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Abstract—Robotic vehicles (RVs) play an increasingly vital
role in modern society, with widespread applications in both
commercial and military contexts. RV control software is the core
of RV systems, which maintains proper operation by continuously
computing the vehicle’s internal state, sensor readings, and exter-
nal inputs to adjust the system’s behavior accordingly. However,
the vast combination space of configurable parameters, command
inputs, and environment-sensed data in RV software introduces
significant security risks to the system. Existing fuzzing tech-
niques face substantial challenges in effectively exploring this
vast input space while uncovering deep bugs. To address these
challenges, we propose ADGFUZZ, a novel fuzzing framework
specifically designed to detect assignment statement bugs in RV
control software. ADGFUZZ statically constructs an Assignment
Dependency Graph (ADG) to capture inter-variable dependencies
within the program. These dependencies are then propagated to
the RV input space by leveraging naming similarities, resulting
in a targeted set of inputs referred to as the matched input set
(MIS). Building upon this, ADGFUZZ performs entropy-aware
fuzzing over the MISs, thereby enhancing the overall efficiency
of bug discovery. In our evaluation, ADGFUZZ uncovered 87
unique bugs across three RV types, 78 of which were previously
unknown. All found bugs were responsibly disclosed to the
developers, and 16 have been confirmed for fixing.

I. INTRODUCTION

Robotic Vehicles (RVs) are widely deployed cyber-physical
systems used in various applications, including commercial
aerial photography [1], formation performances [2], [3], and
military reconnaissance [4]. The operation of RVs, including
flight attitude stabilization, real-time control, and autonomous
navigation, is governed by control software within RVs. De-
spite their widespread use, RV systems have been found to
contain various software bugs, which may lead to serious
consequences such as unstable flight posture, loss of control
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or communication failure, mission failure, deviation from
planned waypoints, or even catastrophic crashes. This high-
lights the necessity of automated techniques for systematically
detecting such bugs.

Several approaches have been proposed to detect bugs in
RV control software [5], [6], [7], [8]. Given that RVs are
exposed to a wide range of inputs, including system con-
figuration parameters, control commands, and environmental
factors such as wind and temperature, the testing input space
is vast. To address the challenge, existing works primarily
adopt two strategies to ensure testing efficiency. The first, as
used in RVFuzzer [5], reduces redundant test inputs through
techniques such as binary search and strategy composition.
The second, as seen in PGFuzz [8], attempts to discover
bugs using a limited set of rule-based strategies extracted
from developer documentation. However, both approaches
have notable limitations. In the first case, there is no control
over which parts of the code are actually exercised during
testing, making it unclear whether code regions with potential
bug patterns are sufficiently explored. In the second case, a
significant number of bugs in control computation formulas
are missed, particularly those that are not documented.
Key Insight. Existing works reveal a fundamental limitation:
the lack of prior knowledge about buggy code patterns or a
strong reliance on documentation-driven analysis. As a result,
the testing process may suffer from insufficient exploration
of potentially buggy code regions. To address this limitation,
we conducted an in-depth analysis of historical bugs and
identified their associations with specific code patterns. Our
investigation revealed that the source code of RV control
software encodes various physical formulas and mathematical
models (e.g., flight dynamics) into program logic, which
frequently involves assignment computations. A significant
portion of bugs are rooted within these assignment statements.
This is because converting physical formulas and mathematical
models into corresponding assignment statements in code is
inherently challenging and often prone to incompleteness,
which increases the likelihood of introducing bugs. We refer
to this category of issues as assignment statement bugs.
Based on this finding, we conducted an empirical study of
RV software issue reports over the past decade. The analysis
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revealed that, among 207 semantic and logical defects, 28.02%
were assignment statement bugs directly caused by incorrect
parameter assignments. The remaining 71.98% were due to
missing inputs and were mostly discovered and fixed during
development, making them difficult to find through testing.
Motivated by these findings, we aim to propose an automated
fuzzing technique that can efficiently detect assignment state-
ment bugs in RV systems.
Approach. To effectively detect bugs that may arise during
assignment computation, we propose ADGFUZZ, an assign-
ment dependency-guided fuzzing technique. Unlike previous
works that blindly explore the vast input space of the RV,
our approach focuses on assignment statements and fuzzes
only the RV input parameters that influence these assignments
within the RV implementation, thereby enabling more efficient
and targeted testing. Our key observation is that assignment
statements in RV control software involve numerous variables
with inherent data dependencies during computation. These
variables typically follow a consistent naming convention that
contains rich semantic information, which often aligns with
the naming patterns of the RV input parameters. Based on
this insight, the high-level idea of our approach is to leverage
naming similarities to identify RV input parameters associated
with specific assignment statements and conduct targeted fuzz
testing on them.

In the static analysis phase, we first propose Assignment
Dependency Graph (ADG), which captures interdependent
assignment relationships among variables in the RV source
code. Within each ADG, we identify leaf variables (LVs),
referring to variables that do not depend on any other as-
signments. We then apply fine-grained, term-based semantic
matching to map each LV to the corresponding subsets of RV
input parameters. We refer to these subsets as matched input
sets (MISs). As a result, the data dependencies between the
specific assignment statement and the MIS are explicitly con-
structed. By generating test cases for MIS, ADGFUZZ focuses
on a smaller, more error-prone segment of the input space, thus
significantly improving the efficiency and effectiveness of the
assignment statement bug detection.

During the fuzzing phase, given the large number of MISs,
it is crucial to prioritize those with higher potential for
discovering bugs. To this end, we compute multiple types
of entropy for each MIS based on the ADG and perform
entropy-aware MIS fuzzing, thereby improving the efficiency
of bug discovery. Finally, due to the delay between injecting
test inputs into the RV system and the eventual detection of
anomalies, we accurately identify the test cases that truly trig-
gered the observed anomalies and perform bug deduplication
to eliminate redundant reports.
Evaluation. We evaluated ADGFUZZ on three widely used
types of RVs. The results show that ADGFUZZ successfully
identified 87 unique bugs, including 78 previously unknown
ones. Among these, 29.88% could cause the vehicle to crash
to the ground, 17.24% led to deviations from the designated
trajectory, and 52.87% triggered memory overflows. All iden-
tified bugs have been responsibly reported to the developers.

As of this writing, 16 bugs are under consideration for future
patches. We further compare ADGFUZZ with the state-of-
the-art policy-guided fuzzing framework PGFuzz and show
that ADGFUZZ is capable of detecting 79 additional bugs
that PGFuzz failed to uncover. To assess the effectiveness of
the entropy-based prioritization strategy for MIS fuzzing, we
conducted an ablation study. The results demonstrate that this
strategy significantly accelerates the discovery of bugs and
increases the number of bugs detected. Finally, we provide an
in-depth analysis of three representative cases discovered by
ADGFUZZ to illustrate how these bugs can be exploited by
adversaries to compromise a running RV system.
Contributions. Our paper makes the following contributions.
• We proposed ADGFUZZ, a novel framework for the

efficient detection of assignment statement bugs. The
prototype of ADGFUZZ was implemented with approxi-
mately 3,000 lines of Python code.

• We proposed an entropy-aware MIS fuzzing technique,
which prioritizes input subsets with higher potential for
triggering bugs.

• We evaluated ADGFUZZ on three widely used types of
RVs. The results show that ADGFUZZ outperforms state-
of-the-art approaches in bug detection, identifying a total
of 87 unique bugs, including 78 previously unknown.

• We released the source code of ADGFUZZ on GitHub1

to facilitate reproducibility and further studies.

II. BACKGROUND

RV Control Software. RV control software is the core
computational system that enables RVs to process information
and make decisions. It handles motion control, environmental
sensing, task planning, and real-time decisions. The software
consists of three main modules: (1) sensor module: period-
ically collects real-time input signals from onboard sensors
(e.g., LiDAR, IMU); (2) control logic module: processes
sensor data, reference states, and task requirements. It applies
motion planning and decision-making algorithms to generate
appropriate control signals; and (3) communication module:
maintains bidirectional communication with the ground con-
trol station (GCS). It receives user commands while transmit-
ting vehicle status, task progress, and feedback, supporting
remote monitoring and coordinated operation.
RV Input Space. RV inputs refer to the data that the RV
can receive, mainly including three categories: (1) configura-
tion parameters, (2) control commands (sent by the GCS or
loaded from mission files), and (3) environmental data from
onboard sensors. Before takeoff, the RV reads and initializes
configuration parameters from files containing default values.
Users can adjust these parameters before takeoff to preset the
RV’s operating state and thresholds, such as the maximum
deflection angle and acceleration. These parameters can also
be modified after takeoff. In the RV simulator, environmental
data can be adjusted in the same way as sending commands.
For example, ArduPilot [9] includes an SITL [10] simulator

1https://github.com/wyunc/ADGFuzz
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that allows testing the RV control software’s correctness in
a simulated environment. By setting SIM_WIND_SPD, users
can modify the wind speed in the simulation.

Due to the complexity of RV control software, the num-
ber of RV inputs may be over 1,000. For example, Ar-
duCopter [11] includes more than 4,000 configuration param-
eters and simulation environment variables, along with 164
control commands [12]. Among them, over 200 parameters
regulate RV attitude and rate control, while more than 500 are
related to sensors. Different types of inputs can influence the
same system variable. For example, the configuration parame-
ter MOT_THST_EXPO adjusts the throttle curve, whereas the
control command MAV_CMD_DO_THROTTLE directly sets the
throttle percentage. Therefore, when an RV receives multiple
inputs, these inputs may affect the same physical quantity.
Conflicting effects can lead to inconsistent system states.
Moreover, since inputs can directly modify critical data, even
a single input may trigger abnormal behavior. Unfortunately,
RV control software rarely considers handling such cases.

III. MOTIVATION

In this section, we present an interesting example that serves
as the motivation for this work (§III-A). We then introduce an
exploratory analysis to demonstrate the prevalence of this issue
in popular RV control software (§III-B). Finally, we describe
the threat model considered in this paper (§III-C).

A. Motivating Example

In RVs, the virtual reference point represents an expected
position generated by the trajectory planner to guide flight con-
trol and path planning. Since determining the actual position
of an RV requires complex sensor fusion, the virtual reference
point provides a computationally efficient and smoother basis
for subsequent flight decisions. In the vehicle’s control logic,
task completion is typically judged by whether this virtual
reference point has reached the designated waypoint within a
predefined tolerance radius. However, discrepancies inevitably
exist between the virtual reference point and the RV’s true
position. The virtual reference point continues to advance
along the planned path regardless of wind drift or control
errors, which may lead the system to mistakenly mark the task
as complete even when the vehicle has significantly deviated
from its intended trajectory.

WP1WP2

WP3

Wind Planned route

Actual route

Waypoint(WP)

Fig. 1. Wind and misconfiguration caused the drone to deviate.

For example, we illustrate the code before and after fixing
the virtual reference point calculation bug in Figure 2. The

1 bool AC_WPNav::advance_wp_target_along_track(float dt) {
2 float track_error = _pos_control_error.dot(track_direction);
3 float track_velocity = _inav_velocity_neu.dot(track_direction);
4 - float track_scaler_dt = constrain_float(0.05f + (track_velocity - get_pos_kP() * 

track_error) / curr_target_vel.length(), 0.1f, 1.0f);
4 + float track_scaler_dt = constrain_float(0.05f + (track_velocity - get_pos_kP() *       

track_error) / curr_target_vel.length(), 0.0f, 1.0f);
5 float track_scaler_tc = 0.01f * get_wp_acceleration()/_wp_jerk;
6 float _track_scalar_dt += (track_scaler_dt - _track_scalar_dt) * (dt / track_scaler_tc);
7 bool s_finished = _s_leg.advance_target_along_track(_wp_radius_cm, get_corner_accel(), 

_flags.fast_waypoint, _track_scalar_dt * vel_scaler_dt * dt, 
target_pos, target_vel, target_accel);

8 if (!_flags.reached_destination) { // check whether reached the waypoint
9 if (s_finished) {

10 _flags.reached_destination = true;
11 //...(omitted). This means the change in angle is equivalent to the change in acceleration.

Fig. 2. Before and after fixing the virtual reference point calculation bug in
RV navigation code.

variable s_finished serves as a flag indicating whether the
drone has reached the target waypoint. Its value depends on
a series of variables, including _track_scaler_dt, which
in turn is influenced by the parameter track_scaler_dt
(buggy code). The track_scaler_dt parameter, which
controls the advancement rate of the virtual reference point,
was set to a minimum value of 0.1. This caused the system to
continue advancing the virtual reference point at a minimum
rate of 10%. Under normal conditions, this mechanism ensures
that the virtual reference point advances at a reasonable speed
and does not stall, which is generally effective. However, in
the presence of strong winds, this calculation can become
problematic. As the actual position of the copter is still
hundreds of meters away from the waypoint due to wind
interference (as shown in Fig. 1), the virtual reference point
continues to accumulate progress and may eventually surpass
the waypoint threshold (e.g., WP2), leading to incorrect mis-
sion completion. In other words, the incorrect computation
of track_scaler_dt propagates through the assignment
chain, causing the error to accumulate. Eventually, this affects
s_finished, leading the drone to mistakenly determine that
it has reached the waypoint.

However, existing bug detection approaches for RVs do not
directly focus on assignment statement bugs. For example,
tools like RVFuzzer [5] and LGDFuzzer [7] mainly target
issues caused by improper settings of critical sensor input
parameters such as position and velocity of x, y, z-axis
and pitch, yaw, roll angles. PGFuzz [8] relies on manually
crafted rules to define safety policies, for instance, whether a
parachute can be deployed below a certain altitude, to identify
safety violations.

B. Exploratory Study

To investigate whether bugs caused by assignment state-
ments are prevalent in RVs, we conducted an exploratory study
on issue reports from the open-source software ArduPilot. We
analyzed all 819 issues labeled as “BUG” over the past 10
years (from January 2015 to January 2025). It is important
to note that we filtered out issues unrelated to semantic or
logical bugs (e.g., compilation errors, display failures, feature
enhancements, and algorithm adjustments).

By examining the fixed code in these issues, we categorized
them into five types: corrections to assignment statements,
additions or deletions of logic, modifications to function calls,
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Table I. Bug fix patterns in ’BUG’-labeled ArduPilot issues and their
categorization.

Fixing code types # of issues Proportion (%)
Assignment statement corrections 58 28.02

Logic additions or deletions 111 53.62
Function call modifications 16 7.74

Function return type or
numerical unit changes 11 5.31

Default value adjustments 11 5.31

changes to function return types or numerical units, and
adjustments to default values. The results are shown in Table I.
We found that 28.02% of the bugs were directly caused by
incorrect parameter assignments. Based on this observation,
we designed ADGFUZZ to detect bugs originating from such
patterns. The remaining 71.98% of bugs were caused by
missing inputs, and most were discovered and fixed during
development, making them nearly impossible to reproduce.

C. Threat Model

In this paper, we focus primarily on implementation bugs in
assignment statements. Since many configuration parameters
and control commands in RV software are user-configurable,
the presence of such bugs can make the system sensitive to
misconfigurations. A user may unintentionally set values that
exceed typical or reasonable boundaries, thereby triggering
unintended behavior and compromising the safety of the RV.
Therefore, our approach mainly facilitates software quality
assurance (QA) by addressing implementation bugs in assign-
ment statements.

In addition, there is a certain possibility that an attacker
gains control of the RV software. Such attacks might in-
clude tactics like GCS spoofing [13] or communication link
hijacking [14], [15]. Once control is obtained, the attacker
may attempt to issue destructive commands, such as disabling
throttle output, forcing the drone to land, or disarming it.
Although these actions can be effective, they are usually easy
to detect [16], [17] and can be blocked by mission monitoring
mechanisms [18]. In contrast, bugs in assignment statement
implementations may allow attackers to interfere with system
behavior in a more concealed manner. This provides an
opportunity for disruption that is significantly harder to detect
using conventional monitoring tools. Therefore, detecting such
bugs also helps eliminate potential attack paths that could be
exploited by an adversary with access to RV configuration or
input interfaces.

IV. APPROACH

A. Overview of ADGFUZZ

To effectively detect assignment statement bugs, we pro-
pose ADGFUZZ, an assignment-oriented fuzzing technique.
Unlike prior works that blindly explore RV’s vast input space,
our approach focuses on assignment statements and fuzzes
only the input parameters that influence these assignments
within the RV implementation, thereby enabling more ef-
ficient testing. Figure 3 illustrates the overall workflow of

ADGFUZZ. ADGFUZZ first extracts assignment statements
and their corresponding assignment chains from each function
in the source code to construct an assignment dependency
graph (ADG), which represents the interdependence between
variables (§IV-B). Next, we use leaf node variable names in
the ADG to infer relevant inputs and group them into MISs
(§IV-C). Subsequently, we define a customized entropy-based
metric to evaluate each MIS, converting the entropy values
into a probability distribution that assigns more energy to
higher-entropy sets during fuzzing (§IV-D). Then, based on the
probability distribution of MISs, we sample an MIS at each
iteration to generate a test case, which is then executed in the
RV simulator to identify potential bugs (§IV-E). Finally, during
post-processing, we perform input minimization to refine the
test cases. The goal is to identify the shortest input capable of
triggering a bug while eliminating redundant inputs (§IV-F).

B. Assignment Dependency Graph Building

We introduce the concept of an assignment dependency
graph to represent data-flow dependencies in assignment oper-
ations between dependent variables and independent variables
within a function. The assignment dependency graph is derived
from assignment statements, which are defined as follows:

Definition 1 (Assignment Statement). An assignment state-
ment (AS) is a tuple S = (y,X,O) with: (1) y ∈ Vdep, where
Vdep is a set of dependent variables on the left-hand side (LHS)
of an assignment expression, (2) X = {x1, ..., xn} ⊆ (Vind∪F)
where Vind is a set of independent variables (operands) on
the right-hand side (RHS) of an expression statement, F
denotes function invocations (e.g., x.func(), caller(x)), and
(3) O ⊆ {⊕1, ...,⊕m}n−1, where each ⊕i is an operator
(arithmetic or logical) used in the expression.

⊕i ∈ {+,−,×,÷}︸ ︷︷ ︸
arithmetic

∪{∧,∨,¬,=}︸ ︷︷ ︸
logical

An assignment dependency graph (ADG) is constructed
from one or more interdependent assignment statements within
a function. Given the definition of assignment statement, ADG
is defined as follows:

Definition 2 (Assignment Dependency Graph). An assignment
dependency graph is a directed acyclic graph G = (V,E)
with:
• V = Vroot ∪ Vleaf ∪ Vsemi is a set of nodes where:

Vroot = {v | ∃S1 : v ∈ S1.y ∧ ∄S2 : v ∈ S2.X}
Vleaf = {v | ∃S1 : v ∈ S1.X ∧ ∄S2 : v ∈ S2.y}
Vsemi = {v | ∃S1 ̸= S2 : v ∈ S1.y ∧ v ∈ S2.X}

• E = ERL ∪ ERS ∪ ESL ∪ ESS

where Vroot contains only a single root node, Vleaf is a set
of nodes that exclusively receive incoming edges, Vsemi refers
to semi-dependent nodes, which act as independent variables
in some assignment statements and as dependent variables in
others. ERL is a set of directed edges pointing from a node
in Vroot to a node in Vleaf. Similarly, ERS represents directed
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Fig. 3. Overview of ADGFUZZ.

edges from nodes in Vroot to those in Vsemi, ESL represents
directed edges from Vsemi to Vleaf, and ESS consists of directed
edges connecting nodes within Vsemi.

Throughout the rest of this paper, for simplicity, we use nR, nL,
and nS to denote nodes in Vroot, Vleaf, and Vsemi, respectively.
ADG Building. ADGFUZZ constructs assignment dependency
graphs from the source code, incorporating forward syntax
filtering and backward assignment analysis. First, we extract
only the lines of code within functions that satisfy the defi-
nition of an assignment statement. And we filter and modify
the variable names by removing numerical characters and re-
placing function calls; for example, converting func(var1,
var2_21) into func_var1 and func_var2. Next, we
encode the properties of each variable node based on the
assignment relationships. Finally, we establish edge connec-
tions by integrating both the explicit dependencies between
variables and the implicit dependencies introduced by semi-
dependent bridging nodes.

Algorithm 1 describes in detail the steps for ADGFUZZ
to construct the ADG. ① It processes the source code of
a single function at a time and performs forward syntactic
filtering based on pattern matching, retaining only assignment
statements by removing all other lines of code (Line 3-4).
② It takes the identified S as input, sorts them according to
their order of appearance (Line 5). For each statement, the
variable on the LHS is added to Setdep as a node, with its
property (p) initialized to null (Line 10). ③ It starts from
the last node in Setdep and performs backward traversal to
find the first node with a null property, denoted as n (Line
13). The index of its corresponding assignment statement is
i (Line 25). It marks the property of n in Setdep as root
and adds it into Vroot (Line 14-15). ④ It finds all statements
in S whose index is less than i and which use n as their
LHS. The RHS variables in these statements are added to
Setind (Line 26-28). ⑤ It constructs edges from the current
node n to each node in Setind (Line 31). ⑥ Then, for nodes
that appear in both Setdep and Setind: it sets the property of
these nodes in Setdep as semi, inserts them into Settemp, and
deletes them from Setind. The remaining nodes in Setind are
added to Vleaf as leaf nodes (Line 32-37). ⑦ For each node
in Settemp, it removes one node n at a time and inserts it

into Vsemi (Line 37). The index of the assignment statement
corresponding to node n is i. Repeat steps ④-⑦ until Settemp is
empty. ⑧ Finally, it deletes nodes in Vleaf that are also present
in Vroot to eliminate potential loops, in coordination with step
④ (Line 18). ⑨ This process yields one complete assignment
dependency graph starting from a root node. The algorithm
repeats the above steps until all nodes in Setdep have been
assigned a non-null property, thereby generating the complete
set of assignment dependency graphs for the function.

Once the ADGs are constructed, we assume that every pair
of non-root nodes in each graph is assignment-dependent, and
that the variables represented by the leaf nodes maintain the
simplest form of assignment dependency. We use the leaf
nodes of an ADG as indicators to infer matched input sets
(MISs) with potential interdependent relationships (§IV-C).
Furthermore, each MIS is ranked by the entropy of its as-
sociated ADG, enabling execution prioritization (§IV-D).

C. MIS Inference

ADGFUZZ infers a test input set from each ADG that
may influence the value of the root node variable. Since
program variables and input parameters jointly influence the
RV control software through internal logic execution and real-
world physical behavior, their correlation offers an opportunity
for input inference. In addition, they often follow consistent
naming conventions [19], [20]; for example, both may include
the same sensor abbreviations. Therefore, we adopt a term sim-
ilarity association strategy to infer MISs from LVs, leveraging
the consistent naming conventions shared between program
variables and input parameters.

Figure 4 illustrates how an MIS is generated from an
ADG. First, we extract LV names from ADG leaf nodes and
split them into variable terms using underscores as delimiters.
Prior to this, the names of all RV-supported multi-source
inputs are also segmented into input terms. Second, we apply
a predefined term association table to replace and extend
certain terms, while filtering out verbs (e.g., ”get”) and terms
shorter than two characters. Finally, we match the transformed
variable terms with the RV input terms, include the inputs
corresponding to matched terms in the MIS, and record the
number of matched terms associated with each input. A
representative ADG-MIS example is provided in §IX-B.
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Fig. 4. An illustration of how MIS is inferred for a sample ADG based on term association.

Algorithm 1 Assignment Dependency Graph Construction
Input: Source code of a function F
Output: Assignment dependency graphs Gs extracted from the function F
1: function EXTRACTS(F )
2: S, Gs ← ∅
3: AS ← ExtractAssignmentStatements(F ) ▷ Retrieve AS from F
4: S ← FilterVariables(AS) ▷ Filter and normalize variable names
5: S ← SortByIndex(S) ▷ Initialize S’s index number: S.index
6: Gs ← BuildADG(S) ▷ Obtain all ADGs contained in F
7: return Gs

8: end function
9: function BUILDADG(S)

10: Setdep ← {(LHS(s), null) | s ∈ S} ▷ Initialize Setdep
11: Vroot, Vsemi, Vleaf, E ← ∅
12: while ∃(n, p) ∈ Setdep with p = null do ▷ Iterate over Setdep
13: (n, p)← GetNullNode(Setdep) ▷ Get a node with p=null in reverse order
14: Setdep.UpdateP(n, root) ▷ Update the n.p in Setdep to root
15: Vroot ← {n}
16: Vs, Vl, En = ProcessSemiNode(n, S)
17: Vsemi ← Vsemi ∪ Vs

18: Vleaf ← (Vleaf ∪ Vl) \ Vroot
19: E ← E ∪ En ▷ Construct an ADG with n as the root node
20: Gs ← Gs ∪ (Vroot ∪ Vsemi ∪ Vleaf, E)
21: end while
22: return Gs

23: end function
24: function PROCESSSEMINODE(n, S)
25: i← GetStaIndex(n) ▷ Retrieve the index of the AS corresponding to n
26: for s ∈ S do ▷ Get nodes used on the RHS of the S where n is the LHS
27: if s.index < i and n ∈ LHS(s) then
28: Setind ← RHS(s)
29: end if
30: end for
31: E ← {(n, v) | v ∈ Setind} ▷ Build edges from node n to nodes in Setind
32: Settemp ← Setind ∩ Setdep ▷ Get semi-dependent nodes
33: Setind ← Setind \ Settemp ▷ Preserve leaf variables
34: Vleaf ← Vleaf ∪ Setind
35: for v ∈ Settemp do ▷ Update the property of semi-nodes in Setdep
36: Setdep.UpdateP(v, semi)
37: Vsemi ← Vsemi ∪ {v}
38: end for
39: return Vsemi, Vleaf, E
40: end function

We define two types of term association tables. (1) Synonym
table: Includes synonyms and abbreviations. Some terms may
appear in different lexical forms depending on usage, such
as velocity and speed, or location and position,
which are treated as equivalent. In addition, abbreviations are
commonly used in code. These are typically formed by retain-
ing only the initial letters of a long word (e.g., velocity
becomes vel) or by omitting vowels from the end (e.g., roll
becomes rll). (2) Physical coupling table: This table captures

coupled relationships between physical concepts. For instance,
in a multi-rotor vehicle, the thrust direction is determined
by the vehicle’s attitude, particularly its tilt angle. When the
vehicle tilts, the horizontal component of the thrust induces
acceleration. Given thrust T , tilt angle θ, and RV mass m, the
horizontal force is Fx = T ·sin θ, and the resulting acceleration
is a = Fx/m = T · sinθ/m, which approximates to T · θ/m.
This means that variations in angle directly lead to variations
in acceleration. Therefore, angle and acceleration are treated
as an associated term pair in this table.

The synonym table was manually constructed based on
domain expert knowledge and previous work [8], [21]. In
contrast, the physical coupling table is semi-automatically
derived from source code comments, which typically follow
established readability guidelines [22] to explain the purpose
of functions, methods, and specific computational statements,
often describing relevant physical quantities. For example,
Line 11 in Figure 2 describes the equivalence relationship
between angle and acceleration changes. We extract all com-
ments from the RV codebase and employ a large language
model to identify physical quantity terms that are potentially
coupled, thereby forming the physical coupling table. This
process is carried out as a one-time effort. Furthermore,
we observed that most control-related variables and physical
relationships are conceptually consistent across different RV
modules (e.g., Copter and Plane), allowing these tables to
generalize well. Additionally, when deployed across platforms
(§VIII-C), the term association tables constructed for ArduPi-
lot successfully supported MIS construction for PX4.

D. Entropy-based Prioritization

Each ADG consistently yields one MIS, which represents a
heuristic and non-deterministic group of semantically related
inputs. While not guaranteed to be precise, these inputs are
often correlated, and some are likely to jointly drive the RV
into deeper and potentially more error-prone state spaces.
To enhance fuzzing efficiency and increase the likelihood of
uncovering diverse bugs, we prioritize MISs with a higher
potential to trigger unexpected behaviors. Traditional methods,
such as random selection or coverage-guided fuzzing, tend
to focus on the execution behavior of individual inputs and
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struggle to quantify the latent cooperative potential among
inputs within a MIS. According to Shannon’s information
theory [23], entropy quantifies the uncertainty of information,
where higher entropy indicates greater unpredictability and
richer information content. Therefore, we define an entropy
metric for each MIS to capture its likelihood of triggering
unknown state transitions. During fuzzing, we allocate more
resources to MISs with higher entropy values.

Specifically, we quantify the entropy of each MIS based
along two dimensions: (1) the number of semi-dependent
nodes in its ADG, and (2) the semantic relevance of its leaf
nodes, measured by how many of their valid terms align with
RV input terms. We denote the entropy contributions of these
two dimensions by Enum and Equal.

Given that RV control software typically runs on embedded
platforms (e.g., APM), developers are unlikely to introduce
a large number of redundant alias assignments that consume
unnecessary memory. Therefore, an ADG with more semi
nodes suggests richer intermediate computations, indicating a
higher degree of latent semantic information. For an ADG with
N semi nodes, the entropy of its MIS is defined as:

Enum(MIS) = log2(|N |+ 1) (1)

For each LV within the ADG, its terms are considered
relevant only if they match with the input terms of the RV.
To reflect this semantic alignment, we define a quality-based
entropy metric that quantifies the number of valid terms
contained in each LV. The quality-based entropy for the MIS
generated from an ADG is calculated as follows:

Equal(MIS) = log2

(
1 +

∑
v∈Vleaf

M(v)

)
(2)

where M(v) denotes the effective information entropy of a
variable v. A variable with more matched terms is considered
to carry more semantic information. However, if a term corre-
sponds to a larger number of RV inputs, it is considered less
informative. Therefore, the effective entropy of v is positively
correlated with the number of its matched terms and negatively
correlated with how commonly each term appears among the
inputs. Let v contain k terms. When using the i terms in v,
suppose they collectively match Ti unique RV inputs. Then,
the effective information entropy M(v) of v is defined as:

M(v) =

k∑
i=1

i

Ti
(3)

The total entropy score of a MIS is given by:

E(MIS) = log2(|N |+ 1) + log2

(
1 +

∑
v∈Vleaf

k∑
i=1

i

Ti

)
(4)

Each MIS is assigned an entropy value as defined by
Equation (4). During fuzzing, MISs are selected for test
case generation according to probabilities proportional to their

entropy values. The probability of selecting a specific MIS is:

p(MIS) =
E(MIS)∑
L∈MISs E(L)

(5)

E. Entropy-Aware MIS Fuzzing

After obtaining the MIS using the procedure in §IV-C, we
fuzz them according to the entropy metrics defined in §IV-D,
enabling more efficient detection of assignment-related bugs.
Algorithm IV-E outlines the fuzzing steps. It performs the fol-
lowing steps iteratively: ① Initialize a probability distribution
P based on the entropy values of the MISs (line 2). ② Sample
a set L from P (line 4). ③ (Re)initialize the RV simulator (line
5). ④ Based on the entropy value of L, determine the number
of executions κ for this round, randomly select a subset of
inputs from L, assign a value to each input, and execute them
in the RV simulator (lines 7-12). ⑤ Detect anomalies in the
RV using the bug oracle (line 13). ⑥ On anomaly, forward
the executed test cases to post-processing (lines 14–15). ⑦
Dynamically adjust the entropy values of the tested L and the
probability distribution P ; remove MISs with entropy smaller
than ”1” (lines 16 and 19). ADGFUZZ repeats these steps until
either the time limit τ set by the user is reached or the MISs
are exhausted.

Algorithm 2 Entropy-Aware MIS Fuzzing
Input: RV Simulator SIM, inferred MISs SL from previous step, fuzzing

time limit τ
Output: A set of test cases Bugcases that can trigger bugs
1: Bugcases ← ∅ ▷ Initialize the Bugcases
2: P ← Normalize({L.entropy | L ∈ SL}) ▷ Initialize the prob. dist.
3: while SL ̸= ∅ & ¬T imeout(τ) do ▷ Main loop
4: L← Sample(SL, P ) ▷ Sample one L from SL according to P
5: SIM ← SIM.reinitialize ▷ Reinitialize the simulator
6: Runcases ← ∅
7: κ← CONVERT(L.entropy) ▷ Convert to execution times
8: while κ > 0 do
9: Inputs← RANDOM(L) ▷ Pick random inputs from L

10: Cases← ASSIGNVALUES(Inputs) ▷ Assign value for each input
11: Runcases ← Runcases ∪ Cases ▷ Record executed test cases
12: Msg← SIM(Cases) ▷ Record RV’s status and logs
13: Status← ORACLE(Msg) ▷ Determine whether a bug occurs
14: if Status.abnormal() then
15: Bugcases ← Bugcases ∪ Runcases ▷ Record execution cases
16: UPDATEBUGENTROPY(L) ▷ Update L’s entropy
17: κ← 0
18: end if
19: UPDATEENTROPY(L) ▷ Update L’s entropy
20: κ← κ− 1
21: end while
22: end while
23: function UPDATEENTROPY(L)
24: L.entropy← L.entropy/2 ▷ Adjust the entropy of L
25: P ← Normalize({L.entropy | L ∈ SL}) ▷ Reinitialize P
26: end function

Fuzzing Phase Workflow. The fuzzing process consists of
three interacting modules running in parallel: (1) a Simulation
Module, (2) an Execution Module, and (3) an Oracle Module.
The Simulation Module launches a new SITL instance at the
beginning of each iteration, loads a multi-phase navigation
mission, and executes it automatically. The Execution Module
first samples a MIS from an entropy-based probability distribu-
tion as the input injection template for the current round, and
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sends the test input to the SITL once the RV enters the armed
state (including takeoff, navigation, turning, etc.). Meanwhile,
the Oracle Module runs in parallel during input execution to
detect anomalies in the RV system. When a bug is detected
or the execution times out, the entropy of the current MIS
is updated and the probability distribution is adjusted in real
time. The triggered test sequence is then passed to the post-
processing module for further analysis.

Unlike traditional fuzzers that mutate raw bytes or isolated
parameters, ADGFUZZ performs input injection within a high-
fidelity simulation environment (SITL) under full mission
execution, including waypoint uploading, command transmis-
sion, parameter adjustment, and environment simulation. This
design ensures that the fuzzing process closely reflects real
RV operational workflows and exposes errors that may arise
under realistic mission conditions.
Power Scheduling for MISs. During the fuzzing process,
a high-entropy MIS may produce numerous test cases, po-
tentially containing diverse input combinations that expose
different bugs. If a traditional fail-fast strategy is used, where
testing stops after detecting the first bug, additional bugs
within the same MIS may remain undetected. Conversely,
excessive testing of a single MIS can result in insufficient
coverage of other MISs, thereby reducing overall testing
efficiency. To strike a balance between in-depth bug discovery
within individual MISs and broad coverage across multiple
MISs, we propose a strategy that dynamically adjusts the
entropy values and probability distribution of MISs.

We map the entropy value of each MIS to a sampling
probability, prioritizing MISs with higher entropy for test-
ing. After an MIS is selected, its entropy is reduced to
lower the probability of being selected in subsequent rounds.
Specifically, if the MIS triggers a bug, its entropy is halved,
allowing for limited further exploration of the MIS that has
already revealed a bug. If no bug is triggered within a round,
its entropy is gradually reduced to lower the probability of
continued exploration, until the allocated testing resources are
exhausted, which promotes the coverage of other untested
MISs. This strategy does not introduce biased exploration (see
§IX-C), as it ensures both efficiency (high-entropy MISs with
higher selection probabilities are more likely to discover bugs)
and preserves the exploration of corner cases (low-entropy
MISs will still be selected over time).
Test Cases Generation. In each round, we sample one MIS
from the probability distribution as a template. A subset of
its inputs is then selected to generate test cases. The number
of executions for this MIS in the current round is determined
by its entropy, since higher entropy indicates a greater num-
ber of input variables and thus requires more executions to
sufficiently explore the combination space. Specifically, we
map the unnormalized entropy value directly to the number
of executions. Based on empirical observations, we enforce a
minimum of 50 executions and cap the maximum at 500.

To explore different input combinations within an MIS, we
randomly select a subset of its inputs for testing in each case.
For each selected input, a value is assigned according to the

following criteria: (1) If a valid range is defined in the official
parameter or command documentation [12], [24], a value is
sampled from within that range. (2) If no range is provided
but a unit (e.g., rad, km) is specified, we define an appropriate
value range for each unit and assign a value accordingly. (3)
Otherwise, we extract the maximum (Inmax) and minimum
(Inmin) values stated in the documentation, partition the interval
[Inmin, Inmax] using a geometric progression, and assign a
random value from this interval to ensure balanced coverage
across different magnitudes. For example, if the range is
[0, 100], ADGFUZZ generates values from [0,1), [1,10), and
[10,100] with equal probability.
Bug Oracle. To enable automated detection of anomalies in
RVs, we define three bug oracles, each targeting a specific
invariant: (1) crash on the ground, (2) deviation from the
planned route, and (3) software crash. These invariants address
the most critical aspects of RV safety: whether the vehicle
incurs physical damage, whether it can complete its intended
mission, and whether its control software operates reliably.
The design of these oracles is informed by the failure patterns
observed in real-world bug reports analyzed in §III-B, empiri-
cal observations from simulation-based testing, and invariants
used in previous RV-related bug detection studies.

First, crash on the ground refers to an airborne vehicle
unexpectedly falling to the ground due to power failure or
other faults, potentially causing irreversible hardware damage.
We identify such bugs by monitoring system status messages
and runtime logs generated by the vehicle. Second, the route
deviation oracle monitors whether a vehicle performing way-
point navigation continuously drifts away from the target. If
the distance to the destination increases over a short time win-
dow (e.g., 7 seconds), we classify the behavior as a deviation.
Lastly, a software crash refers to memory-related errors, such
as arithmetic or floating-point overflows, caused by improper
parameter handling or missing safety checks in the control
software. We consider a lack of heartbeat messages for two
consecutive seconds as an indication of a software crash.
Handling Dynamic Runtime RV States. ADGFUZZ does not
rely on explicit runtime state detection or reactive mechanisms.
Instead, it proactively constructs a set of MISs during static
analysis that are likely to trigger state transitions. These inputs
are semantically correlated and can collectively interact with
internal system logic to drive the RV into various deeper
runtime states. In addition, during simulation, we load a
multi-phase mission that spans multiple typical states (e.g.,
idle, takeoff, navigation), ensuring that fuzzing is conducted
within the context of a complete mission. This design naturally
triggers diverse runtime states during execution.

F. Post-Processing

Due to the unquantifiable delay between injecting test inputs
into the RV system and the eventual manifestation of anoma-
lies (see §VIII-A for details), we record the entire execution
sequence from the selection of a given MIS to the detection of
a bug. The post-processing stage aims to accurately identify
the specific test cases responsible for triggering the observed
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anomalies. It receives a set of test cases C = (C1, . . . , Cn)
from the Bug Oracle, each linked to an observed anomaly.
Then, it performs input minimization to derive a refined set
M = (M1, . . . ,Mn), eliminating redundant inputs while
preserving the ability to trigger the bug. Each test case set
Ci contains all inputs executed by an MIS from the start of
fuzzing until the bug was triggered, including inputs that are
irrelevant to the bug. Minimizing these sets facilitates more
efficient root cause analysis.
Bug-Triggering Input Minimization. To identify the minimal
set of inputs that trigger a bug, we follow these steps: (1) For
each test case set Ci, initialize index = 0 and launch a new
RV simulator. The execution direction is encoded as 0 for
forward and 1 for backward, with the initial direction set to
forward (order = 0). (2) Execute test cases sequentially from
the current index in the given order. After each execution,
we introduce a delay τ to allow the effects of the input to fully
propagate, where τ is empirically determined based on the bug
type. (3) If executing a test case results in a bug, we update the
index to the current position and include this test case in Mi.
(4) Reinitialize the simulator to execute all test cases in Mi.
If the bug reoccurs, Mi is considered the minimal triggering
set. (5) Otherwise, we reverse the value of the execution
direction order and repeat steps (2) to (4). In addition, when
the time between bug triggering and manifestation exceeds a
predefined threshold, the corresponding input set may become
non-minimizable. In such cases, we apply a fallback strategy:
remove inputs one by one and test whether the bug still occurs.
Inputs that do not affect the occurrence of the bug are thus
eliminated, allowing us to approximate a minimal set through
this slower, iterative reduction process.
Bug Deduplication. Since different ADGs may have over-
lapping nodes and edges, the test case sets generated from
different MISs may trigger the same bug. To address this,
we deduplicate test case sets. Specifically, we group the
minimized input sets by bug type. For any two minimized
sets Mi and Mj of the same type where i < j, if they are
identical, we retain the lower-indexed set Mi.

V. IMPLEMENTATION

We implemented ADGFUZZ in approximately 3,000 lines of
Python code. Some key implementation details of individual
modules are outlined below.
ADG Construction. We selected the source code from Ar-
duCopter, ArduPlane, Rover, and the libraries module within
the ArduPilot project [25]. Pattern-based string matching
was employed to identify assignment statements and perform
variable name normalization, which served as the basis for
constructing the Assignment Dependency Graph (ADG).
MIS Generation and Entropy-based fuzzing. We extracted
input names accepted by the RV control software from pa-
rameter [12], [26], [27] and command [24] documentation to
build the input term set. Using the term association tables, we
mapped ADG variable terms to RV inputs to construct MISs.
Following the definition of information entropy presented
in this paper, we computed and recorded the entropy value

associated with each MIS. During fuzzing, we implemented
the interaction with RVs based on the pymavlink library [28].

VI. EVALUATION

We aim to answer the following research questions.
RQ1: How effective is ADGFUZZ at detecting bugs?
RQ2: To what extent does entropy-based prioritization

contribute to bug detection?
RQ3: How accurate and effective is the ADG–MIS con-

struction pipeline in capturing the semantic intent of source
code variables?

RQ4: How can the bugs discovered by ADGFUZZ be
leveraged to affect the security of the RV?

A. Evaluation Settings

We selected three of the most widely used [29] RV types for
our evaluation: quadcopter (Copter) [11], fixed-wing aircraft
(Plane) [30], and unmanned ground vehicle (Rover) [31].
These models are drawn from ArduPilot [9], the most popular
RV control software. We employed SITL [10] as the simulation
environment for the RVs, MAVProxy [32] as the GCS to inter-
face with the RVs, and MAVLink [33] as the communication
protocol between the control software and the GCS.

All experiments were conducted on an Ubuntu 20.04 virtual
machine equipped with an Intel Core i9-11950H processor, 32
GB of RAM, and Python 3.8.10. Each experiment was run
continuously for 24 hours.

B. Finding Bugs (RQ1)

Table II summarizes the bugs discovered by ADGFUZZ
across three types of vehicles. In total, ADGFUZZ identified 87
unique bugs, 78 of which were previously unknown. Because
certain inputs (e.g., inertial sensor parameters) can be utilized
across different vehicle types, some bugs were triggered by
the same input in multiple vehicles. These cross-type bugs
are counted once in our statistics. Figure 5 illustrates the
distribution of discovered bugs across the three evaluated types
of RVs. Specifically, we identified 14 bugs in both Copter and
Plane that could lead to ground crashes; notably, two groups
of inputs induced such failures in both vehicle types. As Rover
is a ground-based vehicle, crash-to-ground bugs do not apply
in its case. We also discovered 6, 2, and 7 route deviation
bugs in Copter, Plane, and Rover, respectively, with no overlap
observed across vehicle types. With respect to software crash
bugs, 40 were detected in Copter, 38 in Plane, and 35 in Rover.
Among these, 7 bugs were common to both Copter and Plane,
while 30 were observed in all three vehicle types. Compared
to Rover, more bugs are shared between the Copter and Plane.
This is because these two types of RVs share a greater portion
of control logic, such as takeoff and altitude control.
Analysis of Discovered Bugs. Among the 87 bugs (detailed
in §IX-D) identified by ADGFUZZ, 26 (29.88%) bugs could
cause airborne vehicles to crash to the ground, which may
result in physical damage and potentially hit pedestrians if the
crash occurs in a populated area. 15 (17.24%) bugs caused
trajectory deviations, potentially leading to mission failure or
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Table II. Bugs Discovered by ADGFUZZ Across Three Vehicle Types.
∗: When the same input triggers bugs in multiple types of RVs, we treat
them as a single bug instance. These duplicates are excluded from our

statistics to ensure accurate bug counting.

RV Type # of
bugs

Bug Invariants
Crash on

the ground
Route

deviation
Software

crash

Copter 60 14 6 40
Plane 54 14 2 38
Rover 42 0 7 35

Total 87∗ 26∗ 15 46∗

Copter Plane

Rover

6 20

0
00

7

(b) Route Deviation

Copter Plane

Rover

12 122

0
00

0

(a) Crash on the ground

Copter Plane

Rover

3 17

30
00

5

(c) Software Crash

Fig. 5. The Venn diagram illustrates the overlap and distribution of the bugs
we identified across different types of vehicles.

the false perception of mission completion, even when the
vehicle had not reached the intended waypoint. 46 (52.87%)
bugs triggered software crashes due to memory overflow.

Each bug was triggered by one or more inputs. Specifically,
77 bugs were caused by a single input, 11 were jointly trig-
gered by two inputs, and one was the result of three inputs in
combination. For instance, the parameter AHRS_EKF_TYPE
has a valid range of 0, 2, 3, and 11; however, when set
to 0, 2, or 11, it results in a floating-point overflow in the
Rover. In another case, setting either MOT_BAT_VOLT_MAX
= 45.42 or MOT_PWM_MIN = 8.3 individually within their
valid ranges does not impact the operational stability of the
Copter. However, when both are set simultaneously, the Copter
experiences a sudden loss of thrust during flight and crashes
to the ground (§VI-E1).
False Positives. We identified several inputs whose intended
functionality inherently results in false positives. For instance,
a drone must maintain a minimum motor output to achieve
stable hovering or flight. Parameters such as MOT_PWM_MAX
are explicitly designed to constrain motor output. When con-
figured with overly low values, they can prevent the drone
from generating sufficient thrust, resulting in a ground crash.
Similarly, parameters like SYSID_THISMAV, which define
the system identity or configuration of the RV, may induce
operational disruptions when modified, such as breaking com-
munication with the GCS. Detailed examples of such behavior
are provided in §IX-A. These false positives are not included
in the 87 bugs we report.
Comparison with Existing Work. PGFuzz [8] is a policy-
guided fuzzing framework that emphasizes detecting violations
of safety policies as documented. By comparing with its
disclosed bug reports, we verified that 8 of the identified
bugs were also detectable by PGFuzz. This indicates that

there exists only a narrow intersection between the inputs
inferred from source code in our approach and the policy-
mapped inputs manually extracted by PGFuzz. Upon further
analysis, we identified the following reasons why PGFuzz was
unable to detect the remaining 79 bugs: when a bug arises
from a simple concept without associated logical constraints,
PGFuzz is unable to derive relevant detection policies, as its
policy extraction mechanism is designed around strong logical
rules such as ”If ... then” or ”must ...”. Furthermore, not all
implementation logic is documented. When developers intro-
duce computational logic errors directly in the implementation,
PGFuzz often fails to detect them, as the extracted policies
are typically independent of such internal computations and
therefore do not account for these types of bugs. For instance,
as described in §III-A, the concept of a ”vehicle reaching
a waypoint” is intuitive, yet the implementation erroneously
overlooks the vehicle’s actual position, resulting in a bug. In
contrast, ADGFUZZ begins with the waypoint arrival indicator
variable as the root node and semantically traces all potential
inputs that may affect this variable, enabling it to evaluate a
broad spectrum of relevant inputs.

The scope of RVFuzzer [5] is limited to detecting control
instabilities caused by configuration parameters, which pre-
vents it from detecting the bugs identified by our approach.
Therefore, we did not include RVFuzzer in our comparative
analysis. Furthermore, we regard LGDFuzzer [7] as a func-
tional subset of RVFuzzer, as it focuses exclusively on a very
limited set of configuration parameters (20 in total), aiming to
identify parameter values that may induce control instability
in RV systems.

C. Effectiveness of Entropy-Based Input Prioritization (RQ2)

To evaluate the effectiveness of our entropy-guided strat-
egy in enhancing RV bug detection, we developed a vari-
ant of ADGFUZZ named ADGFUZZ NOE which substitutes
entropy-guided input set scheduling with a random selection
mechanism. We independently executed both ADGFUZZ and
ADGFUZZ NOE across three types of RVs, and the corre-
sponding results are illustrated in Figure 6. Each data point in
the figure denotes the timestamp at which a unique bug was
first identified. Since individual bugs may be triggered multiple
times, we record only the time of first occurrence. Lines
labeled with “noe” indicate the number of bugs discovered
by ADGFUZZ NOE for each respective vehicle type.

As clearly demonstrated in Figure 6, when employing the
complete strategy, ADGFUZZ exhibits a consistently high bug
discovery rate within the initial hour of fuzzing. This indicates
that the entropy-guided energy scheduling strategy effectively
prioritizes input sets with a higher likelihood of triggering
bugs. Relative to ADGFUZZ NOE, ADGFUZZ discovered 18,
16, and 9 additional bugs in Copter, Plane, and Rover, respec-
tively. Nonetheless, in the absence of entropy-based guidance,
ADGFUZZ NOE was still able to detect a substantial number
of bugs within the first four hours. We attribute this outcome
to two main factors. First, the RV control software often
lacks parameter range validation, making overflow-related
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Fig. 6. Bug discovery trends over time for different strategies across three
types of RVs.

Table III. Comparison of Bug Detection Performance in ADGFUZZ Variants

Subject Unique Bug Detection
ADGFUZZ ADGFUZZ-RANDOM ADGFUZZ-NUM ADGFUZZ-QUAL

Copter 60 34 47 55
Plane 54 31 42 49
Rover 42 25 33 38

bugs easier to trigger. Second, due to the inherent randomness
of the selection process, ADGFUZZ NOE occasionally samples
high-entropy input sets by chance, some of which successfully
trigger new bugs. This effect is observable in the intermittent
bug discoveries that occurred between hours 4 and 12.
Contribution of Entropy Metrics. To evaluate the contribu-
tion of the entropy metrics (Enum and Equal in §IV-E) to bug
discovery, we performed ablation experiments on these two
components. We implemented three variants of ADGFUZZ:
(1) ADGFUZZ-RANDOM randomly selects inputs from the
RV input space, (2) ADGFUZZ-NUM uses only Enum as the
entropy metric for MISs, disabling Equal, (3) ADGFUZZ-
QUAL uses only Equal as the entropy metric for MISs when
calculating entropy. Table III shows the number of bugs
discovered. Overall, ADGFUZZ-RANDOM exhibits the lowest
bug discovery efficiency, as it cannot focus on high-risk
areas and mainly detects software crashes. ADGFUZZ-NUM
guides exploration of longer assignment chains by considering
semi-dependent node counts, uncovering bugs from boundary
conditions or overflows. However, it neglects more complex
semantic information, such as the logical relationships between
variables, leading to the inability to capture bugs that would
only trigger in specific semantic contexts. ADGFUZZ-QUAL,
by guiding the test to explore input spaces with higher seman-
tic richness, is capable of identifying latent errors in code logic
involving complex variable interactions, resulting in a higher
bug discovery rate, as it better mimics the program’s logical
structure. By combining these two complementary strategies,
ADGFUZZ enhances bug discovery.

D. Evaluation of ADG–MIS Construction (RQ3)

Accuracy. To evaluate the soundness of the ADG–MIS con-
struction pipeline, we randomly sampled 150 ADG–MIS pairs

generated during the static analysis phase. Two authors of
this paper independently conducted manual cross-validation
to assess the semantic correctness of the MIS inferred from
each ADG. Specifically, we manually interpreted the semantic
meaning of variable names in each ADG and identified terms
containing essential contextual information, referred to as key
terms. We then examined whether the corresponding MIS
included RV inputs that could be reasonably inferred from
these key terms, thereby verifying whether the MIS was
semantically consistent with the ADG.

Among the 150 ADG–MIS pairs, 131 (87.33%) were
deemed accurate. The remaining 19 semantically inconsistent
cases fall into three categories: (1) Semantically unreliable:
In 14 cases, the variable names carried no meaningful se-
mantics and no key terms could be extracted. This occurred
when the ADG was constructed from abstract or temporary
variables, such as Alpha, ptr_type, or default_list.
(2) Semantic ambiguity: In 3 cases, semantic ambiguity in
the variable names caused the key terms to be missed during
MIS construction. As a result, the MIS was not generated
based on the correct key term, for instance with variables like
posvel. (3) Semantic irrelevance: In 2 cases, key terms were
identified but had no semantic correlation with RV inputs,
typically representing external interfaces or application-level
concepts, such as ROS topics. Notably, cases (1) and (3) do
not lead to bug omissions since these variables lack actionable
semantic information. As a result, the terms matched in these
cases are typically generic (e.g., type, default), and the
corresponding MISs tend to have low entropy values (as
defined by our Equal-based metric). Therefore, these MISs
are unlikely to be selected during the fuzzing phase. In case
(2), where semantic ambiguity exists, the confusing term fails
to establish a semantic link with any RV input and is thus
skipped during the matching process.
Effectiveness. We also investigated the frequency of naming
matching failures and their potential impact on fuzzing per-
formance. In ArduPilot, we identified 20,858 unique variables
from the right-hand side of assignment statements. Our naming
matching method successfully mapped 17,276 of these vari-
ables to RV inputs, while 3,582 (17.17%) failed to match.
These mismatched variables could not establish a semantic
connection with RV inputs and were thus skipped during the
static analysis phase.

By collecting the MISs inferred from variables that suc-
cessfully matched through naming, we found that they cover
99.98% (5005 out of 5006) of RV inputs. Therefore, the
failure of naming matching does not lead to missed bugs
or reduced coverage. This is because our name-matching
method is robust to the small number of naming ambiguities.
First, in most cases, MISs are not generated by a single
variable but include multiple variables, making it less likely
for all of them to fail matching. Additionally, the existence
of non-ambiguous semantically equivalent contexts in other
RV modules helps mitigate the impact of semantic matching
failures. For example, the ambiguous term posvel appears
only three times throughout the entire codebase, while the
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semantically meaningful subterms pos and vel co-occur in
twelve different locations.

We note that when a semantically inaccurate MIS is sam-
pled, it corresponds to testing a subset of the input space with-
out the guidance of semantic information, which is unlikely to
trigger bugs and leads to ineffective testing, thereby reducing
fuzzing efficiency. However, our entropy-based prioritization
mitigates this effect because these inaccurate MISs contain less
useful information, have lower entropy, and are less likely to
be selected during fuzzing. For instance, when we sampled 150
ADG-MIS pairs according to their entropy-based probability
distribution, we found that 94.67% (142/150) of the inferences
were semantically accurate.

E. Effect of Exploitation (RQ4)

We present a detailed analysis of three representative exam-
ples identified by ADGFUZZ to demonstrate how these bugs
may be exploited by adversaries to compromise a running RV.
Each case is accompanied by a root cause analysis to explain
the underlying mechanisms leading to the observed failures.

1) Case Study 1 - Unexpected Voltage–Throttle Correlation
Error Causing a Ground Crash: Each parameter remains
within its documented valid range, and modifying either one
individually does not trigger the bug. ADGFUZZ identified
that the simultaneous satisfaction of two specific conditions
can cause the rotor motors to shut down, causing the vehicle
to crash into the ground.
Attack. Consider a quadrotor hovering stably in mid-air
(Figure 7a). An adversary can trigger a sudden loss of con-
trol and an uncontrollable crash by slightly increasing the
maximum battery voltage parameter (MOT_BAT_VOLT_MAX)
above the actual voltage level, while concurrently lowering
MOT_PWM_MIN. Notably, adjusting either parameter indi-
vidually does not affect the drone’s stability. As battery
voltage naturally decreases during discharge, configuring a
higher maximum voltage prompts the firmware to continuously
compensate under the assumption of full voltage, thereby
sustaining stable thrust output. In addition, operators often
interpret MOT_PWM_MIN as the minimum idle throttle; setting
it to a lower value is intended merely to reduce idle propeller
speed at 0% throttle and is not expected to cause failure.
Root Cause. As shown in Figure 8, the voltage compensation
logic within the RV’s flight control software adjusts motor
thrust to offset battery voltage fluctuations. The compensation
factor (compensation_gain) is approximately computed
as the ratio of the configured maximum voltage to the actual
voltage (Line 3). For example, if MOT_BAT_VOLT_MAX
is set to 45.42V and the actual voltage is 42V , then
compensation_gain ≈ 45.42/42 ≈ 1.08. This leads to an
approximate 8% amplification of all thrust-related control sig-
nals (thrust, roll, pitch, yaw) (Lines 4–8). The flight controller
utilizes a mixer algorithm to combine these control signals and
assign a normalized thrust coefficient (_actuator[i]) to
each motor (Lines 9–10), which is subsequently mapped to a
Pulse-Width Modulation (PWM) value (Line 14) and applied
to the corresponding output channel to drive the respective

M1

Direction 
forward

M2M3 M4

(a) A quadcopter hovering in the air,
powered by four propeller motors.

𝑀1!"#
𝑀2!"#
𝑀3!"#
𝑀4!"#

𝑡ℎ𝑟𝑢𝑠𝑡
𝑟𝑜𝑙𝑙
𝑝𝑖𝑡𝑐ℎ
𝑦𝑎𝑤

1 − 1 1 1
1 1 − 1 1
1 1 1 − 1
1 − 1 − 1 − 1

=

(b) Mixer algorithm for adjusting mo-
tor thrust.

Fig. 7. (a) A quadcopter hovering in flight, stabilized by four propeller-driven
motors. Arrows indicate the rotation direction of each propeller. (b) The mixer
algorithm in the flight control software adjusts the thrust distribution across
the four motors.

1 void AP_MotorsMatrix::output_armed_stabilizing()
2 { // apply voltage and air pressure compensation
3 const float compensation_gain = thr_lin.get_compensation_gain();
4 const float roll_thrust = (_roll_in + _roll_in_ff) * compensation_gain;
5 const float pitch_thrust = (_pitch_in + _pitch_in_ff) * compensation_gain;
6 float yaw_thrust = (_yaw_in + _yaw_in_ff) * compensation_gain;
7 float throttle_thrust = get_throttle() * compensation_gain;
8 float throttle_avg_max = _throttle_avg_max * compensation_gain;

9 req_i = throttle_thrust + roll_thrust * mix_roll[i] + 
pitch_thrust * mix_pitch[i] + yaw_thrust * mix_yaw[i];

10 _actuator[i] = constrain_float(req_i, 0.0f, 1.0f);

11 void AP_MotorsMulticopter::output_motor_mask()
12 { const int16_t pwm_min = get_pwm_output_min();
13 const int16_t pwm_range = get_pwm_output_max() - pwm_min;
14 int16_t pwm_output = pwm_min + pwm_range * _actuator[i];
15 rc_write(i, pwm_output);

//Buggy code

//Buggy code

Fig. 8. A logic bug that results in the motor PWM output being set to an
extremely low value.

motor (Line 15). However, for the rear-right motor (M4) on the
quadcopter, the mixer coefficients for roll, pitch, and yaw are
all –1 (Figure 7b). When amplified, these negative correction
signals accumulate, resulting in M4pwm = thrust – roll –
pitch – yaw. With carefully crafted inputs, an attacker can
cause _actuator[3] = 0. In such a case, M4’s PWM output
is solely governed by pwm_min, which is determined directly
by the parameter MOT_PWM_MIN. Setting this parameter to
an extremely low value causes the Electronic Speed Controller
(ESC) to interpret the signal as lost, resulting in a total motor
shutdown and an unrecoverable ground crash.

2) Case Study 2 - Incorrect Waypoint Detection Due to
Position Estimation Discrepancy: During navigation tasks, an
RV does not always require physically reaching a waypoint
to consider it “arrived.” Instead, it precomputes a smooth
trajectory between waypoints based on flight speed and inter-
waypoint distance and estimates the time required to complete
each segment. However, ADGFUZZ revealed that relying on
precomputed timing without verifying the RV’s actual position
can be exploited by adversaries to cause subtle route devia-
tions, making the control software falsely assume waypoint
completion even when the RV has deviated significantly.
Attack. Consider an autonomous delivery rover assigned to
visit a sequence of waypoints for package distribution (Fig-
ure 9a). An adversary capable of modifying configuration
parameters sets the ATC_SPEED_FF value far beyond its
safe range. This manipulation of the speed feedforward gain
causes the rover to accelerate significantly beyond its intended
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(a) The planned vs. actual trajectory of
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(b) Comparison between the
RV-estimated and actual dis-
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Fig. 9. An attacker launches an attack at the 4th second after the vehicle
starts its delivery task, causing a sudden surge in speed. However, the RV
control software continues to use incorrect logic for calculating the navigation
distance.

velocity, reaching 20 m/s instead of the nominal 5m/s, as
depicted in Figure 9b. Despite the rover rapidly passing by
the waypoints, the RV control software continues to rely on
flawed logic when calculating the vehicle’s distance to each
waypoint. As a result, it erroneously concludes that the rover
has successfully reached each navigation point, even though it
has not. Consequently, all packages are incorrectly marked
as delivered, leading to mission failure, lost cargo, and a
heightened risk of collisions along the unintended route.
Root Cause. This bug stems from two primary factors.
First, ATC_SPEED_FF is not constrained by effective safety
bounds. When set too high, it leads the speed controller to
apply disproportionately large throttle outputs, causing the ve-
hicle to operate at speeds far exceeding expectations. Second,
the fast waypoint transition mechanism relies primarily on an
internal timer derived from the basic kinematic relationship
(distance = speed × time) rather than direct verification of
the vehicle’s actual position. When the feedforward gain is
increased excessively, the vehicle’s actual speed diverges from
the nominal speed assumed in the timer calculation, invalidat-
ing the timer as a proxy for position. Nevertheless, the RV
control logic continues to rely on this flawed estimate, leading
to misjudged waypoint arrivals and eventual task failure.

3) Case Study 3 - Plane Crash Caused by Incorrect Pitch
Gain Configuration: ADGFUZZ identified that a mechanism
designed to smooth pitch dynamics, when misconfigured, can
instead destabilize the aircraft and ultimately result in a crash.
Attack. Consider an aircraft engaged in a reconnaissance
mission, operating along a predetermined low-altitude flight
path to monitor the coastline or perform mapping tasks.
An adversary with the capability to manipulate or over-
write configuration parameters may modify the parameter
PTCH_RATE_D_FF, which governs the magnitude of pitch
control, either prior to or during the flight. They may also con-
strain the permissible range of downward pitch by setting the
minimum pitch angle to a positive value, thereby preventing
the aircraft from achieving a nose-down attitude. Under such
constraints, when the aircraft encounters atmospheric turbu-
lence or requires altitude reduction, the inability to achieve a
sufficient nose-down pitch results in abrupt and excessive pitch

(a) Pitch angle over time. (b) Altitude over time.

Fig. 10. Changes in pitch angle and altitude of the plane under attack.

responses. This dynamic destabilizes the flight control system,
ultimately leading to an uncontrolled descent and crash.
Root Cause. The identified bug stems from a conflict between
the pitch control and throttle management safety logics in
the RV control software. The Total Energy Control System
(TECS) is designed to automatically reduce throttle when
the aircraft’s nose is pointed downward, thereby leveraging
gravitational force to assist in descent. However, if the mini-
mum pitch angle configuration parameter TECS_PITCH_MIN
is set to a positive value, the condition _PITCHminf < 0
can never be fulfilled, effectively disabling the logic branch
responsible for throttle reduction during nose-down flight. As
a result, even when the nose is slightly pitched downward, the
system is unable to reduce throttle and is instead compelled to
maintain or increase engine thrust. Once the throttle becomes
effectively locked, TECS attempts to regulate altitude solely
through incremental pitch adjustments. When the aircraft
ascends slightly due to turbulence or inertia, TECS detects an
altitude deviation above the setpoint and issues a downward
pitch command. Conversely, when the altitude drops below the
target, an upward pitch command is issued. This cycle leads
to periodic altitude oscillations of several meters around the
intended flight level (see Figure 10, 20–40 seconds). Moreover,
the parameter PTCH_RATE_D_FF controls the feedforward
amplification of pitch rate, providing extra control surface
force based on the target rate. However, this parameter lacks
proper bounds checking, allowing an attacker to assign an
excessively large value. This causes small pitch adjustments
to be amplified into full deflections (either maximum or
minimum). When the aircraft attempts to recover from an
excessive altitude, the pitch control surface may suddenly
deflect fully downward (see Figure 10, after 40 seconds),
leading to a catastrophic descent and ground impact while the
engine remains at high throttle.

VII. RELATED WORK

Security concerns in RVs have garnered increasing attention
from researchers in recent years. Choi et al. [34] proposed a
detection framework for RV attacks based on control invariants
to defend against physical attacks. However, their approach is
incapable of identifying bugs originating within the control
software itself. RVFuzzer [5] targets input validation bugs
in RV control software by employing a control instability
detector, focusing on whether configuration parameter checks
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are incorrectly implemented or entirely missing. Similarly,
LGDFuzzer [7] leverages a learning-guided search strategy to
identify range constraint violations caused by the interaction of
multiple configuration parameters within RV systems. These
methods concentrate on inputs related to control stability,
overlooking control commands, environmental inputs, and nu-
merous configuration parameters unrelated to control, thereby
limiting their ability to detect other categories of bugs. Choi et
al. [6] also introduced an approach that mutates environmental
factors to validate flaws in RV security check mechanisms,
but this method cannot uncover vulnerabilities present in
other regions of the input space. PGFuzz [8] aims to detect
policy violations stemming from design flaws or incorrect
implementations; however, it heavily relies on the precision
of manually specified policies and is restricted to security
requirements derived from RV documentation. As a result, it
fails to detect bugs caused by conflicting execution logic or
undocumented implementation errors.

In addition, PatchVerif [21] is designed to evaluate RV
patch code to determine whether modifications successfully
resolve existing issues or introduce new ones. Its scope is
limited to inputs associated with the patch code itself, with the
primary goal of exposing behavioral differences. In contrast,
ADGFUZZ explores input subspaces to uncover bugs triggered
by complex interactions among inputs.

Traditional fuzz testing techniques [35], [36], [37], [38] for
conventional software primarily focus on detecting memory
overflow vulnerabilities. However, for inputs that do not cause
memory overflows, there are no well-defined evaluation met-
rics. ADGFUZZ by analyzing the assignment relationships
between variables, is able to detect security issues that are
independent of memory, such as falling caused by accumulated
computational inaccuracies and deviations from the planned
flight route.

There are other RV-related research works, including bug
forensics and localization in RVs based on flight log analy-
sis [17], [39], [16], automated patch generation and repair [40],
and sensor-targeted attacks in RV systems [41], [42], [43],
[44], [45], [46], [47]. These topics fall outside the scope of
our work.

VIII. DISCUSSION AND LIMITATION

A. Temporal Gap Between Bug Activation and Detection

A subtle yet critical challenge in RV control software is the
temporal gap between the triggering of a bug and its eventual
detection. Unlike traditional software, where bugs often result
in immediate crashes or explicit error codes, certain bugs in
RV software may only manifest after a sequence of events,
often with delayed or uncertain timing. A representative ex-
ample arises in waypoint navigation tasks, where the vehicle
is expected to follow a predefined trajectory (e.g., Fig. 1).
If the RV deviates in a direction that aligns with its intended
heading, the deviation might remain undetected until it reaches
the designated waypoint. In such cases, the bug is triggered
well before the waypoint is reached, but detection may be

(a) Copter (b) Plane (c) Rover

Fig. 11. Three real-world RV: (a) quadrotor (Z410), (b) fixed-wing aircraft
(HeeWing-T2), and (c) unmanned ground vehicle (CQR).

significantly delayed or, in the worst-case scenario, completely
missed if the testing duration expires beforehand.

To mitigate this issue, we designed navigation tasks that
incorporate frequent turning maneuvers, which continually
alter the RV’s expected heading. This increases the chances of
exposing bugs related to waypoint deviation and helps keep
the temporal gap within a manageable range.

B. Limitations of SITL

SITL-based testing provides a fast, controllable, and re-
producible environment for uncovering logic-level bugs in
RV control software. However, SITL cannot accurately reflect
hardware-specific issues such as sensor noise, actuator fail-
ures, hardware-induced latency, or electrical faults. Integrating
ADGFUZZ with Hardware-in-the-Loop (HITL) testing [48],
[49] is a potential solution, but such approaches require
significant hardware resources and engineering overhead. Im-
portantly, all bugs identified by ADGFUZZ are unrelated to
hardware-specific issues. We validated these bugs on three
different types of real-world RVs (Figure 11). Among the 87
bugs discovered, 45 can be reproduced on real-world RVs,
while 42 are simulator-only, caused by SITL-specific param-
eters (detailed in §IX-D). For example, SIM_PLD_ENABLE
can trigger a crash in simulation but has no effect on real RVs,
as such inputs are unavailable outside SITL. Nevertheless,
these bugs are still valuable, as they expose weaknesses in
control logic and may indicate potential risks when similar
logic is reused in flight-critical modules. Moreover, we note
that ADGFUZZ cannot test assignment statements that are
inactive in simulation but exercised in real-world scenarios.

C. Portability ADGFUZZ to Other Platforms

Our approach relies on extracting assignment dependencies
and associating RV inputs with source code variables based
on naming semantics. However, if most variable names lack
semantic meaning or the source code is entirely unavailable,
our approach becomes inapplicable. In such scenarios, the
static analysis phase fails to construct meaningful ADGs,
thereby hindering MIS extraction and entropy-aware fuzzing.
We acknowledge this limitation and emphasize that ADGFUZZ
is primarily designed for open-source, semantically rich flight
control software such as ArduPilot [9] and PX4 [50].

For standardized and open-source RV platforms, users can
adapt ADGFUZZ to other systems by following five steps:
(1) Construct the ADG from the RV software’s source code.
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(2) Identify user-controllable RV inputs to infer MISs from
the ADGs. (3) Examine the semantic mapping between ADG
variables and RV inputs. Identify missing but semantically
similar (variable term, input term) pairs and update the term
association tables accordingly. Then regenerate MISs. (4)
Modify the input injection and feedback processing modules
according to differences in the communication protocol, to
support fuzzing execution and oracle judgment. (5) Finally,
eliminate false positives by examining whether the input’s
intended functionality inherently causes the observed behavior
(see §IX-A). The effort depends on the similarity between the
target RV software and ArduPilot. For example, PX4 shares
the same naming conventions with ArduPilot, allowing us to
skip Step (1). We spent approximately one hour on Steps (2),
(3), and (5). During this time, we updated the term association
table with two new data sets specifically for PX4. Although
PX4 also uses MAVLink as its communication protocol, it
differs in implementation; we spent 7 hours modifying 173
lines of code to address these differences. Bugs found in PX4
are described in §IX-E.

IX. CONCLUSION

We propose ADGFUZZ, a novel fuzzing framework specif-
ically designed to detect assignment statement bugs in RV
control software. ADGFUZZ identifies data dependencies be-
tween assignment statements and RV multi-source inputs by
exploiting naming similarities. It subsequently applies entropy-
aware fuzzing over the derived RV inputs to improve the
efficiency of bug detection. In our evaluation, ADGFUZZ
uncovered 87 unique bugs across three RV types, 78 of which
were previously unknown. All found bugs were responsibly
disclosed to the developers, and 16 have been confirmed for
fixing.
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APPENDIX

A. RV-Inherent False Positives

We list several inputs below that cause false pos-
itives. The configuration parameters MOT_PWM_MAX and
SIM_ENGINE_MUL affect motor output; setting them too
low or to zero leads to insufficient thrust or disabled throt-
tle, causing the vehicle to descend uncontrollably. Simi-
larly, SIM_GPS1_ENABLE disables GPS simulation when
set to zero, triggering EKF failsafe and switching to
LAND mode. The commands MAV_CMD_NAV_LAND and
MAV_CMD_COMPONENT_ARM_DISARM also cause inten-
tional descent or immediate motor shutdown, which may be
misclassified as ”crash on the ground” by the oracle. Addition-
ally, combining MAV_CMD_DO_CHANGE_SPEED to reduce
velocity with a high wind speed (SIM_WIND_SPD) can result
in route deviation if the drone lacks sufficient forward motion.
Excessively large values for SIM_GPS1_POS_X, POS_Y, and
POS_Z may cause abnormal GPS jumps, leading to false
”route deviation” reports. Modifying SYSID_THISMAV can
break GCS communication, triggering a false ”software crash”
detection. These input combinations were manually excluded
during result analysis by one of the authors.

B. An Example ADG–MIS Pair

Figure 12 shows the ADG constructed from the code
snippet in Figure 2, along with the corresponding MIS de-
rived from that ADG. For clarity, some data elements have
been omitted. Variables and RV input terms with semantic
associations are highlighted using the same color.

C. Exploration Behavior of Entropy-Based Fuzzing Strategy

Thorough exploration of the input space remains a fun-
damental challenge in fuzzing. To quantify the exploration
behavior of our entropy-based strategy and assess whether
it introduces biased exploration or misses corner cases, we
stratified all MISs into four entropy intervals in descending
order: A – (75%, 100%], B – (50%, 75%], C – (25%, 50%],
and D – [0%, 25%]. From each interval, we randomly selected
100 MISs and measured their cumulative code coverage after
execution. Figure 13 shows a Venn diagram of coverage
overlap across the four groups. High-entropy MISs generally
trigger more unique paths and achieve higher overall coverage,
while low-entropy MISs still expose rare paths, retaining value
for corner-case discovery. The distribution of bugs across
entropy intervals further confirms this trend: across three RVs,
we observed 217, 140, 121, and 45 bug-triggering cases from
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Fig. 13. Venn diagram illustrating the overlap and uniqueness of code
coverage achieved by MISs from different entropy intervals.

the highest to the lowest entropy groups. Therefore, ADGFUZZ
employs a hybrid strategy: prioritizing high-entropy MISs
for efficiency and early bug discovery, while periodically
exploring low-entropy MISs to avoid missing critical cases.

D. List of Discovered Bugs and Impact Assessment

Table IV presents a comprehensive list of all bugs discov-
ered by ADGFUZZ in ArduPilot. For each bug, we provide: (1)
the index number, (2) the affected RV type(s), (3) the input
that triggers the bug, (4) a brief description of the bug, (5)
the impact type reflecting its severity, (6) the reproducibility
status on real RVs, and (7) whether upstream developers
have considered fixing it. Among these, item (5), the type of
impact, is used to characterize the nature and severity of the
bug. We systematically classify impact types into three cate-
gories: security-critical, safety-relevant, and usability-related.
Security-critical bugs can be triggered by external or untrusted
inputs and lead to software crashes, overflows, or denial-of-

service. Safety-relevant bugs are not necessarily caused by
attackers; they may also result from user misconfigurations or
improper usage. These bugs can cause abnormal or hazardous
physical behavior during RV operation (e.g., thrust loss or
crashes). Usability-related bugs mainly indicate insufficient
software robustness. Although they typically do not affect the
physical world and are less severe, they can reveal underlying
flaws in control logic.

Among the 87 bugs identified, #1–26 are crash-to-ground,
#27–41 are route deviations, and the remaining ones are
software crash bugs. We classified 15 of them as security-
critical, 31 as safety-relevant, and the remaining 41 as usability
issues. We reproduced 45 of these bugs on real-world RVs
(Figure 11), and the observed behavior was highly consistent
with that in the SITL simulation environment. The bugs that
could not be reproduced on physical RVs were mainly due to
one of the following reasons: (1) the relevant inputs are not
used by real hardware (e.g., parameters like SIM RATE HZ
are only effective in the simulator), or (2) we were unable
to recreate the specific environmental conditions required to
trigger the bug (e.g., strong wind).

For the bugs that developers chose not to fix, our communi-
cation with the ArduPilot maintainers revealed two main rea-
sons: First, repair difficulty. Developers noted that comprehen-
sive parameter checks are impractical on resource-constrained
devices due to increased code size and performance impact.
Moreover, some parameters inherently lack a well-defined
legal range, making it difficult to enforce a universal validation
rule. For example, the minimum acceptable PWM value varies
significantly across different models of Electronic Speed Con-
trollers (ESCs): some stop at 1000, while others stop at 1150.
Thus, fixed thresholds may be inappropriate or even harmful.
Second, cognitive bias. Although developers acknowledged the
existence of external or internal adversaries, many expressed
the view that ArduPilot is merely one component of a larger
system, and that security enforcement should be handled at the
communication link level or by external systems. This reflects
a cognitive bias in the perception of security responsibility,
which downplays potential risks and shifts accountability for
mitigation [51], [52]. Given these considerations, developers
tend to avoid fixing such issues even when the abnormal
behavior is confirmed.

E. Bugs Discovered in PX4

After applying ADGFUZZ to PX4 [50] (with jMAVSim [53]
simulator), we identified 35 bugs in the quadcopter, including
5 software crashes, 26 ground crashes, and 4 route deviation
bugs. Among these, 22 bugs were triggered by a single
input, 10 by two inputs, 2 by three inputs, and 1 by four
inputs. Unlike ArduPilot, where many bugs are associated
with simulator-only parameters, the PX4 bugs are triggered by
inputs that remain valid on real vehicles. Although these bugs
were first observed in simulation, they stem from assignment
dependencies within the same control logic executed on actual
robotic vehicles, highlighting their potential real-world impact.
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Table IV. Bugs Discovered by ADGFUZZ in ArduPilot. We use C to denote Copter, P for Plane, and R for Rover.

Index RV
Type Inputs Description Impact

Type Reproducibility Status

1 C AHRS_EKF_TYPE Assigning special values (e.g., 0 or 11) to this parameter results in the copter crashing to the ground. Safety Yes Pending
2 C SERVO3_FUNCTION Setting this parameter to special values (e.g., 141) leads to thrust loss and the copter crashes. Safety Yes Pending

3 C MOT_BAT_CURR_MAX,
MOT_PWM_MIN

Setting either parameter individually does not induce issues; however, concurrently assigning both parameters to small values
results in complete loss of thrust and a crash. Safety Yes Yes

4 C FLTMODE_CH Assigning a special value (e.g., 8) to this parameter leads to thrust loss and a subsequent crash. Safety Yes Pending
5 C AHRS_EKF_TYPE, AHRS_TRIM_X Assigning these two parameters to 2 and the minimum legal value (-0.1745), respectively, causes the copter to crash to the ground. Safety Yes Pending
6 C SIM_GPS1_LAG_MS Setting to a large value leads to unstable flight attitude,leading to a crash after a short period. Usability No No
7 C SIM_TIME_JITTER,MAV_CMD_DO_SET_MODE Causes the copter to crash to the ground. Safety No No

8 C MOT_BAT_VOLT_MAX,
MOT_PWM_MIN

Setting either parameter independently does not cause adverse effects; however, assigning both parameters simultaneously results
in thrust loss and a crash. Safety Yes Yes

9 C FS_THR_VALUE Setting to the maximum legal value (1100) prevents the safety mechanism from triggering, causes the copter to crash. Safety Yes Pending
10 C SIM_RATE_HZ Assigning values within a specific range (e.g., 85) causes the copter to flip unstably and fall to the ground. Usability No No
11 C MAV_CMD_NAV_LOITER_UNLIM Normal use of this command unexpectedly changes the copter’s flight mode, causing it to hit the ground. Safety Yes Yes

12 C Multiple MOT_SPIN_MIN During waypoint navigation, setting MOT_SPIN_MIN to 0.6 causes the copter to climb after reaching the waypoint. Restoring it
to the nominal 0.15 corrects the altitude. Setting it to 0.6 again results in a brief climb followed by a stall and crash. Safety Yes Yes

13 P SIM_SERVO_SPEED Inadequate validation of parameter ranges allows a value of 100, which results in the plane crashing. Usability No No

14 P TECS_PITCH_MIN,
PTCH_RATE_D_FF

When the mission waypoint altitude is set to 30 meters, assigning large values to these parameters causes the plane to first climb
to approximately 50 meters, then rapidly descend and crash. Safety Yes Pending

15 P RCMAP_PITCH Assigning special values (e.g., 10 or 16) causes the plane to gradually lose altitude and ultimately crash. Safety Yes Pending

16 P AIRSPEED_MIN
If the plane cannot reach the target speed under current parameter settings, it lowers its pitch and altitude to accelerate, which

may lead to gradual descent and eventual crash. Safety Yes Pending

17 P ARSPD_OFFSET No proper range checking; large values cause the plane to crash to the ground. Safety Yes Pending
18 P TECS_SPD_OMEGA Large values cause linear speed reduction and eventual crash. Safety Yes Pending
19 P SIM_SERVO_DELAY Small values cause the plane to flip in flight and rapidly crash. Usability No No
20 P PTCH2SRV_RMAX_UP Assigning small values causes the plane to crash. Safety Yes Pending
21 P ICE_ENABLE Out-of-range values incorrectly cause the plane to crash to the ground. Safety Yes Pending
22 P TECS_TIME_CONST Assigning large values leads to deceleration and eventual crash. Safety Yes Pending

23 P PTCH2SRV_RLL
Assigning large values causes the plane to overshoot the prescribed waypoint altitude and oscillate at high altitudes; if the

waypoint altitude is below 20 meters, the plane crashes. Safety Yes Pending

24 P AIRSPEED_STALL Setting to large values causes the plane to crash to the ground. Safety Yes Pending
25 C&P SIM_CAN_SRV_MSK Assigning special values (e.g., 10 or 30) causes the plane to lose power and crash. Usability No Pending
26 C&P BARO_ALT_OFFSET Assigning large values results in the plane descending during flight and crashing. Safety Yes Pending

27 C MOT_PWM_MIN
When set to the maximum value, the copter rapidly ascends and deviates from waypoints. After some distance, it erroneously

marks waypoints as reached, eventually recording all waypoints as completed despite not having actually reached them. Safety Yes Yes

28 C MOT_SPIN_MIN Same as above. Safety Yes Yes
29 C SIM_GPS1_LAG_MS Lack of proper value constraints allows large values to cause the copter to deviate from the planned flight path. Usability No No
30 C ANGLE_MAX, SIM_WIND_SPD With a small ANGLE_MAX (e.g., 1600) and high wind speed, the copter cannot complete turns due to tilt angle limitations. Safety Yes Yes
31 C SIM_WIND_TURB Values above 10 cause attitude oscillation and speed fluctuations, leading to flight path deviation. Usability No No
32 C AHRS_EKF_TYPE, AHRS_TRIM_X Changing both parameters simultaneously causes the copter to deviate from its planned route and eventually crash. Safety Yes Pending
33 P RCMAP_ROLL Assigning a special value (e.g., 6) to this parameter causes the plane to abort the mission and immediately enter a loitering state. Safety Yes Pending
34 P SIM_SERVO_SPEED Assigning a low value to this parameter results in the plane lacking a fixed trajectory and deviating from the planned route. Usability No No

35 R ATC_SPEED_FF
Assigning the maximum value to this parameter causes the rover to deviate from the planned route and, after a period, incorrectly

report waypoint completion even when distant from the waypoint (Similar to No.27). Safety Yes Yes

36 R SIM_CAN_SRV_MSK Setting the third bit to 1 (e.g., 0100 or 1110) causes the rover to rapidly move in the direction opposite to the intended route. Usability No Pending

37 R BATT_ARM_MAH,
SIM_TIME_JITTER

When both parameters are assigned large values, the rover fails to recognize arrival at the target waypoint, instead lingering
nearby. Usability No No

38 R ATC_STR_RAT_FF Assigning large values stalls the rover near the target, ending the navigation task. Safety Yes Pending
39 R FRAME_CLASS Assigning large values stalls the rover near the target, ending the navigation task. Safety Yes Pending

40 R FENCE_RADIUS, FENCE_ENABLE
When these parameters are assigned after the rover has moved, it detects a fence violation but fails to trigger RTL, causing the

vehicle to freeze instead of returning to the home position. Safety Yes Pending

41 R ATC_SPEED_D_FF
Assigning large values causes the rover to slow to zero speed near a waypoint, then quickly reverse course, repeatedly

approaching and departing the waypoint in a loop. Safety Yes Pending

42 C SIM_BATT_VOLTAGE Assigning large values to this parameter results in a floating-point exception and subsequent software crash. Usability No No

43 C SIM_TIME_JITTER,
SIM_RATE_HZ

Setting SIM_TIME_JITTER to a large value with a low SIM_RATE_HZ causes a software crash after approximately two
seconds of delay. Usability No No

44 C MAV_CMD_NAV_LOITER_TO_ALT Excessive x/y/z values cause overflow and crash the flight control software. Security Yes Yes
45 P SIM_ACC_FILE_RW When set to the special value 3, a delay of a few seconds results in “EOF on TCP stack”, after which SITL becomes unresponsive. Usability No Pending
46 R AHRS_EKF_TYPE Assigning the special value 2 triggers a floating-point exception, causing a rover software crash. Security Yes Pending
47 R INS_LOG_BAT_LGCT Assigning the special value 0 triggers a floating-point exception, resulting in a rover software crash. Security Yes Pending
48 R SIM_WIND_T_ALT Assigning the special value 0 triggers a floating-point exception, resulting in a rover software crash. Usability No No
49 R SIM_MAG_ALY_HGT Assigning the special value 0 triggers a floating-point exception, resulting in a rover software crash. Usability No No

50 R SIM_CAN_SRV_MSK
Assigning special values 7 or 21 causes the rover to spin erratically, followed by a software crash due to floating-point overflow

after one to two seconds. Usability No No

51 C&P SIM_RATE_HZ Setting this value too low (0–22) triggers a floating-point exception and results in a software crash. Usability No No
52 C&P GPS2_TYPE Assigning the special value 11 results in a segmentation fault and software crash. Security Yes Pending
53 C&P SIM_WIND_TURB Assigning a large value to this parameter results in a floating-point exception and subsequent software crash. Usability No No
54 C&P TERRAIN_SPACING Setting this parameter to a value less than 1 (sub-meter accuracy) leads to floating-point overflow and software crash. Security Yes Yes
55-
57 C&P SIM_IMU_POS_X/SIM_IMU_POS_Y/

SIM_IMU_POS_Z
Assigning large values to this parameter results in a floating-point exception and subsequent software crash. Usability No No

58-
62 C&P&R

INS_GYROFFS_X/INS_GYROFFS_Y/
INS_GYR2OFFS_X/INS_GYR2OFFS_Y/

INS_GYR2OFFS_Z
Assigning large values to this parameter results in a floating-point exception and subsequent software crash. Security Yes No

63 C&P&R SIM_DRIFT_SPEED Assigning large values to this parameter results in a floating-point exception and subsequent software crash. Usability No No

64-
69 C&P&R

SIM_ACC1_BIAS_X/SIM_ACC1_BIAS_Y/
SIM_ACC1_BIAS_Z/SIM_ACC2_BIAS_X/
SIM_ACC2_BIAS_Y/SIM_ACC2_BIAS_Z

Assigning large values to this parameter results in a floating-point exception and subsequent software crash. Usability No No

70-
75 C&P&R

SIM_GYR1_BIAS_X/SIM_GYR1_BIAS_Y/
SIM_GYR1_BIAS_Z/SIM_GYR2_BIAS_X/
SIM_GYR2_BIAS_Y/SIM_GYR2_BIAS_Z

Assigning large values to this parameter results in a floating-point exception and subsequent software crash. Usability No No

76,77 C&P&R SIM_GPS1_GLTCH_X/SIM_GPS1_GLTCH_Y Assigning large values to this parameter results in a floating-point exception and subsequent software crash. Usability No No
78,79 C&P&R SIM_GPS1_HZ/ SIM_GPS2_HZ Assigning the special value 0 triggers a floating-point exception and results in a software crash. Usability No No

80 C&P&R SIM_PLD_ENABLE Assigning the special value 1 triggers a “PANIC” event, rendering the flight control software unresponsive. Usability No Yes
81 C&P&R SIM_SONAR_SCALE Assigning the special value 0 triggers a floating-point exception and results in a software crash. Usability No No
82 C&P&R SERIAL_PASS2 Assigning special values 0 or 3 causes the software to become unresponsive and the UAV to display a “no link” message. Security Yes Pending
83 C&P&R SIM_GYR_FILE_RW Assigning the special value 1 or 3 triggers a “PANIC” event, resulting in unresponsive flight control software. Usability No Yes
84 C&P&R MAV_CMD_CAN_FORWARD Setting a large first value (e.g., [498, 0, 0, 0, 0, 0, 0]) triggers a segmentation fault and crashes the software. Security Yes Yes
85 C&P&R MAV_CMD_DO_SET_HOME Supplying excessively large values in the x/y/z data fields (e.g., [x, x, x, x, 399, 300, 699]) causes overflow. Security Yes Yes
86 C&P&R MAV_CMD_DO_SET_ROI_LOCATION Supplying excessively large values for x/y/z position data leads to overflow and subsequently causes software crashes. Security Yes Yes
87 C&P&R MAV_CMD_EXTERNAL_POSITION_ESTIMATE Supplying excessively large values for x/y/z position data leads to overflow and software crashes. Security Yes Yes
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APPENDIX A
ARTIFACT APPENDIX

ADGFuzz is a fuzzing framework for robotic vehicle (RV)
flight control software, designed to detect three categories
of bugs: software crashes, crashes to the ground, and route
deviations. Our experiments were conducted on three types
of RVs supported by ArduPilot: quadcopter (Copter), fixed-
wing aircraft (Plane), and ground rover (Rover). This appendix
provides detailed instructions on how to obtain, install, run,
and verify the results of ADGFuzz.

A. Description & Requirements

1) How to access: The source code of ADGFuzz is avail-
able in a GitHub repository2, which enables building the
framework directly from source. Additionally, a pre-configured
Ubuntu virtual machine (VM)3 is provided to facilitate quick
and reliable artifact evaluation. The artifact, including all
necessary dependencies, datasets, and scripts, is packaged in
the VM.
• VM Credentials:

Username: adgfuzz, Password: 1
2) Hardware dependencies: There are no special hardware

requirements, a typical commodity computer should be suffi-
cient to run ADGFuzz and reproduce its results.

3) Software dependencies: A Linux operating system is
required. Our artifact has been tested on Ubuntu 20.04. The
Python version used is 3.8.10, and all external dependencies
are listed in the requirements.txt file.

4) Benchmarks: None.

B. Artifact Installation & Configuration

Recommended: Use the provided Ubuntu VM.
1) Import the VM, then start it and log in with the above

credentials.
2) All required software and dependencies are pre-installed;

you may proceed directly to the experiment workflow.
Manual installation (optional): For manual installation,

please refer to the GitHub repository2, where detailed instruc-
tions are provided.

C. Experiment Workflow

The workflow of ADGFuzz proceeds as follows:
1) Static Analysis: The system analyzes the RV source

code to extract all assignment statements, building As-
signment Dependency Graphs (ADGs). Each ADG is
converted to a set of input terms, which are then mapped
(via synonym and physical coupling tables) to Matched
Input Subsets (MISs) accepted by the target RV control
software.

2) Input Prioritization: The entropy of each MIS is
calculated and used to guide probabilistic selection for
testing.

2https://github.com/wyunc/ADGFuzz.git
3https://doi.org/10.5281/zenodo.16956667

3) Fuzzing Phase: For each fuzzing iteration, a fresh RV
simulation instance (ArduPilot or PX4) is launched. The
selected MIS is mutated to generate test cases, and three
bug oracle threads monitor for runtime errors: software
crash (e.g., arithmetic exception), vehicle crash (hits the
ground), and route deviation (strays from planned path).

4) Post-Processing: All bug-triggering test cases are
recorded for post-processing to identify and minimize
root causes. Results are automatically deduplicated.

Quick-start (“kick-the-tires”): A minimal test case is
provided for rapid validation.

Full experiment: Comprehensive testing is conducted using
static analysis outputs for Copter, Plane, and Rover, with
fuzzing running for up to 24 hours per configuration.

D. Major Claims

• (C1): ADGFuzz generates test cases based on the ADG
constructed during the static analysis phase and fuzzes
ArduPilot (A-E1).

• (C2): ADGFuzz is capable of discovering new bugs
across three types of RVs (refer to Table II and Figure
5), as demonstrated by the experiments in A-E2.

E. Evaluation

1) Experiment (E1): [Quick Validation] [2 human-minutes,
5 compute-minutes]: Simplified instructions for the “Kick-the-
Tires” stage.

[Preparation] Start the virtual machine, navigate to
the work/ADGFuzz directory, and execute source
env_set.sh to initialize the environment.

[Execution]
python adgfuzz.py --initfile

paths/testcopter/quicktest/ --rvtype
copter --time 300 --out_path
paths/quickresult/

[Results] This triggers a short fuzzing session using a
minimal configuration. It repeatedly triggers a bug that
causes a software crash. The resulting logs are stored
inpaths/quickresult/.

2) Experiment (E2): [Full Fuzzing Evaluation] [2 human-
minutes setup, 24 compute-hours]: Using ADGFuzz to test
ArduPilot’s Copter module. Instructions for testing other RV
types (Plane, Rover) are provided in the README.md23.

[Preparation] After launching the virtual machine, navigate
to the work/ADGFuzz directory.

[Execution] Open a terminal in the current directory and run
fuzz.sh. The system automatically cycles through MISs and
logs all detected bugs.

[Results] This script first performs static analysis (approx-
imately one minute), then starts the fuzzing process. After
some time, you can inspect the discovered bug logs under the
outfile/copter/ directory. At the end of each campaign,
results are printed to the terminal and stored in log files and
bug input files under outfile/. Log summaries report the
number and type of bugs (crash, deviation, instability).
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https://github.com/wyunc/ADGFuzz.git
https://doi.org/10.5281/zenodo.16956667
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