BSFuzzer: Context-Aware Semantic Fuzzing for
BLE Logic Flaw Detection

Ting Yangl%, Yue Qin3, Lan Zhang4, Zhiyuan Fu®, Junfan Chen®, Jice Wang5, Shangru Zhao®, Qi Li"8",
Ruidong Li?*, He Wang!, and Yuging Zhang®!*
ISchool of Cyber Engineering, Xidian University, China
2School of Natural Science and Technology, Kanazawa University, Japan
3School of Information, Central University of Finance and Economics, China
4School of Informatics, Computing, and Cyber Systems, Northern Arizona University, USA
SCollege of Cyberspace Security, Hainan University, China
6School of Computer Science and Technology, University of Chinese Academy of Sciences, China
Institute for Network Sciences and Cyberspace, Tsinghua University, China
8State Key Laboratory of Cryptology, China
yangt@nipc.org.cn, qinyue @cufe.edu.cn, Lan.Zhang @nau.edu, fuzy @hainanu.edu.cn, chenjunfan @hainanu.edu.cn,
wangjice @hainanu.edu.cn, zhaosr@nipc.org.cn, qli0l1 @tsinghua.edu.cn, Ird@se.kanazawa-u.ac.jp, hewang @xidian.edu.cn,
zhangyq@ucas.ac.cn

Abstract—Bluetooth Low Energy (BLE) has become a foun-
dational communication standard for modern connected devices.
However, its complex design introduces subtle logic flaws, such as
misinterpreted fields or invalid state transitions, that can enable
authentication bypass, unauthorized control, or Denial-of-Service
(DoS) attacks. These issues often evade conventional fuzzing and
formal analysis. To address this gap, we propose BSFuzzer, a
black-box, context-aware semantic fuzzing framework guided by
the Bluetooth Core Specification. BSFuzzer uses a Large Lan-
guage Model (LLM) agent to semantically parse the Bluetooth
specification, extracting state machines and packet semantics
from text, diagrams, and context. It then generates two types
of mutations: field-level violations of protocol rules and state-
level disruptions of key transitions. These are composed into
structured test sequences and executed on target devices. The
LLM agent is further used to verify responses against expected
behaviors, enabling detection of subtle logic flaws beyond the
reach of traditional fuzzers.

We evaluated BSFuzzer on 19 real-world BLE devices, includ-
ing 9 System-on-Chip (SoC) modules and 10 smartphones. It
uncovered 36 security issues, including 34 previously unknown
bugs, 9 of which have received CVE identifiers. Two critical flaws
were recognized by a major vendor through bug bounty pro-
grams. The experimental results indicate that BSFuzzer attains
high accuracy in both LLM-based specification analysis (up to
97%) and response validation (up to 85.8%), demonstrating its
effectiveness in semantic extraction and enhancing fuzzing per-
formance. Compared to four state-of-the-art BLE vulnerability
detection tools, BSFuzzer achieved 9.34% higher code coverage
and exposed a broader class of vulnerabilities, demonstrating its
effectiveness in uncovering deep interpretation inconsistencies in
BLE protocol implementations.

I. INTRODUCTION

The Bluetooth Low Energy (BLE) protocol, known for
its low power consumption, high compatibility, and reli-

* Corresponding authors: Yuqing Zhang, Qi Li, and Ruidong Li.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240094
www.ndss-symposium.org

able connectivity, has become a cornerstone communication
standard for a wide range of devices, including consumer
wearables, medical monitoring devices, and Industrial Internet
of Things (IloT) systems [1]-[3]. The widespread adoption
of BLE has significantly advanced device inter connectivity,
but it has also exposed security vulnerabilities in increasingly
diverse and critical application scenarios. Bluetooth-enabled
devices suffer from diverse security flaws, ranging from
privacy violations (e.g., BlueSnarfing [4], Badbluetooth [5])
and unauthorized device control (e.g., BLEEDINGBIT [6]) to
Denial-of-Service (DoS) attacks (e.g., L2Fuzz [7]). As BLE
adoption continues to expand, such security weaknesses pose
escalating threats, with potential consequences ranging from
personal data breaches to systemic failures in mission-critical
applications.

Among the security weaknesses in BLE, logic flaws pose
a uniquely critical and elusive threat due to their ability to
bypass protocol-level safeguards without causing immediate,
observable failures. By silently compromising authentication,
encryption, or access control, they allow attackers to per-
sistently undermine device integrity and exfiltrate sensitive
data without raising alarms. Moreover, logic flaws are hidden
within seemingly valid protocol interactions and are only trig-
gered under specific sequences and contextual states, making
their detection inherently non-trivial. Therefore, to enhance the
security of BLE-enabled systems, there is a pressing need for
logic flaw detection methods that preserve protocol compliance
and enable deep exploration of vulnerable states.
Research Gap. Recent research has explored various tech-
niques for identifying vulnerabilities in Bluetooth protocol
implementations, including formal specification testing [8],
state machine analysis [9], firmware emulation [10], and
fuzzing [11]-[14]. Among them, fuzzing has emerged as
the most widely adopted and practically effective approach
for exposing memory corruption bugs via crash-triggering

Traditional LLM
BLE Fuzzing Semantic Core

State Machine
Analysis

Formal Specification

Testing BSFuzzer

\
X & I &5 | ©
No Packet Limited Random I Prompt | Targeted
Mutation Mutation Mutation ¢ | Mutation
& & @ [& ! bk
Limited State Conformance State-Space | LLM Agent | Violation
Analysis Trace Explosion | l | Trace
|
¥ ¥ 2N I A
ot ot & 0 B o
Limited Limited Crash lﬂec'_ﬂca_noll Crash Bugs &

Logic Bugs Logic Bugs Bugs Diverse Logic Bugs
~ - ~

(. _

—~

Conventional Techniques Our Tool

Fig. 1: LLM-Assisted BLE Fuzzing with Semantic and Con-
textual Knowledge.

malformed packets. However, these approaches remain limited
in detecting logic flaws, which arise during valid protocol
executions without causing crashes or observable failures. De-
tecting such flaws requires context-aware reasoning about state
transitions, field constraints, and protocol-specified behavior,
which are beyond the capabilities of traditional techniques.
As a result, existing methods fall short in detecting subtle yet
security-critical logic flaws in BLE implementations.

Our Solution: BSFuzzer. To bridge this gap, we present
BSFuzzer, a context-aware semantic fuzzing framework de-
signed to systematically detect logic vulnerabilities in BLE
protocol implementations, as shown in Figure 1. Logic flaws
arise when an implementation violates high-level protocol
semantics—for example, by accepting an invalid field value
such as MaxRxOctets = 20 (below the minimum allowed value
of 27), or by permitting an out-of-order state transition, such as
enabling encryption before completing authentication. These
subtle violations often evade syntactic checks and detection,
yet can silently compromise core security properties. A notable
example is the BLUFFS attack [15], which exploited missing
state-integrity checks during key derivation to compromise
billions of Bluetooth devices. Motivated by these observations,
we enhance fuzzing with the ability to detect logic flaws
by extracting protocol semantics and contextual information
from the Bluetooth Core Specification (hereafter referred to
as the specification) and integrating them throughout the
fuzzing pipeline. This protocol-aware approach enables the
generation of semantically meaningful test cases that explore
deeper protocol states while supporting precise, automated
verification of device responses.

e Challenges. Achieving this capability involves overcoming
two fundamental technical challenges. First, the specification
encodes protocol semantics in a highly implicit and frag-
mented manner. Key rules are scattered across more than
3,000 pages of natural language descriptions, state diagrams,
footnotes, and examples. Many critical constraints are not
explicitly stated but are only implied through informal refer-
ences or widely separated sections, which makes it difficult
to extract a coherent and complete semantic model (C1).
Second, even with a semantic understanding of the protocol,

constructing test cases that reveal logic flaws requires care-
fully crafted multi-step message sequences. These sequences
must satisfy all syntactic constraints while navigating through
tightly constrained state transitions and field dependencies.
Naive mutation or random permutation strategies fail to sat-
isfy these conditions and often generate invalid or irrelevant
inputs (C2). Together, these challenges underscore the need
for a principled approach that combines semantic extraction,
structured reasoning, and context-aware test synthesis to detect
logic vulnerabilities effectively.

To address these challenges, BSFuzzer performs deep se-
mantic parsing of the specification to extract the protocol’s
state machines and packet-level semantics. Instead of rely-
ing solely on sentence-level processing, the Large Language
Model (LLM) operates at a broader scope by integrating natu-
ral language descriptions, state diagrams, and other contextual
cues to infer packet semantics (to address C1). BSFuzzer uses
the extracted semantic knowledge to generate two types of mu-
tations: field mutation and state mutation. Field mutation lever-
ages the semantic meaning of individual fields to deliberately
violate protocol rules and trigger semantic inconsistencies.
State mutation, on the other hand, exploits packet-to-packet de-
pendencies to enforce contextual constraints and strategically
inject mutations at critical points during protocol execution,
thereby altering the state machine’s behavior (to address C2).
These mutated seeds are then composed into test sequences,
which are transmitted to the System Under Test (SUT), and
the corresponding responses are collected for analysis. In the
bug verification stage, BSFuzzer invokes the LLM agent to
extract behavioral handling strategies and continuously checks
for deviations between expected and actual behaviors. Both
inconsistencies and crash-level vulnerabilities are analyzed
further, leading to detailed bug reports that uncover protocol
flaws and security weaknesses.

We evaluated BSFuzzer on 9 BLE SoC devices and 10
smartphones, uncovering 36 bug instances, with 2 previously
known. Of these, 9 were assigned CVEs, and two were
acknowledged by the vendor with bug bounties. Compared to
four state-of-the-art BLE vulnerability detection tools (Boo-
fuzz [16], LLMIF [17], SweynTooth [12], and Proteus [8]),
BSFuzzer discovered a broader range of bugs and achieved
more comprehensive coverage!. Our method achieved 9.34%
higher code coverage than Proteus, the strongest baseline. We
evaluated the effectiveness of BSFuzzer across specification
analysis, semantic seed generation, and response validation. In
specification analysis, 112 field semantics and 595 packet de-
pendencies were extracted with 92% and 97% accuracy, while
112 field-handling and 37 state-handling strategies achieved
94% and 85% accuracy, respectively. Semantic-guided muta-
tions further improved bug discovery efficiency over random
baselines. In response validation, the analyzer achieved an
average accuracy of 85.8% for field-level and 74.0% for
state-level validation. These results validate that BSFuzzer not
only improves fuzzing depth and coverage, but also enables

'In this paper, unless otherwise specified, coverage refers to code coverage.

@ Peripheral
B Scan_Req ‘—

< Scan_Rsp-
onnect_Ind >

C Step 0: Base Information Exchange)

LL_Feature_ Reg———————
[¢—— L L_Feature_ Rsp———

<7LL_Ver-sion_lnd7

C Step 1: Pairing)

[————— SM_Security_Req
SM_Pairing_Regq—————————p
[¢—————SM_Pairing_Rsp—————

—SM_Pairing_Random\SM_Pairing_DHKey_Check—>
[+—SM_Pairing_Random\SM_Pairing_DHKey_Check—

C Step 2: Encryption || Step 4:Reconnection)

LL_Enc_Req: SKDm, IVm————»

[¢—— LL_Enc_Rsp: SKDs, IVs:
[¢——— LL_Start_Enc_Reg———
ENC(SK, LL_Start_ Enc_Rspy——»
[¢——ENC(SK, LL_Start_Enc_Rspy———

K<< ————— Key and Identity Information- — — — — — —
——————— Key and Identity Information- — — — — —>>
ENC I?ATA
C Step 3: Disconnection)
I_I*ENC(LL_Terminate_ind)4>|—|
Single Packet e
Multiple Packets — — =>>

Fig. 2: The Messaging Flows in BLE Communication.

the discovery of previously undetected, high-impact flaws in
real-world BLE stacks. Our contributions are summarized as
follows:

o« We designed BSFuzzer, a novel BLE fuzzing frame-
work that operationalizes LLMs as semantic inference
engines to interpret protocol intent and guide context-
aware mutation, advancing the integration of semantic
reasoning into systematic protocol fuzzing across multi-
stage communication protocols.

o We proposed a specification-guided test sequence gener-
ator that leverages LLM-based reasoning to incorporate
semantic constraints into field-level and state-level muta-
tions, enabling the generation of state-aware, dependency-
consistent test cases that effectively uncover logical vul-
nerabilities.

o« We implemented and evaluated BSFuzzer on 19 real-
world BLE devices, uncovering 34 previously unknown
bugs (9 CVEs, two bug bounties from a major vendor).
BSFuzzer is publicly available at: https://github.com/yang
ting111/BSFuzz.git.

II. BACKGROUND AND MOTIVATION
A. BLE Protocol

In BLE communication, devices typically take on one of
two roles: central or peripheral. The central initiates and
manages communication, while the peripheral responds to
the central’s commands and data requests. The basic BLE
communication procedure is organized into multiple protocol

phases, including device discovery, connection establishment,
pairing, encryption, disconnection, and reconnection. These
phases are illustrated in detail in Figure 2.

BLE Protocol Flow. The specification formalizes interaction
sequences using Message Sequence Charts (MSCs), which
visually represent the ordered sequence of message exchanges
between the central and peripheral. Each MSC captures es-
sential information such as the sender, receiver, message type,
and temporal ordering of protocol events. Crucially, MSCs not
only illustrate the normative state transitions that occur during
standard operations but also define the expected behaviors
under exceptional conditions, including authentication failures,
timeout events, and aborted procedures. These formally de-
scribed message flows serve as the foundation for constructing
Finite State Machines (FSM) [18], which is widely used to
model, analyze, and verify protocol behavior.

Protocol Semantic Information. In BLE, it refers to the
higher-level meaning and rules that govern the expected pro-
tocol behavior beyond the raw byte-level layout of messages.
It encompasses the intended purpose of each message and
field, the conditions under which specific messages may be
transmitted, the causal and conditional dependencies among
messages across different protocol states, and the security and
consistency rules that must be strictly enforced. For example,
the rand and ediv fields carried in the LI_ENC_REQ
message are not arbitrary values; rather, they are used to locate
and validate the previously established Long Term Key (LTK)
during the encryption setup process. These semantic rules form
the critical foundation for BLE devices to operate correctly
and securely, and understanding them is essential for effective
protocol analysis and vulnerability detection.

Security Mechanisms. BLE is a layered communication
protocol composed of multiple sub-protocols, including the
Link Layer (LL), Logical Link Control and Adaptation Pro-
tocol (L2CAP), Attribute Protocol (ATT), Security Manager
Protocol (SMP), and higher-level profiles, each responsible for
distinct aspects of device interaction. The security mechanisms
in BLE are implemented across multiple protocol layers,
each serving a distinct role in enforcing different aspects of
security. The LL layer ensures encryption and privacy through
AES-CCM [19] and Resolvable Private Address (RPA)-based
address resolution, preventing eavesdropping and tracking. The
host layer, driven by the SMP, orchestrates the pairing process,
negotiates authentication methods, and manages key distri-
bution schemes, supporting both LE Legacy Pairing and LE
Secure Connections. The SMP defines how devices exchange
security capabilities and select an appropriate pairing method
based on their I/O capabilities and security requirements.
Once key exchange is completed, the LL enforces encryption
at the transport level using algorithms such as AES-CCM
to protect packet transmission integrity and confidentiality.
Security mechanisms rely on the correct execution of protocol
logic, but logic flaws break this assumption by enabling state
manipulation or violations that cause security controls to fail
or be bypassed.

Central Peripheral |

Attacker
Inject LL_LENGTH_REQ

nnecled

Premature
LL_START_ENC_REQ

[——Normal Path
[—Violation Path [\~ 7" /T e

MaxRxOctets =20 (<MinAllowed=27)

(gmamic inconsistency and "soft Iockup")

a) Malformed LL Length Request. b) Encryption State Violation.

Fig. 3: Motivation Examples.

B. Motivation: Logic Flaws Beyond Conventional Detection

Despite advances in detection techniques such as formal
specification testing [8], firmware emulation [10], and fuzzing
[11]-[14], logic vulnerabilities—stemming from violations of
protocol semantics and state machine constraints—remain
largely unaddressed. These flaws are difficult to detect, as
they rarely cause crashes and typically arise only during valid,
context-sensitive protocol executions that current tools fail to
analyze effectively. The risk is especially high in the manda-
tory LL and SMP, which govern tightly coupled procedures
like connection setup, encryption, and authentication. Their
complex, stateful interactions create fertile ground for subtle,
security-critical flaws that conventional detection techniques
are ill-equipped to expose. To illustrate these limitations
and motivate our approach, we analyze two real-world cases
uncovered during our research.

Case 1: State Inconsistency via Invalid MaxRxOctets
Value. The specification explicitly defines the valid range of
MaxRxOctets as 27 to 251 bytes, with the minimum value
of 27 ensuring basic interoperability among devices. However,
an attacker can exploit this by injecting an LL_LENGTH_REQ
containing an invalid MaxRxOctets value below the re-
quired minimum (e.g., 20), to a vulnerable device, as shown in
Figure 3a). If the peripheral device fails to enforce the lower-
bound constraint strictly, it inadvertently accepts this invalid
configuration, effectively downgrading its data reception ca-
pability to only 20 bytes. Although the connection appears
normal initially, any subsequent legitimate packets exceeding
20 bytes are silently discarded. This condition creates inter-
pretation inconsistencies and leads to a ”soft deadlock”, the
device does not crash, yet effective communication becomes
impossible.

Limitations of Existing Tools in Identifying This Vulnera-
bility. The root cause of this bug stems from the BLE protocol
stack’s failure to strictly enforce the specified MaxRxOctets
range and to execute the logic flow as defined by the spec-
ification. Insufficient validation of out-of-range values and
inadequate error handling mechanisms allow devices to accept
invalid configurations, leading to an overly restrictive receive
buffer that silently discards legitimate packets exceeding the
configured size. This disrupts normal communication with-
out explicit error notifications. Contributing factors include
inadequate input validation, deficient error handling routines,

improper state management, and developers’ incomplete or
inconsistent interpretation of the specification. Existing ap-
proaches primarily monitor device feedback without reasoning
about protocol logic. As a result, they cannot verify the
correctness of responses to semantically invalid inputs and
often miss logic-level flaws.

Case 2: State Machine Violation via Premature LL._START
_ENC_REQ. According to the Bluetooth Core Specifica-
tion, the encryption start request LI_START_ENC_REQ
should only occur after successful pairing and encryption
start procedures. However, in flawed implementations, if
LL_START_ENC_REQ is sent immediately after establishing
a connection, the peripheral device does not reject it due to
incorrect state validation but instead prematurely transitions
into encryption mode without negotiating a session key, as
shown in Figure 3b). An attacker can exploit this flaw by
prematurely injecting an LL_START_ENC_REQ packet right
after connection establishment, forcing the device into an en-
crypted communication state. This premature transition leads
to a mismatched encryption context, where the central and
peripheral disagree on encryption status, ultimately resulting
in failed communication and a connection timeout.
Limitations of Existing Tools in Identifying This Vul-
nerability. The root cause of this bug lies in the BLE
peripheral device’s improper implementation of state machine
validation and insufficient input checks when processing the
LL_START_ENC_REQ packet. This issue stems from devel-
opers’ failure to strictly adhere to the Bluetooth Core Specifi-
cation, including neglecting to enforce logic for rejecting unex-
pected packets and omitting robust state transition validations.
Moreover, the flawed assumption that the central device would
always conform to specification-compliant behavior resulted in
insufficient defensive programming, allowing premature state
changes without verifying the existence of a valid session key
and ultimately leading to a mismatched encryption context.
Existing tools, such as formal specification testing [8] and state
machine analysis [9], cannot reliably generate the packet se-
quences required to reach vulnerable states or verify deviations
from expected behavior, leaving them ineffective for detecting
this class of vulnerabilities.

III. DESIGN
A. Overview

The core idea of BSFuzzer is to integrate BLE protocol
knowledge into the fuzzing process to enable the detection
of semantic and logic flaws. By leveraging insights derived
from the specification, BSFuzzer guides state tracking, en-
forces protocol constraints during test generation, and per-
forms precise verification of device responses, thereby facili-
tating deeper, context-aware exploration of protocol behavior.
Figure 4 shows the overall framework of BSFuzzer, which
comprises three components: semantic parsing, test sequences
generation, and bug verification. The input to BSFuzzer is
the specification document. Specifically, (1) BSFuzzer begins
by performing semantic parsing, which extracts two types of
protocol knowledge from the specification: the state machine

e N

Semantic Parsing
@Ostate 7~ 77~ ||® Seed

Test Sequences Generation
(@ Sequence

| | ; N
=] Construction| '@ < Generation Generation
) — — —_ — — — —_— -
ooy vyl =14 |0
Speaflcallon tocoy | State (3)se %
P arg | Machi oration, Semantic Test D
I mé achine | Gener™" - geeqs Sequence
| O | 2|l
| Packet . o 3
l | Semantic | _ _@_Del_ectﬁn_ _! 8 g
L | | Information | | J| 2 S
'd | g %
|_ @ R_ule_Extr_acilon |§| @LDetecnon D @ Detection D - % é
| Handling | Identified Response
| Strategies Deviations Sequence __/
:BLE Protocoll i
\Knowledge) @ Analyzing
————— - b

———-» LLM-assisted process Bug Crash

Report Information

— > Non-LLM ificati
on-LLM process Bug Verification -

.

Fig. 4: Overview of BSFuzzer.

(derived from MSCs in step @), and the packet semantic
information (extracted by an LLM agent via protocol parsing
in step). Together, these two outputs serve as the foundation
for understanding protocol logic and behavioral constraints.
(2) Based on this extracted semantic knowledge, BSFuzzer
performs semantic seed generation. It produces field seeds
(semantically meaningful input values) and state seeds (inputs
designed to trigger specific transitions), as shown in step Q.
These seeds are used in step @ to synthesize context-aware
test sequences that comply with the protocol’s encryption,
timing, and fragmentation rules. The generated sequences
are then transmitted through a Bluetooth controller to the
SUT, and the corresponding response sequences are collected.
(3) In the bug verification stage, BSFuzzer uses the LLM
agent to extract behavioral handling strategies (step @) and
continuously checks (step ®) for any identified deviations
between the expected protocol behavior and actual device
responses. Both deviations and crash artifacts are subjected
to further analysis, enabling the generation of detailed bug
reports that reveal potential security flaws.

B. Semantic Parsing

BSFuzzer leverages an LLM agent to extract protocol state
machines and packet semantics from natural language, state
diagrams, and scattered references, capturing key elements that
are often implicit and dispersed throughout the specification.
Below, we elaborate on the parsing process.

1) State Machine Construction: We parse the MSCs de-
fined in the specification to extract the underlying protocol
logic and construct the corresponding protocol state machines.
For example, Figure 5 illustrates the state machine extrac-
tion process for the Start Encryption procedure. Figure 5a)
shows the corresponding MSC, while Figure 5b) presents the
extracted state machine from the perspective of the Periph-
eral. The message sequence is segmented into two macro-
transitions. The first transition, from state Sy to Sy, is trig-
gered by the exchange of LL_ENC_REQ, LI,_ENC_RSP, and
LL_START_ENC_REQ, which represent the negotiation phase
of the encryption setup. The second transition, from S; to Ss,
involves the bidirectional exchange of LL,_START_ENC_RSP,

Peripheral

Current State _Input/Output Next State

[€—LL_START ENC REQ
LL_START_ENC_RSP

S0 LL_ENC_REQ / LL_ENC_RSP, LL_START_ENC_REQ Sl
st LL_START_ENC_RSP / LL_START_ENC_RSP

[¢—LL_START_ENC_RSP

a) Message Sequence Chart. b) State Machine Extraction.

Fig. 5: State Machine Extraction of the Start Encryption
Procedure on the Peripheral.

indicating mutual confirmation and completion of the encryp-
tion process. These state transitions are derived based on the
temporal ordering and directionality of the messages in the
MSCs. At each protocol state transition, we assign a label
that records the expected input message and the corresponding
output message during that transition by iterating over the
MSCs defined in the LL and SMP procedures. We can
construct a state machine that captures the normative behavior
of the Peripheral during protocol execution.

2) Packet Semantic Information Parsing: BSFuzzer extracts
two types of packet semantic information from the specifica-
tion: single field semantics and packet-packet dependency, as
illustrated in Figure 6.

Single Field Semantics. BSFuzzer employs a structured
prompt (see Appendix A.l) that instructs the LLM agent to
extract three key semantic attributes for each field: Bit Length,
Semantic Role, and Defined Values. The Bit Length ensures
structural correctness by enforcing the proper encoding size,
preventing the generation of malformed packets that would
be rejected by the target device. The Semantic Role, which
describes the field’s functional purpose within the protocol, is
critical for modeling packet-packet dependency. The Defined
Values capture valid ranges and special constants specified in
the protocol, serving as the foundation for seed generation. For
example, the max_rx_bytes field in the LL_LENGTH_REQ
packet is a 16-bit value used to negotiate the maximum number
of payload bytes a device can receive. The minimum valid
value is explicitly defined as 0x001B, while the maximum
is implicitly limited by the field’s size to 0xOOFB. BSFuzzer
utilizes this information to ensure that the generated values
strictly conform to the 16-bit format. Beyond structural com-
pliance, BSFuzzer further exploits the Defined Values con-
straints to deliberately construct semantically invalid inputs,
such as 0x001A.

Packet-Packet Dependency. In stateful protocols, a packet-
packet dependency exists when a field (f; € P;) constrains
the value or validity of a field (fy € P»), as dictated by
protocol specifications or cryptographic mechanisms. Guided
by a prompt (see Appendix A.2), the LLM agent extracts
semantic links between fields in different packets using both
textual definitions and normative constraints found in the
specification. The prompt defines both the analysis input and
the evaluation criteria, requiring the model to (1) strictly
adhere to protocol-defined semantics, (2) detect only direct
dependencies—where one field directly determines another,

| For example: |
| Packet name: LL Length Request, Field name: max rx bytes
Bit Length: 16
_>| Semantic Role: Specifies the maximum number of octets that |
the sender can receive.

1.Single Field Semantics
Bit Length: Number of bits it occupies.
Semantic Role: The meaning of the field.
Defined Values: Possible values and their
interpretations.

| Defined Values: 0x001B-0x00FB (Minimum value 27 octets, |
| maximum value 251 octets per Bluetooth LE Data Length |
(_Extension)

[For example: |
| Packet name 1: Pairing Random
Packet name 2: Encryption Information |
| Cross packet dependency: |
Random — LTK: "The 'random' value from the Pairing
[Random packet is a direct input to the key derivation function
| (e.g., using algorithms like AES-CMAC) that generates the |
¢ I . . | LTK in the Encryption Information packet, as defined by the
Field Ax — Field By: The semantic dependency exists Bluetooth Core Specification. The LTK calculation depends
between the two fields. | deterministically on both the initiator's and responder's pairing |
""" (_random values.”

2.Packet-Packet Dependency
Packet Name 1: Packet A
Packet Name 2: Packet B
Cross packet dependency:
Field Ax — Field Bx: The semantic dependency exists
between the two fields.

N p——
Packet A Preamble| Access Address| LF_ie_Id_Aixj| Field Ay | | CRC|
Packet B |Preamb|e| Access Address| Field Bx | Field By | ------ CRC|
Payload

Fig. 6: Example of Extracted Packet Semantic Information.

and (3) exclude indirect or speculative associations involving
intermediate fields. For instance, as illustrated in Figure 6, the
prompt enables the agent to identify a contextual dependency
between the Random field in the PATRING_RANDOM packet
and the LTK field in the ENCRYPTION_INFORMATION
packet, where the Random field directly influences the key
derivation process according to the specification. More gen-
erally, by modeling interactions across protocol stages, BS-
Fuzzer identifies dependencies where a field in a prior message
constrains subsequent messages, capturing the semantic links
governing valid protocol behavior.

C. Test Sequence Generation

Our approach uses specification-derived packet semantics
and protocol states to generate test sequences that maintain
valid context while deliberately violating selected constraints
to trigger logic flaws. This ensures anomalies stem from
intended violations rather than unrelated misconfigurations.
BSFuzzer first generates semantic seeds, then constructs and
sends complete packet sequences to the SUT. Below, we
elaborate on the process of test sequence generation.

1) Seed Generation: We implement two mutation strate-
gies: (1) field mutation, focusing on the SUT’s handling of
anomalous values within packet fields; and (2) state mutation,
focusing on the SUT’s ability to manage states throughout the
entire protocol interaction flow.

Field Mutation. BSFuzzer employs a structured prompt (see
Appendix A.3) that instructs the LLM agent to generate
semantically guided mutations for a target field, enabling both
semantic-logic testing and crash-bug exploration. The prompt
defines the mutation scope and guides the process through five
concrete mutation strategies: (1) Semantically Invalid Values:
These values violate the protocol’s defined value constraints
as specified in the packet semantic information, which are
used to evaluate how strictly an implementation adheres to
protocol rules. (2) Bit-Length Boundary values: For each field,
we generate boundary values based on its defined bit length.
These values are useful for triggering edge-case behaviors.
(3) Bit-Flip Mutations: Individual or multiple bits in the field
are flipped to reveal improper masking or parsing errors in

Pairing DHKey Check

Access Address,/Data Header,/L2CAP Header ~ Opcode.

2]
Mapper
DHKey Check CRC
P ’ 4 Bytes ‘ 16 Bytes ’ 3 Bytes
Cryptographic
Calculation /Access Address/Data Header/L2CAP Header,”Opcode / DHKey Check CRC
Pi | ocarcachea | ox1506 ’ 0x 11 00 00 06 ’ 0x0d | Oxcd3da9 ‘ 0x 282902

Fig. 7: Transformation of Abstract PAIRING_DHKEY_CH
ECK into Concrete BLE Packet.

2 Bytes 4 Bytes 1Byte

the implementation. (4) Length-Specific Structural mutations:
For fields that define length semantics, we apply structural
mutation strategies that intentionally create inconsistencies
between the declared length and the actual data size. By
crafting payloads that exceed or fall short of the specified
length, these mutations induce parsing errors or unexpected
behaviors. (5) Random Values: A controlled proportion of field
values are randomly generated within the field’s bit range. This
introduces noise to cover a wider value space.

State Mutation. BSFuzzer employs a structured prompt (see
Appendix A.4) that instructs the LLM agent to generate test
paths around a target packet based on the specification-derived
state machine (Section III-B1) and packet dependencies (Sec-
tion III-B2). For each target packet, we analyze the specifica-
tion to determine its state transition requirements (e.g., prereq-
uisite conditions and valid state sequences) and, using packet
dependency information, identify the critical protocol assump-
tions such as mandatory pre-state completions, restrictions
on repeated operations, and constraints on permissible state
transitions. Based on these dependencies and the baseline state
machine, we construct packet transmission paths that deliber-
ately violate at least one of these assumptions. Each mutation
path includes the target packet and falls into one or more of
the following categories: (1) Prestate Not Completed: sending
a packet before its prerequisite states or dependent packets
have been satisfied; (2) Repeated Operations: re-sending a
state-altering packet already processed, thereby violating one-
time-use constraints; (3) Unexpected State Change: forcing the
system into an invalid or undefined state by manipulating the
order of state transitions; (4) Combined Violations: combining
two or more of the above violation types to achieve deeper
coverage of potential logic flaws.

2) Sequence Generation: This part is built upon two core
components: a Mapper, which instantiates abstract protocol
packets, and a Cryptographic Calculation Module, which en-
sures compliance with protocol-specific security requirements.
Together, these components enable the construction of context-
aware test inputs, forming the foundation for executing both
field mutation and state mutation strategies.

Mapper. Responsible for converting abstract representations
of protocol messages, derived from protocol state machines
or state mutation strategies, into fully structured binary packet
formats. During this process, the Mapper populates each field
based on configuration templates and dependency constraints,
ensuring syntactic correctness and contextual relevance. As
illustrated in Figure 7, the abstract message w is translated into

a structured packet format P, which is a hierarchical structure
composed of multiple layers, with each layer containing fields
that represent specific attributes of the BLE protocol.
Cryptographic Calculation Module. This component is re-
sponsible for computing values in security-critical fields to
ensure that the generated packets conform to protocol security
requirements. At the LL, it handles real-time encryption and
decryption in coordination with key management. In addition,
segmentation is applied to satisfy physical-layer transmission
constraints, ensuring that packet construction reflects realistic
protocol behavior. At the SMP layer, it executes cryptographic
algorithms to derive key material and validate the authenticity
of exchanged messages. As illustrated in Figure 7, this module
processes the structured packet P and computes session-
specific cryptographic fields to produce the final transmission-
ready packet P). The parameters required to compute the
PAIRING_DHKEY_CHECK value, such as random numbers,
pairing credentials, and role identifiers, are dynamically gen-
erated during the pairing process to reflect the session-specific
security context.

The Sequence Generation process is adapted according to
the mutation strategy in use: For field mutation, we follow a
valid protocol execution path as defined by the state machine.
Abstract packets are instantiated into concrete formats using
the Mapper. Along this execution path, we identify the target
packet for mutation. When the protocol flow reaches this
packet, the designated field is modified to the mutation value.
Throughout this process, the message sequence, session state,
encryption status, and other contextual parameters remain
unchanged, ensuring that any observed behavioral differences
are attributed solely to the mutated field. For state mutation,
BSFuzzer operates at the message-sequence level. The entire
packet sequence is constructed based on mutated control logic
derived from a state seed. Each packet in the mutated sequence
is then instantiated using the Mapper and processed through
the Cryptographic Calculation Module to ensure semantic and
cryptographic correctness.

D. Bug Verification

BSFuzzer extracts field-level and state-level handling rules
from the specification and employs an LLM agent to vali-
date device responses against expected behaviors, revealing
improper field handling and state inconsistencies. It combines
automated checks with targeted analysis to efficiently detect
logic flaws in critical transitions and unexpected acceptances.
We elaborate on the verification process as below.

1) Handling Rule Extraction: BSFuzzer supports two pro-
tocol validation types: field-level, which targets violations
in individual message fields, and state-level, which detects
inconsistencies caused by invalid protocol states, as shown in
Figure 8.

Field-Level Rule Extraction. BSFuzzer employs a prompt
(see Appendix A.5) that instructs the LLM agent to analyze the
field semantics and derive the corresponding handling rules.
This prompt guides the model through two main components:

(~ Compliance
Checking

® Clause Reference

(Expected
Behavior

*| @ Primary Action

@ Invalid Conditions o ErrorSignaIing/

a) Field-Level Validation.

(Precondition (State Validation
Valid State

Compliance ® Connection State
- ® Response Packet
Checking —>| ® Pairing Phase
® Clause Reference

Invalid State
® Previous Packet ® Error Response

® Role ® Error Code

b) State-Level Validation.

Fig. 8: Handling Rule Extraction.

(1) Violation Scenarios, which distinguish between protocol-
level violations, where field values directly violate format
or range constraints, and capability mismatches, where the
values are technically valid but exceed the implementation’s
supported limits; (2) Behavior Prediction, where the model
identifies the mandatory behavior required by the specification,
any recommended behavior for optional handling, and the
expected error signaling actions—such as silent drop, sending
an error code, or issuing a reject packet. This structured
extraction allows BSFuzzer to map field-level violations to
their expected protocol responses, enabling precise compliance
checking against the normative specification.

State-Level Rule Extraction. BSFuzzer uses a prompt tem-
plate (see Appendix A.6) designed to extract the required
preconditions under which each protocol message may be
processed. This prompt guides the model through two main
components: (1) Precondition Extraction, where the model
identifies the contextual requirements under which a given
protocol message is allowed to be processed. These precon-
ditions are based on factors such as the stack layer, device
role, packet type, packet direction, and security mode. The
model determines whether the current device state satisfies
these normative conditions defined in the specification. (2)
Behavior Prediction, where the model infers the expected
response behavior based on the state validation result. If the
preconditions are satisfied, the model identifies the correct
next-step behavior as defined by the specification. If the
preconditions are violated, the model extracts the mandated
error-handling behavior, including the type of rejection packet
and the corresponding error code required by the protocol.
This structured extraction allows BSFuzzer to validate state-
dependent protocol logic and detect semantic inconsistencies
that arise from processing packets in invalid contexts, enabling
comprehensive state-level compliance checking.

2) Inconsistency Detection: This module leverages an LLM
agent to compare device responses with expected protocol
behaviors, thereby identifying inconsistencies in protocol im-
plementations. It adopts two targeted prompt designs:
Field-Level Validation. We focus on the handling of anoma-
lous values in individual fields of BLE control packets (see
the field validation prompt in Appendix A.7). (1) The LLM

agent first determines whether the mutated field values comply
with the Bluetooth Core Specification. (2) If the field value is
invalid, it further checks whether the device’s response adheres
to the protocol-defined error-handling logic.

State-Level Validation. We target interaction sequences con-
sisting of multiple BLE packets (see the state validation
prompt in Appendix A.8). (1) The LLM agent verifies, packet
by packet, whether the device is in a valid protocol state to
legally receive the current packet. (2) If the precondition state
is valid, the LLM agent checks whether the device’s response
follows the expected state transition; if the precondition state
is invalid, it checks whether the device correctly returns the
corresponding error response as specified.

3) Bug Analysis: We manually analyze each logged incon-
sistency to trace its root cause and determine whether it orig-
inates from implementation defects or protocol misinterpreta-
tions. To minimize the amount of manual analysis required,
we designed distinct verification rules for field mutations and
state mutations.

Field-Level Analysis. We use the expected behaviors defined
in the Bluetooth Core Specification to assess whether the
device’s responses are correct. Because mutated packets are
deliberately crafted to violate protocol rules, rejecting them
is typically considered normal. Verification, therefore, focuses
only on cases where invalid inputs are unexpectedly accepted.
If the device correctly rejects a mutated input, no further action
is required. However, if it unexpectedly accepts the input, the
corresponding sequence is subjected to further analysis.
State-Level Analysis. These usually involve packet sequences
designed to violate the expected state machine behavior. We
focus only on critical state transitions. First, we identify
packets capable of triggering significant protocol state changes
and exclude those that do not lead to meaningful transitions
(e.g., LL_VERSION_IND in the Link Layer). Verification
then checks whether these critical state transitions occur as
expected. This selective focus on a small number of high-
risk events significantly reduces the need for extensive manual
analysis.

IV. IMPLEMENTATION

We have implemented BSFuzzer in Python 3 [20] using
a modular approach to facilitate future extensions. We ran
our tool on Ubuntu 22.04.4 LTS, 16GB RAM, Intel Core
i7-13700F CPU, 500GB Disk, and nRF52840 dongle [21].
We utilized the driver developed in the SweynTooth [12] and
flashed it to the nRF52840 dongle, enabling the dongle to send
and receive raw LL packets to and from the BLE device.
LLM Usage. We develop an LLM agent system powered
by Grok-3 [22], capable of semantic understanding and rea-
soning over protocol specifications. The specification is first
modularized by sub-protocol, and each module is embedded
into vector representations using OpenAI’s text-embedding-3-
large model [23]. These embedded modules serve as callable
external knowledge sources, enabling the agent to perform
semantic retrieval, interpretation, and alignment of normative
content.

Semantic Parsing. We modeled the BLE protocol as Mealy
machines and generated DOT files for both the Legacy Pairing
and Secure Connections Pairing methods. To ensure that
the extracted data is accurate and factual, we set the LLM
temperature to 0 when parsing structured information from the
BLE specifications. This parsing process is a one-time effort.
From the specifications, we extracted semantic information
for the LL and SMP layers, covering 84 fields across 22
LL packets and 34 fields across 14 SMP packets. Based on
these field semantics, we identified 48 pairs of packets with
dependency relationships, including 22 intra-LL dependencies,
17 intra-SMP dependencies, and 9 cross-layer dependencies
between LL and SMP.

Test Sequence Generation. BSFuzzer mutates state-machine
traces extracted from the specification and subsequently val-
idated on real devices. Mutation operators are derived from
specification-defined semantic dependencies and interaction
patterns, each encoding a specific intent and applying con-
trolled changes to field constraints or state transitions. Using
an LLM with temperature set to 1, we generated diverse
and semantically valid seeds for both Legacy and Secure
Connections pairing. These seeds were executed by a 2K-line
Python sequence engine that constructs protocol-consistent
test flows, resolving dependencies and handling cryptographic
parameters across key BLE interactions, including connection
establishment, capability negotiation, encryption initiation, and
reconnection, to achieve semantic coverage of real-world pro-
tocol behaviors.

Bug Verification. To validate protocol compliance, we again
used the LLM with the temperature set to 0. To reduce manual
analysis effort, we implemented over 300 lines of Python code
to define filtering rules, thereby further narrowing down the
results requiring human verification.

V. EVALUATION

To evaluate the effectiveness of our tool, we conducted
experiments on real-world BLE protocol implementations. Our
evaluation aims to answer the following questions:

Q1. Does our tool achieve better detection of logic vulner-
abilities than existing BLE fuzzers? (Section V-B)

Q2. How does each component of our design contribute to
discovering logic vulnerability? (Section V-C)

Q3. Can our tool uncover previously unknown bugs in real-
world BLE protocol implementations? (Section V-D)

A. Experimental Setup

1) Real-world BLE devices: To evaluate the generalizabil-
ity and robustness of our approach, we selected 9 different
BLE SoCs from 9 distinct vendors (such as Cypress [24],
Microchip [25]) and 10 smartphones from 7 major smartphone
manufacturers (such as Google [26], Huawei [27]), ensuring
broad coverage of widely used BLE platforms and popular
commercial brands. As summarized in Appendix B.1, these
devices span various BLE versions and are representative of
mainstream deployments. The selected BLE SoCs are widely
integrated into products across multiple industries, including

SweynTooth Boofuzz LLMIF BSFuzzer Proteus

Device Boofuzz LLMIF SweynTooth Proteus BSFuzzer

M S I M SI MG SI MSIMSII
CYSCKIT-042BLE 0 0 0 0 0 O 1 0 O 0 0 0 1 1 1
WBZ451 1 001 0 O0T1 00 0 001 1 1 -
ESP322WROOM-32E 1 0 0 1 0 0 1 0 1 0 1 1 1 2 2 Mermory and Inconsistency Bug
RTL8762EKF-EVB 1 001 0 O0T1T 00 0 1 01 3 0 {consistency Bug,
SUM 3003 004 00 0 2 1 4 7 4 e it

Inconsistency Bug

Note: The table shows the number of discovered bugs in three categories: M (memory corruption),

S (state bugs), and I (inconsistency bugs).

a) Bugs Found on Different Devices.

b) Bug Categories across Tools.

Fig. 9: Comparison of Bugs Discovered by Different Fuzzing Tools.

smart home systems, wearable devices, medical equipment,
and industrial automation. Each SoC-based device was pro-
grammed using the sample code provided by its corresponding
Software Development Kit (SDK), and by modifying the
configuration files, we customized key parameters such as
pairing methods and authentication modes. For smartphone-
based evaluation, we leveraged nRF Connect to configure the
mobile devices as servers and enable advertising, allowing us
to flexibly set different device modes and conduct experiments.
2) Baseline Methods: We select four fuzzing tools as our
baseline: Boofuzz [16], LLMIF [17], SweynTooth [12], and
Proteus [8]. These tools are either published in top security
conferences or widely recognized in the community. Boofuzz
and LLMIF are general-purpose black-box fuzzing tools for
IoT protocols, while SweynTooth and Proteus are dedicated
fuzzers for BLE protocol implementations. Boofuzz is widely
adopted in the security industry for protocol fuzz testing; in
our evaluation, we use Boofuzz to define the structure of BLE
packets and adopt its default mutation strategies as a baseline
for comparison. LLMIF integrates LLM into the fuzzing
process and, although originally designed for Zigbee protocol
testing, its prompt-based architecture is adaptable to BLE. We
leverage LLMIF’s prompt templates for BLE seed generation
and response verification as part of our comparative analysis.
SweynTooth is a BLE-specific fuzzer that applies particle
swarm optimization to discover bugs. It focuses on detecting
memory-related crashes and has successfully identified a set of
such flaws in BLE protocol stacks from several major vendors.
In contrast, Proteus adopts a model-guided approach using
protocol state machines and predefined properties to uncover
state-related logical bugs in BLE implementations.

B. Comparison with Existing Works

To evaluate the effectiveness of our approach, we compare
it against existing baseline tools across three key dimensions:
qualitative comparison, bug detection capability and coverage
growth over time.

1) Qualitative Comparison: As summarized in Table I, we
compare our tool with baseline works across five qualitative
dimensions. Among these tools, Boofuzz and SweynTooth do
not leverage any form of protocol specification knowledge
to guide test case generation. Instead, they adopt traditional
fuzzing strategies based on generic input mutation, which

TABLE I: Comparison with Baseline Tool.

Speci . Semantic Semantic Bug
pecification ~ State . .
Tool Awareness Awareness Awareness Consistency Detection
Mutation Verification Diversity
Boofuzz X X X X M
LLMIF v X v X M
SweynTooth x v X X M/T
Proteus v v v X S/
Our tool v v v v M/S/

Note: M (memory corruption), S (state bugs), and I (inconsistency bugs).

limits their ability to generate semantically valid or state-
sensitive inputs. In contrast, LLMIF, Proteus, and our tool
incorporate specification-aware logic. Notably, only our tool
supports fine-grained semantic analysis at both the field level
and the state level. SweynTooth, Proteus, and our tool support
stateful fuzzing, which enables the preservation and manipu-
lation of internal BLE protocol states during test execution.
This capability allows these tools to explore deeper protocol
logic and trigger state-dependent bugs. Regarding bug detec-
tion diversity, baseline tools such as Boofuzz, LLMIF, and
SweynTooth primarily identify memory-related bugs. Proteus
expands this scope by including state logic errors and spec-
ification inconsistencies. Proteus demonstrates improved bug
exposure through state and inconsistency analysis, but lacks
support for semantic consistency verification, which is critical
for identifying complex bugs stemming from interactions
between protocol layers.

2) Bug Detection Capability: We selected four BLE SoCs
as benchmarks and compared our approach against existing
baseline works. We present a detailed comparison of the
number and types of bugs discovered during a 24-hour fuzzing
session, as shown in Figure 9a) and Figure 9b). Boofuzz
and LLMIF are not specifically designed for BLE protocols
and therefore lack support for BLE-specific state transitions,
making them incapable of exploring deep protocol logic and
uncovering state-dependent bugs. SweynTooth, while effective
in detecting certain implementation flaws, is unable to identify
state-dependent issues due to the absence of appropriate test
oracles. Proteus’s detection is limited to predefined properties
in the BLE Core Specification, identifying only explicitly
specified violations while missing deep logical vulnerabilities
requiring understanding of protocol states, field semantics, and
behavioral logic. In contrast, our approach leverages protocol
semantics-aware test generation and enables semantic consis-

tency verification of test cases and responses to reveal hidden
inconsistencies, potentially uncovering bugs overlooked by
existing methods.

1600
1400
1200
1000
800
600
400
200
0

- LLMIF
Boofuzz

Branches Covered

- SweynTooth
- Proteus
- BSFuzzer

012345678 9101112131415161718192021222324
Hours

Fig. 10: Branch Coverage Over Time for Different Fuzzing
Tools.

3) Coverage Growth Over Time: The objective of fuzzing
is to maximize the activation of distinct logical execution
paths within the target implementation. Higher code coverage
indicates that the method more effectively explores protocol
logic, state transitions, and boundary conditions, thereby facil-
itating the discovery of deep logical flaws. Since our approach
targets the LL and SMP sub-protocols as integral components
of the full protocol stack, we adopt coverage growth over
time as the evaluation metric and compare our results against
existing baseline tools. To evaluate the code coverage of our
approach, we compare the results against existing baseline
tools. However, since most BLE SoCs do not open-source
their protocol stack implementations, existing evaluations are
typically limited to black-box testing without access to internal
coverage metrics. We follow Proteus’s methodology by run-
ning the open-source bt stack and collecting coverage data
via gcov every five minutes. We repeated the entire fuzzing
campaign three independent times, and the observed variation
among runs was very small (standard deviation < 0.018). As
shown in Figure 10, our method achieves a 9.34% increase
in code coverage compared to Proteus, which was previously
reported to achieve the highest coverage among existing tools.

The improvement in code coverage is related to the protocol
depth explored by our fuzzing tool. LE Legacy Pairing and
Secure Connections Pairing represent two distinct authen-
tication and key establishment procedures, each involving
different message sequences, cryptographic computations, and
state transitions. By supporting both pairing modes and the
associated encryption-handling logic, our approach is capable
of triggering a diverse set of code paths. In addition, our field
mutation and state mutation mechanisms enable the precise
triggering of edge-case behaviors and state-dependent logic
within the protocol implementation. As a result, our tool
exercises deeper protocol logic, thereby achieving broader
code coverage.

C. Effectiveness

1) Effectiveness of LLM-based Specification Analysis: We
first analyzed early LLM extraction results to identify common

10

hallucination and omission patterns. Based on these observa-
tions, we introduced structured output constraints and explicit
specification references to guide the generation process. The
prompts were iteratively refined through measured accuracy
and detailed error analysis on manually annotated samples,
with each iteration re-evaluated until the accuracy converged
to a stable level. During extraction, every artifact is validated
across multiple runs, and any inconsistency or reference viola-
tion triggers targeted manual review. In practice, all 22 LL and
10 SMP Message Sequence Charts were correctly transformed
into protocol state machines; 112 field semantics and 595
packet dependencies achieved accuracies of 92% and 97%,
respectively; and 112 field-handling and 37 state-handling
strategies reached accuracies of 94% and 85%. The entire
analysis, encompassing state machine derivation, semantic
extraction, and handling strategy identification, is performed
once as a preprocessing step. The resulting structured artifacts
are cached and reused across all fuzzing runs, while manual
verification requires only about 4.5 hours in total.

2) Effectiveness of Semantic Seed Generation: To evaluate
the effectiveness of semantic seed generation in triggering
protocol bugs, we conducted a comparative study on two BLE
devices, comparing semantic seeds with randomly generated
seeds under two mutation strategies: field mutation and state
mutation. Each strategy includes a semantic-aware variant and
a random baseline:

o For field mutation,

— Fs uses field values guided by protocol semantics,
— Fr relies on randomly generated field values.
o For state mutation,
— Ss generates state transitions guided by analyzing
protocol dependencies,
— Sr performs random state transitions without seman-
tic consideration.

8 8
7 —— BSFuzzergs 7 —— BSFuzzersg
—%— BSFuzzers, —>— BSFuzzers,
. L0
55 55
IS} o
o4 o4
= =
2 3 2 3
2 2
14 1
0 100 200 300 400 500 600 700 800 9001000 0 100 200 300 400 500 600 700 800 9001000
a) Field Mutation Iterations in ESP32-WROOM-32E b) State Mutation Iterations in ESP32-WROOM-32E
8 8
7 —— BSFuzzergs 7 —— BSFuzzerss
6 —>%— BSFuzzerg, 6 —»— BSFuzzers,
55 55
<} o
o4 o4
= =
a3 g3
2 2
1 1
0 100 200 300 400 500 600 700 800 9001000 0 100 200 300 400 500 600 700 800 9001000
¢) Field Mutation Iterations in RTL8762EKF-EVB d) State Mutation Iterations in RTL8762EKF-EVB

Fig. 11: Effectiveness of Semantic vs. Random Seed Genera-
tion under Field and State Mutation Strategies.

As shown in Figure 11, BSFuzzerp, is more effective at
producing edge cases and malformed inputs, leading to faster
and more consistent discovery of bugs and inconsistencies.

TABLE II: Details of Discovered Bugs.

ID Bug Description Pair. Issue CVSS Security Impact Summary Spec. Ref.
Ml Buffer overflow via oversized len in LL_PAUSE_ENC_REQ Leg. DoS 6.5 Causes crash due to unchecked field size -

M2 Buffer overflow via RFU=7 in L1_TERMINATE_IND - DoS 43 Improper handling of reserved value leads to memory fault -

M3 Invalid ChMap=0x0 in CONNECT_REQ - DoS 6.5 Triggers crash during setup, preventing new connections V6B§4.5.8
M4 Invalid AccessAddr=0x0 in CONNECT_REQ - DoS 6.5 Triggers crash during setup, preventing new connections V6B§2.1.2
M5 Invalid t imeout=0xFFFF in CONNECT_REQ - DoS 6.5 Triggers crash during setup, preventing new connections V6B§4.5.2
M6 Invalid win_of fset=0xFFFF in CONNECT_REQ - DoS 6.5 Triggers crash during setup, preventing new connections V6B§2.3.3
S1 Accepts LL_PAUSE_ENC_REQ before encryption is enabled - DoS 7.5 Allows early transition to encryption pause state V6B§4.7

S2 SK reuse allows reconnection without re-pairing SC SecByp 8.8 Enables attacker to rejoin session using old SK V3H§2.3.5
S3 Accepts zero LTK after PATRING_FAILED Leg. SecByp 8.1 Neglects key validation; encryption proceeds with all-zero key =~ V3H§2.4.4
S4 Misaligned state by early LL_ENC_REQ before pairing - DoS 7.5 Improper sequence handling leads to desync V3H§2.4

S5 Accepts LL_START_ENC_RSP before pairing - DoS 8.1 Fails to verify preconditions before encryption start V6B§4.7

S6 Multiple LL_LENGTH_REQ causes crash - DoS 6.5 Flooding LL_LENGTH_REQ causes stack overflow V6B§4.5.10
S7 Accepts LL_START_ENC_REQ before pairing - DoS 7.5 Bypasses authentication phase during pairing V6B§4.7

S8 Accepts PATRING_RANDOM before public key exchange SC DoS 7.5 Breaks pairing sequence V3H§2.3.5.7
11 Accepts LL_LENGTH_REQ with max_tx_bytes < 27 - DoS 6.5 Violates minimal payload constraint V6B§4.5.10
12 Falls back to Legacy despite SC request SC Downg. 7.6 Allows downgrade to weaker authentication mode V3H§2.2

13 Incorrect response to malformed LL_PAUSE_ENC_REQ with invalid RFU - - - - V6B§4.7

14 Incorrect response to malformed LL_LENGTH_REQ with invalid params - - - - V3H§2.3.5.10
15 Disconnect triggered by premature LL_PAUSE_ENC_REQ - DoS 4.5 State inconsistency during encryption setup V6B§4.7

Note: Leg.=Legacy Pairing; SC=Secure Connections; DoS=Denial of Service; SecByp=Security Bypass; Downg.=Security Downgrade.

“V6B§4.7” denotes Volume 6, Part B, Section 4.7 of the specification.

TABLE III: Validation Results of the Accuracy of the LLM-
based Bug Analyzer.

Pairing Mutation Total Correct False False

Type Type Inputs Cases Positive Negative Accuracy
Legacy Pairing Field 1000 854 112 34 85.4%
Legacy Pairing State 500 369 125 6 73.8%
Secure Connections Field 1000 862 110 28 86.2%
Secure Connections State 500 371 120 9 74.2%

Similarly, BSFuzzerg, navigates the protocol state space more
efficiently by avoiding invalid paths and prioritizing mean-
ingful state transitions. In contrast, BSFuzzery, often pro-
duces invalid packets, resulting in longer bug-triggering time
and wasted communication resources. BSFuzzerg, exhibits
shallow exploration and frequently encounters unreachable or
illegal states, making it less effective in uncovering deep logic
flaws.

3) Effectiveness of LLM-based Response Validation: To
evaluate the effectiveness of the LLM-based bug analyzer
in validating device responses, we conducted an experiment
involving both Secure Connections and Legacy Pairing. For
each pairing mode, we manually analyzed the results produced
by the LLM agent under two mutation strategies: field mu-
tation and state mutation. As shown in Table III, the LLM
agent achieved over 85% accuracy in validating responses
from field mutations. In contrast, its accuracy was lower for
state mutations, primarily due to the inherent complexity of
reasoning over protocol state transitions. Manual validation of
each response is time-consuming and often requires examining
thousands of specification pages. In contrast, the LLM agent
can automatically reference specifications, significantly im-
proving the efficiency of identifying suspicious responses. As
demonstrated in Table III, while LLM-based analysis is not the
sole basis for bug detection and may introduce false negatives
and false positives, it remains highly effective at filtering
high-probability anomalies. False negatives have minimal im-
pact since vulnerable test sequences typically appear multiple
times during fuzzing, ensuring abnormal behavior can still
be detected. False positives only increase manual verification

11

“ »

means no observable security impact.

overhead without affecting overall detection accuracy.

D. Discovered Real-world Bugs

We categorize the identified bugs into three types: memory
corruption, state bugs, and inconsistency bugs, as shown in
Appendix B.2. Across the 19 tested devices, we discovered
a total of 36 bug instances. Given the wireless nature of
BLE communication, the overall fuzzing time is influenced by
connection latency and signal stability. Therefore, we measure
the duration of a single fuzzing iteration from the moment the
connection is established to the point when the last test packet
is sent. The time taken for the device to manifest abnormal
behavior or for the bug to be observed is not included in this
measurement, similar to SweynTooth [12]. The Disclosure Sta-
tus column in Appendix B.2 summarizes the current disclosure
progress of each bug. All identified bugs have been disclosed
to vendors. Nine bugs (two memory corruption, five state bugs
and two inconsistency bugs) have been officially assigned CVE
identifiers. To eliminate redundancy, we conducted necessary-
condition tests for each Proof of Concept (PoC) to identify
the essential fields or packets that trigger the bug and merged
cases sharing the same root cause. After deduplication, these
instances correspond to 19 unique root causes, including 6
memory corruption, 8 state, and 5 inconsistency bugs, as
shown in Table II. Detailed descriptions are provided below.
Memory Corruption: M1 and M2. Both vulnerabilities stem
from improper handling of mutated control packet fields,
resulting in buffer overflows. M1 is triggered by an oversized
length field in the LL_PAUSE_ENC_REQ packet. When the
payload exceeds expected bounds, the device writes beyond
allocated memory, causing a crash. This indicates insuffi-
cient bounds checking during control packet parsing. M2
arises from setting a reserved RFU field to 0x07 in the
LL_TERMINATE_IND packet. According to the Bluetooth
specification, RFU bits must be ignored by the receiver; how-
ever, the device incorrectly parses them, leading to memory
corruption due to unsafe field handling.

Memory Corruption: M3, M4, MS and M6. These vulnera-
bilities are caused by the device’s inability to properly handle

After pairing: LTK is stored

Peripheral

@ Peripheral

l«——SM_SECURITY_REQ l——SM_SECURITY REQ—]

C) (

Step 4: Reconnection

LL_ENC_REQ: SKDm, IV
[+——LL_ENC_RSP: SKDs, IVs
LL_START_ENC_RE
SK = bt_enc_e(LTK, SKDm|SKDs)
ENC(SK, LL START ENC RSP}
+ENC(SK, LL_START_ENC_RSP)

Step 4: Reconnection

——LL_START_ENC_REQ—
SK,IV,SKD is last time used
ENC(SK, LL_START_ENC_RSP)+

ENC DATA

ENC DATA

a) Normal Reconnection Process. b) SK Reuse.

Fig. 12: An Illustration of Session Key Reuse.

invalid values in critical fields during connection establish-
ment, leading to crashes due to memory corruption. M3 is trig-
gered by a CONNECT__IND packet with a Channel Map set to
0x0000000000, which disables all 37 data channels. According
to the specification, at least one data channel must be enabled;
violating this constraint results in undefined behavior during
channel selection. M4 involves the use of an all-zero Access
Address, which is prohibited by the specification and leads to
errors during connection filtering. M5 is caused by setting the
connSupervisionTimeout field to OxFFFF, an explicitly invalid
value outside the allowed range of 0x000A to 0x0C80 (100
ms to 32.0 s). Finally, M6 results from assigning winOffset =
OxFFFF, which exceeds the maximum legal value of Ox1FFF
(12.799 ms). In all cases, the lack of value validation results
in a crash upon receiving malformed connection parameters.
State Bug: S1, S5 and S7. These vulnerabilities stem from
improper handling of encryption control procedures, caus-
ing devices to enter encryption states at invalid times. S1
occurs when the device accepts an LI_PAUSE_ENC_REQ
before encryption is established. S5 and S7 involve pre-
mature entry into the encrypted state: S5 is triggered
by receiving an LL_START_ENC_RSP, and S7 by an
LL_START_ENC_REQ, both before pairing. According to the
specification, these procedures are valid only after encryption
is properly initiated. Accepting these packets prematurely
leads to state desynchronization, which can block legitimate
communication, cause undefined behavior, or enable DoS
attacks. These bugs arise from missing encryption-state val-
idation in the LL state machine.

State Bug: S2. The device allows reconnection using a
previously stored session key without requiring re-pairing. Ac-
cording to the specification, during the reconnection process,
the device is expected to retrieve the LTK from the previous
bonding context and combine it with a newly exchanged
Session Key Diversifier (SKD) to derive a temporary Session
Key (SK) for AES-CCM encryption, ensuring freshness and
forward secrecy, as illustrated in Figure 12a). However, the
device deviated from this expected behavior and directly re-
sumed encrypted communication using the old SK without re-
executing key derivation, as illustrated in Figure 12b). The root
cause lies in the device’s failure to enforce key diversification
and bonding state validation during re-connection.

State Bug: S3. The device accepts encryption requests us-

12

ing an all-zero LTK after receiving a PAIRING_FAILED
message, bypassing the required pairing procedure. This vi-
olates the SMP state machine and enables unauthenticated
encrypted communication. As a result, the connection becomes
vulnerable to unauthorized access. The root cause is a state
machine flaw in handling the PATRING_FAILED message,
which allows the device to skip the pairing phase entirely.
State Bug: S4. The device receives an LI_ENC_REQ
before pairing and correctly rejects it, but the connec-
tion remains active. An attacker can subsequently send an
LL_PAUSE_ENC_REQ, placing the device into an inconsis-
tent encryption state that causes all subsequent packets to be
ignored. This results in communication failure and can be
exploited to launch a DoS attack. The root cause is a state
machine flaw that permits encryption-related procedures to
proceed despite a prior encryption rejection, without validating
the current security state.

State Bug: S6. The device sends multiple LT_LENGTH_REQ
packets during the pairing process, leading to a crash. It fails
to properly serialize control procedure handling across the
LL and SMP, resulting in memory corruption. The root cause
lies in a cross-layer state management flaw, where the device
fails to enforce mutual exclusion or ordering between ongoing
pairing operations and lower-layer control exchanges.
Inconsistency Bug: I1. The devices (D4, D7, D11, D14 and
D15) accept LL_LENGTH_REQ packets where max_tx_bytes
or max_rx_bytes are set below the minimum allowed value
of 27 bytes. According to the specification, such values are
invalid and must be rejected. An attacker can exploit this
behavior to inject malformed packets during communication,
leading to connection failure or DoS. The devices (D1, D10,
and D17) accept fragmented data packets with payload lengths
below the minimum of 27 bytes. This behavior may lead to
unstable communication. The root cause is insufficient input
validation during the data length update procedure.
Inconsistency Bug: I2. The device falls back to Legacy
Pairing even though both peers advertise and require Secure
Connections. According to the specification, if both devices
support SC (as indicated by the SC bit in the authReq field of
the PATRING_REQUEST and PAIRING_RESPONSE pack-
ets), the pairing procedure must enforce Secure Connections.
This downgrade violates the pairing requirements negotiation
protocol and weakens the security guarantees of the connec-
tion. The root cause lies in the incorrect enforcement of the
authReq flags during the pairing method selection process.
Inconsistency Bug: I3 and I4. These two bugs are caused
by improper handling of malformed control packet fields,
resulting in inconsistent protocol behavior. For I3, according
to the specification, RFU fields must be ignored by the
receiver, and the packet should be processed as if the RFU
bits were set to zero. However, the device incorrectly attempts
to parse these bits, leading to unexpected responses or silent
discards. For 14, the issue arises when the device accepts
an LL_LENGTH_REQ packet containing invalid parameters.
The specification requires devices to accept only valid values;
however, devices D2 and D3 incorrectly respond to such

malformed requests with an LL_LENGTH_RSP instead of
rejecting them, violating the expected protocol behavior.
Inconsistency Bug: IS. This bug is triggered when the device
receives an LL_PAUSE_ENC_REQ before encryption is estab-
lished, causing unexpected connection termination. According
to the specification, this control procedure is valid only during
an active encrypted session and should be ignored or rejected if
received prematurely. However, the device instead treats it as a
fatal error and disconnects, indicating a violation of protocol
robustness requirements. This behavior can be exploited for
DoS attacks. The root cause is insufficient encryption-state
validation before handling control procedures, leading the
device to process the packet in an invalid context.

VI. DISCUSSION AND LIMITATIONS

Device Hardware Constraints. Due to hardware limitations
of the SUT, our evaluation of the pairing process was limited
to the Just Works authentication method. Alternative methods
such as Out of Band and Passkey Entry were not tested. While
these methods only affect the authentication phase and do not
alter the core encryption or authentication logic of the proto-
col, potential vulnerabilities specific to them may have gone
undetected. Future work could incorporate a broader range of
authentication mechanisms to provide a more comprehensive
assessment of security features in BLE implementations.
Handling Non-Structured Packets. BSFuzzer conducts
packet dependency analysis by leveraging the semantic mean-
ings of individual protocol fields. However, several packets
in the SMP layer lack structured fields. For instance, the
LL_START_ENC_REQ packet is an LL control Protocol Data
Unit that contains only an Opcode field without any additional
parameters. This absence of fields limits the applicability
of our standard prompt templates for dependency extraction.
Consequently, such cases require special handling and manual
analysis to infer their relationships with other packets.
Manual Effort. The reliability of the LLM-based verifier
tends to decline when analyzing complex protocol state tran-
sitions, which often involve dependencies and contextual in-
formation spanning multiple interaction steps, with certain
conditions even requiring consideration of historical states
or implicit protocol semantics to correctly interpret device
behavior. In such scenarios, the LLM agent may produce
misjudgments or overlook latent issues. Nevertheless, the
verifier’s outputs remain highly valuable during bug analysis,
enabling researchers to rapidly pinpoint suspicious interac-
tion sequences or responses, significantly narrow the analysis
scope, and reduce the need to manually examine large volumes
of protocol logs line by line.

VII. RELATED WORK

Bluetooth Stack Security Testing. The security issues in the
BLE stack have drawn significant attention. Some studies have
already been conducted to identify potential vulnerabilities in
the BLE stack. SweynTooth [12] designs a BLE fuzzing frame-
work that achieves full control over communication at the LL
to identify vulnerabilities in BLE protocol implementations.

13

BLEDiff [9] utilizes an active automata learning approach to
extract the FSM of a BLE implementation. A checking module
is then used to detect deviations from expected protocol
behavior. Proteus [8] proposes a state machine mutation-based
testing framework to uncover logical vulnerabilities in wireless
protocol implementations. Pferscher er al. [13] implemented
a stateful black-box fuzzing from the connection procedure
to the start of the pairing procedure of BLE devices using
automata learning. BrakTooth [14] enables fuzz testing by
modifying the central’s requests. However, they may not iden-
tify flaws in the program logic of protocol implementations.
BrokenMesh [28] conducted fuzz testing on the network build
and network control stages of the BLE Mesh protocol to
assess the security of their implementation. Some of the work
conducted fuzz testing only on specific functions of the Blue-
tooth stacks from certain manufacturers. Sami Babigeon et al.
[29] adopted a fuzzing approach to test the OTA function of
the GATT service on Silicon BLE devices. Matias Karhumaa
[30] tested the controller of Zephyr’s Bluetooth LE stack by
fuzzing. Zinuo Han [31] found multiple vulnerabilities by
fuzzing and code auditing the Bluetooth protocol implemen-
tation in AOSP. Some studies focus on fuzz testing specific
subprotocols within the Bluetooth protocol. ToothPicker [11]
implemented an in-process Bluetooth daemon fuzzer based on
Frida to evaluate the implementation of the Bluetooth protocol
in the i0S system. L2Fuzz [7] implements a stateful fuzzer to
detect vulnerabilities in the Bluetooth BR/EDR L2CAP layer.
Frankenstein [10] fuzz the Bluetooth stack of Broadcom and
Cypress firmware in an emulated environment.

LLM-based Network Protocol Security Testing. Recent
advances have explored the use of LLMs to enhance various
aspects of protocol security testing. These studies leverage the
language understanding and reasoning capabilities of LLMs
to automate traditionally manual tasks such as specification
parsing [32], seed generation [17], [33], and state infer-
ence [34]. ChatHTTPFuzz [32] utilizes LLMs to annotate data
fields of the HTTP protocol [35], construct structured seed
templates, and identify optimal mutation points. ChatAFL [33]
combines LLMs with public RFCs to enrich initial seeds for
the RTSP protocol [36], enabling structure-aware mutation.
LLMIF [17] integrates LLMs with the ZigBee specifica-
tion [37] to assist in seed generation, mutation, and test case
evaluation. mGPTFuzz [34] employs LLMs to extract state
machines from the Matter protocol [38] to guide fuzzing, while
LLMgSSA [39] leverages LLM reasoning to infer valuable
protocol states during fuzzing. MBFuzzer [40] further adopts
an LLM-driven approach to analyze bug reports and validate
protocol non-compliance. In contrast to these works, BSFuzzer
moves beyond token-level or format-based mutation and op-
erationalizes LLMs as semantic inference engines capable
of comprehending protocol state machines and inter-packet
dependencies. This enables context-aware mutations, targeted
state transitions, and dependency-preserving field perturba-
tions that expose logic flaws beyond existing LLM-based
fuzzers. Moreover, because mutation operators are grounded
in semantic and dependency representations extracted from

formal specifications, the methodology is generalizable to
other multi-stage communication protocols beyond Bluetooth.

VIII. CONCLUSION

In this paper, we presented BSFuzzer, a context-aware
semantic fuzzing framework for BLE protocol stacks that
leverages protocol knowledge extracted from specifications.
Specifically, BSFuzzer first performs semantic parsing, which
combines both state machine information and semantic infor-
mation extracted by an LLM agent. Based on this knowledge,
it generates mutation seeds, including field seeds and state
seeds, to create context-aware test cases. By executing these
cases and validating responses against expected semantic be-
havior, BSFuzzer effectively detects logic and state inconsis-
tencies invisible to traditional fuzzers. We evaluated BSFuzzer
on 19 real-world BLE devices, uncovering 34 previously
undocumented bugs, including memory corruption, semantic
violations, and state transition flaws. Among these, 9 bugs
received CVE identifiers, and two were acknowledged by
the vendor with bug bounties. BSFuzzer outperformed four
baseline tools, achieving 9.34% higher code coverage, demon-
strating its effectiveness in exposing high-impact, context-
sensitive bugs in BLE implementations.

ACKNOWLEDGMENT

This work was supported by the National Natural Sci-
ence Foundation of China (U2336203, 62132011), the Na-
tional Key Research and Development Program of China
(2023QY1202), the Beijing Natural Science Foundation
(L242015, 4242031), the Innovation Fund of Xidian University
(GNYZ2024QC009), the Beijing-Tianjin-Hebei Natural Sci-
ence Foundation Cooperation Project (No. 25JJJJC0003), and
the China Scholarship Council (CSC) International Cooper-
ation Training Program for Innovative Cybersecurity Talents
(CXXM20210118).

REFERENCES
[1] Bluetooth SIG, “Bluetooth® market update 2025,” https:
/Iwww .bluetooth.com/2025-market-update/, 2025, accessed: 2025-

06-23.

Statista, “Bluetooth — topic overview,” Statista Topic Page, 2025, https:
/Iwww .statista.com/topics/7730/bluetooth/#topicOverview.
IndustryARC, “Bluetooth low energy market size report 2024-2030,”
Industry ARC market report, 2024, https://www.industryarc.com/Report/
187/bluetooth-smart-market-forecast.html.

A. Agarwal, “Bluebugging: How hackers utilize bluetooth-enabled
devices to steal data,” 2023, times of India Blog. [Online]. Avail-
able: https://timesofindia.indiatimes.com/blogs/voices/bluebugging-
how-hackers-utilize-bluetooth-enabled-devices- to- steal-data/

F. Xu, W. Diao, Z. Li, J. Chen, and K. Zhang, “Badbluetooth: Breaking
android security mechanisms via malicious bluetooth peripherals.” in
NDSS, 2019.

B. Seri and G. Vishnepolsky, “Bleedingbit: The hidden attack
surface within ble chips,” Black Hat USA, Dec. 2018, presented
at Black Hat USA 2019; accessed via Black Hat EU 2018
materials. [Online]. Available: https://i.blackhat.com/eu- 18/Thu-Dec-6/
eu- 18- Seri-BleedingBit-wp.pdf

H. Park, C. K. Nkuba, S. Woo, and H. Lee, “L2fuzz: Discovering
bluetooth 12cap vulnerabilities using stateful fuzz testing,” in 2022 52nd
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2022, pp. 343-354.

[2

—

[3

=

[5]

[6]

[7]

14

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

S. M. M. Rashid, T. Wu, K. Tu, A. A. Ishtiaq, R. H. Tanvir, Y. Dong,
O. Chowdhury, and S. R. Hussain, “State machine mutation-based
testing framework for wireless communication protocols,” in Proceed-
ings of the 2024 on ACM SIGSAC Conference on Computer and
Communications Security, 2024, pp. 2102-2116.

I. Karim, A. Al Ishtiaq, S. R. Hussain, and E. Bertino, “Bledift: Scalable
and property-agnostic noncompliance checking for ble implementa-
tions,” in 2023 IEEE Symposium on Security and Privacy (SP). 1EEE,
2023, pp. 3209-3227.

J. Ruge, J. Classen, F. Gringoli, and M. Hollick, “Frankenstein: Ad-
vanced wireless fuzzing to exploit new bluetooth escalation targets,”
in 29th USENIX Security Symposium (USENIX Security 20), 2020, pp.
19-36.

D. Heinze, J. Classen, and M. Hollick, “ToothPicker: Apple
picking in the iOS bluetooth stack,” in I4th USENIX Workshop
on Offensive Technologies (WOOT 20). USENIX Association, Aug.
2020. [Online]. Available: https://www.usenix.org/conference/woot20/
presentation/heinze

M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei, and E. Kurni-
awan, “{SweynTooth}: unleashing mayhem over bluetooth low energy,”
in 2020 USENIX Annual Technical Conference (USENIX ATC 20), 2020,
pp. 911-925.

A. Pferscher and B. K. Aichernig, “Stateful black-box fuzzing of
bluetooth devices using automata learning,” in NASA Formal Methods
Symposium. Springer, 2022, pp. 373-392.

M. E. Garbelini, V. Bedi, S. Chattopadhyay, S. Sun, and E. Kurniawan,
“{BrakTooth}: Causing havoc on bluetooth link manager via directed
fuzzing,” in 31st USENIX Security Symposium (USENIX Security 22),
2022, pp. 1025-1042.

D. Antonioli, “Bluffs: Bluetooth forward and future secrecy attacks and
defenses,” in Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, 2023, pp. 636—650.

B. Community, “Boofuzz: Network protocol fuzzing for humans,” https:
//github.com/jtpereyda/boofuzz, accessed: 2024-10-22.

J. Wang, L. Yu, and X. Luo, “LImif: Augmented large language model
for fuzzing iot devices,” in 2024 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2024, pp. 881-896.

J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to automata
theory, languages, and computation,” Acm Sigact News, vol. 32, no. 1,
pp. 60-65, 2001.

Morris Dworkin, “NIST Special Publication 800-38C: Recommendation

for Block Cipher Modes of Operation: The CCM Mode
for Authentication and Confidentiality,” National Institute of
Standards and Technology (NIST), Tech. Rep. SP 800-38C,

2007. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-38c.pdf

Python Software Foundation, “Python 3.11.0 documentation,” https://
docs.python.org/3.11/, 2022, accessed: 2025-05-04.

Nordic Semiconductor, “nRF52840 Dongle,” https://
www.nordicsemi.com/Products/Development-hardware/nRF52840-
Dongle, 2025, accessed: 2025-05-04.

xAl, “xai api documentation,” https://docs.x.ai/docs/overview, 2025,
accessed: 2025-06-20.

OpenAl, “text-embedding-3-large,” https://platform.openai.com/docs/
guides/embeddings, 2024, https://platform.openai.com/docs/guides/
embeddings/embedding-models.

Cypress Semiconductor Corporation, “Cy8ckit-042-ble-a bluetooth
low energy pioneer kit guide,” Cypress Semiconductor Corporation,
User Guide 002-11468 Rev. E, 2018, https://www.infineon.com/dgdl/
Infineon-CY8CKIT-042-BLE-A_Bluetooth_Low_Energy_Pioneer_Kit_
Guide-UserManual-v01_00-EN.pdf.

Microchip Technology Inc., “Wbz451 curiosity board user’s guide,”
Microchip Technology Inc., User Guide DS50003367, 2022,
https://ww1.microchip.com/downloads/aemDocuments/documents/
WSG/ProductDocuments/UserGuides/WBZ451-Curiosity-Board- User-
Guide-DS50003367.pdf.

Google LLC, “Pixel 6 pro — learn about your pixel,” Google product
page, 2025, https://pixel.withgoogle.com/Pixel_6_Pro?hl=en&country=
US. [Online]. Available: https://pixel.withgoogle.com/Pixel_6_Pro?hl=
en&country=US

Huawei Device Co., Ltd., “Huawei phones,” Huawei Smartphone official
product page, 2025, https://consumer.huawei.com/ke/phones/.

D. K. Han Yan, Lewei Qu. (2024) Brokenmesh:
New attack surfaces of bluetooth mesh. [Online]. Avail-

https://www.bluetooth.com/2025-market-update/
https://www.bluetooth.com/2025-market-update/
https://www.statista.com/topics/7730/bluetooth/#topicOverview
https://www.statista.com/topics/7730/bluetooth/#topicOverview
https://www.industryarc.com/Report/187/bluetooth-smart-market-forecast.html
https://www.industryarc.com/Report/187/bluetooth-smart-market-forecast.html
https://timesofindia.indiatimes.com/blogs/voices/bluebugging-how-hackers-utilize-bluetooth-enabled-devices-to-steal-data/
https://timesofindia.indiatimes.com/blogs/voices/bluebugging-how-hackers-utilize-bluetooth-enabled-devices-to-steal-data/
https://i.blackhat.com/eu-18/Thu-Dec-6/eu-18-Seri-BleedingBit-wp.pdf
https://i.blackhat.com/eu-18/Thu-Dec-6/eu-18-Seri-BleedingBit-wp.pdf
https://www.usenix.org/conference/woot20/presentation/heinze
https://www.usenix.org/conference/woot20/presentation/heinze
https://github.com/jtpereyda/boofuzz
https://github.com/jtpereyda/boofuzz
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
https://docs.python.org/3.11/
https://docs.python.org/3.11/
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-Dongle
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-Dongle
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-Dongle
https://docs.x.ai/docs/overview
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://www.infineon.com/dgdl/Infineon-CY8CKIT-042-BLE-A_Bluetooth_Low_Energy_Pioneer_Kit_Guide-UserManual-v01_00-EN.pdf
https://www.infineon.com/dgdl/Infineon-CY8CKIT-042-BLE-A_Bluetooth_Low_Energy_Pioneer_Kit_Guide-UserManual-v01_00-EN.pdf
https://www.infineon.com/dgdl/Infineon-CY8CKIT-042-BLE-A_Bluetooth_Low_Energy_Pioneer_Kit_Guide-UserManual-v01_00-EN.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/WSG/ProductDocuments/UserGuides/WBZ451-Curiosity-Board-User-Guide-DS50003367.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/WSG/ProductDocuments/UserGuides/WBZ451-Curiosity-Board-User-Guide-DS50003367.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/WSG/ProductDocuments/UserGuides/WBZ451-Curiosity-Board-User-Guide-DS50003367.pdf
https://pixel.withgoogle.com/Pixel_6_Pro?hl=en&country=US
https://pixel.withgoogle.com/Pixel_6_Pro?hl=en&country=US
https://pixel.withgoogle.com/Pixel_6_Pro?hl=en&country=US
https://pixel.withgoogle.com/Pixel_6_Pro?hl=en&country=US
https://consumer.huawei.com/ke/phones/

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

able: https://www.blackhat.com/us22/briefings/schedule/#brokenmesh-
new-attack-surfaces- of-bluetooth-mesh-26853

B. F. Sami Babigeon. (2023) Breaking secure boot on the silicon
labs gecko platform. [Online]. Available: https://blog.quarkslab.com/
breaking- secure-boot-on-the-silicon-labs- gecko-platform.html

M. Karhumaa. (2021) Cyrc vulnerability advisory: Denial-of-service
vulnerabilities in zephyr bluetooth le stack. [Online]. Avail-
able: https://www.synopsys.com/blogs/software-security/cyrc-advisory-
zephyr-vulnerability.html

Z. Han. (2022) Deep into android bluetooth bug hunting -
new attack surfaces and weak code patterns. [Online]. Avail-
able: https://i.blackhat.com/EU-22/Thursday- Briefings/EU-22-Zinuo-
Deep-into- Android- Bluetooth-Bug-Hunting. pdf

Z. Yang, H. Peng, Y. Jiang, X. Li, H. Du, S. Wang, and J. Liu,
“Chathttpfuzz: large language model-assisted iot http fuzzing,” Interna-
tional Journal of Machine Learning and Cybernetics, pp. 1-22, 2025.
R. Meng, M. Mirchev, M. Bohme, and A. Roychoudhury, “Large
language model guided protocol fuzzing,” in Proceedings of the 31st
Annual Network and Distributed System Security Symposium (NDSS),
2024.

X. Ma, L. Luo, and Q. Zeng, “From one thousand pages of specification
to unveiling hidden bugs: Large language model assisted fuzzing of
matter {IoT} devices,” in 33rd USENIX Security Symposium (USENIX
Security 24), 2024, pp. 4783-4800.

M. Belshe, R. Peon, and M. Thomson, “Hypertext transfer protocol ver-
sion 2 (http/2),” RFC 7540, IETF, May 2015, https://datatracker.ietf.org/
doc/html/rfc7540.

H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol
(rtsp),” RFC 2326, Internet Engineering Task Force (IETF), April 1998,
https://datatracker.ietf.org/doc/html/rfc2326.

ZigBee Alliance, “Zigbee specification,” ZigBee Document 053474r17,
2008, https://zigbeealliance.org/solution/zigbee/.

Connectivity Standards Alliance, “Matter specification,
version 1.4,” Connectivity Standards Alliance Standard, 2024,
https://csa-iot.org/wp-content/uploads/2024/11/24-27349-006_Matter-
1.4-Core- Specification.pdf.

B. Yu, Q. Song, and C. Cai, “Large language model guided state selec-
tion approach for fuzzing network protocol,” in 2024 IEEE International
Performance, Computing, and Communications Conference (IPCCC).
IEEE, 2024, pp. 1-6.

X. Song, J. Wu, Y. Zeng, H. Pan, C. Zuo, Q. Zhao, and S. Guo,
“Mbfuzzer: A multi-party protocol fuzzer for MQTT brokers,” in Pro-
ceedings of the USENIX Security Symposium. USENIX Association,
2025, implementation and evaluation report a prototype that triggered
73 bugs across six mainstream MQTT brokers.

15

https://www.blackhat.com/us22/briefings/schedule/#brokenmesh-new-attack-surfaces-of-bluetooth-mesh-26853
https://www.blackhat.com/us22/briefings/schedule/#brokenmesh-new-attack-surfaces-of-bluetooth-mesh-26853
https://blog.quarkslab.com/breaking-secure-boot-on-the-silicon-labs-gecko-platform.html
https://blog.quarkslab.com/breaking-secure-boot-on-the-silicon-labs-gecko-platform.html
https://www.synopsys.com/blogs/software-security/cyrc-advisory-zephyr-vulnerability.html
https://www.synopsys.com/blogs/software-security/cyrc-advisory-zephyr-vulnerability.html
https://i.blackhat.com/EU-22/Thursday-Briefings/EU-22-Zinuo-Deep-into-Android-Bluetooth-Bug-Hunting.pdf
https://i.blackhat.com/EU-22/Thursday-Briefings/EU-22-Zinuo-Deep-into-Android-Bluetooth-Bug-Hunting.pdf
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc2326
https://zigbeealliance.org/solution/zigbee/
https://csa-iot.org/wp-content/uploads/2024/11/24-27349-006_Matter-1.4-Core-Specification.pdf
https://csa-iot.org/wp-content/uploads/2024/11/24-27349-006_Matter-1.4-Core-Specification.pdf

APPENDIX A
PROMPT IMPLEMENTATION

Prompt Template for Field Semantics Extraction

As a Bluetooth protocol expert, please perform the following protocol
analysis task: Analysis Target: The [Field] in the [Packet]

Execution Steps:

1) Locate Packet Structure Accurately identify the definition of the
[Packet] in the protocol document. Parse the binary structure of the
[Field].

2) Field Semantic Analysis Extract the intended purpose and functional
description of the field.

3) Value Range Derivation

a. Basic Value Range:

Determine the bit-length of the field.

Calculate the theoretical minimum (0) and maximum 2™ — 1 values.
b. Semantic Value Range:

Extract descriptions of reserved bits.

[Example Output]

Fig. A.1: Prompt Template for Field Semantics Extraction.

Prompt Template for Packet-Packet Dependency

As a Bluetooth protocol expert, you need to analyze the direct de-
pendencies between the two data packet parameters of [Packet_1] and
[Packet_2].

Please follow these steps for professional analysis:

Data packet definition:

ALL [Packet_1] field: [Packet_1_fields]

ALL [Packet_2] field: [Packet_2_fields]

Analysis requirements:

1. Strictly analyze based on the provided [Packet_1] fields and
[Packet_2] fields without omitting or fabricating any fields.

2. Direct dependency is defined as: The parameter value in one data
packet directly affects or determines the setting of the parameter value
in another data packet.

3. Consider the constraints between the parameters defined by the
protocol specification.

4. Exclude indirect effects or associations generated by intermediate
parameters.

Complete it in the <think> tag:

1. List the protocol definition of each parameter

2. Analyze the direct causal relationship between the parameters

3. Record the excluded indirect associations

Output requirements:

1. Use strict JSON format

2. Contain Boolean cross_packet_dependency fields

3. Describe each parameter pair relationship with key-value pairs in
the explanation field

4. Keeping the same field structure as the example

[Example Output]

Fig. A.2: Prompt Template for Packet-Packet Dependency.

Prompt Template for Field Mutation

You are a Bluetooth protocol testing expert specializing in fuzz
testing for Bluetooth peripheral, given the following packet and field
information, generate mutations targeting this field.

Background Information: [Field Semantics]

Field Mutation: boundary conditions, semantic invalid cases, bit-flip
tests, random values

[Example Output]

Fig. A.3: Prompt Template for Field Mutation.

16

Prompt Template for State Mutation

As a Bluetooth protocol testing expert, your task is to generate protocol
mutation test cases as central role based on state dependencies.

Please follow the process below:

Target Data Packet:

[Packet]

[Dependent packets]

[Dependency info]

[State transition path]

Generation Rules:

1.Parse Dependent packets to get the state transition requirements
related to [Packet].

2.Comprehensive coverage of [Packet]-related protocol violations to
ensure comprehensive testing.

3.Based on the state transition requirements, generate the packet
transmission path, at least one of the following state dependencies
must be violated:

-Must include: [Packet]

-Prestate Not Completed

-Repeated Operations Not Following Protocol Specifications
-Unexpected State Change

-Combinations containing the above variants

-Each test case corresponds to a specific failure scenario

-Technical basis description (cite the protocol chapter or specification
clause)

Generation Steps:

1. List violations of specific parts and descriptions related to [Packet]
in <Analysis> tags.

2. Generate the packet transmission path.

3. Only focus on the [Packet] related state transition mutation.

3. Confirm in the <Validation> tag whether each mutation directly
violates protocol clauses.

4. Describe the specific mutation steps in <Mutation Steps>,
using only: - Send [data packet name] - Skip [data packet name].

5. Generate xx test cases, no repeat.

[Example Output]

Fig. A.4: Prompt Template for State Mutation.

Prompt Template for Field Validation Rules

As a Bluetooth Core Specification expert, analyze the expected device
behavior upon receiving a packet with invalid or unsupported field values
and a correct CRC. Follow the structure below:

[Single Field Semantics]

Analysis Requirements

1. Violation Scenarios

Protocol-Level Violation: Directly violates the defined value range or
format.

Capability Mismatch: Technically valid, but
implementation limits.

exceeds receiver’s

2. Behavior Prediction

Mandatory Behavior: Required behavior per the spec

Recommended Behavior: Optional implementation

behavior Error Signaling: Silent drop / Send error code / Return reject
packet, prioritization of error codes.

[Example Output]

Fig. A.5: Prompt Template for Field Validation Rules.

Prompt Template for State Validation Rules

As a Bluetooth Core Specification certified expert, analyze the required
preconditions for the specified packet within the protocol stack and
predict the device’s response behavior based on whether the state is
valid or invalid.

Protocol Scope:

Layers: [LL,SMP]

Role: peripheral,

Security mode: [Device Security Mode],

Packet Type: [packet_name],

Direction: Received by peripheral device

[Example Output]

Fig. A.6: Prompt Template for State Validation Rules.

Prompt Template for Field Validation

You are an expert in the Bluetooth Core Specification. A single
field in a BLE control packet has been mutated: [Packet_mutation]
[Actual_response], where “empty” in [Actual_response] indicates a
silently dropped packet. Perform the following steps:

1. Field Validity Verification

Determine whether the mutated field value is valid or invalid according
to the [Specification_Section].

2. Device Response Compliance

If the field value is invalid, evaluate whether the device’s actual response
aligns with the expected behavior [Expected_Device_Behavior].

[Example Output]

Fig. A.7: Prompt Template for Field Validation.

Prompt Template for State Validation

You are a Bluetooth Core Specification expert. Given a sequence of
BLE packets: [Send_Sequence] and [Device_Response_Sequence],
perform the following checks for [Send_Packet] in the path:

1. Pre-State Verification

For [Send_Packet], determine whether the device was in a valid
protocol state to legally receive and process this packet, based on the

[Precondition].

If the send packet is expected in the current state, it should be treated
as a state-valid packet.

If the send packet is unexpected in the current state, it should be
treated as a state-invalid packet.

2. Device Response Compliance
For response packet:

If the pre-state was valid, verify whether the device replied with the
expected [Valid_Response].

If the pre-state was invalid, verify whether the device replied with the
expected [Invalid_Response].

[Example Output]

Fig. A.8: Prompt Template for State Validation.

17

APPENDIX B
EXPERIMENTAL DEVICES AND FINDINGS

TABLE B.1: List of BLE Devices.

Category ID Device Vendor/Manufacturer BLE Ver. BLE SDK/System Ver. Sample Code
D1 CYS8CKIT-042-BLE Cypress 5.1 V3.66 BLE_Battery_Level
D2 WBZ451 Microchip 52 V1.3.0 BLE_Throughput
D3 ESP32-WROOM-32E Espressif 4.2 V5.3.0 GATT_Security_Server
D4 BI1 Telink 5.0 V4.0.1.0 Tlkapp_General
BLE SoC D5 RTL8762EKF-EVB Realtek 5.0 V1.4.0 BLE_Peripheral
D6 CH592 WCH 53 V1.8 Peripheral
D7 LP-CC2652RB Texas Instruments 52 V7.41.00.17 Throughput_Peripheral
D8 nRF52840-DK Nordic Semiconductor 5.0 V2.9.1 Peripheral_Hids_Mouse
D9 NUCLEO-WB55RG STMicroelectronics 52 V1.21.0 BLE_HeartRateThreadX
D10 P40 Huawei 5.1 HarmonyOS 4.2.0 /
D11 Nova5 Huawei 5.0 HarmonyOS 4.0.0 /
D12 Mate50 Huawei 52 HarmonyOS 4.2.0 /
D13 Honor90 Honor 52 Android 13 /
Smartphone Di14 OPPO A72 OPPQ 5.0 ColorOS V12.1 /
DI5 Note 10 Pro Redmi 5.0 MIUI 13.0.13 /
D16 Xiaomi 14 Xiaomi 54 HyperOS 2.0.60 /
D17 Galaxy C55 Samsung 52 Android14 /
D18 Google Pixel 2 Google 5.0 Android 10 /
D19 Google Pixel 6 Pro Google 52 Android 15 /
TABLE B.2: Summary of Bugs Found on the Tested Devices.
Device Bugs Fuzzing Time Disclosure Status
M S I
D1 Ml S3 11 1h 38m Two CVE Assigned
D2 M6 S5 14 3h 26m Vendor Reporting
D3 M4 S1,S2 13,14 2h 08m S2:CVE Assigned; CVE Request
D4 - - 11 2h 57m Vendor Reporting
D5 M2 S6,S7,S8 11 1h 20m Four CVE Assigned
D6 - S1 12 1h 46m Vendor Reporting
D7 S1 15 3h 02m Two CVE Assigned
D8 - - - 2h 23m -
D9 M5 - - 2h 21m Vendor Reporting
D10 - S2 11 2h 25m Bug Bounty
D11 - S2 11 2h 03m Bug Bounty
D12 - - 11 2h Ilm 11:Bug Bounty,Vendor Reporting
D13 - - - 2h 05m -
D14 M3 SI 11 3h 16m M3:Previously Reported, Vendor Reporting
D15 M3 S1 11 1h 47m M3:Previously Reported, Vendor Reporting
D16 M3 - - 1h 28m Vendor Confirmed
D17 - - 11 1h 22m Vendor Confirmed
D18 15 1h 38m Vendor Reporting
D19 - S8 - 1h 27m Vendor Reporting

Note: M (memory corruption), S (state bugs), and I (inconsistency bugs).

18

	Introduction
	Background and Motivation
	BLE Protocol
	Motivation: Logic Flaws Beyond Conventional Detection

	Design
	Overview
	Semantic Parsing
	State Machine Construction
	Packet Semantic Information Parsing

	Test Sequence Generation
	Seed Generation
	Sequence Generation

	Bug Verification
	Handling Rule Extraction
	Inconsistency Detection
	Bug Analysis

	Implementation
	Evaluation
	Experimental Setup
	Real-world BLE devices
	Baseline Methods

	Comparison with Existing Works
	Qualitative Comparison
	Bug Detection Capability
	Coverage Growth Over Time

	Effectiveness
	Effectiveness of LLM-based Specification Analysis
	Effectiveness of Semantic Seed Generation
	Effectiveness of LLM-based Response Validation

	Discovered Real-world Bugs

	Discussion and Limitations
	Related Work
	Conclusion
	References
	Appendix A: Prompt Implementation
	Appendix B: Experimental Devices and Findings

