
Anota: Identifying Business Logic Vulnerabilities
via Annotation-Based Sanitization

Meng Wang→, Philipp Görz→, Joschua Schilling→, Keno Hassler→, Liwei Guo†, Thorsten Holz ‡, Ali Abbasi§
→§CISPA Helmholtz Center for Information Security, †University of Electronic Science and Technology,

‡Max Planck Institute for Security and Privacy
→ first.last@cispa.de, † lwg@uestc.edu.cn, ‡thorsten.holz@mpi-sp.org, § abbasi@cispa.de

monitor program execution, detect predefined classes of errors,
and report these violations to the fuzzer, thereby locating
the vulnerability-inducing inputs [1]. Historically, sanitizers
are developed for detecting memory-related [2]–[7], undefined
behavior [8], and data race [9]–[11] vulnerabilities in memory-
unsafe languages such as C and C++. More recently, adapting
this technique to memory-safe languages such as Python and
PHP has led to the development of sanitizers targeting a
broader range of vulnerabilities. These include issues such as
command injection, Server-Side Request Forgery (SSRF), and
path traversal [12]–[21].

To examine the extend to which these recent sanitizers are
capable of detecting the most prevalent vulnerabilities, we an-
alyzed the 40 most dangerous software weaknesses (CWE Top
40) [22]. Despite recent progress in sanitizer development, we
find that a considerable number of these critical vulnerabilities
are either not addressed at all or inadequately addressed. This
worrying observation forms the primary motivation for our
work: there is a need to develop sanitizers to light up this
detection blind spot.

As shown in Table I, our analysis of fuzzing sanitizers
identifies two groups of weaknesses: Unaddressed Weaknesses
and Narrowly-Addressed Weaknesses.

Unaddressed Weaknesses (blue rows in Table I): refers
to weaknesses for which no sanitizer has been proposed yet.
A prominent example is authorization: the sanitizer needs to
know the application’s context to identify whether the user has
the privilege to access certain resources like reading/writing
variables, calling functions, or executing privileged code. Sim-
ilar obstacles block other CWE entries, such as Uncontrolled
Search Path Element, for which the sanitizer needs to have
knowledge of the developer’s intended file system access
privileges.

Narrowly-Addressed Weaknesses (gray rows in Table I):
Even when sanitizers do exist for certain vulnerabilities, their
solutions often have limited generalizability. Many established
approaches [14], [18], [26], [27] exhibit language-specificity,
depending on inferring program context from idiosyncratic
language-specific features, thereby limiting their applicability
to a single language, without offering paths to generalize the
approach. Other techniques [16], [21], [31] impose strong
pre-conditions that are often unattainable in practice, such as

Abstract—Detecting business logic vulnerabilities is a critical
challenge in software security. These flaws come from mistakes in
an application’s design or implementation and allow attackers to
trigger unintended application behavior. Traditional fuzzing sani-

tizers for dynamic analysis excel at finding vulnerabilities related
to memory safety violations but largely fail to detect business logic
vulnerabilities, as these flaws require understanding application-

specific semantic context. Recent attempts to infer this context,
due to their reliance on heuristics and non-portable language
features, are inherently brittle and incomplete. As business logic
vulnerabilities constitute a majority (27 of the CWE Top 40) of
the most dangerous software weaknesses in practice, this is a
worrying blind spot of existing tools.

In this paper, we tackle this challenge with ANOTA, a novel
human-in-the-loop sanitizer framework. ANOTA introduces a
lightweight, user-friendly annotation system that enables users
to directly encode their domain-specific knowledge as lightweight
annotations that define an application’s intended behavior. A
runtime execution monitor then observes program behavior, com-

paring it against the policies defined by the annotations, thereby
identifying deviations that indicate vulnerabilities. To evaluate
the effectiveness of ANOTA, we combine ANOTA with a state-of-

the-art fuzzer and compare it against other popular bug finding
methods compatible with the same targets. The results show that
ANOTA+FUZZER outperforms them in terms of effectiveness.
More specifically, ANOTA+FUZZER can successfully reproduce
43 known vulnerabilities, and discovered 22 previously unknown
vulnerabilities (17 CVEs assigned) during the evaluation. These
results demonstrate that ANOTA provides a practical and effective
approach for uncovering complex business logic flaws often
missed by traditional security testing techniques.

I. INTRODUCTION

Fuzzing, a dynamic program analysis technique, is widely
used to discover software vulnerabilities across diverse sys-
tems. Fuzzing operates by supplying the Program Under Test
(PUT) with a large number of malformed or unexpected inputs,
aiming to trigger vulnerable states. However, the fuzzer itself
is typically oblivious to whether a given input has success-
fully exposed a vulnerability. This is where sanitizers play
an indispensable role. Sanitizers are instrumental tools that

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240938
www.ndss-symposium.org

TABLE I
ANOTA’S SUPPORT FOR THE CWE TOP 40 SECURITY WEAKNESSES. “!” SHOWS SUPPORTED VULNERABILITY CLASSES, WHILE “!” REFERS TO
VULNERABILITIES WHERE AN ANNOTATION SYSTEM IS NOT USEFUL, AS THEY CAN BE DIRECTLY PATCHED IF THE DEVELOPER HAS THE CORRECT

INTUITION. FURTHERMORE, “"” SHOWS CLASSES SUPPORTED BY COMPLIMENTARY TOOLS. THIS EXISTING WORK IS LISTED IN THE LAST COLUMN,
EVEN THOUGH THESE TOOLS MOSTLY FOCUS ON TECHNICAL, NON-BUSINESS LOGIC-RELATED ISSUES. BUSINESS LOGIC NEEDED (BLN) REFERS TO

WHETHER THE BUGS CAN ONLY BE FOUND WITH (!) OR STRICTLY WITHOUT (") AN UNDERSTANDING OF THE APPLICATION’S BUSINESS LOGIC. THERE
ARE VULNERABILITY CLASSES WHERE ONLY SOME BUGS REQUIRE THIS UNDERSTANDING (#").

Rank CWE Description Exploitation BLN ANOTA Existing Work

1 79 Cross-site Scripting APP Data ! " FuzzOrigin [23], KameleonFuzz [24], webFuzz [19]
2 787 Out-of-bounds Write Memory ! " ASan [2]
3 89 SQL Injection DataBase ! " Witcher [12], Atropos [14]
4 352 Cross-Site Request Forgery (CSRF) System Call "! ! WebFuzzAuto [20]
5 22 Path Traversal System Call # ! Atropos [14], PHUZZ [25]
6 125 Out-of-bounds Read Memory ! " ASan [2]
7 78 OS Command Injection System Call "! ! Witcher [12], Atropos [14]
8 416 Use After Free Memory ! " ASan [2]
9 862 Missing Authorization Object Access/Code Exec. # !

10 434 Unrestricted Upload of File System Call "! ! Atropos [14], UFuzzer [18], URadar [26]
11 94 Code Injection System Call/Data Flow "! !
12 20 Improper Input Validation System Call "! ! Witcher [12], Atropos [14]
13 77 Command Injection System Call "! ! Witcher [12], Atropos [14]
14 287 Improper Authentication Object Access/Code Exec. # !
15 269 Improper Privilege Management Object Access/Code Exec. # !
16 502 Deserialization of Untrusted Data System Call # ! ODDFuzz [27], PHUZZ [25]
17 200 Exposure of Sensitive Information Data Flow/System Call # ! EDEFuzz [16], FLOWFUZZ [21]
18 863 Incorrect Authorization Object Access/Code Exec. # !
19 918 Server-Side Request Forgery (SSRF) System Call "! ! Atropos [14], SSRFuzz [15]
20 119 Improper Restriction of Ops. w/i Mem. Buffer Memory ! " ASan [2]
21 476 NULL Pointer Dereference Memory ! " ASan [2]
22 798 Use of Hard-coded Credentials Data # !
23 190 Integer Overflow or Wraparound Memory ! " UBSan [8]
24 400 Uncontrolled Resource Consumption DOS ! ! All Fuzzers
25 306 Missing Authentication for Critical Function Object Access/Code Exec. # !
26 770 Allocation of Resources Without Limit DOS ! " All Fuzzers
27 668 Exposure of Resource to Wrong Sphere Object Access/Code Exec. # ! EDEFuzz [16]
28 74 Improper Neutralization of Special Elements System Call/Data Flow "! ! Witcher [12]
29 427 Uncontrolled Search Path Element System Call "! !
30 639 Authorization Bypass Object Access/Code Exec. # !
31 532 Insertion of Sensitive Information into Log File Data Flow # ! FLOWFUZZ [21]
32 732 Incorrect Permission Assignment Object Access/Code Exec. # !
33 601 Open Redirect System Call "! ! OpenRedireX [28]
34 362 Race Condition System Call/Object Access "! ! TSan [9], CONZZER [29], krace [30]
35 522 Insufficiently Protected Credentials Data Flow/Object Access # !
36 276 Incorrect Default Permissions Object Access/Code Exec. # !
37 203 Observable Discrepancy Data Flow # ! CT-Fuzz [31]
38 59 Link Following System Call ! !
39 843 Type Confusion Memory ! " type-san [32]
40 312 Cleartext Storage of Sensitive Information Data Flow ! "

EDEFuzz [16], which requires a rendered web interface for its
operation, a setup not always available for every application.

Our investigation into these detection gaps reveals a com-
mon cause: these weaknesses are overwhelmingly business
logic vulnerabilities. Detecting such flaws requires a deep
understanding of an application’s specific rules and intended
workflows: a level of understanding semantic context that
automated tools struggle to achieve. To pursue full automation,
existing tools are forced to approximate this understanding
using predefined heuristic patterns of behavior that seem
suspicious. However, these heuristics are selected artificially
and cannot capture the nuanced, application-specific context
required to reliably distinguish legitimate behavior from a true
security violation.

Consider the example of a file upload feature. State-of-
the-art tools like Atropos [14] attempt to detect business
logic vulnerabilities like unrestricted file uploads using narrow,
hard-coded heuristics. More specifically, Atropos instruments a
predefined list of standard PHP functions and flags only PHP

file uploads as malicious. This detection logic is inherently
brittle and is easily bypassed if an attacker uploads a different
dangerous file type or if the application uses a custom function
not on the tool’s predefined list. This reliance on superficial
patterns fails against other context-dependent attacks, such
as an authenticated user exploiting a path traversal flaw to
upload a file into another user’s private folder. Detecting such
a violation requires specific contextual knowledge that the
heuristic lacks: Who is the requesting user? What are their
permissions for the target directory? For a fully automated
tool, reliably inferring these fine-grained policies is fundamen-
tally challenging; The pursuit of automation often comes at
the expense of generalizability and accuracy. However, such
semantic knowledge is readily available to an application’s
developer or user, who can easily define the intended policy.

In the research area of vulnerabilities in memory-unsafe
programming languages, there has been a shift from early
attempts to find memory errors solely by observing pro-
gram crashes [33] towards sanitization. Tools like Address-

2

Sanitizer [2] detect the violation at its source (e.g., an il-
legal memory operation), thereby finding bugs that would
not have manifested in observable crashes. This works well
because the correct behavior is implicitly encoded for these
vulnerabilities—a memory violation is never correct. This
tool has been instrumental in wide-scale fuzz testing of
open-source software, uncovering more than 36,000 security
bugs [34]. We would like to benefit similarly from sanitization
in the field of business-logic vulnerabilities. However, in this
field, the correct behavior is not clear and has to be stated
explicitly to overcome the limitations of narrow heuristics.

To this end, we introduce ANOTA, a novel human-in-the-
loop sanitizer framework built with the classic systems princi-
ple [35] of separating policy from mechanism. Our approach
empowers developers to encode their knowledge, avoiding the
pitfalls of automated context inference. ANOTA is designed to
work with any existing fuzzer, typically by reporting policy vi-
olations as program crashes. ANOTA consists of two core com-
ponents: A lightweight, easy-to-use annotation system through
which a developer or security analyst defines application-
specific semantic rules (the policy), and a general-purpose,
language-agnostic runtime policy monitor that enforces these
policies during the program execution (the mechanism). This
design fundamentally shifts the generalization effort. Instead
of building increasingly complex and brittle heuristics, AN-
OTA provides an extensible framework for users to express
their semantic understanding of the application’s intended
behavior. The human-in-the-loop methodology has proven
highly effective in other challenging domains such as software
verification and interactive machine learning [36]–[39]. The
underlying idea is that humans, equipped with deep contextual
understanding and knowledge of the system’s business logic,
can provide invaluable input when facilitated by an intuitive
and effective generic API.

We implemented a prototype of ANOTA for Python ap-
plications, chosen for its widespread popularity [40] and the
prevalence of complex applications built with it. To evaluate
the effectiveness and overhead of ANOTA, we integrate it with
the Python fuzzer Atheris [41] to create ANOTA+FUZZER.
We evaluate ANOTA+FUZZER against an unmodified Atheris
fuzzer, showing ANOTA could empower the baseline fuzzer
to detect various business-logic vulnerabilities and achieve
significantly higher precision and recall on our benchmark
datasets. Furthermore, we validated ANOTA’s practical utility
by re-discovering 43 known vulnerabilities and uncovering
22 new vulnerabilities in popular, actively maintained Python
projects. To date, 17 of these discoveries have been assigned
CVE identifiers. An annotation study further confirmed that
ANOTA’s annotations are intuitive, and our performance eval-
uations show that it incurs minimal runtime overhead (about
10% in an artificial worst-case setup) while benchmarking
using Python Performance Benchmark Suite [42].

Contributions. We make the following key contributions:
• We systematically analyze existing sanitizers against the

CWE Top 40, demonstrating that the most critical un-

addressed weaknesses are business logic vulnerabilities
whose detection requires deep semantic context that cur-
rent fuzzing sanitizers cannot capture.

• We propose a new sanitization paradigm based on the
principle of separation of policy and mechanism. We
design a lightweight annotation system that enables devel-
opers to formally express a program’s intended behavior,
thereby guiding dynamic analysis.

• We present the design and implementation of ANOTA,
a sanitizer that instantiates our paradigm by integrating
developer annotations with a runtime monitor to detect
policy violations at their source.

• We implement ANOTA for Python and create AN-
OTA+FUZZER. Through comprehensive evaluation, we
demonstrate ANOTA’s effectiveness in finding real-world
bugs, uncovering 22 impactful zero-day vulnerabilities,
and outperforming state-of-the-art tools.

Following our commitment to open science, we make our
implementation and evaluation scripts available online at https:
//github.com/ANOTA-Sanitizer/ANOTA.

II. BACKGROUND

We start by providing an overview of sanitizers developed to
detect vulnerabilities listed in the CWE Top 40, then analyze
the reason why certain vulnerabilities are Unaddressed or
Narrowly-Addressed. We conclude with a motivating example
to illustrate our approach.

A. Limitations of Existing Sanitizers

Sanitizers are a key component of dynamic analysis like
fuzzing. They act as runtime oracles that monitor a pro-
gram’s execution to determine if its behavior indicates a
security vulnerability. Sanitizers have evolved significantly.
Early approaches often relied on simple signals like program
crashes [33] to detect bugs. In contrast, modern tools like
AddressSanitizer [2] are far more sophisticated, excelling at
finding errors like memory corruption that violate universal
rules of program execution.

However, this success does not fully extend to all the
vulnerabilities prevalent in modern applications. Our analysis
of sanitization capabilities against the CWE Top 40 vul-
nerabilities reveals a blind spot (detailed in Table I). This
blind spot is most apparent for what we term Unaddressed
Weaknesses. Many critical vulnerabilities, particularly those
related to authorization and authentication, are invisible to
existing sanitizers because detecting them requires application-
specific context. For instance, to find an improper privilege
management flaw, a sanitizer must understand the application’s
intended permission model to know if a user’s access attempt
is unauthorized, a level of semantic knowledge that generic
tools lack.

In other cases, where sanitizers do exist, they are often
Narrowly-Addressed Weaknesses. These tools attempt to infer
context through methods that are brittle and impractical. Many
rely on language-specific heuristics; for example, Atropos [14]

3

https://github.com/ANOTA-Sanitizer/ANOTA
https://github.com/ANOTA-Sanitizer/ANOTA

1 def SafeURLOpener(input_link):
2 block_schemes = ["file", "php", "ftp", "

data"]
3 block_host = ["youtube.com", "instagram.com

"]
4 input_scheme = urlparse(input_link).scheme
5 input_hostname = urlparse(input_link).

hostname
6 if input_scheme in block_schemes:
7 return
8 if input_hostname in block_host:
9 return

10 target = urllib.request.urlopen(input_link)
11 print(target.read())

Listing 1. Motivation example for our approach.

and PHUZZ [25] are tied to standard PHP functions. Atro-
pos [14] also pre-defined a conservative heuristic as mentioned
in the previous section. Neither method is portable, but both
can be easily bypassed. ODDFuzz [27] illustrates this tight
coupling with its design specifically tailored to sensitive
call-sites within Java applications. Furthermore, other tools
depend on restrictive operational pre-conditions, such as the
GUI required by EDEFuzz [16] or the identical execution
environments and significant manual setup needed by FLOW-
FUZZ [21].

All of these limitations stem from a single, fundamen-
tal challenge: the difficulty of automatically inferring deep,
application-specific context. The repeated failure of automated
heuristics to reliably capture this context motivates the need for
an alternative approach, one that can directly equip sanitizers
with the crucial awareness they currently lack. We propose
that an intuitive and lightweight annotation framework, en-
abling users to systematically embed their domain-specific
knowledge and security intent directly into the program, can
grant sanitizers access to the precise contextual awareness they
currently lack. Such an approach would circumvent the limi-
tations of language-dependent heuristics and the complexities
of inferring context from external interfaces, thereby paving
the way for more precise, effective, and broadly applicable
vulnerability detection.

B. Motivating Example

Consider the Python program in Listing 1. The developer
wants to filter out certain network schemes and host names
to avoid fetching content from remote user-provided URLs
with such patterns. The developer imports the urllib library
from Python’s standard library for working with URLs. The
developer defines schemes and host names to be blocked (lines
2–3) and relies on the urlparse API to parse the input
URLs (lines 4–5). Then the code checks if the URL matches
the block pattern (lines 6–9) to decide whether to retrieve the
remote sites’ contents (lines 10–11).

Although at first glance this implementation looks accept-
able, it contains the vulnerability CVE-2023-24329, intro-
duced by urllib in its API urllib.parse.urlparse.

This API mistakenly parses URLs beginning with whites-
pace, which allows an attacker to bypass the filtering mech-
anism shown in Listing 1. For instance, if the remote
user provides the URL ‘‘https://youtube.com’’,
the SafeURLOpener will block the request. How-
ever, if the URL is prefixed with whitespace (e.g.,
‘‘ https://youtube.com’’), the blocking mecha-
nism will be bypassed.

Detecting this vulnerability is challenging because it re-
quires understanding application-specific business logic, not
just common bug heuristics or patterns Static analysis fails,
while it can identify the urlopen API call, it is blind to
the custom filtering logic that defines the intended policy.
Dynamic analysis like fuzzing also fails; although it can pos-
sibly trigger the fault, the violation goes undetected because
it neither crashes the program nor violates a rule known to
existing sanitizers. Ultimately, both approaches have the same
core problem of lacking access to the application’s context.
Effective detection is only possible by comparing a program’s
runtime behavior against its application-specific semantic rules
(the policy) to tell the difference between a flaw and correct
execution.

III. DESIGN

In the following, we present the design and implementation
of ANOTA, a human-in-the-loop framework that enables a
developer or security analyst to sanitize hard-to-detect business
logic bugs using annotations. A high-level overview of ANOTA
is shown in Figure 1. At its core, a policy monitoring module
escalates policy violations to a crash that can be detected
by fuzzing. Our approach consists of two phases: an initial
annotation phase and an application testing phase. In the first
phase, the user of ANOTA adds annotations to the code in
step 1 . In the testing phase, a dynamic analysis tool like a
fuzzer executes 2 the annotated application with a series of
test inputs. The instrumented execution environment parses the
policies reflected in the annotations 3 and the policy monitor
enforces the policies and checks the execution of the program
4 . If a policy violation is detected during the testing process, it
is included in the vulnerability report 5 . In the following, we
present our design of the annotations and the policy monitor
in more detail.

A. Annotations
The core design principle of the annotation system is to

enable developers and security analysts to directly encode
their contextual understanding of the program into a set of en-
forceable runtime policies. These policies are defined through
annotations that grant or revoke permissions for program
actions, offering fine-grained control, allowing developers to
define policies for specific parts of an application using two
models: a blocklist, which prohibits a defined set of actions
while allowing all others, or a more restrictive allowlist, which
permits only a defined set of actions while denying all others
by default. Also, annotations can be controlled individually
and toggled during runtime.

4

https://www.cve.org/CVERecord?id=CVE-2023-24329

!
Annotated

Code
Code

Annotation

Instrumented Execution Environment

#
Application

Code

1
Add Annotation

!
Input

2
$

Data Flow

System Call

Object Access

Code Execution

Policy Monitor

3
Parse Policy

4
Inspect Execution

%
5

Policy Violation
Detected

Fig. 1. High-level overview of ANOTA.

TABLE II
OVERVIEW OF ANNOTATIONS PROVIDED BY ANOTA

Type Options Example

System Call Syscalls and args 1 SYSCALL.BLOCK(’execv’,
’execveat’, ’execve’)

2 SYSCALL.READ.BLOCK
(PATH=’/etc/’)

3 SYSCALL.EXECVE.ALLOW
(PATH=’/bin/ls’)

Data Flow Sanitization, Sink 4 TAINT(pwd, sanitization=
[hash], Sink=[print])

Object Access Read, Write, Execute 5 WATCH.ALLOW(admin_data,’r’)
6 WATCH.BLOCK(admin_api,’x’)
7 WATCH.CON(passwd_cmp)

Code Execution Condition 8 EXECUTION.BLOCK
(user.type!=’admin’)

Annotation Clear Annotation 9 CLEAR(SYSCALL.EXECVE.
ALLOW(PATH=’ls’))

10 SYSCALL.NETWORK.CLEAR()

The annotations provided by ANOTA (summarized in Ta-
ble II) are based on the runtime behavior caused by the CWE
Top 40 vulnerabilities [22]. Our analysis of business logic
vulnerabilities detailed in Table I, identified four critical types
of deviant behavior: (1) unintended system call usage, (2)
unintended code execution, (3) unintended variable access,
and (4) unintended data flow. Consequently, we designed four
primary annotation types to counter these behaviors, along
with a fifth to disable annotations during runtime

As shown in Table I, our set of annotations was designed to
be expressive enough to address the business logic vulnerabili-
ties found in the CWE Top 40. The system is also extensible by
design. Because we separate the annotation definitions (policy)
from the runtime monitor (mechanism), users can add new an-
notation types for other vulnerabilities without re-engineering
the core system. This typically just requires defining the new
annotation’s syntax and implementing a corresponding check
in the runtime monitor, allowing the framework’s detection
capabilities to expand as new vulnerability classes emerge.

System Call annotations enforce access only to the
allowed system calls and resources. Using SYSCALL.
[ALLOW|BLOCK](List of System Calls) specifies
which system call is allowed or blocked. For exam-
ple, 1 in Table II blocks three execv-related sys-
tem calls. Additionally, more fine-grained policies can
restrict specified system calls to specific resources us-
ing the syntax: SYSCALL.[SYSCALL NAME|SYSCALL

CLASS].[ALLOW|BLOCK](arguments). As shown in
3 , this allows a user to define that the /etc/ directory

should not be accessible by the read system call in 2 , or the
execve system call can only use the /bin/ls executable.

To make policy writing more intuitive for users,
ANOTA provides a simplified syntax (“syntactic sugar”)
for common system calls. For example, FILE can be
used to control file/directory, attribute modification, and
read/write permissions for all file-accessing system calls at
once. Similarly, NETWORK represents all network-related
system calls, and options like SCHEME are provided to
control the URL scheme. Note that a more knowledgeable
user could also directly define raw policies to control
each argument of a system call for even more fine-
grained control. Additionally, wildcards can be used
to define matches similarly to shell expansion, e.g.,
SYSCALL.READ.BLOCK(PATH=’/upload_folder/*.
php’) blocks read access to all PHP scripts in
upload_folder.

Data Flow annotations instruct ANOTA to track the
data flow of a variable. The TAINT(Target_Variable,
Sanitization Method, Sink) annotation specifies
which variable(s) to taint. We provide two optional arguments
for this annotation: An option to clear the taint if the variable
is used as the argument to the given sanitization function and
an option to mark sink functions that are prohibited from
receiving the tainted variable as an argument. The data flow
annotation supports tainting various objects: If the object is a
variable, the variable itself will be tainted, and if the object is
a callable object such as a function, objects returned from the
callable object will always be tainted. In example 4 , pwd
is disallowed to reach the print function, except if it is
passed to hash first. By default, the sink is write(), which
can output data to any untrusted domain (e.g., file system or
network).

Object Access can be controlled by two different types
of annotations. With WATCH.[ALLOW|BLOCK](Target
Object, Permission) privilege can be assigned. There
are three different types of privileges: A read permission (r)
grants the program the ability to read the value of an object,
including assigning it to other variables or passing it to other
modules; an example can be seen in 5 . Similarly, write
permission (w) grants the program the ability to modify the
value of an object and includes the ability to remove the object.

5

Lastly, an execute permission (x) grants the program the abil-
ity to execute an object, providing that the object is a callable
like a function or a method, as shown in example 6 . The
second type of annotation syntax is 7 WATCH.CON(Target
Object) which means the annotated object’s execution time
should be statistically constant.

Code Execution annotations can be applied to code regions
that should not be allowed to be executed, unless a condition
is met. Example 8 forbids execution if user.type is not
’admin’.

Annotation Clearing is used to remove a specific annota-
tion policy or all annotation policies if there are no arguments
given. Example 9 disables the specific policy that limits
the execve system call to the ls executable. Example 10
clears policies on all network-related system calls. This type of
annotation can be helpful if the user wants to apply different
policies for different parts of the code.

B. Policy Monitor
The runtime policy monitor is responsible for translating de-

veloper annotations into enforceable runtime policies and iden-
tifying the unintended behaviors of the applications as policy
violations. To detect such violations, our monitor instruments
the program at policy-relevant locations (e.g., object access
or system call sites). When an instrumented point is reached
during execution, the monitor intercepts the event, evaluates
the runtime context against the specified policy, and reports
any discrepancy as a security flaw. The following sections
detail this instrumentation and enforcement mechanism.

1) Data Flow Monitor: To detect vulnerabilities related
to data flow issues like sensitive information exposure, our
approach relies on dynamic data flow analysis [43]. A tracking
tag (taint) is added to the variable annotated by the user, and
the data flow monitor will track the data flow and control the
taint propagation through the program execution based on the
annotation arguments.

As shown in Listing 2, the developer mistakenly outputs
the sensitive variable user_credential into the local
log file. By adding a Data Flow annotation (line 2), the
user of ANOTA can ask the data flow monitor to track the
variable user_credential in the program execution and
remove the taint when the variable is sanitized. Then the
policy violation is detected (line 4) as user_credential
is being written into a local file, and ANOTA will identify
the unintended behavior. Hence, the policy monitor is no-
tified that a new vulnerability has been detected. Writing
hashed_credential, however, would not trigger the vio-
lation because it has been sanitized by the sanitization function
hash defined in the annotation.

2) System Call Monitor: To identify vulnerabilities as-
sociated with unintended system call usage such as path
traversal and unrestricted upload of files, the system call
monitor module observes the usage, arguments, and return
values of system calls. Suppose, for instance, that a user
writes annotations to confine read access to specific file paths.
To validate whether a read system call violates this policy,

1 $user_credential = get_credential($user_id);
2 TAINT($user_credential, sanitization=[hash]);
3 $hashed_credential = hash($user_credential);
4 $log_message = sprintf("credential %s

collected with hash %s\n",
$user_credential, $hashed_credential);

5 file_put_contents("logfile.txt", $log_message,
FILE_APPEND);

Listing 2. Dataflow example in PHP.

1 def SafeURLOpener(inputLink):
2 SYSCALL.NETWORK.BLOCK.SCHEME("file","php"

...)
3 SYSCALL.NETWORK.BLOCK.HOST("youtube.com"

...)
4 target = urllib.request.urlopen(inputLink)
5 print(target.read())
6 SYSCALL.NETWORK.CLEAR()

Listing 3. Annotated motivation example.

the path must be extracted from the file descriptor argument
of the read system call. This argument corresponds to the
return value of the corresponding openat system call, and the
openat system call’s arguments contain the corresponding
file path information. This information is used to determine
the file path from which the system call reads data.

At the start of program execution, the system call monitor
module attaches itself to the execution process and seamlessly
extends its monitoring to subsequent processes spawned by the
program. During program execution, the system call monitor
inspects system calls to find if any policy violation occurred. If
a violation occurs—for instance, an unintended system call is
invoked or the program writes data to an unintended location—
the system call monitor sends a signal to the execution envi-
ronment. As a result, the instrumented execution environment
could identify that the application is in a vulnerable state.

For the motivating example explained in Section II-B, our
approach can successfully detect this vulnerability even if
the developer of the code in Listing 1 has no knowledge
of the underlying faulty library implementation by adding a
few system call annotations, as shown in Listing 3. Note that
our annotation system enables developers to transform their
intuition about which URLs should and should not be filtered
into an explicit and monitored security policy via a small set
of annotations. As an additional example, consider Listing 4,
where we show an example system call annotation used to
detect a path traversal vulnerability. The developer intends to
send a file stored in a folder named static in the current

1 app.get(’/static/:filename’, (req, res) => {
2 const file = req.params.filename;
3 const staticDir = path.join(cwd, ’static’);
4 SYSCALL.FILE.ALLOW(staticDir);
5 res.sendFile(path.join(staticDir, file));}

Listing 4. System call example in JavaScript.

6

1 if is_auth:
2 EXECUTION.BLOCK()
3 user_list.append(new_user)
4 WATCH.ALLOW(user_list, "r")
5 user_list.remove(existing_user) if is_auth

else print("not authenticated")

Listing 5. Access control example in Python.

working directory to the remote user based on the request
URL. An annotation is added in line 4 to ensure that file-
related system calls can only access the path specified in the
argument.

3) Access Control Monitor: Access control related vulnera-
bilities, like missing authorization or improper authentication,
could be exploited in several ways. For example, executing
privileged code logic, reading/writing privileged variables, or
interacting with privileged system resources like files and
network resources. The developer can mark a section of code
as privileged with the Code Execution annotation, or a
variable as only accessible to the developer with Object
Access annotations. Inside the instrumented execution en-
vironment, ANOTA monitors the code execution status by
collecting variable metadata from the stack frame and heap.
Then it checks access to variables by watching read and write
operations to that variable. Similar to previous policies, the
policy monitor will be notified when the policy is violated.
As shown in the example in Listing 5, only the administrator
should be able to add or remove users.

IV. IMPLEMENTATION

We implement our design as a prototype named AN-
OTA based on CPython (the original Python interpreter),
LLVM [44], and eBPF [45]. The prototype implementation
consists of about 5,500 lines of Python, C, and Rust code.

The implementation mirrors the idea of separating policy
from mechanism, consisting of two primary components: an
Annotation Frontend and a Policy Monitor. The Annotation
Frontend is integrated into a modified CPython interpreter
to parse annotations and prepare the corresponding security
policies. The Policy Monitor enforces these policies and
implements the bug sanitizer feedback of the annotations by
monitoring program execution.

However, our implementation does not stop at the Python
boundary; ANOTA also supports native extension modules
written in C/C++. While the Python interpreter cannot inspect
the internal operations of this native code, our policy monitor
uses different backends depending on the context: (i) For
pure Python code, policy enforcement is handled by hooks
within our modified CPython interpreter. (ii) For native C/C++
extensions, we implemented an LLVM instrumentation pass
to enable annotation support and policy monitoring for these
modules. (iii) For system-level interactions (e.g., file system
access), we use an eBPF-based [45] monitor to observe system
calls made by the application.

Although our prototype implementation targets Python, the
underlying design is language-agnostic. Its core components
rely on techniques that are generalizable to other ecosystems.
For instance, the policy monitor could be adapted for PHP or
JavaScript using different instrumentation backends, and the
system call module is inherently cross-language.

A. Parsing Annotations to Policy

To integrate our annotations seamlessly into Python without
altering the language’s syntax, we implemented them to appear
as standard function calls. The core of our implementa-
tion is an instrumentation hook on the CALL_FUNCTION
opcode, which handles function invocations. When the
CALL_FUNCTION opcode is executed, our instrumentation
code extracts the function name from the stack and checks
if it is one of the annotations. If it is an annotation, the
instrumented annotation parsing code will parse additional
annotation options from the function arguments into the run-
time policies. This is an implementation choice for conve-
nience in Python, not a limitation of our overall design. The
core principle of parsing developer-provided syntax to create
security policies is language-agnostic. The policy monitor then
receives the parsed policy and enforces this policy during
subsequent program execution.

B. Vulnerability Detection

Business logic vulnerabilities violate an application’s in-
tended semantic policies without causing program crashes so
they cannot be detected by traditional sanitizers. We therefore
propose a set of custom sanitizers using our annotation system,
which enables the explicit definition and identification of these
high-level policy violations to detect typical vulnerabilities in
our scope.

1) Sensitive Information Leakage: Developers sometimes
mistakenly output sensitive information into logs or exception
statements, directly or indirectly. To detect such issues, users
can use the Data Flow class of annotations to mark sensitive
data sources (e.g., a variable holding a password) and data
sinks (e.g., a logging function). Our system then taints the
source variables and tracks the propagation of this taint to
track the data flow of those sensitive variables.

The primary implementation challenge is to maintain taint
propagation robustly across both pure Python code and native
C/C++ extension modules. For the Python code, we modified
the CPython interpreter by adding a taint attribute to the
base PyObject struct. Since all Python objects inherit from
PyObject, this allows any object to carry a taint mark. We then
instrumented the CPython to check and propagate this taint
attribute for each opcode, effectively tracking data flow during
the Python execution [43]. For the cross-language interface,
we instrument the argument-parsing functions used by C
extension modules, ensuring that taint information is preserved
when data moves from Python to C. For the code written in
C/C++, we provide a modified version of the LLVM data flow
sanitizer. Developers can apply this pass by compiling the
extension modules written in C with additional compilation

7

flags and LLVM passes provided by ANOTA to apply the
modified data flow sanitizer.

ANOTA can also detect timing side-channel vulnerabilities
by statistically testing whether functions that handle sensitive
data run in constant time. A classic example in Python is
using the “==” to compare the user-provided password against
the stored password, the number of matching characters in-
fluences the execution time, allowing an attacker to discover
the stored password. A function is targeted for this analysis
either automatically if it consumes a variable that has been
marked sensitive via Data Flow and Object Access
annotation or explicitly if a user uses WATCH.CON annotation.
ANOTA profile the execution time of functions across different
inputs using the algorithm mentioned in Dudect [46], which is
selected because of its precision and usability as analyzed by
Fourné et al. [47]. If the execution time varies with different
inputs, ANOTA will report a potential timing side-channel
vulnerability.

2) Improper Access Control: Improper access allows unau-
thorized users to get access to resources (e.g., admin page or
sensitive data) that should only be accessible by privileged
users. To detect improper access control vulnerabilities, the
Object Access and Code Execution annotations can
be applied to the source code.
Object Access annotations entail adding the specified

variable to a watch list, along with the privileges defined in the
annotation. Instrumentation is then applied to value retrieval
and storage opcodes (such as Load * and Store *) to monitor
operations that involve access or modification of a particular
variable. When a variable is added to the watch list, ANOTA
initially assesses its scope (global or local). Upon execution
of load/store opcodes, ANOTA compares the corresponding
variable against those on the watch list. This is done via the
oparg in Python, which is utilized by the opcode to resolve
to the actual argument. Notably, global variables are checked
globally, while local variables are only examined within the
stack frame where they are defined. Similarly, for Python
dynamic modules written in C, ANOTA leverages ptrace
to set read/write breakpoints to check whether the variable is
changed at runtime. When a breakpoint is triggered, a handler
function is invoked that sends a signal to the policy monitor
system of ANOTA.

In the scenario that the developer knows which part of the
code should be accessible to the privileged users, the Code
Execution annotation is provided to show that the code
after the annotations should be privileged-user-only. Code
Execution annotations are similar to a flipped assertion:
If the program execution encounters this annotation and the
expression in the argument evaluates to true, the program
touches a code region that it should not execute.

3) Unintended System Calls: As noted above, vulnera-
bilities like SSRF, path traversal, and unsafe deserialization
all share the common trait of using system calls differently
from the developer’s intention. To detect these vulnerabilities,
developers can use the System Call class of annotations
to express the intended usages of system calls.

To detect such vulnerabilities, we need to implement a
system call monitor module. Using LD_preload to hook
the system call wrappers in libc is not comprehensive, as
the modules compiled from C could directly invoke system
calls. Therefore, we implement our tool ANOTA on top
of Extended Berkeley Packet Filter (eBPF) [45] using the
Aya [48] library in around 3,000 lines of Rust code. In
detail, the system call monitor leverages eBPF trace points
which are a set of reference points or hooks that are attained
as the kernel performs a certain task. The eBPF program
is attached to two events: raw_syscalls:sys_enter
and raw_syscalls:sys_exit, representing the kernel is
about to enter a system call and exit a system call, respec-
tively. The system call ID and arguments are collected in the
raw_syscalls:sys_enter event, and the return value is
collected in the raw_syscalls:sys_exit event. Then,
this collected system call metadata is added to a hash map.

When the interpreter runs into a System Call class of
annotations, it parses the annotation to extract the policy. The
extracted policy along with the interpreter’s process ID is then
sent to the system call policy monitor module. The module
attaches the eBPF part to the system call trace point and begins
to collect data. Every time the hash map is updated, the system
call monitor module compares the record against the policy
to verify if there is a policy violation. If a policy violation
is detected, a signal is sent back to the interpreter and the
interpreter triggers a segmentation fault.

ANOTA monitors all file-related system calls, and it is ex-
tensible to detect other types of vulnerabilities abusing system
calls. One prime example is detecting file-based time-of-check
to time-of-use (TOCTOU) vulnerabilities. One typical case of
TOCTOU involves a file initially accessed by a system call that
checks attributes like access or stat, followed by another
system call that performs actions like writing or reading on
the same file. Another type occurs when a program creates a
file and, later, changes the privileges after operations, such as
writing data to the file. Although this idiom causes a TOCTOU
bug, it is still widely used. Thus, to focus on critical reports, we
only detect TOCTOU on files containing sensitive information
with the help of our data flow analysis. We flag a potential
TOCTOU vulnerability when either of these patterns occurs,
along with data flow that involves reading or writing sensitive
variables to or from the file.

The ability to implement a new detector for TOCTOU by
composing our system call monitoring with data flow policies
demonstrates the extensibility of the ANOTA framework.

V. EVALUATION

We evaluated our prototype implementation ANOTA in five
different sets of experiments which show that ANOTA is
capable of identifying various business-logic vulnerabilities
listed in the CWE Top 40 in real-world applications, that its
runtime overhead is minimal, and that the annotation system is
easy to use even for first-time users. We use ANOTA together
with the Python fuzzer Atheris [41] which we will refer to as
ANOTA+FUZZER. In this setup, during fuzzing with Atheris,

8

ANOTA will promote policy violations to crashes which will
be observable by the fuzzer. All experiments were conducted
on an Intel Core i9-13900K machine with 64 GB of RAM
running Ubuntu 22.04.

In the following, (A) we assess the feasibility of rediscov-
ering known, publicly disclosed business logic vulnerabilities.
This study is conducted by an author proficient in both ANOTA
and software security to demonstrate that a knowledgeable
user can effectively annotate unfamiliar applications, and to
confirm that ANOTA’s annotations are sufficiently expressive
to cover a wide range of vulnerabilities. (B) We apply AN-
OTA+FUZZER to popular open-source Python-based applica-
tions to evaluate if the approach can find new 0-day business-
logic vulnerabilities in popular and actively-maintained Python
projects. (C) We compare ANOTA+FUZZER against the stan-
dard Atheris [41] fuzzer as an ablation study. (D) We perform a
usability study to assess the annotation system. We begin with
an annotation study recruiting undergraduate and graduate stu-
dents with varying levels of security and software development
expertise to assess the ease of writing annotations for detecting
vulnerabilities in unfamiliar applications, establishing a lower
bound on effectiveness. Complementing this, we assess the
ANOTA’s real-world applicability through a study with pro-
fessional developers and security analysts, focusing on their
current detection practices, perceived utility of the tool, and
the potential barriers to its adoption in industrial workflows.
(E) We measure the runtime performance overhead of ANOTA.

The target applications used in this section include both
web applications and standalone Python applications. For
standalone Python applications, we use the test cases in the
source repository of the respective applications and transform
them into a harness for ANOTA+FUZZER. For web applica-
tions, we need to use a different strategy, as they receive
network requests (instead of getting inputs directly in binary
applications). Therefore, we implement a custom mutator for
ANOTA+FUZZER to mutate fields in the network request. To
make the generated test cases more likely to be valid, the
mutator will focus on mutating cookies, query parameters,
headers, and URLs. Hence, the fuzzer can generate test cases
having an appropriate request format. For applications that
need a valid login, ANOTA will keep the session cookie in
each request to be able to test the endpoints after the login
authentication. To accelerate the fuzzing process, the mutator
has a dictionary of serialized malicious payloads and code
injection payloads trying to invoke a shell that would be easily
captured by the policy monitor mechanism.

A. Rediscovering Known Vulnerabilities
This experiment assesses whether ANOTA can effectively

detect various real-world business logic flaws when guided by
ANOTA+FUZZER. We begin by curating a list of vulnerable
Python packages from the Snyk database [49], filtering for
recent, high-impact vulnerabilities that fall within the CWE
Top 40. After excluding applications with unsupported de-
pendencies or those that function solely as libraries (such
as cryptographic libraries), we established a final set of 47

TABLE III
KNOWN VULNERABILITIES IN REDISCOVERY EXPERIMENT, WITH

ANNOTATION TYPE USED FOR REDISCOVERY AND THE INFORMATION
REQUIRED FOR ANNOTATION PER APPLICATION

ID Name CWE Stars Vuln. Identifier LoC Type Info

/103 /103

1 internetarchive 362 1.5 SNYK-6141253 8 DF Docs
2 b2-sdk-python 362 0.2 CVE-2022-23651 35 DF Docs
3 B2 Command Line Tool 362 0.5 CVE-2022-23653 15 DF Docs
4 langchain 918 80.1 CVE-2024-2057 363 SC Const
5 langchain 918 80.1 CVE-2024-0243 363 SC Const
6 label-studio 918 16.1 CVE-2023-47116 33 SC Const
7 whoogle-search 918 8.7 CVE-2024-22205 3 SC Const
8 gradio 918 27.8 SNYK-6141123 64 SC Const
9 Paddle 22 21.5 CVE-2024-0818 1056 SC Const

10 xtts-api-server 22 0.2 SNYK-6398416 3 SC Const
11 langchain 22 80.1 CVE-2024-28088 363 SC Const
12 esphome 22 7.4 CVE-2024-27081 371 SC Const
12 onnx 22 16.6 CVE-2024-27318 121 SC Const
13 label-studio 434 16.1 SNYK-6347239 33 SC Const
14 zenml 434 3.6 CVE-2024-28424 187 SC Const
15 inventree 434 3.6 CVE-2022-2111 99 SC Const
16 GibsonEnv 502 0.8 CVE-2024-0959 31 SC Docs
17 Transformers 502 123.0 CVE-2023-6730 1155 SC Docs
18 synthcity 502 0.3 CVE-2024-0936 46 SC Docs
19 Apache-Airflow 862 34.0 CVE-2023-50944 658 OA Docs
20 changedetection.io 306 14.6 CVE-2024-23329 16 CE Docs
21 aries-cloudagent 287 0.4 CVE-2024-21669 213 OA Docs
22 MobSF 276 16.1 CVE-2023-42261 23 OA Docs
23 mlflow 287 17.1 CVE-2023-6014 239 OA Docs
24 calibre-web 863 11.3 CVE-2022-0405 30 CE Docs
25 wagtail 200 17.1 CVE-2023-45809 186 DF API
26 ansible-core 20 60.7 CVE-2024-0690 203 DF API
27 pyLoad 200 3.1 CVE-2024-21644 52 DF API
28 omise 200 0.0 SNYK-6138437 8 DF API
29 airflow-providers-celery 200 34.0 CVE-2023-46215 658 DF API
30 horizon 601 1.3 CVE-2020-29565 114 SC Const
31 evennia 601 1.7 SNYK-6591326 151 SC Const
32 pyLoad 601 3.1 CVE-2024-24808 52 SC Const
33 llama index 94 31.7 CVE-2024-3098 305 SC Docs
34 Aim 94 4.8 CVE-2024-2195 28 SC Docs
35 vantage6 94 0.0 CVE-2024-21649 35 SC Docs
36 DIRAC 668 0.1 CVE-2024-29905 225 SC Docs
37 fonttools 611 4.1 CVE-2023-45139 172 SC Docs
38 OWSLib 611 0.4 CVE-2023-27476 29 SC Docs
39 untangle 611 0.6 CVE-2022-31471 1 SC Docs
40 AccessControl 269 0.0 CVE-2024-51734 9 CE Docs
41 Jupyter Core 427 0.2 CVE-2022-39286 3 SC Docs
42 clearml 522 0.0 CVE-2024-24595 0 DF Docs
43 indico 639 0.0 CVE-2024-50633 0 OA Docs
44 vantage6 287 0.0 CVE-2024-21653 35 OA* —
45 Apache-Superset 287 57.8 CVE-2023-27526 175 OA* —
46 zenml 287 3.6 CVE-2024-25723 187 OA* —
47 nautobot-device-onboarding 200 0.0 CVE-2023-48700 3 DF* —

SC: System Call, DF: Data Flow, OA: Object Access, CE: Code Execution
*

Not rediscovered due to lack of information

diverse applications, as listed in Table III. To avoid introducing
bias by knowing the detailed vulnerability report, the author
who conducts this evaluation only knows the bug type of
the application, is only allowed to access the code of the
application that should be annotated, and has access to the
application’s documentation.

To evaluate an application with ANOTA, we first create
a docker container for the application, allowing for easier
reproducibility. If we are testing access control vulnerabilities,
the fuzzer is only given a low-privilege role, such as a guest
user (without registration) instead of a logged-in user or a
default user instead of an administrator account. Otherwise,
we provide the fuzzer with a privileged account to test the
application more comprehensively. Next, we add the required

9

https://github.com/jjjake/internetarchive
https://github.com/Backblaze/b2-sdk-python
https://github.com/Backblaze/B2_Command_Line_Tool
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/HumanSignal/label-studio
https://github.com/benbusby/whoogle-search
https://github.com/gradio-app/gradio
https://github.com/PaddlePaddle/Paddle
https://github.com/daswer123/xtts-api-server
https://github.com/langchain-ai/langchain
https://github.com/esphome/esphome
https://github.com/onnx/onnx
https://github.com/HumanSignal/label-studio
https://github.com/zenml-io/zenml
https://github.com/inventree/InvenTree
https://github.com/StanfordVL/GibsonEnv
https://github.com/huggingface/transformers
https://github.com/vanderschaarlab/synthcity
https://github.com/apache/airflow
https://github.com/dgtlmoon/changedetection.io
https://github.com/hyperledger/aries-cloudagent-python
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/mlflow/mlflow
https://github.com/janeczku/calibre-web
https://github.com/wagtail/wagtail
https://github.com/ansible/ansible
https://github.com/pyload/pyload
https://github.com/omise/omise-python
https://pypi.org/project/apache-airflow-providers-celery/
https://github.com/openstack/horizon
https://github.com/evennia/evennia
https://github.com/pyload/pyload
https://github.com/run-llama/llama_index
https://github.com/aimhubio/aim
https://github.com/vantage6/vantage6
https://github.com/DIRACGrid/DIRAC
https://github.com/fonttools/fonttools
https://github.com/geopython/OWSLib
https://github.com/stchris/untangle
https://github.com/zopefoundation/AccessControl
https://github.com/jupyter/jupyter_core
https://github.com/clearml/clearml
https://github.com/indico/indico/
https://github.com/vantage6/vantage6
https://github.com/apache/superset
https://github.com/zenml-io/zenml
https://github.com/nautobot/nautobot-app-device-onboarding

annotations. This procedure took the authors of this work a
total of ten working days. Finally, we fuzz each application
with ANOTA for 24 hours. If we fail to detect the vulnerability,
we check the vulnerability report to analyze the cause of our
failure. Table III lists metadata for each application along
with the vulnerability identifier and the required annotation.
The column Info indicates the knowledge used to place the
annotation correctly: Const indicates knowledge of a constant
variable, e.g., confining file accesses to a root directory defined
as a constant. Docs indicates understanding the context of the
application via the documentation. For example, applications
with authenticated endpoints should only be accessible to
authorized users. Finally, API indicates knowledge of third-
party API documentation, e.g., that the data returned by an API
is sensitive. The asterisk indicates vulnerabilities that could not
be reproduced without further knowledge, as described below.

ANOTA+FUZZER can successfully rediscover 43 vulnerabil-
ities. Notably, in the case of label-studio (ID 6), not only
was the vulnerability detected, but using the same annotation,
a bypass for the official patch was also discovered. The patch
relies on the remote user to determine the file type, allowing
an obfuscated extension name to bypass the check.

ANOTA+FUZZER was unable to detect four vulnerabilities
(IDs 44–47 in Table III). The first is in vantage6 (ID
44), which has an insecure default SSH configuration that
allows root access using only password authentication. While
password-less authentication is recommended, we did not
consider this to be the flagged security issue and, thus, did not
add an annotation for it. Otherwise, ANOTA+FUZZER could
detect this issue. Similarly, apache-superset (ID 45) has
a fine-grained privilege control system, which we did not have
enough understanding of to create a meaningful annotation.
In zenml (ID 46), the vulnerability was not triggered due
to complex preconditions, where user A needs to create an
invitation link and send it to user B. Then, the invited user B
will register and craft a request to update user A’s password.
We verified that ANOTA+FUZZER could theoretically detect
this vulnerability by manually providing a seed containing
a valid invitation link, showing the importance of the input
corpus. In nautobot-device-onboaring (ID 47), we
added the annotations to the correct place, but the vulnerability
will only be triggered under a particular configuration, with
which ANOTA+FUZZER also finds the vulnerability.

We successfully reproduce most (43 / 47) of the vulnera-
bilities only with knowledge of the bug type and project
documentation. In the cases where we missed vulnerabili-
ties, maintainers would likely have a higher success rate due
to their deeper understanding of the project’s business logic.

B. Finding New Vulnerabilities with ANOTA+FUZZER

To evaluate ANOTA+FUZZER’s ability to find previously
unknown vulnerabilities in real-world applications, we con-
ducted a study on real-world open-source applications col-
lected from GitHub. We selected a set of 60 popular and
actively maintained Python projects from GitHub (over 200

TABLE IV
NEW ZERO-DAY VULNERABILITIES FOUND BY ANOTA

ID Name CWE Stars LoC Type Time # Annotations

/103 /103 /min SC DF OA CE

1 OpenAgents 434 3.3 13 SC 60 12 8 11 16
2 ihatemoney 732 1.1 9 OA 30 7 3 10 12
3 Home Assistant core 532 68.0 1629 DF 70 14 9 18 25
4 Apache-Airflow 367 33.9 658 DF 90 19 8 14 19
5 FileCodeBox 532 3.0 5 DF 45 8 4 6 12
6 nebari 532 0.3 14 DF 50 6 5 3 12
7 SolidUI 532 0.5 5 DF 75 13 7 2 13
8 WordOps 532 1.2 14 DF 40 3 8 2 2
9 WordOps 367 1.2 14 DF 40 3 8 2 2

10 ArchiveBox 367 19.3 13 DF 20 6 2 0 0
11 Apache-Superset 434 57.5 175 SC 80 16 4 10 15
12 cmdb 434 1.2 20 SC 40 9 6 8 13
13 zenml 367 3.6 190 DF 65 11 4 7 15
14 MemGPT 208 8.6 25 DF 40 10 6 2 3
15 pyspider 208 16.3 15 DF 55 4 5 8 6
16 alexa media player 532 1.3 7 DF 30 2 3 1 0
17 comfyui controlnet aux 94 1.4 196 SC 70 10 5 0 2
18 lithops 94 0.3 29 SC 45 13 3 13 3
19 Linly-Talker 94 0.7 37 SC 50 6 7 0 0
20 cmssw 94 1.1 1597 SC 95 20 7 0 2
21 Microsoft RecAI 94 0.4 29 SC 45 5 3 0 0
22 calibre-web 434 11.3 30 SC 85 22 7 13 8

SC: System Call, DF: Data Flow, OA: Object Access, CE: Code Execution
Assigned CVEs: CVE-2024-34524, CVE-2024-37730, CVE-2024-35453, CVE-
2024-35454, CVE-2024-35455, CVE-2024-35456, CVE-2024-35457, CVE-2024-
35458, CVE-2024-35063, CVE-2024-35064, CVE-2024-35065, CVE-2024-27473,
CVE-2024-34524, CVE-2024-34525, CVE-2024-34526, CVE-2024-34527, CVE-
2024-34528, CVE-2024-34529

stars and recently committed). To test our approach against
hardened targets, this set included four projects with active bug
bounty programs (Apache Superset, Apache Airflow, ZenML,
Calibre-Web) and one that undergoes regular security audits
(Home Assistant Core) [50].

For each project, we simulated a user’s workflow with a
one-hour time limit to understand the application’s core logic
and write corresponding annotations. If a project could not
be understood within this timeframe, it was skipped. We then
fuzzed each annotated application using a harness crafted from
its existing test cases. All findings were manually verified.

We reported a total of 22 issues. Of these, 20 were assigned
vulnerability identifiers. 17 vulnerabilities are assigned CVE
IDs and the remaining 3 confirmed issues received internal
tracking identifiers from Apache, GitHub, and Microsoft,
respectively (one each). Table IV provides a detailed list of
these vulnerabilities. Since an issue is usually found by one
individual annotation, we indicate its Type. To quantify the
required human effort, the table contains the Time it took
us to create the annotations and the number of each type of
annotation we created.

As the table shows, the human effort required was mod-
est; the time to analyze the code and write the necessary
annotations was approximately 60 minutes per application, on
average. This demonstrates that a user with prior knowledge
of ANOTA can become effective on a new and unfamiliar
codebase very quickly. In Section V-D1, we discuss more
about the usability of ANOTA when the user has no prior
knowledge of both ANOTA and the target applications.

10

https://github.com/xlang-ai/OpenAgents
https://github.com/spiral-project/ihatemoney
https://github.com/home-assistant/core
https://github.com/apache/airflow
https://github.com/vastsa/FileCodeBox
https://github.com/nebari-dev/nebari
https://github.com/CloudOrc/SolidUI
https://github.com/WordOps/WordOps
https://github.com/WordOps/WordOps
https://github.com/ArchiveBox/ArchiveBox
https://github.com/apache/superset
https://github.com/veops/cmdb
https://github.com/zenml-io/zenml
https://github.com/cpacker/MemGPT
https://github.com/binux/pyspider
https://github.com/alandtse/alexa_media_player
https://github.com/Fannovel16/comfyui_controlnet_aux
https://github.com/lithops-cloud/lithops
https://github.com/Kedreamix/Linly-Talker
https://github.com/cms-sw/cmssw
https://github.com/microsoft/RecAI
https://github.com/janeczku/calibre-web

Empirically, we found that with moderate human effort,
ANOTA can discover 22 previously unknown vulnerabilities
(17 CVE assigned), even in hardened targets with active bug
bounty programs.

False Positives. We found two false-positive sensitive in-
formation leakage vulnerabilities during this experiment. The
first false positive is in the EasyAuth project. We added
a data flow annotation for a variable token containing a
sensitive authentication token. Indeed, this token is written to a
log file, which is detected by ANOTA+FUZZER. However, the
token is revoked before logging, making this a false positive.
This issue could have been avoided if we had added the
token revocation as a taint-removing function. The second
false positive occurred in the Munki project, which writes
the authorization token, to a curl configuration file created
by mkstemp(). We confirmed with the developer that this
is the intended behavior and the temporary file is destroyed
after use. Both cases are due to our limited understanding of
the projects and should be no hindrance for the developers.

C. Ablation Study

To evaluate ANOTA’s capabilities, we conducted experi-
ments on a benchmark suite of 35 business logic vulnerabilities
(e.g., path traversal, access control flaws) curated from four
well-established, intentionally vulnerable Python applications:
OWASP’s Pygoat [51], OWASP Vulnerable Flask App [52],
Damn Small Vulnerable Web (DSVW) [53], and The Vul-
nerable API (VAmPI) [54]. This suite, comprising → 19, 200
lines of code, provides a ground truth for measuring detection
accuracy of our approach.

To evaluate ANOTA’s effectiveness as a sanitizer, we con-
ducted an ablation study that isolates its core contribution.
We aim to demonstrate that ANOTA provides a standard
fuzzer with the necessary sanitizer to detect business logic
vulnerabilities that it would otherwise miss. To this end,
we compared ANOTA+FUZZER (Atheris + ANOTA) against
the baseline fuzzer (Atheris without an additional sanitizer)
on our benchmark suite. The results clearly show that our
approach significantly enhances the fuzzer’s ability to uncover
logic flaws: ANOTA+FUZZER successfully detected all 35
vulnerabilities. In contrast, the baseline fuzzer detected none,
failing even when directly supplied with the exact inputs
known to trigger the flaws. This result demonstrates that a
standard fuzzer is blind to these vulnerability classes and that
ANOTA provides the essential oracle capability required for
their detection.

Next, we also tried to benchmark ANOTA+FUZZER against
other established tools to evaluate its performance. A direct
comparison with other sanitizers was not feasible, as no tools
with ANOTA’s similar capability exist. Other fuzzing tools
were also unsuitable for a fair comparison due to being overly
specialized for single bug types (e.g., EDEFuzz [16], CT-
Fuzz [31] SSRFuzz [15]), non-available preconditions (e.g.,
EDEFuzz [16] for GUI, FLOWFUZZ [21] for perfect resetting
or relying on non-portable, heuristic-based methods for differ-

ent language ecosystems (e.g., Atropos [14] for PHP, ODD-
Fuzz [27] for Java). Therefore, we compared ANOTA+FUZZER
against the most relevant state-of-the-art static and dynamic
vulnerability scanners. In summary, ANOTA+FUZZER signifi-
cantly outperforms all scanners in finding the 35 target vulner-
abilities. A detailed breakdown of each scanner’s performance
and evaluation is available in Appendix A.

In summary, ANOTA provides an essential and previously
missing sanitizer to standard fuzzers and can also empower
fuzzers to outperform existing state-of-the-art scanners by
integrating direct developer insight into a dynamic state
monitoring framework.

D. User Studies
1) Annotation Study: To evaluate the usability and effec-

tiveness of the annotations in ANOTA, we conducted a user
study with 11 voluntarily recruited participants (P1–P11) from
two institutions located in different countries. The participants
were computer science undergraduate and graduate students
with varying levels of security and development expertise,
ranging from basic conceptual understanding to hands-on pro-
fessional experience. None had prior experience with ANOTA
or the target applications.

a) Methodology and Preparation: We selected a subset
of six applications randomly from Table III and Table IV to
cover unique vulnerability types and mitigate the large time
investment required for human subject experiments. Each par-
ticipant was tasked with annotating these six applications. This
scenario was designed to be more challenging than a developer
annotating their own codebase. Participants were not given
internal application knowledge or specific hints about exist-
ing vulnerabilities during the trainning period. Instead, they
received a high-level summary of the application’s purpose,
instructions on ANOTA’s annotation syntax, and generic exam-
ples of code patterns associated with the relevant vulnerability
types. We also provide tips like identifying security-critical
boundaries where data crosses trust domains and to derive
policies from documentation or API specifications. For each
task, we measured the time taken, the number of annotations,
and the effectiveness of the participants at detecting the known
vulnerability.

b) Results: As detailed in Table V, participants demon-
strated a high degree of effectiveness despite their lack of fa-
miliarity with the target applications. Across 66 total tasks (11
participants ! 6 applications), the user-provided annotations
successfully detected target vulnerabilities in 55 cases, yield-
ing an 83.3% success rate. The most common failure point (7
of 11) were on a a single, unusually difficult access control
vulnerability in changedetection.io. Getting this anno-
tation right is difficult, as this flaw required deep, non-local
knowledge of the application’s intended logic regarding API
authorization. Still, four participants’ annotations successfully
detected this bug. Note that this kind of vulnerability is not
an ideal target for ANOTA. This is because if the developer
is aware that this endpoint should be protected, they can

11

https://github.com/codemation/easyauth
https://github.com/munki/munki
https://github.com/curl/curl

TABLE V
USABILITY STUDY RESULT (TIME IS MEASURED IN MINUTES)

Gradio xtts-api-server cmdb temporai WordOps changedetection.io

SSRF Path Traversal Unrestricted Upload Untrusted Deserial. Information Leakage Broken Access Control

ID Time Num (FP) Result Time Num (FP) Result Time Num (FP) Result Time Num (FP) Result Time Num (FP) Result Time Num (FP) Result

P1 58 20 1 $ 21 6 0 $ 49 3 0 $ 22 5 0 $ 20 17 1 $ 82 23 1 ✁
P2 52 10 2 $ 22 8 0 $ 55 12 0 $ 49 5 0 $ 45 19 1 $ 89 19 0 ✁
P3 90 76 4 $ 10 10 1 $ 60 46 3 $ 20 3 0 $ 60 40 1 $ 90 68 9 $
P4 120 16 0 $ 30 10 0 $ 90 10 0 $ 20 5 0 $ 75 16 1 $ 60 8 0 $
P5 140 69 2 $ 43 41 5 $ 66 127 18 $ 35 15 0 $ 93 90 7 $ 45 64 7 ✁
P6 50 36 0 $ 30 13 1 $ 35 72 0 $ 20 3 0 $ 65 62 3 $ 40 16 2 $
P7 180 36 3 $ 80 15 1 $ 80 76 0 $ 38 5 1 $ 70 38 1 $ 180 93 3 $
P8 60 54 0 $ 40 20 2 $ 60 123 11 $ 40 24 3 $ 35 62 0 $ 60 69 0 ✁
P9 120 33 2 $ 30 3 0 ✁ 120 61 3 $ 90 11 0 $ 90 21 0 $ 180 69 1 ✁

P10 60 13 0 $ 30 21 0 $ 30 23 1 ✁ 30 1 0 $ 30 14 0 ✁ 60 13 1 ✁
P11 60 22 1 ✁ 40 13 0 $ 40 17 1 $ 60 2 0 $ 150 29 1 $ 70 5 0 ✁

Avg. 86 33 40 15 62 46 45 11 63 28 80 41

directly fix the issue without the need for testing. Other failures
stemmed from overlooking documentation (e.g., P10 missed
credential descriptions in WordOps) or misunderstanding a
specific vulnerability (e.g., P11’s misunderstanding of SSRF
in Gradio).

c) Feedback and Observations: In the post-study feed-
back, all participants found annotation syntax of ANOTA
straightforward to learn and use. They described an ini-
tial learning curve, followed by a systematic approach to
annotation. Participants adopted a strategy of focusing on
one annotation type at a time to reduce context switching.
For example, a participant might first identify and annotate
sensitive variables (e.g., secrets), then move on to annotate
potential system call sites, proceeding sequentially in this
manner. Nine participants expressed concerns about potentially
overlooking critical locations to annotate, leading them to
spend considerable time minimizing this risk during the initial
phase. This concern is understandable, as the participants
lacked detailed knowledge of the applications under test.
However, this issue is unlikely to arise for developers, who
are familiar with the code bases they typically work on, even
for large projects. Ten participants’ feedback mentions they
were more confident while writing blocklists compared to
allowlists. This outcome was expected, as it is impractical
for participants to have comprehensive knowledge of the
underlying code. Using blocklists to constrain code behavior
proved to be both easier and effective, enabling participants
to identify most vulnerabilities in the applications. However,
when documentation explicitly defined valid access paths (e.g.,
constant variables for file paths), participants prefer to use the
allowlist since it is more accurate.

d) False Positives: The overall false positive rate was
low. After manually inspecting those cases, we find that the
following two factors might help reduce the number: the
participants tend to write annotations around the code that
explicitly express the developer’s intention. The participants
prefer to use blocklists (over allowlists), which is less likely to
cause false positives. False positives are commonly associated
with system call annotations within functions containing a few
lines of annotated code or data flow tracking across modules.

In our study, participants could not iteratively test and refine
their policies due to the time and environment constraint.
However, in a real-world workflow, developers are familiar
with the codebase and can address these issues using an
iterative approach, refining annotations as needed to eliminate
false positives effectively.

2) Real-world Developer Study: To assess the real-world
applicability and adoption potential of ANOTA, we conducted
a qualitative study with ten software developers and security
analysts, representing a wide range of professional experience.
Among the participants, one had 1-3 years of experience,
four had 3-5 years, four had 5-10 years, and one had more
than 10 years. This study investigated their current practices,
their attitude toward adopting ANOTA, and potential barriers
to adoption.

The study has three key findings. First, it confirmed the
problem’s relevance: all (10/10) participants reported that they
were aware of and had encountered business-logic vulner-
abilities in their projects. When asked about their current
detection methods, the responses indicated a heavy reliance on
manual Manual Code Review (10/10) and External Penetration
Testing (9/10). Other methods included Unit Testing (4/10) and
Manual QA Testing (3/10), with only one participant (1/10)
having used static analysis for this purpose. This validates that
the problem remains a significant, work-intensive challenge.
Second, we found universal agreement on ANOTA’s value
proposition. When asked about the effort-versus-value trade-
off, specifically, if spending approximately one hour adding
annotations was a reasonable exchange for the ability to detect
business-logic vulnerabilities. The response was unanimously
positive (10/10). We observed a distinction based on project
criticality: four participants stated they would definitely use
ANOTA, while the remaining six reported they would apply
it to applications based on their importance. This indicates
that all of the experienced participants perceive significant
value in ANOTA and view the required annotation effort as
a reasonable trade-off for the potential security gains. Third,
the primary barriers to adoption identified by participants were
of a practical nature. The most significant barriers were the
learning curve of a new annotation language (10/10) and the

12

https://github.com/gradio-app/gradio
https://github.com/daswer123/xtts-api-server
https://github.com/veops/cmdb
https://github.com/vanderschaarlab/temporai
https://github.com/WordOps/WordOps
https://github.com/dgtlmoon/changedetection.io

effort of integration with CI/CD pipelines (6/10). Additionally,
two participants raised concerns that annotations could reduce
code readability without a standardized style. While the con-
cern regarding the learning curve is valid, we note that our
user study with students (Section V-D1) demonstrated that a
brief training session was sufficient for participants to effec-
tively use the ANOTA language. The other concerns regarding
integration and standardization are practical implementation
challenges that provide clear, valuable directions for future
work centered on tooling, usability, and IDE/CI integration.

This feedback validates the perceived value of ANOTA’s
approach and provides clear, practical directions for future
work centered on tooling, usability, and workflow integration.

Our user studies collectively demonstrate both the practical
usability and real-world value of ANOTA. The annotation
study demonstrates that effective annotations can be created
with minimal prior knowledge of ANOTA and the target ap-
plication. The real-world study with professional developers
showed that the annotation effort required for our approach
is considered a reasonable trade-off for its security value.

E. Performance Evaluation

Finally, we evaluate the performance overhead of ANOTA.
The runtime performance is measured by using the Python
Performance Benchmark Suite [42], which is an authoritative
benchmark for alternative Python implementations provided.
This fits our purpose, as ANOTA is implemented by modifying
the CPython interpreter. All benchmarks are executed in
rigorous mode to get accurate data. The taint tracking module
is evaluated by tainting every variable, an extreme setup that
is not typical for regular usage. Additionally, we measure the
syscall module overhead by recording every system call.

We find that tracing all variables results in an average
runtime overhead of 10%, while tracing all system calls
leads to an overhead of about 5%.

VI. DISCUSSION AND FUTURE WORK

Our prototype implementation of ANOTA enables develop-
ers to express their intuition of the program behavior with an-
notations. In this section, we differentiate ANOTA from binary
analysis frameworks and explore potential future extensions
regarding automated annotations and language support.

Our prototype implements a practical engineering approach
to cross-language taint analysis, which proved effective in
our evaluation. We acknowledge that comprehensive cross-
language taint analysis is a challenging research problem. A
more robust implementation could build upon existing work,
such as PolyCruise [55] for the Python-C interface and other
works addressing different language pairs [56], [57].

A. Comparison with DBI Frameworks

As ANOTA is at its core a framework to build custom sani-
tizers, it might seem similar to Dynamic Binary Instrumenta-
tion (DBI) frameworks like Valgrind [7] and DynamoRIO [59]

TABLE VI
COMPARATIVE ANALYSIS OF ANOTA, VALGRIND, AND DYNAMORIO

Tool ANOTA Valgrind DynamoRIO

Goal Human-in-the-loop
sanitizer framework

Dynamic Binary Instrumentation (DBI)
framework for building binary analysis tools

Target Source code Binary
Interface Policies defined via

intuitive annotations
in source code

C API on IR / instructions for building
instrumentation tools to manipulate

execution
User App. developer /

Security analyst
Security expert

Vuln. Business logic
vulnerabilities

Enables detection of any machine-level
behavior; pre-built tools cover low-level

execution errors (memory safety violations)
Overhead Low: 10%/5% High: 5,417%* High: 5,513%*

* Lower bound of the performance overhead measured for memory tracing [58]

that provide an API to build custom low-level binary analysis
tools. However, they represent a fundamentally different design
paradigm, as summarized in Table VI. There is a strong
divergence in the semantic information available, the target
users, and the performance characteristics.

1) The Semantic Gap: DBI frameworks operate at the ma-
chine code layer, observing instructions rather than application
objects like variables. They view the execution of a Python
program as a stream of instructions from the interpreter binary,
remaining blind to the high-level logic those instructions
represent. For example, a DBI tool cannot directly identify
a password object in memory. To implement ANOTA’s
functionality, a DBI user would need to reverse engineer the
CPython interpreter’s internal memory layout during runtime.
This is an enormous challenge, as structural information is
lost in translation (cf. the challenges in implementing binary
sanitizers [11]). In contrast, ANOTA operates directly within
the CPython interpreter, granting it access to the semantic
context from an internal perspective.

2) Target Users: As ANOTA is designed for application
developers and security analysts with knowledge of the target
application, users can add intuitive annotations to detect vul-
nerabilities (as shown in Section V-D) without understanding
the internal details of ANOTA. In contrast, DBI frameworks
require users to also possess expert knowledge of binary
analysis, systems programming and the framework’s internal
APIs to build custom analysis tools.

3) Performance: While it would be theoretically possible
to implement ANOTA’s functionality using DBI frameworks,
their low-level instrumentation comes with high runtime over-
head. Memory tracing alone, the first step to implementing
something like ANOTA via DBI, introduces a prohibitive
overhead of over 5,000% (50x) [58], which is orders of
magnitude higher than ANOTA’s overhead in our evaluation.

In conclusion, DBI frameworks are ill-suited for detecting
business logic vulnerabilities, particularly in high-level lan-
guages like Python. ANOTA provides the necessary abstraction
and efficiency for sanitizing business logic vulnerabilities,
especially in the performance-sensitive context of fuzzing.

13

B. Target Vulnerabilities
Certain vulnerabilities within the CWE Top 40 are excluded

from our prototype because they are can be addressed without
the need of annotations. For instance, SQL injection, hard-
coded credentials, and Cross-Site Request Forgery (CSRF) can
be mitigated immediately via standard practices, such as using
prepared statements, removing credentials, or implementing
CSRF tokens, once a developer is aware of them. Conse-
quently, annotating these issues would be redundant.

However, more vulnerabilities are often not obvious. AN-
OTA targets subtle vulnerabilities that are easily overlooked,
particularly those buried within complex implementations or
opaque third-party libraries. ANOTA’s primary utility is to
make implicit security intent machine-verifiable. In modern
workflows, developers often treat APIs (e.g., urlparse in
List 1) as black boxes. They may understand a security
requirement (e,g., block certain network requests) yet remain
unaware of internal library flaws. By annotating this intent,
ANOTA detects security vulnerabilities caused by API misuse
or underlying bugs. This utility is validated by our discovery
of zero-day vulnerabilities in audited projects like Home
Assistant, enabling ANOTA to serve as a critical sanitizer
where deep dependency introspection is infeasible.

C. Integrating Large Language Models (LLMs)
Annotations require manual effort to analyze the application

and the quality of these annotations depends on the user’s
expertise, which can be a challenge in large codebases or
when dealing with unfamiliar libraries. A potential solution is
integrating LLMs for semi-automating the generation of these
policies. An LLM could reduce manual effort by analyzing
source code to propose relevant security annotations and
bridge the expertise gap for complex dependencies. However,
utilizing LLMs is not a simple solution due to challenges
like hallucinations and the required large context windows to
process sufficient documentation. These limitations necessitate
that any LLM-generated annotations undergo rigorous valida-
tion by a human expert to ensure their trustworthiness [60].

Our work establishes the foundational framework to express
these policies. We view this framework as the necessary first
step to transform the semantic information from developer
knowledge into machine-enforceable policies, enabling and
supporting future research into reliable automation with LLMs.

D. Porting to Other Languages
While ANOTA can be extended to other languages, such

as PHP and JavaScript, to find business logic vulnerabilities,
we view this primarily as an engineering challenge, as the
fundamental strategy of ANOTA is language-agnostic. We
briefly sketch the porting strategy for each specific component
of the framework: The Annotation System resembling standard
function calls could be ported by adding built-in functions
or instrumenting the language-specific function invocation
mechanism to intercept these calls. Similar to our approach
for Python’s CALL_FUNCTION opcode, a PHP implementa-
tion could target DO_FCALL or DO_ICALL, and JavaScript

could target the Call opcode. The System Call Monitor
is implemented using eBPF for Linux kernel hooks, agnos-
tic to the language runtime and therefore directly reusable
without modification. The Data Flow Monitor could lever-
age existing dynamic taint tracking solutions such as PHP’s
Taint extension, Augur [61], taintflow [62] for JavaScript, or
libDFT [63] for C/C++. The Object Access Monitor requires
instrumenting low-level operations for variable access, like
PHP’s ZEND_FETCH_R/W/RW opcodes, or the property load
(Lda*) and store (Sta*) instruction families in JS engines.

VII. RELATED WORK

Security vulnerabilities detection is a vast research area. In
this section, we focus on the most relevant prior work in dy-
namic analysis and code sanitization, particularly concerning
non-memory safety and business logic flaws.

Dynamic Sanitizers and System Policies. Established dy-
namic sanitizers like AddressSanitizer [2], MemorySani-
tizer [3], LeakSanitizer [64], UBSan [8] and ThreadSani-
tizer [9] are highly effective for memory corruption and
data races but do not target business logic vulnerabili-
ties. System-level policy enforcement mechanisms like Land-
lock [65] or AppArmor [66] are also distinct, as they enforce
coarse-grained, process-wide policies, lacking the fine-grained,
runtime-adjustable control needed for specific code blocks or
contexts relevant to business logic. Recent sanitizers for non-
memory flaws are often limited, targeting narrow vulnerability
types (e.g., numerical errors [67], code injections [68]), issues
unique to embedded systems [69] or restricted to specific
languages like Go [70] or PHP [14]. We also differentiate
ANOTA from tools detecting application-specific correctness
bugs [71]–[74]. (e.g., broken HTML [73] or misinterpreted
SQL [72]), which find functional errors rather than the
security-critical policy violations ANOTA targets.

Many fuzzing frameworks integrate custom bug oracles, but
these are often limited to specific vulnerability classes (e.g.,
XSS [12], [19], injection vulnerabilities [12], SSRF [15]) or
languages (e.g., Atropos for PHP [14]). Tools targeting infor-
mation leaks also have different limitations. EDEFuzz [16]
can only detects sensitive data exposure in API responses
but lacks the business-logic context to determine if data is
truly sensitive or check leakage from other channels like
log files. Ct-fuzz [31] focuses on low-level side-channel
leaks, distinct from ANOTA’s whole-system logic analysis.
FLOWFUZZ [21] requires complex, deterministic setups and
manual instrumentation for data leak detection, and does not
cover timing side-channels. Other tools target narrow issues
like file uploads [75]–[77] or domain-specific policies like
robotics [78]. In short, while prior fuzzing frameworks target
specific, predefined bug patterns, ANOTA provides a general
framework for defining and detecting violations of application-
specific policies.

Finally, several approaches leverage developer input or an-
notations. IJON [79] uses annotations to guide fuzzers towards
deeper application states but still relies on traditional bug
oracles (e.g., crashes) rather than detecting new vulnerability

14

classes. ASIDE [80] and Anovul [81] use annotations or
code markers to check for access control and authentication
flaws, respectively. This concept is similar to ANOTA’s Code
Execution annotation. However, ANOTA distinguishes it-
self through a significantly broader and more generalizable
annotation framework designed to specify and detect a wide
spectrum of complex business logic vulnerabilities, extending
far beyond access control or state reachability goals.

In summary, while previous work has covered various
aspects of business-logic vulnerability detection, ANOTA in-
troduces a novel, annotation-driven dynamic sanitization ap-
proach specifically designed to identify security-critical busi-
ness logic flaws, filling a crucial gap in existing defenses.

VIII. CONCLUSION

In this paper, we present a novel, annotation-based sanitiza-
tion framework to address the critical challenge of detecting
business logic vulnerabilities. Based on our analysis of existing
fuzzing sanitizers, we find that they often rely on brittle, auto-
mated heuristics that cannot capture the necessary application-
specific semantic context. To overcome this, ANOTA empow-
ers developers to directly express an application’s intended
security policies using a lightweight and intuitive annota-
tion system. By encoding a developer’s implicit knowledge
into explicit, machine-readable annotations, we open up new
classes of vulnerabilities for (semi-)automated bug discovery
via dynamic code analysis. To this end, we propose a set
of annotations that cover the business logic vulnerabilities in
CWE’s Top 40 most dangerous software weaknesses.

Our prototype, integrated with a standard fuzzer, called
ANOTA+FUZZER, demonstrates the effectiveness of this ap-
proach by rediscovering 43 known and detecting 22 previously
unknown vulnerabilities in popular, well-maintained open-
source projects. A total of 17 CVE identifiers are assigned to
our findings at the time of writing. Our annotation study and
performance benchmarks further confirmed that the system is
easy to use and incurs minimal overhead.

By shifting the focus from inferring behavior with brittle
heuristics to enforcing explicitly defined policies, ANOTA
represents a step forward in the detection of business logic
vulnerabilities. We believe this paradigm of leveraging direct
developer insight provides a powerful and extensible foun-
dation for securing the complex applications of today and
tomorrow. We hope that our research helps push fuzzing, a
proven effective bug-finding technique for low-level program-
ming, into the realm of high-level programming languages.

IX. ETHICS CONSIDERATIONS

Our annotation and real-world developer studies were ap-
proved by the authors’ institutional Ethical Review Board.
With the purpose of the study informed, we obtained consent
from all participants, ensuring voluntary participation and the
right to opt out. All personally identifiable information was
removed prior to analysis. Full study protocols are available
in the research artifact. We adhered to coordinated disclosure
practices for the 22 vulnerabilities discovered by ANOTA. We

reported all issues to the relevant developers according to their
security protocols and are actively helping fix them.

ACKNOWLEDGMENT

The project underlying this paper was funded with funds
from the Federal Ministry of Transport (BMV) under the
funding code 45AVF5A011. The author is responsible for the
content of this publication.

REFERENCES

[1] D. Song, J. Lettner, P. Rajasekaran, et al., “Sok: Sani-
tizing for security,” in IEEE Symposium on Security and
Privacy (S&P), 2019.

[2] K. Serebryany, D. Bruening, A. Potapenko, and D.
Vyukov, “AddressSanitizer: A Fast Address Sanity
Checker,” in USENIX Annual Technical Conference
(ATC), 2012.

[3] E. Stepanov and K. Serebryany, “MemorySanitizer:
Fast detector of uninitialized memory use in C++,”
in International Symposium on Code Generation and
Optimization (CGO), 2015.

[4] J. Chen, W. Diao, Q. Zhao, et al., “IoTFuzzer: Discov-
ering Memory Corruptions in IoT Through App-based
Fuzzing,” in Symposium on Network and Distributed
System Security (NDSS), 2018.

[5] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and
D. Balzarotti, “What You Corrupt Is Not What You
Crash: Challenges in Fuzzing Embedded Devices,” in
Symposium on Network and Distributed System Security
(NDSS), 2018.

[6] D. Bruening and Q. Zhao, “Practical memory checking
with dr. memory,” in International Symposium on Code
Generation and Optimization (CGO), IEEE, 2011.

[7] J. Seward and N. Nethercote, “Using valgrind to detect
undefined value errors with bit-precision,” in USENIX
Annual Technical Conference (ATC), 2005.

[8] The Clang Team. “UndefinedBehaviorSanitizer —
Clang documentation.” (2013), Available: https://clang.
llvm.org/docs/UndefinedBehaviorSanitizer.html.

[9] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer:
Data race detection in practice,” in Workshop on Binary
Instrumentation and Applications (WBIA), 2009.

[10] A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy,
“Helgrind+: An efficient dynamic race detector,” in
IEEE International Symposium on Parallel & Dis-
tributed Processing (IPDPS), 2009.

[11] J. Schilling, A. Wendler, P. Görz, N. Bars, M. Schloegel,
and T. Holz, “A binary-level thread sanitizer or why
sanitizing on the binary level is hard,” in USENIX
Security Symposium, Aug. 2024.

[12] E. Trickel, F. Pagani, C. Zhu, et al., “Toss a Fault
to Your Witcher: Applying Grey-box Coverage-Guided
Mutational Fuzzing to Detect SQL and Command In-
jection Vulnerabilities,” in IEEE Symposium on Security
and Privacy (S&P), 2023.

15

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

[13] J. Zhao, Y. Lu, K. Zhu, Z. Chen, and H. Huang,
“Cefuzz: An Directed Fuzzing Framework for PHP
RCE Vulnerability,” Electronics, vol. 11, no. 5, 2022.

[14] E. Güler, S. Schumilo, M. Schloegel, et al., “Atropos:
Effective Fuzzing of Web Applications for Server-Side
Vulnerabilities,” in USENIX Security Symposium, 2024.

[15] E. Wang, J. Chen, W. Xie, et al., “Where URLs Become
Weapons: Automated Discovery of SSRF Vulnerabil-
ities in Web Applications,” in IEEE Symposium on
Security and Privacy (S&P), 2024.

[16] L. Pan, S. Cohney, T. Murray, and V.-T. Pham, “EDE-
Fuzz: A Web API Fuzzer for Excessive Data Expo-
sures,” in International Conference on Software Engi-
neering (ICSE), 2024.

[17] D. Siswanto. “Ppfuzz: A fast tool to scan client-
side prototype pollution vulnerability written in Rust.”
(2022), Available: https : / / github . com / dwisiswant0 /
ppfuzz.

[18] J. Huang, J. Zhang, J. Liu, C. Li, and R. Dai, “Ufuzzer:
Lightweight detection of php-based unrestricted file
upload vulnerabilities via static-fuzzing co-analysis,” in
Symposium on Recent Advances in Intrusion Detection
(RAID), 2021.

[19] O. van Rooij, M. A. Charalambous, D. Kaizer, M. Pa-
paevripides, and E. Athanasopoulos, “WebFuzz: Grey-
Box Fuzzing for Web Applications,” in European Sym-
posium on Research in Computer Security (ESORICS),
2021.

[20] X. Chen, J. Liu, Y. Zhang, et al., “Webfuzzauto: An
automated fuzz testing tool integrating reinforcement
learning and large language models for web security,”
in International Conference on Information Systems and
Computing Technology (ISCTech), 2024.

[21] B. Gruner, C.-A. Brust, and A. Zeller, “Finding in-
formation leaks with information flow fuzzing,” ACM
Trans. Softw. Eng. Methodol., Jan. 2025.

[22] MITRE. “Trends in Real-World CWEs: 2019 to 2023.”
(2023), Available: https://cwe.mitre.org/top25/archive/
2023/2023 trends.html#tableView.

[23] S. Kim, Y. M. Kim, J. Hur, S. Song, G. Lee, and
B. Lee, “FuzzOrigin: Detecting UXSS vulnerabilities in
Browsers through Origin Fuzzing,” in USENIX Security
Symposium, 2022.

[24] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz,
“Kameleonfuzz: Evolutionary fuzzing for black-box xss
detection,” in ACM Conference on Data and Application
Security and Privacy (CODASPY), 2014.

[25] S. Neef, L. Kleissner, and J.-P. Seifert, “What all the
phuzz is about: A coverage-guided fuzzer for finding
vulnerabilities in php web applications,” in ACM Sym-
posium on Information, Computer and Communications
Security (ASIACCS), 2024.

[26] Y. Chen, Y. Li, Z. Pan, Y. Lu, J. Chen, and S. Ji,
“Uradar: Discovering unrestricted file upload vulnera-
bilities via adaptive dynamic testing,” IEEE Transac-

tions on Information Forensics and Security, vol. 19,
2023.

[27] S. Cao, B. He, X. Sun, et al., “Oddfuzz: Discovering
java deserialization vulnerabilities via structure-aware
directed greybox fuzzing,” in IEEE Symposium on Se-
curity and Privacy (S&P), 2023.

[28] D. Batham. “OpenRedireX: A fuzzer for detecting open
redirect vulnerabilities.” (2023), Available: https : / /
github.com/devanshbatham/OpenRedireX.

[29] Z.-M. Jiang, J.-J. Bai, K. Lu, and S.-M. Hu, “Context-
sensitive and directional concurrency fuzzing for data-
race detection,” in Symposium on Network and Dis-
tributed System Security (NDSS), 2022.

[30] M. Xu, S. Kashyap, H. Zhao, and T. Kim, “Krace:
Data race fuzzing for kernel file systems,” in IEEE
Symposium on Security and Privacy (S&P), 2020.

[31] S. He, M. Emmi, and G. Ciocarlie, “Ct-fuzz: Fuzzing
for timing leaks,” in International Conference on Soft-
ware Testing, Validation and Verification (ICST), 2020.

[32] Y. Zhai, Z. Qian, C. Song, et al., “Don’t Waste
My Efforts: Pruning Redundant Sanitizer Checks by
Developer-Implemented Type Checks,” in USENIX Se-
curity Symposium, 2024.

[33] B. P. Miller, L. Fredriksen, and B. So, “An empirical
study of the reliability of UNIX utilities,” Communica-
tions of the ACM (CACM), vol. 33, no. 12, 1990.

[34] Google. “ClusterFuzz.” (May 2022), Available: https :
//google.github.io/clusterfuzz/.

[35] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W.
Wulf, “Policy/mechanism separation in hydra,” SIGOPS
Oper. Syst. Rev., vol. 9, no. 5, Nov. 1975.

[36] Y. Bertot and P. Castéran, Interactive theorem proving
and program development: Coq’Art: the calculus of
inductive constructions. Springer Science & Business
Media, 2013.

[37] Y. Shoshitaishvili, M. Weissbacher, L. Dresel, et al.,
“Rise of the hacrs: Augmenting autonomous cyber
reasoning systems with human assistance,” in ACM
Conference on Computer and Communications Security
(CCS), 2017.

[38] X. Wu, L. Xiao, Y. Sun, J. Zhang, T. Ma, and L. He,
“A survey of human-in-the-loop for machine learning,”
Future Generation Computer Systems, vol. 135, 2022.

[39] E. Mosqueira-Rey, E. Hernández-Pereira, D. Alonso-
Rı́os, J. Bobes-Bascarán, and Á. Fernández-Leal,
“Human-in-the-loop machine learning: A state of the
art,” Artificial Intelligence Review, vol. 56, no. 4, 2023.

[40] TIOBE Software BV. “TIOBE Index (archived).” (Mar.
2025), Available: https : / / web . archive . org / web /
20250315003022/https://www.tiobe.com/tiobe-index/.

[41] Google. “Atheris: A Coverage-Guided, Native Python
Fuzzer.” (2023), Available: https://github.com/google/
atheris.

[42] The Python Software Foundation. “Pyperformance:
Python Performance Benchmark Suite.” (2024), Avail-
able: https://github.com/python/pyperformance.

16

https://github.com/dwisiswant0/ppfuzz
https://github.com/dwisiswant0/ppfuzz
https://cwe.mitre.org/top25/archive/2023/2023_trends.html#tableView
https://cwe.mitre.org/top25/archive/2023/2023_trends.html#tableView
https://github.com/devanshbatham/OpenRedireX
https://github.com/devanshbatham/OpenRedireX
https://google.github.io/clusterfuzz/
https://google.github.io/clusterfuzz/
https://web.archive.org/web/20250315003022/https://www.tiobe.com/tiobe-index/
https://web.archive.org/web/20250315003022/https://www.tiobe.com/tiobe-index/
https://github.com/google/atheris
https://github.com/google/atheris
https://github.com/python/pyperformance

[43] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All You
Ever Wanted to Know about Dynamic Taint Analysis
and Forward Symbolic Execution (but Might Have Been
Afraid to Ask),” in IEEE Symposium on Security and
Privacy (S&P), 2010.

[44] C. Lattner and V. Adve, “LLVM: A Compilation Frame-
work for Lifelong Program Analysis and Transforma-
tion,” in International Symposium on Code Generation
and Optimization (CGO), Mar. 2004.

[45] eBPF Foundation. “eBPF Core Infrastructure Land-
scape.” (2024), Available: https://ebpf.io/infrastructure/.

[46] O. Reparaz, J. Balasch, and I. Verbauwhede, “Dude, is
my code constant time?” In Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017.

[47] M. Fourné, D. D. A. Braga, J. Jancar, et al., ““These re-
sults must be false”: A usability evaluation of constant-
time analysis tools,” in USENIX Security Symposium,
2024.

[48] A. Decina. “Aya: An eBPF library for the Rust pro-
gramming language.” (2021), Available: https://github.
com/aya-rs/aya.

[49] Snyk Limited. “Snyk Vulnerability Database.” (2024),
Available: https://security.snyk.io/vuln/pip.

[50] P. Schoutsen and F. Nijhof. “Security audits of Home
Assistant.” (2023), Available: https : / / www . home -
assistant.io/blog/2023/10/19/security-audits-of-home-
assistant/.

[51] adeyosemanputra. “PyGoat: Intentionally vuln web Ap-
plication Security in django.” (2023), Available: https:
//github.com/adeyosemanputra/pygoat.

[52] The OWASP Foundation. “OWASP Vulnerable Flask
App.” (2022), Available: https : / / owasp . org / www -
project-vulnerable-flask-app/.

[53] M. Stampar. “Damn small vulnerable web.” (2023),
Available: https://github.com/stamparm/DSVW.

[54] Erev0s. “VAmPI: Vulnerable REST API with OWASP
top 10 vulnerabilities for security testing.” (2024),
Available: https://github.com/erev0s/VAmPI.

[55] W. Li, J. Ming, X. Luo, and H. Cai, “PolyCruise: A
Cross-Language dynamic information flow analysis,” in
USENIX Security Symposium, Boston, MA, Aug. 2022.

[56] S. Kan, Y. Gao, Z. Zhong, and Y. Sui, “Cross-language
taint analysis: Generating caller-sensitive native code
specification for java,” IEEE Transactions on Software
Engineering, vol. 50, no. 6, 2024.

[57] J. Kreindl, D. Bonetta, L. Stadler, D. Leopoldseder,
and H. Mössenböck, “Multi-language dynamic taint
analysis in a polyglot virtual machine,” in International
Conference on Managed Programming Languages and
Runtimes (MPLR), 2020.

[58] Anota. “ANOTA/Supplementary Materials.” (2025),
Available: https : / / github . com / ANOTA - Sanitizer /
ANOTA/tree/main/Supplementary%20Materials.

[59] D. L. Bruening and S. Amarasinghe, “Efficient, trans-
parent, and comprehensive runtime code manipulation,”
AAI0807735, Ph.D. dissertation, USA, 2004.

[60] Z. Zhang, C. Wang, Y. Wang, et al., “Llm hallucinations
in practical code generation: Phenomena, mechanism,
and mitigation,” Proc. ACM Softw. Eng., vol. 2, no. IS-
STA, Jun. 2025.

[61] M. W. Aldrich, A. Turcotte, M. Blanco, and F.
Tip, “Augur: Dynamic taint analysis for asynchronous
javascript,” in ACM/IEEE International Conference on
Automated Software Engineering (ASE), 2022.

[62] A. Khashaev. “TaintFlow: A framework for JavaScript
dynamic information flow analysis.” (2016), Available:
https://github.com/Invizory/taintflow.

[63] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D.
Keromytis, “Libdft: Practical dynamic data flow
tracking for commodity systems,” in ACM SIG-
PLAN/SIGOPS Conference on Virtual Execution Envi-
ronments (VEE), 2012.

[64] The Clang Team. “LeakSanitizer — Clang 21.0.0git
documentation.” (2025), Available: https://clang.llvm.
org/docs/LeakSanitizer.html.

[65] M. Salaün. “Landlock: Unprivileged access control –
Landlock documentation.” (2024), Available: https : / /
landlock.io/.

[66] AppArmor Developers. “AppArmor.” (2025), Available:
https://apparmor.net/.

[67] C. Courbet, “Nsan: A floating-point numerical sani-
tizer,” in ACM SIGPLAN International Conference on
Compiler Construction (CC), 2021.

[68] D. K. Patil and K. Patil, “Automated client-side sanitizer
for code injection attacks,” International Journal of
Information Technology and Computer Science, vol. 8,
no. 4, 2016.

[69] J. Liu, Y. Shen, Y. Xu, H. Sun, H. Shi, and Y. Jiang,
“Effectively sanitizing embedded operating systems,”
in ACM/IEEE Design Automation Conference (DAC),
2024.

[70] C. Wang, H. Sun, Y. Xu, Y. Jiang, H. Zhang, and M.
Gu, “Go-sanitizer: Bug-oriented assertion generation for
golang,” in IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), 2019.

[71] T. Su, Y. Yan, J. Wang, et al., “Fully automated
functional fuzzing of Android apps for detecting non-
crashing logic bugs,” Proc. ACM Program. Lang.,
vol. 5, no. OOPSLA, Oct. 2021.

[72] Y. Liang, S. Liu, and H. Hu, “Detecting logical bugs
of DBMS with coverage-based guidance,” in USENIX
Security Symposium, 2022.

[73] S. Artzi, A. Kiezun, J. Dolby, et al., “Finding bugs
in web applications using dynamic test generation and
explicit-state model checking,” IEEE Transactions on
Software Engineering, vol. 36, no. 4, 2010.

[74] M. Eshghie, C. Artho, H. Stammler, W. Ahrendt, T.
Hildebrandt, and G. Schneider, “HighGuard: Cross-
Chain Business Logic Monitoring of Smart Contracts,”
in ACM/IEEE International Conference on Automated
Software Engineering (ASE), Oct. 2024.

17

https://ebpf.io/infrastructure/
https://github.com/aya-rs/aya
https://github.com/aya-rs/aya
https://security.snyk.io/vuln/pip
https://www.home-assistant.io/blog/2023/10/19/security-audits-of-home-assistant/
https://www.home-assistant.io/blog/2023/10/19/security-audits-of-home-assistant/
https://www.home-assistant.io/blog/2023/10/19/security-audits-of-home-assistant/
https://github.com/adeyosemanputra/pygoat
https://github.com/adeyosemanputra/pygoat
https://owasp.org/www-project-vulnerable-flask-app/
https://owasp.org/www-project-vulnerable-flask-app/
https://github.com/stamparm/DSVW
https://github.com/erev0s/VAmPI
https://github.com/ANOTA-Sanitizer/ANOTA/tree/main/Supplementary%20Materials
https://github.com/ANOTA-Sanitizer/ANOTA/tree/main/Supplementary%20Materials
https://github.com/Invizory/taintflow
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://landlock.io/
https://landlock.io/
https://apparmor.net/

[75] J. Huang, Y. Li, J. Zhang, and R. Dai, “Uchecker: Au-
tomatically detecting php-based unrestricted file upload
vulnerabilities,” in Conference on Dependable Systems
and Networks (DSN), 2019.

[76] T. Lee, S. Wi, S. Lee, and S. Son, “FUSE: Finding File
Upload Bugs via Penetration Testing,” in Symposium on
Network and Distributed System Security (NDSS), 2020.

[77] J. Huang, J. Zhang, J. Liu, C. Li, and R. Dai, “Ufuzzer:
Lightweight detection of php-based unrestricted file
upload vulnerabilities via static-fuzzing co-analysis,” in
Symposium on Recent Advances in Intrusion Detection
(RAID), 2021.

[78] H. Kim, M. O. Ozmen, A. Bianchi, Z. B. Celik,
and D. Xu, “Pgfuzz: Policy-guided fuzzing for robotic
vehicles,” in Symposium on Network and Distributed
System Security (NDSS), 2021.

[79] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz,
“Ijon: Exploring Deep State Spaces via Fuzzing,” in
IEEE Symposium on Security and Privacy (S&P), 2020.

[80] T. Thomas, B. Chu, H. Lipford, J. Smith, and E.
Murphy-Hill, “A study of interactive code annotation
for access control vulnerabilities,” in IEEE Symposium
on Visual Languages and Human Centric Computing
(VL/HCC), 2015.

[81] M. Ghorbanzadeh and H. Reza Shahriari, “Anovul:
Detection of logic vulnerabilities in annotated programs
via data and control flow analysis,” IET Information
Security, vol. 14, no. 3, 2020.

[82] S. Lee, S. Wi, and S. Son, “Link: Black-box detection of
cross-site scripting vulnerabilities using reinforcement
learning,” in International Conference on the World
Wide Web (WWW), 2022.

[83] H. Liu, S. Chen, R. Feng, et al., “A comprehensive
study on quality assurance tools for java,” in Inter-
national Symposium on Software Testing and Analysis
(ISSTA), 2023.

[84] Semgrep, Inc. “Semgrep: Lightweight static analysis for
many languages.” (2024), Available: https://github.com/
semgrep/semgrep.

[85] SonarSource SA. “Sonarqube: The code quality tool
for better code.” (2024), Available: https : / / www .
sonarsource.com/products/sonarqube/.

[86] Meta Platforms, Inc. “Pyre: Performant type-checking
for python.” (2023), Available: https : / / github . com /
facebook/pyre-check.

[87] The ZAP Dev Team. “Zed Attack Proxy (ZAP): The
world’s most widely used web app scanner.” (2024),
Available: https://www.zaproxy.org/.

[88] N. Surribas. “Wapiti: The web-application vulnerability
scanner.” (2023), Available: https : / / wapiti - scanner .
github.io/.

APPENDIX A
COMPARISON WITH STATE-OF-THE-ART SCANNERS

We compare ANOTA+FUZZER against three static and two
dynamic analysis tools that share at least three supported

TABLE VII
COMPARATIVE EVALUATION AGAINST SOTA TOOLS

Pygoat FLASK DSVW VAmPI Precision Recall

P = 16 P = 5 P = 10 P = 4

TP FP TP FP TP FP TP FP

Semgrep 7 2 3 1 4 0 1 0 83.3% 42.9%
SonarQube 10 0 2 0 6 0 0 0 100.0% 51.4%
Pysa 6 1 3 0 2 0 1 0 92.3% 34.3%
ZAP 5 1 4 0 6 0 2 1 94.1% 48.6%
Wapiti 3 9 2 0 3 1 0 2 40.0% 22.9%
Atheris 0 0 0 0 0 0 0 0 0% 0%

ANOTA+FUZZER 16 0 5 0 10 0 4 0 100.0% 100.0%

TP/FP: True/False Positive, P: Positives. Precision = TP/(TP+FP), Recall = TP/P.

vulnerability types with ANOTA+FUZZER and are actively
maintained. Note that the selected projects are well-established
tools used for comparison in other academic works [12], [14],
[82], [83]. We compare against the static tools Semgrep [84],
SonarQube [85], and Meta’s Pysa [86], as well as the dynamic
tools Zed Attack Proxy (ZAP) [87] and Wapiti [88]. All tools
were configured according to official documentation, which
for tools like Pysa and ZAP involved significant manual effort
to define sources, sinks, and access rules. Static tools were
provided with source/sink data equivalent to our annotations,
though we omitted infeasible project-wide manual configura-
tions (e.g., project-wide type hinting for Pysa) that would far
exceed the effort required for ANOTA.

Table VII details the results. ANOTA+FUZZER reports all
35 bugs in scope within the 24-hour fuzzing trial. In contrast,
the second-place SonarQube detected only 18 bugs (0 false
positives), and ZAP detected 17. These results highlight the
core strength of ANOTA: combining dynamic analysis with
human-provided semantic context.

As already observed by Güler et al. [14], our findings also
suggest that dynamic scanners (ZAP, Wapiti) struggled due
to black-box limitations and shallow code coverage. Unlike
ANOTA, which can observe internal state, scanners like ZAP
often lack the granularity to distinguish between read and write
permissions, causing it to miss several vulnerabilities. During
the evaluation, we also noticed that correctly configuring the
vulnerability detection rules for ZAP requires in-depth knowl-
edge of the tool. We expect an annotation-based approach to
be more intuitive for developers.

Static tools (Semgrep, Pysa) suffered from high false nega-
tives due to a lack of runtime information. Pysa’s documenta-
tion highlights that it demands both source/sink configuration
files and extensive manual code annotations for accuracy.
While extensive manual type annotation could mitigate issues
like “taint collapsing,”, annotating full projects impractical.
Our approach involved using a thorough configuration file
while only annotating code sections pertinent to the vulnerabil-
ities. Pysa also struggles with opaque code (like C extensions),
defaulting to assuming taint propagation from arguments to
return values. ANOTA only needs the source/sink information
and overcomes this limitation by gathering accurate informa-
tion via dynamic code execution.

18

https://github.com/semgrep/semgrep
https://github.com/semgrep/semgrep
https://www.sonarsource.com/products/sonarqube/
https://www.sonarsource.com/products/sonarqube/
https://github.com/facebook/pyre-check
https://github.com/facebook/pyre-check
https://www.zaproxy.org/
https://wapiti-scanner.github.io/
https://wapiti-scanner.github.io/

	Introduction
	Background
	Limitations of Existing Sanitizers
	Motivating Example

	Design
	Annotations
	Policy Monitor
	Data Flow Monitor
	System Call Monitor
	Access Control Monitor

	Implementation
	Parsing Annotations to Policy
	Vulnerability Detection
	Sensitive Information Leakage
	Improper Access Control
	Unintended System Calls

	Evaluation
	Rediscovering Known Vulnerabilities
	Finding New Vulnerabilities with Anota+Fuzzer
	Ablation Study
	User Studies
	Annotation Study
	Real-world Developer Study

	Performance Evaluation

	Discussion and Future Work
	Comparison with DBI Frameworks
	The Semantic Gap
	Target Users
	Performance

	Target Vulnerabilities
	Integrating LLMs
	Porting to Other Languages

	Related Work
	Conclusion
	Ethics Considerations
	Appendix A: Comparison with State-of-the-art Scanners

