, as
part of this interaction. To use the keyboard, the victim uses
physical pressing motions to interact with the virtual keyboard.
Such key presses are desired to be detected by the adversary.
The victim headset does not need to be on the same network
as any of the adversary’s devices and does not intentionally
transmit data to the adversary.

Other devices may be situated in the environment and
have their own impact on the wireless channel. They may be
transmitting their own data for purposes related or unrelated
to the victim. Furthermore, the environment may have objects,
barriers, and other structures that impede the line of sight view
between the adversary and the victim. Other people may be
present nearby in the environment. The attack is intended to
work in environments typical of XR use cases, such as homes,
office spaces, and labs.

The adversary may be situated within or outside the victim’s
environment. The adversary does not have physical access to
the victim’s headset and cannot tamper with the headset’s hard-
ware or software. The adversary can place a sniffer/injector
device nearby. These devices may be in the same room, a
different room, or even a different building. The injector is
able to send fake packets into the environment, stimulating
the virtual reality headset to automatically acknowledge them
via acknowledgment packets. The sniffer can measure the
packets in the environment (including the acknowledgment
packets), specifically to measure channel state information and
network activity. The sniffer and injector can be either the
same physical device and/or two devices placed next to each
other. To send and receive packets, the adversary does not need
any special privilege and/or rely on any information other than
the existence of a “polite WiFi” vulnerability that commonly
exists in a wide variety of WiFi chipsets [27], [41]. Finally,
the adversary has compute resources that can be used offline.

V. ATTACK DESIGN

Our attack consists of several phases and modules to address
several challenges in realizing this attack. Figure 6 outlines the
steps. First, (a) XR devices are identified where XR devices
are identified by their WiFi packets, then there is a (b) Online
Phase where the adversary collects wireless information. Next,
the (c) Location Estimation module and (d) Press Estimation
module are essential for processing and analyzing the data.
Finally, the keys pressed are revealed via the (e) Keystroke
Inference module. An important aspect of our attack is that
our signal analysis scheme, TwiST algorithm, does not require
any pre-training, re-training, and/or fine-tuning. This unsu-
pervised adaptability allows it to perform effectively across
different environments and configurations without the need for
prior calibration or specific setup conditions.

In the remainder of this section, we will describe the TwiST
modules and the challenges faced in realizing these modules.

A. Device Identification

The first step in our attack is to find the MAC address of
a WiFi chipset. This is a challenging task since many modern
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Fig. 6: The attack consists of five major steps. a) XR Devices
are identified b) CSI data is collected from the environment.
c) The receiver uses CSI data to generate graphs. d) The
adversary estimates the time of key presses. e) The adversary
infers the keys pressed.

WiFi chipsets perform MAC Address Randomization to limit
tracking. This technique replaces a device’s real MAC address
with a randomized one. Whereas a device’s real MAC address
can be used to look up a device type, a randomized one cannot.
The specifics of MAC address randomization vary across XR
device models. The Meta Quest 2 does not implement random-
ization, making it persistently identifiable across networks.
The Meta Quest 3 uses per-network MAC randomization;
however, this randomization is done such that each WiFi
network it connects to is assigned a consistent randomized
address. Finally, the Apple Vision Pro also uses per-network
randomization, with an additional layer of privacy where the
randomized MAC address rotates, but this rotation is done just
every two weeks [42].
Even with MAC randomization and rotation, device types can
still be easily identified using findings from recent work [43],
[44]. Prior work found that device types can be identified
by producing fingerprints on their Information Element (IE)
probes. These probes are packets that WiFi devices send out
to identify nearby networks, even while already connected to
a network, that include detailed information about a device
and its capabilities. This MAC Address De-Randomization
allows attackers to create fingerprints for XR device models
to later identify them in the wild. This approach of producing
a fingerprint for an XR device to identify them in the wild is
evaluated in Section VI.

B. Online Phase

In the Online Phase, the goal of the adversary is to collect
relevant information from the environment that may reveal
information on what the victim typed. To realize this, several
challenges need to be addressed.

First, a consistent and generally high-rate stream of packets
from a target device is needed to increase the accuracy of
wireless sensing. To facilitate this behavior, the adversary
continuously sends well-formed “fake” WiFi packets to the
victim’s device (injection), forcing it to respond with ac-
knowledgment packets. These acknowledgment packets are
measured by the adversary (sniffing). To inject and sniff
packets, the adversary first obtains the MAC address of the
target headset using tools like Wireshark. It is important to
note that the attacker only needs to extract Channel State
Information (CSI) data using their own receiving setup. This
approach does not require the decryption of packet contents,
such as headers or payloads, simplifying the attack process
while maintaining its effectiveness.

Second, the attack must be stealthy and not interfere with
the existing operation of the victim’s device. We found that
IP spoofing is not required for the source address of the
packets the adversary sends (null packets), as target devices
will continue to send acknowledgments to packets that pass
the CRC even after de-authentication frames are sent. An
issue arises via a property of XR headsets, where they turn
off their radio and enter power saving mode at the onset of
these null packets. To prevent the headset from entering power-
saver mode, fake beacon frames are sent using beacon stuffing.
These frames are modified beacon frames that alert devices
that they should stay awake, as they have more frames waiting
for them. No IP spoofing was required for the false beacon
frames. While this attack can be detected via snooping traffic
on a network, it has negligible effects on the victim’s XR
headset, and the network experiences only minor decreases
in speed, making it unlikely to trigger an investigation into
low-level network traffic.

The final consideration is deciding how many null packets to
send to get a sufficient response from the victim. Injecting null
data packets and intermittent beacon frames was sufficient for
inducing over 180 responses per second from target devices.
Many wireless devices, including the Meta Quest 2 and
Apple Vision Pro, tested in this work, are susceptible to this
vulnerability. As described in Section 2.2, Polite Behavior
is integral to WiFi protocol and cannot be disabled on XR
devices.

A key advantage of our setup compared to prior approaches
is that we force the victim’s headset to participate as a
transmitter in a wireless sensing scenario. Previous methods
rely on a dedicated transmitter to send packets, which are then
measured by a receiver for wireless sensing. This approach
inherently limits both the measurement distance and situations
in which the attack can be utilized, as accurate measurements
rely on proximity to a Tx or Rx device.

In contrast, our setup leverages the automatic acknowledg-
ment (ACK) packets sent by the victim’s headset in response
to crafted 802.11 frames. This allows us to always be capable
of precise wireless sensing by turning the victim’s headset
into an (involuntary) transmitter. Compared to using a separate
transmitter, this greatly simplifies the setup for the attack, as
the location of the XR user no longer needs to be physically
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Fig. 7: Visual Overview of TWiST. Transitions over time are calculated over clusters generated from CSI data, forming a
graph. The constructed graph then undergoes a force projection to capture the relative proximity of clusters. Using information
gleaned from network traffic, these projections are rotated, scaled, and finally translated. To reduce the variation that naturally
exists in force projections, this process is repeated 300 times as part of an ensemble, reducing variance and improving accuracy.

accessed to place a nearby transmitter, and the channel is
guaranteed to be highly sensitive to their fine-grained motions,
allowing for high accuracy. Furthermore, this allows for the
attack to be performed at long distances, as well as in
private and restricted areas where the wireless channel is less
consistent or inaccessible to the attacker. The attacker does
not need to know exactly where the victim is; they only need
to be close enough to have the victim acknowledge the null
packets sent to them.

In practical XR environments, users can freely move, but
text entry is generally performed while stationary. Modern XR
systems anchor virtual keyboards to the user’s head or body
frame, making accurate selection difficult while in motion. Our
attack operates during these periods of user stability.

C. Location Estimation

The Location Estimation module serves to identify which
key has been pressed. To enable this, we utilize a Preprocess-
ing submodule and a Graph Generation submodule.

1) Preprocessing: Before generating positional predictions
based on the CSI data, hardware noise must first be removed.
One significant source of noise is the Automatic Gain Control
(AGC), which alters the amplitude of the CSI measurements
across antennas. To correct for this, the amplitude of each an-
tenna’s CSI is normalized by the L2 norm of the corresponding
channel measurements. Let H(k, n, a) represent the CSI for
subcarrier k, time index n, and antenna a. The power for each
antenna is calculated as:

P (n, a) =

√∑
k

|H(k, n, a)|2.

The AGC-corrected CSI, H̃(k, n, a), for each antenna is
then computed as:

H̃(k, n, a) =
H(k, n, a)

P (n, a)
.

2) Graph Generation: In this stage of the attack, a novel
unsupervised learning-based technique, the Transition Web
in Spring Tension (TwiST) Network, is used to project CSI
values onto the virtual keyboard. TwiST is a person and
environment-invariant CSI sensing method based on graph
generation designed to capture motion in environments with
consistent and repeating states. Below, we outline each step
of the algorithm in detail.

1) Sliding Window-based CSI Stabilization. To further
smooth the preprocessed CSI, we compute a mean over
a sliding window of size W = 25 packets, centered on i.
Specifically, for each n ∈ {1, . . . , N}, we define

H̄(n) =
1

W

n+⌊W/2⌋∑
b=n−⌊W/2⌋

H(b).

This produces a stable mean vector H̄(n) for each index
n.

2) Agglomerative Clustering. Cluster {H̄(n)}Nn=1 into
M = 100 clusters using agglomerative clustering. In
a stable wireless environment, the measured CSI value
when a finger is at a given location will remain constant,
including when the location is later revisited. This one-
to-one mapping of finger positions to CSI values means
that CSI naturally encodes unique regions of a keyboard.
Clustering formally identifies these keyboard regions,
where cluster Cm identifies some real position, pm, on
the keyboard. This step is critical for generalization as
it allows for later analysis based on the properties of
constrained movement between regions of the keyboard,
rather than on CSI alone.
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3) Graph Construction. Construct a weighted graph G =
(V,E) by initializing an adjacency matrix A ∈ NM×M

with all entries set to zero. Each cluster Cm is represented
by a node vm ∈ V . The goal of the remaining steps are
to populate the values of G and perform a projection f
which minimizes

∑M
m=1 ∥f(vm)− pm∥2.

4) Transition Mapping. To populate the weighted edges of
G, we iterate over the sequence of CSI values {H̄(n)} to
identify cluster memberships at each timestamp. Suppose
i is the cluster index at time t, and j is the cluster index at
time index n+1. We record this transition in A(i, j)←
A(i, j) + 1.
Hence, A(i, j) accumulates the frequency of transitions
from region i to region j. These transitions have two main
interpretations.
Firstly, they capture the proximity of nodes to each
other. Because nodes correspond to actual regions of
the keyboard and movements are continuous, nodes that
represent physically adjacent locations on the keyboard
will have direct transitions to each other. Consequently,
the length of the shortest path between two nodes in G
can be used as a proxy for their physical distance.
Secondly, these transitions capture how close a node
is to the center of the keyboard. If we assume each
consecutive typed position is chosen uniformly in the
rectangular keyboard area and the movement between
those positions are straight lines, then nodes closer to the
center of the keyboard will be crossed more frequently.
This arises because there are many more possible trajec-
tories connecting uniformly distributed endpoints passing
through the central region than the outer regions. As
a result, nodes corresponding to centered regions tend
to accumulate higher degrees and larger weights than
peripheral nodes.

5) Force-Directed Graph Projection. We embed G in
a 2D plane using a force-directed graph layout. Each
node vm receives a 2D coordinate (xm, ym), and
the transition weights act like springs between nodes.
This spring-like model preserves the physical adja-
cency implied by the transitions of G producing P =
{(x1, y1), (x2, y2), . . . , (xM , yM )}, a coordinate set.
A force-directed layout is used because it naturally cap-
tures the relative placement of nodes of G. Central nodes
tend to have more transitions and larger weights A(i, j))
causing them to also exert larger attractive forces on
each other, naturally pulling them to the center. Simulta-
neously, the less-connected peripheral nodes experience
weaker forces and tend to remain on the outside. This
projection also captures the relative distance between
nodes as nearby nodes have shorter paths and will be
pulled closer together than further ones. While this rep-
resentation will capture the relative placement of nodes,
it has no concept of global orientation or scale.

6) Keyboard Alignment Using Enter Press. Let te be a
known timestamp when the ”Enter” key is pressed, and
let ve be the corresponding node in the 2D layout (i.e., the

cluster active at te). We rotate all positions in P about the
layout’s centroid so that the coordinate of ve ends up on
the right side, consistent with the keyboard layout of the
Meta Quest. This step gives an orientation to P, capturing
the physical orientation of the keyboard. The ”Enter” key
is used as an anchor, as it can be easily detected and is
found on the same spot on the right side of the keyboard.

7) Vertical Flip. Although the previous alignment ensures
the enter key is on the right, the layout P may still be
inverted top-to-bottom. By examining additional known
press events, we use the heuristic of checking whether
most keypress events occur at positions below the enter
key to check if P is upside down. If this is the case,
we flip P across the horizontal axis. This operation
preserves inter-node distances while restoring a natural
top-to-bottom ordering for the keyboard. This heuristic
relies on the physical layout of the keyboard, where fewer
keys exist below the enter key and are generally used less
frequently.

8) Keyboard Resizing. Once oriented, we scale all
(xm, ym) coordinates to fit into a 10 cm×30 cm bounding
box. Specifically, define scale factors sx, sy such that
90% of predictions occur within this box and multiply all
positions by these factors. Because positional predictions
are relative, the mapping remains valid under uniform
scaling or resizing of user keyboards. As long as key
placements preserve their relative spacing and geometry,
the same mapping can be applied across many resizes.

9) Keyboard Offset. Finally, we translate the scaled layout
to align with the physical keyboard’s placement. For
instance, if we measure the real-world location of the
”Enter” key or a reference corner, we can shift all coordi-
nates so that the layout coincides with the actual physical
positions. Because the top row of the keyboard features
some of the most frequently used keys, this can bias the
graph generation to create more nodes corresponding to
the top of the keyboard, so the graph is offset upwards
to account for this.

10) Ensembling. Steps 5 onward are repeated 300 times to
generate an ensemble of TwiST networks, and the final
prediction is obtained by averaging the positions across
all networks in the ensemble. This is done to reduce
variance across variations of graph generations in Step
5, which can be subject to randomness, where accuracy
among individual generations can vary by several cen-
timeters.

We utilize a graph-based method over a typical formulation
of using a deep neural network on CSI values for several
reasons. First, a machine learning approach requires extensive
training data. Obtaining a sufficient amount of training data
for machine learning is non-trivial. Second, many CSI-based
sensing methods face severe issues in the generalization of
environments. Minor positional differences in train and test
data can result in a significant loss of accuracy. This weak-
ness in generalization is overcome with TwiST algorithm by

8



Enter 
Press

Fig. 8: Keystrokes during Google Search vs Network Activity.
When a user presses a key (dashed red line) during a Google
Search, a network request is sent to Google’s Autocomplete
Endpoint, resulting in an immediate exchange of packets.
When enter is pressed, a search is completed and a much
larger exchange of packets occurs as a page is loaded.

generalizing on properties of constrained motion in a manner
that is highly explainable and interpretable.

Via the TwiST algorithm, the adversary can recover a co-
herent 2-dimensional keyboard layout from CSI alone, without
the need for any training data.

D. Press Estimation

The purpose of the Press Estimation module is to detect
when a press has occurred. Obtaining the timestamp of a
press is non-trivial and requires several innovations. Press
Estimation consists of two steps: Time Anchoring and Press
Interpolation.

1) Time Anchoring: With just CSI information, it is dif-
ficult, if not impossible, to detect the timestamp of presses
at a time resolution suitable for an attack. To determine the
keystroke times of users in XR with high accuracy, a novel
exploit involving the examination of a user’s wireless activity
is used. Through examination of the network traffic on an
XR headset, keystrokes on the web can be identified. This
weakness exists because many cloud-based services, including
Google Search [45], Gmail [46], and Google Docs [47] prompt
an exchange of packets every time a user inputs a keypress,
often for logging or recommendations. While useful to users,
this leads to an exchange of packets corresponding exactly to
when a user presses a key. A larger burst of packets can be
seen when the enter key is pressed as the user completes their
search and loads a new page. Figure 8 illustrates this in more
detail.

The attacker leverages this characteristic to find the times-
tamp of a key press. The attacker analyzes the network activity
for bursts of packets spaced at least half a second apart, where
the start of the bursts indicates a key press.

2) Press Interpolation: While many websites exchange
packets per key press, it was found that login pages, such as
those for banks, do not. While packets aren’t sent per keypress,
a key behavior can be used to detect the keypress timestamps.

When the user loads the login page and when the user submits
their login information, a large exchange of packets occurs,
allowing an adversary to localize the start and end of a typing
sequence.

Just the start and end times of a typing sequence are
insufficient for detecting the timestamps of every key press.
To counter this, the adversary can utilize the typing cadence
analyzed when the user searches for their desired page in a
search engine to interpolate the key presses, given the start and
end times. For example, on the web, the user must use a search
engine to access a login page. The typing activity here can be
used to profile the typing cadence of the victim. Using the start
and end times of their activity, the adversary can interpolate
between these points to estimate keypress timestamps.

This approach has merit over other approaches. While
machine learning or graph generation could be used to uncover
key presses, we found that the key press motion itself is
relatively small and is harder to detect than the actual key
being pressed. Analyzing the network activity overcomes these
limitations by providing an accurate and repeatable method of
detecting key press timestamps.

E. Keystroke Inference

Finally, the Keystroke Inference module combines the infor-
mation gathered from the Location Estimation module and the
Press Estimation module to output which keys were pressed,
and when. For each known key press time, we extract the
corresponding predicted position in the 2D layout. These
positions are then mapped to the known layout of the keyboard
to determine the most likely key associated with each press.

This process allows us to rank possible keys based on their
proximity to the predicted position. The ranking can be used
in two ways:

1. Uniform Key Estimation: Each key press is uniformly
evaluated by taking the highest-ranked key for each predicted
position. This provides a straightforward estimation of the
pressed key.

2. Dictionary-Aided Word Ranking: The rankings can
also be combined with a dictionary attack, where the candidate
words are scored based on the average ranking of each letter
in the word. This approach incorporates language constraints,
improving accuracy when a predefined vocabulary or context
is available.

Both approaches have merit, and we provide the results for
both in Section VI.

VI. EVALUATION

A. System Setup

We conducted experiments in a dense metropolitan environ-
ment with no environment or interference control, including
overlapping WiFi networks, other active devices, and con-
tinuous foot traffic. NLoS tests were performed in publicly
open areas where people walk by, and across both rooms and
buildings. A sample NLoS setup, with the victim and adversary
separated by walls and corridors, is shown in Figure 9.
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Fig. 9: Attack Setup. A user types in XR (Meta Quest 2) while
the attacker sends fake packets to the headsets and analyzes
the headset’s ACK packets received through the wall.

Fig. 10: TwiST uses ESP32 as attacker device which is small
(40mm x 27mm x 17mm) and low-cost (10 USD). ESP32 has
a microcontroller, a Wi-Fi chipset, and an internal antenna
[48]. They can also be configured to use an external antenna.

We use commercial off-the-shelf devices for both attacker
and victim devices to run experiments. For the victim, we use
a Meta Quest 2 [1]. To enable efficient data collection, we
developed a web XR application based on A-Frame with a
keyboard that allows the user to freely type. For the attacker,
we use two collocated ESP32 modules, which are low-cost
small WiFi devices (see Figure 10). In particular, we use one
ESP32 as the injector device and another one as a sniffer. The
injector is designed to transmit fake WiFi packets, while the
sniffer is designed to collect packets from the environment.
Two ESP32s were used for ease of running the experiment;
however, in practice, the attack can be performed with a single
ESP32. Finally, it is worth mentioning that for all experiments
we used the internal antenna of ESP32 except for long-range
experiments where we used the external small dipole antenna
as shown in Figure 10.

Evaluations were performed on 30, 60, and 90-second

TABLE I: Conditions for each experiment type.

Experiment Type Conditions
Baseline 1m
Distance 1m, 2m, 4m, 10m
Angle 1m: -90°, -45°, 0°, 45°, 90°
Through Wall 1m: -90°, -45°, 0°, 45°, 90°
Indoor Extreme 8m NLOS through wall
Cross Building 30m
New User and Headset 1m: LOS and NLOS

segments of typing data, each of which was processed in
isolation. During these data collection rounds, the user types
from a virtual teleprompter in XR, which provides new words
uniformly sampled from the most common 10,000 English
words [49]. Note that TwiST does not require pre-training and
can generate an accurate graph dynamically in less than 90
seconds. Once the graph is generated, it can be used to infer
the keystrokes.

B. Results

To comprehensively evaluate the attack, we consider the
following factors to determine their effects on the attack.

• Distances. Typical keystroke logging attacks have min-
imal distance. In contrast, TwiST enables long-range
attack. Thus, we evaluate the performance of TwiST for
different distances, including both short and long range.

• Angles. The angle between the sniffer and the XR headset
can change during the user’s activity. Therefore, we
demonstrate TwiST’s high accuracy and resiliency to
changes in angle.

• Environments. Various factors in the environment could
interfere with the attack, such as walls. We demonstrate
TwiST’s resilience to these factors (even across-building),
to highlight TwiST’s improvement upon prior attacks.

• Users and Headsets. For TwiST to be reliable, we
need the attack to work for different users and headsets.
Therefore, we evaluate its performance using different
headsets and different users.

For all attacks, we report Top-K accuracy. TWiST scores
keys on distance to the predicted position. Top-K shows
the fraction of TWiST’s predictions where the correct key
is among the K highest-scoring keys. Words are scored by
multiplying per-letter probabilities. Additionally, we report
several other statistics, such as median top k, dictionary k, and
L2 error across all conditions. A summary of the experiments
is shown in Table I.

1) Baseline Test: To create a baseline for TwiST, we test
a line-of-sight scenario where the victim and attacker are
separated by 1m. The goal of this test is to demonstrate that
key press information can indeed be extracted from CSI data
and network activity.

The results show that TwiST obtains good accuracy, even
achieving up to 94.20% for the Top 16. The attacker can
achieve 6.40% in Top 1 scenarios, 38.60% in Top 4, and
72.60% in Top 9. This showcases TwiST ability to localize
key presses to a reasonably small region of the keyboard and
when those key presses occurred.

2) Effect of Distance: We expand upon the Baseline Test
by increasing the distance in a line-of-sight scenario. We
test TwiST at distances of 2, 4, and 10 meters under LOS
conditions.

The results show minimal to no reductions in accuracy
even at increased distances. In Figure 12, we observe that
the accuracy between 1m LOS, 4m LOS, and 10m LOS are
quite similar. We provide the detailed Top 1, Top 4, Top 9,
and Top 16 numbers in Table II. Between 1m LOS and 10m
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Fig. 12: Effect of distance in different environments on
TwiST’s accuracy.

LOS, there is minimal accuracy difference, especially for Top
9 and Top 16. It is worth mentioning that TwiST works at a
much further range than prior work, mainly due to the fact
that it eliminates the need for a dedicated attacker transmitter
and instead forces the victim headset (which is in proximity
of the user’s hand) to continuously transmit.

3) Effect of Angle: We demonstrate TwiST’s robustness to
changes of angle. The attack is evaluated at 1m in a line-
of-sight scenario. Angles are tested at {-90, -45, 0, 45, 90}
degrees relative to the target.

Compared to the Baseline Test, TwiST is able to maintain
reasonable accuracy. For example, at -90◦LOS and -45◦LOS,
the attack has higher accuracy than at 0◦for Top 1 and Top 4.
Some variations may exist due to the different wireless signal
paths measured via these different angles, but TwiST maintains
reasonable accuracy in all settings. The ability to be robust to
angle increases attack feasibility as the attacker may not be
able to orient their measurement setup the exact same every
time.

4) Effect of Walls: For the through the wall test, we separate
the victim and the sniffer with a wall. For this setup, the point-
to-point distance between the victim and the sniffer is 1m.

The attack accuracy actually improves in the 1m through-
the-wall scenario compared to the Baseline Test. The Top
1 accuracy is nearly double for through the wall (12.50%
compared to 6.40%), reaching an even higher Top 16 accuracy
(98.00 compared to 94.20%). Compared to prior attacks, this
substantially increases the attack feasibility in real scenarios
as the adversary does not even need to be in the same room
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Fig. 13: Effect of different users on TwiST’s accuracy, in
different environments.

as the victim. This is enabled by the removal of the constraint
that the victim needs to be between the adversarial transmitter
and receiver.

5) Effect of User: To demonstrate robustness towards dif-
ferent users, we conduct a 1m LOS and 1m through-the-wall
test for two users, each with different headsets. We compare
the results between all scenarios to determine if TwiST is
generalizable to different users. We additionally compare to
a Quest 3 headset in LOS on User 1.

TwiST achieves similar performance across both users and
headsets. As shown in Figure 13, the Top-K accuracies are
largely similar. The attack is slightly more accurate on User
2 in an LOS setting, but is slightly more accurate on User
1 in a through-the-wall scenario. This demonstrates TwiST’s
applicability to a wide variety of users, even unseen users.
This is enabled because TwiST generalizes on properties of
motion found across users and headsets.

6) Complex Scenarios: Realistic attack environments may
contain several combinations of distances, angles, and vari-
ables. Thus, we test across a wide combination of these
variables, as shown in Table II. For example, we test 8m
through the wall, and at various angles through the wall at
1m. The goal of these tests is to demonstrate that TwiST can
be applied to more complicated scenarios with more sources
of error.

Compared to their simpler counterparts, the complex sce-
nario experiments are able to achieve similar accuracies.
Comparing the angle tests through the wall and not through
the wall, we achieve even up to double the accuracy in
Top 1 scenarios, such as in 45◦and 90◦scenarios. In the 8m
through-the-wall test, we obtain 81% accuracy in the Top 16.
TwiST is able to maintain success even in more complicated
environments.

7) Cross Building: Finally, we test the feasibility of an
attack on a larger scale. In this test, the victim is in one
building while the attacker is in another, as shown in Figure 11.
The victim and attacker are separated by 30m. The goal of this
test is to demonstrate the range and limits of TwiST.

The attack achieves remarkable accuracy, even compared to
the Baseline Test. The attack achieves 16.30% accuracy in Top
1, 51.40% accuracy in Top 4, 74.30% accuracy in Top 9, and

11



-90°
LOS

-45°
LOS

0°
LOS

45°
LOS

90°
LOS

Scenario

0

25

50

75

100

To
p-

K 
Ac

cu
ra

cy
 (%

)

Top 16 Top 9 Top 4

Fig. 14: Effect of angle on TwiST accuracy.

Env. Top 4 Top 9 Top 16
1m LOS 38.91% 62.56% 97.54%
2m LOS 33.06% 61.22% 93.88%
4m LOS 42.02% 73.91% 93.24%
8m Wall 22.40% 52.70% 81.00%
10m LOS 31.40% 65.60% 93.50%
30m Bld. 51.40% 74.30% 97.10%
-90◦LOS 32.50% 59.17% 87.50%
-90◦Wall 34.30% 53.72% 76.86%
-45◦LOS 48.40% 73.97% 97.26%
-45◦Wall 57.43% 81.12% 99.20%
0◦LOS 38.91% 62.56% 97.54%
0◦Wall 57.43% 81.12% 99.20%
45◦LOS 44.87% 75.21% 97.44%
45◦Wall 35.19% 67.13% 93.98%
90◦LOS 38.86% 69.57% 95.65%
90◦Wall 46.00% 67.39% 95.90%
User 1 LOS 38.90% 62.56% 97.50%
User 2 LOS 39.60% 67.80% 93.40%
User 3 LOS 37.32% 65.53% 92.02%
User 4 LOS 38.92% 70.71% 97.14%
User 1 Wall 51.98% 73.80% 93.25%
User 2 Wall 25.15% 49.69% 81.59%
User 3 Wall 61.79% 79.78% 98.88%
User 4 Wall 43.85% 70.07% 96.06%
Quest 3 LOS 49.12% 75.40% 89.66%
Mean 40.77% 69.24% 91.54%

TABLE II: TopK Per Key Across All Conditions.

97.10% in Top 16. This highlights that TwiST can be applied
even on grander scales, increasing the potential risk of this
attack on end users.

8) Dictionary Attack: Using the same set of experiments,
we conduct a dictionary attack, where we use constraints from
language to improve accuracy. The goal is to determine the
effect of language constraints on TwiST accuracy.

The average median top k for the dictionary attack is
24.175. This means the midpoint number of words that need
to be guessed by the adversary is around 24. Furthermore,
we evaluate the dictionary attack on Top 1 through Top 1000
scenarios, at several increments, as shown in Table VI in
Appendix A. TwiST achieves 75.18% accuracy in Top 50,
92.91% accuracy in Top 250, and 97.14% in Top 500.

9) Positional L2 Error: To further highlight TwiST’s po-
sitional accuracy, we report the L2 error in cm across our
experiments. A low L2 error suggests that our model can
localize effectively.

The average L2 error for all experiments is 4.113cm, as
shown in Table V. Based on the dimensions of the virtual
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Fig. 15: Effect of Distance (victim-attacker) on Packets Per
Second received from the XR Headset, forced by the attacker.

keyboard, 4cm accuracy means that on average, the correct key
is within the surrounding nearby keys, significantly reducing
the guesses needed in a brute force attack.

10) Distance Analysis: To further analyze the data, we
compared the average number of packets received from the
Meta Quest per second at various distances. In Figure 15, we
graph the average packets per second received at 1m, 4m, 6m
nLOS, 10m, and across a building.

We extract several insights from these graphs that demon-
strate the validity of our approach. First, the number of packets
received per second does not substantially degrade across 1-
10m, remaining at around 220 packets per second. We notice a
reduction in packets per second in our cross-building scenario;
however, we still receive 170 packets per second, which is
more than enough to achieve high accuracy. Although not
validated, we believe TwiST can further increase the attack
distance (50m). We did not further test this due to logistical
constraints and left it for future work.

11) Comparison to Machine Learning: We compare
TwiST’s algorithm to a machine learning-based approach. We
trained a traditional ResNet-based model on data collected in
many environments. We use our best effort and best judgment
to provide a model representative of a deep learning approach.
We compare the average positional error of the machine
learning model to our graph generation-based model.

Our graph generation-based approach has significantly bet-
ter positional performance compared to machine learning. In
Table IV, we showcase the L2 error (in cm) for TwiST’s
algorithm compared to ML. In new environments, TwiST
performs significantly better than machine learning (4.1cm
compared to 7.5cm, respectively). In fact, for ML, the new
person and new environment scenario result is just slightly
better than guessing the mean ground truth hand location
(7.8cm). Each environment change widely affects the CSI
characteristics, taking it out of the ML training distribution.
Thus, while we provide a diverse training set to the machine
learning model, it is still unable to generalize to unseen
environments. Instead, TwiST removes the need for a large
amount of training data and only uses a short data sequence.

C. Comparison to Priors

Table III situates TwiST among existing keystroke-inference
attacks across XR, mobile, and traditional keyboards. We
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TABLE III: Comparison of Keystroke Inference Attacks

XR Attacks Target Modality Zero-Shot New User New Env NLOS Range Cost Key GOR Log10 Word GOR
TyPose [10] XR-Controller Malware N Y N N/A N/A $0 N/A 0.89
Privacy [11] XR-Controller Malware N Y Y N/A N/A $0 34.85 12.56
Head(set) [12] XR-Hand Malware N N N N/A N/A $0 9.40 N/A
Holologger [15] XR-Hand Malware Y Y Y N/A N/A $0 N/A 11.18
Protect [22] XR-Keyboard Multi-User Apps N N Y N/A N/A $0 26.48 N/A
Remote [36] XR-Controller Multi-User Apps Y Y Y N/A N/A $0 13.67 N/A
Keylogging [13] XR-Hand Hand Tracker N Y Y N 0.8m $200 N/A 22.07
I know [14] XR-Head Camera Y Y Y N 2m $500 N/A 12.11
HR [18] XR-Hand Camera Y Y Y N 10m $750 18.55 2.65
VRecKey [40] XR-Controller IR Array Y Y Y Y 4m $120 26.60 21.81
Strokes [39] Keyboard RSS N N Y Y 20m $100 N/A N/A
WiKI-Eve [28] Smartphone BFI N Y Y Y 10m $40 14.40 8.38
WindTalker [21] Smartphone CSI N N N Y 1.6m $20 3.17 5.30
Wiki [20] Keyboard CSI N N N N 4m $40 35.7 N/A
Hurdles [50] Keyboard CSI Y Y Y Y 3.5m $5000+ N/A 3.16
VR-Spy [19] XR-Controller CSI N N N N 1.27m ∼$400 25.11 N/A
TwiST (ours) XR-Hand CSI Y Y Y Y 30m $20 4.20 2.70

Note: GOR is the ratio of top-K accuracy to the likelihood of a correct classification given K random guesses over the method’s input
space. TwiST achieves strong GOR while functioning across users, environments, NLOS, and long ranges.

Cond. Rand. ML Transfer TwiST’s Alg.
Same 11.6 4.0 4.0 4.1
New 11.6 7.5 5.5 4.1

TABLE IV: A comparison of different approaches and the
average L2 error in centimeters. Same = Same Person Same
Environment. New = New Person New Environment.

compare methods using Gain Over Random (GOR), which
measures how many times better a system performs than a ran-
dom guess over its input space. Relative to prior XR attacks,
TwiST provides practical zero-shot usability, substantially
longer operational range, and strong key- and word-level GOR,
showing that CSI-based keystroke inference can function in
real XR settings rather than controlled environments.

Compared to prior CSI-based keystroke-inference attacks,
TwiST is the only method that targets XR-hand input, operates
at tens of meters, and requires no victim-specific calibration
or training data (with the partial exception of [50]). While
its GOR is lower than CSI attacks on physical keyboards or
smartphones, those methods rely on fixed, highly constrained
input surfaces. TwiST instead prioritizes real-world deploya-
bility in unconstrained XR environments, a setting that prior
CSI techniques were not designed to support.

D. Impact on Network Performance

To investigate the impact of this attack on WiFi network
performance, we evaluate the impact of our attack on a simple
network consisting of three laptops and Meta Quest 2, and a
phone, streaming 4k YouTube videos. During the attack, all
devices remained capable of streaming 4k without interruption.
We found that on our simple network, the attack adds a small
overhead of just 20% of the packets sent.

E. MAC Address Derandomization

A device fingerprinting tool was built following the speci-
fications described in prior work [43], [44]. Using this tool, a
fingerprint of a Meta Quest 3 was produced, which was suc-
cessfully used to identify a second Meta Quest 3 device from
nearly 1000 other devices. This highlights the feasibility of

such an approach, where attackers can easily build fingerprints
of XR devices and identify them at range.

F. Ablations

Several ablation studies are performed, evaluating design
choices, data characteristics, and network monitoring. The
results can be found in Appendix A.

VII. DISCUSSIONS

There are several key limitations of our work. The variety of
users was limited to three people who experienced with XR.
While strong results were seen across user orientations and
environments, it is possible that TwiST could fail on certain
body types or less experienced users. The data collection and
evaluation were done with users staying fairly still. While XR
keyboards remain static, not all XR users do. The efficacy of
TwiST requires consistency in the motions of a user; if their
motions are random or dramatic (walking around or strongly
fidgeting while typing) it will reduce accuracy. The results
of our dictionary attack are limited by the quality of the
dictionary used. In our data collection and evaluation, all typed
words were found in the dictionary that was later searched,
guaranteeing that each password could be found.

VIII. CONCLUSIONS

This work presented a novel and robust keylogging attack
leveraging WiFi wireless sensing, which overcomes the lim-
itations of prior methods by eliminating the need for line
of sight, close proximity, or complex setups. By exploiting
vulnerabilities in WiFi chipsets and utilizing a novel signal
processing algorithm, we achieved accurate keystroke infer-
ence under diverse conditions and distances, highlighting the
pressing need for stronger security measures in XR devices
and wireless communication protocols.
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APPENDIX

A. Ablations

To better understand the characteristics of TwiST, we per-
form ablations to analyze the impact of design choices and data
characteristics on its results. Each analysis was performed on
the data from the Cross-Building Scenario. The first category
on which TwiST is evaluated is the length of data it is
provided. We evaluate its performance when data is provided
in 30s, 60s, and 90s chunks. As seen in Figure 18, reducing the
temporal length of data provided to TwiST from 90 seconds
to 30 did not cause any significant loss of accuracy, and
performance slightly improved from 3.9cm error to 3.7cm.
In Figure 19 we examine ablation L, which evaluates the
impact of an optimization of the dictionary attack, wherein the
words evaluated in the dictionary are restricted to words whose
lengths match the number of observed keypresses. Removing
this optimization increases the median top-k per-word score
on the dictionary attack from 4.5 to 37.

The efficacy of ensembling is tested in the S ablation,
where a single graph is used rather than the ensemble of
300. The results of this ablation show that ensembling plays a
large role in reducing prediction error, as using only a single
graph causes an increase in error from 3.9cm to 5.1cm due
to the significant randomness in generating a force-directed
graph layout shown in Figure 20. In ablation P, we do not
provide press times to TwiST, simulating when passwords
are entered and press times must be estimated using a user’s
typing cadence. Our final evaluation explores the combination
of these conditions, shown in Figure 21. Requiring the press
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Fig. 16: Effect of graph generation parameters on top-k per
letter accuracy. N50 and N200 change the number of nodes
in the graph from 100 to 50 and 200, respectively. C changes
the clustering algorithm from Agglomerative to Gaussian, and
R projects the final predictions to a keyboard 5cm longer.

times to be estimated from cadence increases top-k per letter
from 4.0 to 6.0, reducing the provided data increases the top-
k to 7.0. Finally, after removing aggregation, we achieve a
median top-k score of 9, which still yields an improvement
over random guessing.

The influence of graph-generation choices on a single
environment is evaluated in Figure 16. Reducing the number
of layout nodes from 100 to 50 (N50) improves performance,
while increasing the node count to 200 (N200) degrades it,
suggesting that overly clustered graphs amplify noise in the
force-directed layout. Changing the clustering algorithm from
Agglomerative to a Gaussian mixture model (C) raises Top-4
accuracy but lowers Top-16 accuracy, indicating a less stable
cluster structure at larger k. Finally, projecting predictions
onto a keyboard extended by 5cm (R) results in a small but
consistent decline in accuracy.
To evaluate the stability of CSI under realistic ambient con-
ditions, we perform a sensitivity analysis where we collected
measurements while typing the same word in XR across two
conditions within the same environment: one stable and one
with two users moving and multiple additional devices active
on the network. As shown in Figure 17, the cleaned amplitude
traces for subcarrier 55 remain highly consistent between
the two recordings, exhibiting a correlation of 0.94 despite
substantial motion and network activity. This illustrates that
TwiST remains robust even when the surrounding environment
is in motion.
To assess whether TwiST remains practical on real, monitored
networks, we conducted a sensitivity analysis using polite
WiFi on both open and password-protected public networks
with active traffic monitoring. Over a continuous 16-hour
period, TwiST consistently extracted usable CSI without trig-
gering any administrative alerts or interference, demonstrating
that polite WiFi remains effective even on managed public
networks.
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Fig. 17: CSI amplitude values for typing the same word in XR
under static and dynamic scenarios. For the dynamic scenario,
users walked around the environment, and the network had
additional activity. Despite this, amplitudes remain strongly
correlated at 0.94.
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Fig. 18: L2 Errors From Graphs Generated Using 30, 60, and
90 seconds of Data. The median positional prediction error
remains consistent with a slight decrease in error as the length
of data provided to it decreases.
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Fig. 19: Median Top-K Dictionary Scores with and without
known word lengths (L). Removing the optimization on the
dictionary attack, which limits the search to words that match
the number of observed keypresses, increases the median top-
k value in the dictionary attack from 4.5 to 37.

TABLE V: Median TopK and L2 Values across all Conditions.

Env. Letter-K Dict-K L2 Error (cm)
1m LOS 6.00 9.000 3.920
2m LOS 8.00 57.000 4.130
4m LOS 5.00 4.000 3.480
8m Wall 9.00 112.500 5.440
10m LOS 7.00 28.000 4.580
30m Bld. 4.00 4.500 3.880
-90◦LOS 5.00 4.000 4.150
-90◦Wall 5.00 9.000 3.400
-45◦LOS 6.00 59.500 5.320
-45◦Wall 5.00 1.000 3.590
0◦LOS 6.00 9.000 3.920
0◦Wall 5.00 2.500 3.750
45◦LOS 10.00 114.500 5.250
45◦Wall 6.00 16.000 3.970
90◦LOS 8.00 33.000 4.720
90◦Wall 4.00 1.000 3.610
User 1 LOS 5.00 2.500 3.920
User 2 LOS 5.00 7.000 3.590
User 3 LOS 7.00 35.000 4.994
User 4 LOS 6.0 18.500 4.38
User 1 Wall 5.00 2.500 3.750
User 2 Wall 5.00 7.000 3.890
User 3 Wall 5.00 38.500 5.151
User 4 Wall 6.00 14.500. 3.984
Quest 3 LOS 5.00 13.000 3.790
Mean 5.95 24.175 4.113
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Fig. 20: Positional Error in an Ensembling vs Single Graph
(S). By aggregating predictions across many graphs, TwiST
improves accuracy and reduces its variability.
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TABLE VI: Dictionary Attack Performance Across all Conditions.

Environment Top 5 Top 10 Top 25 Top 50 Top 100 Top 250 Top 500 Top 1000
1m LOS 44.60% 52.30% 75.40% 87.70% 95.40% 98.50% 100.00% 100.00%
2m LOS 14.80% 14.80% 37.00% 48.10% 70.40% 88.90% 96.30% 96.30%
4m LOS 51.20% 60.50% 65.10% 76.70% 83.70% 93.00% 97.70% 100.00%
8m Wall 10.30% 15.50% 25.90% 34.50% 48.30% 67.20% 91.40% 96.60%
10m LOS 29.00% 38.70% 41.90% 64.50% 74.20% 93.50% 96.80% 100.00%
30m Cross-Building 53.60% 61.90% 78.60% 90.50% 96.40% 98.80% 100.00% 100.00%
-90◦LOS 52.80% 66.00% 75.50% 77.40% 88.70% 100.00% 100.00% 100.00%
-90◦Wall 38.70% 51.60% 64.50% 67.70% 77.40% 96.80% 96.80% 100.00%
-45◦LOS 22.90% 31.20% 39.60% 50.00% 58.30% 70.80% 81.20% 93.80%
-45◦Wall 60.70% 75.40% 85.20% 95.10% 96.70% 100.00% 100.00% 100.00%
0◦LOS 44.60% 52.30% 75.40% 87.70% 95.40% 98.50% 100.00% 100.00%
0◦Wall 57.70% 69.20% 88.50% 94.20% 96.20% 100.00% 100.00% 100.00%
45◦LOS 4.40% 4.40% 10.30% 23.50% 45.60% 80.90% 94.10% 100.00%
45◦Wall 30.10% 41.90% 59.10% 75.30% 87.10% 97.80% 100.00% 100.00%
90◦LOS 23.00% 29.50% 42.60% 62.30% 72.10% 77.00% 88.50% 96.70%
90◦Wall 77.80% 87.00% 98.10% 100.00% 100.00% 100.00% 100.00% 100.00%
User 1 LOS 44.60% 52.30% 75.40% 87.70% 95.40% 98.50% 100.00% 100.00%
User 2 LOS 59.30% 66.70% 81.50% 96.30% 96.30% 100.00% 100.00% 100.00%
User 3 LOS 25.00% 29.17% 41.67% 66.67% 70.83% 91.67% 91.67.% 95.83%
User 4 LOS 43.33% 50.00% 50.00% 83.33% 100.00.% 100.00% 100.00% 100.00%
User 1 Wall 57.70% 69.20% 88.50% 94.20% 96.20% 100.00% 100.00% 100.00%
User 2 Wall 45.10% 64.70% 76.50% 90.20% 92.20% 98.00% 100.00% 100.00%
User 3 Wall 37.50% 50.00% 50.00% 75.00% 100.00% 100.00% 100.00% 100.00%
User 4 Wall 32.69% 42.31% 65.38% 75.00% 82.69% 96.15% 100.00% 100.00%
Quest 3 LOS 26.47% 41.18% 61.76% 70.59% 79.41% 88.24% 100.00% 100.00%
Mean 41.15% 50.26% 64.23% 75.18% 83.30% 92.91% 97.14% 99.17%
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Fig. 21: Median Top-K Scores Across All Conditions. Per-
formance is evaluated when press-times must be estimated by
cadence (P), when data is further reduced to 30s, when the
dictionary attack is unrestricted, and finally when only a single
graph is used (S).
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