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Abstract—Speech synthesis technologies, driven by advances
in deep learning, have achieved remarkable realism, enabling
diverse applications across various domains. However, these
technologies can also be exploited to generate fake speech,
introducing significant risks. While existing fake speech detection
methods have shown effectiveness in controlled settings, they
often struggle to generalize to unseen scenarios, including new
synthesis models, languages, and recording conditions. Moreover,
many existing approaches rely on specific assumptions and lack
comprehensive insights into the common artifacts inherent in fake
speech. In this paper, we rethink the task of fake speech detection
by proposing a new perspective focused on analyzing the spec-
trogram magnitude. Through extensive analysis, we uncover that
synthetic speech consistently exhibits artifacts in the magnitude
representation of the spectrogram, such as reduced texture detail
and inconsistencies across magnitude ranges. Leveraging these
insights, we introduce a novel assumption-free and generalized
fake speech detection framework. The framework partitions
spectrograms into layered representations based on magnitude
and detects artifacts across both spatial and discrete cosine
transform (DCT) domains using 2D and 3D representations. This
design enables the framework to effectively capture fine-grained
artifacts and synthesis inconsistencies inherent in fake speech.
Extensive experiments demonstrate that the proposed framework
achieves state-of-the-art performance on several widely used
public audio deepfake datasets. Furthermore, evaluations in real-
world scenarios involving black-box Web voice-cloning APIs
highlight the framework’s robustness and practical applicability,
consistently outperforming baseline methods.

I. INTRODUCTION

Speech synthesis has witnessed significant advancements
in recent years, driven by breakthroughs in deep learning
and neural network architectures. Modern speech synthesis
technologies can generate highly realistic audio that mimics
the voice of a target speaker with minimal data requirements.
These systems leverage advanced techniques such as neural
vocoders [1], attention mechanisms [2l], and generative ad-
versarial networks (GANs) [3] to produce synthetic speech
with natural intonation, rhythm, and prosody. Applications of
speech synthesis span a wide range of domains, including
audiobooks, personalized learning, and entertainment.
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However, the rapid evolution of speech synthesis technology
has also introduced significant risks. Attackers can exploit
these tools to create fake speech or deepfake audio, posing
threats in the form of misinformation, identity theft, and
fraud. For instance, in August 2019, criminals used Al-based
software to impersonate the voice of a UK. energy firm’s
CEO, successfully defrauding over $243,000 [4]. Similarly, in
October 2021, fraudsters cloned a company director’s voice to
steal $35 million from a bank [5]. Such incidents demonstrate
the growing threat posed by fake speech, which can undermine
trust in voice authentication systems, compromise security, and
cause significant financial losses.

To address the concerns caused by fake speech, researchers
have developed a variety of detection methods. Most existing
approaches focus on optimizing combinations of acoustic
features and neural architectures [6]], [7]. Additionally, some
methods rely on specific assumptions [8], [9], such as the
presence of liveness cues (e.g., heartbeat, breathing patterns, or
microphone artifacts), or require auxiliary meta-labels during
training [10], [11]], such as the category of synthesis systems or
vocoders, to trace the unique fingerprint of specific synthesis
tools. While many of these methods achieve satisfactory de-
tection accuracy in intra-dataset settings, they often generalize
poorly to unseen speech synthesis systems, languages, or
recording environments. In such scenarios, their performance
can degrade to random guessing or even below random guess-
ing [12]. Although these limitations have been recognized,
and some recent studies have attempted to address detec-
tion robustness through multi-task learning [13], [14], speech
augmentation [[15], [14], or improved sample balancing [15]],
many of these approaches still depend on vocoder-specific
information. This reliance on distinguishing different types of
fake speech in feature space limits their effectiveness in truly
unseen settings. Furthermore, none of these studies systemati-
cally investigate the common, explainable, and characterizable
artifacts of fake speech or provide clear explanations for why,
how, and where synthetic speech deviates from natural speech.
This lack of a deeper understanding of synthesis artifacts not
only undermines trust in existing detection methods but also
restricts the potential to refine models for better robustness.

The threat posed by fake speech, coupled with the limita-
tions of existing detection methods, raises an urgent question:
Given the diversity and complexity of fake speech data, is
there a new perspective that can guide the development of a



more effective detection method? An ideal solution should be
assumption-free and grounded in insights derived from com-
mon and explainable artifacts of fake speech. It should not only
achieve high detection accuracy across diverse settings but
also demonstrate robustness to unseen synthesis techniques,
speakers, languages, and recording environments.

In this paper, we rethink the task of fake speech detection
and propose a new perspective for developing a more effective
and robust detection approach. Specifically, we analyze and
address three fundamental questions essential to advancing
fake speech detection: (1) How are artifacts in fake speech
generated? (2) How do these artifacts manifest in fake speech?
and (3) Do these artifacts share generalizable characteristics?
These questions are closely tied to the generative origins
of artifacts, a dimension that has not been systematically
discussed or explored in prior work. Through comprehensive
analysis and case study experiments, we find that while fake
speech can exhibit various types of artifacts, it consistently
displays more pronounced issues when analyzed through the
magnitude representation of the spectrogram, a perspective
that has been largely overlooked in existing studies. A spec-
trogram represents the time-frequency content of an audio
signal, where the magnitude encodes the intensity or energy at
specific time-frequency points. Our investigation reveals that
synthetic speech often lacks texture details and energy, exhibits
reduced variance in energy distribution, and sometimes shows
repetitive patterns in smaller magnitude ranges. Furthermore,
synthetic speech frequently demonstrates inconsistencies in
synthesis quality across different magnitude ranges. The arti-
facts observed in the magnitude representation of the spectro-
gram are common and can be effectively identified in both the
spatial domain (time-frequency representation) and the discrete
cosine transform (DCT-frequency) domain.

Building on the above insights, we propose a novel
assumption-free and generalized fake speech detection frame-
work. The core idea of the proposed framework is to partition
the spectrogram into layered representations based on magni-
tude and detect artifacts in both the spatial and DCT domains.
Specifically, the spectrogram is divided into a sequence of 2D
sub-spectrograms, each corresponding to a specific magnitude
range, and a 2D DCT spectrum is generated for each sub-
spectrogram. To capture dynamic variations across magnitude
ranges, these sequences are further organized into video-like
3D representations, where each “video frame” corresponds
to a sub-spectrogram or its DCT spectrum. The framework
employs ResNetl8 [16] for analyzing 2D inputs and TimeS-
former [17] for processing 3D representations, with their
outputs combined through a multilayer perceptron (MLP) to
produce the final prediction. This multi-branch approach en-
ables precise detection of fine-grained artifacts, comprehensive
analysis of magnitude-based patterns, and robust identification
of synthesis inconsistencies.

The performance of the proposed framework is evaluated on
several widely used public audio deepfake datasets. The results
demonstrate that it maintains excellent performance in intra-
dataset evaluations while exhibiting strong generalizability to
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Fig. 1: General pipelines of voice conversion (VC) and text-
to-speech (TTS) methods.

unseen speech synthesis models, speakers, and languages.
Additionally, the framework is tested in real-world scenarios
where fake speech is generated using popular black-box Web
voice-cloning APIs. The results show that the framework
consistently outperforms baseline methods, highlighting its
robustness and practical applicability.

II. BACKGROUND AND RELATED WORK
A. Speech Synthesis Attacks

Speech synthesis attacks aim to replicate a target speaker’s
voice identity using stolen voice samples to generate synthetic
speech with the desired voice characteristics and content,
which is also known as unauthorized speech synthesis. The
history of synthetic speech generation dates back to the
1930s [18]], and since then, numerous statistical methods
for speech synthesis have been proposed. Recently, with the
rapid advancement of Deep Neural Networks (DNNs), DNN-
based speech synthesis has garnered significant attention [[19]],
[20] due to its remarkable synthesis quality and accessibility.
Figure [I)illustrates the general pipelines of two prevalent types
of speech synthesis methods: voice conversion (VC) and text-
to-speech (TTS).

Voice Conversion (VC). VC transforms speech from a
source speaker to mimic the vocal characteristics of a target
speaker while preserving linguistic content. Most VC systems
follow an encoder-decoder framework [21]], where a content
encoder extracts linguistic features, and a speaker encoder
captures the target voice identity. The decoder then synthesizes
speech that sounds like the target speaker but retains the
original message.

Text-to-Speech (TTS). Similar to VC, TTS extracts linguis-
tic features directly from given texts and employs a similar
synthesis framework. Compared to VC, TTS is often more
convenient and stealthier for attackers, as some VC requires
voice similarity between source and target speakers [22]] and
may leak the source speaker’s identity [23].

Spectrogram Transformation and Vocoder. In speech
synthesis pipelines, the spectrogram plays a crucial role. It is
a widely used representation of audio for various downstream
tasks [24], [25], [26], including speech synthesis, speech
translation, or fake speech detection. To compute a spectro-
gram, the Short-Time Fourier Transform (STFT) is commonly
used to divide the raw speech signal into overlapping frames
using a window function (e.g., Hamming or Hann). Each



frame is then transformed into the frequency domain using
the Discrete Fourier Transform (DFT), producing a complex-
valued representation that contains both magnitude and phase
information. However, since phase information represents the
angular component of the STFT complex output, which is
absent in synthetic speech, a vocoder is required to recon-
struct the waveform based on a magnitude-only spectrogram
(the absolute values of STFT results) with estimated phase
information. For simplicity, we refer to the spectrogram as
the magnitude-only spectrogram in this paper. Among these
vocoders, Griffin-Lim [27] is a classic iterative algorithm
that estimates phase information by iteratively minimizing
the reconstruction error between the original spectrogram and
the spectrogram of the reconstructed waveform. In recent
years, many DNN-based vocoders, such as HiFi-GAN [28]],
MelGAN [29], WaveGlow [30], and WaveRNN [31], have
been trained on ground-truth waveform-spectrogram pairs to
directly generate waveforms from spectrograms without an
iterative process.

B. Fake Speech Detection

Within the broader deepfake defense family [32]], [33], [34],
[35], [36l, [37], [38], fake speech detection serves as the
primary defense mechanism against speech synthesis attacks.
Typically, detection algorithms extract acoustic features from
audio files, such as spectrograms with varying frequency reso-
Iutions and derived cepstral features. These extracted features
are then passed to a trained classifier, which may be either
DNN-based or statistical-based, to generate the final prediction
result. In addition, some studies have explored using raw
waveforms [39]], [12] or speech embeddings extracted from
pretrained large audio representation models [40], [41] as
inputs, also showing good performance in certain settings.

To enhance fake speech detection, some studies introduce
additional explanatory features, such as liveness cues [8], [9]
(e.g., heartbeat, breathing patterns, pop noise, or unnatural
pauses), as supporting evidence for predictions. Other recent
works extend the binary classification task to a multi-task
learning framework [[10], [14], incorporating objectives such as
synthesis model or vocoder classification alongside fake/real
classification. These approaches aim to trace the unique fin-
gerprints left by different speech synthesis systems. Among
these studies, most focus on optimizing the combination of
acoustic features and neural architectures [6], [7]. Others target
improvements in training robustness through techniques such
as speech augmentation (e.g., adjusting speech speed, pitch,
or adding simulated noise) [15]], [[14] and label-balancing [15].
These advancements have significantly improved detection ac-
curacy in recent years. However, while these methods achieve
promising results in intra-dataset evaluations, they still exhibit
some key limitations, which we summarize below.

Strong Assumptions and Limited Generalization. Exist-
ing detection methods often rely on strong assumptions [42],
[43]. For example, some methods detect liveness traces (e.g.,
heartbeat, breath sounds) or microphone artifacts, typically
requiring specific recording conditions (such as distance to

the microphone [42]). Others detect artifacts introduced by
spectrogram synthesizers or vocoders [11]], [44]]. For example,
some recent works extend the binary classification task to
a multi-task learning framework [10], aiming to predict the
sample authenticity while tracing its source. However, these
approaches have two key limitations. First, reliance on syn-
thesizer labels constrains the detection model’s architecture, as
the vocoder mappings and categories are fixed during training.
As a result, the model struggles to adapt to rapidly evolving
synthesis techniques and often overfits to the learned vocoder
categories. Second, synthesizer labels are often unavailable,
as fake speech commonly circulates online without generation
details, and many samples originate from black-box APIs that
conceal their synthesis methods to protect intellectual property.

Beyond these limitations, many existing methods exhibit
poor generalization performance. While domain shift is a
common challenge in machine learning, it is especially severe
in fake audio detection. Detection models are highly sensitive
to factors such as speaker identity, language, dataset character-
istics, input length, synthesis models [45]], [10], [12], recording
conditions [46], and audio properties like bitrate [47]]. For
instance, a classifier trained on English speech sees a sharp
performance drop when tested on Japanese data [45], even
with the same synthesis technique. Similarly, models trained
on specific vocoders show high error rates on unseen vocoders
or speakers. These issues highlight that detectors often overfit
to specific training data or settings, undermining their reliabil-
ity in real-world applications.

Recent efforts have attempted to improve generalization
by applying advanced training strategies such as contrastive
learning and speech augmentation to enhance model robust-
ness across varying noise levels, speaking rates, and vocoder
transformations. However, these methods still face notable
limitations. For example, [14] relies on vocoder labels via
a synthesizer prediction stream, which fails to capture arti-
facts shared across diverse fake speech types. Similarly, [[15]]
addresses generalization by expanding the training corpus,
converting real samples into multiple re-synthesized versions
using specific vocoders (e.g., HiFi-GAN and WaveGlow) and
enforcing balanced mini-batch distributions. Although such
approaches outperform many baselines, they still depend on
vocoder-specific assumptions and external augmentation tech-
niques, limiting their effectiveness on unseen distributions.

Lack of Artifact Explanation. While many studies fo-
cus on fake speech detection, few explore why fake speech
contains artifacts or provide insights into how these artifacts
manifest. Some research introduces explainable features, such
as abnormal pauses [48]] or variations in tone and emotion [49]],
but these low-level artifacts are more common in early-
generation synthesis models. Modern systems have largely
addressed these issues, producing speech that sounds increas-
ingly natural and human-like. Other works focus on optimiz-
ing learning pipelines without adopting a data-driven design
perspective. Given the abstract and complex nature of audio
signals, detection remains largely opaque. For example, some
studies [11], [14], [41] analyze voice embeddings in high-



dimensional feature spaces to identify synthesis-related pat-
terns. However, such high-level features are typically model-
specific and lack fine-grained detail, resulting in explanations
that are often vague.

III. DETECTION CHALLENGES

This paper seeks to address the aforementioned limitations
by performing a comprehensive analysis of potential artifacts
in fake speech and proposing a generalized detection approach
that does not depend on specific assumptions or meta-labels
(e.g., vocoder type). However, several significant challenges
must be overcome.

Audio Signals are Complex. Unlike images or text, audio
signals encode rich semantic information across both time
and frequency domains, capturing speech content, speaker
identity, and recording conditions. These intertwined layers
make it challenging to extract reliable acoustic features for
fake speech detection. Additionally, due to harmonic effects,
speech energy can extend into high frequencies (e.g., up to
8000 Hz), despite the fundamental frequency typically ranging
from 90 to 255 Hz [50]. When combined with background
noise, these harmonics further increase signal complexity,
complicating the identification of artifacts.

Artifacts are Abstract Concepts. Artifacts (subtle signs of
unnaturalness) are inherently abstract and difficult to define
in speech. While they may appear as abnormal spectro-
gram textures (e.g., vocoder fingerprints) or irregular energy
patterns, such cues are highly dependent on the synthesis
model, audio sample, and recording conditions, making them
inconsistent and hard to generalize. Moreover, humans are
generally less sensitive to audio artifacts than visual ones. For
example, visual cues like lip-sync mismatches [51] or shadow
inconsistencies [52] are more intuitive and easier to detect. In
contrast, audio artifacts often lack perceptual salience, posing
greater challenges for identification and labeling.

Data Scarcity and Distribution Gap. Ensuring similar
distributions between training and test data remains a ma-
jor challenge in fake speech detection. Audio datasets are
inherently limited due to ethical concerns, restricting diversity
in language, content, speakers, and recording environments.
While sufficient for general audio tasks like speech recogni-
tion, existing datasets lack the scale and variability needed
for detecting fake speech. Moreover, domain shift is difficult
to overcome by simply increasing data volume, as synthesis
techniques evolve rapidly with new vocoders and generation
methods, causing trained detectors to lag behind. Although
data augmentation, such as adding noise or altering pitch, is
sometimes used to increase diversity, these methods risk intro-
ducing unnatural artifacts that may compromise authenticity,
especially in tasks where signal integrity is critical.

IV. FAKE SPEECH ANALYSIS

To address the aforementioned challenges and develop an
effective fake speech detection method, we begin by analyzing
fake speech through investigating the following key questions:

e Q1: Can current speech synthesis models generate per-
fect synthetic speech that is indistinguishable from real
speech? If not, what factors prevent perfection, and how
are artifacts introduced during the synthesis process?

e Q2: What artifacts make fake speech distinguishable,
where are they located, and how are they manifested?

e Q3: Do these artifacts share generalizable characteristics?

For Q1, our investigation shows that current speech syn-
thesis models are incapable of generating perfect synthetic
speech, meaning that artifacts in fake speech are nearly un-
avoidable. The primary reasons are outlined as follows.

First, artifacts inevitably arise during the vocoding process
due to the lack of accurate phase information. Reconstruct-
ing high-quality speech waveforms requires both magnitude
and phase components. However, as illustrated in Figure
vocoders typically receive only a magnitude spectrogram as
input, with no true phase information. In practice, the phase is
often approximated or estimated, introducing inherent errors
in the reconstruction. These errors are especially pronounced
in high-frequency regions (typically associated with smaller
magnitudes), which are more sensitive to phase inaccuracies
due to their shorter wavelengths [53]], as even minor phase
shifts can result in significant mismatches in the time domain.

Second, “naturalness” is not explicitly learnable during the
speech synthesis training process. Most training pipelines for
speech synthesis do not directly optimize for perceptual natu-
ralness. Instead, both spectrogram synthesis and vocoder train-
ing typically rely on sample-level objectives, aiming to min-
imize differences between synthetic and ground truth speech
using distance-based losses, such as L1 or L2 norms between
spectrograms [28]], [54]. For example, HiFi-GAN, a GAN-
based vocoder, includes a Mel-spectrogram reconstruction loss
represented as Lyl (G) = E, o) [||¢(2) — #(G(s))][1], where
x is the ground truth waveform, ¢(-) is the waveform-to-
spectrogram transformation function, and G(s) is the gener-
ated waveform given input state s. This distance-based loss
is inherently biased by spectrogram magnitude, as compo-
nents with larger magnitudes contribute more to the overall
loss. From a machine learning perspective, models naturally
prioritize focusing on components that have a greater impact
on the loss, while neglecting subtle variations. As a result,
these underrepresented details may be overlooked, leading
to synthesis inconsistencies or speech that overfits specific
optimization objectives while disregarding the physical and
perceptual principles underlying natural speech.

Third, dimensionality increase during spectrogram synthe-
sis often introduces artifacts. This process is analogous to
upsampling in image processing, which can introduce arti-
facts [53]. Simple methods like nearest-neighbor interpolation
pad new values based on neighboring pixels, leading to
visible distortions or excessive smoothing. Similarly, GAN-
based architectures have been shown to introduce artifacts in
both pixel and frequency domains during upsampling [55].
For instance, AutoVC [56] performs a transformation G :
R2%256 5 R8OXT  mapping low-dimensional embeddings
into an 80 x T" Mel-spectrogram. This significant dimensional
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Fig. 2: Distribution of time-frequency point counts across different magnitude ranges.

expansion requires the model to generate details absent from
the original representation, often resulting in unnatural energy
distributions, spectral inconsistencies, or audible distortions.

The above insights motivate us to explore the potential of
detecting fake speech by analyzing spectrogram magnitude,
a novel perspective that has been largely overlooked in
existing fake speech detection research. Detecting fake speech
from the perspective of spectrogram magnitude offers several
additional advantages. First, magnitude can roughly separate
spoken content (typically encoded in human-perceptible fre-
quency ranges) from noise and synthesis-related artifacts. This
enables more content-independent detection by focusing on
anomalies rather than linguistic variations. Second, magnitude
can be analyzed independently of the time axis, supporting
more time-independent methods that generalize better across
speech samples of varying lengths and temporal patterns.
Third, partitioning the spectrogram by magnitude ranges re-
tains the original resolution (¥ xT', where F' and T' denote the
number of frequency and time frames, respectively), offering
a complete and consistent view of the data, rather than
isolating specific segments.

Next, we address the second and third questions (Q2 and
Q3) by analyzing the spectrogram magnitude. We begin by
computing basic statistics on the distribution of time-frequency
points across different magnitude ranges, measured in decibels
(dB), using multiple datasets. A time-frequency point refers to
a single magnitude value in the spectrogram matrix, repre-
senting the signal’s energy at a specific moment in time and
a particular frequency.

We conduct this analysis using the WaveFake [45] and
LibriSeVoc [10] datasets, both of which cover a range of
synthesis techniques (WaveFake includes seven vocoders, and
LibriSeVoc includes six) making them strong benchmarks for
artifact detection. These datasets ensure identical speakers and
content across real and fake samples, allowing fair statistical
comparison. To standardize the data, all audio is resampled to
16,000 Hz and normalized to 324 time frames (approximately
4 seconds) and 200 frequency frames, yielding spectrograms
with 64,800 time-frequency points. We then analyze the
magnitude distribution across these points by computing the
average number of points within different defined dB intervals
for each dataset. This approach provides an overview of how
magnitudes are distributed across the spectrogram.

Figure and Figure present the average counts of
time-frequency points within different magnitude ranges for
the WaveFake and LibriSeVoc datasets (—100 dB to 20 dB,

nearly the full magnitude range). The x-axis is divided into 50
bins, and each vertical bar represents the count of the time-
frequency points whose corresponding magnitude values are
within a specific magnitude range. As we can see, while real
and fake speech exhibit similar overall distributions across the
entire magnitude range, more pronounced differences emerge
within smaller magnitude ranges, as shown in the close-up
views in Figure |2b] and Figure [2d| (—100 dB to —60 dB). For
instance, the count of points can differ by more than twofold
between real and fake speech in these smaller ranges. Such
significant differences could easily be overlooked without
isolating and analyzing specific magnitude ranges.

In the WaveFake dataset, real speech consistently shows
higher counts across nearly all small magnitude ranges (Fig-
ure . In contrast, LibriSeVoc exhibits a mixed pattern
(Figure [2d): real speech has more points between —80 dB
and —60 dB, while fake speech dominates the —100 dB to
—80 dB range. Despite this variation, both datasets reveal clear
distinctions between real and fake speech in low-magnitude re-
gions. To investigate the cause of this interesting phenomenon
in LibriSeVoc, we carefully inspected the distribution of each
vocoder and found that WaveRNN largely drives the diver-
gence. Excluding WaveRNN, Figure 2¢| (LV = LibriSeVoc,
WRNN = WaveRNN) shows trends more consistent with
WaveFake, where real speech again dominates the small-
magnitude range. Figure 4k illustrates a WaveRNN-generated
spectrogram, revealing a high-frequency energy boost that
inflates point counts.

While the counts of time-frequency points provide basic
insights, they only offer a rough overview. This raises an
important follow-up question: what specific differences exist
between real and fake speech in the smaller magnitude ranges?
To explore this, we present visual examples and quantitative
results from multiple perspectives to highlight the differences
between real and fake speech in spectrogram magnitude.

a) Sample-Level Visualizations: We first visualize
a real-fake speech pair from the WaveFake dataset
(e.g., LJO00O1.wav), including full spectrograms and sub-
spectrograms for three magnitude ranges: small (—150 dB to
—65 dB), middle (—40 dB to —20 dB), and large (—10 dB
to 30 dB). The fake sample is generated by HiFi-GAN. As
shown in Figure [3 the fake sample lacks detail and energy
in the small-magnitude range, while the real sample exhibits
rich, irregular textures and clustered patterns. Differences
also exist in other ranges, but they are more pronounced in
the small-magnitude range. Figure {4| shows additional small-
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magnitude spectrograms from WaveFake and LibriSeVoc. We
can observe that real speech consistently shows more natural
and coherent patterns, while fake speech exhibits noticeable
artifacts. In WaveFake, fake samples typically lack texture
detail and energy. In LibriSeVoc, fake speech displays varied
anomalies, such as extremely sparse distributions (Example
(4)) and unnaturally uniform textures (Examples (k) and (1)),
where the energy distribution remains overly concentrated or
stable across the entire spectrogram. To broaden our anal-
ysis, we also visualize real and fake speech samples from
two additional widely studied datasets: In-the-Wild [12] and
ASVSpoof2019 [57], in Figure [T2] of the Appendix. The
results consistently show that fake speech exhibits distinct
characteristics from real speech in the small-magnitude range.
To further assess whether the observed spectrogram anoma-
lies are generalizable artifacts, we visualize small-magnitude
spectrograms from 7 vocoders using the same input and
analyze count statistics from 13 vocoders and 5 black-box Web
voice-cloning APIs, spanning nine years (2016-2025). The
results demonstrate that the lack of detail and energy in small-
magnitude ranges is consistently present across vocoders,
despite rapid model evolution. More discussion can be found
in Section [C] of the Appendix.
b) Spectrogram Texture and Frequency Analysis: We
treat the spectrogram as a one-channel image and apply the
Gray-Level Co-occurrence Matrix (GLCM) [58]], a widely

used statistical tool in image texture analysis, to quantify
spatial relationships between time-frequency points. GLCM
metrics such as contrast and correlation measure local pat-
tern variation and dependency: higher values indicate more
structured textures, while lower values suggest randomness.
On the WaveFake dataset, we compute these metrics for
real and fake speech in both small (below —65 dB) and
large (—10 dB to 30 dB) magnitude ranges. As shown in
Figure [5a, real and fake speech are clearly distinguishable in
small magnitudes, whereas in larger magnitudes (Figure [5b),
the distinction diminishes. In addition to texture analysis,
we examine which frequency bands tend to exhibit missing
time-frequency points in fake speech. Figures [5¢ and
present the average frequency-wise point counts under —60
dB and —50 dB, respectively. The results show that fake
speech consistently lacks more points in the medium-to-high
frequency range (approximately 5000-7000 Hz, around the
150th frequency frame), which typically encodes harmonic and
environmental details. This difference is more pronounced in
lower-magnitude regions and aligns well with findings in Q1.

In summary, our investigation reveals that fake speech
generally lacks detail and variation, as evidenced by its texture
patterns and energy distribution in smaller-magnitude ranges.
While some fake speech samples may exhibit increased energy
or clustered patterns, these often serve as additional indicators
of fabrication. Despite these observable differences in energy
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dB.

distribution and pattern details, the concept of “genuineness”
remains abstract and cannot be fully captured by these obser-
vations and statistics alone. Advanced methods are necessary
to effectively uncover hidden artifacts in individual samples,
such as energy variation, pattern irregularities, periodic texture
repetition, or padding effects, which frequently characterize
fake speech samples.

V. FAKE SPEECH DETECTION FRAMEWORK
A. Overview of the Proposed Framework

Based on the above analysis, we aim to detect fake speech
by focusing on three key aspects: spectrogram textures, spec-
trogram magnitude distribution, and speech synthesis quality
consistency across different magnitude ranges. The core idea
is to partition the spectrogram into layered representations
based on magnitude and detect artifacts in both the spatial
and DCT domains. The motivation for using the DCT do-
main stems from its proven success in image-based deepfake
detection [35)], where the fabrication of non-existent details
often leaves identifiable traces in the DCT domain. Applying
this technique to spectrograms provides a complementary
perspective for uncovering subtle synthesis artifacts.

Figure [6] presents an overview of our proposed detection
framework. The input speech waveform is first transformed
into a spectrogram using STFT. The spectrogram is then
partitioned into a layered sequence of 2D sub-spectrograms,
each representing a specific range of magnitudes. Corre-
spondingly, the 2D Discrete Cosine Transform (2D-DCT) is
applied to each sub-spectrogram to generate a sequence of
DCT spectra, resulting in a similar layered representation in
the DCT frequency domain. To better capture the dynamic
yet continuous variations as magnitude changes, we further
develop a novel 3D speech representation. This representation
treats the 2D sub-spectrogram sequence or the 2D DCT
spectrum sequence as a whole, forming a video-like 3D sub-
spectrogram or DCT spectrum stream. In this stream, each
“video frame” corresponds to a sub-spectrogram or its DCT
spectrum. Consequently, the framework produces four types
of input representations: two 2D inputs (the sub-spectrogram
and its DCT spectrum) and two 3D inputs (the stream of sub-
spectrograms and the stream of DCT spectra). For process-
ing the 2D inputs, we employ ResNetl8, a lightweight and
widely used convolutional neural network, as the backbone
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Fig. 6: Overview of the proposed framework.
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model. For the 3D inputs, we adopt TimeSformer, a 3D-input
classifier based on the Transformer architecture, which has
demonstrated outstanding performance in video understanding
tasks, such as classification and reasoning. The outputs from
these networks are concatenated and passed through a multi-
layer perceptron (MLP), which produces the final prediction
indicating whether the input speech is fake or real.

This design offers several key advantages. First, it enables
the detection of fine-grained artifacts by partitioning the spec-
trogram into sub-layers based on magnitude ranges. Second,
the design incorporates multiple perspectives, analyzing both
texture-level patterns and frequency component contributions
for a comprehensive evaluation. Third, the proposed frame-
work can identify artifacts not only within individual layers but
also across layers, capturing their interdependencies to uncover
potential synthesis inconsistencies.

B. Magnitude-Based Spectrogram Partitioning

As introduced in Section [[I-A] a spectrogram is a widely
adopted representation that illustrates how the frequency con-
tent of a signal evolves over time. By applying STFT and
dividing the speech signal into overlapping frames with a
window function, each frame is transformed into the frequency
domain using the Discrete Fourier Transform (DFT), resulting
in STFT(f,t) = YN " an]-win — tH] - e=327/"/N | where
z[n] is the discrete-time audio signal, w[-] is the window
function, ¢ is the frame index, H is the hop size, IV is the
number of DFT points, and f is the frequency bin index. In this
paper, we use X = [X;,|pxr to represent the spectrogram,



where Xy, = |STFT(f,t)| is the magnitude of a specific
time-frequency point in the spectrogram.

To enable a more detailed analysis of the spectrogram
magnitude, we partition the raw spectrogram X into sub-
spectrograms based on predefined magnitude thresholds. For

(TminmiJx) _ /
example, a sub-spectrogram X = [X} JFxr corre-
sponding to a specific magnitude range is derived based on

X ,ty
Xfp= { O,f’

where T, and Thax represent the lower and upper bounds of
the magnitude range for the sub-spectrogram, respectively. In
this paper, we transform the raw spectrogram into multiple
overlapping sub-spectrograms, where smaller magnitudes are
always included while larger magnitudes are progressively
added. Using this approach, the original spectrogram
X is partitioned into a sequence of sub-spectrograms
(x(om, xGom) xS x (e, where
sub sub ’ » “*sub ) » “*sub
To represents the lower bound of the magnitude, and
7:(1 < i < m) is the upper bound of the magnitude for
each sub-spectrogram. This magnitude-based partitioning
method divides the original full spectrogram into m layers,
forming a sequence of 2D sub-spectrograms. By providing
a multi-layered representation, this approach enables the
detector to analyze the data at varying levels of granularity
and isolate distinct layers of information embedded within the
spectrogram. The magnitude upper bounds can be determined
using various methods, such as absolute magnitude values
or thresholds that ensure equal increments in time-frequency
points (e.g., the first sub-spectrogram contains 5,000
time-frequency points, and the second contains 10,000
time-frequency points).

Additionally, this partitioning approach can produce a
video-like 3D representation when the 2D sub-spectrogram
sequence is viewed as a whole, with each “video frame”
corresponding to a sub-spectrogram that incorporates progres-
sively larger magnitude ranges. This resembles a spectrogram
“growing” from a detail-focused representation to a complete
representation, allowing the detection model to effectively
capture dynamic yet continuous changes in patterns across
magnitude layers. This approach can also highlight synthesis
quality inconsistencies or abnormal energy loss or concen-
tration within specific magnitude ranges, which deviate from
natural patterns.

if Tiin < Xf,t < Tmax; (1)

otherwise,

C. Detecting Artifacts in the DCT Domain

While the STFT spectrogram is a widely used and effective
audio feature, it primarily represents the physical frequency
components of a signal. However, for fake speech detection, it
is also crucial to analyze the “rhythm” of magnitude variations,
such as the smoothness, abruptness, or consistency of textures
in the spectrogram. Based on our analysis in Section fake
speech often lacks natural variation, appearing overly uniform
or missing the irregularities typically present in real speech.

Motivated by the observation that up-sampling processes
can introduce artifacts in frequency coefficient distributions,

we apply the Type-II 2D Discrete Cosine Transform (2D-
DCT) [59] to enhance artifact detection in the proposed
spectrogram representation. Certain distribution-level artifacts
may not be directly observable in the STFT spectrogram alone.
The 2D-DCT, unlike its 1D counterpart, captures subtle pat-
terns across both the time and frequency dimensions, such as
unnatural variances, periodic stripes, or uniform distributions.
This transformation allows the detection of nuanced artifacts
while preserving the original sample dimensions. Specifically,
we apply the 2D-DCT to each sub-spectrogram. The output
expresses a finite set of data points as a combination of cosine
functions oscillating at different frequencies.

Suppose the DCT-transformed representation of the spec-
trogram X € RFXT is denoted as the matrix D € R¥*T,
The 2D-DCT is given by a function D : RF*T — RF*T that

maps X = [Xy|pxr to its DCT frequency representation
D = [Dy; r,)rxT, Where
F-1T-1
Dieyre =wlkpywlke) 3 3 )
f=0 t=0

Xy cos [; <f+ ;) k'f:l cos [; (t+ ;) kt}

forVky =0,1,2,...,F—1and Vk; = 0,1,2,...,T—1. Here,
w(ky) and w(k;) denote normalization factors. The resulting
matrix D contains coefficients that represent the contribution
of different frequency components along the frequency axis
and the time axis. Such 2D-DCT transformation can be applied
to any sub-spectrogram defined above, resulting in a sequence
of DCT spectra. Furthermore, by considering those DCT
spectra as whole, this approach also provides a video-like DCT
representation, which is similar to the proposed spectrogram-
based 3D representation in Section [V-B,

D. Detection Using Multi-Level Features and Weighted-
Scaling Training

To explore artifacts across both the spatial and DCT
domains as well as within different magnitude ranges, we
propose a multi-branch detection framework that leverages
diverse feature representations to enhance decision-making
and robustness.

Specifically, using the magnitude partition approach dis-
cussed in Section [V-B, the spectrogram of the input speech

g)le is transformed into a sequence of 2D sub-spectrograms

rom) xlrom) o x(om) o x(Tom )y here each

sub sub ) » “*sub ’ sub 4
sub spectrogram corresponds a speciﬁc magnitude range. By
treating this sequence as a whole, we derive a 3D repre-
sentation X, € REXT*m  Similarly, by applying the 2D-
DCT transformation D (defined in Section [V-C) to each
sub-spectrogram, we can derive a sequence of DCT spectra

(10,71) 3 (70,72) (70,74) (T0,7m) :
{Xsub det Xsub det 0 * Xsub det 7 Xsub det } and its corre-
sponding 3D representatlon X det RF XTxm

For the 2D inputs (X} ™) or X% dclt)) we employ

sub

ResNet18 [16] as the detection backbone. ResNetl8 is a
lightweight and widely used convolutional neural network



that features residual connections to mitigate gradient van-
ishing and degradation issues. Its architecture consists of
basic blocks incorporating 3x3 convolutional layers, batch
normalization, and ReLU activation functions. For the 3D
inputs (X, or XSC‘), we adopt TimeSformer [17] as the detec-
tion backbone. Originally developed for video understanding
tasks, TimeSformer excels at capturing temporal and spatial
interdependencies between video frames and demonstrates
strong reasoning capabilities. In our framework, each sub-
spectrogram or DCT spectrum is treated as a “video frame”,
with the key distinction being that a sub-spectrogram or DCT
spectrum is a mono-channel input rather than a 3-channel
RGB image. The TimeSformer architecture we use consists of
12 Transformer blocks, each equipped with 8 attention heads
and an embedding dimension of 768. Each sub-spectrogram
or DCT spectrum is divided into 16 x 16 patches, with
positional encodings applied as described in the original paper.
By employing a “divided space-time” (or “space-magnitude”
in our context) attention mechanism, the model first applies
attention on different magnitude ranges we partitioned before
and then spatial attention within each partitioned layer to
conduct reasoning over different layers while also maintaining
focus on individual sub-spectrograms or DCT spectrum.

To ensure each neural network specializes in distinct fea-
tures while maintaining compatibility with uniform input for-
mats, we adopt a two-step training process. First, we train the
four networks (ResNet18 for 2D inputs and TimeSformer for
3D inputs) independently on their respective representations.
Afterward, the trained models’ parameters are frozen, and
their outputs are concatenated and passed through a multilayer
perceptron (MLP) for fine-tuning with ground-truth labels.
This integration step combines predictions from all branches
to produce a comprehensive and robust detection result.

During training, to prevent overfitting and ensure diverse
feature learning, we introduce a shuffling mechanism. Sub-
spectrograms from multiple speech samples are randomly
shuffled to create a new training set:

K
k(70,7 k(7o,T
D, = Shuffle(|_J{X4>™ X500 @)
k=1
Xsfzgj‘m,ﬂ)’ o 7X§I$)To,7'm)}),
where XS]Z%T“’“) represents the ¢-th sub-spectrogram of the k-

th sample. Similarly, a shuffled set of DCT spectra, denoted
as Dg_qc, 18 also created.

For the 2D branches, we employ a weighted loss function
that assigns different weights to sub-spectrograms (or DCT
spectra). The primary objective is to encourage the network
to make accurate predictions even with limited information
(i.e., when the magnitude upper bound is smaller). This
strategy motivates the model to focus less on content-relevant
features (typically found in sub-spectrograms with magni-
tudes ranging from —10 dB to 30 dB, which predominantly
include the fundamental frequency components of speech)
and instead prioritize spectrogram details that often reside
in higher frequency and smaller magnitude ranges. Since

this work does not rely on any vocoder-specific informa-
tion, we adopt a weighted cross-entropy loss with binary
labels (real and fake). The loss is computed across all sub-
spectrograms (or DCT spectra) in a batch sampled from the
shuffled dataset D, (or D,_g4¢) and is defined as Lop =
— 5 Y ¢ lyilog(i) + (1— y;) log(1 = §)], where B is
the batch size, y; € {0,1} is the ground truth label for
the j-th sub-spectrogram (or DCT spectrum) in the batch.
y; = 1 denotes the sub-spectrogram (or DCT spectrum)
is real (derived from a real speech sample), and y; = 0
denotes it is fake. §; is the prediction for the j-th sub-
spectrogram (or DCT spectrum). ¢; € (0,1) is the weight
assigned to the j-th sub-spectrogram (or DCT spectrum),
which depends on the corresponding magnitude upper bound
7j. ¢; is calculated as: ¢; = I where Twax and
Tmin are the reference maximum and minimum magnitudes
of the dataset. This weighting mechanism ensures that sub-
spectrograms with smaller magnitude upper bounds (i.e., less
complete information) are assigned larger weights, forcing the
network to pay greater attention to subtle details that often
carry important artifacts.

For the 3D branches, where the sequence of sub-
spectrograms (or DCT spectra) is treated as a cohesive
whole, we use the standard cross-entropy loss for training
each TimeSformer. The loss function is defined as L3p =
i Zle CE(y;, y,). We also introduce a layer-dropping strat-
egy that randomly removes a subset of magnitude layers from a
speech sample during training, aiming to reduce layer overlap
and prevent the model from overfocusing on specific layers.
More details can be found in Section [A of the Appendix.

During the testing phase, the spectrogram of each test
speech sample is partitioned into m layers, and the correspond-
ing four types of input representations are derived as described
earlier. The outputs from the four branches processing these
representations are then concatenated and passed through a
MLP to generate the final prediction.

The framework integrates predictions from different sub-
spectrograms and branches to produce a robust detection re-
sult. By aggregating detection results across sub-spectrograms
representing varying magnitude ranges, the framework effec-
tively captures inconsistencies in synthesis quality, enhancing
its ability to distinguish fake from real speech.

VI. PERFORMANCE EVALUATION
A. Datasets

We first use the following four public audio deepfake
datasets to evaluate the performance.

WaveFake [45]. WaveFake is a self-synthesized fake
speech detection dataset. It leverages seven pre-trained neural
vocoders: MB-MelGAN, Parallel WaveGAN (PWG) [60],
Full-band MelGAN (FB-MelGAN), HiFi-GAN [28], Mel-
GAN [29], MelGAN-large (MelGAN-L), and WaveGlow [30].
It consists of two subsets: English (EN) and Japanese (JP).

LibriSeVoc [10]. LibriSeVoc is another self-synthesized
dataset that expands WaveFake by adding vocoders and more
speakers. Specifically, it utilizes WaveNet [1l], WaveRNN [31]],



WaveGrad [61], MelGAN, Parallel WaveGAN (PWG), and
DiffWave [54] as vocoders.

In-the-Wild [12]. This dataset comprises speeches from
English-speaking celebrities and politicians, collected from
diverse media sources, simulating a real-world scenario.

ASVSpoof2021 [62]. ASVSpoof2021 features spoofing
samples generated using various voice conversion (VC) and
text-to-speech (TTS) techniques. We use the train/dev sets to
train all detection models and the evaluation set (DF21) to
assess the performance of the detection algorithms.

B. Baseline Methods

RawNet2 [39]]. RawNet2 is a hybrid model that combines
convolutional neural networks (CNNs) and gated recurrent
units (GRUs). It extracts speech representations directly from
raw audio signals and has demonstrated reliable performance,
particularly in the ASVSpoof2019 challenge.

LFCC-LCNN [63]]. Linear Frequency Cepstral Coefficients
(LFCC) are computed using a linear filterbank on the spectro-
gram. We adopt a lightweight CNN as the detection model.

RawNet2-Voc [[10]. This method uses RawNet2 as the back-
bone detection model and extends the binary classification task
to multi-task learning, incorporating a synthesizer prediction
task to enhance detection performance.

Wav2Vec2 [40]. Wav2Vec2 is a large-scale pretrained
model developed by Meta Al It is designed to learn universal
speech signal representations for various downstream speech
tasks, including fake speech detection.

VoiceRadar [41]. VoiceRadar analyzes the frequency dis-
tribution of speech embeddings extracted from HuBERT [64],
a self-supervised speech representation model, and leverages
these insights to augment the detector training process.

Dual-Stream [14]. Similar to RawNet2-Voc, this approach
uses a multi-task framework with a synthesizer prediction
stream for classifying vocoders and a content stream for pre-
dicting vocoder-independent pseudo-labels (e.g., speech speed
and codec type), enhanced by contrastive learning.

Trident [15]. It utilizes Wav2Vec2 as the front end and
integrates various strategies into the downstream task design. It
incorporates speech re-synthesis and augmentation to enhance
training diversity and sample balance.

C. Evaluation Metric and Other Settings

Evaluation Metric. Following prior studies [14], [10], we
adopt Equal Error Rate (EER) as the primary metric. EER
is the point on the ROC curve where the False Acceptance
Rate (FAR) equals the False Rejection Rate (FRR). A lower
EER indicates better performance.

Data Preprocessing and Other Settings. All speech sam-
ples are resampled to a uniform 16kHz sampling rate, and their
raw waveforms are either trimmed or padded to a length of 4
seconds. We adopt the STFT spectrogram as the base feature,
converting it to logarithmic scale for deep learning tasks. The
number of FFT points is set to 400, resulting in spectrogram
representations of size 200 x 324 for all speech samples. For
both 2D and 3D input branches, we define dB upper bounds
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TABLE I: Detection EER (%) in the intra-dataset setting.

Method Dataset
WaveFake LibriSeVoc  Wild

RawNet2 6.8 6.6 0.9
LFCC-LCNN 0.2 1.3 0.4
Wav2Vec2 0.4 14 1.1
VoiceRadar 1.2 2.0 0.7
Trident 0.7 0.9 1.2
RawNet2-Voc 3.9 3.1 -
Dual-Stream 0.2 0.5 -
Ours 0.1 0.5 0.3

of —70, —65, —60, —55, —45, —35, —10, and 30, yielding
eight individual image-like sub-spectrograms (2D) and video-
like spectrogram streams (3D) with eight frames. We apply
the 2D-DCT transformation to all representations, generating
corresponding outputs of the same shape. The Adam optimizer
is used for both ResNet18 and TimeSformer. Batch sizes are
set to 128 for ResNet18 and 16 for TimeSformer, with learning
rates of 0.0005 and 0.0001, respectively. Other setting details
can be found in Section [A of the Appendix.

D. Performance on Public Datasets

1) Evaluation in the Intra-Dataset Setting: We begin by
evaluating the proposed framework in the Intra-dataset setting,
where the training and testing sets are split from the same
dataset. Specifically, we follow the 6/2/2 train/dev/test splits
used in [14] and [10] for the WaveFake, LibriSeVoc, and In-
the-Wild datasets. Table [[ presents the intra-dataset evaluation
results for these datasets, showing that our framework achieves
the best detection performance. Note that RawNet2-Voc and
Dual-Stream are not applicable to the In-the-Wild dataset due
to the absence of vocoder information. We also observe that
most detection algorithms achieve an EER of less than 5%
across the three datasets. This strong performance can be
attributed to the ability of these methods to capture effective
features that distinguish fake and real samples.

2) Evaluation in the Cross-Method Setting: This setting
simulates real-world scenarios where unseen or newly released
vocoders are not included during the training of the detec-
tion model. To evaluate the generalizability of our proposed
framework, we consider two scenarios: (1) Leave-One-Out,
where the detection model is trained on samples generated by
all vocoders except one within the dataset and tested on the
unseen vocoder, and (2) Leave-Most-Out, where the detection
model is trained on samples generated by only two vocoders
within the dataset and tested on samples generated by all
remaining unseen vocoders.

Table [ presents the results for the Leave-One-Out scenario
on the WaveFake dataset. As described in Section [VI-A] the
WaveFake dataset utilizes seven pre-trained neural vocoders.
The results show that our proposed framework achieves the
best average EER on this dataset in the Leave-One-Out
scenario, despite being assumption-free and not relying on
vocoder labels during training. Compared to baseline meth-
ods that utilize vocoder information during training, such as



TABLE II: Detection EER (%) on the WaveFake dataset in the Leave-One-Out scenario.

Unseen vocoder

Method Average
MelGAN  MelGAN-FB  MelGAN-MB  MelGAN-L  HiFiGAN PWG  WaveGlow

RawNet2 2.3 242 18.3 4.8 20.9 7.4 17.3 13.6
LFCC-LCNN 3.6 44.1 12.6 1.1 4.7 0.9 9.8 11.0
Wav2Vec2 6.9 10.2 3.1 3.0 12.6 9.7 29 6.9
VoiceRadar 53 73 17.6 10.2 9.4 4.4 13.8 9.7
Trident 32 15.6 2.7 4.0 59 5.1 1.9 55
RawNet2-Voc 0.6 40.2 9.3 274 36.3 224 30.0 23.7
Dual-Stream 9.6 1.2 0.6 0.1 8.7 4.1 0.2 3.5
Ours 0.1 0.3 0.1 0.1 1.0 0.2 0.4 0.3
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Fig. 7: The average detection EER (%) in the Leave-Most-Out scenario.

RawNet2-Voc and Dual-Stream, our framework demonstrates
superior transferability. In Section [B| of the Appendix, we also
present the results for this scenario on the LibriSeVoc dataset
in Table which further demonstrates that our framework
achieves the best overall performance.

The results also reveal a key limitation of baseline methods:
while they may perform well on specific vocoders, they
often exhibit significant performance degradation on unseen
vocoders not included during training. For example, as shown
in Table [[I} LFCC-LCNN and RawNet2-Voc achieve EERs of
0.9% on PWG and 0.6% on MelGAN, respectively, but their
EERs increase dramatically to 44.1% and 40.2% on MelGAN-
FB when MelGAN-FB is excluded during training. This
demonstrates that these methods fail to generalize effectively
and struggle to develop a robust understanding of fake speech
across unseen vocoder categories.

Another observation is that incorporating vocoder prediction
tasks does not consistently improve performance. For example,
while RawNet2-Voc (leveraging vocoder information during
training) lowers the EER by 2.9% and 3.5% under the regular
intra-dataset setting (Table[l) on the WaveFake and LibriSeVoc
datasets, respectively, its average EER increases by approxi-
mately 10% on both datasets in the Leave-One-Out scenario.

Furthermore, both Trident and Dual-Stream achieve better
performance than other baseline methods in terms of average
EER, as they incorporate advanced training strategies and
speech augmentation techniques. However, they still fail to
achieve consistently low EERs across all unseen vocoders.
It is worth noting that both methods rely on re-synthesizing
or external tools to expand the training data. In contrast, our
proposed framework is purely data-driven and does not depend
on any external methods. Despite this, our method consistently
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achieves the best or highly competitive results in most cases.

For the Leave-Most-Out scenario, the performance of our
proposed framework compared to baseline methods is shown
in Figure m In this scenario, the detection model is trained
on samples generated by only two vocoders (shown on the
horizontal axis in Figure [7) within the dataset and tested on
samples generated by all remaining unseen vocoders. Figure
reports the average EER across the unseen vocoders for each
case. From the results, we observe that our proposed frame-
work demonstrates stronger transferability on the WaveFake
dataset, achieving the best performance in all cases, even when
trained on only two vocoders. On the LibriSeVoc dataset,
our framework also achieves the best overall performance,
although a few baseline methods outperform it in specific
combinations of two vocoders used for training, such as
MelGAN+PWG and PWG+WaveNet. Most other baseline
methods exhibit unstable performance, with average EERs
fluctuating significantly depending on the vocoder combina-
tions used during training.

3) Evaluation in the Cross-Language/Dataset Settings:
Next, we evaluate the proposed framework in cross-language
and cross-dataset settings, with the results presented in Ta-
ble [T} For the cross-language setting, we assess performance
using the English (ENG) and Japanese (JP) subsets of the
WaveFake dataset. As shown in Table ENG—JP denotes a
model trained on the English subset and tested on the Japanese
subset, while JP—-ENG represents the reverse scenario. For
the cross-dataset setting, we consider two scenarios. In the
first scenario (denoted as LV—WF), the model is trained
on LibriSeVoc and tested on WaveFake, and in the second
scenario (denoted as ASV19—DF21), the model is trained on
ASVSpoof2019 and tested on DF21, which is derived from



TABLE III: The average detection EER (%) in cross-
language/dataset settings.

Method ENG—JP JP—ENG LV—WF ASVI9—DF21 Average
RawNet2 29.3 41.6 21.3 23.0 28.8
LFCC-LCNN 6.1 18.8 8.6 224 14.0
Wav2Vec2 15.2 12.3 26.4 29.1 20.8
VoiceRadar 14.9 223 10.7 19.1 16.8
Trident 18.6 14.1 21.2 16.8 17.7
RawNet2-Voc 36.5 34.7 239 224 29.4
Dual-Stream 22.7 16.9 54 18.6 15.9
Ours 12.6 8.3 4.7 18.0 10.9

ASVSpoof2019. It includes many newer and unseen synthesis
techniques not present in the training set. Table [ITl| shows that
our framework achieves the best overall performance, with the
lowest average EER of 10.9%. Notably, the performance of
our framework in the cross-language setting demonstrates the
robustness of small-magnitude features, which appear less de-
pendent on content or language. Interestingly, the basic LFCC-
LCNN model achieves the second-best overall performance,
surpassing advanced baseline methods like Dual-Stream and
Trident, which have shown strong results in other settings.
However, all methods, including ours, show a general decline
in performance when evaluated across different datasets and
languages, likely due to inherent challenges such as variations
in speakers, recording conditions, and data preprocessing
techniques across datasets.

E. Real-World Evaluation

Although public datasets cover a range of speech synthesis
technologies, they may not fully represent the capabilities
of modern free or commercial voice-cloning tools. These
web APIs are highly accessible and often support zero-shot
synthesis, requiring only a short voice clip (approximately
10 seconds) and input text to generate high-quality synthetic
speech. However, limited research has examined the threats
posed by these APIs. To address this gap, we conduct a case
study by recruiting real-world participants and collecting both
real recordings and synthetic samples generated via publicly
available voice-cloning API

Web Voice-Cloning APIs. We select 5 publicly available
voice-cloning tools: ElevenLabs [65], Speechify [66], FishAu-
dio [67], PlayHT [68]], and DupDub [69]. These APIs are
chosen via a Google search using keywords like “free voice-
cloning” and “free AI speech synthesis”. Selection criteria
include accessibility and ease of use, favoring APIs that
require minimal setup. These tools often incorporate state-of-
the-art speech synthesis techniques with strong adaptability
and performance, allowing them to mimic the voices and
accents of unseen speakers with remarkable accuracy.

Data Collection. We recruit 13 English-speaking partic-
ipants (8 male and 5 female) aged between 19 and 45
years. Each participant provides 10 voice recordings of the
Rainbow Passage [70], a widely used corpus containing com-
mon English syllables. Each recording contains 1-2 phrases

Ethics considerations are discussed in Section [VIII
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Fig. 8: Recording devices.

TABLE IV: Detection EER (%) for Web voice-cloning APIs.

Voice-cloning API

Method Average
ElevenLabs FishAudio DupDub Speechify PlayHT
RawNet2 46.4 72.5 54.1 69.7 41.0 56.7
LFCC-LCNN 38.6 24.7 43.1 325 354 34.9
Wav2Vec2 249 56.2 38.9 375 44.0 40.3
VoiceRadar 235 329 19.7 13.4 19.3 21.8
Trident 24.7 25.8 29.4 31.9 18.5 26.1
Ours 6.8 9.4 8.3 12.6 4.5 8.3

from the passage. Recordings are made using a MacBook
(6 participants), iPhone (4), or USB microphone (3), with
microphones positioned 6—12 inches from the mouth in various
environments (bedrooms, offices, a classroom). The adopted
recording devices are shown in Figure [8] For speech synthesis,
we randomly select 2 recordings per participant to generate
synthetic speech using voice-cloning APIs, with the remaining
8 used as real samples. All synthesized content is also drawn
from the Rainbow Passage. In total, we collected 130 fake and
104 real speech samples.

Detection Performance. We train our detection model us-
ing a hybrid dataset combining the training sets of WaveFake,
LibriSeVoc, In-the-Wild, and ASVSpoof2021, totaling 50,000
samples evenly drawn from the four sources. To account for
real-world compression artifacts, we follow [14] and augment
the training set with two common formats: MP3 and AAC.
For baseline comparison, we include RawNet2, LFCC-LCNN,
Wav2Vec2, VoiceRadar, and Trident. RawNet2-Voc and Dual-
Stream are excluded due to their reliance on vocoder labels,
which are unavailable in the In-the-Wild dataset. Table [V]
presents detection results on synthetic speech generated us-
ing participants’ voices. The results show that our method
consistently outperforms all baselines, demonstrating strong
generalization to black-box Web voice-cloning APIs where the
synthesis process is entirely unknown.

F. Performance under Adaptive Attacks

In practice, an attacker may be aware of the proposed
framework and attempt an adaptive attack to evade detection.
To evaluate the robustness of our framework under such con-
ditions, we consider the following adaptive attack strategies.

o Projected Gradient Descent (PGD) Attack. PGD [71] is
an adversarial attack method that perturbs the original input
to induce misclassification (e.g., crafting adversarial speech
to evade detection). However, applying a universal pertur-
bation across all branches and all layers of our proposed



TABLE V: Detection EER (%) under adaptive attacks.

TABLE VI: Detection EER (%) for the ablation study.

PGD-R PGD-T Edit-2L  Edit-4L

14 0.8 2.6 1.3
1.0 0.9 1.8 0.6

Vocoders for training

MelGAN + HifiGAN
PWG + WaveGlow

framework is nearly infeasible. This is primarily due to the
non-differentiable nature of the layer partitioning operation,
where perturbations optimized for one layer may lose their
effectiveness after being divided into sub-layers. Moreover,
generating a single perturbation that successfully attacks
both the 2D and 3D branches is extremely challenging, given
their architectural differences and the fact that they operate
in distinct domains (pixel and DCT), and to our knowledge
this has not been addressed by existing adversarial methods.
As a case study, we therefore perform independent PGD
attacks on the ResNet18 and TimeSformer, constraining the
perturbation norm to 4 for both inputs.

Post-Editing Attack. In this strategy, the attacker attempts
to enhance the realism of synthetic speech by introducing
fabricated details. To evade detection, the attacker may
replace small-magnitude sub-spectrogram layers of the syn-
thetic speech with those extracted from real samples. Specif-
ically, we consider scenarios where the attacker replaces the
two or four lowest-magnitude layers.

Victim-Overfitting Attack. While most victims are typi-
cally not included in the training set of speech synthesis
models, we consider a highly targeted scenario where an
attacker fine-tunes a synthesis model using a victim’s voice
to improve the synthesis quality for that individual. As
a case study, we adopt AutoVC [56]] and SV2TTS [20]
as representative VC and TTS models, respectively. We
select 20 speakers from the VCTK [72] and LibriSpeech
datasets [73] (none of whom are present in the original
training sets) to serve as specific victims for this evaluation.

Detection Performance. For the PGD and post-editing
attacks, we evaluate detection performance under the leave-
most-out setting using the WaveFake dataset. Specifi-
cally, we consider two training scenarios with different
vocoders: one using MelGAN+HiFiGAN and the other using
PWG+WaveGlow, while testing is performed on samples from
the remaining unseen vocoders. Table [V reports the detection
EER under these two adversarial strategies. As an example, we
consider the detection model trained on the PWG and Wave-
Glow vocoders. For the PGD attack, the EERs (%) are 1.0
and 0.9 when targeting ResNet18 (PGD-R) and TimeSformer
(PGD-T), respectively. For the post-editing attack, the EERs
(%) are 1.8 and 0.6 when modifying the two smallest layers
(Edit-2L) and four smallest layers (Edit-4L), respectively. The
results indicate that our method remains robust, even when
attackers are aware of the detection framework and attempt
to bypass it. For the victim-overfitting attack, the EER before
fine-tuning is 1.9 and becomes 1.7 after fine-tuning with the
victim’s voice. This shows that personalized fine-tuning fails to
meaningfully degrade detection performance, reinforcing the
challenge of achieving undetectable synthesis.
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Detection w/o w/o w/o w/o
task 2D-spec  2D-dct  3D-spec  3D-dct

Intra-dataset 4.8 0.3 2.7 0.7

Cross-method 5.1 6.5 34 8.5

G. Ablation Study

Our framework comprises four components to handle dis-
tinct input representations. To assess their contributions to
detection performance, we conduct an ablation study in four
scenarios: ‘w/o 2D-spec’, ‘w/o 2D-dct’, ‘w/o 3D-spec’, and
‘w/o 3D-dct’. These scenarios involve omitting components re-
sponsible for processing 2D sub-spectrograms, 2D DCT spec-
tra, 3D sub-spectrograms, and 3D DCT spectra, respectively.
The evaluation, performed on intra-dataset and cross-method
detection tasks using the LibriSeVoc dataset, is summarized
in Table For comparison, the original framework achieves
average EERs of 0.5% and 4.6% on these tasks. The results
reveal that the 2D sub-spectrogram sequence is critical for
intra-dataset detection performance. As the fundamental time-
frequency representation of a speech signal, it encapsulates
rich and detailed information, and its omission results in a
significant performance drop. Similarly, the 3D representation
of sub-spectrograms plays an essential role, with its removal
leading to a notable increase in EER. In the cross-method
detection task, the components related to DCT representations
demonstrate their importance in enhancing detection general-
ization. The 3D representation of DCT spectra is particularly
impactful, as its absence leads to the most significant per-
formance decline. This result underscores the strength of the
DCT frequency domain in identifying subtle, distribution-level
artifacts. By capturing general patterns and hidden inconsisten-
cies, the DCT components effectively generalize across unseen
synthesis methods.

Additionally, we study the impact of the number of sub-
spectrogram layers and sample length, with supplementary
results provided in Section [B] of the Appendix.

VII. CONCLUSION

In this paper, we addressed the limitations of existing fake
speech detection methods by introducing a novel assumption-
free and generalized framework centered on the magnitude
representation of spectrograms. Our analysis reveals consistent
artifacts in fake speech, such as reduced texture detail, repet-
itive patterns, and inconsistencies across magnitude ranges.
Leveraging these insights, our framework partitions spec-
trograms into layered magnitude-based representations and
detects artifacts in both spatial and DCT domains using 2D and
3D inputs. Extensive experiments on public datasets show that
our method achieves state-of-the-art performance with strong
generalizability to unseen models, speakers, and languages,
and its robustness is further validated in real-world scenarios
involving black-box Web voice-cloning APIs.



VIII. ETHICS CONSIDERATIONS

Our real-world evaluation was approved by the IRB. All
participants provided informed consent via a consent form pre-
sented at the start of the study. Participants were anonymized,
and no sensitive identifiers or account information were stored
or shared during the experiments. Participation was voluntary,
and they could withdraw at any time without penalty. The
recording process took approximately 5—-10 minutes, and each
participant received $10 as compensation for their time.
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APPENDIX

A. Other Experimental Settings

All experiments are conducted on two NVIDIA RTX 6000
GPUs. Early stopping is applied if the model’s performance
does not improve for three consecutive epochs. For DCT
implementation, we adopt the DCT function from the SciPy
library with orthonormal normalization factors. We set the
Tmrn and Tarax to -150 dB and 50 dB as the reference
minimum and maximum magnitudes for calculating the sam-
ple weight during weighted-scaling training. For the baseline
method Dual-stream, we randomly select 10 speed-codec
combinations during training for augmentations, with speed
from the range of 0.5 to 2.0 times and the codec as (aac,
ops, mp3). For Trident [15]], we also choose k = 3 speech
augmentation techniques and v = 3 vocoder augmentation
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TABLE VII: Detection EER (%) on the LibriSeVoc dataset in the Leave-One-Out scenario.

Unseen vocoder

Method Average
DiffWave MelGAN PWG WaveGrad WaveNet WaveRNN
RawNet2 28.8 6.9 17.6 30.1 24.9 40.7 24.8
LFCC-LCNN 6.4 37.9 1.1 7.2 20.4 433 194
Wav2Vec2 5.9 18.9 3.7 6.5 1.8 15.7 8.8
VoiceRadar 184 10.5 7.6 4.1 19.3 23.7 13.9
Trident 7.3 284 5.3 12.1 2.2 7.4 10.5
RawNet2-Voc 40.0 334 34.8 17.3 36.6 45.2 34.6
Dual-stream 7.1 8.2 6.8 34 6.0 15.6 79
Ours 4.1 34 3.6 5.8 1.2 9.4 4.6

methods used in the paper. For real-world experiments with
Web voice-cloning APIs, due to the limited sample size, we
select an equal number of real speech samples for testing EER,
repeat the process 5 times and report the average.

During training, we only use half of the sub-spectrograms
for the 2D-input branches and randomly drop one layer for
the 3D-input branches to reduce content overlap and prevent
Timesformer from overfitting to specific layers. For the 3D
branches, we specifically drop the 1st, 3rd, 5th, or 7th layers.
After training, we freeze the weights of the four detectors and
fine-tune an MLP using the multiple predictions of a speech
sample with its ground-truth label. This step incorporates
magnitude-layer information to enhance decision-making, akin
to position encoding in natural language tasks. Specifically,
we generate 8 predicted vectors each for sub-spectrogram
and DCT-spectrum sequences using ResNetl8, and 4 vectors
each for the corresponding 3D representations by dropping
specific layers, resulting in 24 (8+8+4+4) vectors per sample.
These vectors are then used to fine-tune the MLP, focusing on
both the independence and consistency of predictions across
different magnitude ranges. During testing, the same process
aggregates predictions from the four branches via the MLP to
classify samples as real or fake.

B. Additional Experimental Results

Evaluation in the Cross-Method Setting. In Table
we present the results for the Leave-One-Out scenario on the
LibriSeVoc dataset.

Additional Baselines and Metrics. In addition to the
baselines in Table [[I] we further evaluate three DNN-based
detection methods: Whisper [74], ASSIST3 [75], and Effi-
cientCNN [76], following the main setups described in their
papers. We consider the first two combinations of the leave-
most-out setting on the WaveFake dataset for evaluation.
Table [VIIT presents the results under this setting, showing a
similar phenomenon in which unseen vocoders are difficult to
handle for baseline methods. To examine whether our method
is effective on both positive and negative samples, we evaluate
the TPR, TNR, and F1 scores under the first combination
(HifiGAN+PWG) in the leave-most-out setting of WaveFake.
The corresponding TPR, TNR, and F1 scores are 0.97, 0.95,
and 0.98, respectively, demonstrating that our method effec-
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TABLE VIII: Detection EER (%) on the WaveFake dataset in
the leave-most-out scenario.

HifiGAN+PWG  MelGAN+WaveGlow

Whisper (SpecRNet) 21.3 32.7
Whisper (LCNN) 32.0 12.3
AASIST3 18.7 8.2
EfficientCNN 13.0 10.4
Ours 3.9 1.4

TABLE IX: Detection EER (%) across varying numbers of
sub-spectrogram layers on the LibriSeVoc dataset.

# of layers
4 6 8 10
Inner-dataset 1.8 07 05 09
Cross-method 8.6 6.5 4.6 42

tively distinguishes real and fake speech samples with a high
detection rate. In addition, we evaluate the detection efficiency.
The overhead of the pipeline is 0.23s for a 4s speech clip.

Impact of the Number of Sub-Spectrogram Layers. In
Section we adopt a setting where the spectrogram is
partitioned into 8 sub-spectrogram layers. To evaluate the
impact of the number of layers on detection performance, we
analyze four cases with layer counts of 4, 6, 8, and 10. The
results of this analysis are presented in Table From this
table, we observe that using a smaller number of layers leads
to a noticeable performance decline in both tasks. This is likely
due to the reduced granularity in the magnitude domain, where
larger and smaller magnitudes become excessively blended,
limiting the model’s ability to identify fine-grained patterns.
Conversely, increasing the number of layers excessively can
result in overly sparse and redundant inputs, which may not
effectively contribute to DNN training and could negatively
impact model performance.

Impact of Sample Length. While standard speech sam-
ples often contain rich content, shorter clips, such as voice
commands in IoT applications, are also common. We evaluate
whether our detection framework can handle these short clips.
Since the magnitude domain captures the “depth” of speech
signals, it remains informative regardless of sample length. We
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Fig. 9: Small-magnitude sub-spectrograms generated with different vocoders in the WaveFake dataset.
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Fig. 10: Distribution of time-frequency point counts in small-magnitude region across all vocoders in the WaveFake dataset.

test clips of 2s and 3s under the Leave-One-Out setting. The
average EER(%) is 1.4 for 2s and 0.8 for 3s, confirming our
method’s robustness across varying sample lengths.

C. More Statistics for Fake Speech Analysis

Impact of Vocoder. In Figure [9] we visualize the small-
magnitude spectrograms of real and fake speech generated
by seven different vocoders using the same sample from the
WaveFake dataset. The results demonstrate the phenomenon
of missing details and energy is consistent across different
vocoders.

Figures[I0]and [IT|show the average count of time-frequency
points within the small-magnitude range (below -60 dB) for
different vocoders in the WaveFake and LibriSeVoc datasets,
respectively. In the WaveFake dataset, real samples consis-
tently exhibit higher counts of time-frequency points compared
to fake samples, indicating that real audio retains more fine-
grained details in the small-magnitude region. In the Libri-
SeVoc dataset, while real samples generally display higher
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counts in the small-magnitude range, an exception is observed
with WaveRNN, where fake samples show increased counts
in specific magnitude ranges. Given the rapid evolution of
speech technologies, we also extend our evaluation beyond
the 13 vocoders (e.g., WaveNet (2016) and HiFi-GAN (2020))
to include recent black-box Web voice-cloning APIs: Eleven-
Labs [63]], Speechify [66], FishAudio [67], PlayHT [68], and
DupDub [69]. Our analysis reveals that the mean counts of
time-frequency points in the small, middle, and large magni-
tude ranges are 2308/1325, 25010/26689, and 8610/8386 for
real/fake speech samples, respectively. These results suggest
that even the latest models still exhibit notable artifacts in the
small-magnitude range.

Examples from More Datasets. In Figure [12] we visualize
both fake and real speech samples from two additional widely
studied datasets: In-the-Wild [12] and ASVSpoof2019 [57],
which provide a diverse basis for analysis. For each dataset,
we provide three examples of real speech and three examples
of fake speech. From Figure we can observe several
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Fig. 11: Distribution of time-frequency point counts in small-magnitude region over all vocoders in the LibriSeVoc dataset.
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Fig. 12: Examples of small-magnitude spectrograms from In-the-Wild and ASVSpoof2019. (a)—(c): real samples from In-
the-Wild; (d)—(f): fake samples from In-the-Wild; (g)—(i): real samples from ASVSpoof2019; (j)—(1): fake samples from
ASVSpoof2019.

characteristics of fake speech, while real speech tends to
exhibit more consistent and natural patterns. In the In-the-
Wild dataset, many fake speech samples display unnatural
vertical or horizontal stripes or overly concentrated energy at
higher frequencies. In the ASVSpoof2019 dataset, Example
(k) exhibits abnormal vertical energy bars. However, some
fake speech samples, such as Examples (j) and (1), also retain
texture details, making them more challenging to distinguish
directly within the spatial domain of sub-spectrograms. Nev-
ertheless, upon closer inspection, Examples (j) and () reveal
repetitive or monotonously consistent texture patterns. This
observation underscores potential artifacts at the distribution
level and highlights the need for more advanced strategies to
detect traces of fabrication hidden within spectrograms.
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