Artifact
Evaluated

ANDss

Available

Functional

Pitfalls for Security Isolation
in Multi-CPU Systems

Reproduced

Simeon Hoffmann
CISPA Helmholtz Center for Information Security

Abstract—In embedded systems, the integration of multiple
CPUs into one system on a chip (SoC) allows greater perfor-
mance, and separation of tasks into independent firmwares and
optimized architectures. For example, an ARM Cortex-M4 core
could run the main firmware, and a Cortex-M0 core could run
a real-time operating system (RTOS). Security implications of
such integrations are still unclear, e.g. if an attacker with code
execution on one CPU can fully compromise the second CPU, or
leak protected data.

In this work, we systematically identify security issues resulting
from this integration, in particular related to memory and
peripheral access control. These issues stem from re-use of
single-CPU security mechanisms such as memory protection units
(MPUs) in the new multi-CPU system. We identify four major
attack vectors that can be present in such systems, and find that a
significant number of systems on the market appear to be vulner-
able. The attack vectors can lead to arbitrary read and write in
protected memory of the other CPU, and even to code execution.
In addition, we find that the communication mechanism of a
popular open source RTOS, FreeRTOS [17], which is suggested
as communication mechanism among firmwares on a multi-CPU
system, introduces code execution vulnerabilities in the multi-
CPU scenario. Then, we verify our theoretical predictions by
implementing four attack vectors and demonstrate their practical
efficacy. In addition, we find that in one case, the discovered
attack surface may lead to the compromise of a custom trusted
execution environment (TEE) implementation. We responsibly
disclosed our findings to the vendors, resulting in a security
advisory and a fix to a proprietary network stack implementation.

1. INTRODUCTION

Embedded systems are an integral part of everyday, modern
life. As such, security vulnerabilities have an immediate im-
pact on its users’ well-being and can cause physical harm [15],
[11]. Consequently, research created a plethora of techniques
to analyze the security of embedded devices [40], [53], [62].

In recent years, we see a rising popularity in embed-
ded devices that employ multiple CPUs integrated into one
microcontroller unit (MCU) as a SoC [34], [42]. This allows
the developer to split the tasks of the MCU in two firmwares,
e.g., one firmware that performs safety-critical tasks and
one firmware that performs the remaining tasks. In addition,
developers can use this firmware split to introduce a security

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240971
www.ndss-symposium.org

Nils Ole Tippenhauer
CISPA Helmholtz Center for Information Security

boundary, as each CPU runs its own firmware [47], [29]. While
firmware is individual per CPU, remaining hardware such as
memory and peripherals are shared among CPUs via various
buses [2]], [3], [4]. Depending on the MCU architecture, the
CPUs have nearly unlimited access to all its components via
those buses. Such architectures introduce a host of novel attack
surfaces that currently is not well understood by researchers.

State-of-the art security analysis techniques for embedded
systems are limited to analysis of single CPUs or firmwares.
For example, recent advances in rehosting, a popular technique
that aims to emulate the firmware hardware-less, focuses on
peripheral interaction as wrong peripheral behavior blocks
firmware execution [53]. However, rehosting analyzes each
peripheral in isolation and does not capture inter-peripheral
dependence, e.g., inter-CPU communication interfaces [16].
For a specific attack, Classen et al. analyzed two Bluetooth-
WiFi chip architectures by Broadcom, in which Bluetooth and
WiFi functionality is split between two CPUs [[12]]. The authors
explore the communication channel specific to this architecture
and identify vulnerabilities that can be exploited if one of the
cores is malicious due to an inherent trust between both chips.

In this paper, we provide the first systematical assessment
of security issues introduced by multi-CPU architectures in
embedded devices. We investigate the general components of
traditional, single-CPU embedded systems. We then analyze
each component in the context of multi-CPU embedded de-
vices and find that the introduction of more processors (each
running individual firmware) introduces new attack surface.
We distill the results into 4 general attack vectors.

To confirm the validity of these 4 attack vectors, we first
perform a theoretical analysis of multi-CPU devices. To that
end, we collect a list of 11 device families that have at least
two CPUs. We theoretically investigate their vulnerability to
the newly identified attack vectors. We find that 6 out of 11
devices are vulnerable to at least one of the attack vectors.

We implement our attacks on one of the vulnerable devices
and practically verify our theoretical findings. We show that
our attack vectors introduce arbitrary read, arbitrary write, and
code execution primitives on the co-located CPUs or even in
TEEs. Then, we demonstrate the practical relevance with a
case study on two commercial products: the network stack of
the STM32WB, and the security architecture of the Samsung
Galaxy Ring. We find fundamental issues in both cases, and
demonstrate practical exploits for a reproduction of the Galaxy
Ring architecture. We disclosed our findings to the vendors,
resulting in a security advisory and a patch.

Finally, we discuss countermeasures and conclude that
software countermeasures cannot protect against these types
of attacks, but they can help reduce the attack surface.

In summary, we make the following contributions:

o We systematically analyze cross-core attack surfaces in

multi-CPU systems. We identify 4 novel attack vectors.

o We theoretically assess those vulnerabilities for the 11
most relevant multi-CPU SoCs on the market. We find
that 6 of them are vulnerable to at least one attack.

o We practically implement our attack vectors on a vulnera-
ble device and prove that all attacks work in practice. We
find issues in two commercial products and responsibly
disclosed our findings to the vendors.

To foster further research in this area, we publish our source
code at https://github.com/scy-phy/multicpu-pitfalls.

II. BACKGROUND
A. Memory-Mapped I/O

To allow interaction on a software level, peripherals con-
nected to an embedded system are accessible via memory-
mapped I/O (MMIO). Each peripheral is assigned a memory
region, and each location in this memory region is called a
MMIO register. The firmware can interact with the MMIO
registers via regular load and store instructions. Unlike in
normal memory, however, a read from a MMIO register returns
a value provided from the peripheral of this memory range.
A write to an MMIO register writes data to the peripheral of
this memory range.

B. Bus Architecture

The actual communication from the CPU running the
firmware and its peripherals happens via the bus architecture.
The bus architecture is the physical connection of all the
resources on the MCU. Modern MCUs employ multiple buses
to group resources together. A single bus connects multiple
resources. Each resource is connected either as bus maintainer
or as bus subordinate. A bus maintainer can issue a request on
the bus, a bus subordinate can merely respond to requests of
bus maintainers. Typical bus maintainers are CPUs, while typ-
ical bus subordinates are most peripherals, such as, Universal
Asynchronous Receiver-Transmitter (UART).

C. Direct Memory Access and Memory Protection Unit

Two features of modern MCUs deserve special attention:
direct memory access (DMA) and the MPU.

DMA. DMA is an asynchronous communication mecha-
nism on modern MCUs. It is a techngiue to copy memory
without CPU involvement. Consequently, all DMA-enabled
peripherals are connected as bus maintainers.

MPU. An MPU is a mechanism of modern MCUs to
limit access to certain memory areas. The MPU comes as an
optional part of the CPU, but firmware interacts with the MPU
in the same way as the firmware interacts with peripherals,
via MMIO. The MPU is disabled at firmware start, providing
no protection. In privileged mode, the firmware can write
the MPU configuration and enable or disable the MPU. The

[- 1
1
o
| Maintainer _ Subordinate & 8 (] Victim
interface interface Memory Peripherals [] Attacker
Memory Peripheral Bus
Domain Domain Domain

Fig. 1. A simplified multi-CPU system. CPU A is connected to bus «,
the single-connected memory o and the single-connected peripheral «. In
addition, both CPU A and CPU B are connected to bus 3, the multi-connected
memory (3 and the multi-connected peripheral j3.

MPU configuration can define a fixed number of memory
regions and access permissions for these memory regions. For
example, the firmware may employ an RTOS which can access
privileged mode. The RTOS runs tasks in unprivileged mode.
The RTOS can configure a memory region as privilege access
only. This creates a memory area that only the RTOS can
access, e.g. to store cryptographic secrets.

D. Multi-CPU Systems

A multi-CPU system is an MCU that employs at least 2
CPUs. Each CPU runs its own firmware, independent of the
firmware on the other CPUs. In addition, each CPU has its
own bus architecture, connected to its own resources, such
as peripherals and the system’s memory. Usually, some parts
of these bus architectures are bridged. This allows a bus
maintainer to access the bridged resources as if they were
connected to the maintainer’s own bus.

Consider the following example. The MCU consists of
CPU A and CPU B. CPU A is connected to a bus, and a UART
peripheral is also connected to this bus. This bus is bridged to
CPU B. CPU B can thus interact with the UART peripheral as
if it were connected to its own bus architecture. This UART
peripheral occupies a dedicated area in MMIO memory, in the
same way a UART connected to CPU B would.

III. ATTACK VECTORS ON MULTI-PROCESSOR
EMBEDDED SYSTEMS

We now analyze the architecture of multi-processor em-
bedded systems. We investigate each part of the architecture
(categorized as peripherals, buses, and the memory), and
additionally, examine the inter-CPU communication channels.
As result of our analysis, we present 4 attack vectors.

A. System Architecture

We assume a multi-CPU embedded device with at least
two CPUs. All CPUs are ARM Cortex-M [6]] CPUs. All

https://github.com/scy-phy/multicpu-pitfalls

CPU A CPU B
MPU ;IIZIZZIE MPU ;IIZIIZZE
i -
—
Bus a
[- | - 1
1 1
#1 8.
| Maintainer ... Subordinate & 8] Victim
interface interface Memory Peripherals [] Attacker
Memory Peripheral Bus (@)
Domain Domain Domain Secret

Fig. 2. An example of the MPU policy desynchronization attack vector. The
attacker reconfigured the MPU on the attacker CPU to allow access to the
victim’s secret in memory (3. Now the attacker can read the secret.

CPUs are connected to peripherals and memory via the bus
structure. Figure [I] shows a simplified overview of a multi-
CPU system. CPU A and CPU B are both connected to bus
(. Bus (8 connects to memory 3 and peripherals 8 and -y, and
consequently, both CPU A and CPU B can access memory
B as well as peripherals 8 and . We call memory and
peripherals that are accessible by both CPUs multi-connected
memory or peripherals. In addition, CPU A is connected to bus
« and can thus access the connected memory « and peripheral
a. CPU B cannot access memory « or peripheral a. If a
memory or a peripheral can only be accessed by a single CPU,
we term this memory or peripheral single-connected memory
or peripheral.

B. Threat Model

We assume that an attacker was able to compromise the
firmware of one CPU (CPU B in Figure [I)) of a multi-CPU
system during runtime. They are able to execute arbitrary
code and can access all resources that the respective CPU
has. In particular, the attacker can access all multi- and
single-connected peripherals and memory that are connected to
the compromised CPU. The attacker cannot, however, access
single-connected memory or peripherals that are not connected
to the compromised CPU. The other CPU (CPU A in Figure[l)
obtains a secret and stores this secret in the system’s memory.
The goal of the attacker is to learn this secret.

Related work uses a similar attacker model [[12]. In addition,
other work that crosses security boundaries, e.g., by gaining
access to a TEE, require the same attacker model [52]], [26].

In the sample architecture provided by Nordic [S3], one
CPU takes care of network communication and the other CPU
runs the application. This networking CPU needs to execute
Nordic’s proprietary, closed-source network stack implemen-
tation. Our attack scenario corresponds to a network attacker
that compromised the network stack or a rogue network stack.

This attacker now wants to access secret application data. Note
that some manufacturers explicitly advertise multiple CPUs as
a security feature: for example, ST Microelectronics claims in
their security note that “In dual-core products, one core can
act as secure while the other is nonsecure” [29]]. Our attack
scenario challenges this claim.

In the following, we consider a dual-CPU MCU, similar to
Figure [l We assume that CPU A is not compromised, while
the attacker controls CPU B. We use CPU B and attacker (as
well as CPU A and victim) interchangeably.

C. Attacks Against The Memory

Malicious access to memory is a known problem on (single-
CPU) embedded devices [1l]. In particular, as the memory
containing the stack is often executable (even today [28]),
overwriting a single return address with a pointer to attacker-
controlled stack memory immediately results in code execu-
tion. We find many existing defenses against these attacks in
the literature [39], [14], [1].

Accessing Connected Memories Directly. If the stack of
the victim CPU A is in a multi-connected memory, this “jump
to shellcode” attack also works cross-CPU. Once an attacker
obtained code execution on CPU B, they can inject code into
the multi-connected memory of CPU A, and modify a return
address to execute it.

To defend against these types of attacks on single-CPU
devices, vendors introduced MPUs. The defenses introduced
above rely on these MPUs. They leverage the MPU to restrict
access to peripherals and memory areas. However, MPUs are
implemented as part of a CPU. Consequently, the MPU on
CPU A only restricts accesses of CPU A-executed firmware,
and the MPU on CPU B moderates accesses of CPU B-
executed firmware. Consequently, to achieve similar guaran-
tees in a multi-CPU system compared to a single-CPU system,
all CPUs need to provide an MPU. Furthermore, all MPU
policies need to be semantically equivalent with respect to
multi-connected memories or peripherals and changes to one
policy need to be reflected in all policies.

Consider Figure[2] CPU A is connected to single-connected
memory « and single-connected peripherals « via bus «. In
addition, CPU A is connected to multi-connected memory /3
and multi-connected peripherals 5 via bus 5. CPU B is only
connected to multi-connected memory and multi-connected
peripherals $ via bus 3. Both CPU A and CPU B employ an
MPU. Assume that CPU A stores a secret, e.g., cryptographic
keys, in multi-connected memory 3. CPU A restricts access to
the secret via an MPU policy. CPU B starts with a semantically
equivalent policy. This policy denies all access from CPU B.
Consequently, the semantic meaning of both policies is that
only CPU A can access this memory area. If the attacker tries
to access the secret, the MPU denies access to it.

We find that this setting allows the following attack. If
the attacker on CPU B can reconfigure CPU B’s MPU
(which requires privileged code execution, default in many
firmwares [14]]), the attacker can change its policy to enable
access to the memory that the victim uses to store its secret —

without a possibility for CPU A to notice this change in MPU
configuration. The attacker effectively introduced a semantic
inequality of the MPU policies that allowed them to access
previously inaccessible memory. We term this attack MPU
policy desynchronization attack.

[Attack vector 1: MPU policy desynchronization.

Attack vector 1 allows an attacker to access a secret in multi-
connected memory. It does not allow an attacker to access a
secret in single-connected memory. We introduce other vectors
to allow access to a secret in single-connected memory later.

Communication. We find that multi-CPU embedded de-
vices commonly use multi-connected memory to share data
between the CPUs. This matches with the state of the art
in general-purpose computing. The two predominant methods
of communication in modern systems are message pass-
ing and shared memory. Shared memory requires a shared
memory space, a synchronization primitive (that is, locks
or semaphores), and the mutual agreement to not modify
the memory while not in possession of the synchronization
primitive. Consequently, the memory region containing the
shared memory needs to reside in a memory region that is
available to all communication participants.

In our multi-CPU embedded device setting, this requires
the implementation of shared memory to use multi-connected
memory. To synchronize shared memory access, all com-
munication participants need to respect the synchronization
primitive. The communication can only work as intended in
either a cooperative setting (all communication participants
are benign and wait for their turn) or a setting where the
access locking mechanism is enforced by a third party, like
an operating system. In our threat model, the communication
participants are not guaranteed to be cooperative (as the
attacker chooses if they want to cooperate or not) and there
is no operating system across all CPUs. Consequently, if an
attacker controls CPU B, the attacker can freely access the
shared memory. This enables the attacker to perform typical
time-of-check-to-time-of-use (TOCTOU)-style attacks.

Assume CPU A wants to query CPU B, which is attacker-
controlled, on some data to use in CPU A’s processing.
CPU B acquires the lock, writes to the shared memory channel,
and releases the lock again. Now CPU A acquires the lock,
performs a check on the data, and then uses it to perform a
sensitive action. If CPU B ignores the lock, it can modify the
data after CPU A performed the check, but before the data
is used. This allows the attacker to provide unchecked data
to the sensitive action of CPU A. Hence, we find that shared
memory cannot enable reliable communication in our scenario,
as neither hardware nor an operating system can enforce the
synchronization primitive.

Message passing, on the other hand, utilizes a hardware-
enforced queue-like structure. Communicating parties can only
perform operations on the queue, and not access the underlying
storage space. We find that the only way to implement message

passing in multi-CPU MCUs is via a dedicated peripheral.
Unlike shared memory, this can serve as a secure commu-
nication channel. CPU B, the attacker, can choose to write
arbitrary data to the queue. But once the data is written to
the queue, the attacker loses control over the data. Hence,
CPU A can take the data out of the queue, perform its checks
and act accordingly without CPU B, the attacker, interfering
after the checks. In summary, we identify unsynchronized
communication channels as our second attack vector.

Attack vector 2: Unsynchronized communication
channels.

This attack allows an attacker to leverage data in multi-
connected memory to potentially access data in single-
connected memory. The exact capabilities of an attacker
depend on the implementation of the shared memory com-
munication mechanism.

D. Attacks Against Peripherals

In this part, we analyze the second category, peripherals. As
mentioned in Section the CPUs interact with peripherals
via memory operations. If multiple CPUs want to access the
same peripheral, they thus need to coordinate.

Resource Contention. As mentioned in Section pe-
ripherals are mapped to fixed memory regions. The firmware
interacts with these peripherals via memory reads and writes.
Consequently, we find that multi-connected peripherals suffer
from a similar problem as multi-connected memory: shared
usage requires cooperation. If the victim wants to use a
multi-connected peripheral, it requires the agreement that the
attacker does not use it during that time. Otherwise, similar
TOCTOU-style attacks are possible.

Assume CPU A wants to use a multi-connected, DMA-
enabled Ethernet peripheral to receive a secret. After CPU A
setup the peripheral, the attacker can overwrite the destination
pointer to point to an attacker-controlled area. The multi-
connected Ethernet peripheral will then write the secret to
the attacker-controlled area and consequently, the attacker is
in possession of the secret. We identify the possibility of
changing the configuration of a peripheral from one CPU while
the other CPU is using it as third attack vector.

Attack vector 3: Non-exclusive peripheral access.]

E. Attacking the Bus Layout

As explained in Section bus maintainers issue trans-
actions to the devices they are connected to. Typical bus
maintainers include the CPUs, but also DMA-enabled devices.
Those are the DMA peripherals themselves, but also different
peripherals with dedicated, integrated DMA capabilities, such
as Ethernet, USB or SD card controllers [28]].

Confused Peripherals. Consider again Figure [I] the sim-
plified multi-CPU system. Resource access is not symmetrical:

| Maintainer __ Subordinate & 8 (] Victim
interface interface Memory Peripherals [] Attacker
Memory Peripheral Bus
Domain Domain Domain Secret

Fig. 3. An example of the confused deputy peripheral attack vector. The
attacker cannot access the secret in memory « directly, as memory « is a
single-connected memory. However, the attacker can configure peripheral ~,
which has bus maintainer access to the memory, to access the secret on the
attacker’s behalf.

TABLE I
ATTACK VECTOR OVERVIEW. EACH ATTACK CAN ACHIEVE DIFFERENT
EFFECTS GIVEN DIFFERENT REQUIREMENTS.

Attack vector Target Requirement Effect
MPU policy MPU—prot., privileged code Read./wrlte
A multi-conn. : multi-connected
desynchronization execution
memory memory
Unsynchronized multi-conn. no hardware R_ead/wnte .
single-/multi-
comm. channels memory comm. mech.
conn. memory
. . Read/Write
Non-exclusive multi-conn.
eripheral access peripheral none CEETLOT
P peripheral
Confused deputy single-conn. peripheral with Read/wrlte
. . single-connected
peripheral memory diff. bus access

memory data

CPU A can access resources that CPU B cannot access. CPU A
can access bus «, which is connected to the single-connected
memory « and single-connected peripherals a and v. CPU B
is physically not connected to bus « and as such, has no
direct access options to memory « and peripheral . However,
CPU B has access to peripheral «y, which is connected to bus
«. As explained in Section [[I-B| all bus maintainers on a bus
can access the resources on this bus. Some peripherals, such
as DMA-enabled peripherals, have a maintainer interface on
busses that they connect to. We find that a security problem
may arise if the attacker cannot access a bus directly (bus
« in this example), but can access a peripheral that is a bus
maintainer on this bus.

Consider Figure [3] CPU A is connected to bus «, which
connects to single-connected memory . CPU A and B are
connected to multi-connected memory on bus 3. The single-
connected memory « is thus not accessible to CPU B. The
victim leverages the fact that the single-connected memory «
is not available to CPU B and stores the secret in its memory.

The attacker cannot access this memory, as CPU B, which the
attacker controls, it not connected to the memory.

However, the attacker can access peripheral ~y. Peripheral
~ is connected to both bus « and bus [with a maintainer
interface. Peripheral v can thus access connected peripherals
on both bus « and bus . This includes the single-connected
memory . Consequently, as the attacker has access to a main-
tainer interface on bus [, the attacker can configure peripheral
~ to access the secret on the attacker’s behalf. This violates
CPU A’s assumption that CPU B cannot access the single-
connected memory «, and may lead to security vulnerabilities,
e.g., a compromise of the secret stored in the single-connected
memory «. We identify access discrepancies among different,
connected maintainer peripherals as our fourth attack vector.

[Attack vector 4: Confused deputy peripheral.]

E Attack Vector Combination

We discovered four attack vectors with different require-
ments to achieve different effects. The attacks are summarized
in Table [

We find that in a setup where the secret is stored in
multi-connected memory, and the attacker has privileged code
execution, attack vector 1 is sufficient to steal the secret.
We note that bare-metal firmware usually runs in privileged
mode [14]. However, in a setup where the secret is stored
in single-connected memory (or the attacker has no privileged
code execution), attack vector 1 alone does not suffice. Instead,
the attacker may require a combination of attack vectors to
achieve the goal of stealing a peripheral-received secret.

For example, there may be an MPU policy protecting
the peripherals, and the secret is stored in single-connected
memory. An attacker may need to perform an MPU policy
desynchronization attack to gain access to the peripheral.
Afterwards, the attacker employs a confused deputy peripheral
attack against the peripheral to steal the secret from single-
connected memory.

IV. VULNERABILITY ASSESSMENT OF DEVICES ON THE
MARKET

In this section, we survey relevant multi-CPU MCUs avail-
able on the market, and assess their potential vulnerability to
our four attack vectors based on architectural choices made. To
that end, we first collect a dataset of MCUSs of the architecture
we presented. Then, for each attack vector introduced in
Section we investigate the vulnerability of the device
against the attack vector.

A. Dataset Collection

We identify the 11 most important MCU vendors [24] and
collect all multi-CPU MCU families where all CPUs imple-
mented the ARM Cortex-M standard. Additionally, we add two
more manufacturers popular in the community. Raspberry Pi
is (as part of the Raspberry Pi family) particularly popular
among end users [63]. Nordic Semiconductor is a popular

TABLE II
MCUS WITH MULTIPLE CPUS, RELEASE (MONTH AND YEAR), THEIR EMPLOYED CPU CONFIGURATION AND THEIR POTENTIAL VULNERABILITY TO
THE ATTACK VECTORS FROM SECT[ON ® MEANS THE MCU IS VULNERABLE TO THE ATTACK (AND O MEANS IT IS NOT VULNERABLE). © DENOTES
A DEVICE WE DEEM VULNERABLE, BUT THE MCU EMPLOYS A COMPLETELY SYMMETRICAL MEMORY MAP. @ INDICATES THAT NOT ALL OF THE CPUS
EMPLOY AN MPU. ® MEANS PARTIALLY VULNERABLE.

MCU Name Vendor Release Cortex-M CPUs V1: MPU V2: comm. V3: peripherals V4: conf. dep. periph.
NXP K32L3 [44] NXP 09/2019 [43] 1x M4 & 1x MO ° ° ° °
NXP LPC43xx [41] NXP 12/2012 [45] 1x M4 & 1x MO ° ° © J
STM32H745/755 [28] ST 06/2019 [35] 1x M7 & 1x M4 ° ° ° °
STM32WB55 [38] ST 02/2019 [32] 1x M4 & 1x MO] ° ° °
STM32WL5x [37] ST 01/2020 [36] 1x M4 & 1x MO o o o o
XMC7000 [21] Infineon 11/2022 23] 1-2x M7 & 1x MO o o o o
Traveo T2G [20] Infineon 20171 Ix M7/M4 & 1x MO o o o o
PSoC6 [19] Infineon 09/20172 1x M4 & 1x MO e} e} e} e}
RP2040 [48] Raspberry Pi 01/2021 [46] 2x MO ° o © °
RP2350 [47] Raspberry Pi 08/2024 [47] 2x M33 o o o o
nRF5340 [57] Nordic 11/2019 [56] 2x M33 o e o o

L: Due to Infineon’s takeover of Cypress, much information was lost. The earliest entry in the wayback machine for this MCU is from 2017 [54]
2: Due to Infineon’s takeover of Cypress, much information was lost. The wayback machine seems to date the public release to 09/2017 [22]

manufacturer in the wireless domain [62]]. As platform, we
choose ARM due to its wide adoption in practice [8] and
focus on the Cortex-M standard as this is the standard for
low-power embedded devices [6]. Notably, there are also
devices that employ Cortex-M and Cortex-A cores on the
same MCU. However, the Cortex-A standard supports more
advanced security features, such as an MMU [3]], and the
Cortex-A cores are generally strong enough to run a general-
purpose operating system, such as Linux. Consequently, it
requires a different analysis which we leave for future work.

We collected a total of 11 MCU families across 5 different
vendors, summarized in Table Among these 11 families,
we find 4 different Cortex-M CPUs (Cortex-M7, Cortex-M4,
Cortex-M33, and Cortex-M0). Most of them provide exactly
2 CPUs, with the XMC7000 [21] being the only exception
(it employs up to 3 CPUs). The most common scenario is an
asymmetrical setup of a more powerful and a less powerful
processor, such as a Cortex-M4 and a Cortex-MO, or a Cortex-
M7 and a Cortex-M4. Three device families use a symmetrical
setup: the RP2040 [48] employs 2 Cortex-M0O CPUs, the
RP2350 [49] and the nRF5340 [S7] provide 2 Cortex-M33
CPUs each. We note that we analyze device families. The
LPC43xx device family alone comprises 61 actively supported
devices [41]. Additionally, we observe that all of these board
families, except for the RP2040, advertise security as a feature,
with statements such as “enhance application security” [28]] or
“advanced security” [44]. ST Microelectronics published an
application note that states that if a device employs multiple
CPUs, one of them can be a designated secure CPU while the
other is a non-secure CPU [29].

B. Prevention Characteristics

In order to identify if a device from our data set is vulnerable
to one of the identified attack vectors, we identify prevention
characteristics that are required to prevent the identified attack
vectors. First, we perform a review of all devices from our
data set. We analyze the features of the individual boards

and investigate for each feature if it can prevent one of the
previously identified attack vectors. This results in a set of
mechanisms that can eliminate one or multiple attack vectors
introduced in Section We deem a device vulnerable to
an attack vector if it does not implement any mechanism to
defend against the attack vector. Note that the existence of
such a characteristic does not make a device secure by default.
There is still room for misconfiguration. Consequently, our
evaluation is an upper bound of the achievable security against
the attack vectors introduced before.

C. AV 1: MPU Policy Desynchronization

We abuse the fact that MPU policies are individual to and
programmable from their respective CPUs. Consequently, an
attacker that controls CPU B can reconfigure its MPU policy
to nullify all protection given by this MPU (see Figure [2).

We distinguish between 2 different situations. In some
multi-CPU systems, all CPUs are MPU-protected while others
only implement an MPU on a subset of their CPUs. While this
attack vector considers MPU policy desynchronization, a non-
existent MPU is functionally equivalent to no MPU policy.
Thus, the attack vector also applies to multi-CPU MCUs where
only a subset of the CPUs employs an MPU.

Prevention Characteristic. This attack vector is caused by
bringing multiple MPU policies out of sync with respect to
multi-connected peripherals or memory. In order to address
this problem, we need a single MPU-like peripheral that keeps
a policy for the whole device. As this mechanism needs to
manage permissions for multiple bus maintainers, it cannot
be implemented as part of a single bus maintainer. We find
that a memory protection mechanism implemented on the bus
defends against this attack vector. This memory protection
mechanism defines access permissions of all bus maintainers
uniformly on one peripheral external to the CPUs. These
peripherals are usually initialized during a secure boot [37],
or only configurable by exactly one bus maintainer [57].
Consequently, CPU B cannot choose to reconfigure the MPU
to elevate its privileges.

Findings. Consider Table|ll} In our dataset, we observe that
5 out of 11 CPU families appear vulnerable to this attack
vector. The vulnerable devices comprise of the NXP devices,
the ST devices minus the STM32WL5x, and the RP2040. 2 out
of these 5 do not implement MPUs on all of their cores (NXP
LPC43xx and STM32WB55 family). As discussed before, a
missing MPU is functionally equivalent to no MPU policy.

The 6 families that are not vulnerable are all Infineon
families, the nRF5340, the STM32WL5x, and the RP2350.
They all implement an access control mechanism on the
bus level that assigns permissions to bus maintainers. These
access control mechanisms work similar to a regular MPU:
they are configured and enabled once, and this configuration
can later only be changed from a secure access context (the
exact implementation is manufacturer-specific). This allows
for fine-grained configuration of access permissions per bus
maintainer. We find a slight variation on the RP2350: this
device employs ARM TrustZone [7] on both CPUs. Unlike an
MPU per CPU, one instance of TrustZone per CPU can be
configured securely, as the access permission check happens
on the bus level. Consequently, enabling TrustZone on one
CPU and disabling TrustZone entirely on the second CPU
prevents the attack.

D. AV 2: Unsynchronized Communication Channels

In this attack vector, we attack the communication among
the MCUs. We observe two communication paradigms in our
dataset: communication via shared memory and communica-
tion via processor queues, corresponding to the mechanisms
introduced in Section

Hardware Locking. The shared memory paradigm uses
a semaphore peripheral. CPU A and CPU B assign a spe-
cific meaning to each semaphore, e.g., semaphore 1 protects
memory 1. If any CPU performs a write access, it marks
the semaphore, and after the write access, it unmarks the
semaphore again. This unmarking can be configured to trigger
an interrupt on the other CPU to notify it of the updated
memory. Crucially, there is no connection between memory
area and its protecting semaphore. Both CPU A and CPU
B implicitly connect it to a memory area. If one of the
CPUs is attacker-controlled, the attacker does not need to
respect this agreement and can change the memory content
at will. Consider the following example: CPU A and CPU
B communicate via a queue in shared memory. The attacker
controls CPU B and changes the pointer to the next element.
The next time CPU A inserts an element in the queue, it is
written to an attacker-controlled address. While CPU A can
perform a sanity check on the queue’s next pointer, this only
narrows the time window that the attacker on CPU B has to
write the pointer, as CPU A can never get exclusive access,
resulting in a TOCTOU-style attack.

Processor Queues. The processor queues communication
paradigm uses a queue mechanism in hardware. If CPU B
wants to send a message to CPU A, it inserts the data in this
queue. CPU A receives an interrupt that new data is there.
At this point, CPU B has handed over its control over the

communication data to the hardware queue mechanism. A
modification is no longer possible. CPU A can now perform
its sanity check and CPU B cannot change the data in the
window between validation and use of the data.

Prevention Characteristic. The prevention characteristic
that we identify for this attack vector is the existence of a hard-
ware queue mechanism. If an MCU implements a queueing
mechanism, firmware can implement secure communication
among the CPUs. If there is only a shared memory-based
approach, secure communication is not possible. Note that if
both exist, secure communication is possible by choosing the
queue mechanism, and consequently, we deem the device not
vulnerable.

Note that protection from an external MPU, similar to the
defense from Section [I[V-C| is no defense in this scenario,
as the purpose of the shared memory is to be readable and
writeable by both CPUs. If CPU B cannot write to the shared
memory, the channel immediately becomes unidirectional,
which is insufficient in the general case. Consequently, we
deem an external MPU protection mechanism an insufficient
protection mechanism against this attack vector.

Findings. Consider Table Out of the 11 investigated
board families, we find that 5 appear vulnerable. These
vulnerable boards implement only communication via shared
memory and hardware locks. We note that the nRF5340 [57]]
has an IPC peripheral with a “GPMEM” field. This field
stores general purpose data. However, the peripheral employs
16 individual IPC structs and only 2 “GPMEM?” fields. It is
unclear if the “GPMEM” fields can be used to pass data. Even
if they can be used, the number of channels is limited to 2,
while the number of IPC structs is 16. Thus, 14 of the 16
structs are insecure, 2 can be used securely. We assign ®.

We find that all 3 Infineon families (the XMC7000, PSoC6
and Traveo T2G series) present a special case: they do not
explicitly introduce queue structures, but they introduce an
IPC struct that implements a locking mechanism with 2 data
fields. These data fields are only accessible as long as the CPU
owns the respective IPC struct lock. Consequently, Infineon
implemented a hardware bond between the data fields and
the lock. These data fields can hence be used similar to a
queue mechanism with queue size one and allow secure data
exchange. The Infineon devices are thus not vulnerable to the
unsynchronized communication channel attack vector, even
without implementing a true queueing mechanism.

The RP2040 and the RP2350 are only MCUs that implement
a true queueing mechanism. Each CPU has a read and a
write register, and writing to the write register in CPU A
results in data in the read register in CPU B, and vice versa.
The moment that CPU A writes data to the write register, it
gives up control over the data and can no longer change it.
Consequently, the RP2040 and the RP2350 are not vulnerable
to the unsynchronized communication channel attack vector.

E. AV 3: Non-exclusive Peripheral Access

In this attack vector, we aim to change peripheral configu-
ration data of the victim between configuration and usage.

Prevention Characteristic. The prevention characteristic
for this attack vector is the existence of an access control
mechanism for peripherals that works simultaneously for all
bus maintainers. Therefore, this access control mechanism
must be implemented as part of the bus architecture, unlike,
e.g., an MPU which is implemented as part of the CPU.

Findings. Consider Table [I[I, We find that 5 device families
do not implement such a control mechanism and are thus likely
vulnerable to the attack. Again, the NXP device families are
vulnerable, as well as the ST boards except the STM32WL5x.
The RP2040 is also vulnerable, while the RP2350 is not.

The 6 families that are not vulnerable are again all 3
Infineon families, the nRF5340, the RP2350 and the afore-
mentioned STM32WL5x. They implement an access control
mechanism that allows to create an access policy for bus
maintainers. If a bus maintainer wants to access a resource,
the mechanism moderates bus maintainer access at runtime
according to the policy. This mechanism is configured and
enabled once, similar to an MPU, and later only accesses from
a secure access context can change the policy again. The exact
details are implementation-specific.

F. AV 4: Confused Deputy Peripheral

In this attack vector, we abuse the fact that all bus main-
tainers can read/write from/to the bus, and some can do so
on behalf of others. It can thus happen that the attacker CPU
cannot access a particular resource, e.g., the single-connected
memory « in Figure [3] but another bus maintainer (multi-
connected peripheral 7) can access said resource, and the
attacker CPU can configure it. Thus, the attacker CPU can still
access the resource (indirectly) via the other bus maintainer.

Prevention Characteristic. We identify two prevention
characteristics for this attack vector. First, a similar mechanism
as the one introduced in Section access control for
peripherals, can protect against this attack vector. The access
control mechanism can ensure that all accessible peripherals
for a CPU have the same access as the original CPU. Conse-
quently, some peripherals are made unavailable for a CPU.

The second prevention characteristic is also a prevention
characteristic for the attack in Section a memory access
control mechanism. This memory access control mechanism
must be implemented external to all CPUs and must not be
configurable by the CPUs. Now, the attacker can no longer
use the different privileges of other bus maintainers to access
otherwise inaccessible memory regions as each bus maintainer
has its own set of access privileges.

Findings. Consider Table [E In our analysis, 5 out of
11 boards allow this style of attack, and the board families
that appear vulnerable are the same as in Section The
vulnerable families are the NXP boards, the ST boards without
the STM32WL5x, and the RP2040. Out of these 5 boards, 3
provide resources that are only available to one of the CPUs.
For example, the STM32H755 [28]] provides two memory
regions exclusively to the M7 core. A firmware engineer
intuitively assumes that this memory is only available to one
of the processors, thus it can store secrets that are exclusive

to this processor. The M4 cannot read it, but can configure
the DMA controller to copy data from this memory to M4-
accessible memory and vice versa. The attacker can leverage
this power to steal confidential information from otherwise
unaccessible memory.

The 6 families that are not vulnerable (again, all Infineon
families, the nRF5340, the RP2350 and the STM32WL5x)
implement both a peripheral protection mechanism as well as
a memory protection mechanism. If configured correctly, these
mechanisms can protect against the confused deputy peripheral
attack vector.

V. PRACTICAL VALIDATION OF OUR ATTACK VECTORS

We practically validate our theoretical findings by im-
plementing an attack for each of the attack vectors that
we identified. We provide the source of our experiments at
https://github.com/scy-phy/multicpu-pitfalls. For each attack,
we first introduce the questions we aim to answer with the
implementation, then we describe our attack in detail, and
summarize the results of our evaluation.

Experimental Setup. We evaluate our attacks in two steps:
first, in this Section, we implement our experiments on a devel-
opment board from ST Microelectronics. Second, in Section
we present two case studies on real-world firmware.

For our experiments, we choose the NUCLEO-H755ZI-Q, a
development board for the STM32H755 [28]]. We choose this
board because ST Microelectronics makes the strongest claims
about security of their multi-CPU devices [29]. This board is
one of the devices from Section [[V] that is vulnerable to all
attack vectors, and it has a single-connected memory area. In
addition, it provides a good development environment with
many open-source samples. To load an existing example, we
use the STM32CubeMX [58]], select the NUCLEO-H755ZI1-
Q as the target board and pick one of the examples in the
example selector. To generate an empty example, we select
the STM32H755 in the MCU selector and configure the
peripherals as required. In our experiments, the M4 is the
attacker core and the M7 the defending core. We choose this
configuration because the M7 has access to memory regions
that the M4 cannot access. We use the terms M4 and attacker,
as well as M7 and victim, interchangeably.

A. AV 1: MPU Policy Desynchronization

With this attack vector, we want to introduce semantic
discrepancies among multiple MPU configurations. In this part
of the evaluation, we want to answer the following question:

Q1 Can we modify the MPU on the attacker CPU to intro-
duce semantic discrepancies such that the attacker can
access previously protected memory?

Experimental Setup. We answer this question with two
experiments. Both experiments are based on an empty sample.
The victim stores a secret value in a memory region and marks
this memory region as inaccessible by anyone. The attacker
nonetheless wants to access this memory region.

Experiment 1. In the first experiment, which serves as
ground truth, the attacker firmware also configures the MPU in

https://github.com/scy-phy/multicpu-pitfalls

Shared

Firmware A Memory Firmware B
]] [0]
write ’a
t1
b2
t3
t |oi read
write
ta
ts
read Xe,
t

Fig. 4. Overview of an unsynchronized communication channels attack. The
firmwares hold a synchronization primitive in the intervals indicated by the
lock. In Experiment 1, the attacker tries to obtain the synchronization primitive
at t3 and fails. In Experiment 2, the attacker ignores the synchronization prim-
itive, and can thus modify the data at ¢3 without taking the synchronization
primitive.

a semantically equivalent way: the MPU policy prohibits any
access to this memory area. Now the attacker tries to access
this memory area. This results in a fault. Thus, semantically
equivalent MPU policies can protect a memory region.

Experiment 2. In the second experiment, the attacker
introduces discrepancies in the MPU configuration on its CPU.
The attacker uses their power to execute arbitrary code to
reconfigure a peripheral. In this experiment, this attacker-
controlled code disables the MPU, allowing full access to
all regions for anyone. In our experiment, we simulate this
scenario by disabling (not configuring) the MPU. This results
in no restrictions for all code running on the attacker CPU. The
attacker then tries to access the secret value that is protected
by the M7 MPU policy. The attacker can freely retrieve this
value. Consequently, this introduced discrepancy between the
individual MPUs compromises protection.

Summary. As projected in Section the attacker can
introduce MPU access discrepancies to gain access to memory
regions that are protected by the victim MCU (Q1).

B. AV 2: Unsynchronized Communication Channels
In this section, we want to answer the following questions:

Q2 Can we modify the shared memory from the attacker-con-
trolled CPU while the victim CPU holds the associated
synchronization primitive?

Q3 If yes, what is the impact on security?

Experimental Setup. To answer these questions, we design

2 experiments. The experiments base on a modified version

of the FreeRTOS_AMP_Dual_RTOS example. This example

uses the message buffer implementation [18]] of the popular

RTOS FreeRTOS [17] to send data from one CPU to the other

CPU. This implementation uses a queue mechanism in shared

memory to exchange data. We modify this example to an echo

example: the attacker sends a message to the defender, and the
defender replies with the same message. Figure [] shows the
general structure. The attacker writes a message to the queue
in shared memory. The victim reads the message and sends it

back to the queue. The attacker now reads the message again.
The attack, in this scenario, is a modification attempt at time
t3. At this point in time, the victim owns the synchronization
primitive, but the attacker tries to access the resource.

Experiment 1. The first experiment assumes cooperating
firmwares. In a cooperative setting, both CPUs use a syn-
chronization mechanism to assert that no concurrent accesses
happen. In this experiment, we implement this synchroniza-
tion mechanism with a hardware lock. To access the shared
memory, a CPU needs to hold this hardware lock (Q2). This
serves as ground truth to prove that synchronization is possible
in a cooperative scenario.

Refer to Figure [The attacker first acquires the lock at
to, writes data to the shared queue, then releases the lock
at t;. The victim firmware acquires the lock at ts to read
from the queue. Now, at t3, the attacker tries to access the
shared memory. The victim firmware continues by reading
the resource and writing it back. After writing it back, the
victim firmware releases the lock at time ¢,. Now, the attacker
firmware can acquire the lock again and reads the shared
memory location.

As this experiment assumes a cooperative setting, the at-
tacker first tries to obtain the lock to access the shared resource
at t3, but fails to do so. Consequently, the attacker cannot
modify the shared resource at t3, because they do not hold
the lock. Thus the attack is not possible.

Experiment 2. In the second experiment, we change the
assumption that the attacker cooperates. We use the same
firmware as in Experiment 1, that is we add locking logic
around accesses to the shared resource. However, this time,
we do not assume cooperation, thus the attacker does not
respect the lock. Consequently, we remove the lock-holding
logic from the attacker firmware when trying to access the
shared resource at time %3.

Consult again Figure @] The attacker releases the lock at
time t1, then the victim acquires the lock at ¢5. Any checks to
the consistency of the state of the shared resource happen now,
as the victim has sole access to the shared resource. However,
our attacker does not respect the lock, thus tries to access the
shared memory without holding the lock at time ¢35. As there
is no entity enforcing the lock, the attacker can freely modify
the shared resource (Q2).

To answer Q3, we first investigate the shared resource in
more detail. Inspecting the FreeRTOS message buffer im-
plementation shows that it uses a queue in shared memory.
Sending data to the message buffer writes data to a buffer area
at the write pointer and advances the write pointer, receiving
data from the message buffer reads data from the buffer area
at the read pointer and advances the read pointer.

As our attacker does not respect the lock, our attacker
can modify the shared memory at any point in time, but in
particular at time t3. To achieve an arbitrary read primitive,
the attacker can manipulate the read pointer at time t3. The
next time the victim retrieves data from the message buffer,
the victim instead reads from the manipulated pointer location.
In our echo scenario, the victim then sends this read data

Shared

Firmware A Peripheral Firmware B

config

enable

Fig. 5. A non-exclusive peripheral access attack. The attacker reconfigures the
peripheral after victim configuration, but before victim usage. Consequently
the peripheral performs an attacker-desired action.

to the attacker. Our attacker can achieve an arbitrary write
primitive in the same way: by modifying the write pointer at
time t¢3. The victim receives (attacker-controlled!) data and
writes the data back to the write pointer. However, as the
attacker manipulated the write pointer, it instead writes to an
attacker-controlled location. These two primitives are enough
to gain code execution on the victim CPU. The attacker can
thus take over the victim CPU in this experiment. Beating
Proprietary Defenses. Interestingly, we find that on this
specific MCU, the manufacturer provides 2 proprietary defense
mechanisms: readout protection (RDP) and proprietary code
readout protection (PCROP) [31]. These mechanisms allow
the developer to mark a memory area of the device as a
secure world. Only code running inside this secure world can
access code and data inside the secure world, accesses from
the outside return no data. Only the M7 CPU can use this
secure world feature. These proprietary defense mechanisms
thus introduce a TEE. The M7 enters this TEE after boot,
but, once it exits the TEE, no reentry is possible except via
reboot. This differs from other TEE implementations, such as
Intel SGX [25] or Arm TrustZone [7].

Assume the following example: the victim acts as a crypto-
graphic service provider. It owns cryptographic material, uses
it to sign a given message, and sends the original message and
the signature back to the attacker. Notably, to keep access to
the cryptographic material inside the TEE, the victim firmware
permanently runs inside the TEE. Consequently, the read and
write primitive obtained via attack vector 1 allow arbitrary
read and write inside the TEE. This defeats the purpose of the
security mechanism and allows the attacker to both retrieve
the cryptographic material as well as read out the proprietary
code running in the secure world, the two scenarios that the
defense was purpose-built to defeat.

Summary. We find that an attacker can access shared mem-
ory without holding the lock, as there is no relation between
the lock and the memory. In our experiment, FreeRTOS stores
a queue structure with a read and write pointer in this shared
memory. Overwriting these pointers results in an arbitrary read
primitive and an arbitrary write primitive, which lead to code
execution on the victim CPU. If the victim firmware runs in
a secure world, instead we gain a read and write primitive
inside the secure world, which leads to code execution inside
the secure world.

10

C. AV 3: Non-exclusive Peripheral Access
Here, we want to answer the following question:

Q4 Can we reconfigure a peripheral between configuration
and usage?

Experimental Setup. We answer this question with one ex-
periment. This experiment is based on an empty example. We
add the configuration and usage of a single DMA peripheral to
the victim firmware: the victim uses DMA to copy data from
one place in memory to another place. The attacker firmware
tries to modify the configuration between the configuration and
enable points in time. The ground truth is trivially omitted: if
the attacker does not modify the peripheral configuration, the
peripheral acts as instructed.

Experiment 1. In this experiment, the attacker wants to
modify the configuration at time ¢o. Consider Figure [5] The
victim firmware configures the DMA peripheral. Now, the
attacker reconfigures the DMA peripheral under attack and
in particular, reconfigures the source and destination address
of the data transfer at time t,. Then, the victim enables the
peripheral. The peripheral performs its action. However, as
the attacker modified the configuration, the action is under
the attacker’s control. Consequently, the DMA peripheral
copies data from an attacker-controlled location to an attacker-
controlled location (Q4). This results in an arbitrary read
or write primitive, which an attacker can use to gain code
execution on the victim CPU if executed multiple times, as
shown in Section Note that the capabilities of this attack
depend on the peripheral under attack. Attacking a DMA
controller might result in code execution, while attacking an
LED might not.

D. AV 4: Bus Maintainer Access Discrepancies

For this attack vector, we want to answer the question:

Q5 Can the attacker CPU use a bus maintainer to access a
resource that it is physically not connected to?

Experimental Setup. We design two experiments to answer
this question. Both experiments are based on an empty sample.
The victim firmware sets a secret value in the memory region
that only it can access, and the attacker firmware tries to
retrieve this secret value. The NUCLEO-H755ZI-Q has 2
areas that only the Cortex-M7 can access: the data tightly
coupled RAM (DTCM) and the instruction tightly coupled
RAM (ITCM). We derive from the memory map that the
attacker CPU has no other resource mapped at the address
of the DTCM. The memory region that provides access to
the ITCM is, however, mapped as an alias to the vector table
instead. Our experiments test both areas.

Experiment 1. This first experiment serves as a ground
truth. The attacker tries to directly access the secret value via
its memory address. As expected, the access to the secret value
in DTCM results in a hardfault. No resource is mapped here,
thus the address cannot be resolved and the attacker cannot
access the secret value.

The access to ITCM returns a value, but not the secret
value. Instead, it matches the value that is at the same offset

in flash memory. This is expected: the area provides an alias
to the vector table, which is located at the start of the flash.
Consequently, directly accessing it returns the value in flash
at the given offset.

Experiment 2. In the second example, we use a bus
maintainer peripheral that does have access to both memory
regions and is available to the attacker CPU. In our sce-
nario, we choose the MDMA controller. According to the
reference manual, the MDMA controller is connected to both
the attacker and victim CPU as well as both the DTCM and
ITCM, to which the attacker CPU is not connected to [28]].
In our experiment, we directly configure the controller with
the malicious configuration to read the secret value and store
it in a memory area that the attacker can access. As the
attacker can execute arbitrary code on their CPU, the attacker
can also reconfigure the MDMA controller with a malicious
configuration. Our experiment represents the state after the
attacker reconfigured the MDMA controller. As expected in
Section in both cases, the secret value is now accessible
to the attacker in the configured attacker-accessible memory
region. Indeed, the MDMA controller is connected to both
the DTCM as well as the ITCM, unlike the attacker CPU. In
addition, there is no remapping of the ITCM-mapped memory
area. Consequently, the MDMA peripheral also accesses the
correct secret value in the ITCM (Q5).

Summary. As expected in Section we show that the at-
tacker can access a single-connected resource that the attacker
itself is not connected to, if the attacker is instead connected
to another bus maintainer peripheral that does have access to
the resource.

VI. CASE STUDIES

In addition to practically evaluating the attack vectors on
a development board, we demonstrate that our identified
vulnerabilites are actually present in commercial products. For
this, we use 2 commercial products: a proprietary networking
firmware and a Samsung Galaxy Ring. The proprietary net-
work firmware is taken from an STM32WB55 [38|], where it
is used together with an application firmware. Each firmware
runs on a dedicated CPU. The network CPU only runs ST-
signed firmware, while the application CPU can run any.

The Samsung Galaxy Ring [30] is of particular interest as
it processes health data on the application core, while the
network core exposes this data via bluetooth.

A. STM32WBS55 — Insecure Communication Channels

We chose this device because of two factors: first, according
to Table this device is vulnerable to all attack vectors.
Second, this device allows only signed and encrypted binaries
on the network CPU. Consequently, production devices also
employ the same network firmware as the development Kkit.

We investigated the communication mechanism between the
network CPU and the application CPU and found a typical
shared memory implementation that notifies the other proces-
sor via semaphores. The network processor manages the low-
level Bluetooth handling, and relays higher-level Bluetooth

11

events to the application processor. This event relaying is
implemented with a queue mechanism: the network processor
adds an element to the queue, and the application processor
retrieves the queue element and subsequently appends it to a
queue that manages free elements. Note that the pointers are
not protected in any way. Indeed, the setup procedure expects
the application processor to configure the shared memory
region. Afterwards, the application processor wakes up the
network processor, which parses the shared memory region
data into the communication structures.

This presents a typical attack vector 2: changing the meta-
data in the shared memory communication structures may
result in security issues. While a practical vulnerability con-
firmation was not possible due to the proprietary nature of the
network core firmware, ST issued a patch that hardens this
interface after we reported our attack vectors [33] in addition
to the publication of the security advisory.

According to the ST application note 5156 “Introduction
to security for STM32 MCUs” [29]], “In dual-core products,
one core can act as secure while the other is nonsecure”.
However, it features a custom readout protection mechanism
that prevents the application core from accessing some ram and
flash regions. This does not impact the vulnerability against
our proposed attack vectors, but practical attacks require more
effort, as, e.g., code reuse attacks are not easily possible
without knowing where certain instructions are located. Note
that this is a typical case of security by obscurity.

B. Case study: Galaxy Ring — Zephyr Isolation Issues

The Samsung Galaxy Ring is a smart ring that measures
several body functions and transmits the data to a smartphone
via Bluetooth. It employs an nRF5340, which also advertises
one CPU as a network core and the other CPU as application
core. We obtained the firmware image of both the application
processor as well as the network processor. Our analysis shows
that both firmwares are based on the Zephyr RTOS [51]. The
Zephyr RTOS advertises security as a core feature. Zephyr
implements isolation on a thread level: User-Mode threads are
untrusted, and thus isolated from Kernel-Mode threads and the
kernel itself. Zephyr explicitly does not protect against kernel-
level threats or threats from Kernel-Mode threads.

Zephyr implements wireless connectivity on the nRF5340
by implementing a mediator firmware. This mediator firmware
interacts with closed-source, binary-only firmware provided by
Nordic Semiconductor to access the wireless features of the
hardware, and exposes these functionalities to the application
core [50]]. This allows the application firmware to make use of
network functionality. The mediator firmware can communi-
cate over various interfaces, such as an SPI interface, a UART
interface or an IPC mechanism.

We analyze the network core application of the Samsung
Galaxy Ring with binary similarity techniques and find it uses
the sample IPC mechanism that Zephyr provides. In addition,
we identify the thread start mechanism and find that all threads
on the network core run in Kernel-Mode. Consequentially,

also the network communication on the network core runs
in Kernel-Mode.

Experimental confirmation. To confirm our theoretical
findings on the Samsung Galaxy Ring, we design an equivalent
experiment on an nRF5340 development board. In our exper-
iment, Zephyr runs on both the network and the application
core. As identified on the Samsung Galaxy Ring, we run the
sample IPC mechanism from Zephyr on the network core, and
we run the peripheral bluetooth sample on the application
core. We modify the application core code to store secret data
in a variable only accessible to the kernel and then execute a
function pointer, also only accessible to the kernel.

Experiment 1. In this experiment, we show that an attacker
on the network core can read data on the application core. To
that end, we modify the network core application to read the
secret data. This is equivalent to an attacker compromising
the network core on the Galaxy Ring (as the Galaxy Ring
seems to employ the sample IPC mechanism from Zephyr)
and accessing sensitive health data that the application core
collects. Indeed, the network core can access this data via
attack vector 1. Zephyr protects this data via MPU, and as the
application core and network core do not have the same MPU
configuration, the attacker can access the secret data.

Experiment 2. In this experiment, the attacker on the
network core hijacks the control flow of the application core.
The network core modifies the function pointer executed by the
application core, leading to attacker-controlled control flow.
This is equivalent to an attacker compromising the network
core on the Galaxy Ring and modifying the application core
firmware, to, e.g., make sensors report wrong values. Similar
to experiment 1, the attacker on the network core can modify
the function pointer via attack vector 1, as Zephyr employs an
MPU to protect this function pointer from untrusted access.

Note that we did not implement an exploit for the Samsung
Galaxy Ring itself, as it requires malicious code execution in
the network core. We consider obtaining code execution on
the network core out of scope for this work.

We responsibly disclosed our findings to Samsung on Au-
gust 5th 2025. We immediately got a (generic) confirmation
of our message, but no further reply.

C. Summary

We have shown that the identified vulnerabilities are also
relevant in practice. The proprietary network stack required
for the STM32WBS55 is vulnerable to attack vector 2, while
attack vector 1 leads to the removal of security boundaries in
the Samsung Galaxy Ring.

VII. DISCUSSION

In this section, we discuss less powerful attacker models
and possible countermeasures. In general, we divide coun-
termeasures in two categories: software countermeasures and
hardware countermeasures. Software countermeasures are ret-
rospectively applicable, but can only help reduce risk and
do not provide full protection. Hardware countermeasures do

12

provide full protection, but require architectural redesign. Con-
sequently, only devices manufactured after the architectural
redesign are protected, leaving devices that were manufactured
before that point in time vulnerable.

A. Attacks without Code Execution

Our attacker model assumes that an attacker can execute
arbitrary code on one of the CPUs of the system. However, in
many cases, code execution may not be required.

We find that all attack vectors can also work with only a
write primitive (e.g. via a buggy peripheral configuration), if
certain conditions are met. Changing the MPU configuration
in attack vector 1 requires a write primitive with elevated per-
missions. Consequently, we can reduce the attacker capabilities
to a privileged write primitive given the right circumstances.
In attack vector 2, if the write primitive allows writing at the
correct time (after sending data to the shared communication
mechanism, but before the victim interacts with the mecha-
nism), the attacker still obtains code execution on the victim
CPU. Similarly, if the attacker has a write primitive that occurs
after peripheral configuration but before peripheral enabling,
attack vector 3 and 4 require no code execution.

B. Software Countermeasures

As mentioned above, software countermeasures cannot pro-
vide full protection, but can help reduce the risk. In the
following, we suggest risk reduction strategies against the
individual attack vectors.

Attack Vector 1. This attack vector introduces discrep-
ancies in the MPUs of each CPU. However, each CPU can
only access its own MPU configuration and cannot validate
semantic equivalence of other CPUs” MPU configuration. Thus
we see no software countermeasure for attack vector 1.

Attack Vector 2. One possible risk reduction strategy from
the literature against attack vector 2 is to remove metadata
in cross-CPU communication protocols [12]. Indeed, in our
implementation of the attack vector, we exploit the queue
structure that is used for communication. If, instead, the shared
memory is fixed-size and data-only, the attack surface is
reduced. The attacker can still modify the data in a TOCTOU-
style attack, but the attacker is limited to writing data-only. If
this data is not relevant to the control flow of the victim CPU,
the attacker does not immediately gain code execution.

Another strategy is to copy the received data before use
to a location only the victim has access to and operate on the
copy. Combined with the first risk reduction strategy, this does
invalidate attack vector 2.

Attack Vector 3. The best option we see to reduce the
impact of attack vector 3 is to reduce the time between
peripheral configuration and peripheral usage. This reduces
the probability of the attacker to reconfigure the peripheral at
the correct point in time. However, this strategy suffers from
two problems. First, the attacker may be able to introduce
artificial delays, e.g., via interrupts. If the attacker can trigger
an interrupt on the victim CPU, this will invoke the interrupt
service routine (ISR), suspending regular firmware execution.

The attacker can use this delay as an additional time window
to reconfigure the peripheral. Furthermore, a peripheral may be
long-running. In our example in Section[V-C| we demonstrated
the attack vector at the example of a DMA transaction. This
transaction is configured once and runs once. Other peripherals
may be used repeatedly with the same configuration. Consider
an example of a UART console that runs indefinitely. The
firmware configures the UART peripheral once, and subse-
quently, a user can interact with the console. The peripheral
is not reconfigured after each console interaction but instead
is configured once at the start of the operation. Consequently,
timing is not an issue for an attacker in this scenario.
Attack Vector 4. As attack vector 4 relies entirely on the
architecture of the MCU, we see no software countermeasure.

C. Hardware countermeasures

To mitigate the presented attack vectors, we instead suggest
the implementation of additional hardware features. While this
provides the most comprehensive defense against our attack
vectors, additional hardware cannot be retrofit and thus only
future chips can benefit. Existing chips are left vulnerable.

Attack Vector 2. To mitigate attack vector 2, the manufac-
turer needs to implement a hardware-enforced communication
channel that requires the attacker to commit data to the
hardware (immutable afterwards). The RP2040 [48]] can serve
as a reference: it implements a read-only read register and a
write-only write register in each CPU. Writing to the write
register passes the data to the read register of the other CPU.
Thus, the attacker can no longer modify the data.

Attack Vectors 1,3 and 4. We recommend to fix the attack
vectors 1, 3 and 4 with a bus-level permission management
system. This system checks (before the access to a memory
or peripheral happens) if the bus maintainer has the correct
permissions to access the resource. One example implemen-
tation can be found in the investigated Infineon boards [19],
[21], [20]. Infineon implements a peripheral protection unit,
which is similar to an MPU but dedicated to protect peripheral
accesses and tailored towards peripheral protection, such as
more protection areas. Infineon implements a hardware feature
called shared MPU. This acts as an MPU, but it is shared
across all bus maintainers. This combination of hardware fea-
tures defends against attack vectors 1, 3 and 4. The peripheral
protection unit can protect the peripherals that an attacker
manipulates, defending against attack vector 3 and 4, and the
shared MPU protects against attack vector 1. The shared MPU
protects the shared MPU itself, defending against attack vector
4, and defends memory areas that other bus maintainers are
not supposed to access (attack vector 3).

VIII. RELATED WORK

There is no prior work that considers the multi-CPU MCU
scenario on embedded devices. A systematization lists no
investigation in this domain [60]. The closest work is from
Classen et al., which demonstrates cross-CPU exploitation for
a specific MCU with dedicated WiFi and Bluetooth CPUs [[12].

13

DMA Attacks. In early work on Firewire [10], Boileau
demonstrated that flaws in the Firewire protocol can allow
an external peripheral (connected via Firewire) to reconfigure
DMA controllers to gain direct access to the entire addressable
system memory. On commodity PCs, many defenses have been
proposed [64], [65], [67]]. On embedded devices, DMA attacks
are still more prevalent. For example, the use of DMA-related
sidechannels to exploit trusted execution architectures in em-
bedded systems was also investigated in [9]. In particular,
the gap between formal modeling-based security guarantees
and practically achievable guarantees was examined, and novel
DMA-based side-channel attacks are possible.

Embedded Exploit Mitigation. Many exploit mitigation
techniques have been proposed in recent years. Abbasi et
al. propose pArmor, an MPU-based defense for RTOS. They
implement a protection mechanism for executable memory re-
gions, a code reuse gadget reduction scheme and a data/pointer
separation scheme [1]. The use of MPUs as access control
mechanism was also investigated by [14]. In this work, the
authors create overlays over regions and assign privileges.
An instruction that accesses such an overlay is replaced with
an ISR that checks access permissions first. Clements et al.
propose ACES, a compiler extension that uses source code
and a developer-specified security policy to enforce compart-
mentalization at runtime [[13]. NesCheck, on the other hand,
does not require a security policy. Instead, NesCheck lever-
ages static analysis and runtime checks to enforce memory
safety [39]. More recently, Mera et al. found that existing
compartmentalization schemes do not consider DMA. They
propose D-Box, a scheme that also secures against malicious
DMA [27]. In addition, Zhou et al. point out that an MPU
cannot restrict the maintainer access of peripherals [66].

Trusted Execution Environments. Another line of research
aims to protect embedded devices with TEEs. Wang et al.
propose RT-Tee, a TEE that can fulfill real-time CPU and
MMIO requirements [61]. The authors of [S9] use a TEE to
measure the integrity of an embedded device. This employs
a TEE to measure a novel metric, the operation execution in-
tegrity, a combination of control flow and critical data integrity,
and attest it remotely. However, recent work has pointed out
limitations of TEEs in embedded devices. Rodrigues et al.
discovered a sidechannel in the MCU bus interconnect logic.
The authors use this side channel to leak a secret from the
TEE [52]]. In [26], the authors abuse physical features of
SRAM to retrieve secrets from TEEs. SRAM exposes the value
it holds while under excessive stress. This allows the authors
to extract secrets across protection domains.

IX. CONCLUSIONS

In this work, we systematically identified security issues in
powerful next-generation embedded systems, resulting from
the integration of multiple CPUs in a single SoC. We found
that security mechanisms that are present and effective on
single-CPU systems do not transfer to the multi-CPU setting.
As a result, attackers can read and write protected data from
other CPUs on the same system.

We identified four attack vectors, and found that a sig-
nificant number of systems on the market are vulnerable.
These attack vectors can lead to arbitrary read and write
primitives, such that one CPU can force the other CPU to
read and write memory locations on its behalf, and even to
code execution. In addition, we found that the communication
mechanism of a popular open source RTOS may introduce
code execution vulnerabilities in the multi-CPU scenario. We
verified our theoretical predictions by implementing our four
attacks and demonstrated their practical efficacy. Our attacks
allowed us to overcome proprietary TEE implementations that
were supposed to defend against reading out data on one of the
CPUs. We performed two case studies, showing the practical
impact of our attack vectors, and discussed potential software
and hardware countermeasures. We responsibly disclosed our
findings to the vendors, resulting in one security advisory and
updates to proprietary network stacks of one vendor.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their valuable
feedback. This work was funded by the Federal Ministry of
Research, Technology and Space (BMFTR) under the grant
ASRIOT (16KIS1901). The responsibility for the content of
this publication lies with the authors.

X. ETHICS CONSIDERATIONS

Our paper introduces 4 novel attack vectors that can only
partially be mitigated via software. As a first step, we provide
instructions how to minimize the attack surface via software,
even in scenarios where software updates alone do not suffice.

Furthermore, we responsibly disclosed our findings to the
device manufacturers as well as the FreeRTOS team shortly
after finishing the experiments and provided assistance in
judging and mitigating the impact.

In addition, we hope to use this paper as a communication
tool to reach hardware manufacturers that consider multi-
CPU designs in their products. For some of the presented
vulnerabilities, only hardware changes fully mitigate the un-
derlying issue. By raising awareness about the presented is-
sues, we hope that hardware manufacturers consider hardware
countermeasures as already implemented by some of the
manufacturers.

REFERENCES

[1] Ali Abbasi, Jos Wetzels, Thorsten Holz, and Sandro Etalle. Challenges
in designing exploit mitigations for deeply embedded systems. In
Proceedings of the IEEE European Symposium on Security and Privacy
(EuroSP), 2019.

[2] ARM. AMBA® AHB protocol specification. |https://documentation-
service.arm.com/static/6141bf0d674a052ae36ca811. Accessed: 2024-
09-02.

[3] ARM. AMBA® APB protocol specification. |https://documentation-
service.arm.com/static/63fe2c1356ea36189d4e79{3. Accessed: 2024-09-
02.

[4] ARM. AMBA® AXI protocol specification. |https://documentation-
service.arm.com/static/63ffO0ebd56ea36189d4e7ee7. Accessed: 2024-09-
02.

[S] ARM. Learn the architecture: A profile. |https://www.arm.com/

architecture/learn-the-architecture/a-profile. Accessed: 2024-08-14.

14

[6]
[7]
[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

ARM. Learn the architecture: M profile. https://www.arm.com/
architecture/learn-the-architecture/m-profile. Accessed: 2024-08-14.
ARM. Trustzone for Cortex-M. https://www.arm.com/technologies/
trustzone-for-cortex-m. Accessed: 2024-09-04.

Aspencore. Embedded markets study: Integrating iot and ad-
vanced technology designs, application development & processing en-
vironments. https://www.embedded.com/wp-content/uploads/2019/11/
EETimes_Embedded_2019_Embedded_Markets_Study.pdf, 2019. Ac-
cessed: 2024-08-14.

Marton Bognar, Jo Van Bulck, and Frank Piessens. Mind the gap:
Studying the insecurity of provably secure embedded trusted execution
architectures. In Proceedings of the IEEE Symposium on Security and
Privacy (SP), 2022.

Adam Boileau. Hit by a bus: Physical access attacks with Firewire.
Presentation at Ruxcon, 2006.

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska
Roesner, and Tadayoshi Kohno. Comprehensive experimental analyses
of automotive attack surfaces. In Proceedings of the USENIX Security
Symposium, 2011.

Jiska Classen, Francesco Gringoli, Michael Hermann, and Matthias
Hollick. Attacks on wireless coexistence: Exploiting cross-technology
performance features for inter-chip privilege escalation. In Proceedings
of the IEEE Symposium on Security and Privacy (SP), 2022.

Abraham A Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and
Mathias Payer. {ACES}: Automatic compartments for embedded
systems. In Proceedings of the USENIX Security Symposium, 2018.
Abraham A Clements, Naif Saleh Almakhdhub, Khaled S Saab, Prashast
Srivastava, Jinkyu Koo, Saurabh Bagchi, and Mathias Payer. Protecting
bare-metal embedded systems with privilege overlays. In Proceedings
of the IEEE Symposium on Security and Privacy (SP), 2017.

Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide
Balzarotti. A {Large-scale} analysis of the security of embedded
firmwares. In Proceedings of the USENIX Security Symposium, 2014.
Max Eisele, Daniel Ebert, Christopher Huth, and Andreas Zeller.
Fuzzing embedded systems using debug interfaces. In Proceedings of
the ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2023.

FreeRTOS. FreeRTOS: Real-time operating system for microcontrollers
and small microprocessors. https://www.freertos.org/. Accessed: 2024-
08-24.

FreeRTOS. FreeRTOS stream & message buffers. https:
/Iwww.freertos.org/Documentation/02- Kernel/02- Kernel-features/04-

Stream-and-message-buffers/03-Message-bufter-example. Accessed:
2024-08-22.
Infineon. 32-bit PSoC 6 Arm Cortex-M4 / mO+. https:

/Iwww.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-

cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu/, Accessed:
2024-08-14.
Infineon. 32-bit traveo t2g arm cortex microcontroller.

https://www.infineon.com/cms/en/product/microcontroller/32-bit-
traveo-t2g-arm-cortex-microcontroller/. Accessed: 2024-08-14.
Infineon. ~ 32-bit xmc7000 industrial microcontroller arm cortex-
m7. https://www.infineon.com/cms/en/product/microcontroller/32- bit-
industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc7000-
industrial-microcontroller-arm-cortex-m7/. Accessed: 2024-08-14.
Infineon. An228571 getting started with psoc™ 6 mcu on modus-
toolbox™ software. https://documentation.infineon.com/psoc6/docs/
pvw1667470959605#revision-history. Accessed: 2025-11-06.

Infineon. Infineon launches xmc7000 series for industrial applications
with increased performance, memory, advanced peripherals, and ex-
tended temperature range. https://www.infineon.com/market-news/2022/
infcss202211-021, Accessed: 2025-11-06.

Infineon. Infineon second quarter fy 2022 quarterly update.
https://www.infineon.com/dgdl/2022-05-09+Q2+FY 22+Investor+
Presentation.pdf?fileld=8ac78c8b808544e20180a4d32bb70009.
Accessed: 2024-08-14.

Intel. Intel® software guard extensions (intel® SGX).
https://www.intel.com/content/www/us/en/products/docs/accelerator-
engines/software-guard-extensions.html. Accessed: 2024-09-04.
Jubayer Mahmod and Matthew Hicks. Untrustzone: Systematic accel-
erated aging to expose on-chip secrets. In Proceedings of the IEEE
Symposium on Security and Privacy (SP), 2024.

https://documentation-service.arm.com/static/6141bf0d674a052ae36ca811
https://documentation-service.arm.com/static/6141bf0d674a052ae36ca811
https://documentation-service.arm.com/static/63fe2c1356ea36189d4e79f3
https://documentation-service.arm.com/static/63fe2c1356ea36189d4e79f3
https://documentation-service.arm.com/static/63ff0ebd56ea36189d4e7ee7
https://documentation-service.arm.com/static/63ff0ebd56ea36189d4e7ee7
https://www.arm.com/architecture/learn-the-architecture/a-profile
https://www.arm.com/architecture/learn-the-architecture/a-profile
https://www.arm.com/architecture/learn-the-architecture/m-profile
https://www.arm.com/architecture/learn-the-architecture/m-profile
https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.arm.com/technologies/trustzone-for-cortex-m
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.freertos.org/
https://www.freertos.org/Documentation/02-Kernel/02-Kernel-features/04-Stream-and-message-buffers/03-Message-buffer-example
https://www.freertos.org/Documentation/02-Kernel/02-Kernel-features/04-Stream-and-message-buffers/03-Message-buffer-example
https://www.freertos.org/Documentation/02-Kernel/02-Kernel-features/04-Stream-and-message-buffers/03-Message-buffer-example
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-traveo-t2g-arm-cortex-microcontroller/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-traveo-t2g-arm-cortex-microcontroller/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc7000-industrial-microcontroller-arm-cortex-m7/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc7000-industrial-microcontroller-arm-cortex-m7/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-cortex-m/32-bit-xmc7000-industrial-microcontroller-arm-cortex-m7/
https://documentation.infineon.com/psoc6/docs/pvw1667470959605#revision-history
https://documentation.infineon.com/psoc6/docs/pvw1667470959605#revision-history
https://www.infineon.com/market-news/2022/infcss202211-021
https://www.infineon.com/market-news/2022/infcss202211-021
https://www.infineon.com/dgdl/2022-05-09+Q2+FY22+Investor+Presentation.pdf?fileId=8ac78c8b808544e20180a4d32bb70009
https://www.infineon.com/dgdl/2022-05-09+Q2+FY22+Investor+Presentation.pdf?fileId=8ac78c8b808544e20180a4d32bb70009
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html

[27

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Alejandro Mera, Yi Hui Chen, Ruimin Sun, Engin Kirda, and Long Lu.
D-box: Dma-enabled compartmentalization for embedded applications.
Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2022.

ST Microelectronics. High-performance and dsp with dp-fpu, arm
cortex-m7 + cortex-m4 mcu with 2mbytes of flash memory, 1mb ram,
480 mhz cpu, art accelerator, 11 cache, external memory interface, large
set of peripherals including a crypto accelerator, smps. https://www.st.
com/en/microcontrollers-microprocessors/stm32h755zi.html. Accessed:
2024-08-22.

ST Microelectronics. Introduction to security for stm32 mcus.
https://www.st.com/content/ccc/resource/technical/document/
application_note/group 1/9f/0b/e4/b6/75/15/41/e2/DM00493651/
files/DM00493651.pdf/jcr:content/translations/en.DM00493651.pdf.
Accessed: 2025-07-25.

ST Microelectronics. Potential isolation issue between cpul and
cpu2 on stm32wb5x, stm32wb3x, stm32wblx, and stm32wl5x.
https://www.st.com/resource/en/security_advisory/sa0024-potential-
isolation-issue-between-cpul -and-cpu2-on-stm32wb5x-stm32wb3x-
stm32wb1x-and-stm32wl5x-stmicroelectronics.pdf, Accessed: 2025-
07-25.

ST Microelectronics. Proprietary code read-out protection (pcrop)
software expansion for stm32cube (an4701, an4758 and an4968). https:
/Iwww.st.com/en/embedded- software/x-cube-pcrop.html. Accessed:
2024-08-28.

ST Microelectronics. Stm32 wireless: First mcus now available,
first nucleo pack with usb dongle. |https://blog.st.com/stm32wb55-
stm32cubemonrf-p-nucleo-wb55/. Accessed: 2025-11-06.

ST Microelectronics. Stm32cubewb mcu firmware package wireless
coprocessor release notes. https://github.com/STMicroelectronics/
STM32CubeWB/blob/dcc538339a30165¢ced95745969706b7423e3d96d/
Projects/STM32WB_Copro_Wireless_Binaries/STM32WB5x/Release_
Notes.html#L568. Accessed: 2025-07-25.

ST Microelectronics. Stm32h7: First dual core version, more accessible
single core models. https://blog.st.com/dual-core-stm32h7/. Accessed:
2024-09-02.

ST Microelectronics. Stm32h7: First dual core version, more accessible
single core models. https://blog.st.com/dual-core-stm32h7/. Accessed:
2025-11-06.

ST Microelectronics. Stm32wl, the 1st mcu with embedded lora
transceiver, a masterclass in chip design. https://blog.st.com/stm32wl/.
Accessed: 2025-11-06.

ST Microelectronics. Stm32wl5x. https://www.st.com/en/
microcontrollers-microprocessors/stm32wl5x.html. Accessed: 2024-08-
14.

ST Microelectronics. Ultra-low-power dual core arm cortex-m4 mcu 64
mhz, cortex-m0+ 32 mhz with 1 mbyte of flash memory, bluetooth le
5.4, 802.15.4, zigbee, thread, matter, usb, lcd, aes-256. https://www.st.
com/en/microcontrollers-microprocessors/stm32wb55rg.html. Accessed:
2024-08-14.

Daniele Midi, Mathias Payer, and Elisa Bertino. Memory safety for
embedded devices with nescheck. In Proceedings of the ACM Asia
Conference on Computer and Communications Security, 2017.

Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti.
Avatar 2: A multi-target orchestration platform. In Workshop on Binary
Analysis Research, 2018.

NXP. Lpc4300 series: High-performance microcontrollers (mcus)
based on arm® cortex®-m4/m0 cores. https://www.nxp.com/products/
processors-and-microcontrollers/arm-microcontrollers/general- purpose-
mcus/Ipc4300-arm-cortex-m4-m0:MC_1403790133078#/. Accessed:
2024-08-14.

NXP. Multi-core microprocessors in embedded applications. |https://
www.nxp.com/docs/en/white-paper/multicoreWP.pdf. Accessed: 2024-
09-02.

NXP. Nxp releases first k32 1 microcontrollers to production. https://
www.nxp.jp/company/about-nxp/newsroom/NW-RELEASE-K32L. Ac-
cessed: 2025-11-06.

NXP. Nxp’s energy efficient cortex-m4 mcu with cortex-mO+ and
advanced security. https://www.nxp.com/products/processors-and-
microcontrollers/arm-microcontrollers/general- purpose-mcus/k32-
1-series-arm-cortex- m4-mO- plus/nxps-energy-efficient-cortex-m4-
mcu-with-cortex-mO-plus-and-advanced-security:K32-L3, Accessed:
2024-08-14.

15

[45]

[46]

[47]

(48]

[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]
(58]

[59

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

NXP. Product longevity. https://www.nxp.com/products/nxp-
product-information/nxp-product-programs/product-longevity:

PRDCT LONGEVITY HM. Accessed: 2025-11-06.

Raspberry Pi. Meet raspberry silicon: Raspberry pi pico now on sale at
$4. |https://www.raspberrypi.com/news/raspberry- pi-silicon-pico-now-
on-sale/. Accessed: 2025-11-06.

Raspberry Pi. Raspberry pi pico 2, our new $5 microcontroller board, on
sale now. https://www.raspberrypi.com/news/raspberry-pi-pico-2-our-
new-5-microcontroller-board-on-sale-now/. Accessed: 2025-11-06.
Raspberry Pi. rp2040. |https://github.com/raspberrypi/documentation/
blob/develop/documentation/asciidoc/microcontrollers/silicon/rp2040.
adoc. Accessed: 2024-08-14.

Raspberry Pi. Rp2350 reference manual. https://datasheets.raspberrypi.
com/rp2350/rp2350-datasheet.pdf, Accessed: 2025-08-04.

Zephyr Project. Zephyr github. |https://github.com/zephyrproject-rtos/
zephyr/tree/main/samples/bluetooth/hci_ipc, Accessed: 2025-07-31.
Zephyr Project. Zephyr project. https://www.zephyrproject.org/. Ac-
cessed: 2025-07-25.

Cristiano Rodrigues, Daniel Oliveira, and Sandro Pinto. BUSted!!!
Microarchitectural side-channel attacks on the MCU bus interconnect.
In Proceedings of the IEEE Symposium on Security and Privacy (SP),
2023.

Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric Gustafson, Mar-
ius Muench, Giovanni Vigna, Christopher Kruegel, Thorsten Holz, and
Ali Abbasi. Fuzzware: Using precise {MMIO} modeling for effective
firmware fuzzing. In Proceedings of the USENIX Security Symposium,
2022.

Cypress Semiconductor. Cypress traveo 32-bit arm automotive
microcontrollers (mcus). https://web.archive.org/web/20170316181430/
http://www.cypress.com/products/cypress- traveo-32-bit-arm-
automotive-microcontrollers-mcus. Accessed: 2025-11-06.

Nordic Semiconductor. https://blog.nordicsemi.com/getconnected/why-
does-the-nrf5340-have-two-cores. https://blog.nordicsemi.com/
getconnected/why-does-the-nrf5340-have-two-cores. Accessed:
2024-12-05.

Nordic Semiconductor. Meet the nrf5340, nordic’s new dual-core flag-
ship soc. |https://blog.nordicsemi.com/getconnected/meet-the-nrf5340-
nordics-new-dual-core-flagship-soc, Accessed: 2025-11-06.

Nordic Semiconductor. nrf5340. https://www.nordicsemi.com/Products/
nRF5340. Accessed: 2024-08-14.

ST. Stm32cube initialization code generator. https://www.st.com/en/
development-tools/stm32cubemx.html. Accessed: 2024-08-22.
Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha. Oat: Attesting
operation integrity of embedded devices. In Proceedings of the IEEE
Symposium on Security and Privacy (SP), 2020.

Xi Tan, Zheyuan Ma, Sandro Pinto, Le Guan, Ning Zhang, Jun Xu,
Zhigiang Lin, Hongxin Hu, and Ziming Zhao. SoK:Where’s the “up”?!
a comprehensive (bottom-up) study on the security of arm Cortex-M
systems. In Proceedings of USENIX WOOT Conference on Olffensive
Technologies (WOOT), 2024.

Jinwen Wang, Ao Li, Haoran Li, Chenyang Lu, and Ning Zhang. Rt-
tee: Real-time system availability for cyber-physical systems using arm
trustzone. In Proceedings of the IEEE Symposium on Security and
Privacy (SP), 2022.

Haohuang Wen, Zhigiang Lin, and Yinqian Zhang. Firmxray: Detect-
ing bluetooth link layer vulnerabilities from bare-metal firmware. In
Proceedings of the ACM Conference on Computer and Communications
Security (CCS), 2020.

Ashley Whittaker. Raspberry pi pico — what did you think? https://
www.raspberrypi.com/news/raspberry- pi- pico- what-did- you-think/. Ac-
cessed: 2024-08-22.

Paul Willmann, Scott Rixner, and Alan L Cox. Protection strategies
for direct access to virtualized I/O devices. In Proceedings of USENIX
Annual Technical Conference (USENIX ATC), 2008.

Miao Yu. An I/O Separation Model and its Applications to On-Demand
I/0 on Commodity Platforms. PhD thesis, Carnegie Mellon University,
2019.

Wei Zhou, Zhouqi Jiang, and Le Guan. Understanding mpu usage
in microcontroller-based systems in the wild. In Workshop on Binary
Analysis Research, 2023.

Zongwei Zhou, Virgil D Gligor, James Newsome, and Jonathan M
McCune. Building verifiable trusted path on commodity x86 computers.
In Proceedings of the IEEE Symposium on Security and Privacy (SP),
2012.

https://www.st.com/en/microcontrollers-microprocessors/stm32h755zi.html
https://www.st.com/en/microcontrollers-microprocessors/stm32h755zi.html
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/9f/0b/e4/b6/75/15/4f/e2/DM00493651/files/DM00493651.pdf/jcr:content/translations/en.DM00493651.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/9f/0b/e4/b6/75/15/4f/e2/DM00493651/files/DM00493651.pdf/jcr:content/translations/en.DM00493651.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/9f/0b/e4/b6/75/15/4f/e2/DM00493651/files/DM00493651.pdf/jcr:content/translations/en.DM00493651.pdf
https://www.st.com/resource/en/security_advisory/sa0024-potential-isolation-issue-between-cpu1-and-cpu2-on-stm32wb5x-stm32wb3x-stm32wb1x-and-stm32wl5x-stmicroelectronics.pdf
https://www.st.com/resource/en/security_advisory/sa0024-potential-isolation-issue-between-cpu1-and-cpu2-on-stm32wb5x-stm32wb3x-stm32wb1x-and-stm32wl5x-stmicroelectronics.pdf
https://www.st.com/resource/en/security_advisory/sa0024-potential-isolation-issue-between-cpu1-and-cpu2-on-stm32wb5x-stm32wb3x-stm32wb1x-and-stm32wl5x-stmicroelectronics.pdf
https://www.st.com/en/embedded-software/x-cube-pcrop.html
https://www.st.com/en/embedded-software/x-cube-pcrop.html
https://blog.st.com/stm32wb55-stm32cubemonrf-p-nucleo-wb55/
https://blog.st.com/stm32wb55-stm32cubemonrf-p-nucleo-wb55/
https://github.com/STMicroelectronics/STM32CubeWB/blob/dcc538339a30165ced95745969706b7423e3d96d/Projects/STM32WB_Copro_Wireless_Binaries/STM32WB5x/Release_Notes.html#L568
https://github.com/STMicroelectronics/STM32CubeWB/blob/dcc538339a30165ced95745969706b7423e3d96d/Projects/STM32WB_Copro_Wireless_Binaries/STM32WB5x/Release_Notes.html#L568
https://github.com/STMicroelectronics/STM32CubeWB/blob/dcc538339a30165ced95745969706b7423e3d96d/Projects/STM32WB_Copro_Wireless_Binaries/STM32WB5x/Release_Notes.html#L568
https://github.com/STMicroelectronics/STM32CubeWB/blob/dcc538339a30165ced95745969706b7423e3d96d/Projects/STM32WB_Copro_Wireless_Binaries/STM32WB5x/Release_Notes.html#L568
https://blog.st.com/dual-core-stm32h7/
https://blog.st.com/dual-core-stm32h7/
https://blog.st.com/stm32wl/
https://www.st.com/en/microcontrollers-microprocessors/stm32wl5x.html
https://www.st.com/en/microcontrollers-microprocessors/stm32wl5x.html
https://www.st.com/en/microcontrollers-microprocessors/stm32wb55rg.html
https://www.st.com/en/microcontrollers-microprocessors/stm32wb55rg.html
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc4300-arm-cortex-m4-m0:MC_1403790133078#/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc4300-arm-cortex-m4-m0:MC_1403790133078#/
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc4300-arm-cortex-m4-m0:MC_1403790133078#/
https://www.nxp.com/docs/en/white-paper/multicoreWP.pdf
https://www.nxp.com/docs/en/white-paper/multicoreWP.pdf
https://www.nxp.jp/company/about-nxp/newsroom/NW-RELEASE-K32L
https://www.nxp.jp/company/about-nxp/newsroom/NW-RELEASE-K32L
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/k32-l-series-arm-cortex-m4-m0-plus/nxps-energy-efficient-cortex-m4-mcu-with-cortex-m0-plus-and-advanced-security:K32-L3
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/k32-l-series-arm-cortex-m4-m0-plus/nxps-energy-efficient-cortex-m4-mcu-with-cortex-m0-plus-and-advanced-security:K32-L3
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/k32-l-series-arm-cortex-m4-m0-plus/nxps-energy-efficient-cortex-m4-mcu-with-cortex-m0-plus-and-advanced-security:K32-L3
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/k32-l-series-arm-cortex-m4-m0-plus/nxps-energy-efficient-cortex-m4-mcu-with-cortex-m0-plus-and-advanced-security:K32-L3
https://www.nxp.com/products/nxp-product-information/nxp-product-programs/product-longevity:PRDCT_LONGEVITY_HM
https://www.nxp.com/products/nxp-product-information/nxp-product-programs/product-longevity:PRDCT_LONGEVITY_HM
https://www.nxp.com/products/nxp-product-information/nxp-product-programs/product-longevity:PRDCT_LONGEVITY_HM
https://www.raspberrypi.com/news/raspberry-pi-silicon-pico-now-on-sale/
https://www.raspberrypi.com/news/raspberry-pi-silicon-pico-now-on-sale/
https://www.raspberrypi.com/news/raspberry-pi-pico-2-our-new-5-microcontroller-board-on-sale-now/
https://www.raspberrypi.com/news/raspberry-pi-pico-2-our-new-5-microcontroller-board-on-sale-now/
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/microcontrollers/silicon/rp2040.adoc
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/microcontrollers/silicon/rp2040.adoc
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/microcontrollers/silicon/rp2040.adoc
https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://github.com/zephyrproject-rtos/zephyr/tree/main/samples/bluetooth/hci_ipc
https://github.com/zephyrproject-rtos/zephyr/tree/main/samples/bluetooth/hci_ipc
https://www.zephyrproject.org/
https://web.archive.org/web/20170316181430/http://www.cypress.com/products/cypress-traveo-32-bit-arm-automotive-microcontrollers-mcus
https://web.archive.org/web/20170316181430/http://www.cypress.com/products/cypress-traveo-32-bit-arm-automotive-microcontrollers-mcus
https://web.archive.org/web/20170316181430/http://www.cypress.com/products/cypress-traveo-32-bit-arm-automotive-microcontrollers-mcus
https://blog.nordicsemi.com/getconnected/why-does-the-nrf5340-have-two-cores
https://blog.nordicsemi.com/getconnected/why-does-the-nrf5340-have-two-cores
https://blog.nordicsemi.com/getconnected/meet-the-nrf5340-nordics-new-dual-core-flagship-soc
https://blog.nordicsemi.com/getconnected/meet-the-nrf5340-nordics-new-dual-core-flagship-soc
https://www.nordicsemi.com/Products/nRF5340
https://www.nordicsemi.com/Products/nRF5340
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.raspberrypi.com/news/raspberry-pi-pico-what-did-you-think/
https://www.raspberrypi.com/news/raspberry-pi-pico-what-did-you-think/

XI. ARTIFACT APPENDIX
A. Description & Requirements

This artifact currently contains sample attacks for each of
the 4 vectors, and experiments on a setup similar to the setup
of the Galaxy Ring. Detailed list of experiments:

a) Experiments on attack vector 1: We have two exper-
iments on attack vector 1 (MPU policy desynchronization).
In the experiment, the M7 configures a memory area as not
readable by anyone. In Experiment 1, the M7 then tries to read
from the memory area. In Experiment 2, the M4 tries to read
from the memory area.

b) Experiments on attack vector 2: We have three ex-
periments on attack vector 2 (unsynchronized communication
channels). In the first experiment, the attacker (on the M4)
tries to gain a read privilege. We have two experiments where
the attacker tries to execute code on the M7: in the first
experiment, the attacker respects the hardware synchronization
primitive, in the second experiment, the attacker does not
respect it.

c) Experiment on attack vector 3: In this experiment,
the attacker on the M4 will reconfigure a peripheral after the
victim configured it, leading to data leakage.

d) Experiments on attack vector 4: In these experiments,
the attacker on the M4 wants to leak data from memory that is
not accessible to the M4. In the first experiment, the attacker
directly tries to access the data, and in the second experiment,
the attacker uses a peripheral as confused deputy peripheral.

e) Experiment on Galaxy Ring scenario: In these exper-
iments, the attacker on the network core accesses data on the
application core and also change data on the application core.

f) Requirements: If you want to recreate the environment
from scratch, you need to setup the ST Cube IDE [Hand the
zephyr build environment ﬂ You will also need access to a
Nucleo-H755 and a nRF5340 development board.

1) How to access: The artifact archive is at https://doi.org/
10.5281/zenodo.17524720. You can also find it on Github:
https://github.com/smnhff-work/multicpu-pitfalls/

2) Hardware dependencies: ST Microelectronics Nucleo
H755 development kjone if you use the provided machine.

3) Software dependencies: STM32 Cube IDE! and an
ARM toolchairﬂ to build the ST samples.

4) Benchmarks: None.

B. Artifact Installation & Configuration

1) ST setup: Install the ST Cube IDE and the zephyr
environment as mentioned above. For the ST samples, import
the provided archive, and build the samples. For the zephyr
samples, exchange the files as described in the readme.

C. Experiment Workflow
See the example in

Uhttps://www.st.com/en/development-tools/stm32cubeide.html
Zhttps://docs.zephyrproject.org/latest/index.html
3https://www.st.com/en/evaluation-tools/nucleo-h755zi-q.html
4https://developer.arm.com/downloads/-/arm- gnu-toolchain-downloads

16

D. Major Claims

e (C1) The MPU Policy Desynchronization attack allows
an attacker to access protected memory from a different
CPU.

(C2) The Unsynchronized Communication Channels
attack allows an attacker to read and write arbitrary
memory locations on a different CPU.

(C3) The Non-exclusive Peripheral Access attack allows
an attacker to reconfigure a peripheral after it has been
configured by the other CPU.

(C4) The Confused Deputy Peripheral allows an at-
tacker to access otherwise unavailable memory.

(C5) We can use the MPU Policy Desynchronization
attack on Zephyr to write to and read from the application
core kernel memory from the network core.

E. Evaluation

In the general structure of the experiments, we store a
secret value at a specific memory address. On the attacker
CPU, we perform the attack and afterwards check that the
received data matches the expected secret. If this holds, we
print <Experiment number> worked. We note that we
use Cortex M4, M4 and attacker interchangeably and Cortex
M7, M7 and victim interchangeably.

1) Experiment EI+E2 (CI): [MPU Policy Synchroniza-
tion] [15 human-minutes + 5 compute-minutes]: This exper-
iment uses the memory protection unit on the Cortex M7
to remove read access to a specific memory area. In this
experiment, we show that the Cortex M4 does not need to
respect this policy. This experiment does two experiments at
the same time: show the baseline, that is the M7 can no longer
access the protected memory (E1), and show that the M4 can
still access the protected memory (E2).

[How to] You flash the experiment and observe the output
via a uart connection.

[Execution]

1. Click on the arrow of the empty-h755-mpu project. This
opens the folder structure.

Right click on the empty-h755-mpu_CM?7 project, then
run Clean Project. Afterwards, run Build Project.
Repeat 2. for the empty-h755-mpu_CM4 project.
Right click on the empty-h755-mpu_CM?7 project, se-
lect Debug As — Debug Configurations....

On the left hand side, you see numerous debug configura-
tions. Select empty-h755-mpu_CM?7, then press Debug.
This downloads both the M7 and the M4 firmware to
their respective CPU and starts a debugging session for
the M7. It breaks on the first line in the M7 main function,
where the M4 has not started yet.

Press Resume in the toolbar at the top of the window.

2.

6.

[Results] Inspect the UART output. To that end, figure out
the port where the device is connected and connect to it, e.g.,
via minicom. Two things are required for successful repro-
duction: the absence of Direct access worked! and the
presence of E2 worked!.If Direct access workedis

https://doi.org/10.5281/zenodo.17524720
https://doi.org/10.5281/zenodo.17524720
https://github.com/smnhff-work/multicpu-pitfalls/
https://www.st.com/en/development-tools/stm32cubeide.html
https://docs.zephyrproject.org/latest/index.html
https://www.st.com/en/evaluation-tools/nucleo-h755zi-q.html
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads

present, then the M7 could access the restricted memory, dis-
proving the ground truth and thus disproving E1. E2 worked
is only printed if the M4 could access the memory and found
the expected values. Consequently, this string is required to
show that E2 worked.

2) Experiment E3 (C2): [Unsychronized Communication
Channels - Data Leakage] [15 human-minutes + 5 compute-
minutes]: This experiment tricks the M7 to access and provide
data on the behalf of the M4.

[How to, Preparation and Execution] See E1+E2, but use
the Communication-DataLeak folder.

[Results] Inspect the UART output (the console window
on the right) and verify that E3 worked is present. If
E3 worked is printed, the M4 successfully modified the
shared communication channel to leak the secret.

3) Experiment E4+E5 (C2): [Unsychronized Communica-
tion Channels - Code Execution] [15 human-minutes + 5
compute-minutes]: This experiment tricks the M7 into over-
writing a return address and thus jumping to an attacker-
controlled code location. E4 assumes that the attacker respects
the synchronization primitive, showing that the attack is not
possible if synchronization on the communication primitive
is mandatory. E5 shows that the attacker does not need to
respect the primitive, leading to code execution. By default,
E4 is executed.

[How to, Preparation and Execution] See E1+E2, but use
the Communication-CodeExec folder. To switch between
E4 and ES5, comment line 35 in main. c in the M4 source tree
(under Comm. ..-CodeExec_CM4/Core/Src/main.c)
and rerun steps 1-6. Check Results E5 at this point.

[Results E4] Inspect the UART output (the console window
on the right) and verify that E5 worked is not present. If
the attacker respected synchronization, then it could not take
the lock and thus only modify metadata after the victim was
done using the shared struct.

[Results E5] If E5 worked is printed, the attacker success-
fully modified the shared communication channel while the
victim was using it. The attacker changed the victim’s control
flow to execute a function that prints the required string.

4) Experiment E6 (C3): [Non-exclusive peripheral access]
[15 human-minutes + 5 compute-minutes]: In this experiment,
the attacker modifies the configuration of a peripheral that the
victim uses after the victim already setup the peripheral.

[How to, Preparation and Execution] See E1+E2, but use
the empty-h755-peripherals folder.

[Results] Inspect the UART output (the console window
on the right) and verify that E6 worked is present. If
E6 worked is printed, the M4 successfully modified the
peripheral configuration after the victim set it up. This results
in different data being copied.

5) Experiment E7+ES8 (C4): [Bus Maintainer Access Dis-
crepancies] [15 human-minutes + 5 compute-minutes]: In this
experiment, the attacker uses a confused deputy peripheral to
access memory that it is physically not connected to.

[How to, Preparation and Execution] See E1+E2, but use
the empty-h755-dma folder. To switch between E7 and ES,

17

comment line 30 in main.c in the M4 source tree (under
empty-h755-dma_CM4/Core/Src/main.c) and rerun
steps 1-6. Check Results ES8 at this point.

[Results E7] Inspect the UART output and verify that
E8 worked is not present. Indeed, the attacker tries to access
the memory directly. This memory is not mapped and thus the
access results in a fault.

[Results E8] Inspect the UART output and verify that
E8 worked is present. In this iteration, the attacker uses a
peripheral to access the memory. This peripheral is connected
to the memory and can thus access and copy it. If the value
matches the expected value, the M4 code prints the required
string.

6) Experiment E7+ES8 (C4): [Zephyr MPU Policy Desyn-
chronization][15 human-minutes + 5 compute-minutes]: In this
experiment, the attacker uses an MPU Policy Desynchroniza-
tion to read from or write to application core kernel memory
from the network core. [How to, Preparation, Execution]
Flash the experiment (network core firmware and application
core firmware) to the board, and observe the uart output.
[Results E7] Inspect the console output on the bottom left
console. If it contains the string secret data: secret,
the attack worked. In this experiment, the attacker tried to
directly access the memory from the victim. We use the
hardcoded string secret as secret. [Results E8] Inspect the
console output on the bottom right console. If it contains
the string The attack worked!, then the attack worked.
In this experiment, the attacker overwrites a function pointer
in victim memory. If this worked, the victim will execute a
function that prints The attack worked!.

	Introduction
	Background
	Memory-Mapped I/O
	Bus Architecture
	Direct Memory Access and Memory Protection Unit
	Multi-CPU Systems

	Attack Vectors On Multi-Processor Embedded Systems
	System Architecture
	Threat Model
	Attacks Against The Memory
	Attacks Against Peripherals
	Attacking the Bus Layout
	Attack Vector Combination

	Vulnerability Assessment of Devices on the Market
	Dataset Collection
	Prevention Characteristics
	AV 1: MPU Policy Desynchronization
	AV 2: Unsynchronized Communication Channels
	AV 3: Non-exclusive Peripheral Access
	AV 4: Confused Deputy Peripheral

	Practical Validation of our Attack Vectors
	AV 1: MPU Policy Desynchronization
	AV 2: Unsynchronized Communication Channels
	AV 3: Non-exclusive Peripheral Access
	AV 4: Bus Maintainer Access Discrepancies

	Case Studies
	STM32WB55 – Insecure Communication Channels
	Case study: Galaxy Ring – Zephyr Isolation Issues
	Summary

	Discussion
	Attacks without Code Execution
	Software Countermeasures
	Hardware countermeasures

	Related Work
	Conclusions
	Ethics Considerations
	References
	Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	ST setup

	Experiment Workflow
	Major Claims
	Evaluation
	Experiment E1+E2 (C1)
	Experiment E3 (C2)
	Experiment E4+E5 (C2)
	Experiment E6 (C3)
	Experiment E7+E8 (C4)
	Experiment E7+E8 (C4)

