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Abstract—Searchable Encryption (SE) has shown a lot of
promise towards enabling secure and efficient queries over
encrypted data. In order to achieve this efficiency, SE inevitably
leaks some information, and a big open question is how dangerous
this leakage is. While prior reconstruction attacks have demon-
strated effectiveness in one-dimensional range query settings,
extending them to high-dimensional datasets remains challenging.
Existing methods either demand excessive query information
(e.g., an attacker that has observed all possible responses) or
produce low-quality reconstructions in sparse databases. In this
work, we present REMIN, a new leakage-abuse attack against
SE schemes in multi-dimensional settings, exploiting access and
search pattern leakage from range queries. REMIN leverages
unsupervised representation learning to transform query co-
occurrence frequencies into geometric signals, enabling an at-
tacker to infer relative spatial relationships among encrypted
records. This approach allows accurate and scalable reconstruc-
tion of high-dimensional datasets under minimal leakage. Fur-
thermore, we introduce REMIN-P, an active variant of the attack
that incorporates a practical poisoning strategy. By injecting a
small number of auxiliary anchor points, REMIN-P significantly
improves reconstruction quality, particularly in sparse or bound-
ary regions of the data space. We evaluate our attacks extensively
on both synthetic and real-world datasets. Compared to state-of-
the-art reconstruction attacks, our reconstruction attack achieves
up to 50% reduction in mean squared error (MSE), all while
maintaining fast and scalable runtime. Our poisoning attack can
further reduce MSE by an additional 50% on average, depending
on the poisoning strategy.

I. INTRODUCTION

Searchable encryption (SE) [2], [3] supports secure and ef-
ficient queries over encrypted databases. Current SE construc-
tions incorporate various cryptographic techniques such as
oblivious RAM (ORAM) [4], [5], fully homomorphic encryp-
tion (FHE) [6], and property-perserving encryption (PPE) [7]
and they are widely implemented in real-world applications.
For instance, MongoDB deploys Queryable Encryption (a

Fig. 1: (Left) Manhattan Highway Crossings dataset. (Middle)
Reconstruction by our method REMIN, achieving an MSE of
14.25. (Right) Reconstruction by Markatou et al. [1], with an
MSE of 42.97. (under 1% uniformly sampled queries)

variant of SE) [8] allowing users to perform expressive (e.g.
range) queries on encrypted data.

In order to achieve its high efficiency, SE leaks some
information to the server. Common types of leakage are access
pattern (which records are returned given a query), search
pattern (whether two queries are identical), and volume pattern
(the number of records returned given a query). This leakage
has been shown to allow a server to infer information about
the plaintext data [9], [10], [11], leading to a line of research
aiming to understand how this leakage can be exploited to
reveal information about the encrypted data. Among various
query types in SE, range queries pose a particularly severe
leakage threat. Unlike keyword queries, which typically reveal
only discrete match signals, range queries leak structural
information by returning clusters of spatially or semantically
adjacent records. When a query is issued, an associated token
will be generated to retrieve records within a specified range
as the response. As a result, attackers may recover layout
characteristics of the original dataset, such as density clusters,
relative positioning, or even record locations. In this work, we
investigate the security risks of range queries across arbitrary
dimensions under limited information leakage.

Motivation. A standard setting we consider here is a pas-
sive persistent model observes all issued queries and their
encrypted responses. Under this threat model, prior work [12],
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TABLE I: Comparison of our attack REMIN with closely related work. The “Required Leakage” column represents the number
of queries needed for the attack, with fewer queries being more desirable. Both required leakage and reconstruction quality
are indicated with stars, where more stars mean fewer queries required and better query efficiency. Our approach achieves
practical and accurate database reconstruction using minimal leakage. Markatou et al. [1] achieves FDR in dense databases,
and achieves high quality ADR in non-sparse datasets.

Attacks Query Type Assumption Attack

Query Dist. Database Search Pat. Access Pat. ADR FDR Required Leakage Reconstruction Quality

Kellaris et al. [12] 1D Range Uniform General ✗ ✓ ✗ ✓ ✩✩✩ ★★★

Lacharité et al. [13] 1D Range Agnostic Dense ✗ ✓ ✓ ✓ ★✩✩ ★★★

Grubbs et al. [14] 1D Range Uniform General ✗ ✓ ✓ ✓ ★★✩ ★★★

Kornaropoulos et al. [15] 1D Range Agnostic General ✓ ✓ ✓ ✓ ★★★ ★★★

Falzon et al. [16] 2D Range Agnostic General ✓ ✓ ✗ ✓ ✩✩✩ ★★★

Markatou et al. [17] 2D Range Agnostic General ✓ ✓ ✓ ✓ ✩✩✩ ★★★

Markatou et al. [1] dD Range Agnostic (Dense) ✗ ✓ ✓ (✓) ★★✩ ★✩✩

REMIN dD Range Agnostic General ✓ ✓ ✓ ✗ ★★★ ★★✩

[13], [14], [15], [18], [19] have demonstrated search pattern
and access pattern can achieve full or approximate database re-
construction in one-dimensional (1D) datasets, where simpler
relationships among records make such attacks more feasible.
These attacks have achieved notable success in this regard,
providing a solid foundation for understanding the potential
of leakage-abuse attacks from range query leakage. However,
as we move from one-dimensional to two-dimensional and
even higher-dimensional databases, the complexity of the re-
lationships between records increases significantly. To support
attacks on these more complex scenarios, researchers have
proposed various strategies to address the challenges posed
by intricate data relationships and the exponential growth in
equivalent databases (databases with the same leakage) [1],
[16], [17], [20].

Across all existing methods, the core attack principle re-
mains consistent: use the minimum amount of leaked infor-
mation (e.g., partial query patterns) and maximize by the
quality of the reconstructed data. As summarized in Table I,
attacks targeting 1D datasets have achieved this, enabling ac-
curate reconstruction with minimal leakage. However, higher-
dimensional datasets naturally introduce greater complexity.
While some attacks attain high reconstruction accuracy, they
often rely on strong and impractical assumptions, such as
access to all possible queries [16] or access to all possible
responses [17]. These methods require substantial leakage,
making them impractical for real-world settings.

The state-of-the-art graph-based approach by Markatou et
al. [1] represents the first significant attempt to use minimal
leakage in high-dimensional settings by observing very few
queries and reconstructing from access pattern leakage alone.
This attack has significantly weaker assumptions than earlier
methods [16], [17]. But it primarily recovers local ordinal
relationships using graph drawing techniques and fails to
capture structural features like clustering and relative po-
sitioning, especially in generic datasets (i.e., non-dense or

sparse datasets). Consequently, its performance degrades in
more complex scenarios, which raises a fundamental research
question:

Under limited multi-dimensional range search leakage, what
is the best reconstruction for general databases that we can
achieve?

New Perspective. In this work, we propose a novel and practi-
cal database reconstruction attack that operates under minimal
leakage assumptions, named REMIN. Unlike prior work such
as Markatou et al. [1], which explores reconstruction under low
query leakage but focuses primarily on topological recovery
(i.e., identifying neighboring records) via an unweighted graph
that captures connectivity but does not account for finer-
grained distance signals, our goal is more ambitious: we aim
to recover both the topological and geometric structure of the
original database.

By topological structure, we refer to the connectivity and
neighborhood relationships among data points—i.e., who is
close to whom. By geometric structure, we mean the relative
distances and spatial arrangement of data points in the under-
lying data space.

Our method builds on the observation that records retrieved
together in response to user queries are often semantically
or structurally related in the original dataset. By measuring
how frequently pairs of records co-occur in leaked queries,
we can estimate their relative proximity in the data space.
Using these co-occurrence frequencies, we construct a high-
dimensional distance matrix of size n × n, where n is the
number of records, and each record is represented as an n-
dimensional vector (described in Section IV).

We then apply unsupervised representation learning and di-
mensionality reduction techniques (e.g., t-SNE [21]) to embed
the records into a low-dimensional space, reconstructing both
the topology and geometry of the data in its original target
dimensional space, while preserving the pairwise distance
information as faithfully as possible.
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A key challenge in this setting is edge distortion: there are
fewer queries covering boundary regions than central ones,
resulting in inaccurate positioning and compression of sparse
areas. To address this, we propose REMIN-P, a new active
attack variant that employs a poisoning strategy. We consider
a more powerful attacker, that is able to inject carefully crafted
anchor points—records with known or leaked positions—into
the dataset. These anchors act as geometric references, correct-
ing misalignment and improving layout fidelity, particularly
in sparse or underrepresented regions. To the best of our
knowledge, this is the first poisoning-based reconstruction
strategy tailored to range query attacks.

We evaluate our attacks on both synthetic and real-world
datasets, simulating practical scenarios under different query
distributions. A brief comparison is summarized in Table I,
and the full experimental results are provided in Section V.
Our main contributions are:

• A practical reconstruction attack under minimal leak-
age: We introduce an unsupervised, co-occurrence-based
attack that recovers both topological and geometric prop-
erties for general datasets using only limited information
leakage. REMIN remains effective even in extremely low-
leakage conditions, even on sparse datasets (See Fig. 1
for an example).

• A novel poisoning attack: We propose REMIN-P, the
first active attack variant, where the attacker poisons the
dataset, injecting anchor points to improve global align-
ment and correct distortions in geometric reconstruction.

• Comprehensive experimental evaluation: We demon-
strate the effectiveness of our attacks across diverse
datasets and leakage scenarios, showing significant im-
provements in reconstruction accuracy and runtime com-
pared to prior work.

Our work shows how minimal co-occurrence leakage can be
exploited to recover both how records are related (topology)
and how they are spatially arranged (geometry). This high-
lights the need for stronger leakage mitigation techniques in
searchable encryption systems.

II. RELATED WORK

Searchable Encryption (SE) has evolved significantly from
its early keyword-search origins to support increasingly
complex functionality like dynamic updates and expressive
queries [3], [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31]. Early constructions primarily supported simple keyword
queries [2], [32], but were later extended to support more
expressive query types, including conjunctive, boolean, and
range queries [25], [33], [34], [35], [36]. In particular, Dy-
namic Searchable Symmetric Encryption (DSSE) [30] enables
updates and deletions on encrypted databases, making SE
practical for real-world applications.

In order to be practical, SE schemes inevitably leak side-
channel information during query execution. Several works
have systematically characterized and quantified the leakage in
SE protocols [10], [11], [12], [37], [38], [39], which has been
shown to be particularly exploitable for reconstructing private

data through range query attacks [10], [11], [12], [13], [40].
Most work on dataset reconstruction from range query leakage
can be broadly categorized into three methodological classes:
(1) symbolic or algebraic attacks that rely on geometric
properties and deterministic constraints, (2) statistical estima-
tion methods that infer data distributions from frequencies
information, and (3) graph-theoretic approaches that exploit
co-occurrence patterns to recover structural information. Each
class of methods operates under different leakage assumptions
and achieves varying levels of reconstruction accuracy and
generality.

Early work primarily focused on determining how much
information about the query inputs can be recovered from
leakage [11], [37], [41]. Subsequently, several algebraic at-
tacks have been proposed to exploit range query leakage
for recovering plaintext geometry, which mainly explored
the reconstruction of the encrypted dataset under a strong
leakage assumption-full access pattern leakage and knowledge
of the query distribution. KKNO [12] is the first to formalize
this setting by introducing a generic volume-based attack
model that combines access patterns with volume leakage. By
analyzing the frequency of record occurrences across query
responses, KKNO is able to infer exact record positions.
Lacharité et al. [13] extended this approach to Approximate
Database Reconstruction (ADR) with partial inaccuracies in
the inferred structure in exchange for significantly improved
efficiency. Falzon et al. [16] further demonstrated that leaked
information in 2D databases can also be exploited to achieve
exact reconstruction. These symbolic or order-based attacks
offer strong recovery guarantees, but require full access pattern
leakage and knowledge of the query or data distribution.

To avoid such strong assumptions, later methods turned
to statistical estimation. Instead of directly solving for posi-
tions, these approaches estimate the underlying distribution
or topological layout of the data using query response pat-
terns. Kornaropoulos et al. [15] introduced a support-size
estimator that, notably, was the first to leverage search pattern
leakage—a previously overlooked signal—to reconstruct the
database without relying on knowledge of the underlying query
or data distribution. Building on this direction, Markatou et
al. [17] proposed a non-parametric estimator that aggregates
access frequencies to support partial reconstruction in two-
dimensional settings. While these methods reduce the required
leakage compared to earlier techniques, they still assume
visibility over a large fraction of the query workload and can
be sensitive to dataset sparsity and distributional skew.

A complementary line of work adopts a graph-theoretic
perspective, shifting focus from precise reconstruction to struc-
tural recovery. Grubbs et al. [18] introduced a method that uses
volume leakage to reconstruct the database structure in 1D
settings. While the approach targets full reconstruction, it is
primarily effective on dense datasets, resulting in an ordering
of records rather than detailed spatial layout. Markatou et
al. [1] further proposed a framework that constructs a co-
occurrence graph from access patterns and achieves database
reconstruction using graph-drawing techniques. These meth-
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ods succeed under minimal leakage—often access pattern
or volume pattern alone—and generalize well to higher di-
mensions. However, they model co-occurrence as binary and
ignore richer signals such as relative distance or frequency,
limiting their geometric fidelity.

In contrast to symbolic reasoning and graph-based ap-
proaches, machine learning offers a new paradigm for cap-
turing geometric relationships from leakage. While ML tech-
niques have been widely applied in privacy attacks—such
as side-channel and website fingerprinting [42], [43]—they
remain largely unexplored in the context of database recon-
struction from searchable encryption leakage to the best of
our knowledge. In particular, the effectiveness of unsupervised
learning for this task remains an open question. Our work
bridges this gap by leveraging co-occurrence frequency as a
proxy for spatial proximity, embedding records via manifold
learning, and refining the reconstruction through alignment.
This enables robust and efficient recovery even under sparse
leakage and agnostic query distributions.

III. PRELIMINARIES

Basic Concepts. In a searchable encryption (SE) scheme, a
user first encrypts their dataset and uploads the encrypted data
to an untrusted server. Later, to perform a range query, the user
generates a query token that encodes the desired range and
sends it to the server. Using this token, the server searches
over the encrypted dataset and returns the identifiers of the
documents whose associated values fall within the specified
range.

Let F = {r1, r2, . . . , rn} denote the dataset belonging to
the user, where each ri is a record in the dataset. We consider
a d-dimensional dataset where each record is a unique point
in a discrete space:

Sd = [N1]× [N2]× · · · × [Nd],

where [Ni] = {0, 1, . . . , Ni − 1} defines the index range
along dimension i. Each record r has a domain value x =
(x1, x2, . . . , xd) ∈ Sd.

Let E = {er1, er2, . . . , ern} be the encrypted dataset
corresponding to F . A range query q is defined by a set of
bounds for each dimension:

q = [a1, b1]× [a2, b2]× · · · × [ad, bd],

where ai, bi ∈ [Ni] and ai ≤ bi for each i. The server
responds with all encrypted records within the corresponding
hyperrectangle:

Response(tq) = {erj1 , · · · , erjq | rj ∈ q, ∀j ∈ [j1, jq]},

where tq is the token corresponding to the query q. See
Table VII in Appendix A-A for notation details.

Threat Model. We consider a setting similar to that studied
in prior work on range query SE schemes [1], [12], [13],
[14], [15], [17], [18], [19], where an honest-but-curious server
stores both the encrypted dataset and the encrypted query
tokens, and retrieves all query locally. As a consequence,

the adversarial server inevitably observes: (1) a subset of the
encrypted records and query tokens, and (2) the relationship
between them—specifically, whether a given encrypted record
matches a given query token (i.e., whether it falls within the
queried range).

The information revealed through these observations cor-
responds to well-studied access pattern and search pattern
leakages. The access pattern reveals the relationship between
each encrypted record and each query token, i.e., which
(encrypted) records match which queries. The search pattern
indicates whether two query tokens correspond to the same
query, allowing the attacker to eliminate duplicate query tokens
and thus avoid redundant computations in subsequent distance
calculations. Considering that real-world adversaries are rarely
purely passive, we additionally include a natural extension:
beyond passively observing, the adversary may poison the
data with a limited number of additional records. With this
capability, the attacker can use the poisoned records to refine
and stabilize global database reconstruction.

Attack Model. Reconstruction attacks attempt to recover the
underlying structure of the encrypted database based on the
observed leakage. We categorize these attacks into two types:

• Full database reconstruction (FDR). This attack aims to
recover the exact positions of all records in the database,
thereby reconstructing the entire dataset with complete
accuracy.

• Approximate Database Reconstruction (ADR). This re-
construction seeks to recover the fundamental topological
structure of the dataset, without necessarily recovering the
exact positions of all records. The focus is on preserving
the overall layout, such as clustering and relative posi-
tioning, rather than achieving a perfect reconstruction.

Practical SSE deployments inherently leak search and ac-
cess patterns for scalability, enabling the server to observe
query repetition, response volumes, and result overlaps—the
well-studied L1/L2 leakage [11], [37]. In this work, we
investigate approximate reconstruction under standard leak-
age assumptions adopted in state-of-the-art range-query at-
tacks [12], [20]. Our threat model assumes a semi-honest
server in a cloud-hosted searchable encryption service. The
server passively observes the encrypted query responses after a
sufficient delay, without tampering or injecting queries. Within
this setting, we focus on limited leakage, where only a small
fraction (e.g., 1%) of access and search patterns are available
to the attacker, representing the minimal leakage baseline used
in most prior attacks and defenses. Specifically:

• Partial search pattern leakage: The attacker knows a
subset of queries token tq | q ∈ Q that were issued to
the database.

• Corresponding access pattern leakage: For each observed
query, the attacker also knows the set of encrypted records
returned in the response, as shown in Fig. 2 as Observed
Response.

The goal of the attacker is to recover as much information
as possible about the original dataset, minimizing the recon-

4



struction error and preserving the topological and geometric
structure of the data.
Dimension Reduction. In our REMIN attack, we generate a
representation matrix that captures the relative positions of
records in a high-dimensional space. To convert this high-
dimensional matrix into a reconstruction that reflects the orig-
inal spatial distribution, we utilize dimensionality reduction
techniques. Dimensionality reduction is a process used to
reduce the number of dimensions in a dataset while retaining
as much information as possible about the original structure.
This technique is widely used in various fields, such as data
visualization and pattern recognition, to simplify complex,
high-dimensional data while preserving essential relationships
between data points [44], [45], [46].

In the context of database reconstruction, the choice of
dimensionality reduction method is critical. Classical dimen-
sionality reduction methods like Principal Component Anal-
ysis (PCA) [47] and Multidimensional Scaling (MDS) [48]
are designed to preserve global relationships, making them
less suitable for the task at hand. Specifically, PCA assumes
a linear structure, while MDS relies on the assumption that
global distance information is reliable. However, the distance
matrix constructed from the co-occurrence frequency matrix
F is likely to exhibit a nonlinear, high-dimensional manifold
structure. In this case, global geometric relationships are not
the most informative, and dimensionality reduction techniques
should focus on recovering local manifold structures instead.

Notably, t-SNE (t-distributed Stochastic Neighbor Embed-
ding) [21] is particularly well-suited for this scenario be-
cause it prioritizes local relationships, making it effective at
uncovering the intrinsic low-dimensional geometry in high-
dimensional data. By minimizing the divergence between the
original and projected distance matrices, t-SNE ensures that
records that are close in the high-dimensional space remain
close in the lower-dimensional space. In contrast, methods
like PCA and MDS, which focus on global structure, may
fail to capture important local relationships, leading to less
accurate reconstructions. Thus, we use t-SNE to balance local
and global structures effectively.

IV. BASIC ATTACK

We present a new attack called REMIN that leverages
machine learning, frequency-based co-occurrence analysis and
dimensionality reduction techniques. The core insight behind
this attack is that the co-occurrence frequencies of records in
query responses can serve as a high-dimensional representa-
tion of their spatial relationships. By applying dimensionality
reduction algorithms, we can recover the underlying geometry
of the dataset in a lower-dimensional (target) space (e.g., 2D
or 3D). The full procedure is summarized in Algorithm 1 and
an overview of the attack pipeline is in Fig. 2.

A. Extracting Frequency-Based Distances

For the leakage in range query SE schemes, we consider
both access pattern and search pattern leakage, as described
in Section III. In particular, the attacker leverages the leakage

Algorithm 1 REMIN(responses)
Input: responses: A key-value store mapping each observed

query token to the set of encrypted records in response
to that token

Output: P̂ : Reconstructed point locations
/* Step 1: Construct pairwise co-occurrence distance
matrix, see Algorithm 2 */

1: D ← GETDISTANCEMATRIX(responses)
/* Step 2: Apply t-SNE to obtain an initial embedding */

2: P̂0 ← TSNE(D)
/* Step 3: Global alignment using Procrustes analysis */

3: P̂ ← PROCRUSTES(P̂0)
4: return P̂

to infer the response set for each query token, denoted by
{Response(tq) | q ∈ Q}, where each response comprises the
encrypted records matching the query.

We begin by constructing a frequency matrix F that captures
the co-occurrence relationships between encrypted records—
specifically, whether two records appear together in the re-
sponse to the same query. Since different queries may yield
identical responses, we resolve such ambiguities using the
search pattern leakage. The resulting matrix F serves as the
basis for computing distances between records in subsequent
steps.

To be precise, the co-occurrence frequency F (i, j) is defined
as the number of query tokens where encrypted records eri
and erj are both returned in the corresponding responses:

F (i, j) =
∑

tq, q∈Q
1 (eri ∈ Response(tq) ∧ erj ∈ Response(tq)) .

An example is shown in Fig. 2, where F (0, 2) = 2, in-
dicating that encrypted records a and c co-occur in two
query responses. This matrix inherently reflects the spatial
relationships among records, as records that are spatially closer
are more likely to appear together in the same query response,
resulting in higher co-occurrence frequencies. To convert this
frequency-based information into a distance relationship, we
apply appropriate distance metrics.

Common choices for this transformation include reciprocal
distance (which we adopt for its efficiency and experimental
accuracy) [49], Euclidean distance (less suitable in this case, as
it assumes a real geometric relationship rather than frequency-
based), and Gaussian kernel distance [50]. Reciprocal distance,
defined as:

D(i, j) =
1

1 + F (i, j)
(1)

is particularly effective, as it ensures that smaller co-
occurrence frequencies (indicating weaker associations) re-
sult in larger distances, while higher frequencies (indicat-
ing stronger associations) correspond to smaller distances.
Empirical comparisons across multiple distance metrics and
dimensionality reduction methods are in the full version [51].
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Fig. 2: A schematic illustration of the REMIN reconstruction attack. The method first observes the model’s responses to a set
of query tokens and counts how frequently each pair of encrypted records (e.g., (a, b)) co-occurs in the different responses.
Each cluster in the Observed Responses represents the response returned by a single query token, and each letter (e.g., a)
corresponds to an individual encrypted record. These co-occurrence frequencies are transformed into pairwise distances (e.g.,
using the reciprocal of the frequency), resulting in a distance matrix that represents the records as points in a high-dimensional
space. The high-dimensional relationships are then embedded into low-dimensional space through dimensionality reduction
(e.g. t-SNE), preserving the structural relationships implied by record co-occurrence.

Algorithm 2 GETDISTANCEMATRIX(responses)
Input: responses: A key-value store mapping each observed

query token to the set of encrypted records in response
to that token

Output: D: Distance matrix where D(i, j) is the dissimilarity
measure

/* Get number of distinct encrypted records observed */
1: n←

∣∣∣⋃(token,R)∈responses R
∣∣∣

/* Initialize the co-occurrence frequency matrix */
2: An n× n symmetric matrix F ← {}
3: for each (token,R) ∈ responses do
4: for each pair of distinct records er, es ∈ R do

/* Update frequency of point pair co-occurrence */
5: F [ider, ides] += 1
6: F [ides, ider] += 1
7: end for
8: end for

/* Initialize distance matrix with infinity */
9: An n× n symmetric matrix D initialized with all entries

set to a large constant (e.g., ∞)
10: for each (i, j) ∈ [n]× [n] do

/* Convert frequency to distance */
11: D(i, j)← 1

1+F (i,j)
12: end for
13: for i← 0 to n− 1 do

/* Set distance to itself as zero */
14: D(i, i)← 0
15: end for
16: return D

The resulting distance matrix D as a proxy for the pairwise
distances between records in the high-dimensional space, with
its complete computation procedure detailed in Algorithm 2,
where ider denotes the index of an encrypted record er.

B. Dimensionality Reduction for Reconstruction

The distance matrix D captures the high-dimensional re-
lationships between records based on their co-occurrence.
However, the true underlying structure of the dataset exists
in a lower-dimensional space. To recover this structure, we
apply dimensionality reduction techniques.

Dimensionality reduction is a common machine learning
approach used to simplify complex, high-dimensional data
while preserving its essential features. In our method, we em-
ploy t-SNE, which is particularly effective at preserving local
relationships and minimizing global distortions, ensuring that
the reconstructed dataset reflects the original spatial layout.
The result of this step is a set of reconstructed coordinates in
a low-dimensional space, approximating the original dataset’s
spatial relationships.

While t-SNE excels at preserving local structure, it is sensi-
tive to parameters such as perplexity, which controls the trade-
off between local and global preservation. For completeness,
we refer to the full version [51] for a more detailed discussion
on parameter sensitivity. Our empirical analysis shows that
the optimal perplexity value scales with dataset size: smaller
datasets benefit from lower perplexity values, while larger
datasets require higher values for optimal reconstruction. By
carefully selecting perplexity, we can significantly improve
the reconstruction quality, balancing local and global structure
preservation.

C. Refinement and Alignment

The dimensionality reduction process provides an initial set
of coordinates for the records in the original space. However,
due to the lack of absolute positional information in the co-
occurrence data, the reconstruction result may suffer from
potential misalignment. It typically differs from the original
structure by certain rotations, scalings, and translations—affine
transformations that preserve relative distances and angles
between points but do not maintain their absolute positions.

To address this, we apply Procrustes analysis, a statistical
method specifically designed to correct affine transformations.
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Procrustes analysis requires a reference set of points for
alignment, and we provide the detailed algorithmic description
in the full version [51]. For datasets with a relatively uniform
distribution, where records are evenly spaced across the spatial
domain, we construct a reference grid to serve as the target
for alignment. This approach works because each record in the
original database lies on a grid point, making the grid a natural
representation of the true spatial structure. Mathematically,
given the original coordinates X (the reference grid) and the
reconstructed coordinates Y , Procrustes analysis solves the
following optimization problem:

min
R,s,t
||X − (sY R+ t)||2 (2)

where R is a rotation matrix, s is a scaling factor, and t
is a translation vector. This ensures that the reconstructed
embedding aligns with the original dataset’s spatial layout,
correcting for reasonable distortions.

For datasets requiring integer coordinate constraints, simu-
lated annealing, a probabilistic optimization technique, can be
used to further optimize point placement, guaranteeing recon-
structed coordinates occupy exact integer positions. Details on
this technique are in our full version [51].

V. EVALUATION OF REMIN ATTACK

A. Experiment Setup

We assess the performance of our reconstruction method
through comprehensive experiments across various datasets,
including both synthetic and real-world scenarios. These
datasets are as follows:

• Grid (Synthetic): A procedurally generated d-
dimensional grid dataset (nd) with uniform spacing
and configurable sparsity (by randomly removing
records). The grid size, denoted by n, indicates the
number of cells per dimension. This dataset is used
to simulate idealized structured data. We refer to this
dataset as Grid.

• California Intersections: A real-world spatial dataset of
over 21,000 road intersections in California, representing
urban and suburban sprawl (normalized to a 50×50 grid),
previously used in SE research [1], [17]. We refer to this
dataset as Cali.

• Amsterdam Drinking Water Points: A spatial dataset
of water access locations in Amsterdam, collected from
OpenStreetMap. It exhibits moderate clustering typical of
urban infrastructure. We refer to this dataset as AMS. The
data was normalized to a 50× 50 grid with 289 points.

• Manhattan Highway Crossings: This dataset captures
highway intersections in Manhattan with 1708 points
normalized to 50×50 space, exhibiting prominent spatial
clustering. We refer to this dataset as Manhattan.

• Paris Shops: Locations of shops in central Paris, charac-
terized by non-uniform spatial clusters that reflect com-
mercial hotspots. We refer to this dataset as Paris. The
data was normalized to a 50× 50 grid with 1158 points.

• Shanghai Bus Stops: Bus stop locations in downtown
Shanghai with 1046 points normalized to 50×50, forming
a relatively uniform distribution shaped by the urban road
network, with non-equidistant spacing between points. We
refer to this dataset as Shanghai.

• New Hampshire Elevation (3D): A 3D terrain dataset
containing elevation samples from the White Mountains,
previously used in reconstruction research [1]. Normal-
ized to 16× 16× 16. We refer to this dataset as NH.

To ensure a fair comparison between reconstruction meth-
ods, we align all reconstructed coordinates to the original
dataset before computing evaluation metrics. This is necessary
because reconstruction from range queries is inherently non-
unique: many databases can produce identical query responses,
forming what is known as the reconstruction space [1]. Within
this space, any dataset is considered indistinguishable from
others based solely on query leakage. To account for this
ambiguity, we apply Procrustes analysis using known point
correspondences to align reconstructions to the ground truth,
allowing only rotation and scaling. This alignment ensures
that evaluation metrics such as MSE and neighborhood ac-
curacy reflect meaningful geometric fidelity rather than co-
ordinate frame discrepancies. Unlike the basic attack setting,
where alignment and simulated annealing are performed post-
reconstruction, we avoid such post-processing as it may in-
troduce artificial artifacts that could distort the comparison.
All quantitative metrics reported in this section are computed
after this alignment, ensuring that the results are directly
comparable across methods and settings.

We evaluate our method using four key metrics, each
capturing a distinct aspect of reconstruction quality:

• Mean Squared Error (MSE): MSE measures the aver-
age squared distance between the reconstructed coordi-
nates and the original coordinates across all records. It
quantifies the overall reconstruction error, balancing the
contributions of both large and small errors, thus offering
a comprehensive measure of reconstruction quality.

• Tolerant Match Rate: This relaxed version of exact
coordinate match assesses the method’s ability to recover
positions within a specified radius of the ground-truth
location. Specifically, a predicted point is considered a
match if its Euclidean distance to the true point is less
than

√
2. This metric is particularly valuable in practical

settings, as it accounts for minor distortions that remain
even after alignment, providing a more meaningful mea-
sure of localization accuracy.

• Neighbor Accuracy: This metric evaluates the preser-
vation of local consistency by measuring the percentage
of records whose 5 nearest neighbors in the reconstructed
dataset match those in the original dataset. This is crucial
for assessing how well the method preserves clusters and
neighborhood relationships, which are often key to the
dataset’s structure.

• Chamfer Distance: Chamfer Distance measures the av-
erage closest-point distance between two sets of points,
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capturing the overall structural similarity between them.
Unlike MSE, which is sensitive to small shifts in coordi-
nates, Chamfer Distance is robust to minor mismatches
in point correspondence, making it ideal for evaluating
the structural integrity of the reconstructed dataset.

These four metrics collectively evaluate both global accu-
racy and local consistency, providing comprehensive assess-
ment of reconstruction quality. To account for the inherent
instability of t-SNE and ensure statistical reliability, we repeat
each experimental setup ten times in our experiments, and the
results are averaged across these runs.

We note that our attack is domain-agnostic and depends only
on the underlying data distribution. The geospatial datasets de-
scribed above already span diverse structural patterns (dense,
sparse, uniform). To further verify generality, we evaluate
representative non-geospatial datasets (medical, financial, en-
vironmental [52], [53], [54]), demonstrating comparable re-
construction performance (see Appendix A-B).

B. Structural Visualization on Real-World and 3D Datasets

To qualitatively assess the reconstruction capabilities of our
method, we present visual comparisons between the ground
truth datasets, our reconstructed outputs, as well as those
of a leading query-efficient baseline (Markatou et al. [1]).
These comparisons span both real-world 2D spatial datasets
obtained from OpenStreetMap and a 3D dataset, showing that
our method outperforms the baseline in both geometric and
topological preservation under severely limited query access.

We evaluate three real-world 2D datasets described in Sec-
tion V-A: Amsterdam drinking water access points, Manhattan
highway crossings, and shops in central Paris. All reconstruc-
tions are conducted with only 1% query coverage sampled
under a uniform query distribution.

Fig. 1 and Fig. 3 depict datasets with strong clustering
structures (AMS and Manhattan). Our method effectively re-
covers both the intra-cluster density and inter-cluster spacing,
preserving neighborhood relationships with high fidelity. In
the AMS dataset, we achieve 82% neighbor accuracy and a
Chamfer distance of 1.46. Similar performance is observed
for Manhattan. In contrast, the baseline [1] fails to capture
both the global and local structures: on AMS it yields only
51% neighbor accuracy, and on Manhattan it reaches 55%.
Its reliance on unweighted connectivity producing nearly uni-
form point clouds with significantly lower neighbor accuracy
and substantially higher Chamfer distances, indicating both
geometric and topological distortions.

Not all spatial datasets exhibit strong clustering. To evaluate
reconstruction performance in general cases, we consider the
Paris datasets (Fig. 4), which features more diffuse yet struc-
turally meaningful point distributions. Despite the absence
of large-scale clustering, this dataset still contains significant
spatial heterogeneity and alignment patterns. Our method
successfully recovers the relative positioning of points and
underlying spatial organization. The reconstruction achieves
consistent accuracy with 80.03% neighborhood accuracy and

Fig. 3: (Left) Original Amsterdam Drinking Water dataset
(50 × 50 grid). (Middle) Reconstruction by REMIN using
1% uniformly sampled queries, achieving 82.00% neighbor
accuracy, Chamfer distance of 0.78, and MSE of 23.52. (Right)
Reconstruction by the method of Markatou et al. [1] under the
same setting, achieving 50.92% neighbor accuracy, Chamfer
distance of 1.05, and MSE of 37.86.

Fig. 4: (Left) Original Paris Shops dataset (50 × 50 grid).
(Middle) Reconstruction by REMIN using 1% uniformly sam-
pled queries, achieving 80.03% neighbor accuracy, Chamfer
distance of 0.81, and MSE of 41.1. (Right) Reconstruction by
the method of Markatou et al. [1] with 30% neighbor accuracy,
Chamfer distance of 1.21, and MSE of 128.4.

low MSE, demonstrating robustness beyond clustered scenar-
ios. Conversely, the baseline [1] once again fails to preserve
spatial structure under the same query budget, producing a
near-uniform random distribution of points. Similar results
are observed under biased query distributions for all datasets
(Appendix A-B).

To demonstrate the dimensional agnosticism of our ap-
proach, we further evaluate our method on a 3D dataset (NH),
embedded in Z3. Using the same query rate of 1% under
uniform query distribution, we reconstruct the spatial layout
via our co-occurrence-based dimensionality reduction pipeline.
As shown in Fig. 14, the reconstructed shape preserves most of
the original topological structure, highlighting that our method
is dimension-agnostic. Since the approach solely relies on
inter-point distances rather than absolute positions, it natu-
rally extends to any intrinsic dimensionality, as long as local
neighborhood information is well represented.

C. Comparison with Prior Work

To quantitatively evaluate the effectiveness of our recon-
struction method, we compare its performance against rep-
resentative baselines across a variety of settings. We first
consider the earlier approach of Markatou et al. [17], which
requires access to a full ordering of the encrypted dataset
and therefore requires access to a large fraction of query
responses. These assumptions are incompatible with the low-
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leakage regime studied in this work—particularly, the setting
where only 1% of all query responses are observed—making
the method inapplicable under our evaluation framework. For
empirical comparison, we therefore focus on the more recent
query-efficient baseline of Markatou et al. [1], which is specif-
ically designed for limited-leakage scenarios. Specifically, we
assess reconstruction quality and scalability on both synthetic
and real-world datasets.

First, we analyze performance on synthetic grid datasets,
varying both dataset size and sparsity level to investigate ro-
bustness under different density and completeness conditions.
Second, we perform extensive comparisons on multiple real-
world 2D spatial datasets, focusing on the performance at very
low (1%) and moderate (25%) query ratios under uniform
query sampling. These ratios represent scenarios where the
attacker obtains either very limited information or relatively
more, but still insufficient, data for full reconstruction. By
testing these methods on practical datasets, we aim to better
demonstrate their effectiveness and applicability in real-world
settings.

These experiments provide a comprehensive assessment of
accuracy, robustness, and scalability, highlighting the signifi-
cant advantage of our method over existing techniques under
realistic leakage constraints.

1) Synthetic Dataset Comparison: To further validate the
effectiveness and generality of our method, we benchmark it
against Markatou et al. [1]. Although this technique also aims
to recover database structure under limited query access, it
tends to overlook the underlying pairwise distance in datasets.

We then design two evaluation scenarios to capture realistic
variations in database conditions:

• Scalability: Datasets may vary in size or resolution,
ranging from small tables to large-scale records.

• Data Density: Real-world datasets often exhibit non-
uniform density, with missing records or irregular data
collection leading to sparsity and gaps.

To assess performance under these conditions, we conduct
two comparative studies:

• Varying grid size.
• Varying sparsity.
As mentioned before, once the mapping between recon-

structed results and original coordinates is established, we
compute all evaluation metrics based on the matched pairs,
as shown in Fig. 5.

Scalability. We evaluate the scalability of our approach against
the baseline [1] by testing both methods on grid-structured
datasets, ranging from 20 × 20 to 40 × 40 in size. The
experiments maintain a fixed query ratio of 1% and explore
varying data distributions: uniform, beta, and Gaussian. This
setup isolates the impact of database scale on reconstruction
performance. As dataset size increases, a robust method should
maintain reconstruction accuracy while remaining compu-
tationally efficient. To fully characterize this trade-off, we
augment our evaluation with runtime measurements alongside
the previously introduced metrics(See Fig. 15).

Fig. 5: Reconstruction by REMIN (Left) and by Markatou et
al. [1] (Right) using 1% uniformly sampled queries.

The experimental results in Fig. 6 reveal that our method
consistently outperforms the baseline [1] across all settings.

Fig. 6: Reconstruction performance on varying grid sizes (20×
20 to 40× 40) and data distributions with 1% query ratio.

Interestingly, as the grid size increases, both methods
demonstrate stable performance, suggesting that both ap-
proaches exhibit scalability with respect to dataset size. How-
ever, we observe a more pronounced performance decline
when varying the query distribution. Under non-uniform dis-
tributions, such as beta and Gaussian, both methods suffer
in reconstruction quality due to increased sampling redun-
dancy—fewer unique range responses result in less informa-
tive co-occurrence data. Nevertheless, our method maintains
strong performance in preserving local structures. For exam-
ple, neighborhood accuracy remains above 70% across all
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settings, demonstrating that our method is particularly resilient
to distributional shifts. While other metrics, such as tolerant
match rate and MSE, show greater variability, neighborhood
accuracy remains relatively stable, indicating that our approach
excels at capturing fine-grained local geometry, even when
global information is limited.

In addition to improved accuracy, our method is signifi-
cantly more efficient. Runtime comparisons (See Fig. 15 in
Appendix A-C) demonstrate an order-of-magnitude speedup,
making our method particularly suitable for large-scale appli-
cations where traditional cubic-complexity methods become
infeasible.

Overall, these results highlight the scalability, geometric
accuracy, and topological robustness of our method. It con-
sistently outperforms the state-of-the-art across a variety of
settings, demonstrating its ability to effectively handle larger
datasets and reliably preserve local structure even in the
presence of sparse or biased query patterns.
Data Density. In many real-world applications, databases are
not fully populated—due to missing records, data corruption,
or partial collection—leading to what we refer to as gaps or
missing data points. Existing methods, such as Markatou et
al. [1] do not explicitly preserve local distance consistency and
thus experience significant distortion when applied to sparser
datasets.

To evaluate the robustness of our approach under varying
levels of sparsity, we simulate random missing data points on
a 30 × 30 grid with a uniform data distribution. The query
ratio is fixed at 1%, and we gradually increase the percentage
of missing records from 0% to 70%. All other experimental
parameters remain consistent with the previous setup.

As shown in Table II, the accuracy of both methods
decreases with increasing sparsity, as expected, since query
results contain fewer co-occurring pairs. In sparser datasets,
each query covers a smaller portion of the data, leading to
reduced overlap between responses. Our method consistently
outperforms the baseline by Markatou et al. [1] across all
sparsity levels. In the range of 0%–60% missing data, our
reconstruction remains notably stable, suggesting that the
method is resilient to moderate sparsity. For example, even
with 60% of the records missing, our method maintains a
tolerant match rate above 49%, indicating successful structural
recovery despite substantial data loss. In contrast, the baseline
method exhibits a clear decline in all performance metrics as
the missing data ratio increases.

Interestingly, across all levels of sparsity, our method main-
tains high neighborhood accuracy, same as the previous ex-
periment (exceeding 80%), highlighting its robustness in pre-
serving local topology. This resilience stems from our design,
which leverages co-occurrence frequency to encode proximity,
even when full structural information is not available.

However, when the missing data ratio exceeds 70%, per-
formance becomes more volatile. At this point, co-occurrence
signals become too sparse for reliable inference, and the gap
between our method and the baseline [1] narrows. This limita-
tion underscores a known challenge in high-sparsity scenarios:

Fig. 7: Reconstruction performance on real-world datasets
under varying query ratios (1% to 5%) with uniform query
sampling. Our method consistently outperforms the method
of Markatou et al. [1] in all metrics.

when neighbor relationships are insufficiently sampled, even
distance-aware methods struggle to recover accurate structures.

In summary, the experiment demonstrates that our method
is robust and scalable under realistic levels of sparsity (up
to 60%), with clear advantages over the state-of-the-art. Its
ability to preserve local geometry makes it well-suited for
moderately sparse database scenarios, though extreme sparsity
remains challenging for all current approaches.

2) Quantitative Comparison on Real-World 2D Spatial
Datasets: In realistic scenarios, attackers often face strict con-
straints on the number of observable query responses, either
due to system-imposed query budgets or privacy-preserving
mechanisms. Consequently, a key challenge in reconstruction
attacks is recovering as much spatial structure as possible
with limited information. To assess the effectiveness of our
method under such low-leakage conditions, we evaluate its
performance on four real-world 2D datasets, and compare
it against the state-of-the-art reconstruction baseline [1]. To
simulate realistic query leakage, we uniformly sample a fixed
percentage of range queries (from 1% to 5%) under a uniform
distribution and use them as the sole input to each recon-
struction method. We then evaluate the output using the four
metrics mentioned before.

As shown in Fig. 7, the performance of all methods gener-
ally improves with higher query ratios, with MSE decreasing
and accuracy-related metrics increasing. Across all datasets
and query budgets, our method consistently outperforms the
baseline [1] by a clear margin. Notably, under the lowest query
ratio of 1%, our method achieves a tolerant match rate that
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TABLE II: Comparison of reconstruction methods under increasing sparsity levels with perplexity set to 80.

Missing Data Ratio REMIN Markatou et al. [1]

MSE
↓

Tolerant
Match ↑

Neighbor
Accuracy ↑

Chamfer
Distance ↓

MSE
↓

Tolerant
Match ↑

Neighbor
Accuracy ↑

Chamfer
Distance ↓

0% 1.81 0.7365 0.8142 0.4375 30.10 0.3718 0.6898 0.5665
10% 2.19 0.7090 0.8103 0.4931 28.17 0.2761 0.6635 0.6035
20% 2.33 0.6715 0.8202 0.5115 28.25 0.1683 0.6096 0.6771
30% 2.44 0.6572 0.8335 0.5636 28.91 0.1146 0.5443 0.8047
40% 2.88 0.6251 0.8221 0.5951 23.59 0.1420 0.4951 0.7946
50% 10.33 0.4920 0.8132 0.6685 22.93 0.1178 0.4475 0.8575
60% 17.03 0.4109 0.8105 0.7983 22.65 0.1437 0.3944 1.0110
70% 18.79 0.2292 0.8071 0.9523 23.59 0.0859 0.3565 1.0540

more than doubles that of Markatou et al. [1]. Furthermore,
due to the geometry-aware properties of our t-SNE-based
reconstruction, our approach reliably preserves local spatial
relationships, achieving neighbor accuracy above 72% across
all settings even under minimal information observed.

As mentioned before, one of the most critical concerns is
obtaining the highest quality of the reconstructed dataset under
minimal query leakage. A practical attack should be capable of
extracting meaningful structural information under extremely
constrained leakage, while also scaling to higher coverage
when available.

To further assess this, we fix the query ratio at two repre-
sentative levels—1% and 25% (extremely low and relatively
low query coverage)—and compare MSE results across the
four real-world datasets.

The results, summarized in Table III and Table IV, demon-
strate that our method is substantially more query-efficient
than the baseline [1], achieving an average MSE reduction of
approximately 50% across datasets. For instance, under just
1% query coverage, our method achieves up to 80% reduction
in MSE relative to the baseline on Manhattan dataset, and in
some cases achieves an MSE as low as 1.29.

These findings highlight the robustness of our framework in
sparse regimes, demonstrating that even minimal query access
can yield accurate geometric reconstructions—reinforcing the
threat posed by range query leakage in real-world systems.

TABLE III: MSE of reconstruction using 1% query ratio.

Method Paris Shanghai AMS Manhattan

REMIN 42.17 22.81 23.52 14.25
Markatou et al. [1] 53.07 36.92 37.86 42.97

TABLE IV: MSE of reconstruction using 25% query ratio.

Method Paris Shanghai AMS Manhattan

REMIN 20.46 21.26 19.04 1.29
Markatou et al. [1] 26.14 23.02 37.20 10.82

D. Reconstruction in Higher Dimensions

As dimensionality grows, the reconstruction task becomes
significantly more challenging due to sparser co-occurrence

observations and more complex geometric structures. We
extend our evaluation to synthetic and real-world higher-
dimensional datasets.

For the synthetic study, we compare our method against the
leading query-efficient baseline [1] on grid-structured datasets
with increasing dimensionality (2D to 6D) under a fixed
query coverage of 1%, uniform query distribution, and 0%
sparsity. To manage the exponential growth in data size and
computational cost, we use progressively smaller grids (e.g.,
163 for 3D, 65 for 5D). Evaluation is based on MSE and
Chamfer distance, which captures geometric fidelity. We omit
tolerant match and neighbor accuracy in dimensions ≥3, as the
geometric complexity and uniformity of inter-point distances
in high-dimensional spaces render local neighborhood metrics
less reliable.

TABLE V: Performance on higher-dimensional grid datasets
with 1% query ratio under uniform distribution.

Dim Method MSE Chamfer Dist

2D (322)
REMIN 0.9753 0.4113

Markatou et al. [1] 24.6954 0.5184

3D (163)
REMIN 0.2991 0.5414

Markatou et al. [1] 0.5968 0.5969

4D (84)
REMIN 0.6547 0.6851

Markatou et al. [1] 0.6814 0.7061

5D (65)
REMIN 0.8624 0.9174

Markatou et al. [1] 1.0639 1.0369

6D (46)
REMIN 1.1759 1.0247

Markatou et al. [1] 1.1888 1.1168

As shown in Table V, our method consistently achieves
lower MSE and Chamfer distance across all dimensions. Even
in 6D, our attack maintains a clear advantage. This suggests
that our distance-based co-occurrence representation preserves
meaningful spatial structure even in higher dimensions.

We further vary sparsity levels (0–50%) across dimensions
from 2D to 4D while keeping the total number of records fixed
(642, 163, and 84). This isolates the effect of dimensionality
and data density on reconstruction quality. Results in Table IX
(Appendix A-C) indicate that reconstruction accuracy declines
with increasing sparsity, consistent with the 2D observations.
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Despite this trend, our method consistently yields lower MSE
than the baseline [1] across all configurations. The perfor-
mance gap remains stable across dimensions, showing that
the co-occurrence–based distance formulation retains robust-
ness under sparse query coverage even in higher-dimensional
spaces.

We further validate the generality of our approach us-
ing non-geospatial real-world multidimensional datasets intro-
duced earlier [52], [53], [54] by extending with one additional
feature dimension selected from the original data attributes.
Details of these datasets are provided in Appendix A-B. Evalu-
ation under the same query coverage (1%) confirms consistent
reconstruction behavior: our method consistently outperforms
the baseline [1] across all three real-world datasets, yielding
MSE reductions of approximately 20–60%. Specifically, re-
construction error decreases from 1.00 to 0.79 on Obesity,
from 1.48 to 1.29 on Telecom, and from 2.17 to 0.92 on
Landsat.

These findings demonstrate the scalability and robustness of
our approach. Despite extreme query sparsity and dimensional
complexity, our attack can still recover the structural layout of
the dataset far more effectively than existing methods. This
underscores the potential risks of leakage in high-dimensional
encrypted systems, where traditional defenses may underesti-
mate the attacker’s reconstruction capabilities.

E. Evaluation under Countermeasures

While SSE inevitably leaks side-channel information
such as access and search patterns, real-world deploy-
ments often incorporate lightweight countermeasures to mit-
igate such leakage. Industrial systems and prototype im-
plementations alike—such as ShieldDB [55], Veil [56] and
CryptDB [57]—commonly employ techniques like query
padding, randomized response sets, or canonical range par-
titioning to reduce the observability of sensitive correlations.
These strategies trade additional bandwidth or computation
for improved confidentiality, but their actual effectiveness
against modern reconstruction attacks remains underexplored.
To assess the real-world viability of REMIN under such real-
istic deployment conditions, we evaluate its robustness against
representative leakage-mitigation defenses widely adopted in
practical SSE systems. Specifically, we implement and test
these countermeasures on a controlled 30×30 grid dataset with
1% uniformly sampled range queries.

We focus on two representative defenses. First, max
padding [37], [58], [59], where responses are padded with fake
records to the next power-of-two or a fixed multiple of x, mit-
igates leakage while offering a tunable privacy–cost trade-off.
Second, obfuscation with BT-style canonical coverage [60],
which returns results for the smallest precomputed canonical
range whose span is a power of two, thereby obfuscating
access patterns through bounded false positives. This approach
introduces no tunable parameters, as the canonical partitions
are fixed by construction.

In Table VI, the bandwidth overhead—measured as the
average ratio of padded to true response size—quantifies the

cost introduced by each defense. Padding to powers-of-two
incurs a modest overhead of less than 2×, while REMIN
shows only minor degradation, maintaining around 70% toler-
ant match rate with low MSE. For multiple-of-x padding, as x
increases both REMIN and the baseline [1] lose accuracy, but
the communication overhead also grows substantially (up to
nearly 3×). In contrast, BT-style canonical obfuscation almost
nullifies reconstruction (tolerant match < 2%), yet at a heavy
cost: each response requires on average more than 4× the
original communication.

Notably, under extreme padding schemes (maximum mul-
tiples of x) or BT-style obfuscation, the baseline method
essentially fails, whereas REMIN still preserves meaningful
reconstruction. This robustness arises from REMIN’s use of
co-occurrence statistics: bogus padded records appear far less
frequently than true records, and contribute negligible signal,
allowing our model to naturally filter them out. In contrast,
the baseline approach treats all records equally, making it
vulnerable to spurious correlations introduced by padding.

Overall, these results illustrate a clear trade-off: lightweight
padding offers limited protection with modest overhead, while
strong obfuscation provides higher privacy at prohibitive cost.
This aligns with practical SSE deployments, which often
prioritize efficiency and remain susceptible to leakage-abuse
attacks—underscoring the continued real-world relevance of
our threat model. While extremely sensitive information could
justify such overhead, in scenarios where access and search
patterns cannot be observed, all current attacks targeting these
channels are largely ineffective.

VI. REMIN-P ATTACK: LEVERAGING AUXILIARY
INFORMATION FOR IMPROVED RECONSTRUCTION

In this section, we explore a new approach for reducing
reconstruction error by utilizing auxiliary information. We
consider a natural extension of the adversarial setting in
which the attacker, beyond passive observation, can poison a
limited number of records into the dataset. The technique—our
poisoning strategy—operates on the output of any reconstruc-
tion algorithm and is agnostic to the underlying inference
mechanism. As such, it represents a general augmentation
layer that can enhance or exploit the structure recovered by
any range query leakage-abuse attack. We describe the new
attack, called REMIN-P, and demonstrate its effectiveness in
improving the database reconstruction.

A. Intention

We explore how to further minimize our reconstruction
error, especially in scenarios where limited query data leads to
imperfect reconstructions. In practical settings, some records
in the dataset may be known to the attacker, either due
to unavoidable leakage or intentional injections. Such sce-
narios are realistic: an adversary may generate controlled
transactions in online services, inject identifiable files into
target servers, or—under permissive contexts—introduce or
monitor test patients and visits [61], [62], [63], [64], thereby
inserting poisoned records into the system. One may use this
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TABLE VI: Comparison of defense mechanisms against REMIN and the baseline from Markatou el al. [1] (all experiments
under 30× 30 grid). Bandwidth overhead is measured as the average ratio of padded to true result size.

Defense Bandwidth overhead REMIN (ours) Markatou et al. [1]

MSE ↓ Match ↑ Neighbor ↑ Chamfer ↓ MSE ↓ Match ↑ Neighbor ↑ Chamfer ↓

Original (no defense) 1.00× 1.49 0.80 0.82 0.48 31.28 0.28 0.64 0.62

Max padding (power-of-2) 1.43× 2.17 0.68 0.77 0.47 28.46 0.27 0.64 0.66

Max padding (multiply-of-50) 1.30× 2.75 0.61 0.80 0.52 148.1 0.01 0.02 1.13
Max padding (multiply-of-75) 1.47× 5.64 0.57 0.75 0.54 149.8 0.01 0.02 0.89
Max padding (multiply-of-125) 1.83× 4.11 0.51 0.76 0.56 155.0 0.00 0.02 1.07
Max padding (multiply-of-250) 2.94× 4.14 0.50 0.76 0.54 271.7 0.01 0.01 2.25

Obfuscation (BT-Style) 4.11× 112.1 0.02 0.46 0.94 214.6 0.01 0.41 2.83

knowledge, referred to as poisoning anchor points, to refine
the reconstruction.

We show that even small amounts of auxiliary knowledge
can significantly improve the reconstruction of the underlying
data. This section explores how poisoned anchor points can be
strategically used to adjust the geometry of the reconstructed
dataset and reduce edge distortions, with a focus on the impact
of two different injection strategies.

B. The REMIN-P Attack Framework

The core idea behind the REMIN-P Attack is to inject
auxiliary anchor points into the reconstructed dataset, using
known or leaked record positions as spatial references. These
anchor points are then used to perform a post-processing
adjustment to realign the reconstructed points, improving the
overall structure and minimizing distortion (see Algorithm 3).

Algorithm 3 REMIN-P(P̂ , Anchors)

Input: P̂ : initial reconstruction from REMIN
Anchors: set of poisoned anchor points with known

true locations
Output: P̂ ′: refined reconstruction

/* Step 1: Align reconstruction using poisoned anchors */
1: P̂a ← PROCRUSTESALIGN(P̂ , Anchors)

/* Step 2: Estimate correction function from anchor dis-
crepancies */

2: C ← ESTIMATEANCHORCORRECTION(P̂a, Anchors)
/* Step 3: Apply anchor-based correction to all points */

3: P̂ ′ ← C(P̂a)
4: return P̂ ′

Such auxiliary information may originate from different
sources. We distinguish between two typical threat models:

• Passive Attacker: gains access to a small, random subset
of ground-truth record positions, either through metadata
leakage, user-side exposure, or cross-database matching.

• Active Attacker: deliberately injects or identifies struc-
turally meaningful points (e.g., central locations, syn-
thetic users) with known coordinates.

These scenarios motivate two corresponding injection
strategies-random anchor selection and cross-shaped anchor

placement (Fig. 8). The former explores the effect of anchor
quantity under realistic, uncontrolled leakage, while the latter
demonstrates how even a few strategically placed anchors can
serve as structural scaffolds for global alignment.

Fig. 8: Comparison of two anchor injection strategies. The
left figure illustrates the random placement of poisoned points,
while the right shows the cross-shaped method, highlighting
the structural improvement achieved by targeting central axes.

Given that the reconstructed embedding may exhibit mild
geometric distortions due to manifold learning effects, we
propose a post-processing adjustment step that leverages these
known anchor points. Specifically, the attacker uses the iden-
tified correspondences between a small set of original and
reconstructed coordinates to fit a smooth warping function that
aligns the entire structure more closely with its true layout. The
full procedure is outlined in the full version [51].

Since edge points typically have fewer neighboring points
in the query responses, the positional information extracted for
these points tends to be sparser, resulting in greater distortion
in the reconstruction edges. To address this, we aim to align
the reconstructed space with the true space based on the radial
deviation of poisoned points relative to the layout center.
By applying 1D interpolation along each axes, the algorithm
efficiently warps the reconstructed layout to better match the
ground-truth structure. Unlike global affine transformations,
this method adapts to local distortions while preserving the
relative neighborhood consistency of the reconstruction.

C. Experimental Evaluation

To evaluate the effectiveness of poisoning anchor strategies,
we conduct experiments on structured grid datasets under fixed
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10% sparsity ranging from 20 × 20 to 35 × 35 in size with
5% query ratio sampled uniformly. We simulate the attacker
having access to the true coordinates of a small subset of
records (anchors), which are used to fit a transformation that
adjusts the reconstructed layout.

For the random injection strategy, we fix the grid size
(30×30) and vary the anchor point injection ratio across
values 1% to 10%. For each ratio, we randomly sample the
corresponding number of poisoned points from the dataset. For
the cross-shaped injection, we vary the grid size from 20×20
to 40×40, and insert anchor points along the central row and
column (i.e., forming a cross), with the number of poisoned
points growing linearly with grid size.

(a) Mean Squared Error↓ (b) Tolerant Match Ratio↑

Fig. 9: Impact of the random injection strategy on reconstruc-
tion quality: (Left) MSE and (Right) tolerant match ratio as
the ratio of poisoned points increases. Results are obtained on
a 30× 30 grid dataset with a 5% uniform query ratio.

Our results reveal complementary performance trends under
the two anchor injection strategies, with the cross-shaped
method achieving strong alignment with fewer anchors, and
the random method showing gradual improvement as the
injection ratio increases.

Random Injection. Fig. 9 illustrates the quantitative perfor-
mance of the random poisoning strategy. When the poisoned
point ratio is very low (1–3%), the adjustment often introduces
additional distortion, degrading the reconstruction accuracy.
This is attributed to biased or under-constrained interpolation,
where the limited number of anchor points leads to unreliable
global correction. However, once the poisoned ratio exceeds
3%, the adjustment consistently outperforms the original re-
construction. As the number of anchors increases, the qual-
ity of the correction steadily improves across all evaluation
metrics. However, the improvement is gradual, and a large
number of anchors are required to reach the performance level
achievable by a well-placed set of structural anchors.

Cross-Shaped Injection. In contrast, the cross-shape strategy
demonstrates that even limited auxiliary knowledge can be
leveraged to significantly improve reconstruction fidelity. As
shown in Fig. 10, even with only 19 anchors in a 30×30
grid (lower than 2.5%), we observe a reduction of over
22% in MSE and a gain of 4% in tolerant match accuracy
compared to the no-anchor baseline. This targeted selection
yields significant structural improvement, particularly in cor-
recting edge distortions. The boundary regions, which often

(a) Mean Squared Error↓ (b) Tolerant Match Ratio↑

(c) Neighbor Accuracy↑ (d) Chamfer Distance↓

Fig. 10: Comparison of reconstruction metrics before and after
post-processing under cross-shaped method. Grid sizes range
from 20×20 to 35×35 under 5% uniform query ratio.

exhibit curvature or compression artifacts are realigned more
accurately when poisoned points span both axes.

Moreover, as shown in Fig. 10, this method exhibits greater
stability and effectiveness across dataset sizes (from 20×20
to 35×35) compared to random poisoning. Notably, while
both strategies lead to improvements, the cross-shaped anchors
consistently outperform random anchors at low budget levels,
especially for correcting global misalignment.

Our experiments confirm that even limited auxiliary knowl-
edge—either leaked or injected—can be leveraged to signifi-
cantly improve reconstruction fidelity. In practice, it suggests
that attackers may benefit from strategically introducing or
identifying semantically informative points, thereby refining
the geometry of otherwise noisy embeddings. This calls for
stronger defense mechanisms beyond traditional leakage pro-
filing, including robustness against minimal anchoring and
geometry-aware leakage mitigation.

VII. DISCUSSION AND FUTURE WORK

Challenges in Extremely Sparse Datasets. Experimental
observations indicate a dramatic decline in reconstruction per-
formance in highly sparse datasets, characterized by over 70%
empty regions. In such scenarios, the reduced co-occurrence
of distant records severely limits the attacker’s observable
information. This sparsity also increases the likelihood of
queries returning very few or even single records, further
weakening the statistical signal needed for reconstruction.
Future work could explore incorporating additional signals,
such as the frequency of individual point occurrences, to
estimate the size of empty neighborhoods, thereby improving
reconstruction capabilities in sparse data environments.
Framework Limitations and Generalization. While
REMIN shows strong performance under extremely limited
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query leakage, its scalability under higher leakage ratios
(e.g., 50%) remains underexplored. Evaluating whether
full database reconstruction is achievable in such settings
may further reveal the method’s robustness and practical
potential. Moreover, the use of t-SNE introduces sensitivity to
parameters such as perplexity and stochastic variability, which
may affect reconstruction fidelity—especially in non-uniform
datasets where isolated points offer limited relational signals.
Although our poisoning-based REMIN-P helps mitigate
some of these issues, future work could explore embedding
algorithms that incorporate structural constraints or density-
aware regularization. More broadly, the modular structure of
our framework suggests potential for extending to other types
of leakage, by transforming diverse observable signals into
learnable spatial representations.
Opportunities and Challenges in Query Poisoning. Our
REMIN-P shows that even limited manipulation—through
observing or injecting a small number of ground-truth
records—can substantially improve reconstruction outcomes.
A slightly more active attacker could further exploit this
by crafting specific queries or strategically inserting points
to guide the embedding process. Future work may explore
adaptive poisoning strategies that leverage dataset geometry
or embedding sensitivities.
Toward Dynamic Environments. Our analysis focuses a
practical setting where records are stored and retrieved in
cloud servers, with underlying real-world databases remaining
largely stable during evaluation, as commonly assumed in
prior SSE attacks [1], [19], [17]. In dynamic environments,
insertions and deletions continuously reshape dataset bound-
aries and range coverage, altering access patterns, response
volumes, and co-occurrence relationships. Such temporal drift
compounds search–update traces and renders the leakage dis-
tribution non-stationary, requiring adaptive calibration instead
of a fixed benchmark snapshot [65]. Addressing this non-
stationarity remains an open challenge for future work.

VIII. CONCLUSION

In this work, We address the challenge of reconstructing
spatial datasets under severe query leakage constraints, a
critical problem in privacy-preserving systems and adversarial
settings. We present a novel machine learning-based attack that
leverages representation learning from highly limited range
query leakage. Our method, based on t-SNE and co-occurrence
analysis, is the first to demonstrate effective reconstruction
under general datasets, outperforming state-of-the-art baselines
by up to 50% in MSE. These results highlight a critical
vulnerability in current privacy-preserving systems and show
that even minimal query exposure can lead to meaningful
data recovery, calling for stronger defenses in real-world
deployments.

IX. ETHICS CONSIDERATIONS

This work demonstrates the vulnerability of searchable
encryption systems to practical database reconstruction at-
tacks using minimal leakage, which can help inspire stronger

security measures and privacy-preserving techniques. By ex-
posing these risks, our research contributes positively to the
advancement of secure encrypted database systems. Below
we discuss key ethical considerations regarding intellectual
property, intended usage, potential misuse, risk control, and
human subjects.
Intellectual property. All comparative attacks and defenses,
models, datasets and implementation libraries are open-source.
Intended Usage. Our work demonstrates how minimal leak-
age from encrypted databases can enable approximate data
reconstruction, exposing critical vulnerabilities in current sys-
tems. These findings aim to drive the development of more
secure encryption schemes that better protect sensitive infor-
mation.
Potential Misuse. Our findings could be misused to recon-
struct sensitive location data, infer private financial/medical
information, or manipulate data via poisoning attacks. Poten-
tial defenses may include padding [66], ORAM [4], [5], and
poisoning detection system.
Risk Control. To further mitigate potential risks, we will
release the code of this work including algorithms and the im-
plementations in the experiments. We believe that transparency
can reduce the risks related to this work, encourage reliable
code reuse and promote advancement of database security.
Human Subject. This research does not involve human sub-
jects and any personally identifiable information.
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APPENDIX A
ADDITIONAL MATERIALS

A. Notation Summary

TABLE VII: Notation Summary

Symbol Description

n Total number of records
F Original dataset with n records
Sd A d-dimensional Euclidean space
Ni Range size in dimension i (i = 1, . . . , d)
E Encrypted dataset stored on the server
tq Query token corresponding to the query q

Response(tq) Set of returned records of the query token tq
Q Set of observed queries
F The co-occurrence frequency matrix
D(i, j) The (i, j)-th entry of the distance matrix D

Y Representation matrix after dimension reduction

B. Supplement Datasets and Performance under Non-uniform
Query Distribution

The non-geospatial datasets we evaluate are:
• Estimation of Obesity Levels: Records from individuals

in Mexico, Peru, and Colombia, used to estimate obesity
levels based on lifestyle and physical condition. For 2D
evaluation, we use the attributes height and weight; for
3D evaluation, we additionally include a dietary habit
indicator (“vegetable consumption”). We refer to this
dataset as Grid. We refer to this dataset as Obesity.

• Iranian Churn: Customer data from an Iranian telecom
provider, containing 13 behavioral and service-related
features (e.g., usage duration, call failures, subscription
length). For 2D evaluation, we use subscription length
and seconds of use; in 3D, we further include call failure
rate. We refer to this dataset as Telecom.

• Landsat Satellite: Multi-spectral measurements from
satellite imagery, each record representing a 3 × 3 pixel
neighborhood labeled by soil or crop type. In the 2D
setting, we use the grey soil and red soil attributes; in
3D, we add the cotton crop dimension. We refer to this
dataset as Landsat.
All features are normalized and scaled to a 50× 50 grid.

Fig. 11: Visualization of the Obesity dataset (height–weight
pairs) scaled to a 50×50 grid. (Middle) Reconstruction by
REMIN using 1% uniformly sampled queries, achieving
83.71% neighbor accuracy and MSE of 37.41. (Right) Re-
construction by the method of Markatou et al. [1] under the
same setting, achieving 47.30% neighbor accuracy and MSE
of 130.07.

Fig. 12: Visualization of the Iranian Telecom dataset (Sub-
scription Length–Seconds of Use pairs) scaled to a 50×50
grid. (Middle) Reconstruction by REMIN using 1% uniformly
sampled queries, achieving 84.46% neighbor accuracy and
MSE of 12.89. (Right) Reconstruction by the method of
Markatou et al. [1] under the same setting, achieving 45.27%
neighbor accuracy and MSE of 200.25.
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Fig. 13: Visualization of the Landsat Satellite dataset (red
soil–grey soil pairs) scaled to a 50×50 grid. (Middle) Recon-
struction by REMIN using 1% uniformly sampled queries,
achieving 85.51% neighbor accuracy and MSE of 14.78.
(Right) Reconstruction by the method of Markatou et al. [1]
under the same setting, achieving 54.90% neighbor accuracy
and MSE of 63.47.

Unlike spatial datasets, these datasets consist of behavioral
and transactional attributes rather than physical coordinates,
but still exhibit structured distributions that make them suitable
for reconstruction analysis. Under 1% uniform query coverage,
the reconstruction results (Fig. 11, 12 and 13) show that our
method consistently outperforms the baseline [1], confirming
that its effectiveness generalizes across heterogeneous datasets.

To better capture practical query behaviors, we follow
SOTA [1], [17], [20] in adopting non-uniform query models,
e.g., Beta, Gaussian distributions, which emulate the biased
or correlated access patterns commonly observed. Notably,
the impact of query distribution lies not in introducing bias
but in determining the number of unique queries observed. A
more skewed distribution effectively reduces diversity of query
observations, thereby limiting leakage signal. As illustrated in
Table VIII, our method naturally outperforms the baseline [1],
as it is explicitly designed to extract maximal information from
co-occurrence frequencies even under extremely limited query
observations.

C. Supplementary Experimental Results

To complement the evaluation presented in the main text,
we include additional figures in this appendix. These visu-
alizations provide further evidence of the effectiveness and
efficiency of our method across different settings.

TABLE IX: Reconstruction MSE under different sparsity
levels and dimensions.

Sparsity
(%)

2D (64) 3D (16) 4D (8)

REMIN Markatou
et al. [1] REMIN Markatou

et al. [1] REMIN Markatou
et al. [1]

0 0.2159 - 0.3667 0.7008 0.6499 0.8305
10 0.2946 - 0.4640 1.0090 0.6134 0.6985
20 0.4147 - 0.4323 0.6783 0.6673 0.8712
30 0.5909 - 0.4903 0.8221 0.7426 0.8176
40 0.6283 - 0.6649 1.0821 0.7260 0.9611
50 0.7911 - 0.6843 1.3349 0.8835 0.9747

TABLE VIII: MSE Reduction (%) achieved by our method
compared to the method of Markatou et al. [1] under three
query distribution settings: Beta, Gaussian, and Uniform.

Distribution MSE
Ours

MSE
Markatou et al. [1]

Reduction
%

AMS Dataset
Uniform 23.52 37.86 37.87%
Beta 54.46 112.87 51.75%
Gaussian 62.81 111.58 43.71%

Paris Dataset
Uniform 42.17 53.07 20.53%
Beta 48.58 120.30 59.61%
Gaussian 57.85 238.37 75.73%

Manhattan Dataset
Uniform 14.25 42.97 66.83%
Beta 42.87 97.72 56.13%
Gaussian 48.23 157.27 69.34%

Shanghai Dataset
Uniform 22.81 36.92 38.19%
Beta 38.28 89.72 57.32%
Gaussian 46.55 103.69 55.12%

Obesity Dataset
Uniform 37.41 130.07 71.23%
Beta 56.02 162.84 65.60%
Gaussian 64.17 135.54 52.65%

Telecom Dataset
Uniform 12.90 200.25 93.55%
Beta 24.51 174.90 85.99%
Gaussian 42.73 243.96 82.50%

Landsat Dataset
Uniform 14.78 63.48 76.72%
Beta 16.71 92.28 81.89%
Gaussian 33.05 81.22 59.31%

(a) Original Coordinates (b) REMIN Reconstruction

Fig. 14: (Left) Original NH dataset in 3D coordinates. (Right)
Reconstruction by our method REMIN using 1% uniformly
sampled queries, achieving 72.38% neighbor accuracy, Cham-
fer distance of 0.5674, and MSE of 0.6745.

Fig. 15: Runtime across varying grid sizes (20×20 to 40×40)
and data distributions with 1% query ratio.18



APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

This artifact provides the complete implementation and
experimental environment used to evaluate the REMIN attack.
It contains the core reconstruction algorithms, baseline imple-
mentations, experiment scripts, and all datasets used in the pa-
per. Evaluators can easily reproduce key results by specifying
the dataset, query coverage, and query distribution (uniform,
beta, or Gaussian). The pipeline automatically generates query
responses, samples observations, and computes reconstruction
metrics such as mean squared error (MSE).

1) How to access: The artifact is publicly available
at: https://github.com/ZIMUQIN-L/REMIN-attack. A DOI-
enabled archive of the artifact is also available at: https:
//doi.org/10.5281/zenodo.17725706. The repository contains
detailed documentation, installation instructions, and example
configurations.

2) Hardware dependencies: None.
3) Software dependencies: The artifact requires a

Python 3.8 runtime environment. All dependencies can be
installed automatically by running: pip install -r
requirements.txt No additional software or system
libraries are required beyond standard Python packages.

4) Benchmarks: All benchmarks and datasets used in the
paper are already included in the artifact package. Evaluators
can reproduce any experiment by selecting the desired dataset
name and leakage configuration in the provided script param-
eters (e.g., -points grid). No external data or benchmark
download is required.

B. Artifact Installation & Configuration

To install and configure the environment for evaluating this
artifact, follow the steps below:

1) Obtain the artifact. Clone or download the artifact
repository from the following link: https://github.com/
ZIMUQIN-L/REMIN-attack

2) Set up the runtime environment. Ensure that
Python 3.8 (or a compatible version) is available on
the system. The artifact has been tested on Linux and
macOS environments, but it can also run on Windows
systems with a standard Python installation.

3) Install dependencies. From the root directory of the
repository, run the following command to automatically
install all required packages:

pip install -r requirements.txt

4) Verify the setup. Once installation completes success-
fully, the environment is ready for use. You can confirm
the setup by executing a minimal example:

python eval_exp.py

This test runs a small-scale reconstruction using a toy
dataset and verifies that all dependencies are correctly
configured.

No additional configuration or system-level setup is required
beyond the steps above. The entire artifact can be executed
within a standard Python 3.8 environment on a commodity
desktop machine.

C. Experiment Workflow

The artifact provides a unified interface to reproduce all
experiments described in the paper. The workflow consists of
three stages:

1) Step 1: Fetch Response Data. Generates or loads
query-response pairs for a chosen dataset. Configurable
parameters include:

• points: select which dataset to use (e.g., grid,
drink, credit).

• p: the proportion of observable queries (e.g., 1 for
1% leakage).

• dist: the query distribution type, chosen from
uniform, beta, or gaussian.

• N0, N1: define the query domain size in each
dimension.

2) Step 2: REMIN Reconstruction Attack. Executes
the REMIN or REMIN-P algorithm to reconstruct the
dataset from sampled query-response pairs. Optional
hyperparameter:

• perplexity: controls t-SNE dimensionality re-
duction.

All other parameters use the default values reported in
the paper.

3) Step 3: Evaluation. Automatically compares recon-
structed and ground-truth datasets, reporting quantitative
metrics (MSE, Chamfer distance, neighborhood accu-
racy). No configuration is required for this step.

All three stages can be executed end-to-end using a single
command:

python eval_exp.py -points grid <dataset>
-p <query ratio> -dist <distribution>
-N0 <domain size> -N1 <domain size>

This command runs the full workflow—data preparation,
reconstruction, and evaluation—without additional manual
setup.

D. Major Claims

• (C1): REMIN consistently outperforms the state-of-the-
art baseline on both synthetic and real-world datasets,
achieving up to 50% lower MSE. Proven by Experiments
(E1)–(E2) whose results are reported in Fig. 1, Fig. 3 and
Fig. 4.

• (C2): REMIN remains robust under varying sparsity,
dimensionality, and query distributions, demonstrating
strong scalability and generalization. Proven by Exper-
iments (E1) whose results are reported in Fig. 6, Fig. 7
and Table II.
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E. Evaluation

1) Experiment (E1)—Real-World Datasets: [20 human-
minutes + 3 compute-hour] Validate reconstruction perfor-
mance on practical datasets under uniform query coverage.

[Preparation] Install dependencies using pip install
-r requirements.txt.

[Execution] Run both methods with 1% query coverage
under uniform query distribution:

python eval_exp.py -points drinking -p 1
-dist uniform -N0 50 -N1 50

[Results] REMIN consistently achieves lower MSE and
better structural fidelity than the baseline across all datasets,
confirming its robustness to real-world data distributions.

2) Experiment (E2)—Synthetic Datasets: [1 human-
minutes + 4 compute-hour] Evaluate reconstruction accuracy
and robustness under controlled sparsity, dimensionality, and
query distributions.

[Preparation] Configure the parameters for generating syn-
thetic grid-structured datasets, including grid dimensions (N0,
N1) ranging from 20 to 40, and sparsity levels from 0% to
70%.

[Execution] Run both methods under identical query bud-
gets (1%) with query distributions uniform, beta, and
gaussian:

python eval_exp.py -points grid -p 1
-dist uniform -N0 20 -N1 20

Repeat each configuration with 3–5 seeds to account for t-SNE
randomness.

[Results] Expected outcome: REMIN achieves consistently
lower MSE than the baseline (up to 50% reduction), with
stable performance across sparsity and query distributions. Ac-
curacy remains above 50% even with 60% sparsity, confirming
scalability and generalization.
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