Artifact
Evaluated

ANDss

Available

Functional

CELLSHIFT: RTT-Aware Trace Transduction
for Real-World Website Fingerprinting

Rob Jansen
U.S. Naval Research Laboratory

Abstract—Website fingerprinting is a privacy attack in which
an adversary applies machine learning to predict the website a
user visits through Tor. Recent work proposes evaluating WF
attacks using the “genuine” patterns or fraces of Tor users’ natural
interactions that can be measured by Tor exit relays, but these
traces do not accurately reflect the patterns that an entry-side WF
attackerwould observe. In this paper, we present new methods
for transducing exit traces into entry traces that we can use to
more accurately estimate the risk WF poses to real Tor users.
Our methods leverage trace timestamps and metadata to extract
multiple round-trip time estimates and use them to ‘shift” traces
to the perspective of a target vantage point. We show through
extensive evaluation that our methods outperform the state of
the art across multiple synthetic and genuine datasets and are
considerably more efficient; they enable researchers to more
accurately represent the real-world challenge facing an entry-side
WF adversary, and produce augmented datasets that allow an
adversary to boost the performance of existing WF attacks.

I. INTRODUCTION

Website fingerprinting (WF) is an attack a gainst t he Tor
anonymous communication network [12] in which an adversary
that can observe the traffic patterns on the entry side of the
Tor network uses machine learning (ML) to predict the exit-
side destination website being accessed by the user [2, 4-8,
10, 15-18, 26, 30, 33, 37-40, 44-50, 52, 54, 55]. WF is a
serious attack because an adversary can use it to passively
deanonymize users without their knowledge, subverting Tor’s
protections and greatly weakening user safety and privacy. We
study WF to understand how practical the attack is under real-
world conditions so that we can (1) better estimate the risk it
poses to real Tor users, and thus (2) better understand how to
prioritize the development and deployment of defenses against
WF attacks in realistic scenarios.

Recent work has focused on more accurately modeling
and evaluating WF considering real-world conditions. While
the standard method of training ML website classifiers using
synthetic datasets has been shown to greatly oversimplify the
WEF task [31], Cherubin et al. were the first to suggest that an
adversary can instead train on the real traffic patterns that can
be directly observed by Tor exit relays [7]. The authors argue
that training on these so-called “genuine” traffic p atterns or

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.231004
www.ndss-symposium.org

traces, which are created as a result of real Tor users’ natural
interactions, is more realistic because the genuine traces better
represent those that would be presented during a real WF attack.
However, a major limitation of the approach is that the training
position (exit) is misaligned with the attack position (entry);
training on exit traces (while testing on entry) was estimated
to reduce classifier accuracy, first by 5-18% [7, §6.4], and
later by 17% in the median and 93% in the worst case [29,
§5.3]. Understanding how an adversary might mitigate this
performance degradation is an open research problem.

We seek to advance the study of real-world WF by examining
the research question: can trace transduction efficiently improve
classifier robustness to an out-of-distribution testing position?
Previous work inadequately addresses this question. Although
Cherubin et al. did acknowledge that training and testing
in different positions would present a new problem for the
adversary [7], they did not suggest any potential solutions. The
only published method for position-based trace transduction,
Retracer [29], requires replaying genuine exit traces in large-
scale Tor network simulations from which the simulated entry
traces can be extracted and used for training. Thus, Retracer
has high resource costs: replaying 115,000 exit traces with
Retracer requires 495 GiB of RAM and 29.9 hours of run time
when using 36 CPU cores [29, Fig. 11]. Further, we present
evidence in § IV-B1 that real-world entry traces are better
estimated by real-world exit traces than by simulated Retracer
entry traces, justifying further examination of Retracer.

In this paper we explore new methods for trace transduction,
that is, for transforming real-world traces that were observed
in a specific position to traces that better represent those
that would be observed during an entry-side WF attack. Our
key insight is that traces already contain the metadata that
is required to simulate a shift in the vantage point of trace
observation. In particular, the directions, precise timestamps,
and relay control commands of the Tor cells (i.e., protocol
messages) in a cell trace enable us to estimate a Tor circuit’s
round-trip time (RTT) and changes in the RTT throughout the
life of the circuit. From this insight, we develop CELLSHIFT, a
core set of functions to (1) extract multiple RTT measurements
from a cell trace, (2) estimate the latency and congestion
between the source position from which the trace was measured
and a target position, and (3) rewrite cell timestamps to simulate
a “shift” in the vantage point of trace observation to the
target position. CELLSHIFT’s primary novelty is that it can
perform RTT-aware trace transduction directly on a cell trace;
while Retracer replays traces in resource-intensive, complex,

https://orcid.org/0000-0002-4406-997X

large-scale network simulations, CELLSHIFT uses only simple
mathematical operations that can be efficiently executed.

We organize our contribution into three conceptually dis-
tinct modules to promote reusability and future extension:
CELLSHIFT, TRACEMOVE, and TRACEMORPH. CELLSHIFT
contains the core functionality which is general enough to
be able to shift traces between any two Tor circuit positions,
e.g., from an exit relay to an entry relay or to a client’s internet
service provider, and to support RTT-based augmentation by
considering configurable target RTTs during the shift operation.
TRACEMOVE and TRACEMORPH are concrete methods that
use CELLSHIFT to transduce each exit trace to its entry vantage
point and to many augmented entry traces, respectively.

TRACEMOVE uses CELLSHIFT to shift a single exit trace
to simulate its observation from an entry position without
modifying the original RTT of the trace. We envision that
TRACEMOVE be used to produce realistic entry-side festing
datasets that are sourced from genuine exit traces [27, 28].
Through extensive evaluation, we show that (1) TRACEMOVE
produces traces that are closer to real entry traces than are
exit traces and traces from the state-of-the-art Retracer method
across 6 distance functions, and (2) classifiers trained with
entry traces are 1-7 points more accurate when tested against
TRACEMOVE traces than when tested against exit or Retracer
traces across ten WF attacks.

TRACEMORPH uses CELLSHIFT to morph each cell trace
in a dataset into a chosen number of RTT-augmented cell
traces that better reflect the wide range of circuit latencies and
congestion levels encoded in the dataset’s cell trace metadata.
TRACEMORPH represents a likely strategy of a real-world
adversary to produce augmented training datasets that improve
WF classifier robustness to the dynamic network conditions
which are uncorrelated with the websites being accessed [2,
26]. Through extensive evaluation across multiple datasets,
we show that classifiers trained with augmented traces from
TRACEMORPH (1) in a closed-world setting are 4—14 points
more accurate than the state-of-the-art training strategies when
considering a synthetic dataset, and 5-25 points more accurate
when considering a genuine dataset, and (2) in an open, natural-
world setting are both more sensitive and more receptive to
high-precision tuning [52] than the state-of-the-art methods:
across 380 website classifiers, the median recall and optimized
precision are 42 and 26 points greater, respectively.

TRACEMOVE and TRACEMORPH run in a pre-processing
phase that occurs prior to any classifier training or testing
process. As a result, they are completely orthogonal to and
agnostic of the classification algorithm(s) that an adversary may
choose to employ during a WF attack and they can be applied
across many past and future WF classifiers. Additionally, our
methods work in isolation on either a single cell trace or a
set of cell traces; they are embarrassingly parallel and, unlike
Retracer [29], require no external information about the state
of the Tor network during trace measurement. Finally, our
methods are highly efficient because our core functions rely
only on simple mathematical operations: we show that our
Rust implementation can process at least 2,875 traces/s with

a single CPU core, which is five orders of magnitude greater

than Retracer’s rate of 0.03 traces/s/core.

CELLSHIFT is important to the study of real-world WF
because it enables us to capitalize on the more realistic traffic
patterns embedded in genuine traces: TRACEMOVE enables us
to more accurately represent the entry-side festing challenge that
genuine traces present to WF classifiers, while TRACEMORPH
enables us to better estimate the threat of a viable training
strategy that an adversary could use to improve classifier
performance in realistic scenarios. Together, our methods can
help researchers more accurately estimate the risk that WF
poses to real Tor users.

Contributions: The main contributions of this work include:

— CELLSHIFT for extracting trace RTTs, estimating latencies,
and transducing cell traces to new circuit positions; TRACE-
MOVE for producing transduced testing sets; and TRACE-
MORPH for producing transduced+augmented training sets.

— An evaluation that shows that TRACEMOVE better represents
entry traces than existing methods across six distance
functions and ten WF classifiers.

— An evaluation that shows that TRACEMORPH outperforms
alternative, state-of-the-art augmentation strategies across
ten WF classifiers against both synthetic and genuine traces.

— A real-world WF evaluation across 1,200 classifiers, demon-
strating our methods’ utility in utilizing genuine exit traces.

— Our efficient Rust implementation is released as open-source
software to support future extension (see Appendix B).

II. BACKGROUND AND MOTIVATION
A. The Tor Network

Tor is a source-routed overlay network of application-layer
proxy relays that employ a variation of onion routing to provide
source-destination unlinkability [12, 51]. To use Tor, clients
first build three-hop paths called circuits, each through an entry,
a middle, and an exit relay. The circuit is made accessible on
the client through a SOCKS API, which enables applications to
(1) request that the exit establish a new connection to an internet
service, and (2) anonymously communicate with the service
through the circuit, using its relays as bi-directional forwarding
proxies. Logical Tor connections between applications and
internet services are called streams, many of which can be
multiplexed over a circuit. Application data and Tor protocol
control commands are forwarded on streams through the circuit
in fixed-size, 514-byte messages called cells.

Tor supports configurable “stream isolation” rules for multi-
plexing many streams from an application onto the same circuit.
Tor Browser sets custom rules such that (1) a stream to a new
first-party domain is assigned to a fresh circuit, (2) subsequent
streams created to load additional pages from the first-party
domain or any associated third-party content are multiplexed
over the circuit, and (3) other, unassociated streams are assigned
to separate circuits. In this paper, we use website to refer to
the first-party domain name, which is the name resolved by the
exit relay when connecting the first stream on a fresh circuit
to the requested destination. We use webpage to refer to the
full URL of an individual page loaded from a website.

Client Entry Middle Exit Server
@ @ web.com
Unlabeled

-hzinLabeled
Traces

Adversary Tracesz predict
277

00 0 =

Figure 1: Our real-world WF adversary model. In phase 1, the
adversary runs an exit relay to collect labeled traces and trains
a WF classifier. In phase 2, the classifier is deployed to predict
a website from unlabeled entry-side traces.

B. WF Adversary Model

We adopt the following adversary model, which is consistent
with that from previous work on real-world WF [7, 29].

1) Objectives: We consider a WF adversary that controls
a vantage point on the entry-side of the Tor network. The
adversary’s primary objective is to detect visits to any of
a select, monitored set of websites being accessed through
the Tor network, thereby breaking Tor’s source-destination
unlinkability and deanonymizing Tor users. The adversary may
use detected website visits (1) for measurement, as in previous
work [23], (2) for censorship, to block further data from being
sent on a Tor connection or to block a user’s subsequent Tor
connection attempts, and (3) to justify launching digital or
physical harassment campaigns against Tor users.

We consider a non-targeting adversary that aims to conduct
surveillance and deanonymization of Tor users en masse.
Consequently, the adversary is interested in detecting as many
visits to the monitored websites as possible and generally
prefers not to target user-specific behavior or user-specific
websites. Although a targeting adversary is also an important
threat, we focus on a non-targeting adversary since it may
potentially cause greater total user harm at lower cost.

2) Capabilities: We consider a passive adversary that is
capable of launching a WF attack in two logical phases as
shown in Fig. 1. In the first phase, the adversary runs one
or more Tor exit relays and uses them to collect a dataset of
labeled cell traces for each circuit. The adversary uses the
labeled traces to train one or more WF classifiers (i.e., ML
classification models) to be able to distinguish monitored from
non-monitored, background websites based on the patterns
associated with visits to those websites. In the second phase,
the adversary deploys the trained classifier(s) to its entry-side
vantage point(s), which might include entry relays and network

nodes on one or more paths between clients and the Tor network.

When an entry-side vantage point observes a trace (which is
unlabeled due to Tor’s multi-layer encryption), the adversary
queries the trained classifier(s) to predict the visited website.

We highlight an important distinction between three different
variations of traces which warrants additional precision. In this
paper, we define a cell trace of length ¢ as a time-ordered

sequence of 3-tuples ((t;,d;, c;))_,, where each tuple denotes
the time ¢; that the circuit’s ith cell was observed, the direction
d; that it was forwarded, and the relay command ¢; for the ith
cell. A time t is typically a floating point value representing
a number of seconds, a direction d is an integer value where
d=1 indicates the client—server direction and d=—1 indicates
the client<—server direction, and the relay command c is an
integer value encoding one of 32 control instructions in the Tor
protocol [11, §2.5.1]. However, WF classifiers are not directly
trained and tested with cell traces. Instead, classifiers operate
on either direction traces, (di>f\;1, or directional-time traces,
(t; - ;)N ,; both types of traces (1) can trivially be extracted
from cell traces, and (2) are zero-padded if ¢ < N such that
(0); for £ < i < N. As in prior work, we consider N=5,000.

We consider an adversary that can collect labeled exit cell
traces as shown in Fig. 1; while this work focuses on exit
relays, we note that Tor clients and other Tor relays can also
collect cell traces. However, critically, we do not require that
an adversary be able to observe entry-side cell traces during
an attack; unlabeled direction or directional-time traces are
sufficient and both can be observed without participating in the
Tor protocol, i.e., even by a network-level vantage point [55].

C. Genuine Tor Traces

Recall that our focus in this paper is on estimating the risk
that WF poses to real Tor users. Accurately estimating real-
world WF performance requires two critical factors: (1) realistic
testing datasets, and (2) realistic training scenarios.

1) Realistic Testing Datasets: Tt is critical to evaluate
WF classifiers against test sets that accurately reflect the
challenge of the classification task that the adversary will
face during a real-world attack. We know from previous work
that synthetic datasets, which are produced programmatically
using automated tools [1], oversimplify the classification task
and lead to performance overestimation [7, 27, 29, 31]. Thus,
while synthetic datasets can be useful for understanding relative
performance differences when comparing multiple classification
strategies or targeted scenarios, we argue that they should not
be relied upon for their absolute performance estimates. On the
other hand, genuine traces, such as those that can be measured
by an exit relay [27], provide a sort of ground truth: they
contain the patterns that result from real Tor users’ natural
behavior, incorporating the true complexity of the real-world
traffic the adversary will encounter during an attack [7]. As
a result, we believe that genuine traces inherently model the
testing challenge of a real-world WF classification task.

2) Realistic Training Scenarios: While realistic testing
requires realistic datasets, they are not a strict training re-
quirement; any training data and strategy employed by the
adversary is technically valid so long as we evaluate classifier
efficacy against realistic test sets. A more important training
consideration is the adversary model, and in particular, the
capabilities and scenarios required to gather training data and
perform classifier training. In this respect, we agree with prior
work [7, 27, 29] that (1) running an exit relay to collect genuine
cell traces is a viable strategy for the adversary because anyone

Pre-processing Phase

WF Classifier(s)
w

|
e)

Result(s)

TRACEMORPH

TRACEMOVE

Figure 2: Our transduction algorithms operate on exit cell
traces in an isolated pre-processing phase, and are independent
of the WF classifier(s) employed by the adversary.

is allowed to run a relay and trace collection is both passive
and undetectable, and (2) incorporating genuine traces during
classifier training is a preferable strategy for the adversary given
that WF classifiers will ultimately be tested against such traces
in a real-world attack. Thus, we believe that our adversary
model, which considers genuine traces during both training
and testing, is a realistic representation of real-world WF.
While genuine traces help us more realistically represent
real-world WF, they present two primary limitations. First,
for the adversary, training classifiers on exit traces when they
will be tested on entry traces causes ‘“distortion” that has
been shown to degrade classifier performance [7, 29]. The
adversary would likely want to apply methods that can reverse
or mitigate this “distortion” effect. Second, researchers require
labeled entry traces in order to create realistic test sets and
accurately estimate real-world classifier performance (true/false
positives/negatives, accuracy, etc.) as described above. Although
entry traces can be collected by entry relays, the website labels
are encrypted by Tor and unavailable to an entry.' Researchers
would like a method to accurately transform genuine exit traces,
which are labeled, into entry traces while retaining the labels
and genuine traffic characteristics. Our cell trace transduction
methods presented in the next section address both limitations.

III. NEW METHODS FOR CELL TRACE TRANSDUCTION

In this section, we describe new methods of transducing cell
traces observed in one position into traces that better represent
observation from a target position, efficiently mitigating the
“distortion” effect that occurs when visits to a website are
observed from different circuit positions [7]. Our methods
are designed to overcome the limitations of genuine exit
traces [27, 28] so that we can leverage their genuine patterns
and characteristics to improve the study of real-world WF.

A. Overview

We present the design of three logically distinct modules.
Conceptually, CELLSHIFT is a library of general, shared
functionality, while TRACEMOVE and TRACEMORPH are
concrete executables that link to the CELLSHIFT library.

"Entry traces could be labeled in cooperation with clients, but doing so
using automated browsers [1] may produce synthetic traces [31] while using
browsers driven by human volunteers may produce biased traces [20, 34].

tsend + 3A tsend + 2A tsend + A tsend
We------- R |------ -l -
Client Entry Middle Exit
B------- - |- -
trecy — 3A trecy 2A trecy A trecy

Vantage Point

Figure 3: With an estimate of A = RIT

¢ » a cell trace measured
from an exit vantage point can be shifted to a new perspective

by adjusting each cell’s timestamp based on its direction.

CELLSHIFT is a core set of general functions that (1) extract
multiple RTT measurements from a cell trace, (2) estimate
the latency and congestion between the source position
from which the trace was measured and a target position,
and (3) rewrite cell timestamps to simulate a “shift” in the
vantage point of trace observation to the target position.

TRACEMOVE is a concrete method that produces realistic test-
ing datasets by using CELLSHIFT to individually transduce
exit cell traces to simulate trace observation from an entry
position without modifying the original RTT of the trace.

TRACEMORPH is a concrete strategy of a real-world adversary
that produces RTT-augmented training datasets by using
CELLSHIFT to morph each exit cell trace in a dataset into a
chosen number of entry cell traces that better reflect the wide
range of circuit latencies and congestion levels embedded
in the dataset’s cell trace metadata.

TRACEMOVE and TRACEMORPH are designed to be run
in a pre-processing phase that occurs prior to any classifier
training or testing process and are completely orthogonal to
the classification algorithm(s) that the adversary chooses to
employ during a WF attack (see Fig. 2).

B. Functionality in the CELLSHIFT Library

CELLSHIFT is designed to estimate a cell trace as it would
have been observed in a target position given an input cell
trace that was measured from the exit position. To understand
the primary shift function at a high level, consider that a cell
trace can be dissected into two separate uni-directional cell
streams as shown in Fig. 3: in one direction the exit packages
data from an internet server into cells which it sends toward
the client at time tg g, and in the other direction the exit
receives cells at time %, that were previously packaged and
sent by the client. Suppose that the latency between each pair
of consecutive nodes in the circuit is A. To simulate the trace
having been observed at the entry vantage point, CELLSHIFT
will (1) shift the client<—exit cells forward in time by setting
their timestamps to tgnq + 24, and (2) shift the client—exit
cells backward in time by setting their timestamps to tecy — 2A.
As explained below, CELLSHIFT computes A adaptively using
the most recently available circuit RTT, which can change
throughout the lifetime of a circuit, and can also simulate
unique, target RTTs in place of the measured RTTs to support

1struct Cell {
time: float # num seconds since circuit creation
dir: int # direction is +1: cli—->srv or -1: cli<-srv
4 cmd: int # relay control command; see Tor specification

5}
6struct TimeEstimate {
time: float, # number of seconds
s cell_index: # cell at which time was calculated

9}

int,

Pseudocode 1: RTTs can be estimated from the metadata
available for all cells in an exit trace.

data augmentation. Following cell timestamp adjustments, the
two uni-directional cell streams are merged back into a single
cell trace which is then sorted by the new cell timestamps.
We show by example how CELLSHIFT changes the times-
tamps and can shift the ordering of cells in a trace. Suppose,
for example, that we have estimated a circuit RTT of 120
units from exit—client—exit. Then each hop would contribute
A= % = 20 units in expectation. Accounting for this latency
would result in a completely different ordering of cells on the
entry than the ordering originally observed on the exit. Suppose
we have the following exit-observed directional-time trace.

index 0 1 2 3 4 5
dir [-1 -1 -1 41 +1 +1
time 0 10 20 50 60 70

observedej =

To estimate when the entry would have observed the cells,
CELLSHIFT adds 2A = 40 units of time to the dir=—1 cell
timestamps and subtracts 2A = 40 units of time from the
dir=4-1 cell timestamps (as in Fig. 3). The trace is then sorted
according to the new timestamps, resulting in a trace that is
shifted to the perspective of an entry vantage point.

indexoq 3 4 5 0 1 2
indeXnew 0 1 2 3 4 5
dir |[+1 +1 +1 -1 -1 -1
time |10 20 30 40 50 60

Shiftedemry =

Observe that the sequences of directions and times of the cells,
which are used by WF classifiers, have changed.

Next, we more completely describe the primary functions
that compose CELLSHIFT: estimating circuit RTTs, separating
network propagation delay and congestion, and shifting cells.

1) Estimating Circuit RTTs: In order to simulate the ob-
servation of a trace from a new vantage point, CELLSHIFT
estimates the circuit’s RTTs over the trace observation period.
We observe that circuit RTTs can be estimated many times
throughout the lifetime of a circuit by using the cell metadata
that is already available for every cell in an exit cell trace.
Pseudocode 1 shows the available cell time, direction, and
relay command types that will be used to estimate RTT and
changes in the RTT throughout the cell trace.

In order to estimate RTT, we require a Tor protocol
dependency to exist such that the exit can send a “trigger’
cell that it knows in advance will cause the client to respond
with a cell. Moreover, the client’s response cell must be able to
be uniquely identified by the exit. Fulfilling both requirements

>

1# The first CONNECIED cell triggers a DATA cell reply.
2fn connected_to_data(trace: [Cell]) —> TimeEstimate:
for (i, cell) in enumerate(trace):

4 if cell.dir == -1 and cell.cmd == CONNECTED:

if start == None:
6 start = cell.time

else if cell.dir == 1 and cell.cmd == DATA:

8 if start != None:
9 rtt = cell.time — start
10 return TimeEstimate{time: rtt, cell_index: i}
11 else:

12 return None

Pseudocode 2: RTT can be estimated when connecting to the
first server: an exit relay will send a CONNECTED cell to the
client, who replies with the circuit’s first DATA cell.

triggers a SENDME cell reply.
[Cell]) —=> [TimeEstimate]:

1# Every 31st DATA cell
2fn data_to_sendme (trace:

rtts, triggers, n_data = [], [], O
4 for (i, cell) in enumerate(trace):
5 if cell.dir == -1 and cell.cmd == DATA:
6 if n_data++ % 31 == 0:
7 triggers .push_back(cell.time)
8 else if cell.dir == 1 and cell.cmd == SENDME:
9 start = triggers.pop_front()
10 rtt = cell.time — start
11 est = TimeEstimate {time: rtt, cell_index: i}
12 rtts . push_back(est)
13 return rtts

Pseudocode 3: RTT can be estimated in Tor’s congestion control
protocol: after every cc_sendme_inc=31 DATA cells sent
by the exit relay, the client replies with a SENDME cell.

i

would enable the exit to start a timer when it sends the “trigger’
cell and stop it when it receives the expected response; the
stopped timer’s time value represents an RTT estimate.

The Tor protocol [11] presents two distinct instances in
which RTT estimates can be measured. The first opportunity
is during the process of connecting to the first server on a new
circuit. During this process, the client sends a relay control
cell named BEGIN to the exit, which includes the address and
port information the exit needs to establish the connection.
Once the connection succeeds, the exit sends a CONNECTED
cell back to the client and records the current time as the
start of an RTT estimate. When the client receives the exit’s
CONNECTED cell, it learns that the exit connection is ready
and starts sending server-bound application data toward the exit
in relay DATA cells. When the exit receives the first such DATA
cell, it records the RTT estimate by subtracting the previously
recorded start time from the current time. Pseudocode 2 shows
how we compute this initial RTT estimate on a given cell trace.
This method is feasible for every circuit that makes at least
one exit connection, independent of the type of traffic (e.g.,
web, bulk, interactive, etc.) that is carried over the circuit.

The second opportunity for estimating RTTs in the Tor
protocol is due to its flow control algorithm in which a client
will periodically send a relay SENDME cell to the exit to
control the client«—exit sending rate. Coincidentally, Tor’s
congestion control algorithm also uses the same cell metadata
to estimate circuit RTTs, which it uses as a primary congestion

1fn time_at(estimates: [TimeEstimate], cell_index: int) —>
float:
i = cell_index % estimates[—1].cell_index
for est in estimates:
if 1 <= est.cell_index:

return est.time

Pseudocode 4: We can obtain the most recent time estimate
(e.g., RTT) at the time that a given cell was observed.

signal [43]. The RTT calculation relies on the value of the
cc_sendme_inc consensus parameter, which we believe has
been set to a value of 31 since the RTT-based congestion control
algorithm was deployed in 2022 [42]. Based on these flow and
congestion control mechanisms, the client will send a relay
SENDME cell to the exit after every cc_sendme_inc=31
relay DATA cells it receives. Thus, the exit can record the
time that it sends every 31st DATA cell; when it receives the
expected SENDME cell in response, it records a new RTT
estimate by subtracting the previously recorded start time from
the current time. Pseudocode 3 shows how we can compute
many such RTT estimates for a given cell trace. This method
is also feasible for every circuit independent of the carried
traffic type, and we can use it to produce an RTT estimate for
every 10 packets ~ 31 cells ~ 15KB of application data.

Each RTT estimate includes the index of the cell at which
the RTT was recorded, allowing us to compute the most recent
RTT estimate for any particular cell or range of cells in a cell
trace (see Pseudocode 4). Although the time between RTT
estimates would generally be lower for non-interactive traffic
(e.g., web or bulk) and higher for interactive traffic (e.g., chat),
CELLSHIFT iterates cells in a trace and adaptively applies
timestamp adjustments based on the most recent, freshest
RTT estimate available. CELLSHIFT further processes the RTT
estimates as we explain next.

2) Separating Network Propagation Delay and Congestion:
When loading a website through Tor, there are multiple network-
related factors that can cause a different trace to be produced
when loading an identical website multiple times [26]. The
two primary factors we consider are network propagation
delay and congestion. We consider that propagation delay is
a function of the specific path of relays chosen for a Tor
circuit: two circuits with different paths of relays may have
very different propagation delays, depending on the relays’
locations. However, we consider that under ideal conditions
propagation delay is stable for two identical paths of relays. On
the other hand, congestion is highly dynamic and can fluctuate
greatly even if the path of relays is held constant [53]. For
example, the congestion experienced on a circuit can depend
on the number of other circuits that are active on the relays
and the load demanded on those circuits [21].

We have designed CELLSHIFT to be capable of producing
augmented traces that can help classifiers learn to be robust
against cell trace variation that is caused by (1) the propagation
delay along the path of relays that happened to be chosen
for a particular circuit, and (2) the rapid change in network

1fn round_trip_times (trace: [Cell]) —> [TimeEstimate]:
return [connected_to_data(trace)] + data_to_sendme (
trace)

ifn prop_delay(rtts: [TimeEstimate]) —> float:
return min([rtt.time for rtt in rtts])

6

7fn congestion(rtts:

s cong = []

o for rtt in rtts:

10 est = rtt.deepcopy ()

11 est.time —= prop_delay(rtts)

12 cong.push_back(est)

13 return cong

14

15fn latency (rtt: float, nhops: float) —> float:

16 # convert 6-hop rtt to n-hop latency

17 return rtt / 6.0 = nhops

[TimeEstimate]) —> [TimeEstimate]:

Pseudocode 5: CELLSHIFT separates a trace’s RTT estimates
into propagation delay and congestion estimates, while the
latency over n hops is a simple function of the RTT.

congestion that can occur during a website load. As shown
in Pseudocode 5, we estimate the propagation delay for a cell
trace as the minimum of its RTT estimates (i.e., RTTin),
and we calculate the congestion for a cell trace over all of
its RTT estimates by subtracting the propagation delay from
each estimate (i.e., Vi : RTT; —RTT,in). Next we describe how
CELLSHIFT uses these functions to adjusts cell timestamps.

3) Shifting Cells: CELLSHIFT shifts cells by adjusting cell
timestamps and sorting the trace. To support data augmentation,
we designed the core shift function to be able to simulate the
observation of the trace (1) from a different vantage point,
(2) with a different propagation delay (to simulate that it was
loaded through a different path of relays), and (3) with a
differently fluctuating circuit congestion. Thus, the arguments to
the shift function include a target vantage point that is a chosen
number of hops from the exit relay, a target propagation delay,
and a target congestion “profile” (i.e., sequence of congestion
time estimates) as shown on line 1 of Pseudocode 6.

CELLSHIFT applies two major types of timestamp adjust-
ments. First, the cell timestamps in a trace are adjusted such
that they will represent the time that the cell was created on
the source edge (i.e., before being sent into the circuit). In
the client<—exit direction, the exit relay is the source edge and
the timestamps are already recorded as they were observed
on the exit; thus, no adjustment is needed. However, in the
client—exit direction, the client is the source edge but the
timestamps are recorded as they were observed on the exit.
Thus, we shift client—exit cells to the client’s perspective by
subtracting 3 hops worth of the round-trip latency observed
on the circuit (i.e., ?) as shown on line 12 of Pseudocode 6.
Second, the cell timestamps are further adjusted to apply a
configured target propagation delay and congestion profile, and
to simulate the observation of the trace from a new vantage
point that is a configurable number of hops away from the exit
relay (i.e., 1 hop for middle, 2 hops for entry, 2.5 hops for ISP,
3 hops for client). For each cell in the trace, the target RTT
is computed as the sum of the target propagation delay and

1fn shift(trace: [Cell], nhops: float, new_prop: float,
new_cong: [TimeEstimate]) —> [Cell]:

rtts = round_trip_times (trace)

prev_send, prev_recv = 0.0, 0.0
shifted = trace.deepcopy ()
6 for (i, cell) in enumerate(shifted):

rtt = time_at(rtts, i)
8 new_rtt = new_prop + time_at(new_cong, i)
exit is receiver

10 if cell.dir == 1: # client —>exit ,

11 # first remove observed rtt to client (3 hops)
12 new_time = cell.time — latency(rtt, 3)

13 # then add new latency from client to target
14 new_time += latency (new_rtt, 3 — nhops)

15 # keep client—->exit cell stream in order

16 cell.time = max(new_time,
17 prev_recv = cell.time
exit

prev_recv)

is sender

18 else: # client <—exit,
19 # just add new latency from exit to target
20 new_time = cell.time + latency(new_rtt, nhops)

stream in order
prev_send)

21 # keep client<-exit cell
cell.time = max(new_time,
prev_send = cell.time

shifted.sort(key=lambda cell: cell.time)

26 return shifted

Pseudocode 6: CELLSHIFT replaces a trace’s RTT with a
new RTT composed of a configurable propagation delay and
dynamic congestion profile. Cell timestamps are then shifted
to simulate observation from a target vantage point.

the target congestion (i.e., the most recent congestion estimate
at the cell’s index position in the trace) as shown on line 8
of Pseudocode 6. A latency value is computed by adjusting the
target RTT by the number of hops from the sending edge to
the target vantage point, and it is added to form the new cell
timestamp as shown in lines 14 and 20 of Pseudocode 6. Note
that lines 16—17 and 22-23 of Pseudocode 6 ensure that all
cells within each of the two uni-directional cell streams remain
in order. Finally, the shifted trace is sorted by the adjusted cell
timestamps as shown in line 25 of Pseudocode 6.
CELLSHIFT is a general algorithm that can simulate the
observation of an exit trace on a new target vantage point over
a circuit with a new target propagation delay and congestion
profile. Thus, it is well suited to implementing many cell trace
transduction and augmentation strategies. Next, we explain two
such concrete methods: TRACEMOVE and TRACEMORPH.

C. TRACEMOVE: Transduce Cell Traces

The primary goal of TRACEMOVE is to transduce or
“reposition” each of a set of exit cell traces to simulate trace
observation from a new target vantage point. In particular,
TRACEMOVE transduces cell traces from an exit to an entry
position by adjusting cell timestamps but without modifying
the observed RTTs, propagation delay, or congestion encoded
in each trace. TRACEMOVE is designed to produce a festing
set of entry-side traces that are suitable for evaluating WF
classifiers in our real-world WF threat model (see § II-B).

TRACEMOVE uses CELLSHIFT to adjust cell timestamps; it
operates similarly to the simple example previously described
in Fig. 3. TRACEMOVE transduces each exit trace to an entry
position using CELLSHIFT’s shift function while providing the

1fn transduce (traces: [[Cell]]) —> [[Cell]]:
to_entry = 2 # 2 hops entry<->exit
for (i, trace) in enumerate(traces):
4 rtts = round_trip_times (trace)
prop, cong = prop_delay(rtts),
6 traces[i] = shift(trace, to_entry,
return traces

congestion(rtts)
prop, cong)

Pseudocode 7: TRACEMOVE repositions exit to entry traces
without modifying the embedded RTTs.

trace’s own propagation delay and congestion times as input
(see Pseudocode 7). Thus, the source and target RTTs of a
trace will be identical and unchanged in the shifted version. In
this way, TRACEMOVE minimally modifies traces as required
for repositioning but without modifying the embedded RTTs.
TRACEMOVE offers two primary benefits. First, TRACE-
MOVE is simple and efficient, making its application on
even large datasets straightforward and convenient. It operates
on each trace in isolation without requiring any information
external to the trace, making it embarrassingly parallel. Second,
TRACEMOVE enables WF researchers to properly account for
real Tor user behavior and traffic patterns when testing WF
classifiers. These genuine traffic patterns are encoded in real-
world exit trace datasets (e.g., GTT23 [28]), but TRACEMOVE
allows us to leverage the realism of these traces while more
accurately representing the (testing) challenge of WF in a real-
world, entry-side attack. We believe TRACEMOVE offers the
closest approximation of the entry traces that had occurred
during exit measurement given the available information.

D. TRACEMORPH: Transduce and Augment Cell Traces

The primary goal of TRACEMORPH is to produce a trans-
duced training set of entry-side cell traces from which WF
classifiers can learn a richer concept of each monitored website.
Whereas TRACEMOVE transduces a trace to a single new trace
exclusively using the trace’s own RTTs, TRACEMORPH trans-
duces a trace into multiple new augmented traces considering
the full range of Tor circuit RTTs as measured across all traces
in the entire cell trace dataset.

The intuition behind TRACEMORPH is that the propagation
delay and congestion of a trace (measured between the client
and the exit relay) are attributable to the relays used to load the
website rather than to the website itself (recall from § III-B2
that we attribute propagation delay to the relays’ location, and
congestion to the relays’ traffic load). Because many different
relays with different propagation delays and congestion profiles
could be used to load the same website, we should teach the
classifiers to treat propagation delay and congestion as “noise’
that should be ignored in favor of focusing attention on the
features of the trace that are more strongly correlated with the
website. By transducing a trace with augmented RTTs multiple
times, TRACEMORPH effectively “simulates” that the same
website was loaded through many different paths of relays with
distinct propagation delay and congestion properties, making
the classifier more robust to such variation during testing.

bl

1tn augment(traces: [[Cell]], n_aug: int) —> [[Cell]]:
> to_entry = 2 # 2 hops entry<->exit
4 # we’ll want n_aug equally spaced prop delays
rtts = [round_trip_times(t) for t in traces]
6 prop_dist = sorted([prop_delay(r) for r in rtts])
7 step = len(prop_dist) / (n_aug+l)
8
9 # produce n_aug augmented traces for each trace
10 augmented = []
11 for trace in traces:
12 for i in range(n_aug):
13 new_prop = prop_dist[round(step = (i+1))]
14 new_cong = congestion (random.choice(rtts))
15 aug = shift(trace, to_entry, new_prop, new_cong)
16 augmented . push_back (aug)
17 return augmented

Pseudocode 8: TRACEMORPH augments cell traces with new
RTTs composed of equally distributed propagation delays and
random congestion profiles.

TRACEMORPH expands an input dataset of exit cell traces
by transducing each of its traces a configurable number n times.
First, TRACEMORPH performs a straightforward transduction
of an exit trace to the entry vantage point using the method
outlined in Pseudocode 7 (without augmentation). Second,
TRACEMORPH performs the remaining n — 1 transductions by
augmenting the trace to simulate its measurement on a new
path of relays, i.e., considering new propagation delays and
new congestion profiles during the shift operation as outlined
in Pseudocode 8 (with nyue =n — 1).

TRACEMORPH produces each of the n — 1 augmented traces
using CELLSHIFT’s shift function (i.e., Pseudocode 6), which
requires as input a new propagation delay and a new congestion
profile. These values are selected from the empirical RTT
measurements already embedded in the input dataset’s traces
to ensure that we accurately represent the latency characteristics
of real-world relays and circuits as closely as possible.

Propagation Delay: TRACEMORPH precomputes the full dis-
tribution of propagation delays across all traces in the dataset
(see lines 5-6 of Pseudocode 8). It selects n — 1 propagation
delay values uniformly from this distribution at equally
distributed quantiles (see lines 7 and 13 of Pseudocode 8).
For example, for n — 1 = na. = 3, TRACEMORPH
selects the propagation delay values from the precomputed
distribution at quantiles ¢ = 0.25, ¢ = 0.5, and ¢ = 0.75.

Congestion: Each of the n — 1 propagation delays is then
paired with the empirical congestion profile of a random
trace in the dataset (see line 14 of Pseudocode 8).

Thus, for each exit trace in the dataset, TRACEMORPH produces
n — 1 augmented entry traces that are shifted using the
new propagation delay and congestion values (see line 15
of Pseudocode 8). By using RTTs from a real-world dataset,
TRACEMORPH ensures that we represent the full range of
possible relay locations while also considering the realistic
dynamics of congestion as measured in the dataset. Additionally,
using greater values of n will allow TRACEMORPH to better
represent the full distribution of propagation delays while also
incorporating more unique congestion scenarios.

TRACEMORPH offers similar benefits to TRACEMOVE. First,
it is simple and efficient: it operates on an input dataset of
traces in isolation and is embarrassingly parallel. Second,
TRACEMORPH produces entry training data that enables an
adversary to train WF classifiers to learn from the genuine
traffic patterns encoded in real-world, exit-trace datasets. Since
in a real-world WF attack the classifiers would be faced with
real-world entry traces, we expect that training on augmented
entry traces from TRACEMORPH would help the WF classifiers
generalize better to real conditions.

IV. EVALUATION

We evaluate the efficacy of TRACEMOVE and TRACE-
MORPH in producing transduced and augmented datasets.

A. Overview

Ideally, we would like to evaluate our methods using datasets
that realistically represent our real-world threat model as
explained in § II-C. Fortunately, a large dataset of more than
13 million “genuine Tor traces” (GTT23) has recently been
made available for studying WF [27, 28]. But unfortunately,
the dataset does not contain genuine entry traces because it is
not possible to obtain genuine trace labels from a Tor entry
relay (both technically, due to Tor’s multi-layer encryption,
and ethically, due to user privacy considerations). While
TRACEMOVE could be utilized to overcome precisely this
limitation (i.e., to transduce labeled exit traces into labeled entry
traces), we must first evaluate the efficacy of TRACEMOVE
using datasets for which we are able to provide entry trace
labels as ground truth (i.e., synthetic datasets).

Thus, considering dataset limitations, our overall evaluation
plan is to first evaluate the efficacy of TRACEMOVE (in § IV-B)
and TRACEMORPH (in § IV-C) using synthetic datasets for
which we are able to obtain ground truth labels in both exit
and entry positions. Although synthetic traces may be less
representative of the traces that an adversary would face in a
real-world attack, they are still suitable for relative performance
comparisons with the state of the art and they do help us
build evidence of real-world efficacy (see § II-C). Then, after
establishing the efficacy of our methods on synthetic datasets,
we conduct a real-world evaluation by applying TRACEMOVE
to GTT23 to obtain labeled entry testing traces of genuine Tor
traffic patterns while considering various methods of training
on the genuine GTT23 traces (in § IV-D).

Throughout this section, we evaluate our methods as de-
scribed in § III and compare them to the state-of-the-art
transduction and augmentation methods described below.

TRACEMOVE and TRACEMORPH: We develop a prototype
of CELLSHIFT in 1,500 lines of Rust code and use it to
implement TRACEMOVE and TRACEMORPH following the
API shown in Pseudocode 7 and Pseudocode 8, respectively.

OnlineWF [7]: We generally refer to training directly on exit
traces (without transduction) as OnlineWF, following the
online WF exit relay training method of Cherubin et al.

Retracer [29]: Exit cell traces are replayed in high-fidelity
network simulations of the Tor network using a trace replay

tool that we obtain from the authors. Entry cell traces from
the circuits carrying the replayed traffic are extracted from
the simulation and used for evaluation. We generally use
private Tor networks that represents 15% of the size of the
public network, that are created using standard Tor modeling
tools [25], and that are simulated with Shadow [22, 24]
following the method described by the authors [29, §4.3.1].

NetAugment [2]: NetAugment organizes traces into bursts of
same-direction cells, and then randomly applies a number
of burst manipulations to each trace to produce augmented
datasets for evaluation. The manipulations [2, Alg. 1-4]
include randomly increasing the burst size of short traces
and decreasing the size of long traces, randomly inserting
outgoing bursts into the middle of incoming bursts, and
randomly dropping outgoing bursts and merging incoming
bursts. NetAugment is designed to augment datasets by
increasing trace variation, but was not directly designed to
transduce traces to different positions and does not support
cell timestamps. We use the authors’ implementation of
NetAugment in our evaluation [3].

B. Producing Entry Testing Traces with TRACEMOVE

Recall that we envision using TRACEMOVE to transform exit
cell traces observed by Tor exit relays, which embed the genuine
Tor traffic patterns of real Tor users, into entry cell traces that
better represent the patterns that WF classifiers will face in
a real-world attack. Thus, we first evaluate TRACEMOVE’s
ability to transduce exit cell traces into entry cell traces.

1) Trace Distance Evaluation: For each cell trace that is
observed on the exit, TRACEMOVE produces a transformed
version of that trace to estimate the trace observation from the
entry. In order to evaluate the efficacy of the transformation, we
require a dataset of cell traces in which we have the real, ground
truth exit-side and entry-side trace of the same Tor circuit flow
(i.e., webpage load); with such correlated traces, we could apply
TRACEMOVE to the real exit traces and compare the distance
between the transduced (estimated) entry traces and the real
entry traces. Although ground truth entry and exit trace datasets
were collected in previous work [29], they are uncorrelated: the
two vantage points were independently measured on different
circuits (with different RTTs, etc.). Thus, a new measurement
is needed to support our distance evaluation.

a) Methodology: We conduct a new measurement of a
correlated entry-exit trace dataset: traces of the same circuit
measured from both the entry and exit vantage points. We use
the 494 URLs that were established by the authors of previous
work in order to keep our comparisons consistent [29, §4.2]:
Select: The authors fetched 1,000 random wikipedia pages,

extracted 22,463 external (non-wikipedia) hyperlinks, and

then randomly selected a URL for each of 1,000 websites.
Filter Errors: The authors fetched the 1,000 random URLs

with tor-browser—-selenium, and removed 506 be-

cause they resulted in error pages or failed to load.
Measure: 494 URLs remain for further measurement.
According to the authors, the “URLSs point to webpages of news,
sports, and other typical internet sites,” but we note that they

may not be strongly representative of likely Tor destinations
due to the narrow selection scope and limited sample size.
To conduct our measurement, we configure a Tor client to
pin the entry and exit relay on each circuit it builds to relays
that we set up for the measurement. Our relays are configured
to collect Tor traces on the circuits built by our client, using
the measurement methodology of Cherubin et al. [7]. We use
tor-browser—-selenium [1] to load each of the 494 URLs
100 times through our relays. After the measurement, we clean
and balance the dataset, again following the process established
in previous work [29, §4.2]:
Filter Errors: Discard cell traces associated with errors/retries.
Filter Short Outliers: Discard traces containing fewer cells
than expected (fewer than 25 or Q1 —1.5- IQR) for a URL.
Balance: Randomly select 80 traces per URL while discarding
all traces of URLs with fewer than 80 valid traces.

The resulting cleaned and balanced dataset of cell traces from
31,680 valid webpage loads is shown in Dataset 1.

| Dataset 1: Correlated Tor entry-exit cell traces 1

Cor(entry): 396x80 correlated cell traces from entry relay
Cor(exit): 396x80 correlated cell traces from exit relay

The entry and exit traces for each individual circuit are linked
together with a unique ID for tracking purposes.

We use our entry-exit correlated datasets to evaluate the
efficacy of TRACEMOVE and the state-of-the-art Retracer
method [29]. For TRACEMOVE we apply the transduce method
from Pseudocode 7 using our Rust implementation to transduce
Cor(exit) into a set of TRACEMOVE entry traces. For Retracer,
we replay the exit traces from Cor(exit) in Shadow and extract
the simulated entry traces into a set of Retracer entry traces.
We also evaluate the non-transduced traces in Cor(exit) as
a point of comparison. We consider that the traces described
above represent estimates of the traces in Cor(entry) that
were actually observed during measurement. Thus, we evaluate
the efficacy of each estimation strategy by calculating the
distance or “closeness” of each trace in Cor(entry) with the
corresponding trace produced by each estimation method.

The distance between each real and estimated trace is
computed over the directional traces, (d;));, as defined
in § II-B2. We evaluate six standard distance functions that
support comparing numeric vectors. For example, the Canberra
distance function is defined as d(u,v) = >, % and is
particularly intuitive as it indicates the total number of positions
in which the two cell vectors have unequal directions.

b) Results: The mean and standard deviation of the
distances computed by each distance function over the 31,680
traces are shown in Table I. Overall, we find that TRACEMOVE
has the lowest mean distance between each estimated entry
trace and its linked real entry trace among the three methods
we tested and across all distance functions we evaluated. Lower
distance relative to exit traces indicates that TRACEMOVE’s
entry traces are more representative of the real-world entry-
side observations than are the non-transduced exit traces
from Cor(exit). In other words, TRACEMOVE has a positive

Table I: Distance between Real Tor Entry Traces from Table II: Classifier Accuracy when Training on Tor(entry) in

Cor(entry) and the Estimated Traces across 31,680 Circuits

a Multi-Class Closed-World WF Experiment

Distance Func. | Exit Traces | Retracer [29] | TRACEMOVE

mean stdev mean stdev mean stdev
Manhattan 293 252 335 268 251 222
Canberra 147 126 175 138 126 112
Levenshtein 75.8 70.7 91.0 71.7 63.7 58.7
Euclidean 219 102 223 104 20.1 9.69
Cosine 0.250 0.141 0.292 0.160 0.210 0.125
Hamming 0.0295 0.0253 0.0350 0.0276 | 0.0252 0.0223

effect on testing trace realism. Comparatively, the distance
between Retracer entry and Cor(entry) traces is higher than
the distance between Cor(exit) and Cor(entry) traces, which
is the opposite of the intended effect. This result indicates that
Retracer is ineffective at mapping a single exit trace to its entry
variant as would typically be done to produce WF testing sets.

We also find that we achieve the lowest standard deviation
of trace distances when using TRACEMOVE traces compared
to Retracer and non-transduced exit traces. While this indicates
that TRACEMOVE more consistently produces entry traces
that are closer to those in Cor(entry), we note that the
magnitudes of the standard deviations WRT the means indicate
wide-ranging distributions of absolute distances. We find this
result reasonable in our context; it is a first approximation
of transduction efficacy that provides enough evidence of
improvement to justify additional investigation. However, we
ultimately consider WF classifier performance to be a much
more meaningful measure of efficacy because the adversary
directly uses WF classifiers to perform a WF attack while the
trace distances are only tangentially related.

2) WF Classifier Evaluation: Although our distance eval-
uation above provides evidence of TRACEMOVE’s efficacy,
ultimately the distance functions are not applied directly to
traces in a real-world WF attack. Instead, distance functions
are just one component of a classifier, typically used in
gradient descent to find the model parameters that minimize
the loss function. Therefore, we further evaluate TRACEMOVE
as a method of producing testing traces considering a more
traditional WF classifier evaluation to better understand efficacy.

a) Methodology: In order to evaluate the effectiveness of
transduction methods in producing useful entry-side traces for
testing WF classifiers, we again require entry and exit trace
datasets for which we have ground truth labels. Unlike in our
distance evaluation, here we want the datasets to be uncorrelated
and collected independently to better model the real-world
scenario in which an adversary must test its classifiers on
unseen traces. Previous work has already measured such traces
by fetching the same URLs as we did for Dataset 1 while
pinning either the entry relay or the exit relay during each
webpage load [29, Table 1]. The independently collected entry
and exit traces were previously used to evaluate Retracer; we
obtained the datasets from the authors and use them in our
evaluation after discarding the traces of URLs that do not exist
in both datasets. We form Dataset 2 from the traces of the 421
URLs that do intersect both their entry and their exit datasets.

10

Method of Producing Testing Set
WF Classifier Exit |Retracer [29]| TRACEMOVE
AWF [46] | 78% 59% (-19) 79% (+1)
Deep Fingerprinting (DF) [48] 88% 81% (-7) 92% (+4)
Tik-Tok (TT) [45] | 87% 73% (-14) 91% (+4)
VarCNN [4] | 89% 83% (-6) 92% (+3)
Triplet Fingerprinting (TF)[49] 90% 85% (-5) 93% (+3)
BAPM [15] | 86% 77% (-9) 89% (+3)
ARES [10] | 32% 25% (-7) 36% (+4)
Robust Fingerprinting (RF)[47] 56% 52% (-4) 61% (+5)
NetCLR [2] | 90% 88% (-2) 94% (+4)
TMWF [30] | 83% 70% (-13) 90% (+7)

‘ Dataset 2: Independent Tor entry and exit cell traces ’

Tor(entry): 421x40 Tor cell traces from entry relay
Tor(exit): 421x60 Tor cell traces from exit relay

We evaluate the suitability of transduction methods for
producing accurate testing datasets. First, we use the Tor entry
traces from Tor(entry) to train WF classifiers, then we apply
the transduction methods to the Tor exit traces from Tor(exit),
and finally we use the transduced output traces to test the
trained classifiers. Since the Tor traces from Tor(entry) were
used to train the WF classifiers, we expect that the transduced
testing traces that better represent the traces from Tor(entry)
would result in higher performance on the classification task.

We train ten WF classifiers from previous work on traces
from Tor(entry) in a multi-class, closed-world classification
setting in which the classifiers have full knowledge of all
website labels and attempt to learn how to associate examples
of each website with its label. We split the training set such
that 80% of the traces are used to fit the classification models
and 20% are used for model validation; the split is stratified by
website label such that an equal number of website examples
exists within each set. We train each WF classifier for 100
epochs using the recently released WFLib, which aims to
provide a library for consistent WF evaluations [9], and we
store the models that achieve the highest F; score against the
validation set for further testing.

We produce Retracer and TRACEMOVE test sets using the
same processes described in § IV-Bla, and we compare to the
method of skipping transduction and testing directly on the
exit traces from Tor(exit). The trained classifiers are tested for
their ability to predict the correct website label for each test
trace in each test set. Because our test sets are balanced across
labels, we use accuracy (the fraction of correct predictions
made by the classifiers) as a performance metric.

b) Results: The accuracies of the ten WF classifiers
trained on Tor(entry) in correctly predicting the website label
for the test traces produced by the transduction methods are
shown in Table II. Overall, our results are consistent with
our findings from § IV-B1b. The testing traces produced by
TRACEMOVE result in the highest classification accuracy across
all WF classifiers we evaluated. For every classifier, testing on
TRACEMOVE traces is more accurate than testing directly on

exit traces: the typical accuracy improvement is 3—4 percentage
points (pp) while the minimum and maximum improvement is
1 pp (for AWF) and 7 pp (for TMWF), respectively. Moreover,
we again find that Retracer has the opposite of the intended
effect: for all WF classifiers we evaluated, testing on traces from
Retracer resulted in the lowest classifier accuracy compared to
traces from TRACEMOVE and Tor(exit).

We investigated the surprising result that Retracer is not
effective at producing accurate estimates of entry traces for
testing since it is contradictory to previous work [29]. We
found an artifact that skews Retracer traces to be too short:
Retracer uses a single stream and only replays relay DATA
cells. As a result, Retracer traces usually contain fewer control
cells than the original traces (e.g., most stream BEGIN and
END cells are missing). In previous work with GTT23, this
artifact was present during both training and testing, which
could have mitigated classifier confusion.

Recall from § II-C that researchers require labeled entry
traces in order to create realistic test sets that accurately
represent the WF classification challenge in our adversary
model. Based on the results of our experiments and analysis in
this section, we believe that TRACEMOVE is the most effective
method available for transducing exit traces to entry traces
for the purpose of testing WF classifiers. On the other hand,
Retracer should be avoided for producing testing sets since
Retracer traces are a worse estimate of entry traces than are
non-transduced exit traces.

Next, we shift our focus from evaluating festing sets to
evaluating strategies for producing effective training sets.

C. Producing Training Traces with TRACEMORPH

Recall from § II-B that, in our adversary model, collecting
genuine cell traces from Tor exit relays is a viable and
preferable strategy for an adversary that will ultimately be
faced with genuine entry traces in a real-world attack. However,
it is likely that an adversary would want to mitigate the
performance degradation caused by the “distortion” between
the exit training traces and entry testing traces. In this section,
we evaluate multiple trace augmentation methods that can
potentially mitigate the distortion in order to better understand
the adversary’s technical capabilities.

1) Methodology: As in § IV-B2, we again carry out this
evaluation using Dataset 2 because it contains labeled cell
traces that were independently collected from both the entry
and the exit position. Here, we consider that the traces in
Tor(entry) represent the unseen, entry-side traces against
which the adversary’s classifiers will be tested. As is consistent
with our adversary model, we consider that the adversary is
capable of collecting the exit traces in Tor(exit) and wants to
maximize WF classifier performance against Tor(entry). We
evaluate the following training strategies of the adversary.

OnlineWF [7]: The adversary trains directly on Tor(exit). For
a fair comparison, each trace is used 4x to match the size
of the training sets produced by the other methods.

Retracer [29]: The adversary replays Tor(exit) traces in four
Shadow simulations with increasing levels of traffic load and

11

extracts the simulated entry traces following the Retracer

training method described in previous work [29, §4.3.1].
TRACEMORPH: The adversary applies the TRACEMORPH

method (§ III-D) to Tor(exit) using a factor of nau, = 4.
NetAugment [2]: The adversary applies the NetAug method

using nayue = 4. Note that NetAug was designed to augment

against unseen network conditions but not specifically to
account for variation in position, but we evaluate it anyway
to understand its potential as a state-of-the-art augmenter.
TRACEMOVE— NetAugment: A fairer evaluation of NetAug
in which the adversary first shifts the Tor(exit) traces into
entry traces using TRACEMOVE, and then augments them
by applying NetAug with 7,,, = 4 to build robustness.
These methods represent the state of the art in producing
augmented and transduced datasets for WF classifier training.

For each of the five training sets produced by the training
strategies described above, we train ten WF classifiers in a multi-
class, closed-world classification setting following the same
approach as described in § IV-B2a. The models that perform
best on the validation set are tested against Tor(entry). As
before, we use accuracy as a performance metric because our
test set is balanced across website labels.

2) Results: The accuracies of the WF classifiers that are
trained on training sets created by applying different augmen-
tation methods to Tor(exit) and tested against Tor(entry) are
shown in Table III. In total, we trained 42 distinct classifiers;
four of the WF classification methods require timestamps,
which NetAug does not support (marked with L in Table III).

We make several observations from these results. First, we
find that classifiers trained on traces from TRACEMORPH
perform best against Tor(entry) for nine of the ten attack
methods: the accuracy improvement relative to the second-
best method ranges from 4 pp (NetCLR) to 14 pp (AWF).
TRACEMORPH is only outperformed by Retracer in the ARES
method (by 6 points of accuracy). Second, we find that Retracer
works considerably better at producing training traces here than
it did at producing testing traces in § IV-B2b; its traces produce
the first or second most accurate classifier for eight of the ten
attack methods. Third, training on traces from Tor(exit) as
in the OnlineWF method generally results in less accurate
classifiers as expected, indicating that the position transduction
performed by TRACEMORPH and Retracer is effective. Finally,
we find that training classifiers on traces that are transduced to
an entry position with TRACEMOVE before being augmented
with NetAug greatly improves accuracy for all attack methods:
the range of improvement is 14 pp (TF) to 23 pp (BAPM). Thus,
in addition to NetAug, other position-agnostic augmentation
strategies could possibly leverage TRACEMOVE as well.

We extended our analysis to understand how the augmenta-
tion factor affects performance by considering values of 7,,g
ranging from 1 to 19. We follow the same methodology as
previously described, except we focus on the DF classification
method since it is the basis for many of the other attacks and
it can be used with NetAug (it only requires direction traces).
We train 95 classifier in total and test them against Tor(entry).
Our results in Fig. 4 are generally consistent with our previous

Table II: Classifier Accuracy when Testing on Tor(entry) in a Multi-Class Closed-World WF Experiment

AWF | DF TT | VarCNN TF BAPM | ARES RF NetCLR | TMWF
Method of Producing Training Set [46] [48] [45] [4] [49] [15] [10] [47] [2] [30]
OnlineWF [7]: Tor(exit) x4 (traces are repeated) 65% 79% | 81% 78% 79% 70% 36% 37% 78% 77%
Retracer [29]: 4x Shadow replays of Tor(exit) 61% | 83% | 82% 86% 84% 80% 67% 73% 87% 79%
TRACEMORPH of Tor(exit), naug = 4 79% | 90% | 89% 91% 91% 87% 61% 73% 91% 89%
NetAug [2] of Tor(exit), naug = 4 47% 66% 1 1 69% 49% 1 1 68% 62%
NetAug [2] of TRACEMOVE(Tor(exit)), naug =4 | 63% 83% 1 1 83% 72% 1 1 83% 81%

o 9

Sl 2
oy ¢

& 85 = o A“--l"‘,*_ } Sl el e OFF ¢
‘g 80 ¥ './v-\.). - - = —n —ar"—l—." - —n
131 &

< 75

1) P R ISP

& 70 1 oreert® ST ODeR L IY ST IO BN
g 65 . 304 —&—TRACEMORPH ~ —#- OnlineWF
T 60 Retracer +*®- NetAug
I .’ * k- TRACEMOVE — NetAug

A 55 1%

T T T T T T T T T T
2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19
Augmentation Factor (1a,g)

Figure 4: DF classifier accuracy when training on datasets cre-
ated with augmentation factor n,,, and tested on Tor(entry).

findings. Additionally, we observe that the additional trace
variation introduced by the augmenters when n,,; > 4 has a
diminishing effect on classifier accuracy when using Dataset 2.

In summary, our results provide strong evidence that
TRACEMORPH is an effective strategy for producing position-
transduced training traces across all attack methods and
that TRACEMOVE can improve the effectiveness of position-
agnostic augmenters. Next, we further extend our evaluation
to consider real-world datasets of genuine Tor traces.

D. Real-World WF using GTT23

We evaluate WF using genuine Tor traces from the recently
published GTT23 dataset [27, 28] to further understand the
efficacy of TRACEMORPH in a real-world attack. GTT23
contains labeled exit traces that embed the natural behavior
patterns of real Tor users, but it does not contain labeled entry
traces which are required to compute classifier test performance.
Thus, we apply TRACEMOVE to some of the exit traces as
described below in order to represent the real-world entry-side
testing challenge as accurately as possible (see § II-C).

1) Closed-World Evaluation: We first conduct a closed-
world, multi-class WF evaluation to be consistent with § IV-C.

a) Methodology: Our evaluation uses cell traces that are
sampled from GTT23 as follows. First, we select GTT23 cell
traces that: (1) were measured during the “high-volume” weeks
1 and 7, (2) contain at least 1,000 cells, and (3) are associated
with a website for which we have at least 1,000 example traces.
From among these, we sample 1,000 traces from each of the
top 100 most popular websites. The resulting 100,000 exit cell
traces are split using stratified random sampling into subsets
of 80%, 10%, and 10% of the traces as shown in Dataset 3.

12

Table IV: Classifier Accuracy when Testing on GTT(,(test)
in a Multi-Class Closed-World WF Experiment

Method of Producing Training Set
WF Classifier OnlineWF [7] | Retracer [29] | TRACEMORPH
AWF [46] 33% 31% (-2) 52% (+19)
DF [48] 46% 46% (~) 70% (+24)
VarCNN [4] 36% 34% (-2) 59% (+23)
TF [49] 41% 41% (~) 60% (+19)
BAPM [15] 40% 34% (-6) 60% (+20)
ARES [10] 8% T% (-1) 17% (+9)
RF [47] 11% 10% (-1) 16% (+5)
NetCLR [2] 42% 40% (-2) 67% (+25)
TMWF [30] 42% 41% (-1) 67% (+25)

| Dataset 3: Closed-World Top 100 Set of Genuine Tor Traces

GTT{p,(train): 100x800 genuine exit cell traces

GTT{{y(validate): 100x100 genuine exit cell traces

GTT{{,(test): 100x 100 genuine entry cell traces which
have been transduced from exit traces using TRACEMOVE

Notice that the testing traces have been transduced by TRACE-
MOoVE, which we have established in § IV-B is the best known
method of trace position transduction, to better represent a
real-world entry-side WF task. To represent an adversary,
the augmentation methods are applied to the training and
validation exit traces as described in § IV-C1; for each method
of OnlineWF, Retracer, and TRACEMORPH,? ten WF classifiers
are trained for 30 epochs, and the models that perform best
on the validation set are then tested against GTT{(,(test).
b) Results: The accuracies of the WF classifiers trained
on training sets created by applying different augmentation
methods to GTT{{,(train) and tested on GTTT{,(test) are
shown in Table IV. We find that classifiers that are trained
on traces produced by TRACEMORPH achieve much greater
accuracy than those trained on OnlineWF or Retracer traces
across all ten WF attack methods we tested; the accuracy
improvement ranges from 5 pp (RF) to 25 pp (NetCLR and
TMWF) and TRACEMORPH enables double-digit increase
in WF classifier accuracy for all but two attack methods.
Conversely, classifiers trained with Retracer traces perform
similarly or slightly worse than classifiers trained directly with
GTT7p (train) exit traces as in the OnlineWF method.
When comparing to our evaluation in § IV-C, our results
indicate that TRACEMORPH is particularly more effective when
the augmenter can exploit the more complex and varied patterns

2We exclude NetAugment-based methods here because NetAug’s lack of
timestamp support prevents us from evaluating all ten of the WF attacks.

of genuine traces in Dataset 3 than the simpler and more
consistent synthetic patterns in Dataset 2. In this context, it
seems that the genuine traces help TRACEMORPH produce
classifiers that are more robust to testing-time trace variation.
In comparison, Retracer seems to be less effective than
TRACEMORPH at leveraging the dataset’s genuine patterns.
2) Natural-World Evaluation: Next we evaluate what we
call “natural world” WE, which considers that (1) training traces
are observed prior to testing traces [41], and (2) testing traces
reflect natural Tor behavior and website prevalence (base rates).
a) Methodology: Our evaluation uses GTT23 traces
measured over a 13-week period. We select traces that contain
at least 1,000 cells, which previous work found are more likely
associated with non-erroneous website transfers [27], and split
the selected traces into the four subsets shown in Dataset 4.

Dataset 4: Natural-World Set of Genuine Tor Traces
GTT"™ (trainy): 509,672 exit cell traces from week 1
GTT"(traing): 676,587 exit cell traces from week 7
GTT"™ (testy): 919,831 entry cell traces from weeks 2-7,
transduced from exit traces using TRACEMOVE
GTT" (teste): 868,440 entry cell traces from weeks 8-13,
transduced from exit traces using TRACEMOVE

We call the top 200 most popular websites in GTT"" (train;)
the experiment set; we will conduct a WF training and testing
experiment for each website in this set to understand the
distribution of per-website performance metrics. We model a
real-world, interactive adversary that is subject to time con-
straints and that periodically retrains classifiers by splitting each
experiment into two phases; in phase 1 we use GTT™ (train;)
for training and GTT"" (testy) for testing, and in phase 2 we
use GTT™ (trainy) for training and GTT"" (testy) for testing.
As before, augmentation methods (n..s = 4) are applied to
training traces before fitting a classifier model, and the testing
traces are transduced to the entry position with TRACEMOVE.
We evaluate a classifier for each phase of each website-
specific experiment. First, we train a DF classifier for a target
website w in a binary classification setting in which the task
is to predict whether or not a trace corresponds to a visit to w.
When training a classifier for website w, we (1) randomly
sample negative training traces from each background website
w’ # w such that w’ contributes at most 10 example traces, and
(2) repeat the traces of w to balance the number of positive and
negative training traces. We fit a DF model for 30 epochs using
a batch size of 128, the authors’ optimized hyperparameters [48,
Table 1], and store the final model for testing. Second, we test
the final model on the testing set, where traces of visits to w
and 1 represent the positive and negative class, respectively.
We measure test performance using precision- and recall-based
metrics to account for the effects of low testing base rates,
but to ensure statistical strength we do not report results from
classifiers with fewer than 30 positive testing examples.
b) Results: We evaluated 1,200 classifiers in total: for
each training method of OnlineWF, Retracer, and TRACE-
MORPH we evaluate 200 classifiers in each of the two phases,

13

1.0

i

0.9 1 - i
0.8 . / 4
0.7 - .

5 00 . o
0.5 1 1 / o

Q 0.4 _ 4 ‘.'-"
0.3 1 =———OnlineWF 7] = OnlineWF
0.2 Retracer b at Retracer
0.1 4 ++== TRACEMORPH | o f o= ===+ TRACEMORPH
OO T T T T T IJ.- T T T T

0.00 0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Precision Recall

1.0
0.9 1
0.8 1
0.7 1

w 0.6 1

8 0.5 1
0.4 1
0.3 7 ——OnlineWF 7 7 =——=OnlineWF
0.2 1~ Retracer 11 Retracer
0.14F ++«= TRACEMORPH | o ++«+ TRACEMORPH
00 T T T T T I- T T T T

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Average Precision (PR AUC) Optimized Precision

Figure 5: Classifier performance across per-website classifiers
trained and tested in our natural-world setting using Dataset 4.

but exclude 20 of the phase 2 classifiers from the results due
to insufficient positive testing traces. The performance metrics
across the remaining 380 classifiers per method are shown
in Fig. 5. In the top-right subplot, we see that recall has greatly
improved by training on traces from TRACEMORPH compared
to the other methods: median recall is 0.66, 0.24, and 0.22 for
TRACEMORPH, Retracer, and OnlineWF, respectively. However,
the top-left subplot shows that OnlineWF generally achieves
better precision than both TRACEMORPH and Retracer: median
precision is 0.30, 0.21, and 0.19, respectively. Considering both
metrics, we find that TRACEMORPH outperforms Retracer. Note
that we consider additional performance metrics in Appendix A.

The much greater recall but somewhat lower precision of
classifiers trained on traces from TRACEMORPH indicates that
they are more likely to “catch” true positive test examples but
are also more likely to produce false positive errors. However,
recent work suggests that high precision classifiers are more
threatening to privacy than high recall, and argues that a WF
adversary should trade higher precision for lower recall by
tuning the classifiers’ class probability thresholds [52]. Thus,
we explore this strategy. First, we compute the area under
the precision-recall curve (average precision), where higher
values indicate a greater tunability potential. The bottom-left
subplot in Fig. 5 shows that TRACEMORPH classifiers offer
more opportunity for tuning than the others: the median average
precision is 0.30, 0.14, and 0.11 for TRACEMORPH, OnlineWF,
and Retracer, respectively. Second, we compute the optimized
precision for each classifier as the maximize precision that can
be achieved while still maintaining a minimum recall of 0.2
as in previous work [52]. The bottom-right subplot of Fig. 5

Table V: Trace Transduction Performance

Method | Traces | RAM | CPUs | Time |Traces/CPU
Retracer [29] 115,000 495 GiB 36 29.9 hr 0.03/s
TRACEMOVE 115,000 417 MiB 1 40 sec 2,875/s
TRACEMOVE | 13,900,621 | 4.6 GiB 1 27 min 8,554/s
TRACEMORPH | 139,006,210 5.2 GiB 1 2.1 hr 18,706/s

shows that TRACEMORPH greatly benefits from this strategy:
the median optimized precision is 0.49, 0.23, and 0.17 for
TRACEMORPH, OnlineWF, and Retracer, respectively.

In summary, we find that TRACEMORPH is a superior method
of producing training traces for a high-precision WF adversary
that will face genuine traces during a real-world attack.

E. Performance Evaluation

We evaluate the transduction performance of TRACEMOVE
and TRACEMORPH, and compare it to that of Retracer [29].

Replaying traces in large-scale, high-fidelity network simu-
lations as Retracer does leads to high transduction overhead,
which is a critical limitation of Retracer. This is primarily
caused by the significant resource cost of running private Tor
networks with accurate background traffic loads. As shown
in the top row of Table V, the Retracer authors report that
replaying 115,000 traces in a baseline Tor simulation required
at most 495 GiB of RAM and 29.9 hours while fully utilizing
36 CPU cores [29, Fig. 11], resulting in a trace transduction rate
of 0.03 traces per second per core. Further, if na,, > 1 then
each trace must be replayed in multiple simulations, each with
differently configured background traffic load levels, resulting
in even greater, multiplicative costs.

Our CELLSHIFT algorithms require only mathematical oper-
ations and are comparatively much more efficient. Transducing
a similar number of traces as Retracer with our Rust implemen-
tation of TRACEMOVE required only 417 MiB of RAM and
took only 40 seconds, improving the trace transduction rate by
five orders of magnitude to 2,875/s/core (see row 2 in Table V).
To further understand performance, we transduced the entire
GTT23 dataset of more than 13 million traces in TRACEMOVE,
and in TRACEMORPH with n,,s = 10; TRACEMOVE achieved
a trace transduction rate of 8,554/s/core, while TRACEMORPH
achieved a rate of 18,706/s/core using modest resources (see
the bottom half of Table V). Based on our results, we believe
that our methods can easily process the full set of traces
handled daily by an exit relay (i.e., fewer than 10 million [27])
using a single CPU, and even more if we were to exploit the
embarrassingly parallel nature of the CELLSHIFT algorithms.

V. RELATED WORK

The study of WF began over 20 years ago with the
application of simple statistical techniques to predict visited
websites [5, 18, 50]. Later works advanced the viability of
the attack by applying ML algorithms first to domain-specific
feature sets [6, 16, 17, 39, 40, 54] and then to automatically
extracted features through deep learning [2, 4, 7, 8, 10, 26,
30, 36-38, 44-49]. We use the state-of-the-art classifiers to

14

evaluate the efficacy of our transduction methods, but our work
is otherwise orthogonal to WF classifier development. Similarly,
many techniques have been proposed to defend against WF
attacks, including padding, delaying, or splitting traffic [14, 19,
32], with varying effectiveness and performance cost [13, 35].
WF defenders may simulate their defenses on genuine entry
cell traces transformed by TRACEMOVE or TRACEMORPH
to better understand how to strike a more meaningful balance
between security and performance in the real world.

More recent work has focused on better modeling WF
considering real-world conditions. Cherubin et al. suggested
that WF evaluators move away from synthetic datasets and
instead consider “genuine” traces from an exit relay [7], and
the GTT23 dataset of over 13 million exit traces was later
measured [27] and made available to researchers [28]. Although
these traces embed the natural behavior of real Tor users, they
are measured from an exit position which introduces a new
exit—entry trace transduction problem that our methods solve
to better reflect our real-world adversary model.

Most similar to our contribution are methods for data
augmentation, and several have been proposed to improve
classifier robustness against the high variation found in real-
world traces. Trace augmentation methods include the use of
Generative Adversarial Networks [37], TCP-based buffering
and packet loss simulation [56], random perturbations applied
directly to cell traces [2], and full Tor network simulation [26].
Although inspiring, these efforts do not directly address the
exit—entry trace transduction problem as CELLSHIFT does.
The only prior work that does focus on trace transduction for
WF is Retracer, which replays exit cell traces inside of full
Tor network simulations and then extracts the entry cell traces
that were measured during the simulation [29]. Our evaluation
in § IV has drawn numerous comparisons to Retracer and we
have shown that TRACEMOVE and TRACEMORPH are more
effective at producing testing and training traces, respectively,
and are considerably more efficient.

VI. CONCLUSION

This work presents novel methods for transducing cell
traces so that we can more accurately represent and evaluate
real-world WF. We conclude from our study that (1) RTT-
aware transduction with TRACEMOVE is more effective and
efficient than the state-of-the-art methods of producing realistic
testing sets, (2) an adversary can effectively exploit transduc-
tion and augmentation methods, such as TRACEMORPH, to
produce training sets that boost WF classifier performance, and
(3) applying both TRACEMOVE and TRACEMORPH enables
us to better estimate the risk of real-world WF to real Tor
users. Our Rust implementation of CELLSHIFT is released as
open-source software to promote the future use of genuine
traces that better represent real-world WF (see Appendix B).

Future work might consider applying CELLSHIFT during
the development of WF defenses. First, TRACEMOVE and
TRACEMORPH could be used to transduce genuine exit traces
into a set of “undefended” entry traces. Second, “defended”
entry traces could be produced by simulating WF defenses on

the “undefended” entry traces. By using this strategy, defenses
could be tuned on the real-world patterns of genuine traces and
evaluated in a more realistic setting [27]. Further, CELLSHIFT
remains a useful tool for an adversary even if a WF defense
is eventually deployed. If a defense is applied from Tor client
to middle relay, the genuine traces collected at an exit would
accurately embed the genuine RTTs of defended circuits, but
they would not contain the defense (i.e., padding) cells. To
add them, the adversary could simulate the deployed defense
on TRACEMORPH output (as described above) and train on
the result. More work is needed to understand these strategies.

ETHICS CONSIDERATIONS

We constructed Dataset 1 using a new measurement of Tor
cell traces conducted in the live Tor network. Recall that in
this measurement we fetched several websites over the Tor
network while recording a correlated set of cell traces from
the entry and exit relay on each circuit. Several aspects of
this measurement help us reduce risk to external stakeholders.
First, the measurement was conducted using our own Tor client,
Tor entry relay, and Tor exit relay; the only external nodes
were the middle relays (a different relay for every circuit) and
the destination web servers. Second, we use a custom circuit
command to guarantee that our relays record only circuits
created by our client and no other. Third, we keep our website
measurement rate low to limit traffic bursts. These elements
are consistent with Tor Research Safety Board guidelines and
qualify our measurement as safe, and at least as safe as other
WF measurements, because we add zero risk to real Tor users.
Additionally, our institution’s policy does not require approval
to collect Dataset 1; the measurement qualifies as non-human-
subject research because we are not directly interacting with
human subjects nor will the network data we gather enable us
to identify the people who may be using the network.

We use the pre-existing Dataset 2 with permission from its
authors [29]. It is a synthetic dataset of the authors’ own traffic
that is constructed similarly to Dataset 1. Thus, the ethical
arguments for Dataset 1 and Dataset 2 are nearly identical.

Dataset 3 and Dataset 4 are constructed from the genuine
GTT23 dataset [28], the measurement process and release plan
for which was reviewed and approved by the Tor Research
Safety Board (see [27, Appendix A]). We followed the dataset’s
terms-of-use, keeping it private and using it for research only.

ACKNOWLEDGMENTS

We thank Aaron Johnson and Ryan Wails for constructive
discussions relevant to this work, and the anonymous reviewers
and shepherd for their feedback and guidance. This work was
supported by the Office of Naval Research (ONR).

REFERENCES
[1]

Gunes Acar, Marc Juarez, and individual contributors.
Tor-browser-selenium: Tor browser automation with
Selenium. 2023. URL: https://github.com/webfp/tor

-browser-selenium.

15

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[14]

Alireza Bahramali, Ardavan Bozorgi, and Amir
Houmansadr. Realistic website fingerprinting by aug-
menting network traces. In ACM CCS, 2023. por: 10.1
145/3576915.3616639.

Alireza Bahramali, Ardavan Bozorgi, and Amir
Houmansadr. Realistic website fingerprinting by aug-
menting network traces. 2023. URL: https://github.com
/SPIN-UMass/Realistic-Website-Fingerprinting-By-Au
gmenting-Network-Traces.

Sanjit Bhat, David Lu, Albert Kwon, and Srinivas De-
vadas. Var-CNN: A data-efficient website fingerprinting
attack based on deep learning. PoPETs, 2019(4), 2019.
DOI: 10.2478/popets-2019-0070.

George Dean Bissias, Marc Liberatore, David D. Jensen,
and Brian Neil Levine. Privacy vulnerabilities in en-
crypted HTTP streams. In PET, 2005. pot: 10.1007/11
767831_1.

Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob
Johnson. Touching from a distance: website fingerprint-
ing attacks and defenses. In ACM CCS, 2012. por: 10
.1145/2382196.2382260.

Giovanni Cherubin, Rob Jansen, and Carmela Troncoso.
Online website fingerprinting: evaluating website finger-
printing attacks on Tor in the real world. In USENIX
Security, 2022. EPRINT: https://www.usenix.org/confere
nce/usenixsecurity22/presentation/cherubin.

Xinhao Deng, Qi Li, and Ke Xu. Robust and reliable
early-stage website fingerprinting attacks via spatial-
temporal distribution analysis. In ACM CCS, 2024. DOI:
10.1145/3658644.3670272.

Xinhao Deng, Qi Li, and Ke Xu. Website fingerprinting
library (wflib). 2024. URL: https://github.com/Xinhao-
Deng/Website-Fingerprinting-Library.

Xinhao Deng, Qilei Yin, Zhuotao Liu, Xiyuan Zhao,
Qi Li, Mingwei Xu, Ke Xu, and Jianping Wu. Robust
multi-tab website fingerprinting attacks in the wild. In
IEEE S&P, 2023. pol: 10.1109/SP46215.2023.1017946
4.

Roger Dingledine and Nick Mathewson. The Tor proto-
col specification. 2003. URL: https://spec.torproject.org.
Accessed: April 1, 2025.

Roger Dingledine, Nick Mathewson, and Paul F. Syver-
son. Tor: the second-generation onion router. In USENIX
Security, 2004. EPRINT: https://www.usenix.org/confere
nce/13th-usenix-security-symposium/tor-second-gener
ation-onion-router.

Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-boo, I still see you: why
efficient traffic analysis countermeasures fail. In /EEE
S&P, 2012. po1: 10.1109/SP.2012.28.

Jiajun Gong, Wuqi Zhang, Charles Zhang, and Tao Wang.
Surakav: generating realistic traces for a strong website
fingerprinting defense. In /JEEE S&P, 2022. por: 10.11
09/SP46214.2022.9833722.

Zhong Guan, Gang Xiong, Gaopeng Gou, Zhen Li,
Mingxin Cui, and Chang Liu. BAPM: block attention

https://github.com/webfp/tor-browser-selenium
https://github.com/webfp/tor-browser-selenium
https://doi.org/10.1145/3576915.3616639
https://doi.org/10.1145/3576915.3616639
https://github.com/SPIN-UMass/Realistic-Website-Fingerprinting-By-Augmenting-Network-Traces
https://github.com/SPIN-UMass/Realistic-Website-Fingerprinting-By-Augmenting-Network-Traces
https://github.com/SPIN-UMass/Realistic-Website-Fingerprinting-By-Augmenting-Network-Traces
https://doi.org/10.2478/popets-2019-0070
https://doi.org/10.1007/11767831_1
https://doi.org/10.1007/11767831_1
https://doi.org/10.1145/2382196.2382260
https://doi.org/10.1145/2382196.2382260
https://www.usenix.org/conference/usenixsecurity22/ presentation/cherubin
https://www.usenix.org/conference/usenixsecurity22/ presentation/cherubin
https://doi.org/10.1145/3658644.3670272
https://github.com/Xinhao-Deng/Website-Fingerprinting-Library
https://github.com/Xinhao-Deng/Website-Fingerprinting-Library
https://doi.org/10.1109/SP46215.2023.10179464
https://doi.org/10.1109/SP46215.2023.10179464
https://spec.torproject.org
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://doi.org/10.1109/SP.2012.28
https://doi.org/10.1109/SP46214.2022.9833722
https://doi.org/10.1109/SP46214.2022.9833722

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

profiling model for multi-tab website fingerprinting
attacks on Tor. In ACSAC, 2021. por: 10.1145/348
5832.3485891.

Jamie Hayes and George Danezis. k-fingerprinting: A
robust scalable website fingerprinting technique. In
USENIX Security, 2016. EPRINT: https://www.useni
x.org/conference/usenixsecurity 16/technical-sessions/pr
esentation/hayes.

Dominik Herrmann, Rolf Wendolsky, and Hannes Fed-
errath. Website fingerprinting: attacking popular privacy
enhancing technologies with the multinomial naive-bayes
classifier. In CCSW, 2009. por: 10.1145/1655008.1655
013.

Andrew Hintz. Fingerprinting websites using traffic
analysis. In PET, 2002. pol: 10.1007/3-540-36467
-6_13.

James K Holland, Jason Carpenter, Se Eun Oh, and
Nick Hopper. DeTorrent: an adversarial padding-only
traffic analysis defense. PoPETs, 2024(1), 2024. DOTI:
10.56553/popets-2024-0007.

Jian Hu, Hua-Jun Zeng, Hua Li, Cheng Niu, and Zheng
Chen. Demographic prediction based on user’s browsing
behavior. In WWW, 2007. DOI: 10.1145/1242572.12425
94.

Rob Jansen, John Geddes, Chris Wacek, Micah Sherr,
and Paul F. Syverson. Never been KIST: Tor’s congestion
management blossoms with kernel-informed socket
transport. In USENIX Security, 2014. EPRINT: https:
//lwww .usenix.org/conference/usenixsecurity 14/technica
1-sessions/presentation/jansen.

Rob Jansen and Nicholas Hopper. Shadow: running Tor
in a box for accurate and efficient experimentation. In
NDSS, 2012. EPRINT: https://www.ndss-symposium.org
/ndss2012/ndss-2012-programme/shadow-running-tor-
box-accurate-and-efficient-experimentation/.

Rob Jansen, Marc Juédrez, Rafa Galvez, Tariq Elahi, and
Claudia Diaz. Inside job: applying traffic analysis to
measure Tor from within. In NDSS, 2018. poI: 10.1472
2/ndss.2018.23261.

Rob Jansen, Jim Newsome, and Ryan Wails. Co-opting
linux processes for High-Performance network simula-
tion. In USENIX ATC, 2022. EPRINT: https://www.usen
ix.org/conference/atc22/presentation/jansen.

Rob Jansen, Justin Tracey, and Ian Goldberg. Once is
never enough: foundations for sound statistical inference
in Tor network experimentation. In USENIX Security,
2021. EPRINT: https://www.usenix.org/conference/useni
xsecurity21/presentation/jansen.

Rob Jansen and Ryan Wails. Data-explainable website
fingerprinting with network simulation. PoPETs, 2023(4),
2023. por: 10.56553/popets-2023-0125.

Rob Jansen, Ryan Wails, and Aaron Johnson. A mea-
surement of genuine Tor traces for realistic website
fingerprinting. 2024. arXiv: 2404.07892 [cs.CR].

16

[31]

Rob Jansen, Ryan Wails, and Aaron Johnson. GTT23:
A 2023 dataset of genuine Tor traces. 2024. DOI: 10.52
81/zenodo.10620519.

Rob Jansen, Ryan Wails, and Aaron Johnson. Repo-
sitioning real-world website fingerprinting on Tor. In
WPES, 2024. DOI: 10.1145/3689943.3695047.

Zhaoxin Jin, Tianbo Lu, Shuang Luo, and Jiaze Shang.
Transformer-based model for multi-tab website finger-
printing attack. In ACM CCS, 2023. por: 10.1145/3576
915.3623107.

Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz,
and Rachel Greenstadt. A critical evaluation of website
fingerprinting attacks. In ACM CCS, 2014. po1: 10.114
5/2660267.2660368.

Wiladimir De la Cadena, Asya Mitseva, Jens Hiller,
Jan Pennekamp, Sebastian Reuter, Julian Filter, Thomas
Engel, Klaus Wehrle, and Andriy Panchenko. Traffic-
Sliver: fighting website fingerprinting attacks with traffic
splitting. In ACM CCS, 2020. por: 10.1145/3372297.34
23351.

Marc Liberatore and Brian Neil Levine. Inferring the
source of encrypted HTTP connections. In ACM CCS,
2006. DOI: 10.1145/1180405.1180437.

Yuliia Lut, Michael Wang, Elissa M. Redmiles, and
Rachel Cummings. How we browse: measurement and
analysis of browsing behavior. In IEEE CogMI, 2024.
DOI: 10.1109/CogMI162246.2024.00041.

Nate Mathews, James K Holland, Se Eun Oh, Moham-
mad Saidur Rahman, Nicholas Hopper, and Matthew
Wright. SoK: a critical evaluation of efficient website
fingerprinting defenses. In /EEE S&P, 2023. po1: 10.1
109/SP46215.2023.10179289.

Asya Mitseva and Andriy Panchenko. Stop, don’t click
here anymore: boosting website fingerprinting by con-
sidering sets of subpages. In USENIX Security, 2024.
EPRINT: https://www.usenix.org/conference/usenixsecur
ity24/presentation/mitseva.

Se Eun Oh, Nate Mathews, Mohammad Saidur Rahman,
Matthew Wright, and Nicholas Hopper. GANDaLF:
GAN for data-limited fingerprinting. PoPETs, 2021(2),
2021. pol: 10.2478/popets-2021-0029.

Se Eun Oh, Saikrishna Sunkam, and Nicholas Hopper.
p-FP: extraction, classification, and prediction of website
fingerprints with deep learning. PoPETs, 2019(3), 2019.
DOI: 10.2478/popets-2019-0043.

Andriy Panchenko, Fabian Lanze, Jan Pennekamp,
Thomas Engel, Andreas Zinnen, Martin Henze, and
Klaus Wehrle. Website fingerprinting at internet scale.
In NDSS, 2016. EPRINT: https://www.ndss-symposium
.org/wp-content/uploads/2017/09/website-fingerprintin
g-internet-scale.pdf.

Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and
Thomas Engel. Website fingerprinting in onion routing
based anonymization networks. In WPES, 2011. DOI:
10.1145/2046556.2046570.

https://doi.org/10.1145/3485832.3485891
https://doi.org/10.1145/3485832.3485891
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://doi.org/10.1145/1655008.1655013
https://doi.org/10.1145/1655008.1655013
https://doi.org/10.1007/3-540-36467-6_13
https://doi.org/10.1007/3-540-36467-6_13
https://doi.org/10.56553/popets-2024-0007
https://doi.org/10.1145/1242572.1242594
https://doi.org/10.1145/1242572.1242594
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/jansen
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/jansen
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/jansen
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/shadow-running-tor-box-accurate-and-efficient-experimentation/
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/shadow-running-tor-box-accurate-and-efficient-experimentation/
https://www.ndss-symposium.org/ndss2012/ndss-2012-programme/shadow-running-tor-box-accurate-and-efficient-experimentation/
https://doi.org/10.14722/ndss.2018.23261
https://doi.org/10.14722/ndss.2018.23261
https://www.usenix.org/conference/atc22/presentation/jansen
https://www.usenix.org/conference/atc22/presentation/jansen
https://www.usenix.org/conference/usenixsecurity21/presentation/jansen
https://www.usenix.org/conference/usenixsecurity21/presentation/jansen
https://doi.org/10.56553/popets-2023-0125
https://arxiv.org/abs/2404.07892
https://doi.org/10.5281/zenodo.10620519
https://doi.org/10.5281/zenodo.10620519
https://doi.org/10.1145/3689943.3695047
https://doi.org/10.1145/3576915.3623107
https://doi.org/10.1145/3576915.3623107
https://doi.org/10.1145/2660267.2660368
https://doi.org/10.1145/2660267.2660368
https://doi.org/10.1145/3372297.3423351
https://doi.org/10.1145/3372297.3423351
https://doi.org/10.1145/1180405.1180437
https://doi.org/10.1109/CogMI62246.2024.00041
https://doi.org/10.1109/SP46215.2023.10179289
https://doi.org/10.1109/SP46215.2023.10179289
https://www.usenix.org/conference/usenixsecurity24/presentation/mitseva
https://www.usenix.org/conference/usenixsecurity24/presentation/mitseva
https://doi.org/10.2478/popets-2021-0029
https://doi.org/10.2478/popets-2019-0043
https://www.ndss-symposium.org/wp-content/uploads/2017/09/website-fingerprinting-internet-scale.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/website-fingerprinting-internet-scale.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/website-fingerprinting-internet-scale.pdf
https://doi.org/10.1145/2046556.2046570

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney,
Johannes Kinder, and Lorenzo Cavallaro. TESSERACT:
eliminating experimental bias in malware classification
across space and time. In USENIX Security, 2019.
EPRINT: https://www .usenix.org/conference/usenix
security 19/presentation/pendlebury.

Mike Perry. Congestion control arrives in Tor 0.4.7-
stable. 2022. URL: https://blog.torproject.org/congestion-
contrl-047. Accessed: April 1, 2025.

Mike Perry. RTT-based congestion control for Tor. 2020.
URL: https://spec.torproject.org/proposals/324-rtt-conges
tion-control.html. Accessed: April 1, 2025.

Tobias Pulls and Rasmus Dahlberg. Website fingerprint-
ing with website oracles. PoPETs, 2020(1), 2020. DOT:
10.2478/popets-2020-0013.

Mohammad Saidur Rahman, Payap Sirinam, Nate Math-
ews, Kantha Girish Gangadhara, and Matthew Wright.
Tik-Tok: the utility of packet timing in website finger-
printing attacks. PoPETs, 2020(3), 2020. Do1: 10.2478
/popets-2020-0043.

Vera Rimmer, Davy Preuveneers, Marc Judrez, Tom
van Goethem, and Wouter Joosen. Automated website
fingerprinting through deep learning. In NDSS, 2018.
EPRINT: https://www.ndss-symposium.org/wp-content/u
ploads/2018/02/ndss2018_03A-1_Rimmer_paper.pdf.
Meng Shen, Kexin Ji, Zhenbo Gao, Qi Li, Lichuang Zhu,
and Ke Xu. Subverting website fingerprinting defenses
with robust traffic representation. In USENIX Security,
2023. EPRINT: https://www.usenix.org/conference/useni
xsecurity23/presentation/shen-meng.

Payap Sirinam, Mohsen Imani, Marc Juarez, and
Matthew Wright. Deep fingerprinting: undermining
website fingerprinting defenses with deep learning. In
ACM CCS, 2018. poI: 10.1145/3243734.3243768.
Payap Sirinam, Nate Mathews, Mohammad Saidur
Rahman, and Matthew Wright. Triplet fingerprinting:
more practical and portable website fingerprinting with
N-shot learning. In ACM CCS, 2019. po1: 10.1145/331
9535.3354217.

Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Rus-
sell, Venkata N. Padmanabhan, and Lili Qiu. Statistical
identification of encrypted web browsing traffic. In /EEE
S&P, 2002. po1: 10.1109/SECPRI.2002.1004359.

Paul F. Syverson, David M. Goldschlag, and Michael G.
Reed. Anonymous connections and onion routing. In
IEEE S&P, 1997. por: 10.1109/SECPRI.1997.601314.
Tao Wang. High precision open-world website finger-
printing. In /EEE S&P, 2020. poI: 10.1109/SP40000.2
020.00015.

Tao Wang, Kevin Bauer, Clara Forero, and Ian Goldberg.
Congestion-aware path selection for Tor. In Financial
Cryptography and Data Security, 2012. DOI: 10.1007/9
78-3-642-32946-3_9.

Tao Wang, Xiang Cai, Rishab Nithyanand, Rob John-
son, and Ian Goldberg. Effective attacks and provable
defenses for website fingerprinting. In USENIX Security,

17

2014. EPRINT: https://www.usenix.org/conference/useni
xsecurity 14/technical-sessions/presentation/wang_tao.

[55] Tao Wang and Ian Goldberg. On realistically attacking
Tor with website fingerprinting. PoPETs, 2016(4), 2016.
DOI: 10.1515/popets-2016-0027.

[56] Renjie Xie, Yixiao Wang, Jiahao Cao, Enhuan Dong,

Mingwei Xu, Kun Sun, Qi Li, Licheng Shen, and
Menghao Zhang. Rosetta: enabling robust TLS encrypted
traffic classification in diverse network environments
with TCP-aware traffic augmentation. In USENIX Secu-
rity, 2023. EPRINT: https://www.usenix.org/conference
/usenixsecurity23/presentation/xie.

APPENDIX A
EXTENDED NATURAL-WORLD PERFORMANCE RESULTS

We provide extended results from our evaluation of natural-
world WF from § IV-D2. We show in Fig. 6 additional
performance distributions computed over all 380 of our per-
website classifiers for each training method of OnlineWF,
Retracer, and TRACEMORPH. Here we extend our previous
results with the addition of the F; score. Additionally, for each
metric shown we include a per-website relative performance
metric using OnlineWF as the baseline; the relative performance
for a classifier ¢’ trained with method m on website w is its
absolute performance score minus the performance score of the
baseline method, i.e., score(c) — score(cQeWF) Positive
relative performance means that, for website w, method m
performed better, while negative relative performance means
that the baseline OnlineWF method performs better for w.

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

Our research contributes new methods for website fingerprint-
ing analysis. Specifically, our methods work by transforming
Tor cell traces collected at exit relays into entry traces that can
be used for training and testing website fingerprinting attacks.

1) How to access: We have released an artifact containing
Dataset 1 and our Rust implementation of the methods
described in § III. A snapshot is available on Zenodo:

— https://doi.org/10.5281/zenodo.15863906
We have also made our Rust implementation available on
GitHub to facilitate future development efforts and extensions:
— https://github.com/robgjansen/cellshift.git

2) Hardware dependencies: None.

3) Software dependencies: Our software requires the Rust
compiler tools, the HDF5 library, and the ZSTD library.
Additional information about how to install the dependencies
is available in our artifact README . md file.

4) Benchmarks: We have released Dataset 1 from our paper
alongside our artifact on Zenodo. We intend that the dataset
may be used to verify that our software is functional.

https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://blog.torproject.org/congestion-contrl-047
https://blog.torproject.org/congestion-contrl-047
https://spec.torproject.org/proposals/324-rtt-congestion-control.html
https://spec.torproject.org/proposals/324-rtt-congestion-control.html
https://doi.org/10.2478/popets-2020-0013
https://doi.org/10.2478/popets-2020-0043
https://doi.org/10.2478/popets-2020-0043
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-1_Rimmer_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-1_Rimmer_paper.pdf
https://www.usenix.org/conference/usenixsecurity23/presentation/shen-meng
https://www.usenix.org/conference/usenixsecurity23/presentation/shen-meng
https://doi.org/10.1145/3243734.3243768
https://doi.org/10.1145/3319535.3354217
https://doi.org/10.1145/3319535.3354217
https://doi.org/10.1109/SECPRI.2002.1004359
https://doi.org/10.1109/SECPRI.1997.601314
https://doi.org/10.1109/SP40000.2020.00015
https://doi.org/10.1109/SP40000.2020.00015
https://doi.org/10.1007/978-3-642-32946-3_9
https://doi.org/10.1007/978-3-642-32946-3_9
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://doi.org/10.1515/popets-2016-0027
https://www.usenix.org/conference/usenixsecurity23/presentation/xie
https://www.usenix.org/conference/usenixsecurity23/presentation/xie
https://doi.org/10.5281/zenodo.15863906
https://github.com/robgjansen/cellshift.git

CDF

CDF

CDF

CDF

CDF

1.0

0.9 1
0.8
0.7 1
0.6 1
0.5
0.4
0.3
0.2
0.1 A

=—OnlineWF
Retracer
===+ TRACEMORPH

=—OnlineWF
Retracer
LR L +=+= TRACEMORPH

o
ise?’

0.0

0.0 0.5 1.0
Precision

T T T
—0.5 0.0 0.5 1.0

Precision Relative to OnlineWF

1.0
0.9
0.8 1
0.7
0.6
0.5 1
0.4 1
0.3
0.2
0.1

=——OnlineWF
Retracer
=+ == TRACEMORPH

0.0

I
.

= OnlineWF
Retracer
- =+ == TRACEMORPH

0.5 1.0
Recall

T T T
—0.5 0.0 0.5 1.0

1.0
0.9 A
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1 A
0.0

OnlineWF
Retracer
==+= TRACEMORPH

Recall Relative to OnlineWF

et

K
o

¥
Ny

OnlineWF
Retracer

J

— ‘.-' =+=+* TRACEMORPH

g’
T

1.0

[
T T T

0.5

T T
—0.5 0.0 0.5 1.0
F1 Relative to OnlineWF

0.9 1
0.8
0.7 1
0.6
0.5
0.4
0.3
0.2

0.1q¥F

0.0

—— OnlineWF
K Retracer
===+ TRACEMORPH

3

]
I
y

=—OnlineWF

Retracer
E % **** TRACEMORPH

1.0

i
T T T

0.0 0.5 1.0
Average Precision (PR AUC)

—0.5 0.0

T
0.5 1.0

0.9
0.8 1
0.7 1
0.6
0.5
0.4 1
0.3
0.2

0.1 9%

" ——=OnlineWF
= Retracer
===+ TRACEMORPH

0.0

i
T T T

| == OnlineWF
Retracer
— 7| ===« TRACEMORPH

o

0.0 0.5 1.0
Optimized Precision

T T T
—0.5 0.0 0.5 1.0

Opt Prec Relative to OnlineWF

Figure 6: Extended results from § IV-D2b.

Avg Prec Relative to OnlineWF

18

B. Artifact Installation & Configuration

We recommend that our artifact be installed using the
Dockerfile which is distributed in our Zenodo artifact
snapshot, following the instructions in our artifact README . md
file. After first downloading the artifact files from Zenodo, you
would then run the following command from within the artifact
directory:

docker build -t cellshift
If Docker is not preferred, we have also listed manual
installation instructions in our artifact README . md file. We
tested these on debian:12-slim in July 2025.

C. Major Claims

— (C1): The software is AVAILABLE.
— (C2): The software is FUNCTIONAL.

D. Evaluation

To validate C1, download all files from the Zenodo record.
You can untar the cellshift.tar and browse our Rust
source code. Then build it:

docker build -t cellshift
Then run it:

docker run —-it cellshift
Once inside the container, you should already be in the /opt
directory, where the tbb_exit .hdf5 file is located. If you
are not located there, you can cd /opt. Inside the container,
TRACEMORPH is executed like this:

cellshift morph —--help
and TRACEMOVE is executed like this:

cellshift move —--help

To validate C2, you can use TRACEMORPH and TRACE-
MOVE to transduce exit traces into entry traces. Run TRACE-
MORPH to create 4x augmented traces from Dataset 1:

cellshift morph \

tbb_exit.hdf5 \
cellshift_entry_tracemorph4.hdf5 \
4
Run TRACEMOVE to create testing entry traces from Dataset 1:
cellshift move \
tbb_exit.hdf5 \
cellshift_entry_tracemove.hdf5
In WF you would generally use a different set of traces as input
to TRACEMORPH and TRACEMOVE; then you train on the
TRACEMORPH output, and test on the TRACEMOVE output.

	Introduction
	Background and Motivation
	The Tor Network
	WF Adversary Model
	Objectives
	Capabilities

	Genuine Tor Traces
	Realistic Testing Datasets
	Realistic Training Scenarios

	New Methods for Cell Trace Transduction
	Overview
	Functionality in the CellShift Library
	Estimating Circuit RTTs
	Separating Network Propagation Delay and Congestion
	Shifting Cells

	TraceMove: Transduce Cell Traces
	TraceMorph: Transduce and Augment Cell Traces

	Evaluation
	Overview
	Producing Entry Testing Traces with TraceMove
	Trace Distance Evaluation
	WF Classifier Evaluation

	Producing Training Traces with TraceMorph
	Methodology
	Results

	Real-World WF using GTT23
	Closed-World Evaluation
	Natural-World Evaluation

	Performance Evaluation

	Related Work
	Conclusion
	Appendix A: Extended Natural-World Performance Results
	Appendix B: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Major Claims
	Evaluation

