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Abstract—Decentralized finance (DeFi) is an emerging financial
service on blockchain, enabling automatic and anonymous trans-
actions. Within DeFi, decentralized exchanges (DEXs) maintain
reserves of a pair of tokens and determine the exchange rate
to swap tokens. However, DEXs also create opportunities for
Maximal Extractable Value (MEV), where attackers include,
exclude, or reorder DEX transactions to exploit price discrepan-
cies of tokens and extract profit. Uncovering MEV opportunities
requires high throughput, as the 12-second block interval and the
vast search space impose strict time constraints. However, existing
tools suffer from low throughput, as they rely on CPU-bound
execution, which is hindered by frequent state forking and slow
DEX execution. In this paper, we take the first step in leveraging
GPU parallel computing power to boost MEV-search throughput
in arbitrage and sandwich strategies. More precisely, we compile
an MEV bot into a GPU application and then launch thousands
of GPU threads to search for profit in parallel. To this end, we
design new solutions to address three major challenges: designing
cheatcodes to simulate transactions on GPU, proposing a memory
manager to reduce GPU memory usage, and designing strategy-
aware mutations to improve input diversity. We implement
a prototype named MeVisor that runs DEXs on GPUs and
searches for MEV using a parallel genetic algorithm. Evaluated
on 3,941 real MEV cases from Ethereum, MeVisor achieves
3.3M-5.1M transactions per second, outperforming the CPU
baseline by 100,000x. In a large-scale study of Q1 2025 data,
MeVisor estimates MEV opportunities ranging from 2 to 14
transactions, yielding at most $1.1 million in MEV profit.

I. INTRODUCTION

Decentralized finance (DeFi) is a rapidly growing ecosystem
of peer-to-peer financial services built on blockchains, partic-
ularly Ethereum [62]. DeFi applications are implemented as
smart contracts, which are self-executing programs running on
the Ethereum Virtual Machine (EVM [62]). These contracts
enable permissionless markets and anonymous transactions.
As a fundamental component of DeFi, decentralized exchanges
(DEXs) hold a pair of tokens and adjust their prices based on
market supply and demand. Traders swap tokens on DEXs,
generating $13.7 billion in daily trading volume [33] and
millions of transactions [23]. During a swap, traders may
incur losses due to slippage, which is the difference between

the expected price and the actual execution price. Such price
discrepancies create MEV opportunities for high-frequency
searchers, producing more than $300K in daily profits [18].

MEV [12] is the profit extractable by including, omitting, or
reordering transactions within a block. The resulting ordered
set of transactions, known as a bundle, constitutes the MEV
payload. A classic MEV strategy is arbitrage, where an
attacker inserts a transaction to buy a token on one DEX and
immediately sells it on another at a higher price. Another
common strategy is sandwich: The attacker first front-runs
a victim’s buy trade by purchasing the token immediately
beforehand to raise the price; after the victim’s trade executes
with slippage, the attacker back-runs by selling the token and
captures the profit created by the victim’s price impact.

Although MEV is sometimes described as the “invisible tax”
of DeFi, it can also contribute to market by adding liquidity
and attracting new capital. Several blockchain features further
accelerate the growth of MEV. First, after Ethereum’s 2022
Proof-of-Stake upgrade [39], attackers without mining power
can still submit their MEV bundles through relays [29], [59].
Second, Ethereum synchronizes peers every 12 seconds [39],
provides a uniform search window during which attackers
worldwide can compete for MEV opportunities. Third, at-
tackers with limited capital can also submit high-cost bundles
using flash loans [56]. A flash loan is a DeFi service that
provides an instant, collateral-free loan. It allows an attacker
to borrow tokens to execute MEV transactions and then repay
the loan using the extracted profit.

0 2000 4000 6000 8000 10000 12000
Input Capital (USD)

103

102

101

100
0

100

101

102

Pr
of

it 
(U

SD
)

#2
#3
#4
#5
#6
#7
#8

0 500 1000

100

0

Fig. 1: Profit trends of the motivating examples listed in
Table X.

Searching for MEV opportunities is fundamentally an op-
timization problem aimed at maximizing profit by selecting
bundles within a fair but limited time window. In our threat
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model, attackers can insert transactions in specific positions
to front-run or back-run a victim [12] to build a bundle.
While MEV strategies specify where these transactions should
appear, the inserted transactions themselves are not predeter-
mined. Transactions must be synthesized with an appropriate
amount of initial capital and a corresponding swap path across
DEXs. The initial capital is the input token amount used
throughout the MEV path. Prior work [15] shows that the
capital optimization for Uniswap V2 DEXs [2] is a convex
optimization problem, and can therefore be solved both reli-
ably and efficiently. Figure 1 illustrates the profit curves of our
seven motivating examples (Table X) as functions of initial
capital, demonstrating convexity even when the MEV path
spans multiple DEXs to Uniswap V3 [1], and Sushiswap [57].
However, identifying an MEV path is non-trivial due to the
explosion of the search space. For sandwich attacks, although
the attacker typically searches only two trades, selecting the
optimal pair incurs quadratic complexity. With n tradable
pools, the two-leg ordered pairs scale as O(n2), and when
combined with a superimposed size grid of k, the overall
complexity becomes O(kn2). Searching for profitable sand-
wich opportunities is computationally intensive, as it must
account for slippage across all pairwise DEX combinations
in real time. Arbitrage attacks have even higher complexity.
Identifying an MEV arbitrage path of length s across n
tradable DEXs requires evaluating n!

(n−s)! combinations. This
factorial growth forces searchers to restrict exhaustive search
to short paths. Using data from [61], we analyzed 30,646
historical arbitrage transactions from January to June 2025.
The cumulative distribution in Figure 2a shows that 82.21% of
arbitrage events involve fewer than three DEXs. Despite this
trend, longer arbitrage paths remain valuable, as they often
contain profit opportunities overlooked by most attackers.
Figure 2b shows that long arbitrage paths yield arbitrage
profits.

2 3 4 5 6 7 8 >8
Path Length

0.0

0.5

1.0

CD
F

(a) CDF of path lengths.

2 3 4 5 6 7 8 >8
Path Length

10 2

100

102

Re
ve

nu
e 

(E
TH

)

(b) Distribution of revenue.

Fig. 2: Empirical study on 30,646 arbitrage incidents.

The explosion of the search space significantly limits an
searcher’s ability to exploit MEV opportunities under real-
world constraints. On Ethereum, where the blockchain is up-
dated approximately every 12 seconds, attackers must evaluate
and rank potentially millions of bundles within seconds to
remain competitive. Table I summarizes the existing MEV
detection tools, all of which struggle with low throughput
when identifying practical MEV opportunities. DEFIPOSTER-
SMT [64] was the first system to encode arbitrage MEV as
symbolic constraints and solve them using SMT. However,
its scalability is limited by the path explosion inherent to

TABLE I: Comparison of existing MEV detectors. Scalable:
Capable of handling a growing number of DEXs. Generalized:
Supports MEV strategies beyond arbitrage. EVM-free: Search
without relying on EVM execution.

Type GPU Scalable Generalized EVM-free

MeVisor Genetic Algorithm ✓ ✓  ✓

Lanturn [5] Machine Learning ✗ ✓  ✗

CFF [4] Formal Verification ✗ ✗ G# ✓

CFMMROUTER [15] Optimal Routing ✗ ✓ # ✗

DEFIPOSER-ARB [64] Shortest Path ✗ ✓ # ✗

DEFIPOSER-SMT [64] Symbolic Execution ✗ ✗ # ✓

 Fully support G# Partially support # Missing

symbolic execution. DEFIPOSTER-ARB [64] and CFMM-
ROUTER [15] reduce this explosion by searching for optimal
swap cycles within a restricted subset of DEXs. These ap-
proaches are specific to arbitrage but cannot be easily general-
ized to other MEV strategies. CFF [4] improves generality by
formally verifying smart contract interactions across different
MEV strategies. Nonetheless, its scalability remains limited
because each formal model is tailored to a specific DEX,
preventing broad cross-DEX applicability. Overall, these deter-
ministic methods remain constrained by the size of the bundle
space and often fail to detect complex or previously unseen
MEV paths. Lanturn is the only non-deterministic approach. It
runs an infinite optimization loop that learns MEV strategies
from historical transactions. In each round, it evaluates bundles
on a testbed built by Hardhat [35], which must locally simulate
consensus protocols. Although this design improves scalability
for complex MEV opportunities, Lanturn is still limited by
EVM execution overhead, including consensus simulation and
the cost of repeatedly forking and executing transactions. As
a result, it achieves only 121 transactions per second on
44 cores, leaving significant room for improvement. While
Lanturn includes consensus simulation and frequent forking,
advanced MEV searchers can often omit consensus protocol
and avoid unnecessary full-node forking by incrementally
retrieving blockchain states.

To uncover opportunities to improve baselines’ throughput,
we conducted a motivating study that profiles the time dis-
tribution across each stage of the their workflow (§ II-D): ➀
forking from the Ethereum mainnet (main network) [62] for
local testing; ➁ constructing MEV bundles; and ➂ evaluating
bundles through transaction execution. The results indicate that
Steps ➁ and ➂ together account for 99% of total computation
time. Execution time also grows with the length of the MEV
path. This heavy dependence on smart contract execution and
consensus simulation severely limits MEV search throughput.
Finally, although prior work [4], [5] attempts to parallelize
MEV search using multithreading or distributed computing,
CPU hardware limitations continue to be a fundamental bot-
tleneck.

In this paper, we introduce MeVisor, the first MEV
detector which significantly improves throughput of arbitrage
and sandwich searching by harnessing the parallel computing
power of GPUs. More precisely, we compile the smart con-
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tracts of the MEV bot into a GPU application and implement
a parallel genetic algorithm to search for profitable bundles
across the GPU-compiled smart contracts. For scalability, our
GPU compiler is language-agnostic and supports thousands of
DEXs that follow the protocols of Uniswap V2 [2], Uniswap
V3 [1], and Sushiswap [57]. Attackers can deploy generalized
MEV strategies using MEV bots for concurrent search. There
are four properties of MEV search that enable effective GPU
acceleration and significantly increase throughput: P1: Data
parallelism. DEXs adhering to the same protocol share exe-
cution code and differ only in smart contract states, such as
token reserves and liquidity amount. GPUs execute the same
instruction on different DEX data (SIMD [43]) to evaluate
profit in parallel (see § II-C). P2: Light data movement.
MEV search requires only the DEX states, minimizing host-
to-GPU data movement. This reduces memory overhead and
improves throughput [19]. P3: Dense computation. MEV
searchers must evaluate millions of bundle candidates within
each 12-second interval. The wide SIMD lanes of GPUs
support large-scale searches within this tight window. P4:
Standalone execution. Since smart contracts do not rely on
system calls, it is feasible to execute the MEV bot entirely on
the GPU, avoiding performance bottlenecks caused by host-
GPU interactions.

Given an MEV strategy, we first generate a smart con-
tract MEV bot that can estimate profit of MEV bundles
(§ III-B). We then compile it to GPU code (i.e., PTX [50]),
enabling concurrent evaluation of candidate bundles on the
GPU and transforming the parallel MEV search into an SIMD-
parallel workload (§ III-C). Across the pipeline, TRANSLATOR
performs PTX compilation only a single time, prior to the
MEV search phase. SEARCHER is a GPU-based genetic al-
gorithm [14] that discovers MEV opportunities by executing
thousands of threads of the MEV bot in parallel (§ III-D).
Discovered solutions are validated in a mainnet fork envi-
ronment to eliminate false positives. MeVisor avoids the
overhead of EVM forking by performing forking only during
final validation, after the search phase completes.

Developing MeVisor is non-trivial due to three key chal-
lenges: C1: Typical MEV attackers [5] send ordered calls to
EVM to evaluate the profit of their bundles. However, we
expect to discard EVM but run an MEV bot on GPU directly
for a higher throughput. The MEV bot needs to simulate MEV
transactions within one smart contract execution without using
EVM. C2: Cross-contract calls are necessary for executing
smart contracts on GPUs; however, instantiating separate EVM
call frames incurs significant overhead due to the inefficiency
of dynamic memory allocation on GPU hardware. C3: Bundle
diversity critically influences the performance of SEARCHER.
However, transactions generated through mutation may vio-
late the constraints of specific MEV strategies, resulting in
redundant evaluations and reduced bundle diversity.

To tackle C1, we design two primary cheatcodes for the
MEV bot, namely vm.swap and vm.apply (§ IV-A), which
are two GPU functions that simulate Ethereum transactions
on the GPU. vm.swap simulates the attackers’ transactions to

DEXs for swapping tokens. vm.apply simulates the victim
transaction of a sandwich attack for mock the price impact
caused by the victim transaction. Together, these cheatcodes
support MEV strategies such as arbitrage and sandwich. To
address C2, we implement a GPU-specific memory manager
that eliminates dynamic allocation while preserving call frame
isolation (§ IV-B3). To address C3, we introduce a swap graph
that systematically guides the mutation process, ensuring that
generated transactions consistently satisfy the constraints of
targeted MEV strategies (§ IV-D3).

We implemented a MeVisor prototype using approxi-
mately 2,500 lines of C/C++ and 2,000 lines of CUDA [48].
To evaluate its effectiveness, we compared MeVisor against
state-of-the-art tools using a ground-truth benchmark derived
from historical MEV data, including 2,380 arbitrage and
1,561 sandwich activities. The experimental results show
that MeVisor achieves throughputs of 1.43M execs/sec and
1.72M execs/sec on the arbitrage and sandwich datasets,
respectively. This represents a 100,000x improvement over
the fastest CPU baseline [5] and a 5x speedup over the
fastest known GPU baseline [9]. This high throughput enabled
MeVisor to uncover $1,123,642.49 in MEV profit during Q1
2025.
Our contributions:

• We design and implement MeVisor, the first GPU-based
MEV detector for both arbitrage and sandwich, which
uncovers profit in parallel using GPU acceleration.

• We conduct a comprehensive benchmark evaluation,
demonstrating that MeVisor detects significantly more
profit in less time than existing tools, with a 100,000x
higher throughput.

• We evaluate MeVisor on real Ethereum data from Q1
2025, where it discovers $1,123,642.49 in MEV profit
(§ V-C).

II. BACKGROUND

A. Smart Contracts for DEXs

Smart contracts are written in high-level languages such as
Solidity [25] or Vyper [60] and compiled into a uniform format
known as EVM bytecode. The EVM interprets stack-based
instructions of this bytecode by unpacking arguments from an
input buffer called calldata, updating smart contract states via
the stack and memory, storing persistent data in a key–value
mapping called storage, and writing the final output to a return
buffer named retdata. Each EVM instruction has an associated
execution cost, measured in gas.

DEX is an application of smart contract, enabling trading
of tokens [1], [2], [11], [57]. A DEX consists of a liquidity
pool that maintains reserves of tokens and determines the
exchange rate. DEXs adhering to the same protocol typically
rely on a common router contract to consolidate complex
operations, such as path optimization and multi-hop execution.
In DEXs, token trading is implemented entirely as smart
contract execution on the EVM. MEV attackers typically
deploy a smart contract, known as an MEV bot, to execute
their bundles and make profit.
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Fig. 3: Time distribution across the three MEV search steps per
run. The left bars represent Foundry. The right bars represent
Lanturn, used as the SOTA baseline for comparison.

B. MEV Competition

MEV refers to the maximum profit a searcher can extract
by strategically including, excluding or reordering transactions
within a block [12]. MEV has become a dominant transactions
of high-frequency trading on Ethereum. Token price discrep-
ancies across DEXs, often caused by DeFi trades, create MEV
opportunities. Readers can refer to Appendix A for more
details of MEV attacks to DEXs.

MEV opportunities are inherently transient due to rapid
market adjustments and intense competition among sophis-
ticated searchers. Since the launch of Proof-of-Stake in
2022 [39], each 12-second block slot imposes strict timing
constraints on the MEV search. The upcoming enhanced PBS
(ePBS) [17] further refines this mechanism by subdividing
each slot into smaller phases. This evolution increases trans-
parency and fairness but also intensifies competition.

C. GPU vs. CPU execution models.

A CPU is designed for latency-oriented serial processing,
emphasizing complex control logic and branch prediction to
optimize single-thread performance. Each CPU core executes
sophisticated instruction pipelines, aiming to minimize the
execution time of each individual task.

In contrast, a GPU follows a throughput-oriented model, op-
timized for massive data parallelism. It contains thousands of
cores grouped into streaming multiprocessors, each executing
many threads concurrently under the SIMD paradigm. Threads
within a warp (typically 32) execute the same instruction
in lockstep on different data, making GPUs highly efficient
for uniform, data-parallel workloads such as smart contract
simulations with similar control flow.

D. Motivation

MEV search is fundamentally an optimization problem: it
aims to maximize profit by selecting bundles and evaluating
their profit through smart contract execution. To understand the
computational bottlenecks of existing tools and opportunities
for acceleration, we conducted a motivating study.
Findings. We randomly selected seven historical arbitrage
MEV cases with transaction lengths ranging from 2 to 8 (see
Table X). We used two tools, Lanturn and Foundry, to replay
MEV transactions, running each tool over 1,000 iterations.

Figure 3 shows the average time distribution across their three
steps of each MEV search round: ➀ forking from the mainnet,
➁ selecting an input bundle, and ➂ evaluating profit via smart
contract execution. Our analysis reveals that input generation
takes less than 1% of the total time, while EVM execution
and state forking dominate the overall latency. Consistent
with prior studies [5], [9], EVM execution emerges as the
primary performance bottleneck, and its impact increases with
bundle length. Its impact grows with the increased length of
transaction bundles. We use Foundry [32] as an additional
baseline. It generates random transaction bundles and executes
them on the fastest CPU-side EVM [7]. Overall, Foundry
achieves an upper-bound throughput of 141.42 transactions
per second, spending 80.89% of execution time on forking
(27.87 ms) and 18.82% on smart contract execution (6.49
ms). In contrast, Lanturn, the state-of-the-art MEV searcher,
achieves only 30.35 txs/sec because it uses a slower EVM [35]
implemented in TypeScript. Its smart contract execution is
17.8x slower than Foundry’s, and forking is 1.98x slower.
Although Lanturn attempts to use multi-threaded CPU execu-
tion to mitigate overhead due to ➂, its performance remains
fundamentally bounded by hardware limitations.
Main Idea. MEV search is a compute-intensive task that
requires the rapid evaluation of millions of bundles within
Ethereum’s 12-second block interval. Our intuitive idea is
to improve throughput by executing bundles concurrently on
a GPU using SIMD parallelism, thereby accelerating MEV
discovery. Specifically, MeVisor compiles the smart contracts
of both the MEV bot and the target DEXs into a unified
GPU application (in PTX format), enabling parallel evaluation
of thousands of input bundles. A single RTX 3090 GPU
offers over 100x greater thread-level parallelism than high-
end CPUs, making it well-suited for this task. Promising
bundles identified on the GPU are selectively replayed on the
CPU within a private fork to verify correctness. This design
significantly reduces the overhead of step ➂, as it requires
only a single fork for the entire search process. Additionally,
concurrent GPU execution mitigates the latency introduced by
step ➁.

III. OVERVIEW

In this section, we present a high-level overview of
MeVisor, including its architecture and key design choices
that address the three technical challenges (C1–C3).

Translator
MEV bot

in bytecode
MEV bot
in PTX

Searcher

Validated
Profit 

Block DEXs
Solution

BotSmith
MEV

Strategy

Sim Env

Fig. 4: Overview of MeVisor.
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A. MeVisor’s Architecture

Figure 4 presents the architecture of MeVisor, which con-
sists of three main components: BOTSMITH, TRANSLATOR,
and SEARCHER. Given an MEV strategy, BOTSMITH gener-
ates an MEV bot in EVM bytecode (§ III-B). TRANSLATOR
compiles the EVM bytecode to PTX code (referred to as
the PTX bot), enabling parallel execution on the GPU. The
two Solidity cheatcodes such as vm.swap and vm.apply are
compiled into cross-contract calls in PTX to simulate the MEV
transactions on GPUs. This transformation turns MEV search
into an SIMD-parallel task, significantly improving throughput
(§ III-C). TRANSLATOR runs only a single time, prior to the
MEV search phase. Finally, SEARCHER employs a GPU-based
genetic algorithm [14] to generate and evaluate bundles in
parallel, selecting the most profitable candidates (§ III-D).
Each generation produces a batch of offspring transactions,
evaluated in parallel on the GPU. The most profitable bundle is
replayed on a private Ethereum fork to validate correctness and
eliminate false positives. In § V, we demonstrate MeVisor’s
effectiveness by evaluating it on two classical MEV strategies:
arbitrage and sandwich.

B. BOTSMITH

MeVisor is a wrapper of the Solidity compiler (solc).
Given an MEV strategy written in Solidity, BOTSMITH com-
piles it into EVM bytecode and links the cheatcode functions.
It eventually produces an MEV bot capable of executing
bundles atomically. To assess profit through smart contract ex-
ecution, the MEV bot must not only execute DEX transactions
but also simulate the victim transactions.

However, transactions are ordered calls to EVM, but we
want to discard EVM for higher throughput (C1). To simulate
transactions without invoking the EVM, we introduce two key
cheatcodes for writing MEV bots: vm.swap and vm.apply (see
§ IV-A). These primitive functions bypass EVM constraints
and directly control smart contract states. vm.swap sends a
smart contract call to a DEX to swap tokens. vm.apply simu-
lates the victim transaction by executing its internal calls. The
MEV bot leverages these cheatcodes to evaluate MEV profit.
For an arbitrage attack, the bot uses a sequence of vm.swap

calls to perform cyclic arbitrage swaps. In a sandwich attack,
the bot first uses vm.swap to buy tokens, applies vm.apply

to simulate the victim transaction, and then uses a second
vm.swap to realize profit.

C. TRANSLATOR

Lifter
CUDA

Backend
LLVM IR

MEV bot in bytecode MEV bot in PTX

Fig. 5: Overview of TRANSLATOR.

As shown in Figure 5, once BOTSMITH generates the MEV
bot, TRANSLATOR converts its EVM bytecode into PTX code
using a two-stage compilation pipeline. First, TRANSLATOR

lifts EVM bytecode to LLVM IR [40], enabling cross-contract
calls by rewriting this architecture-independent representation
(§ IV-B). Then, the LLVM backend compiles the IR into
PTX code, which integrates with the CUDA application (i.e.,
SEARCHER), via library linking (§ IV-C).

TRANSLATOR operates on EVM bytecode, the universal
compilation target of all EVM smart contract languages. Using
EVM bytecode ensures language agnosticism, allowing DEXs
implemented in different languages to run on the GPU. By re-
covering high-level semantics from low-level EVM bytecode,
our approach ensures PTX compatibility with on-chain DEXs.
Specifically, TRANSLATOR accelerates smart contract execu-
tion by converting EVM bytecode into SIMD instructions [48],
allowing the same instruction to run across multiple data lanes
in parallel. This process separates EVM instructions from input
data, devirtualizes stack operations (e.g., push and pop) into
register-based code in LLVM IR, and constructs a vector-
ized smart contract context for GPU execution. Each GPU
thread maintains an isolated context, including stack, memory,
storage, calldata and retdata, using thread-local addressing
indexed by thread ID. To support cross-contract calls between
MEV bots and DEXs, TRANSLATOR adopts function-call
semantics with isolated call frames. However, TRANSLATOR
faces a critical memory allocation challenge (C2): dynamically
allocating per-thread smart contract contexts incurs hundreds
of cycles per thread. This overhead increases significantly with
deep cross-contract calls, as the EVM allocates a new context
for each callee. To address this, TRANSLATOR includes a
memory manager that uses pre-allocated shared memory for all
smart contract contexts, eliminating dynamic allocation while
maintaining isolation via call frames (§ IV-B3).

D. SEARCHER

populations parents offsprings

invariants
Mutate

Bundles

Select Crossover

Evaluate
MEV

Fig. 6: The overview of SEARCHER.

Given the MEV bot’s PTX code, SEARCHER executes
it on the GPU to identify the most profitable bundle. As
shown in Figure 6, SEARCHER implements a parallel genetic
algorithm, where each individual in the population represents
a candidate bundle in the search space (§ IV-D). In each
generation, SEARCHER evolves the population through four
steps: (1) selecting top-performing individuals as parents, (2)
applying crossover to generate offspring bundles, (3) mutating
transactions within the offspring to generate invariants, and (4)
evaluating the profit in parallel. SEARCHER evaluates multiple
populations concurrently by executing the MEV bot across
GPU threads. This parallel genetic algorithm significantly
improves throughput.

Input diversity plays a critical role in SEARCHER’s perfor-
mance. Naive mutations often produce transactions that violate
MEV-specific constraints, hindering SEARCHER’s throughput
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and search efficiency (C3). For example, cyclic arbitrage,
which requires a sequence of DEX swaps that returns to the
first token, is often disrupted by naive mutations. To address
this, SEARCHER incorporates a DEX swap graph to guide
mutation, ensuring that generated transactions adhere to valid
MEV strategies (§ IV-D3).

IV. MEVISOR DESIGN

This section outlines the technical details of MeVisor.

A. Cheatcode for MEV Strategies

We design two cheatcodes in § IV-A1 and illustrate their
uses in MEV strategies in § IV-A2.

1) Cheatcode: We design two primitive functions, vm.swap
and vm.apply, as cheatcodes compiled into PTX alongside the
MEV bot. These cheatcodes enable GPU-based execution of
arbitrage and sandwich MEV.
vm.swap accepts a DEX address, swaps a pair of tokens on
the specified DEX, and returns the amount of the output token.
This cheatcode enables direct cross-contract calls, bypassing
router contracts. In doing so, it reduces execution overhead
and facilitates efficient cross-protocol swaps.
vm.apply takes a transaction hash and simulates execution of
the corresponding transaction. When BOTSMITH encounters a
vm.apply(tx_hash) call, it extracts the internal cross-contract
calls from the transaction identified by tx_hash and applies
them to the MEV bot for execution. This cheatcode allows
the MEV bot to front-run or back-run transactions as specified
by MEV strategies. For instance, by placing token swaps
immediately before or after vm.apply(tx_hash), the bot can
launch a sandwich attack.

2) MEV Strategies: Building on the cheatcodes introduced
in § IV-A1, this section presents two representative MEV
strategies that demonstrate MeVisor’s capabilities:
Arbitrage exploits price discrepancies across multiple DEXs.
In this paper, we only consider cyclic arbitrage. A cyclic arbi-
trage consists of a sequence of swap trades. In each trade, Rw

i,j

denotes the exchange rate of token i over j on DEX w. Given
the amount of the input token Q, the total token output from
an arbitrage MEV with n trades is Q∗Rw0

0,1∗R
w1
1,2∗· · ·∗R

wn−1

n−1,n.
Then, the revenue is calculated as the total output value minus
the input value:

Q(

n−1∏
i=0

Rwi
i,i+1 − 1)

The profit is then calculated as Revenue − C, where C
represents the total gas fee. Cyclic arbitrage is implemented
as a sequence of calls to vm.swap.
Sandwich targets a large, price-moving transaction (often
referred to as a whale transaction) and exploits the predictable
slippage it induces. A typical sandwich attack consists of three
sequential transactions: [Rw1

ij ,Rw2
ij , Rw3

ji ], where: 1) front-run:
Swap token Ai for token Aj on DEX w1, intentionally inflat-
ing the price of Aj due to whale transaction. 2) whale-sim:
Simulate the whale transaction using vm.apply. BOTSMITH
constructs a transaction equivalent to q ·Rw2

ij , where the victim

expects at least δ units of Aj are swapped from q units of Ai

on DEX w2. If the simulation fails (i.e., q ·Rw2
ij < δ), the MEV

attack is unsuccessful. 3) back-run: Swap token Aj back to
token Ai on DEX w3, after the successful simulation of the
whale transaction. The revenue from a cyclic sandwich attack
is given by:

I[q · Rw2
ij ≥ δ] ·Q · (Rw1

ij ·Rw2
ji − 1)

Here, I[·] is an indicator function that evaluates to 1 if the
whale transaction succeeds (i.e., q · Rw2

ij ≥ δ), and δ is the
minimum expected output of the whale transaction. Similarly,
the final profit is Revenue− C, where C is the total gas fee.
In sandwich attacks, only the DEX-related executions of the
whale transaction are simulated on the GPU, as they constitute
the primary source of slippage.

B. Translating Bytecode to IR

Once the MEV bot is built, TRANSLATOR translates its
EVM bytecode into LLVM IR [40] through three steps: First,
it generates LLVM function headers that correspond to the
EVM bytecode of the smart contracts (§ IV-B1). Second, it
constructs function bodies by lifting EVM instructions into
LLVM IR using devirtualization techniques (§ IV-B2). Finally,
it identifies cross-contract calls within the EVM bytecode and
translates them into virtual function calls (§ IV-B3). Note that
support for cross-contract calls is essential, as token swaps
inherently require interactions across multiple DEXs.

1) Building Function Headers: Each smart contract’s byte-
code is translated into a distinct LLVM function, with the
function scope using as the boundaries of the smart contract
context. The function name is uniquely derived from a hash of
the EVM bytecode. Function arguments include EVM-specific
inputs, such as the sender address (msg.sender) and transferred
value (msg.value), along with pointers to EVM components:
calldata (d), stack (µ), memory (v), retdata (r), and storage
(θ). These arguments are locally scoped to preserve smart
contract context isolation between caller and callee during
cross-contract calls. In contrast, block-level information and
the original sender of the transaction are modeled as global
variables, since the EVM exposes them uniformly across all
call frames.

To support efficient SIMD execution, each EVM component
is extended into a vector structure, where each element is
mapped to a distinct GPU thread. Input data and output buffers
are partitioned evenly across threads based on their thread
indices. If thread i receives input from d⃗i and computes an
MEV profit r⃗i, then the parallel execution is modeled as:
r⃗i = I × d⃗i × ν⃗i × µ⃗i × θ⃗i, where each instruction I operates
simultaneously across multiple data lanes and performs an
element-wise SIMD execution. Each thread operates exclu-
sively on its own thread-local data, reducing contention and
synchronization overhead. Furthermore, we adopt a Structure
of Arrays (SoA) layout for EVM components, storing thread-
specific data in contiguous memory locations. This design
facilitates coalesced memory access [13], enabling multiple
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threads to read or write data simultaneously and thereby
improving throughput.

2) Lifting for LLVM IR: The EVM employs a stack-based
execution model, in which instructions implicitly manipulate a
global operand stack. To lift EVM bytecode into register-based
LLVM IR, we adopt the devirtualization technique proposed
in [9], which simulates the operand stack and transforms all
stack operations into explicit memory operations. Specifically,
each EVM stack element is mapped to a temporary register,
thereby exposing implicit data dependencies.

A local variable p is used to track the EVM stack depth.
For example, in the PUSH opcode, which pushes a value onto
the stack, the value is assigned to µ⃗p, and p is incremented.
In the POP opcode, which removes a value from the stack,
the value is read from µ⃗p, and p is decremented accordingly.
By converting implicit stack manipulations into explicit reg-
ister assignments, we enable data-flow analysis and eliminate
redundant operands. For instance, the MUL opcode pops two
operands from the stack, multiplies them, and pushes the result
back. In our SIMD translation, this operation becomes:

µ⃗p−1 ← µ⃗p−1 × µ⃗p; p← p− 1

This formulation allows direct use of labeled registers, re-
moving the need for runtime operand resolution required by
the EVM. In addition to arithmetic instructions, control-flow
operations must also be translated to support parallel execu-
tion. Since PTX branch instructions are inherently thread-safe,
intra-contract control flow (i.e., conditional branches) is lifted
directly into PTX branching instructions such as bne. Cross-
contract calls, commonly invoked when the MEV bot interacts
with DEXs, are handled separately and translated into LLVM
function calls, as discussed in § IV-B3.

3) Cross-contracts Calling: In the EVM, the targets of
cross-contract calls are determined at runtime based on values
stored on the operand stack. To recover these implicit control
transfers in LLVM IR, we translate cross-contract calls into
virtual function calls. We construct a virtual table that contains
the addresses of all potential smart contract functions, indexed
by their unique code hashes. Each entry in the table points to
an LLVM function translated from the corresponding EVM
bytecode. At each call site, the EVM call instruction is
replaced with a virtual function call that dynamically resolves
the target contract via the virtual table. To reduce the overhead
of dynamic dispatch, we apply static analysis to resolve call
targets whenever possible. In such cases, the virtual call is
replaced with a direct LLVM function call. This optimization
is particularly effective for frequent interactions between the
MEV bot and DEX contracts.

Each smart contract is compiled into an individual LLVM
function; thus, the LLVM call frame naturally serves as the
execution context for cross-contract calls. In the EVM, every
such call allocates a fresh stack and memory, which are deal-
located upon return. While dynamic memory allocation can
simulate this behavior, it is prohibitively expensive on GPUs.
To address this, we statically allocate memory and overload
EVM components across all call frames while maintaining

isolation between them. We construct isolated call frames for
cross-contract execution in three stages, as described below.
call begin. Each GPU thread maintains a thread-local register
q, initialized to zero, to track the current call depth. Before
executing a cross-contract call, the call depth q increases by
one. Each call frame at depth q accesses its isolated context
using a fixed offset within the statically allocated memory
region. This offset is represented as c⃗i·mc·q, c ∈ {µ, ν},
where mc is the size of the corresponding component, and
i is the thread index.
call run. To perform the cross-contract call, control is trans-
ferred via a lookup in the virtual table. The callee address is
resolved, and the corresponding function pointer in the table
is invoked. The callee’s memory and stack, corresponding to a
new call frame, are passed as function arguments. Additional
function arguments, such as msg.sender and msg.value, are
populated based on the EVM call type (CALL, STATICCALL,
CALLCODE, or DELEGATECALL). Readers may read the Ethereum
Yellow Paper [62] for the specification of call semantics.
call end. After the callee completes execution, the call depth
q is decremented to return control to the caller. If the EVM
call returns data, the result is copied from the callee’s memory
space back into the caller’s memory.

C. Driving PTX

To execute the MEV bot on the GPU, we generate valid
PTX code from LLVM IR (§ IV-C1) and implement a driver
that executes smart contracts within the CUDA environment
(§ IV-C2).

1) Generating PTX Code: To emit PTX code using the
LLVM backend, we embed a set of PTX-specific primitives
directly into the LLVM IR.
Kernel Function. In PTX, functions are categorized as either
kernel functions or device functions. Kernel functions act as
entry points for host code to launch GPU execution. By
default, functions defined in LLVM IR are treated as device
functions and therefore cannot be invoked directly from the
host. To enable GPU execution, we make the MEV bot’s entry
function to be a kernel function by attaching a metadata node,
nvvm.annotations, which assigns the “kernel” attribute to the
function [50].
CUDA Registers. CUDA-specific registers, such as thread
indices, are accessed via LLVM intrinsics during bytecode
translation [49]. Intrinsics are built-in LLVM functions that
expose low-level hardware features within the IR. During the
lifting process, TRANSLATOR inserts these intrinsics to re-
trieve thread-specific data. For example, the thread index used
to access each thread’s SIMD input. The LLVM backend then
compiles these intrinsics into corresponding PTX instructions
that interact directly with GPU hardware.
CUDA Memory. The CUDA memory model defines multiple
memory spaces on the GPU, each with distinct physical
locations, lifetimes, and performance characteristics. In LLVM
IR, these spaces are explicitly annotated using address space
metadata, which guides the PTX backend in mapping high-
level memory abstractions to appropriate GPU hardware re-
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Algorithm 1 Genetic algorithm for search MEV opportunities

Input:
Bot: the MEV bot in PTX
max rounds: Maximum rounds

Output: Best transaction to the MEV bot
1: P⃗ , M⃗ ← DryRun(Bot)
2: i← 0
3: while i++ < max rounds do ▷ searching loop
4: X⃗, Y⃗ ← TournamentSelect(M⃗)
5: P⃗ ′ ← Crossover(P⃗ , [X⃗, Y⃗ ])
6: P⃗ ′ ←Mutate(G, P⃗ ′)
7: M⃗ ← Evaluate(Bot, P⃗ ′)
8: end while
9: Return: P⃗ ′

argmax(M⃗)

sources. We leverage this model to manage data efficiently
for smart contract execution. Calldata, which varies across
transactions, is allocated in global memory to support mu-
tation. In contrast, static inputs, such as the caller’s address
and blockchain environment variables, are placed in constant
memory. Constant memory provides immutability and lower
latency after initialization, making it well-suited for read-only
data shared across GPU threads.

2) Binding PTX and CUDA: To enable CUDA applications
(i.e., SEARCHER) to invoke the PTX bot compiled from
Solidity, we embed the PTX code into the CUDA executable.
We use CUDA’s low-level driver APIs to manage memory and
resolve external symbols such as kernel functions and global
variables within the PTX module. These symbols are then
exposed through well-defined interfaces, facilitating seamless
integration and invocation from CUDA host code.
PTX embedding. To integrate PTX with CUDA, we first
create a GPU context using the CUDA Driver API function
cuCtxCreate(). The CUDA application (i.e., SEARCHER) then
loads the PTX module onto the GPU using cuModuleLoad().
This newly created context replaces the default one, allowing
PTX and CUDA code to operate within a unified address space
for both code and memory.
Code Space Integration. PTX kernel functions are declared
with external visibility, which allows CUDA applications to
retrieve their function pointers. SEARCHER uses these pointers
to launch PTX bot executions efficiently across GPU threads.
Memory Space Integration. We resolve GPU memory ad-
dresses referenced by the PTX code and manage data move-
ment using CUDA’s host-driven APIs, including both host-to-
device and device-to-device memory transfers.

D. Searching with Genetic Algorithm

Algorithm 1 presents our genetic algorithm, designed to
efficiently search for profitable MEV bundles. Given a PTX
bot Bot and a maximum number of iterations max rounds ,
the goal is to identify the transaction bundle that yields the
highest profit. Each token swap is modeled as a gene, and an

individual consists of N genes, where N denotes the maximum
number of swap actions permitted in an MEV transaction.
The population P⃗ is a vector of candidate individuals serving
as input to the genetic algorithm. Each individual represents
a transaction bundle to be optimized. Fitness values are
evaluated using the MEV bot and stored in the vector M⃗ ,
where each entry corresponds to the profit of an individual.
The algorithm begins with a randomly generated population
(referred to as a DryRun), which is executed by the MEV bot
to establish initial fitness scores. Subsequently, the population
evolves through four genetic operations: selection (§ IV-D1),
crossover (§ IV-D2), mutation (§ IV-D3), and fitness evaluation
(§ IV-D4). After all generations complete, the most profitable
bundle, denoted as P⃗ ′

argmax(M⃗)
, is replayed on a CPU-side

EVM to verify correctness and eliminate false positives.
1) Parallel Selection: We implement a tournament selec-

tion [47] on the GPU to efficiently identify high-quality indi-
viduals from the current population. These selected individuals
serve as parents for generating the next generation. For each
selection, we randomly sample κ individuals from the P⃗
and select the individual with the highest fitness, storing
its index in I⃗ . Formally, for each tournament, we compute:
I ← argmax({M⃗i | i ∈ rand, 1 ≤ i ≤ |P⃗ |}), where M⃗
denotes the fitness scores of all individuals, and i is a randomly
selected subset of indices of size κ. To parallelize the selection
process, we create two arrays, X and Y , to store the indices of
selected parents from P⃗ . We launch |P⃗ | GPU threads, where
each thread independently performs two tournament selections
to populate one entry in X and Y . This fully parallel approach
maximizes throughput by exploiting the massive concurrency
available on the GPU.

2) Parallel Crossover: Next, crossover is performed be-
tween pairs of selected transaction candidates (i.e., parents)
to generate offspring for the next generation. Each offspring
P⃗ ′

i is produced by combining genes from two parents,
P⃗Xi and P⃗Yi , whose indices are drawn from the arrays X
and Y , respectively. Formally, the operation is defined as:
P⃗ ′

i ← P⃗Xi
× P⃗Yi

, where × denotes the crossover opera-
tor applied to two MEV bundles. The crossover operation
typically exchanges subsequences of swap actions between
parents, allowing offspring to inherit profitable MEV paths
from both lineages. This design enables efficient, thread-
level parallelism, as each GPU thread independently generates
a new offspring, maximizing throughput in the candidate
generation phase.

3) Graph-based Swap Mutation: Next, we apply mutation
to the offspring population P⃗ ′ to introduce variation and
preserve genetic diversity. Each individual in the population
encodes a sequence of swap actions. Mutation is performed to
capital and sequence. Capital mutation modifies the input to-
ken amount (a uint256 value) using fuzzing-inspired strategies
from AFL [34], such as Bitflip, Byteflip, and Havoc. These
mutations promote numeric diversity in transaction inputs.
Sequence mutation changes the MEV paths involved in a
bundle. Since MEV bots often impose structural constraints,
unconstrained mutations may produce invalid or unprofitable
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bundles, leading to wasted GPU cycles. For example, arbitrage
transactions require cyclic swap structures. To guide the se-
quence mutation, we construct a swap graph G, where each
edge Gi,j denotes the set of DEXs that support swaps between
the token pair [Ai, Aj ]. Leveraging this graph, SEARCHER
applies the following mutation strategies:

• Add. Insert an intermediate token to extend an MEV path.
Given a swap sequence [Ai, Aj ], insert a random token
Ak to have [Ai, Ak, Aj ]. The new path is considered valid
if both Gi,k ̸= ∅ and Gk,j ̸= ∅.

• Remove. Remove an intermediate token from the MEV
path. Given a sequence [Ai, Ak, Aj ], remove Ak to obtain
[Ai, Aj ]. If Gi,j ̸= ∅, the simplified path remains valid.

• Replace. Replace an intermediate token with a new one.
For example, transform [Ai, Ak, Aj ] into [Ai, Am, Aj ] by
replacing Ak with a randomly selected token Am. The
modified path is valid if Gi,m ̸= ∅ and Gm,j ̸= ∅.

4) Fitness Evaluation: To identify high-profit individuals
within the current population P⃗ , we evaluate their fitness
by executing the MEV bot in parallel across GPU threads.
During this evaluation, the GPU reconstructs smart contract
states, including the amount of token reserves and liquidity,
to simulate realistic DEX conditions. This enables practical
assessment of MEV opportunities in a setting that closely mir-
rors mainnet execution. Fitness is quantified as the transaction
revenue (in ETH), computed according to the strategies defined
in § IV-A2. The resulting fitness values are stored in the vector
M⃗ and subsequently used in the next evolutionary round for
selection and crossover.

5) Forking Mainnet: To validate MEV outcomes, we con-
struct a simulation environment by forking the Ethereum
mainnet using Foundry [32]. This forked environment is used
exclusively for final MEV validation after candidate bundles
are discovered on the GPU.

Although standard RPC endpoints allow forking from a
specific block number, they do not support rollback to the
pre-state of an arbitrary transaction. To reconstruct the pre-
cise blockchain state immediately before a target transaction,
we retrieve all preceding transactions within the block via
web3.eth.get_block() and replay them sequentially via
web3.eth.send_raw_transaction().

E. Implementation

We implement a prototype of MeVisor using 2,541 lines
of C/C++ and 2,007 lines of CUDA. In addition to compiling
MeVisor as a standalone executable, we also compile it
as a dynamic library accessible via Python bindings, using
pybind11 [53]. This Python integration facilitates efficient
GPU-accelerated MEV search and enables seamless inter-
action with Ethereum clients for transaction validation via
Web3.py [22]. Appendix B shows the detailed novelty of
MeVisor against [9]. Below, we summarize the core com-
ponents:
BOTSMITH. BOTSMITH is a wrapper around solc [25],
responsible for injecting the cheatcode library into the source

TABLE II: Profile of the ground-truth benchmark. #Num,
#DEX, and #Token denote the number of unique attacks, de-
centralized exchanges, and tokens, respectively. $Avg. denotes
the average value.

#Num #DEX #Token $Avg.Revenue $Avg.Cost $Avg.Profit

Arbitrage 2,380 1,201 504 1217.84 619.88 597.97
Sandwich 1,561 1,010 942 677.59 169.33 508.26
Total 3,941 2,009 1,271 1,003.85 441.42 562.43

code of the MEV bot and compiling it with DEXs into EVM
bytecode.
TRANSLATOR. TRANSLATOR is a compiler built on the
LLVM framework that supports smart contract semantics.
In particular, it supports to translate cross-contract calls on
the GPU. Each GPU thread is provisioned with resources
sufficient for typical DEX executions: 512 stack items, 724
bytes of memory, and 2 storage slots.
SEARCHER. SEARCHER implements a parallel genetic algo-
rithm entirely in CUDA. To improve throughput, we launch
8,192 GPU threads concurrently. The initial population is
generated using a depth-first search algorithm, and tournament
selection is configured with a tournament size of κ = 256.

V. EVALUATION

Ground-Truth Benchmark. We construct a comprehensive
ground-truth benchmark of real-world MEV activity. An
Ethereum archive node is deployed using Erigon [20] to index
all transactions from 2023. Ether is priced using historical
market data [23]. We extract MEV attacks with on-chain
profits exceeding 100 USD, yielding a total of 3,941 attacks,
including 2,380 arbitrage attacks and 1,561 sandwich attacks.
For each attack, we record: (1) the block number in which the
attack occurred, (2) the transactions involved, and (3) on-chain
revenue and profit obtained from EigenPhi [18]. The dataset
spans 1,271 unique tokens and 2,009 DEXs, including major
protocols such as SushiSwap, Uniswap V2, and Uniswap
V3, together accounting for over 70% of MEV-related DEX
interactions on Ethereum [45]. In total, these attacks generated
$3.76 million in gross revenue and $2.21 million in net profit.
Baseline Config. Lanturn [5] is the only non-deterministic
tool for MEV search. We adopt its default configuration
from the artifacts and apply the following modifications to
ensure a fair and realistic evaluation: First, we revise Lanturn’s
profit calculations. Lanturn assumes that the attacker can mine
blocks and therefore includes a 2 ETH block reward as part of
the MEV profit. We exclude this reward from our evaluation,
as real-world MEV searchers do not rely on mining privileges.
Second, Lanturn assumes attackers have sufficient time to
swap tokens on off-chain markets (i.e., Binance). Accordingly,
we also disable it because we only focus on on-chain profit.
For performance benchmarking, we execute Lanturn with 44
parallel CPU threads.
Environment Setup. All experiments were conducted on a
server running Ubuntu 20.04 LTS, equipped with an Intel Xeon
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processor, 64 GB of RAM, a 1 TB SSD, and an NVIDIA RTX
3090 GPU with 24 GB of VRAM.
Research Questions. Our evaluation is guided by the follow-
ing research questions (RQs):

• RQ1: Are MEV bots generated by TRANSLATOR sound
in reproducing known MEV attacks on the GPU?

• RQ2: How does MeVisor compare to baseline ap-
proaches in terms of effectiveness, efficiency, and
throughput?

• RQ3: How much profit can MeVisor uncover when
deployed in a real-world setting?
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Fig. 7: Replay results of MEV bundles across different DEX
protocol combinations.

A. Soundness

Motivation. Execution inconsistencies introduced by TRANS-
LATOR may reduce the soundness of MEV detection. Under-
estimating profits on the GPU can lead to false negatives,
causing MEV opportunities to be missed. Conversely, over-
estimating profits may result in false profit. We aim to quantify
the impact of these inconsistencies and assess whether the
smart contracts generated by TRANSLATOR can maintain
soundness.
Approach. We conduct differential testing by: (1) forking
a blockchain environment, (2) disabling non-deterministic
search, (3) replaying historical MEV bundles on both the GPU
and CPU, and (4) comparing the resulting output tokens valued
in ETH. We define GPU execution accuracy as U ′/U , where
U ′ and U represent the output tokens computed by the GPU
and CPU, respectively.
Overall Results. TRANSLATOR successfully compiles all
DEX contracts and executes them on the GPU. Over all arbi-
trage and sandwich attacks, GPU execution yields 90,185.62
ETH in output, closely aligning with the CPU result of
90,622.96 ETH, achieving an execution accuracy of 99.52%.

TABLE III: Arbitrage replay results.

#Num #Same Total Outcome/ETH

Accuracy GPU CPU

Uniswap V2 86 86 100% 143.46 143.46
Sushiswap 6 6 100% 39.73 39.73
Uniswap V3 649 154 99.70% 73281.16 73500.54
Mix 1639 904 99.73% 12532.84 12566.92
All 2380 1149 99.71% 85997.20 86250.65

These results demonstrate that TRANSLATOR is sound. All
observed inconsistencies stem from minor underestimations
on the GPU, which may lead to false negatives but never to
false positives.
Results of Arbitrage MEV. Table III shows the replay
results of 2,380 arbitrage bundles, each involving two to five
transactions. Overall, MeVisor recovers 85,997.20 ETH of
output token (equivalent to 142.90 million USD), achieving
99.71% of the value observed on-chain. Across all arbitrage
cases, 48.28% of bundles have a 100% execution accuracy.
The remaining cases show only slight conservative underesti-
mations on the GPU.

To better understand the inconsistency of GPU execution,
we group the replay results by DEX protocol, as DEXs within
the same protocol typically follow a common codebase. We
observe that GPU smart contracts perfectly reproduce all
arbitrage swaps involving only Uniswap V2 or Sushiswap
DEXs. Specifically, all 86 Uniswap V2 and 6 Sushiswap arbi-
trage bundles yield identical outcomes on the GPU and CPU,
recovering 143.46 ETH and 39.73 ETH, respectively. For
Uniswap V3, the accuracy is slightly lower at 99.70%, with
73,281.16 ETH recovered on the GPU versus 73,500.54 ETH
on the CPU. Out of 649 bundles involving only Uniswap V3
DEXs, 23.7% of them produce the same outcomes, while the
remaining 495 show minor discrepancies. These discrepancies
arise from an intentional GPU-side simplification: disabling
“tick spacing,” a slippage-control mechanism in Uniswap V3,
to reduce GPU memory pressure. In practice, “Tick Spacing”
is not always necessary, as most MEV opportunities involve a
small capital input that does not trigger slippage. This explains
why 1,058 of 1,639 bundles involving Uniswap V3 still main-
tain high accuracy, resulting in an overall accuracy of 99.73%.
We further show the distribution of token outputs from GPU
and CPU executions in Figure 7a. Despite the simplification,
only minor deviations are introduced in Uniswap V3 swaps,
with median outcomes of 112.91 ETH (GPU) vs. 113.25 ETH
(CPU). In the worst case, GPU execution underestimates the
DEX output by up to 3.20%. Since SEARCHER always aims
to maximize output, any deviation can only lead to underesti-
mation, thereby ensuring no false positives are introduced.
Results of Sandwich MEV. Similarly, Table IV presents the
replay results of 1,561 sandwich bundles, each consisting of
two swaps surrounding a whale transaction. In total, MeVisor
recovers 4,188.42 ETH, equivalent to 7.65 million USD,
achieving 95.79% of the profit recorded on-chain (4,372.30
ETH). A total of 128 sandwich bundles are perfectly replayed
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TABLE IV: Sandwich replay results.

#Num #Same Total Outcome/ETH

Accuracy GPU CPU

Uniswap V2 115 115 100% 363.95 363.95
Sushiswap 2 2 100% 15.56 15.56
Uniswap V3 5 5 100% 27.50 27.50
Mix 1433 6 95.36% 3781.41 3965.29
All 1561 128 95.79% 4188.42 4372.30

on the GPU, achieving 100% accuracy. Sandwich bundles
involving only one kind of DEX protocol demonstrate full
consistency between GPU and CPU execution. Among these,
all 115 Uniswap V2, 2 Sushiswap, and 5 Uniswap V3 bundles
yield identical outcomes, recovering 363.95 ETH, 15.56 ETH,
and 27.50 ETH, respectively. The majority of sandwich attacks
(1,433 bundles, or 91.8%) span multiple DEXs. In these
more complex cases, MeVisor achieves 95.36% accuracy,
recovering 3,781.41 ETH on the GPU compared to 3,965.29
ETH on the CPU, with a deviation of only 4.63%. The median
per-bundle profit is slightly underestimated (2.75 ETH vs. 2.88
ETH), as shown in the boxplots of Figure 7b.

Unlike arbitrage, sandwich execution requires faithfully
modeling the victim whale’s transaction on the GPU, as
this trade introduces price slippage that attackers exploit. To
reduce GPU complexity, MeVisor approximates the whale
transaction by replaying only its swap transactions. This
approximation affects the simulation of post-whale price dy-
namics, particularly in multi-DEX scenarios where market
effects interact. As a result, the attacker’s post-whale swap may
execute at a slightly different price, leading to a conservative
underestimation of the final MEV outcome. Despite these
deviations, the approximation strategy remains sound for MEV
search, as all bundles are validated on the CPU.

Answer to RQ1: TRANSLATOR reliably generates MEV
bots capable of soundly replaying real-world MEV at-
tacks on the GPU.

B. Comparison with Baselines

Motivation. To assess the performance of MeVisor, we
compare it against the state-of-the-art baseline, Lanturn. We
observe that Lanturn requires a template input from known
transactions to start its searching. For a fair comparison, we
design an experiment in which both tools attempt to front-run
historical MEV transactions. We define the revenue ratio as the
revenue obtained by the tool divided by the on-chain revenue.
A ratio greater than one indicates successful front-running,
meaning the tool identifies a transaction more profitable than
the one originally executed on-chain.
Approach. We generate Lanturn’s input using the Python
scripts provided in its public artifact. For arbitrage, the
transaction template includes: (1) a list of approved ERC-20
tokens, (2) the swap sequence extracted from historical MEV
attacks, (3) parameterized fields for token amounts, and (4)
the input range over which Lanturn performs its search. For

TABLE V: Comparison against Lanturn on arbitrage MEV.
ETH USD

Profit Revenue Cost Profit Revenue Cost

MeVisor 1842.78 2167.67 324.89 3232556.99 3784195.81 551638.82
On-chain 802.42 1669.03 866.61 1423160.32 2898468.92 1475308.60
Lanturn 817.64 1685.05 867.40 1451491.27 2928380.11 1476888.85

TABLE VI: Comparison against Lanturn on sandwich MEV.
ETH USD

Profit Revenue Cost Profit Revenue Cost

MeVisor 490.36 582.35 92.00 896449.29 1064815.60 168366.31
On-chain 435.10 578.59 143.49 793394.00 1057722.97 264328.97
Lanturn 450.44 578.59 128.15 819939.37 1057722.97 237783.60

sandwich attacks, the template additionally includes the whale
transaction to mock the victim. Lanturn then optimizes each
template to maximize profit. For MeVisor, historical MEV
attacks serve as initial inputs, which are further optimized
using a GPU-based genetic algorithm. Note that historical
inputs are not constrained by MeVisor, as the initial bundles
also include randomly constructed ones. In addition to revenue,
we measure profit, gas cost, and transaction throughput to
evaluate overall performance.
MEV Revenue. Overall, MeVisor outperforms Lanturn,
achieving up to 1.21x higher MEV revenue. MeVisor yields
a total of 2,167.67 ETH in arbitrage revenue, corresponding to
129.88% of the original on-chain value. In contrast, Lanturn
achieves only 100.96% of the on-chain revenue, indicating
that MeVisor extracts 1.30x more arbitrage revenue than
Lanturn. Similarly, we present the results for sandwich attacks.
MeVisor generates 582.35 ETH in revenue (100.65% of the
on-chain value), while Lanturn remains at a revenue ratio of
1.00 and fails to uncover any additional profit during front-
running. These findings demonstrate that MeVisor consis-
tently outperforms Lanturn in MEV revenue extraction across
both arbitrage and sandwich strategies.
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Fig. 8: The cumulative revenue in searching both arbitrage and
sandwich opportunities.

Revenue Trending. We further measure the cumulative MEV
revenue over time. MeVisor consistently achieves higher
cumulative MEV revenue than both the on-chain baseline
and Lanturn, demonstrating superior front-running capabilities
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TABLE VII: Throughput comparison against Lanturn.
Arbitrage Sandwich

time bundles/sec txs/sec time bundles/sec txs/sec

MeVisor 11.49 1,425.93k 3,378.49k 9.49 1,726.52k 5,179.57k
Lanturn 115.90 5.83 30.35 14.97 7.79 23.37

over time. Figure 8 illustrates the cumulative MEV revenue
over the year for both arbitrage and sandwich attacks. For ar-
bitrage attacks, the on-chain baseline, Lanturn, and MeVisor
yield revenues of 1,669.03 ETH (2,898,468.92 USD), 1,685.05
ETH (2,928,380.11 USD), and 2,167.67 ETH (3,784,195.81
USD), respectively. For sandwich attacks, both the on-chain
baseline and Lanturn yield 578.59 ETH (1,057,722.97 USD),
while MeVisor slightly improves upon this with 582.35 ETH
(1,064,815.60 USD).

Arbitrage Sandwich
Actions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Av
er

ag
e 

Ga
s c

os
t i

n 
ET

H

MeVisor
Onchain
Lanturn

Fig. 9: The average gas cost in searching both arbitrage and
sandwich opportunities.

Gas Cost. Practical MEV attacks must account for gas costs
to ensure profitability. To ensure a fair comparison, all trans-
actions are replayed on the same forked blockchain, allowing
gas fees to be measured under identical conditions. Figure 9
depicts the gas cost of both arbitrage and sandwich results. On
average, MeVisor incurs a gas fee of 0.11 ETH per MEV
bundle, representing only 41.88% of Lanturn’s average cost.
For arbitrage attacks, the average gas fees for MeVisor, on-
chain attackers, and Lanturn are 0.14 ETH (231.78 USD),
0.36 ETH (619.88 USD), and 0.37 ETH (620.54 USD),
respectively. For sandwich attacks, MeVisor consumes only
0.06 ETH (107.86 USD) per bundle, compared to 0.09 ETH
(169.33 USD) for historical attackers and 0.08 ETH (152.33
USD) for Lanturn. MeVisor achieves lower gas costs by
issuing direct calls to DEX contracts, thereby avoiding the
overhead associated with router-based execution, as used in
Lanturn.
MEV Path. We observe that MeVisor significantly outper-
forms Lanturn as the length of the arbitrage path increases.
Lanturn fails to exceed on-chain revenue for arbitrage paths
involving more than two swaps. In contrast, MeVisor remains
effective across longer paths; for example, it achieves up to
1.0945x higher revenue on five-hop arbitrage paths.
Time. MeVisor also outperforms Lanturn in search time,
making it practical for real-time MEV execution. Table VII
reports the average time required to identify MEV opportu-

TABLE VIII: MEV opportunities identified by MeVisor in
2025 Q1 blocks.

ETH USD

Profit Revenue Gas Profit Revenue Gas

Arbitrage 335.53 336.40 0.87 884,116.65 886,409.48 2,292.83
Sandwich 90.90 103.60 12.70 239,525.84 272,975.41 33,449.57

Total 426.43 440.00 13.57 1,123,642.49 1,159,384.89 35,742.40

nities. MeVisor completes arbitrage and sandwich searches
in 11.49 seconds and 9.49 seconds on average, respectively.
Both are within Ethereum’s 12-second block interval. In
contrast, Lanturn requires 115.90 seconds for arbitrage and
14.97 seconds for sandwich searches.
Throughput. As shown in Table VII, MeVisor achieves
an average throughput of 1.43M bundles/sec on the arbitrage
dataset and 1.73M bundles/sec on the sandwich dataset, which
is over 100,000x faster than Lanturn. In comparison, Lan-
turn processes only 5.83 and 7.79 bundles/sec on the same
datasets, respectively. We observe the higher throughput on
sandwich attacks because arbitrage bundles typically contain
more transactions that must be executed. We further evaluate
transaction-level throughput: MeVisor achieves 3,378.49K
txs/sec for arbitrage and 5,179.57K txs/sec for sandwich
searches, significantly outperforming Lanturn. Lanturn’s per-
formance bottleneck primarily stems from its use of a slower,
TypeScript-based EVM [35]. Although switching to a faster
engine such as the Rust-based Revm [7] could improve
performance, it remains substantially slower than MeVisor.
Moreover, MeVisor surpasses even the fastest known GPU-
based EVM [9], which peaks at approximately 300K txs/sec.
This performance advantage arises from TRANSLATOR, which
compiles smart contracts into GPU executables rather than
interpreting them using the EVM. In addition, MeVisor
disables rollback, a feature required for EVM correctness
but unnecessary for MEV searchers who discard failed trans-
actions, which significantly reduces data dependencies and
computational overhead on GPUs.

Answer to RQ2: MeVisor outperforms the state-of-
the-art baseline in terms of effectiveness, efficiency, and
throughput.

C. MEV found by MeVisor

Motivation. To evaluate the effectiveness of MeVisor in
uncovering MEV opportunities, we applied it to 648,000
Ethereum mainnet blocks collected over a 90-day period from
January to March 2025 (Q1).
Approach. To identify cross-DEX profit opportunities, we
collected data on 454 distinct tokens across 540 popular DEXs,
as listed by CoinGecko [33]. MeVisor takes their on-chain
prices as input. SEARCHER was configured with a 12-second
timeout to reflect Ethereum’s real-world block interval. We set
the maximum transaction path length to 16, as longer paths
incur higher gas fees that often outweigh the potential profit.
To estimate the financial impact, we use the following setting.
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TABLE IX: Distribution of arbitrage MEV by bundle length.
#Path #Cnt $Revenue $Profit #Path #Cnt $Revenue $Profit

2 210 87,411.53 85,960.53 10 2 188.92 143.43
4 1 753,444.85 753,407.19 12 3 37,431.54 37,051.44
6 2 3799.68 3771.49 13 3 2,695.28 2,523.58
8 5 260.79 208.98 14 3 1,176.90 1,050.01

Price of Ether: USD 2,635/ETH, which was fixed at its
market value on May 28, 2025. Slippage: The attacker always
uses all input tokens to maximize token profit, thus disabling
slippage thresholds (i.e., minAmountOut = 0). As for the
sandwich victim, his/her slippage is preserved from historical
transactions to mock the victim’s trade. Fee-on-transfer (tax)
tokens: The attacker receives the same output token as in
the original MEV incident and pays gas fee in ETH. Gas
Model: The base fee is taken from historical block data, while
the priority fee is set to match the average bids in the same
block [51]. Cancellation costs: Since our model assumes a
single searcher without competition, failed transactions are not
counted. To ensure correctness, all bundles were validated on
a private forked chain. As validation occurred off-chain, no
mainnet funds were at risk during the experiment.
MEV Results. Table VIII presents the MEV opportunities
discovered by MeVisor over 90 days of Ethereum mainnet
data. MeVisor successfully exploited 229 arbitrage and 3,468
sandwich opportunities, with an average execution time of
10.05 seconds per attack. In total, MeVisor generated a net
profit of 426.43 ETH (USD 1,123,642.49), averaging USD
0.1445 in profit per second. In arbitrage scenarios, MeVisor
achieved 336.40 ETH (USD 886,409.48) in revenue while
incurring a gas cost of 0.87 ETH (USD 2,292.83), resulting
in a net profit of 335.53 ETH (USD 884,116.65). On average,
each arbitrage opportunity yielded 1.47 ETH (USD 3870.78)
in profit, with a gas cost of 0.0038 ETH (USD 10.0124).
For sandwich attacks, MeVisor identified 103.60 ETH (USD
272,975.41) in revenue and incurred total gas costs of 12.70
ETH (USD 33,449.57), resulting in a net profit of 90.90 ETH
(USD 239,525.84). This corresponds to an average profit of
0.026 ETH (USD 69.07) per bundle, based on an average rev-
enue of 0.030 ETH (USD 78.71) and a gas cost of 0.004 ETH
(USD 9.65). The similar experiment to Lanturn in Appendix C
shows MeVisor is more effective than Lanturn. These results
demonstrate MeVisor’s effectiveness in uncovering novel,
real-world MEV opportunities.
Bundle Length. MeVisor uncovers longer and more com-
plex MEV opportunities that are often missed by other attack-
ers. We focus here on arbitrage results, excluding sandwich
data, since arbitrage bundle lengths vary, whereas sandwich
bundles typically consist of three transactions. Table IX
presents the distribution of arbitrage MEV opportunities by
bundle length. MeVisor discovers MEV bundles ranging
from 2 to 14 transactions. Notably, bundles longer than two
transactions contribute a total profit of USD 798,156.12.
Among these, 3 bundles reach the maximum length of 14
transactions, averaging USD 350.00 in profit, with the highest
yielding 0.3078 ETH (USD 811.06).

We also observe that longer bundles do not necessarily yield
higher profits, as increased complexity often results in greater
gas costs and potential losses during multi-DEX swaps. Al-
though we found 6,618 arbitrage bundles with long swaps that
yielded positive revenue, 6,389 of them have insufficient profit
to cover the gas cost. The majority of successful arbitrage
bundles contain only two swaps. This finding aligns with real-
world MEV patterns, in which most arbitrage opportunities
arise between two DEXs. Therefore, MeVisor is effective not
only in exploiting common two-transaction arbitrage bundles
but also in uncovering rare, structurally complex opportunities.
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Fig. 10: Performance overhead by the number of DEXs

Overhead of MeVisor. On average, MeVisor needs 0.30s
and 1.5GB memory to load these DEXs. Before searching,
MeVisor must initialize the GPU environment and load the
PTX bot, which incurs a cold boost delay of approximately
7.03 s. This cost is amortized across all subsequent searches
and thus excluded from runtime overhead. During real-time
searching, the primary overhead arises from loading DEX
states into GPU memory. As shown in Figure 10, the loading
latency remains stable at around 0.30 s even as the number of
DEXs increases, whereas GPU memory usage grows propor-
tionally from 774.88 MB (64 DEXs) to 1,586.72 MB (540
DEXs). Overall, the runtime overhead remains lightweight
and the memory cost is within the capabilities of commodity
GPUs, demonstrating that MeVisor scales efficiently with
market complexity.

Answer to RQ3: MeVisor identifies USD 1.1 million
in profit and uncovers complex MEV opportunities in-
volving up to 14 transactions.

D. Limitations

Our study has several limitations. First, the current evalu-
ation focuses on three major DEX protocols: Uniswap V2,
Uniswap V3, and Sushiswap, which together account for
most of DEX activities on Ethereum. MeVisor focuses on
the DEXs under these DEX protocols. Since MeVisor is
language-agnostic, it can be extended to support additional
Solidity-based DEXs, such as Balancer and PancakeSwap,
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as well as those implemented in other languages, such as
Curve.Fi. Second, we evaluate only two representative MEV
strategies: arbitrage and sandwich. Another widely studied
strategy is liquidation [10], [27], [55], which involves liquidat-
ing undercollateralized loans at lending protocols. We exclude
this strategy because it depends on external price monitoring
rather than on-chain search techniques. Nevertheless, BOT-
SMITH enables developers to implement new MEV strategies
using Solidity interfaces. Third, we use vm.apply to simulate
the whale transaction in sandwich attacks. It may miss relevant
state changes and introduce minor inconsistencies. This limita-
tion could be addressed by extending vm.apply to incorporate
the full execution trace of the whole transaction, allowing
complete reconstruction of affected contract states beyond
DEXs. Fourth, potential inaccuracies in PTX bot simulations
may cause inconsistencies when executing Uniswap V3 on
GPUs. In particular, the weaker slippage control resulting
from the omission of tick spacing may underestimate output
values. However, this does not lead to false positives, as
all solutions are eventually validated on the CPU. In future
work, we plan to fully support Uniswap V3’s tick spacing
mechanism to enhance execution fidelity and reduce false
negatives. Fifth, our large-scale analysis (§ V-C) estimates an
upper bound on MEV profit because it simulates bundles on
a local fork without competition. In mainnet, MEV searchers
must compete with one another and may incur higher fees,
such as increased gas price bidding for priority inclusion or
cancellation fees from unsuccessful bundles. Future work will
refine these profit estimates by simulating bundles through
real-world relays [29], [59]. Relays allow simulation under
realistic transaction pools and auction conditions without af-
fecting the mainnet [28].

VI. RELATED WORK

A. Fast EVM

The native EVM implementation [24] is primarily designed
for peer synchronization and is not optimized for high-
throughput execution. Several efforts have aimed to acceler-
ate EVM performance. Revm [7], a high-performance EVM
implementation in Rust, is widely adopted by tooling ecosys-
tems [32], execution clients [20], [52], and emerging zero-
knowledge virtual machines [44]. Other approaches improve
EVM throughput by enabling parallel execution on multi-core
CPUs [26], [42], [54]. To overcome the hardware limitations of
CPUs, researchers have also investigated GPU-based solutions.
CuEVM [37] rewrites the EVM in CUDA [48], enabling
concurrent execution of multiple smart contracts on GPUs.
In contrast, binary translation approaches such as MAU [9]
compile EVM bytecode into SIMD programs that run natively
on GPUs. MAU eliminates the EVM interpreter entirely and
achieves higher throughput. However, it assumes that all cross-
contract calls succeed and translates them into dummy calls,
which may introduce semantic inconsistencies compared to
actual on-chain behavior. In this paper, MeVisor introduces
accurate support for cross-contract calls, enabling parallel exe-
cution of DEX interactions while preserving EVM semantics.

B. MEV Market

Since the concept of MEV was first introduced by Da-
ian et al. [12] in 2020, many empirical studies have re-
vealed the substantial profit potential in the MEV market
and highlighted diverse transaction patterns [27], [41], [45].
Researchers have developed various methods to detect MEV
opportunities Bartoletti et al. [6] proposed a theoretical model
for profit maximization in DEXs. Babel et al. [4] introduced
a formal verification approach to detect MEV by modeling
smart contract logic. Qin et al. [56] focused on optimizing
capital allocation for fixed transaction sequences, and Zhou
et al. [64] applied symbolic execution to identify arbitrage
cycles. Beyond optimization techniques, artificial intelligence
has been increasingly applied to the MEV market [36]. For
example, Babel et al. [5] used machine learning to infer
MEV strategies from historical transactions and construct new
MEV exploits. Most recently, Hunt et al. [63] explored the
use of large language models to detect MEV opportunities
in on-chain environments. However, low throughput remains
a common limitation across existing tools, restricting their
ability to detect MEV within the narrow inter-block interval.

C. Genetic Algorithm

Genetic Algorithms (GAs), introduced by Holland [38], are
a class of metaheuristic optimization algorithms inspired by
biological evolution. They evolve a population of candidate
solutions through four primary operations: selection, crossover,
mutation, and evaluation. Through iterative application of
these operations, GAs can effectively explore large, non-
differentiable solution spaces to discover high-quality solu-
tions, such as MEV bundles. To improve scalability and
performance, Alba et al. [3] proposed a parallel GPU-based
implementation, leveraging the algorithm’s inherent paral-
lelism to accelerate convergence. In this paper, each individual
represents a candidate MEV bundle, which is evaluated on
the EVM to determine its profit. The GA’s ability to operate
without gradient information makes it particularly suitable for
discrete optimization problems such as MEV extraction.

VII. CONCLUSION

We presented MeVisor, an efficient searcher that identifies
MEV opportunities across DEXs using GPU acceleration.
Extensive experiments demonstrate that MeVisor achieves a
throughput of 3.3M-5.1M txs/sec across various MEV tasks,
outperforming the state-of-the-art tool by 100,000x. This high
throughput enables MeVisor to uncover a total of USD 1.1
million in MEV profit during Q1 2025, corresponding to a
profit rate of USD 0.1445 per second.

VIII. ETHICS CONSIDERATIONS

This GPU-acceleration technique could incentivize MEV
attacks. We have shared our findings with the developers of
Ethereum. Here we discuss mitigation strategies to ease MEV
attacks. Protocol-level techniques such as PBS, introduced
in Ethereum’s MEV-Boost design [21], reduce concentrated

14



ordering power by delegating block construction to special-
ized builders. Encrypted mempools, explored in systems like
SUAVE [31] and Shutter Network [16], reduce pre-trade trans-
parency to prevent opportunistic reordering. At the application
layer, defences such as batch auctions [8], [46], [58], and
private order-flow relays [30] mitigate common forms of
retail-facing MEV in decentralized exchanges. Although these
approaches cannot eliminate MEV entirely, they collectively
move the ecosystem toward more transparent and equitable
extraction.
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TABLE X: Validation results of the motivating examples.

Length Block Capitial/ETH Revenue/ETH DEX Chain Asset Chain

2 21536202 0.05 0.0002
0x1DC698b3d2995aFB66F96e1B19941f990A6b2662,
0x9081B50BaD8bEefaC48CC616694C26B027c559bb

0x4c11249814f11b9346808179Cf06e71ac328c1b5,
0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2

3 14079213 0.12 0.0009
c926990039045611eb1de520c1e249fd0d20a8ea,
62ccb80f72cc5c975c5bc7fb4433d3c336ce5ceb,
77bd0e7ec0de000eea4ec88d51f57f1780e0dfb2

0x557B933a7C2c45672B610F8954A3deB39a51A8Ca,
0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2,
0xe53EC727dbDEB9E2d5456c3be40cFF031AB40A55

4 12195667 0.64 0.0196

0x1f44e67eb4b8438efe62847affb5b8e528e3f465,
0x41ca2d9cf874af557b0d75fa9c78f0131c7f345c,
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APPENDIX A
DEX PROFIT EXAMPLE.

DEXs dynamically adjust token-pair prices based on the
reserves. For example, in a WETH/USDT Uniswap pool, the
product of reserves of WETH and USDT is a constant. When a
victim swaps a large amount of WETH for USDT, the WETH
reserve in the DEX increases and the USDT reserve decreases,
making USDT more expensive relative to WETH after the
trade. This price impact motivates attackers to buy USDT
before and sell USDT after the victim’s trade to profit WETH
from the induced price change.

APPENDIX B
COMPARISON WITH MAU

To tackle the MEV searching problem, MeVisor intro-
duces three major innovations that enable efficient, fully GPU-
driven execution, compared to MAU [9]. First, MeVisor
adds support for cross-contract calls essential to DEX ex-
ecution, which MAU lacks. Specifically, we translate each
smart contract into a function and therefore the EVM call
site is simulated by a function call. This design allows
MeVisor to execute complex DEX interactions across mul-
tiple contracts entirely within the GPU. Second, MeVisor
implements efficient GPU memory management for smart con-
tract execution. In contrast to MAU’s costly per-call dynamic
allocation, MeVisor adopts a static allocation strategy that
reuses EVM components across call frames while preserving
isolation, effectively removing runtime allocation overhead
and improving scalability for cross-contract execution. Third,
MeVisor incorporates a GPU-parallelized genetic algorithm
to explore and evaluate bundles of transactions for potential
profit. Unlike MAU, which acts as a CPU-guided fuzzer that
selects input batches and delegates their execution to the GPU,
MeVisor performs both the search and execution entirely
on the GPU. This fully on-GPU feedback loop removes
CPU bottlenecks and allows MeVisor to continuously evolve
transaction bundles in real time for higher profit.

APPENDIX C
LANTURN LARGE-SCALE EVALUATION.

We also include an evaluation with Lanturn under the same
time constraints used in RQ3. Lanturn relies on predefined
transaction templates that are typically crafted by MEV ex-
perts. To compare against Lanturn, we use both the default
templates provided in Lanturn’s codebase and additional MEV
templates extracted from historical MEV incidents. As a result,
Lanturn identifies 114 new arbitrage opportunities, yielding a
total profit of 1.819 ETH with 1.943 ETH revenue and 0.124
ETH gas cost. As for the sandwich attacks, Lanturn identifies
4 new opportunities, yielding a total profit of 0.048 ETH with
0.051 ETH revenue and 0.003 ETH gas cost. These results
indicate that MeVisor is more effective in uncovering on-
chain MEV profits.
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